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W lodzimierz Natorf for teaching me physics.

The text of Chapter 5, in part, is a reprint of the material as it appears in
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 L. Cywiński, H. Dery, and L.J. Sham, Electric readout of magnetization dynamics

in a ferromagnet-semiconductor system, Appl. Phys. Lett. 89, 042105 (2006).
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ABSTRACT OF THE DISSERTATION

Magnetization Dynamics and Spin Diffusion in Semiconductors and Metals

by

 Lukasz Cywiński

Doctor of Philosophy in Physics

University of California, San Diego, 2007

Professor Lu Jeu Sham, Chair

Spintronics is an emerging field of research focused on introducing the electron

spin degree of freedom into electronics. Its aims include devising new means of

magnetization manipulation in ferromagnets and creating systems in which the

electrical expression of spin-related phenomena is possible. In this dissertation we

present theoretical work important for both of these goals.

In a process of ultrafast light-induced demagnetization the magnetization of

a ferromagnet decreases on a sub-picosecond time-scale following an excitation by

a strong laser pulse. We present a theory of this phenomenon which is applicable

to ferromagnetic (III,Mn)V semiconductors. Using it we qualitatively explain the

experimental results obtained recently in these materials. We also give a theory

of ultrafast demagnetization in transition metals, in which we put previously pro-

posed approaches on a sound conceptual basis, and analyze a new mechanism of

demagnetization due to emission of spin waves by hot carriers.

Recent progress in growth of metal-semiconductor interfaces has enabled effi-

cient spin-polarized transport between metallic ferromagnets and semiconductors

such as GaAs. We present a theory of diffusive spin transport in such metal-

semiconductor structures. In contrast to popular one-dimensional approach, we

take into account realistic two-dimensional lateral geometry of these systems. We

also focus on room temperature regime. Our analysis of spin accumulation achiev-

able in systems of sub-micron dimensions leads to a proposal of a new family of

spintronic devices with multiple ferromagnetic terminals in contact with a semi-

xiii



conductor channel. We show that in a three-terminal “spin transistor” digital

electric expression of spin accumulation is possible. We also calculate the time-

dependent spin transport induced by rotation of one of the magnets in this sys-

tem, and we show that electrical sensing of magnetization dynamics is realistic

in metal-semiconductor structures. An analogous five terminal system can work

as a reprogrammable logic gate, with the logic inputs and the gate functionality

encoded in the directions of the ferromagnetic terminals. A system capable of elec-

trical detection of circular polarization of light is also modeled. All these proposals

will hopefully set new directions in applied spintronics research and stimulate new

experiments.
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1

Introduction

1.A Spintronics and magnetoelectronics in the previous

millenium

Research on magnetism has always been one of the most important part of

theoretical condensed matter physics. The different types of magnetic order (fer-

romagnetism, antiferromagnetism, etc.) are all caused by Coulomb interaction

between the free and/or localized electrons in a given material. For this reason,

a large part of many-body theory is occupied with explaining the origin of mag-

netic properties of materials. However, when theoretical physicists were working

on subtle many-body spin-related problems (e.g. the Kondo effect in 60s and 70s),

the research on the applications of magnetism was mostly a domain of classical

physics. For example, the smallest ferromagnetic samples available then were large

enough for magnetic domains to form, and the applied scientists working on e.g.

magnetic recording were using a micromagnetic approach [1] to model the relevant

properties of the magnets at hand.

The discovery of giant magnetoresistive effect (GMR) in late eighties [2, 3]

can be considered a turning point in the relation between interesting microscopic

(quantum) physics and the field of applied magnetism. GMR occurs in nanometer-

thin multilayers of ferromagnetic and paramagnetic metals, and truly microscopic

1
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theory of spin-polarized transport is needed to explain this effect [4]. Let us also

mention that another physical effect present in such nano-sized multilayers, the

coupling of the magnetizations of two ferromagnets separated by a paramagnet

[5], also requires a quantum-mechanical explanation [6]. Within less than ten

years from its discovery, the commercial devices using GMR were created [7]. Now

practically every computer has a GMR read head in its hard drive.

The research on ferromagnetic metals has continued to bring fascinating results

since then. The spin transfer effect, in which the spin-polarized current flowing

between two ferromagnets with non-collinear magnetizations can switch the di-

rection (or trigger a precessional motion) of one of the magnetizations, was first

predicted theoretically [8, 9] and then observed (first experiment was reported in

1998 [10], for a review see Ref. [11]). A large progress in controlling the magne-

tization dynamics was made, with shortest reported magnetization switching time

of a ferromagnetic particle on the order of 200 ps [12]. A discovery particularly

important for this dissertation is the one of ultrafast light-induced demagnetiza-

tion [13]. The excitation of a magnet by a strong laser pulse leads to a significant

drop of magnetization on a time-scale of less than a picosecond. This is the fastest

magnetization dynamics ever observed, and the physical mechanism governing it

is not yet fully understood.

Another important development in spin-dependent transport in all-metallic

structures was a discovery of tunneling magnetoresistance (TMR) effect at room

temperature [14] in a device consisting of two ferromagnets separated by a tunnel-

ing barrier. TMR is used now in magnetic random-access memory (MRAM) de-

vices, in which the bits of information are encoded in the magnetization alignments

of TMR multilayer stacks of sub-micron size [15] (MRAM also relies on develop-

ments in fast precessional magnetization switching mentioned before). MRAM

offers a non-volatile memory integrable on the same mother board with the mi-

croprocessor. However, it maintains the separation of functions between the new

“magnetoelectronic” components (which are used for data storage) and the con-
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ventional silicon based field-effect transistor electronics (used for logic operations).

This brings us to the issue of spin physics in semiconductors.

The electronics is based on multi-terminal nonlinear devices (diodes, transis-

tors), and semiconductors hold complete sway over this field. The reason for this

is that due to the low carrier concentration the properties of semiconductors can

be easily changed by either sample preparation (inhomogeneous doping) or applied

stimuli (e.g. gate voltage changing the carrier concentration in the channel of a

field-effect transistor (FET)). In a seminal article of Datta and Das [16] it was noted

that the gate voltage could also influence the spin of the carriers in the channel of

a FET through the Rashba effect (see e.g. [17]), which originates in the spin-orbit

coupling present in the valence and conduction bands of a typical III-V semicon-

ductor. If the spin-polarized current is injected and extracted by the source and

the drain (which are assumed to be ferromagnetic), the gate voltage is predicted

to modulate the current by influencing the precession of spins of ballistic electrons

in the channel. Spin injection from a ferromagnetic to a paramagnetic metals had

been shown in 1985 by Johnson and Silsbee [18], but in early nineties there were

no experiments on spin polarized transport in semiconductors. The dynamics and

relaxation of spin polarization created by optical excitation was an active area of

research since the 70s [19], but electrical injection from a spin-polarized source

(a ferromagnet) or transport of polarized carriers have not been experimentally

achieved then.

Major experimental developments in spin physics of semiconductors occurred

in late nineties. First, electron spin relaxation times of ∼100 ns were seen at low

temperatures in GaAs [20], and the electrical transport of spin-polarized photoelec-

trons has been shown to occur on a length-scale of tens of microns [21]. Second,

spin injection from Mn-doped diluted magnetic semiconductors into GaAs was

achieved [22, 23, 24] in 1999. This was soon followed by successful spin injection

from a metallic contact into a semiconductor [25]. The third development was a

successful growth of a new class of ferromagnetic semiconductors: III-V materials
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doped with Mn ions [26, 27]. The critical temperature in certain samples of GaM-

nAs was reported to be ∼110 K, and theoretical understanding of carrier-mediated

ferromagnetism in these materials [28, 29, 30] gave hope for achieving the room-

temperature ferromagnetism. Let us mention here, that the (III,Mn)V materials

are not good semiconductors from the carrier transport point of view: they are are

heavily p-type with hole concentration of the order of 1020 cm−3 and low mobility

due to strong disorder. However, their magnetic properties are controlled by carrier

concentration, and both the critical temperature [31] and the coercivity of InMnAs

have been manipulated by voltage in a gated structure. This responsiveness to ex-

ternal stimuli is what justifies calling them ferromagnetic semiconductors instead

of rather poor metals (the fact that they are semiconductor-based also matters,

and because of this they form interfaces with paramagnetic semiconductors more

easily than real metals).

All of the above have given a strong boost to the field, which was soon termed

“spintronics” [32] (an earlier name of “magnetoelectronics” is associated more with

all-metallic devices). An enormous amount of experimental and theoretical activity

followed in last 7 years. Excellent reviews of the topic are now available. Refer-

ence [33] is probably the broadest, covering both metals and semiconductors (and

including a very thorough overview if the history of all the relevant ideas and

experiments). A book [34] focuses mostly on applications of metallic (“magne-

toelectronic”) structures, while Ref. [35] contains a detailed theoretical review of

spin dynamics in semiconductors. Recent developments relevant for this disserta-

tion will be discussed in the introductory sections of the following chapters of this

work.

1.B Overview of work presented in this dissertation

In the historical sketch above one can see that the research in spintronics can

be roughly divided into three subfields: (1) spin-dependent effects in “normal”
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semiconductors (spin-orbit interaction in III-V semiconductors, spin transport in-

cluding the spin Hall effect); (2) new phenomena associated with magnetism in

metals (spin transfer torque, (ultra)fast magnetization dynamics); (3) physics of

new magnetic material such as ferromagnetic semiconductors. All of these are, to

a varying degree, represented in this dissertation.

The dissertation is divided into two largely independent parts. The first one,

consisting of chapters 2-8, contains our research of spin transport and its electrical

expression in hybrid metal-semiconductor structures. These investigations were

inspired by a rapid experimental progress in spin injection and extraction between

metals such as iron into semiconductors such as GaAs [36, 37, 38]. The main

idea which we pursue in these chapter is that of the electrical expression of spin

accumulation created in a semiconductor by spin injection and extraction through

junctions with ferromagnets. We propose various systems with multiple magnetic

terminals, the functionalities of which illustrate this idea. Specifically, we discuss:

(a) both static and dynamic readout of magnetic memory by current measurement;

(b) all-electrical sensing of magnetization dynamics; (c) a reprogrammable logic

gate in which the gate functionality and the logic input is encoded in directions

of magnetizations of four contacts; (d) a detector of circular polarization of light

using the phenomenon of optical orientation in semiconductors and extraction of

photoexcited carriers into the ferromagnetic leads. On the technical side, instead of

using a popular one-dimensional approach to spin diffusion (see e.g. Ref. [39]), we

developed a simple yet accurate formalism for calculating spin diffusion in realistic

lateral systems. We applied it in our modeling of both steady state and dynamic

(driven by rotation of ferromagnets) spin transport in the proposed systems.

We emphasize that in our work on spin transport in metal/semiconductor

structures we have concentrated on room temperature regime, and we have confined

ourselves to working with junction parameters very close to the experimentally

realized ones. Because of the former restriction, our theoretical approach is a rather

simple one, eschewing the intricate physics of transport in spin-orbit coupled bands
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(e.g. Rashba interaction [17] or spin Hall effect [40]). Although the non-trivial

effects of spin-orbit coupling on spin transport are fascinating, they are completely

irrelevant at room temperatures in semiconductors such as GaAs. Thus our main

effort in this field of research was to use a more limited set of physical resources

to predict interesting spin-related effects observable at room temperature, and to

devise realistic applications of them. We hope that our results will become an

inspiration for future experiments. A rapid progress in the direction which we had

investigated has already occurred [41, 42].

In the second part of the dissertation, consisting of chapters 9 and 10, we

propose a theory of light-induced ultrafast demagnetization in transition metals

(chapter 9) and in ferromagnetic (III,Mn)V semiconductors (chapter 10). Although

the ultrafast demagnetization was discovered in Ni more than 10 years ago [13],

there is yet no theory which is fully convincing and physically transparent (at

least in our opinion). In chapter 9 we analyze two different mechanism which can

lead to subpicosecond drop of magnetization in photoexcited itinerant ferromag-

net. We build on a previously proposed [43] explanation in terms of Elliott-Yafet

spin relaxation of electrons on a sound conceptual basis, and made a connection

between this mechanism of demagnetization and the spin diffusion theory in ferro-

magnetic metals (discussed in chapter 2). Then we introduce a different approach,

in which the demagnetization is caused by generation of spin waves by hot carriers.

Although this model seems to us more physically appealing than the first, more

theoretical work is needed to resolve which approach is more suitable for explana-

tion of experiment in Ni and Fe. We hope that our work presented in chapter 9,

by clarifying the previous theories and putting forth a new approach, will lead to

new understanding of ultrafast demagnetization in transition metals.

Chapter 10 contains our theory of ultrafast demagnetization within the sp-d

model of ferromagnetism. This work was motivated by our close collaboration with

the experimental group of professor Junichiro Kono on ultrafast demagnetization

in ferromagnetic (III,Mn)V semiconductors. This new class of magnetic materials
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has garnered a lot of attention in the last decade, with hundreds of measurements

of static magnetic and transport properties published, but only during the last

two years there has been a progress in time-resolved experiments. We have worked

closely with the experimentalists on many aspects of their measurements, with

this effort culminating in writing together the first review article on time-resolved

spectroscopy of (III,Mn)V semiconductors [44]. In chapter 10 we present a general

theory of light-induced demagnetization in a system of localized spins coupled by

exchange interaction to the spins of the itinerant carriers, and perform detailed

calculations for ferromagnetic semiconductors InMnAs and GaMnAs. Our theory

highlights the interplay between the nonequlibrium population dynamics of hot

carriers, and spin-flip scattering between them and the localized spins. We obtain

a qualitative agreement with experimental results in (III,Mn)V materials.

1.C A reader’s guide to the dissertation

Chapters 2-8 are concerned with spin diffusion and electrical expression of spin

accumulation in metal/semiconductor structures. In chapter 2 we derive the spin

diffusion equations applicable to semiconductors at room temperature (when more

subtle effects of spin-orbit interaction are blurred out), and to both ferromagnetic

and paramagnetic metals. In chapter 3 we discuss the physics of spin injection and

extraction through metal/semiconductor junction at room temperature. Then we

discuss a simplest spintronic system, a two-terminal spin-valve in Chapter 4. There

we also give an important example of the approximate calculation of spin accumu-

lation (in section 4.B), which should help the reader develop an intuition on which

the ideas for the systems discussed in chapters 6-8 are based. Chapter 5 contains

more development of spin diffusion formalism, allowing for simple, approximate

but accurate, calculation of spin accumulation in lateral systems (a semiconduc-

tors channel with magnetic contact of finite width on top of it). In this chapter

we apply the new method of calculation to a lateral spin valve, and we discuss the
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importance of a proper choice of system’s geometry for an optimal operation (i.e.

a large magneto-resistive effect).

In Chapter 6 we introduce a powerful concept of a multi-terminal system (a

transistor), the principle of operation of which is the electrical expression of spin

accumulation. Apart from a three-terminal transistor we present a five-terminal

system which is capable of performing a logic operation (with logic inputs encoded

in the magnetizations of the ferromagnetic contacts). In Chapter 7 we calculate

the time-dependent currents induced in these multi-terminal systems by a rotation

of the magnetization of one of the contacts, showing a possible method of electri-

cal measurement of magnetization dynamics, and a dynamic readout of magnetic

memory (or a result of a logic operation in a five-terminal system). Finally, Chap-

ter 8 contains a description of a spintronic polarimeter (a detector of circular

polarization of light).

Chapters 9 and 10 are concerned with theory of ultrafast light-induced demag-

netization, and they are practically independent of the previous chapters (with one

exception mentioned below). In chapter 9 we give an overview of experiments and

previous theories of demagnetization in transition metals, and then present our

contribution, which consists of clarification of a previously proposed model, and

introduction of a new theory of excitation-induced carrier-magnon scattering. We

also make a connection between a model of demagnetization based on Elliott-Yafet

spin relaxation of electrons, and spin diffusion in ferromagnets, which is discussed

in chapter 2.

In Chapter 10 we present a theory of ultrafast demagnetization in materials

described by the sp-d model of ferromagnetism, with specific application to ferro-

magnetic (III,Mn)V semiconductors. This is the most theoretically involved part

of the dissertation, both from analytical and numerical points of view. In order for

the chapter to be more readable and efficient in conveying key physical messages,

most technical details are contained in the following appendices.



2

Spin diffusion in semiconductors

and metals: a general theory

In this chapter we will derive spin diffusion equations applicable to bulk semi-

conductors at room temperature and metals (para- and ferromagnetic). The

caveats in the case of semiconductors are necessary because the spin-orbit inter-

action in III-V compounds leads to an effective spin-dependent Hamiltonian for

carriers which has a non-trivial momentum dependence [17]. At room tempera-

ture in bulk samples it is well established that the “macroscopic” approach, in

which the main role of spin orbit interaction is to relax the average carrier spin, is

applicable. Actually, even at very low temperature, in spin injection experiments

[38] the spin accumulation is seen to obey a simple diffusion equation (however,

in order to account for spin precession due to applied strain [45] one has to use

a microscopic Hamiltonian coupling the carrier spin to the lattice deformation).

Equations more complicated than the ones derived below were obtained for 2D

electrons at room temperature [46, 47], predicting e.g. the anisotropy of spin re-

laxation (in-plane and out-of plane components of spin polarization decaying on

different time-scales). A subtler approach to deriving spin transport equation from

the Boltzmann equation is necessary for describing the spin Hall effect [48, 49, 40].

However, this effect leads to a minute spin accumulation [50], and although it is

9
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theoretically fascinating we are not concerned with it here. For our more practi-

cal purposes of describing the diffusion of spins injected from a ferromagnet, the

approach described below is sufficient.

2.A Derivation of spin-dependent drift-diffusion equations

from Boltzmann equation

In this section we will derive the macroscopic spin-dependent drift-diffusion

equations from the Boltzmann equation. The main condition on which the deriva-

tion rests is that the spin relaxation time τsr should be much longer than the

momentum relaxation time. We are also going to use the relaxation time approx-

imation. Precisely, we will assume that the scattering is elastic and the material

is isotropic (i.e. the probability of scattering from k to k′ depends only on the

common energy and the angle between the wave-vectors), and that the energy

ǫs(k) for each spin subband depend only on the magnitude of the wave-vector k.

Under these assumptions, the relaxation time approximation is exact (see Ref. [51],

chapter 16). However, the final results should be applicable in more general cases.

The spin diffusion equation is clearly the simplest approach to the problem of spin

transport, and its general form could be as well postulated (actually, in the first

article [39] containing the form of spin diffusion equation presented below, the

equation was simply written down without any discussion of its origin). Adding

more realistic effects, like inelastic scattering (e.g. with phonons) or real band

structure, can lead to more complicate formulas for different scattering times, but

qualitatively the net result is going to be a redefinition of microscopic expressions

for macroscopic parameters (e.g. diffusion constant and spin relaxation time). The

latter are taken most often from experiments anyway.

An example of the resilience of the spin diffusion equation is the case of spin

Coulomb drag [52, 53]. The Coulomb scattering does not affect the charge diffusion

constant (as it conserves the total momentum of the carriers), but it renormalizes
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the spin diffusion coefficient Ds. A more surprising example is the case of ferro-

magnetic materials (such as permalloy, Ni80Fe20) in which the spin-diffusion length

is on the order of the electron mean free path. In such a case, the spin diffusion

equation might not be applicable (surely the its justification given for metals in

Ref. [54] is invalid). Somewhat surprisingly, the numerical calculations using the

full Boltzmann equation have shown [55] that the macroscopic transport equation

is accurate to a few percent.

We start from the Boltzmann equation for the spin-dependent distribution

function fs(r,k, t) for electrons (charge q=−e):

∂fs

∂t
+ v · ∇rfs −

eE

~
· ∇kfs −

e

~c
(v ×B) · ∇kfs = Isk{fs} (2.1)

where the electron velocity is

v =
1

~

∂ǫ(k)

∂k
.

In the subsequent analysis the last term on the left hand side of Eq. 2.1 (involving

the B field) is going to be disregarded. The effect of magnetic field on the orbital

motion is thus neglected. Magnetic field induced spin precession (not included

above) is more relevant to spintronics, and it can be included in the spinor form

of the Boltzmann equation (semiclassical transport equation for the spin density

matrix), see e.g. Ref. [47].

The electric field E consists of both the external field, and a possible contri-

bution from the local space charge. The problem of the presence of space charge

will be addressed later on the level of drift-diffusion equations, when we discuss

the so-called quasi-neutrality approximation.

The scattering integral on the right-hand side consists of spin-conserving term

(for derivation see e.g. Ref. [51])

Isk = −
∫

d3k′

(2π)3
W (sk, sk′) (fs(k) − fs(k

′)) , (2.2)

and a spin-flip term:

Isf,k = −
∫

d3k′

(2π)3
Wsf(sk,−sk′) (fs(k) − f−s(k

′)) . (2.3)
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The spin-flip scattering rate Wsf is usually much smaller than the spin-conserving

scattering. In a paramagnetic material without magnetic impurities, the physi-

cal origin of spin relaxation is the spin-orbit interaction [19, 33]. In s-wave band

this interaction is weak. For example, in a conduction band of a III-V semicon-

ductor the spin-orbit interaction effects come from the k · p mixing [17] with the

p-symmetry valence band (in which the spin-orbit splitting ∆SO is quite large,

typically 0.3 eV). However, even in the low-bangap materials such as InAs this is

still a perturbative effect. For semiconductors at room temperature and paramag-

netic metals it is safe to assume that the spin-flip scattering rate is much smaller

than the ordinary spin-conserving scattering rate. As we have mentioned in the

introduction to this chapter, we are not going to employ a microscopic spin-orbit

Hamiltonian. If we had done this, the Boltzmann equation (2.1) would have to be

written in the spinor notation, with electron density matrix f̂ replacing the two

distributions f± (see e.g. [56, 47]), and additional terms coupling the spin of elec-

tron in state k to its velocity would have appeared. In the regime of interest for us

all these complications play a minor role, and we retain the spin-orbit interaction

only in the spin-flip scattering term.

Assuming the isotropic material and elastic scattering (e.g. from impurities)

we can derive relaxation-time expression for spin-conserving scattering. We write

the δfsk function as

δfsk = as(ǫsk) · k (2.4)

where the vector as is parallel to the electric field driving the current. Following

Ref. [51] we arrive at:

∫
d3k′

(2π)3
W (sk, sk′)(fs(k) − fs(k

′)) =
1

τm
sk

(fs(k) − f 0
s (k)) (2.5)

where f 0 is a local equilibrium distribution, and the transport momentum scatter-

ing time for spin s is given by

1

τm
sk

=

∫
d3k′

(2π)3
W (sk, sk′)(1 − k̂ · k̂′) . (2.6)
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The spin-dependence of τm
sk is relevant for the ferromagnetic materials, in which

the densities of states for two directions of spin are different, and consequently the

scattering times can differ.

Now let us come back to the Boltzmann equation (2.1). For simplicity we

will assume that the spatial dependence of distribution function is limited to one

dimension, e.g. f=f(x,k, t). The spin-dependent distributions fs are written in

the following way:

fsk(x, t) = f 0
sk(x, t) + δfsk(x, t)

= f 0(ǫsk) + ∆fs(x, ǫsk, t) + δfsk(x, t) (2.7)

where f 0 is a global equilibrium distribution (thermal distribution of carriers in

the material, without currents or spin accumulation), ∆fs describes spin accu-

mulation and δfs is the deviation from the local equilibrium (which generally is

spin-dependent), given by f 0
s =f 0 + ∆fs. This local equilibrium distribution is

simply a Fermi-Dirac function with a spatially dependent chemical potential µc
s(x)

(the superscript c is for a chemical potential, in order to distinguish it with an

electrochemical potential µs which we will introduce later). The deviation δfsk

fulfills the condition ∫
d3k

(2π)3
δfsk = 0 , (2.8)

so that all the spin density variations are described by ∆fs. A similar separation of

different contributions to the deviation from equlibrium (with ∆fs to linear order

around f 0) is a cornerstone of a derivation of macroscopic spin diffusion equations

presented in Ref. [54]. Next we linearize the Boltzmann equation around a local

equlibrium f 0
s . This step deserves a comment: in the following we will neglect

the terms proportional to Eδf , but leave the expression involving E∆fs. The

existence of spin accumulation (nonzero ∆fs) is caused by the electric field, and

strictly speaking this term is nonlinear in E. Nevertheless, the two contributions

to the deviation from the global equlibrium (∆fs and δfs) are of very different

character: δfs represents a shift of the electron distribution function in the k space,
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whereas ∆fs is a macroscopic spin accumulation, corresponding to smooth (on

the length scales larger than the mean-free path) spatial dependence of chemical

potentials µc
s(x) for both spins. The linearization around the local equilibrium

is necessary in order to recover the drift-diffusion equations addressing the high

electric field regime relevant in semiconductors [57]. Analogous equations for the

case of electron and hole diffusion in bipolar structures have been successfully used

since the beginnings of semiconductor physics [58].

First, let us derive the form of the scattering terms using the separation

of fsk given in Eq. (2.7). Within the relaxation time approximation with con-

stant momentum relaxation time τm
sk the spin-conserving scattering gives the term

−δfsk/τ
m
sk. The spin-flip terms give two contributions. The first one involves ∆fs:

I
(1)
sf,k = −

∫
d3k′

(2π)3
Wsf(sk,−sk′)(∆fs(ǫks) − ∆f−s(ǫk′−s) . (2.9)

We will deal with this term shortly, when we perform the k average of the Boltz-

mann equation. The second contribution to the spin-flip scattering involves δfs:

I
(2)
sf,k = −

∫
d3k′

(2π)3
Wsf(sk,−sk′)

[
δfsk − δf−sk′

]
. (2.10)

As before, we write δfsk=as(ǫsk) · k and obtain

I
(2)
sf,k = −δfsk

τsk
+

δf−sk

τ̃sk
, (2.11)

where the scattering times are given by

τ−1
sk =

∫
d3k′

(2π)3
Wsf(sk,−sk′) , (2.12)

τ̃−1
sk =

∫
d3k′

(2π)3
Wsf(sk,−sk′) k̂ · k̂′ . (2.13)

Let us note the reason for spin-dependence of these times (it is not obvious in the

notation above). In a ferromagnet the surfaces of constant energy are different for

each spin s=±. For given s and k (with corresponding energy ǫsk), the energy-

conserving delta function inside the transition rate W makes the surface of d3k′

(2π)3

integration depend on spin.
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Finally, the Boltzmann equation linearized around local equilibrium reads:

∂

∂t
(∆fsk + δfsk) + vx

( ∂

∂x
(∆fsk + δfsk) − eEx

∂

∂ǫ
(f0 + ∆fsk)

)
=

= −δfsk(
1

τm
sk

+
1

τsk
) +

δf−sk

τ̃sk
+ I

(1)
sf,k . (2.14)

Now let us proceed to the derivation of drift-diffusion type equations. We want to

integrate out the k dependence, and construct a set of equation for macroscopic

functions of x and time [54, 56]. The k average of ∆fs is the nonequilibrium part

of the spin density ∆ns

∆ns(x, t) =

∫
d3k

(2π)3
∆fs(x,k, t) , (2.15)

and the spin-s current is defined as

js(x, t) = −e

∫
d3k

(2π)3
vxδfs(x,k, t) . (2.16)

Note that only the “anisotropic” part of the deviation from equilibrium enters this

expression, as the ∆fs contribution is isotropic in k space and does not contribute

directly to the current (i.e. it does not enter the current definition above). The spin

accumulation is going to lead to diffusive contribution to the current through the

driving terms with spatial derivative on the left-hand side of Boltzmann equation.

The zeroth moment of the Boltzmann equation is obtained by integrating the

both sides of Eq. (2.14) with respect to k. In this way we obtain the continuity

equation:
∂

∂t
∆ns(x, t) − 1

e

∂

∂x
js(x, t) = −∆ns

τs,−s

+
∆n−s

τ−s,s

, (2.17)

in which τs,s′ is the spin-flip time (from spin s to s′), which we define below. Let

us sketch how the right-hand-side of this equation was obtained from k integral of

I
(1)
sf term. We can write it in the following way

∫
d3k

(2π)3
I

(1)
sf,k = −

∫
d3k

(2π)3

∫
d3k′

(2π)3
Wsf(sk,−sk′)(∆fs(ǫks) − ∆f−s(ǫk′−s))

= −
∫

dǫ

∫
dǫ′Ns(ǫ)N−s(ǫ

′)〈Ws,−s〉(ǫ, ǫ′)
[
∆fs(ǫ) − ∆f−s(ǫ

′)
]

,
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where we have defined the band average of a quantity A(ks,k′s′):

〈A(ks,k′s′)〉(ǫ, ǫ′) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
A(ks,k′s′)δ(ǫ − ǫks)δ(ǫ′ − ǫ′k′s′)

Ns(ǫ)Ns′(ǫ′)
, (2.18)

in which the density of states for spin s is given by

Ns(ǫ) =

∫
d3k

(2π)3
δ(ǫ − ǫks) . (2.19)

Note that we have not used the assumption of elastic scattering here (which would

enforce ǫ=ǫ′). If we invoke this, we obtain 〈Ws,−s〉=〈W−s,s〉. However, the spin-

flip times in equation (2.17) can still be different. The integral of I
(1)
sf involves a

difference between occupation functions for two spins, each having an equilibrium

(Fermi-Dirac) form, but with different spin-dependent chemical potential µc
s. To

the lowest order in spin-splitting ∆µc=µc
+ − µc

− we have

∫
d3k

(2π)3
I

(1)
sf ∼ ∆µc . (2.20)

If the material is non-magnetic, we have the same energy dispersion for both spin

directions, and ∆µc is readily shown to be proportional to ∆n+ − ∆n−. Then we

have τs,−s=τ−s,s in Equation (2.34). Additional care is needed [59] when considering

a ferromagnet, in which the bands and densities of states can be very different for

each spin. When we move a certain amount of carriers from one spin band to

another, we create ∆ns=−∆n−s, but the resulting shifts of chemical potentials

are different in both bands if the densities of states are different. Because of this

∆µ is expressed as a difference between non-equlibrium spin densities weighted by

spin-dependent densities of states. For a degenerate ferromagnet we get for the

spin-flip times τs,−s in Equation (2.34)

Ns(EF )

τs,−s
=

N−s(EF )

τ−s,s
, (2.21)

where Ns(EF ) are the densities of states for each spin at the Fermi level .

The expressions for spin-flip times τs,−s are the distribution-dependent band-

averages of spin scattering times τsk defined before. A simplest approximation
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would be to take τsk independent of k, and assume τs,−s=τs. However, below we will

show that the details of relation between different microscopic (k-dependent) spn

scattering and the spin-flip times are not important for the macroscopic equations.

As long as the momentum scattering time is by far the shortest time-scale in

the problem, only the spin-flip times τs,−s matter. Let us only mention that in

metals they are given by spin-flip scattering at the Fermi level (as usual in strongly

degenerate systems), whereas in a non-degenerate semiconductor the spin-flip time

involves the average of τsk times in energy range of kBT above the bottom of the

conduction band.

The calculation of the first moment with respect to vx (in which we multiply

the Boltzmann equation by vx and integrate with respect to k) is more subtle. The

expression that has to be analyzed carefully is

∫
d3k

(2π)3
v2

x δfsk . (2.22)

Following Valet and Fert [54], we can use the cylindrical symmetry around the x

direction, and expand the dependence δfs on k in Legendre polynomials of cos θ,

with θ being the angle between the x axis and the direction of k. The “zero-

angular momentum” term is absent in this expansion, as we have the condition
∫

d3k δfs = 0. If we assume that only the p-type component is present, i.e. δfs∼vx,

then the above integral is zero. The full expansion was treated in Ref. [54], where an

infinite set of coupled equations was obtained. Our calculation of lowest moments

of vx corresponds to first two equations in this hierarchy. The decoupling of the

first two equations from the terms of higher angular momentum depends on the

smallness of the τm
sk/τsk ratio. When it is small, the above troublesome term can

be safely thrown out.

The averaged relaxation terms on the right-hand side of equation (2.14) are

written in the following way

∫
d3k

(2π)3
vx

δfsk

τsk
=

js

τs
(2.23)
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where we have defined the average relaxation time

1

τs
=

∫
d3k vx

δfsk

τsk∫
d3k vxδfsk

. (2.24)

Using this we arrive at

∂

∂t
js − e

∂

∂x

∫
d3k

(2π)3
v2

x∆fs − e2Ex

∫
d3k

(2π)3
v2

x

(
− ∂

∂ǫ
(f0 + ∆fs)

)
=

= −js(
1

τm
s

+
1

τs
) +

j−s

τ̃s

≃ − js

τm
s

. (2.25)

In the last line we have made one more approximation. The momentum relaxation

time τm
s is assumed to be much shorter than the times τs and τ̃s which are related

to scattering processes which change the spin. Later we are going to be interested

in steady state solutions, or slow (compared to τm
s ) dynamics. In such cases we can

retain only the largest term on the right-hand side, namely −js/τ
m
s (we can also

redefine τm
s and include a small correction from τs to this new transport relaxation

time). The effects of cross-relaxation of two spin currents (terms with τ̃s) can be

important at very short time-scales, comparable to τm
s . They have been analyzed

in Ref. [60].

Let us rewrite the second term on the left-hand side in the following way.

Under the differentation we can replace ∆fs(x) by f 0
s (x)=f 0 + ∆fs(x), which is

the local-equilibrium (isotropic) part of the distribution function, given by Fermi-

Dirac distribution with spatially-dependent chemical potential µc
s=µc

0 + ∆µc
s(x).

Then we apply the chain rule:

∂

∂x
f 0

s =
∂

∂µc
s

f 0
s

∂µc
s

∂x
= − ∂

∂ǫ
f 0

s

∂µc
s

∂ns

∂ns

∂x
, (2.26)

so that now we have the same integral As(x)

As(x) =

∫
d3k

(2π)3
v2

x(− ∂

∂ǫ
f 0

s ) (2.27)

in the second and the third term.
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Now we can derive the Einstein relation. We set the time derivative to zero

and obtain a general form of the steady state current:

js(x) = σs(x)Ex + eD(x)
∂

∂x
ns , (2.28)

in which we define the conductivity σs≡e2τm
s As(x) and the diffusion constant

Ds(x)≡Aa(x)τm
s ∂µc

s/∂ns. Both of them in general are spatially dependent, as

they are proportional to the As(x), which depends on x through µc
s(x). Without

evaluating As(x) we see that σs and Ds are connected by the Einstein relation:

Ds(x) =
σs(x)

e2

∂µc
s(x)

∂ns
. (2.29)

Let us introduce here the concept of electrochemical potential µs(x). It is

defined as:

µs(x) = µc
s(x) − eφ(x) , (2.30)

where µc
s(x) is the chemical potential for spin s and φ is the electrostatic potential.

Using the above definition of Ds and Equation (2.28) we have the steady-state

current:

js(x) =
σs(x)

e

∂

∂x
µs(x) (2.31)

Using all of the above we can write a general form of time-dependent drift-

diffusion equation. Together with the previously obtained continuity equation we

have:

∂

∂t
∆ns(x, t) − 1

e

∂

∂x
js(x, t) = −∆ns

τs,−s
+

∆n−s

τ−s,s
(2.32)

∂

∂t
js −

σs(x)

τm
s

Ex − e
Ds(x)

τm
s

∂

∂x
ns = − js

τm
s

(2.33)

The steady state drift-diffusion equations are:

1

e

∂

∂x
js =

∆ns

τs

− ∆n−s

τ−s

(2.34)

js = σsEx + eDs
∂

∂x
∆ns =

σs

e

∂

∂x
µs . (2.35)

The relation between σs(x) and Ds(x) is given by the Einstein relation (2.29).

The relation between µc
s and ns depends on a system at hand (e.g. degenerate or

non-degenerate).
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2.B Spin diffusion equations

Now we discuss how the spin diffusion equations are derived from the drift

diffusion equations. They basically come from plugging the Equation (2.35) into

the Equation (2.34). The subtlety in this derivation comes from the issue of charge

neutrality, i.e. whether the spin accumulation is accompanied by a creation of net

spatial charge. A detailed discussion of quasi-neutrality for bipolar transport (drift

and diffusion of electrons and holes) is given in Smith’s book [58] and in Ref. [61].

The close analogy between bipolar and spin-polarized transport has been noticed

by Yu and Flatté [57]. As the main focus of our attention are semiconductors at

room temperature, we first discuss in detail the spin diffusion in a paramagnetic

non-degenerate semiconductor, and then follow with discussion for ferromagnetic

metals. The spin transport in non-degenerate ferromagnetic semiconductors has

been analyzed e.g. in [62, 63, 64]. However, currently there are no semiconductors

to which such theory would apply. The ferromagnetic semiconductors available

now, such as GaMnAs [65], are strongly degenerate and p-type.

2.B.1 Spin diffusion in a non-degenerate paramagnetic semiconductor

In a paramagnetic semiconductor we can put the spin-flip times τ+,−=τ−,+=2τsr,

defining the spin relaxation time τsr. The momentum transport relaxation time

τm is the also same for both spins. The local equilibrium distribution function in

a non-degenerate case is given by

f 0
s (x) = f 0 + ∆fs(x) = exp

(
− β(ǫ(k) − µc

s(x))
)

, (2.36)

where β=1/kBT and µc
s=µc

0 + ∆µc
s with µc

0 being the chemical potential in equi-

librium. The density for spin s is then given by

ns(x) = n0/2 + ∆ns(x) =
n0

2
exp(β∆µc

s(x)) , (2.37)
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with the equilibrium total density of carriers n0. Using the above we can perform

the As(x) integrals in Eq. (2.27), and get the expression for conductivity

σs(x) =
ns(x)e2τm

m
= ns(x)eν (2.38)

in which we have defined the mobility ν=eτm/m. The Einstein relation in a non-

degenerate system is then
eD

ν
= kBT . (2.39)

The electrochemical potential (with respect to µc
0 in equilibrium) as a function of

nonequilibrium part of the carrier density ∆ns is then given by

µs = kBT ln
(n0/2 + ∆ns

n0/2

)
− eφ (2.40)

≃ kBT
∆ns

n0/2
− eφ , (2.41)

where the second line is the linear approximation, valid for |∆µc
s|<kBT (equiva-

lently |∆ns|<n0/2).

In order to derive the spin diffusion equation, we plug the Equation (2.35) into

the continuity equation (Eq. (2.34)), obtaining for s=±:

∂ns

∂x
νEx + nsν

∂Ex

∂x
+ D

∂2ns

∂x2
=

ns − n−s

2τsr
. (2.42)

Now we introduce the approximation of quasi-neutrality. If the net density of

carriers becomes different than the equilibrium density n0, an internal electric

field is created (which should be distinguished from the external field imposed

by attached leads, the divergence of which is zero in the channel). This electric

field will induce currents counteracting the creation of space charge, and in most

situations it can be assumed that the net charge density is zero

∆n+ + ∆n− ≈ 0 . (2.43)

This is the approximation of quasi-neutrality. In the time domain, its validity

can be gauged in the following way [58]. We neglect diffusion, and take the total

current j=σE. We plug it into the continuity equation:

∂j

∂x
=

∂

∂x
σE = e

∂n

∂t
. (2.44)



22

Now, we neglect the spatial dependence of σ=n(x)eν, and use the Poisson equation,

thus obtaining
∂

∂t
δn = − σ

ǫǫ0
δn = −δn

τd
, (2.45)

where δn=n − n0 and τd=ǫǫ0/σ is the dielectric relaxation time (with vacuum

permittivity ǫ0 and the dielectric constant of the semiconductor ǫ), which is below

a picosecond even for a non-degenerate semiconductor with n0=1016nm−3. Any

deviation from neutrality decays to zero at this time scale.

When we include diffusion and spatial derivative of σ, it turns out that there

exists a small net charge in regions close to the interfaces or where the density

of dopants varies spatially (e.g. in p-n junctions). In order to deal with inho-

mogeneously doped structures, it is then necessary to solve the Poisson equation

coupled with the transport equations. This procedure has been performed in stud-

ies of spin diffusion in bipolar systems [63, 66]. Spin transport in the presence of

inhomogeneous electric field has also been calculated with the Boltzmann equation

[67] without using the drift-diffusion approximation.

We are going to concentrate on homogeneously doped structures, where quasi-

neutrality is a good approximation. Consequently, we set the derivative of electric

field to zero in Eq. (2.42), and use ∆n+ = −∆n− to obtain the spin diffusion

equation with electric field [57]:

∂2

∂x2
(n+ − n−) +

eEx

kBT

∂

∂x
(n+ − n−) =

n+ − n−
L2

, (2.46)

where we have used the Einstein relation (2.39), and defined the spin diffusion

length L:

L =
√

Dτsr . (2.47)

In the linear regime (when ∆µs∼∆ns) the same diffusion equation as (2.46)

holds for the splitting of the electrochemical potential ∆µ=µ+−µ−. In the nonlin-

ear regime of large spin accumulation (n+ differing strongly from n−) it is easier to

solve the diffusion equation for ns. However, boundary conditions are most often

given in terms of µs, which are then nonlinear functions of ns as in Eq. (2.40).
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We discuss these boundary conditions for spin currents at interfaces of different

materials in chapter 3. In the linear regime we have general form of solution for

ns and µs:

µ± = kBT
n± − n0/2

n0/2
− eφ = ±(Ae−ηx/Lu + Beηx/Lu) − eφ , (2.48)

in which η=sgn(Ex) in exponents and the two distinct diffusion lengths, upstream

Lu and downstream Ld (Lu<Ld) are given by

Lu =

(
1

2LE
+

√
1

4L2
E

+
1

L2

)−1

(2.49)

Ld =

(
− 1

2LE

+

√
1

4L2
E

+
1

L2

)−1

(2.50)

where the length scale associated with electric field induced drift LE is given by

LE =
eD

|eEx|ν
. (2.51)

A critical electric field, above which the effects of drift become stronger than

isotropic diffusion is

Ec =
kBT

e

1

L
. (2.52)

For such field voltage drop across one spin diffusion length L becomes equal to

“thermal voltage” kBT/e. Consequently, the effects of electric field become more

pronounced at lower temperatures. An example is provided by experimental results

in Ref. [38], where a clear asymmetry between up- and down-stream spin diffusion

is visible in GaAs at T=4 K.

We have discussed the equation governing the spatial dependence of the split-

ting of the electrochemical potential ∆µ=µ+−µ−. The average of electrochemical

potentials µ0=(µ+ − µ−)/2 is equal to −eφ, so that we need to solve Poisson’s

equation in order to obtain it. In the case considered below in which we as-

sume zero space charge in the semiconductor, we just need to consider Laplace’s

equation ∇2µ0=0, with appropriate boundary conditions at the boundaries with

current-carrying contacts (following from the total current j=σ/e∇µ0).
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2.B.2 Spin diffusion in a degenerate ferromagnet

In a degenerate system the Einstein relation gives us

σs = e2DsNs(EF ) , (2.53)

in which Ns(EF ) is the density of states for spin s at the Fermi level. Writing the

conductivity in such a way we have implicitly taken into account that in a metal

it is practically impossible to change σs by creating a non-zero spin accumulation.

The typical nonequilibrium spin densities are negligible compared to the total car-

rier density, and in the diffusion equation we can neglect the terms coming from

spatial dependence of conductivity (∂ns/∂x in Equation (2.42)). Consequently, the

spin diffusion in metals is unaffected by electric field, and the high-field strongly

asymmetric spin diffusion discussed in the previous section exists only in semicon-

ductors [57].

A net space charge created in a non-equilibrium situation is screened on a

length scale lscr (l2scr=Dsǫǫ0/σs) which is of the order of an Angstrom in a metal.

The previous discussion of the importance of the effects of non-neutrality in a time

domain can be repeated using the spatial arguments, i.e. the fact that lscr is much

smaller than a spin diffusion length [59]. The carrier density and electrostatic

potential vary on the length scale of lscr, but the electrochemical potential given

by

µs =
∆ns

Ns(EF )
− eφ (2.54)

is smooth on the lscr length scale [59]. The spin diffusion equations for µs are

∂2

∂x2
µs =

µs − µ−s

L2
s

⇒ ∂2

∂x2
∆µ =

∆µ

L2
, (2.55)

where we have defined the spin-flip lengths Ls=
√

Dsτs,−s and the spin diffusion

length L−2=L−2
+ +L−2

− . Using equations (2.21) and (2.53) we derive the expression

for the effective diffusion constant D

D =
σ+D− + σ−D+

σ+ + σ−
(2.56)
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and the spin diffusion length can be written exactly as before L=
√

Dτsr with the

spin relaxation time given by

τ−1
sr = τ−1

+,− + τ−1
−,+ . (2.57)

The general solutions of the diffusion equations (2.55) are then given by

µ± = ± 1

σ±
(Aex/L + Be−x/L) − eφ . (2.58)
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Spin injection and extraction in

metal/semiconductor structures

Electrical spin injection (i.e. transfer of of spin polarization by electrical cur-

rent) from a ferromagnet into a paramagnet was first achieved junctions of two

metals by Johnson and Silsbee [18, 68]. The spin injection into semiconductors

has proven to be a harder task. The early experiments were conducted in Russia

on injection from a ferromagetic semiconductor HgCr2Se4 into InSb [69]. They have

been mostly overlooked since then (with exception of a review [33], which contains

a detailed account of all the efforts related to spin injection). In late 90s a successful

spin injection at low temperatures from Mn-doped diluted ferromagnetic semicon-

ductors [22, 23, 24, 70] gave new impetus to the field of semiconductor spintronics.

Injection from ferromagnetic metals (most often iron) at temperatures up to the

room temperature followed soon afterwards [25, 71, 37]. Initially the injection had

quite low efficiency (2% in Ref. [25]), which was was later improved [71, 36, 72],

with maximum reported value of 30% [36]. The rise in spin injection efficiency was

achieved by a proper doping of the metal/semiconductor interface [73, 74]. Spin

extraction was also seen (through optical measurement of spin accumulation) in

forward-biased MnAs/GaAs junction [75].

During the last two years, there was a tremendous progress in both spin in-

26
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jection and extraction in Fe/GaAs structures. The spin accumulation due to both

spin injection from Fe and spin extraction from GaAs into Fe (a depletion of spins

which can move more easily into the magnet) were imaged by Kerr spectroscopy

[38]. Soon afterwards the spin accumulation in the semiconductor near the junc-

tion with a magnet has been sensed electrically [41, 42], proving that the current

through the metal/semiconductor junction depends on spin polarization of elec-

trons inside the semiconductor.

In section 3.A we outline the theory of spin transport between a ferromagnetic

metal and a semiconductor through a Schottky barrier [73, 74]. In section 3.B

we discuss the so-called “conductivity mismatch” problem [76, 77] (actually first

described briefly in [78]) and set the stage for the analysis of the semiconductor

spin valve following in the next chapter.

3.A Boundary conditions for spin currents at the interface

of a metal and a semiconductor

In this section we are going to describe a model of metal/semiconductor junc-

tion, which we will use in the subsequent calculation of spin transport. We are

going to start with a brief introduction to Schottky barriers (for more in-depth

review, see e.g. Ref. [79]), and then consider a barrier modifications necessary for

efficient spin transport.

3.A.1 Schottky barrier with homogeneous doping of the semiconductor

For most pairs of metals and semiconductors, the work functions (differences

between the Fermi level and the vacuum level) are different. We will denote the

difference between the metal and the semiconductor work function as EB - the

barrier height calculated from the Fermi level of the metal. In the most common

case (which is of interest here), the work function of a metal is larger than the

work function of a semiconductor (EB>0). When the two materials are brought
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into contact, the electrons start flowing from the semiconductor into the metal,

resulting in the carrier depletion of a region near the junction. In the depleted

region, we have a net positive charge of ionized donors, and on the metal side of

the junction we have a net negative charge (where the surplus electrons exactly

reside - in the metal close to the junction, or in the atomic layer of the junction, in

the surface states - is not relevant for this discussion). The electric field created by

such a dipole layer make the semiconductor band-edge energy position dependent,

creating a barrier (see Figure 3.1a). The number of carriers that had to be swept

from semiconductor into a metal (and thus the barriers width) is determined by

an applied bias. In equilibrium, the Fermi levels of the two materials are aligned

and there is no current flow. When bias V is applied, the Fermi level of the metal

µF moves by −eV relative to the semiconductor chemical potential µS, but the

top of the barrier is still EB above µF . The influence of bias changes on the shape

of the barrier on the semiconductor side is shown in Figure 3.1a.

A simplest way to calculate the shape of the barrier is to use an abrupt ap-

proximation [79]. We assume, that for x<d all the electrons are swept out, leaving

behind a charge density enD, where nD is the concentration of donors. For x>d we

have a flat band with net charge density ρ=0. Using this, we obtain the depletion

width:

d =

√
2ǫǫ0

e2nD
(µS − eV + EB) , (3.1)

and the conduction band profile EC for x<d (with EC(x>d)=0 and interface at

x=0):

EC(x) =
e2nD

2ǫǫ0
x2 − e2nD

ǫǫ0
dx + µS − eV + EB (3.2)

For Fe/GaAs junction we will employ a value of EB=0.8 eV [74]. For homo-

geneous doping nD<1017 cm−3, we have the depletion width d>100 nm. For such

a wide barrier, the tunneling processes are completely irrelevant, and the current

is due to a purely classical thermionic emission, which depends solely on the bar-

rier height, not on its width (or shape, in general). For V >0 (forward bias), the

height of the barrier seen by the electrons in the semiconductor is lowered (see Fig.
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3.1a), and the current grows exponentially. On the other hand, for V <0 (reverse

bias) the barrier experienced by electrons coming from the metal stops changing

for |V |>kBT , and the saturated current does not depend on V. The formulas for

the current due to thermionic emission are [79]:

Jth(V ) = JS(eeV/kBT − 1) (3.3)

JS ∝ T 2e−EB/kBT . (3.4)

For doping densities nD≫1017 the tunneling starts to play a role, but for highest

possible bulk doping levels (for nD=1019 cm−3 we have d≈10 nm) the typical

current densities remain very small. The expression for the tunneling current is

the same as the above formula, but with a different overall factor JT (which now

depends also on barrier thickness apart from its height) instead of JS.

3.A.2 Schottky barrier with inhomogeneous doping for spin injection

For the purpose of efficient spin injection and extraction (leading to spin ac-

cumulation easily observable at room temperature), one has to consider an inho-

mogeneously doped Schottky barrier, where a thin region beneath the metal is

ultra-heavily doped. This can be achieved by δ-doping [80, 81, 82], a technique in

which a single monolayer of a semiconductor material near the interface is doped

with a donor density impossible to achieve in the bulk material (in reality, the

donors diffuse from a single monolayer, and spread out in the region of a couple of

nanometers).

Let us assume that a δ-doping layer with planar density n2D is placed a distance

d0 from the metal-semiconductor interface. If the doping density is given by

n0
2D(d0) = ǫǫ0

EB + µS

e2d0
, (3.5)

then the barrier shape is triangular, and its width for zero bias is given by d0. For

d0=3 nm, EB=0.8 eV, and µS=−0.1 eV (corresponding to bulk n=1016 cm−3),

we get n0
2D≈2 × 1013 cm−2. From practical point of view, in order to ensure the
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Figure 3.1: Band diagrams for Schottky barrier with (a) homogeneously doped
semiconductor; (b) δ-doping at distance d0 from the interface. Zero, reverse and
forward bias are shown. In the calculations we set the zero of energy scale at the
conduction band edge beyond the depletion region.

existence of thin tunneling barrier during the junction preparation, it is better to

err on the side of overdoping rather than underdoping. If the real n2D is larger

than n0
2D, not all of the doped electrons are going to be transferred into the metal

surface, and the rest will remain close to the interface, creating a thin well in the

energy profile of the band [80, 83] ( see figure 3.1b). Under a forward bias, this well

is going to deepen (or, if we have n2D=n0
2D, the well will appear). Under a reverse

bias, the well is going to diminish, as more electrons will need to be swept out into

the metal. The important thing is that the thickness of the barrier, and the state

of the semiconductor beyond the well, are going to be practically unaffected by a

small reverse bias. If there is no well, and V <0 is applied, additional depletion
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occurs for x>d0, affecting the bulk of the semiconductor. For example, for bulk

doping nD=1016 cm−3, and V =−0.1 V, the bottom of the conduction band at

x=d0 is going to be raised by approximately e|V |, and a depletion region between

d0 and d≈100 nm is going to appear. Such a depletion region has been shown

theoretically to be detrimental to both spin injection and extraction [84, 85].

We have seen that the presence of the thin well filled with electrons is inevitable

at forward bias, and it enhances the tunneling current for reverse bias. Despite

its significance, in the calculations below we are not going to explicitly include it,

since we are going to concentrate on rather low biases and high temperatures. The

electronic states inside the well have to be considered carefully for large forward

biases, low temperatures and/or strongly overdoped interfaces. Then the self-

consistent potential near the interface has bound states below the semiconductor’s

chemical potential µS, and they have to be taken into account explicitly into the

calculation of the current [86].

In the following, we are going to calculate the tunneling current in a very

simplified model of a thin (d0<10 nm) Schottky barrier. Barriers of such thickness

have not been developed yet in the Fe/GaAs system; recently d0≈15 nm has been

achieved [36, 74] by heavy doping (n3D=5 · 1018 − 1 · 1019 cm−3) of the 15 nm

thick layer next to the interface. The spin selectivity of such barriers has been

demonstrated in spin-LED experiments, and the small bias conductances (per unit

area) of the barriers were measured to be G=4 Ω−1cm−2 at T=10 K [74] and

G>100 Ω−1cm−2 at room temperature [36].

In the calculation below we will get a typical barrier conductance per unit area

G≈1000 Ω−1cm−2 at room temperature for biases of |V |<0.1 volts. The analysis

of the semiconductor spin valve and its three-terminal extension in the following

chapter will show that this is the order of magnitude of G which is necessary

to achieve to even consider a possibility of application. Lower conductances are

going to create spin accumulation which is negligible at room temperature, and

increasing the applied voltage is ultimately going to lead to depolarization of the
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injected current (due to enhanced scattering during the relaxation of injected high-

energy electrons, see e.g. [87]). But the issue most important for three-terminal

systems described in chapter 6 is the connection between the spin accumulation

in the semiconductor and the spin currents through the barrier close to zero bias.

For this case our neglect of effects connected with the electron well, and simplified

treatment of the bias-dependence of the barrier width is justified. The barrier

then needs to be close to being “optimally” doped, so that at zero bias we can

neglect a depression in the band edge profile between the high barrier and the

bulk non-degenerate region.

3.A.3 Calculation of the spin current through a square barrier

We are going to use an approach in which we treat both the semiconductor

and the metal using an effective mass model, with a single spin-split band in a

ferromagnet [88, 89, 90, 86]. Such an approach disregards the microscopic struc-

ture of the Fe/GaAs interface [91, 92], and it only takes into account the potential

due to Schottky barrier. In the light of this approximation, and the fact that the

physics of such ultra-heavily doped Schottky barriers remains largely unexplored

and can hide many surprises, the calculation below should be treated as an esti-

mate. Accordingly, we simplify the calculation as much as possible. We will use a

square barrier of width d, which separates the non-degenerate semiconductor from

a metal (the possible well next to the barrier is neglected). The square barrier

underestimates the tunneling current for a given d compared to a more realistic

triangular or parabolic barriers. However, the spin properties of the junctions do

not depend on their shape, and the calculation for the triangular barrier simply

gives larger conductances [83], while keeping the spin polarization of the current

the same.

In our approach the two relevant parameters of the ferromagnet are the ve-

locities of majority (spin s=+) and minority (s=−) electrons at the Fermi level

vFs. We take them from [88]: the effective mass in Fe is taken as m0 (the free elec-
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tron mass), and the Fermi wave vectors for two spin directions are k+=1.1 Åand

k−=0.42 Å. The assumption is that in the energy range of interest (of the order

of kBT or the applied bias e|V |, whichever is larger) the velocities of electrons in

metal are constant for each spin. This assumption is bound to break down at a

certain value of bias, as the spin-resolved densities of states for ferromagnets such

as Ni and Fe are definitely not smooth on an energy scale of more than 0.1 eV, see

e.g. [93]. This is a reminder, that we should treat our calculation as an estimate

and another reason to restrict ourselves to small biases.

The Schottky barrier is assumed to be square for the simplicity of calcula-

tion, with its height equal to the maximum height of the realistic barrier. The

relations between chemical potentials, voltage, and bottom of conduction band in

the bulk are depicted in Figure 3.1. The calculation of tunneling current is based

on Landauer-Büttiker formalism, but the same formulas have been used in this

context much earlier (see e.g [94]). The current density of electrons with spin s

flowing from the semiconductor into the ferromagnet is

jFS
s = −e

∫

kx<0

d3k

(2π)3
vx T s

S→F (kx,k‖, V ) (fS
s (ES(k) − fF

s (ES(k)) , (3.6)

where vx is the velocity of the electron in the semiconductor, fS
s and fF

s are the

occupation functions in the semiconductor and ferromagnet for spin s, T s
S→F is the

transmission probability for electron with spin s as a function of kx in the semicon-

ductor, and the vector k‖ in the plane of the interface. The latter is assumed to be

conserved, i.e. we consider specular transmission. The above expression is written

for the FS interface: the ferromagnet extending for x < 0 and semiconductors for

x > 0 (as in Figure 3.1). For the SF interface the occupation functions should

trade places.

Later we will see that the non-equlibrium spin splitting in the ferromagnet is

negligible compared to the the bias eV and the spin splitting in the semiconductor.

Anticipating this, we will use the same occupation function fF (E) for both spins

in the metal. For the parabolic dispersion in the semiconductor Equation (3.6) can



34

be rewritten in the following way

jFS
s =

e

~3

mS

4π2

∫ ∞

0

dE

∫ E

0

dEx T s(Ex, E, V )(fS
s (E) − fF (E)) , (3.7)

where mS is the effective electron mass in the semiconductor (mS=0.067m0 in

GaAs), E is the total energy of the electron (with zero energy at the bottom

of the conduction band far away from the barrier), and Ex is the part of the

energy associated with motion in x direction in the semiconductor. The occupation

functions are:

fS
s (E) = fFD(E, µc

0 + ∆µc
s) (3.8)

fF (E) = fFD(E, µc
0 − eV ) , (3.9)

where fFD(E, µc) is a Fermi-Dirac distribution function at energy E with chemical

potential µc. µc
0 is the average chemical potential in the semiconductor at the onset

of the tunneling region, µc
0=(µ+ +µ−)/2. Without the depletion region beyond the

barrier, and neglecting the possible existence of the well next to the interface, µc
0

is a chemical potential of a bulk semiconductor (related to the equilibrium carrier

concentration n0). We identify the applied bias eV with the difference between

µc
0 and the chemical potential in the metal µF (see Figure 3.1). ∆µs is the spin-

dependent part of the total chemical potential for electrons with spin s. We are

interested in the case when the semiconductor is non-degenerate (βµ0≫1), when

we can make an approximation:

fS
s (E) ≃ eβ(µ0+∆µs)e−βE =

ns

NC

e−βE , (3.10)

where ns is the density of electrons with spin s and NC is the effective density of

states (for one spin direction):

NC =
1

8

(2mSkBT

π~2

)3/2

. (3.11)

Furthermore, we can also use a Maxwell-Boltzmann occupation function for fF (E)

when eV >kBT + µ0≈µ0. For carrier density of n=1016 cm−3 we have µ0≃−0.1 eV
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in GaAs. As we are going to restrict ourselves to small biases (|V |<0.1 volts), we

can use the Maxwell-Boltzmann form of occupation function also in the metal.

Let us introduce the imaginary wave-vector κ (and the “barrier” velocity

vB=~κ/mS), which governs the decay of a wave function inside the square barrier:

κ(Ex) =

√
2mS

~2
(EB + µ0 − eV − Ex) . (3.12)

The value of κ is determined mostly by EB≃0.8 eV. The dependence on Ex can be

safely ignored, as the range of the relevant energies is about kBT . We will retain

the V dependence. A typical value of κ is then of the order of 1 nm−1, so that

for barrier width d=3 nm the exponential factor determining the magnitude of the

transmission probability is

e−2κd ∼ 10−3 . (3.13)

For the triangular barrier the main difference is the reduction of the effective value

of κ [83]. Using the semi-classical (WKB) approach, we can estimate that for

small Ex and for a triangular tunneling barrier we have κtr≃2κ/3. Thus, we get

the same probability of tunneling if we replace the square barrier of thickness d

with a triangular barrier of thickness 3d/2.

Taking all of the above into account, the transmission probability T can be

very well approximated by

T s(Ex, V ) = 16 vx vFs
e−2κd

v2
Fs + v2

B

, (3.14)

where

vx =
~

mS

√
2mS

~2
Ex . (3.15)

Now we can calculate the spin-dependent current from Equation (3.7). Let us

define the factor that depends on the properties of the ferromagnet:

As =
vFs

v2
Fs + v2

B

. (3.16)

In the model which we use here, vB turns out to be much larger than vFs. Conse-

quently, As∝vFs, so that the spin with larger velocity at the Fermi energy in the

ferromagnet is transported more easily through the barrier.
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Finally, we arrive at js, which we present in two equivalent forms:

jFS
s =

8e

mS
Ase

−2κdkBT ns

(
1 − eβ(µF −µs)

)
, (3.17)

=
4e

mS
Ase

−2κdkBT n0

(2ns

n0
− e−βeV

)
, (3.18)

= −jSF
s , (3.19)

in which n0=n+ + n− is the total carrier concentration in the semiconductor, and

we have used eV =µc
0 − µF and 2ns/n0=exp(β(µs − µ0)). In the above formulas, κ

depends on V (through modified barrier height). Depending on the details of the

interface doping, effective barrier width d can also change with the applied bias,

especially for V <0 (reverse bias). Note that the total current bias dependence is

determined by two competing exponential factors, e−βeV and e−κd, and it is possible

that in certain voltage range the forward-bias current is going to be actually smaller

than the reverse-bias current.

Let us discuss the spin currents close for V ≈0 (i.e. V <kBT ). We assume that

both |µF − µs| and |µs − µ0| are smaller than kBT . This corresponds to both the

spin splitting in the semiconductor, and the applied bias smaller than kBT .Then,

to the first order we get for the spin currents (A,B=F,S):

jAB
s ≈ Gs

e
(µB

s − µA
s ) , (3.20)

Gs =
4e2

mS

Ase
−2κd n0 , (3.21)

where we have defined a spin-dependent barrier conductance Gs. The spin-dependence

of Gs comes from the As factor, and as we discussed above the ratio G+/G− is

equal to the ratio of the velocities of carriers with different spin in the ferromagnet.

For our parameters for Fe [88] we get

G+

G−
≃ 2 . (3.22)

As we discuss in the following section, for barriers with low G the spin polarization

of the injected current is determined by the ratio of barrier conductances for both
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spins. The ratio of 2 agrees with the measurements of spin injection from Fe in to

(Al,Ga)As done using the spin-LED setup [71, 36].

For a square barrier with d≃3 nm (or triangular barrier of d≃5 nm), carrier

density n=1016 cm−3, and barrier height EB=0.8 eV, we get G+≈1900 Ω−1cm−2

and G−≈1200 Ω−1cm−2. In the following, we will use Gs of this order of magnitude,

with the ratio of G+ to G− set to 2.

3.B Single ferromagnet/paramagnet (F/N) junction: con-

ductivity mismatch

In this section we consider a ferromagnet/paramagnet (F/N) junction in a one-

dimensional geometry. We will use the spin diffusion equations derived in chapter

2 together with the boundary condition from equation (3.20). For x<0 we have

the electrochemical potential in a ferromagnet given by :

µF
± = ±AF

eLF

σF
±

ex/LF + e
J

σF
x + µF

0 , (3.23)

and for x>0 we have for the paramagnet:

µN
± = ±AN

2eLN

σN
e−x/LN + e

J

σN
x , (3.24)

where we have set µN
0 to zero. Depending on which is more convenient, AF , AN ,

and either J (the total current density) or µ0
F are to be determined. In the first case,

µ0
F =−eVF is the controlling parameter, and in the second case the total current

is given. When the barrier is highly resistive, than the first choice of independent

parameter is convenient: VF can be identified with a bias applied to the junction.

For F and N having lengths dF,N such that the potential drops in the bulk of the

materials |JdF,N/σF,N | are much smaller than VF , practically all the potential drop

across the structure occurs on the barrier, and is equal to VF . When the interface

resistance is not dominating, then if we want to use a bias voltage as a controlling

parameter, we have to take into account the lengths of F and N materials and

potential drops along them. As we now want to investigate the properties of the
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junction alone for the wide range of its conductances, it is then more appropriate

to use J as a controlling parameter.

At the interface between the two materials (x=0) we use the boundary condi-

tion for spin currents:

js(0) =
Gs

e

(
µN

s (0+) − µF
s (0−)

)
, (3.25)

where Gs are spin-dependent conductances of the barrier. In the previous section

we have shown that such a boundary condition applies for metal-semiconductor

junctions for |µN
s − µF

s |<kBT (equation (3.20)). The derivation of this boundary

condition for metal/metal junctions is straightforward. We also use the condition

of no spin scattering at the interface (continuity of spin current)

∆jN (0+) = ∆jF (0−) , (3.26)

where ∆j=j+ − j−.

We calculate the profiles of electrochemical potentials and spin currents by

solving a set of three linear equations, obtaining AF , AN and J . A parameter

which has received a lot of attention in literature is the spin polarization of the

current injected into the paramagnet, which is defined as

αj =
∆j(0+)

J
. (3.27)

In order to obtain a compact and easy to interpret expression for αj it is useful to

define the spin selectivity of the barrier γB and intrinsic spin polarization of the

current in the ferromagnet γF

γB =
G+ − G−
G+ + G−

=
∆G

G
(3.28)

γF =
GF

+ − GF
−

GF
(3.29)

where GF
s =σF

s /LF , GF =GF
+ + GF

−. We also define the following quantities (using
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the notation from Refs. [54, 95])

rB =
1

1 − γ2
B

1

G
(3.30)

rF =
1

1 − γ2
F

1

GF

(3.31)

rN =
1

GN

=
LN

σN

. (3.32)

The above are the “spin resistances” of the barrier, the ferromagnet and the para-

magnetic material, respectively. G is the barrier conductance (per unit area), GF

and GN are the “spin depth” conductances of the F and N materials. With these

we obtain the following expression for αj:

αj =
γBrB + γF rF

rB + rF + rN
. (3.33)

From this equation we can see, that either the current in the ferromagnet has to

be polarized (γF 6=0) or the barrier has to be spin selective (γB 6=0) for the spin

injection to occur. This is obvious, but more interesting properties can be quickly

gleaned from this expression. If there is no barrier (ohmic contact between F and

N), then rB=0, and we have

αj(rB =0) =
γF rF

rF + rN
. (3.34)

The maximum polarization is obtained in the limit of rN≪rF : then αj tends to γF .

But for rN≫rF , which is the case when N material is a semiconductor, and F is a

metallic ferromagnet, the polarization of the current αj∼rF /rN is very small. This

inability of injecting spin current from a ferromagnetic metal into a semiconduc-

tor has been termed “conductivity mismatch” [76] in 2000, and then it garnered

a widespread attention. Soon after the publication of Ref. [76], it was noted in

Ref. [77] that when a resistive barrier is present, and when rB is the dominating re-

sistance, then from Eq. (3.33) we immediately get that the polarization of injected

current is restored if the barrier is spin-selective, and we have αj≈γB.

As a historical note, let us mention that both the “conductivity mismatch”

and the solution of this problem due to spin-selective resistive interface, have been

first discussed in the article of Johnson and Silsbee from 1987 [78].
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It turns out that polarization of injected current αj is not the most important

quantity for properly understood spin injection problem. More specifically, a fi-

nite value of αJ is necessary, but not sufficient for spintronic applications or even

measurement of any spin effects. The spin polarization of current is not a directly

observable quantity: it is the polarization of the carrier density (spin accumula-

tion) which can be seen directly (e.g. in magneto-optical experiment), and which

leads to magnetoresistive effects in the diffusive regime. A quantity which is more

related to the real “spin efficiency” of the junction is the spin splitting in the N

material at the interface expressed as a function of the total injected current:

∆µ(0+) = µ+(0+) − µ−(0+) = −2eJrNαJ . (3.35)

As we have seen before, αJ becomes appreciable when rB is the largest resistance in

the system. In this situation, the current density J∼V/rB, where V is the applied

voltage. So in the relevant regime w get

∆µ(0+) ∼ rN

rB
eV αJ , (3.36)

which shows that is we want the spin-splitting in the N channel to be an appreciable

fraction of eV , then rB should not be much larger than rN .

Let us also note that in the most interesting regime of efficient spin injection

from a metal into a semiconductor (rB>rN≫rF ), the ratio of spin splittings at the

F and N side is
∆µF

∆µN
∝ rF

rN

≪ 1 , (3.37)

so it is a very good approximation to disregard ∆µF and use a single value of µF in

order to describe the metallic side of the junction. Then, the parameters of the bulk

of the ferromagnet (σF
s ,LF ) do not directly play any role in the calculation and the

injection process is controlled by the junction parameters (two Gs or γB and rB)

and the N material parameters only. The microscopic structure of the ferromagnet

of course still influences the properties of the junction. In the previous section we

have shown how the interface spin selectivity γB is connected to the band structure

of a ferromagnet in a simple model.
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A diffusive spin valve

From a problem of spin injection (a single F/N interface) let us proceed to

an investigation of a simplest two-terminal spintronic device. The term “spin

valve” was introduced in Ref. [96] for a specific device using the giant magnetore-

sistive effect, but it is commonly used in a much broader sense. Here we use the

term spin valve to denote a system with two ferromagnetic parts, the resistance

of which depends on the alignment between the two magnetizations. One of the

magnetizations is usually pinned (e.g. by exchange bias coupling [97] to an adja-

cent antiferromagnet), so that the external magnetic field can change the relative

orientation of the two magnetizations, thus affecting the current flowing through

the device. So it is a magnetically controlled “valve” for the current. Here we are

going to be interested in a spin valve in which spin injection and extraction occurs,

i.e. one of the ferromagnets is a source of the current, and the other is a drain (a

spin valve-like system using a non-magnetic source and drain with two magnetic

contacts influencing the carrier transport by proximity effect was also proposed

[90, 98]). The two magnets are separated by a normal (paramagnetic) channel

long enough that we can treat the spin transport inside it as diffusive. Finally, we

will concentrate on the situation when the normal material is a semiconductor.

41
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(a)
V

x

d

Figure 4.1: One-dimensional spin valve.

4.A One-dimensional calculation

A simple one-dimensional geometry shown in Figure 4.1 can be solved analyti-

cally [95], just like the case of the single F/N junction in the previous chapter. We

set up equations for electrochemical potential in both ferromagnets (Eq. (3.23))

and in the semiconductor channel (Eq. (3.24)), and use the boundary conditions

from Equations (3.25)-(3.26). This leads to a system of 6 linear equations to solve

(we work in a regime in which the nonlinear effects on spin diffusion due to electric

field can be neglected). Full analytical formulas are given e.g. in Ref. [95]. However,

we can use the fact that for resistive barriers the splittings of the electrochemical

potentials are very different in F and N: ∆µF /∆µN∼rF /rN . Thus we can neglect

a very small spin splitting in F and use a single number to describe each of the

ferromagnets: a potential in the L(R) terminal µL(R). Then we are left with only 4

equations. Here we will discuss the relevant qualitative features of their solutions.

Let us define two configurations of the magnetizations of the ferromagnetic

contact: parallel one (P) and antiparallel (AP). Example plots of spin currents

in the spin valve and electrochemical potentials inside the N chanel are shown in

Figures 4.2 and 4.3 There are obvious differences between the P and AP case. For

P, the same spin is more easily injected and extracted, and a current of uniform

spin polarization flows through the channel (Figure 4.2). The spin accumulation



43

−50 0 50 100 150 200 250
0

10

20

30

40

50

+

−

 P

j s (
A

/c
m

2 )

−50 0 50 100 150 200 250
0

10

20

30

40

50

−

+

 AP
j s (

A
/c

m
2 )

x (nm)

Figure 4.2: The spin current densities in a 1D spin valve. The solid line is the
spin +, and the dashed line is the spin −. The semiconductor channel extends
between x=0 and x=200 nm. In the AP configuration the left magnetization is
reversed. The channel is GaAs at room temperature with carrier density n0=1016

cm−3. The barriers’ total conductances per unit area are G=1000 Ω−1cm−2, and
the ratio of spin conductances is G+/G−=2 (spin selectivity γB=1/3).

has opposite signs near the two contact, reflecting the accumulation of the preferred

spin near the source, and its depletion near the drain (Figure 4.3). The situation

looks very differently in the AP configuration. The current polarization changes

sign in the middle of the channel; the source injects spin current of one sign,

and the drain preferably extracts the current of the opposite spin polarization.

However, the feature of crucial importance for us here is the fact that the spin

accumulation in AP is much larger than in P case (see Figure 4.3). The average

spin accumulation in P is zero, as it changes the sign in the channel, but when

we compare the spin splittings of electrochemical potential near the contacts, we

obtain

∆µP

∆µAP
∝
(

d

2LN

)2

, (4.1)

in which d is the length of the channel. A basic prerequisite for existence of

any interesting two-teminal effects is d<LN . Otherwise the spin information is
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Figure 4.3: The electrochemical potentials µs in the N channel of the 1D spin valve.
The parameters are the same as in Figure 4.2. The left contact has µL=−0.1 eV
and the right contact is grounded (µR=0).

lost during the diffusion between the contacts, and we just have two uncoupled

F/N junctions. Another observation is that despite this strong difference in spin

accumulation between P and AP cases, the total currents IP and IAP are not

significantly different. In fact, if we define the magnetoresistance coefficient MR

as

MR ≡ IP − IAP

IP
(4.2)

we obtain that to the lowest order in G/GN it is given by

MR ∼ 2α2
j

G

GN

LN

d
, (4.3)

where αj≃γB=(G+ − G−)/G in the regime of applicability of this formula. As an

example, let us plug the numbers for non-degenerate GaAs at room temperature

with carrier concentration n=1016cm−3. The mobility ν=5000 cm2/Vs results in

diffusion constant D=130 cm2/s. The typical spin relaxation time at room temper-

ature is τsr≃80 ps [19] corresponding to LN≃1 µm. The spin-depth conductance

is GN=σN/LN≃8 ·104 Ω−1cm−2. We use the spin selectivity γB=1/3 and the total
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G=103 Ω−1cm−2. With these numbers we get MR=1% for a channel length d=200

nm. The latter length scale is an important practical limitation. It is close to

the standard minimal size of industrial lithography, and also the smallest metal

contacts in planar all-metallic structures have sizes of this order [99, 100].

The above results are an obstacle for using a metal/semiconductor system for

magnetoresistive purposes. The MR ratio for any kind of application (e.g. hard

disk read head) should exceed 10% in order to start competing with existing all-

metal technologies like GMR or TMR. One possibility of increasing the MR ratio

in a spin valve with semiconductor channel is to use barriers of lower resistance.

Here a naive approach to the “conductivity mismatch” problem (the more resistive

barrier, the better it is for spin injection) is shown to be inadequate, as the MR

as a function of barrier G has been shown theoretically [95] to have a maximum

at G∼GN . So the barriers optimal for MR effect have their conductances similar

to the “spin-depth conductance” GN of the channel. The last statement holds for

a one-dimensional spin valve. An important generalization to the more realistic

geometries will be presented in Chapter 5.

In Figure 4.4 we show MR as a function of the barrier conductance G for the

parameters of Fe/GaAs system given above. A maximum of MR is about 10%.

The optimal G can be approximated by:

Gopt = GN
F + 1

2
√

2F
⇔ ropt

B = rN

√
2

1 − γ2
B

(4.4)

where we have defined the barrier finesse F≡G+/G−. The maximal value of MR

is obtained for this Gopt, and for short channels (d≪LN) it is approaching the

absolute maximum for a given set of material parameters:

MRmax = γ2
B =

(∆G

G

)2

. (4.5)

The behavior in Figure 4.4 can be understood using the results of the dis-

cussion of the section 3.B. The decrease of MR for high G (low rB) is due to

conductivity mismatch, which makes the current injected into the semiconductor
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Figure 4.4: The magneto-resistive ratio of a one-dimensional spin valve for two
channel lengths. The parameters of a Fe/GaAs system are given in the text.

unpolarized. On the other hand, for low G (large rB) the current is polarized, but

it is small. As we discussed in section 3.B, in this regime the spin accumulation in

the semiconductor becomes very small. Every injected electron with unbalanced

spin spends a long time in the channel before it tunnels out into the drain, and

when this “dwell” time becomes larger than the spin relaxation time, the spin

polarization in the N material is lost. With no spin polarization between the fer-

romagnets, there can be no difference between the current for P and AP. For more

discussion see section 4.B

All this shows that the success of the diffusive spin valve with a semiconductor

channel will require a significant progress in the control of the metal/semiconductor

interface. Conductances at least an order of magnitude higher than the ones re-

ported to date in Fe/(Al,Ga)As [36, 74] are needed, and the junction spin selectivity

γB∼1/3 needs to be maintained or improved. Also, having a longer spin diffusion

length LN would be helpful - and the prospect of long LN is exactly what has been

attracting attention to the semiconductor spintronics. Quite probably, in order for

semiconductors to challenge the position that all-metal devices have in the field

of magnetoelectronic applications (read-heads, MRAM), spin injection into silicon
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(in which a very long LN is expected) will have to be shown. An important step

od growing contacts of optimal resistance between a ferromagnet and Si has been

done recently [101], but in this work the spin polarization of the current has not

been measured. Spin injection of hot electrons into silicon and magnetoresistive

effect in a spin valve with 10 µm long silicon channel were reported in May of 2007

[102].

However, instead of waiting for more experimental breakthroughs we can try to

do our best using currently available system parameters (e.g. G≈1000 Ω−1cm−2).

An important step is to move beyond a passive two-terminal device such as a spin

valve, and consider a spin-transistor system, in which additional external stimuli

can control the magnetoresistive effects. A proposal of this kind, which is predicted

to work in a diffusive regime at room temperature will be presented in chapter 6.

But before this, let us deepen our understanding of the spin valve, and analyze

a more realistic geometry than a purely one-dimensional system considered until

now.

4.B Spin valve in a general geometry - a back-of-the enve-

lope calculation

Let us use the approximations described in the previous Sections in the case

of a spin valve having a general 3D geometry. We consider a paramagnetic (N)

channel of finite volume V with two ferromagnets connected by junctions of area

A each. We assume that (a) the dimensions of the N channel are less than spin

diffusion length LN in every direction, and (b) the barriers are resistive enough so

that µs have discontinuities at the interfaces. Because of the former assumption we

can approximate µs inside N as constant. Furthermore, we will neglect a small ∆µN

splitting in the P configuration (and of course ∆µF =0 is a perfect approximation).

Let us write the electrochemical potentials in the channel as µN
±=µ0 ± ∆µ/2. The
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spin currents entering the channel through the source (S) are

IS
± = A

GS
±
e

(µ0 ± ∆µ/2 − µS) , (4.6)

with µS being the electrochemical potential in the source. The current leaving the

channel into the drain (D) is

ID
± = A

GD
±
e

(−µ0 ∓ ∆µ/2) , (4.7)

where we have set µD=0, so that the bias applied to the device is µS/e. In the

P configuration we have GD
s =GS

s and in the AP the spin conductances of the

drain are reversed: GD
s =GS

−s. The current flowing through the system is conserved

(IS=ID) and so within our approximations we get that µ0=µS/2 both for P and AP

configuration. In order to determine ∆µAP we have to consider the spin relaxation

in the channel. The difference in spin polarizations of the drain and source currents

is related to the number of spin flips per unit time:

−1

e
(∆IS − ∆ID) =

A

e2
(∆GµS − G∆µAP ) = V

∆n

τsr

, (4.8)

where ∆I=I+ − I−, ∆G=GS
+ − GS

−, G is the total barrier conductance, ns is

the (uniform) density of electrons with spin s, ∆n=n+ − n−, and τsr is the spin

relaxation time. Now we use the Einstein relation (Eq. (2.29)) for a paramagnet:

D =
σN

e2

∂µ

∂n
⇒ ∆n ≃ σN

De2
∆µ , (4.9)

and derive the formula for ∆µAP which is valid for any paramagnetic material

(degenerate or non-degenerate):

∆µAP =
∆GµS

V
2ALN

GN + G
. (4.10)

The expression for the MR ratio is given by

MR =
IP − IAP

IP
=

∆G

G

∆µAP

µS
, (4.11)

=
(∆G

G

)2 1

1 + V
2ALN

GN

G

. (4.12)
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From the above formula we can see the following. (1) Spin accumulation (∆µAP 6=0)

is necessary for non-zero MR; (2) the MR depends only on geometry and bar-

rier/channel properties - in the considered limit of low electric fields it does not

depend on applied bias; (3) for large MR the ratio V/ALN has to be small, quan-

tifying the influence of the channel volume and the contact area; (4) in the limit

of G/GN≪1 we obtain

MR = 2
(∆G

G

)2 ALN

V

G

GN
, (4.13)

which for the 1D channel (A/V =d) gives Equation (4.3).

The formulas for MR given above can only describe the case when channel is

small enough for the approximation of constant µs to work. In section 5.B we will

include the spatial dependence of the electrochemical potentials and show that it

leads to a non-monotonic behavior of MR with contact size and channel volume.
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Lateral spin diffusion

The most technologically convenient geometry of a small spintronic or elec-

tronic system is a lateral one, in which current-carrying contacts (leads) are de-

posited on top of a planar channel. A spin valve in such a geometry is presented

in Figure 5.1. Despite the fact that practically all the experiments are done in

such a configuration (for metallic systems see e.g. Ref. [99], for systems using di-

luted magnetic semiconductors see e.g. Ref. [103]), majority of the calculations are

performed using a simple 1D model described in Chapters 3 and 4. There are a

few exceptions: in Ref. [104] a numerical calculation of spin-current distribution

in a metallic spin valve was done, and in Ref. [105] uniform spin injection from

finite-size contacts was considered. Below we give a simple yet accurate formalism

which can be used to calculate analytically the lateral spin diffusion in systems

with (relatively) resistive junctions.

5.A Effective 1D diffusion formalism

In this section we analyze the lateral geometry (like the one if Figure 5.1), in

which the system is uniform along the z direction. We are thus left with a problem

of two-dimensional spin diffusion. The equations for electrochemical potentials are:

∇2µs(x, y) =
µs(x, y) − µ−s(x, y)

(Ls)2
, (5.1)
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Figure 5.1: Lateral spin valve. The labels A-D denote different interfaces at which
the boundary conditions have to be specified. The dashed lines divide the system
into stacks of layers (see the text).

where the characteristic distance of spin-flip for spin s=± is Ls=
√

Dsτs, with τs the

spin flip time and Ds is the diffusion constant of carriers with spin s (see Section

2.A). Let us remind that the measurable spin diffusion length L, on the scale of

which the spin splitting ∆µ=µ+−µ− changes, is given by L−2=L−2
s + L−2

−s. As

discussed in Chapter 2, such equations hold for ferromagnetic and normal metals

[59], and also for non-degenerate semiconductors with the additional condition of

a small electric field [57]. The boundary conditions at the interfaces are:

σi
s

(
n̂i · ∇µi

s

)
= Gi,k

s (µk
s − µi

s) = −σk
s

(
n̂k · ∇µk

s

)
, (5.2)

where σi
s and n̂i refer to conductivity of ith segment of the structure and its outward

interface normal, respectively, and Gi,k
s is the spin-dependent barrier conductance.

The segments can be layers (N channel and F contacts in Figure 5.1) or sections

of a single layer (N channel divided by dashed lines in Figure 5.1). With the

boundary conditions specified at the outer terminals, the two coupled differential

equations for µs can be solved numerically (results in a 3D metal structure are

shown in [104]). The case of Ohmic contacts, when the current density is strongly

spatially inhomogeneous, can probably be only analyzed quantitatively in such a

way. However, for the resistive barriers of interest for us, a very accurate analytical
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approach can be derived.

We want to reduce the essential feature of a 2D current flow to a 1D effective

description. We define the vertical (with respect to y) average of µs in each layer:

ξi
s(x) ≡ 1

hi

∫ yi
1

yi
0

dyµi
s(x, y) , (5.3)

with hi being the thickness of the layer between its boundaries (yi
0, y

i
1). We perform

the same kind of vertical average of Eq. (5.1), and use the boundary conditions

from Eq. (5.2) to obtain

∂2ξi
s(x)

∂x2
=

ξi
s(x) − ξi

−s(x)

(Li
s)

2
+

Gi,i+1
s

σi
sh

i

[
µi

s(x, yi+
1 ) − µi+1

s (x, yi+
1 )
]

+
Gi−1,i

s

σi
sh

i

[
µi

s(x, yi+
0 ) − µi−1

s (x, yi−
0 )
]

. (5.4)

For sufficiently thin layers, µi
s(x, y) may be replaced by its vertical average

ξi
s(x). The conditions for validity of such a replacement can be gauged by expand-

ing µs along the y axis in Eq. (5.3):

ξi
s(x) =

1

hi

∫ yi
1

yi
0

dy
[
µi

s(x, yi
0) + (y − yi

0)
∂

∂y
µi

s|yi
0

+
1

2
(y − yi

0)
2 ∂2

∂y2
µi

s|yi
0

+ ...
]

≃ µi
s(x, y0) +

hiGi−1,i
s

2σi
s

[
µi

s(x, yi+
0 ) − µi−1

s (x, yi−
0 )
]

+ µi
s(x, yi+

0 )
(hi)2

6L2
s

,

where in the last term we have used the diffusion equation to make an approxima-

tion
∂2µs

∂y2
∼ µs

L2
s

. (5.5)

The same expansion can be made around y=yi
1 point. Now we can see, that under

the conditions

h ≪ σs

Gs

, (5.6)

h < Ls , (5.7)

we can simply disregard the y dependence of µs. Replacing all the µi
s by layer-

averaged ξi
s we get a set of coupled one-dimensional equations for ξi

s(x) potentials
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in all the layers:

∂2ξi
s(x)

∂x2
=

ξi
s(x) − ξi

−s(x)

(Li
s)

2
+

Gi,i+1
s

σi
sh

i

[
ξi
s(x)−ξi+1

s (x)
]
+

Gi−1,i
s

σi
sh

i

[
ξi
s(x)−ξi−1

s (x)
]

. (5.8)

In this way we have transformed a 2D diffusion into an effectively 1D prob-

lem. In a general case, theses equations can be solved numerically. However, if

the conductivities σs can be taken as constant, the Equation (5.8) is a linear dif-

ferential equation for ξs and we can solve it analytically. In the following we will

concentrate on such a case. This means, that we will assume that the splitting of

electrochemical potential in a semiconductor is smaller than kBT , so that we can

make an approximation σs(x)≃σN/2.

We now divide the lateral transport into regions of vertical stacks (denoted by

dashed lines in Figure 5.1). Consider a region with a vertical stack of NL layers.

For example, in the region of width wL covered by the left lead in Fig. 5.1, we have

NL = 2 excluding the insulator. Transport in the layers of the stack is governed

by 2NL coupled members of Eq. (5.8), which in the matrix form are simply

(∂2/∂x2)ξ = M · ξ , (5.9)

with the column vector ξ of elements ξi
s and the positive definite matrix M of

elements from Eq. (5.8). The general solution of the homogeneous equation form

ξ(x) = 1(a + bx) +

NL−1∑

j=1

vj

(
pje

λjx + qje
−λjx

)
, (5.10)

where 1, a column of ones, is an eigenvector of M with zero eigenvalue and vj is

an eigenvector with eigenvalue λ2
j . The connection of the vertical stacks to the

outside of the system and to each other is maintained by the boundary conditions.

Between stacks they are given by the continuity of ξs(x) and their first derivatives

(currents) through each homogeneous layer. At the outermost boundaries (like A

and D in Fig. 5.1) the conditions are prescribed by the external driving terms of

the electrochemical potential in the form of either a constant voltage maintained at

an electrode, or an injection current (possibly zero) through an interface. Applying



54

currents/voltages to B and C interfaces results in the presence of inhomogenous

terms in Eq. (5.9). These boundary conditions provide a unique set of solutions

for the parameters a, b, pj , qj in Eq. (5.10). This method offers a considerable

simplification compared to solving the 2D spin diffusion equation for the same

planar structure, and yet it includes the influence of the contacts of finite lateral

size on the current flow beneath and between them. In the following, we will

apply this method to the semiconductor spin-valve from Figure 5.1. An example

of application to an all-metallic system is given in Ref. [106].

5.B Quantitative analysis of a lateral spin valve.

In the spin valve the current is passed between the two magnetic contacts

(through B and C interfaces Fig. 5.1). As we are working with quite resistive

barriers, we will use the voltage difference between the two metals as a control

parameter. We divide the normal channel into sections belonging to 5 vertical

stacks as shown in Fig. 5.1. In the middle section of the channel, the solution is

ξ±(x) = (e/σN)Jx + ξ ± (pce
x/L

N + qce
−x/L

N ), (5.11)

where J, ξ, pc and qc are constants to be determined by the boundary conditions.

The total current flowing between the two leads is I = JhN lz, where lz is the

length of the structure in the z direction. For the two sections outside the footprint

defined by the two leads, we introduce the notion of the “open” versus “confined”

geometry depending on whether dL, dR ≫ or ≪ LN . In both geometries the

net charge current flows only between the leads B and C. This means that the

outside sections lack the linear term of Eq. (5.11). In the open geometry the spin

polarization extends noticeably outside of the footprint between B and C, reducing

the spin accumulation beneath the contacts.

As we have discussed before, we can neglect the tiny spin splitting in the ferro-

magnets. Furthermore, due to the difference of conductivities between the metallic

contacts and the semiconductor channel, we can safely disregard the spatial vari-



55

ation of ξF (x), and use constant electrochemical potentials ξF
L,R in the left (L)

and right (R) ferromagnets. The eigenvalues of the spin diffusion equations in the

semiconductor are given by

λ2
(s,c) = [α + 1 ±

√
1 + β2]/(2L2

N) , (5.12)

where the + sign corresponds to the s (“spin”) mode and the − sign corresponds

to the c (“charge”) mode. The two dimensionless parameters α and β are

α = 2L2
N (G+ + G−)/(σ

N
h

N
), (5.13)

β = 2L2
N (G+ − G−)/(σ

N
h

N
). (5.14)

α and β are non-zero only in the channel regions beneath the contacts. Note

that the ratio β/α is equal to the barrier spin selectivity γB. The electrochemical

potential in the semiconductor layer beneath the ferromagnet is given by

ξ±(x) = ξF + (1 ± λ)
[
peλsx + qe−λsx

]
+ (λ ∓ 1)

[
reλcx + se−λcx

]
, (5.15)

where p, q, r and s are constants to be determined by boundary conditions and

λ = cot[1
2

tan−1 β]. We consider the case of robust spin injection in which α and β

are comparable. If α ≪ 1, then λc ≪ 1/LN and λs ∼ 1/LN . The s-mode decays

on the spin diffusion length scale, and it corresponds to spin accumulation (λ≫1

in this case). If α ≫ 1, then both eigenvalues are nearly independent of LN , and

neither of the eigenvectors is a pure spin mode (as λ≃1). The inhomogeneity of

injection along the contacts dominates then the spatial dependence of ξs(x).

To illustrate the effect of the contact width on the magnetoresistive (MR)

effect, we use the parameters of the Fe/GaAs system given in the previous chapter

(with the carrier density n=4 ·1015 cm−3 in GaAs). The thickness of the N channel

is hN=100 nm, and the inner channel length is dm=200 nm. These structure

parameters correspond to the values of α=1/3 and |β|=1/9. The calculated MR

is shown in Fig. 5.2(a) as a function of the contact width, where for simplicity we

have used w=wL=wR. We note the deleterious effect of the open geometry (dashed
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Figure 5.2: (a) Magneto-resistive effect versus the contact width of a GaAs channel
at 300K. The solid (dashed) line denotes a confined (open) structure. (b) Magneto-
resistive effect versus α for three cases of spin selectivity, β/α in the confined
geometry, calculated for the optimal contact width corresponding to the same α
value shown in (c).

line) compared with the confined geometry (solid line) because of the weaker spin

accumulation in the semiconductor channel which produces the MR effect. Let us

mention that for these parameters the effective 1D method presented here gives

results indistinguishable from the results of a 2D numerical calculations which we

have also performed.

It is interesting to see again the existence of the maximum of MR, which

this time occurs for a certain optimal contact size wopt. This effect arises out of

the balance between spin injection and spin relaxation in the channel. The spin

accumulation in the normal conduction channel is built up from injection along the

width of the ferromagnetic contact. When this width is very small there is simply

not enough current (notwithstanding its finite polarization) to significantly split
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the spin-dependent electrochemical potentials. Then, according to the discussion

from section 4.B the MR effect is small. For relatively small w we are in the

“constant ∆µ limit”, and we can use Equation (4.12). According to it, the MR

increases with w until the w-dependent part of the denominator in Eq. (4.12),

namely
hN (d + 2w)

LNw

GN

G
, (5.16)

either saturates or becomes smaller than 1. Further increase of w is going to lead to

decrease of MR, as we eventually have to take into account the spatial dependence

of µs. So we expect the optimal contact width wopt to be smaller when hN/G is

small (α is large), and this is borne out by results shown in Figure 5.2c, where we

have wopt/LN≃2/α for α ≫ 1. Finally, when the contact width w exceeds the spin

diffusion length LN , the build-up of spin accumulation from vertical injection along

the width of the contact beyond LN becomes ineffective, so that ∆µ in the middle

of the structure (between the contacts and under their inner edges) saturates.

Thus the MR effect approaches an asymptotic value. Then the difference between

the open and confined structures is removed, and the solid and dashed lines in

Fig. 5.2a merge. As we expect from the previous derivations, the magnitude of

MR for the optimal contact width depends on the spin selectivity of the barriers, β

in Eq. (5.14), as illustrated in Fig. 5.2b. On the other hand, Fig. 5.2c shows a much

weaker dependence on the spin selectivity of the optimal contact width. The ratio

wopt/LN depends only on α defined in Eq. (5.14). For parameters used in Fig. 5.2a

we have α ≪ 1, and the optimal contact width wopt/LN is approximately 6/5

or 3/8 for the open or confined geometry, respectively (these number come from

a tedious analytical calculation best left to programs like Mathematica). These

results enable the extraction of the spin diffusion length of a test material by

measuring the MR of several structures with different contact widths from the

same growth.
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6

Mutli-terminal systems: Magnetic

Contact Transistor and a logic

gate

In Chapters 4 and 5 we have analyzed the spin valve, which is a passive two-

terminal device. By “passive” we mean that although the current through the

valve depends on the P/AP alignment of the magnets, the value of the MR ratio

is set by the geometry of the device and cannot be manipulated by some external

stimulus (e.g. the MR effect does not depend on the applied bias, at least as long

as electric field effects [57] are not important).

A three-terminal device (a transistor) is a cornerstone of electronics. In a

transistor, the current between the two terminals is controlled by a voltage applied

to the third terminal. Equivalently we can say that the resistance between two

terminals is controlled by the third terminal. Thus, the name of transferable

resistor. In a bipolar transistor, the base-emitter voltage controls the current

of minority carrier which can cross the pn (or np, depending on polarity of the

transitor) junction between the emitter and the base region. Due to the geometry

of the device, most of these carriers are actually swept into the collector (creating

a collector current IC), and a much smaller current IB enters the base. The final

59
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outcome is often summed up as “small IB current controls the large IC current”, but

a physical explanation is that the base-emitter voltage provides the control of both

currents, which are proportional to each other: IC/IB≡β, where β is the current

gain coefficient (typical value of β is 100). In the field-effect transistor (FET),

the voltage applied to the gate changes the resistance of the channel between

source and drain, including the possibility of switching the source-drain current

on and off. The modern electronics is now completely dominated by field-effect

transistors, specifically the so-called Complementary Metal-Oxide-Semiconductor

(CMOS) technology, in which FETs with both n-type and p-type channels are

employed.

In recent years, many types of “spin transistors” have been proposed theoreti-

cally. The most famous is the simple “current modulator” proposed by Datta and

Das [16] in 1990, in which the electric field of the gate together with spin-orbit in-

teraction in the small-bandgap semiconductors (Rashba effect, see e.g. Ref. [17])

controls the precession of spins of ballistic electrons injected and extracted by

ferromagnetic contacts. Despite a large experimental effort (and innumerable the-

oretical papers on modeling of variations of the Datta-Das transistor) the conclu-

sive demonstration of the device operation has remained elusive. Let us mention

some of the other proposed semiconductor spin-transistors. A diffusive version

of a Datta-Das system has been put forth [107]. Magnetic unipolar [108] and

bipolar transistors [63, 109, 64] (both of which require non-degenerate magnetic

semiconductors) have been analyzed. Another proposal was that of a spin tran-

sistor without any ferromagnetic elements [110], which relies exclusively on strong

spin-orbit interaction experienced by electrons in low bandgap materials such as

InAs. There was also a proposal of bypassing the problems with efficient spin

injection (which were more serious at that time than they are now) and using a

proximity effect of a ferromagnetic gate [90, 98].

Motivated by a rapid progress in spin injection and extraction in structures

consisting of ferromagnetic metals and semiconductors [38, 41, 42], we present a
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proposal of a three-terminal system [111], which we predict to operate at room

temperature using realistic numbers for spin injection across Fe/GaAs interface.

In chapter 4 we have seen that despite the large difference between the spin accu-

mulation in P and AP configurations of a spin valve, the MR effect remains very

small for barrier conductances G smaller than the spin depth conductance of the

channel GN . The main idea it to use a third ferromagnetic contact in order to sense

the qualitative difference between spin splittings for two alignments of remaining

two contacts. The only feature necessary in such a system is the spin selectivity

of barriers between the channel and all three contacts (allowing for spin injection

and extraction by every contact). Because of this we have termed it a “Magnetic

Contact Transistor” (MCT).

Let us mention that a similar system has been known for some time in the field

of all-metal magnetoelectronics as a non-local spin valve [112, 99, 100]. However,

the third contact in a non-local spin valve is used as a passive floating terminal

(essentially a spin dependent voltage probe). In the MCT all the contacts are

active terminals controlled by applied voltages. The possibility of control is closely

related to the use of the non-degenerate semiconductor as a paramagnetic channel.

Due to very small concentration of carrier compared to metals, spin injection can

lead to spin splittings of electrochemical potentials of the order of milivolts in the

channel. Then, the voltages supplied with mV accuracy can efficiently tune the

magnetoresitive effect measured in one of the terminals.

The basic physical principle behind the operation of the MCT, which is the

direct electrical expression of the spin accumulation in the semiconductor, is then

used in section 6.D to propose a magneto-logic gate (MLG). In this system the

logic input is encoded in the magnetization orientations of 4 metallic contacts, and

the fifth ferromagnetic contact is used to sense the magnitude of the resulting spin

accumulation, which encodes the logic output of the gate.
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Figure 6.1: A three-terminal Magnetic Contact Transistor. The spin currents in
the marked area close to the right magnet are shown in Figure 6.4 (see text for
details).

6.A The principle of operation

A schematics of the proposed system is shown in Figure 6.1. Since we will use

the spin accumulation in the channel, the outer edges of the channel are removed, so

that we are in the “confined” geometry (see Chapter 5). We let the left ferromagnet

(L terminal) be a “soft” magnetic layer, the magnetization of which can be easily

flipped. The middle (M) and right (R) magnets have parallel magnetizations.

They can be pinned by exchange bias [97], so that only the L magnet changes its

orientation due to an external magnetic field. Alternatively, the shapes (aspect

ratios) of M and R can be chosen in such a way that their coercivities differ from

the L magnet (this will work when the magnetic anisotropy is dominated by shape

anisotropy, e.g. in permalloy). The P and AP configurations denote, respectively,

the L magnetization parallel and antiparallel to that of the M and R. Now we have

two voltages, VL and VR, controlling the IL and IR currents (with the value of IM

following from current conservation).

In order to explain the principle of operation, let us first consider at situation

in which the R terminal is disconnected (e.g. the wire leading to it is cut). Then

the L and M contacts constitute a spin valve analyzed in previous chapters, with
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voltage VL applied to it. Upon change of the orientation of the L magnet (between

P and AP with respect to M), the current IL changes slightly, but the average spin

splitting of electrochemical potential in the channel ∆ξ varies between two very

different values (inside the channel we use ξs for the layer-averaged electrochemical

potential). Let us remind that beneath the injecting and extracting contacts we

have ∆ξP/∆ξAP∝(l/2LN )2 (see Chapter 4), with effective length of the active

channel covered by L and M terminals l≈d + wL + wM . The spins accumulated

beneath the M terminal diffuse out to the right, but if d≪LN the spin accumulation

beneath the R magnet is going to be practically the same as beneath the M contact.

For wR≪LN the ξs beneath R can be assumed to be constant. Let us write the

electrochemical potentials as

ξP,AP
± = ξP,AP ± 1

2
∆ξP,AP , (6.1)

where ∆ξ is the spin splitting and ξ is the average value of electrochemical poten-

tial. Now, if we connect the R terminal and apply any voltage VR, the situation

inside the channel will change in general. But we are interested in choosing VR such

that there is only a small (possibly zero) IR current. Then the spin accumulation

determined by a larger IL injected into the channel remains practically unaffected.

For such a voltage applied to R, we have the total current entering the R contact

(with A being the contact area and µR=−eVR):

IP,AP
R =

GA

e
(µR − ξP,AP ) − ∆GA

e

∆ξP,AP

2
, (6.2)

and the corresponding spin current

∆IP,AP
R =

∆GA

e
(µR − ξP,AP ) − GA

e

∆ξP,AP

2
. (6.3)

By a proper choice of µR we can make IR=0. Let us denote µP,AP
0 as the value

of electrochemical potential in R magnet that quenches the total current in this

contact:

µP,AP
0 = ξP,AP +

∆G

G

∆ξP,AP

2
. (6.4)
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Figure 6.2: The alignment of electrochemical potentials (ξs) in the channel beneath
the R contact and the potential inside the R terminal which make IR equal to zero
(µ0). The grey lines are the average values of the electrochemical potential in the
channel. Their change between P and AP configurations is much less prominent
than the change in splittings ∆ξ.

.

In the following derivations we will disregard a small value of ∆ξP and set

∆ξP ≈ 0 . (6.5)

The last piece of information that we need is the fact that when the barriers are

the most resistive elements in the circuit, we have

ξP ≈ ξAP ≈ −eVL

1 + RL/RM
, (6.6)

where RL and RM are the resistances of the L and M contacts, respectively. So

the average electrochemical potential is roughly the same for both magnetization

configurations. This can be shown to the first order in G/GN in a 1D model, and

also holds very well in the realistic lateral case. It can be seen in Figure 6.2, where

an example lineup of ξs under the right magnet is shown.

After all this preparation, we can immediately derive the following. In either

P or AP alignment of L and M magnets, we can bias the R terminal in such a way

that the current flowing through it is zero. If we then flip the L magnetization,
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a finite IR current will flow. This is a consequence of large spin accumulation in

AP configuration, and spin selectivity of the barrier (∆G 6=0). The “on” current is

given by

Ion
R = ±∆G

e

∆ξAP

2
(6.7)

where we have the (+) sign for the case when IAP
R was quenched and the (-) sign

when the R voltage was chosen so that IP
R =0. Thus, we have found a way to digitize

the MR effect in the R contact. Instead of some finite ratio of P and AP currents,

we can have zero current for one and a finite current for the other configuration.

The “digitization” holds for the MR effect measured in the third (R) terminal.

The larger currents in the other two (L and M) have a small relative change when

we alternate between P and AP configurations. Yet these contacts do almost all

of the job of injecting and extracting spin-polarized currents. We can say that we

have transferred the magneto-resistive effect to the third contact, where we can

tune it by VR voltage. In Ref. [111] we have called this spin transference. An

alternative term of “transferable magnetoresistance” underlines the connection to

the standard transistors. Actually, we can draw an analogy between the Magnetic

Contact Transistor (MCT) and the bipolar transistor. In the latter case, the tran-

sistor action results from attaching two p-n diodes back to back into a pnp or npn

structure, where the common base width must be smaller than the recombination

diffusion length. A longer base would beget two uncoupled diodes devoid of ampli-

fication effects. We can look at the MCT as two spin valves with a common middle

terminal. If the width of this common contact is smaller than the spin diffusion

length LN , we create a system capable of amplifying the MR effect of each spin

valve. However, the MCT does not amplify currents, and it is a linear device in

a sense that all the currents depend linearly on both applied voltages. But, as a

spintronic device, it is also sensitive to the additional discrete degree of freedom

(magnetization configuration), and the flexibility provided by two controlling volt-

ages allows us to manipulate the magnetoresistive effect associated with changing

the magnetizations.
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R around zero current. The solid and dotted lines show the
currents for IAP

R for two different spin relaxation times. The middle contact width,
separation between the contacts and the channel thickness are w=d=2h=0.2 µm,
and the areas of the L and R contacts are 1 µm2.

6.B Results of modeling

We have modeled the MCT shown in Figure 6.1 using the lateral diffusion for-

malism from Chapter 5. We have also performed the numerical calculations of a 2D

diffusion equation, and the agreement with an effective 1D method confirmed its

accuracy. For the calculations we have used parameters of room temperature GaAs

with carrier density n=4 ·1015 cm−3, and spin relaxation time τsr=80 ps (with cor-

responding spin diffusion length LN=1 µm). The barriers have total conductance

G=3000 Ω−1cm−2and spin selectivity γB=1/3 (equivalent to G+/G−=2). The di-

mensions of the system are the following: the thickness of the N layer hN=100

nm, the distance between the contacts d=200 nm, the widths of L and R contacts

wL=wR=200 nm. The areas of L and R contacts are 1 µm2. In Figure 6.3 we show

the current IAP
R calculated for VR such that IP

R =0, as a function of the middle
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contact width. For large wM , equivalent to uncoupled spin valves, the MR effect is

lost. Again, as in case of the spin valve, there is an optimal value of wM for which

the desired effect is maximized. The resulting IAP
R currents are about 10 nA for

room temperature GaAs parameters and for an optimal width wM≃200 nm. The

IL and IM currents are of the order of 1 pA for this wM . In this figure we also show

the analogous results for a longer spin relaxation time τsr=1 ns. Spin relaxation

times of nanoseconds and longer can be seen in GaAs at temperatures below 100

K [20], and are expected in Si at room temperature.

Another important feature which we have taken into account in the calcula-

tions shown in Figure 6.3 is the presence of noise in the system. For the obtained

values of IR currents, the main contribution to the current fluctuations comes from

the Johnson (thermal) noise, which for highly resistive barriers that we have dom-

inates over the shot noise. The mean square of the voltage (or current) fluctuation

depends on the bandwidth of interest. For a characteristic time of measurement

tm the bandwidth is δf∼1/tm. In a given bandwidth, we have for the thermal

noise the fluctuation of the voltage across the resistor 〈V 2〉=4kBTRδf . In order

to estimate the noise in the system we take a resistance of the contact of 1 µm2

area which is R=0.3 · 105 Ω. If we take 100 MHz bandwidth, we get a 0.2 mV

voltage noise. In Figure 6.3 we calculate the “on” and “off” IR currents taking

such a fluctuation of VR into account. Of course, the voltage source applied to the

contact needs to have a smaller intrinsic noise.

6.C Fully polarized spin current and spin current without

net charge current

Let us note some interesting features of the current flowing into the R contact

for VR chosen in a way discussed above. Firstly, the “on” current is fully spin

polarized, i.e. carriers of one spin are entering the contact, while the carriers of

the opposite spin are leaving it. It can be seen from Figure 6.2 in which the µ0
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Figure 6.4: Spatially resolved x component of the current density at the right half
of the right channel (the region marked in Figure 6.1). Note the different scales
for each figure. The upper panels show the zero and finite net charge currents
for the parallel and antiparallel configurations, respectively (0 versus ∼3.5Acm−2).
The lower panels show the amplification of ∆J=j+−j− due to the difference in
electrochemical potential splitting. The parameters are as in Fig. 6.3 with optimal
source width and τsp=80 ps.

adjusted in the contact lies between the two ξs in the channel. The two opposing

currents of spin up and down do not cancel each other exactly, and we are left with

a finite net IR. Secondly, in the “off” state, when VR is adjusted so that the net

IR=0, there is a non-zero spin current flowing into the R terminal:

∆Ioff
R =

∆ξP,AP

2e

∆G2 − G2

G
A . (6.8)

The currents of electrons with both spins flow in the opposite directions, canceling

the net particle current, but adding to a net flow of spin polarization. A similar

effect was predicted in a lateral structure with non-magnetic source and drain and

two ferromagnetic gates, into which the current could leak [98].

A finite spin current entering a ferromagnet can lead to the reversal or preces-

sion of the magnetization, if the polarization of injected spins is non-collinear with

the magnetization axis of the magnet [8, 9]. This is a so-called spin-torque effect.

This effect has been observed in an metallic non-local spin valve [113]. The mag-
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netization of a floating terminal (zero net charge current through it) was switched

by a spin current flowing into it.

In Figure 6.4 we show the plots of x component of current densities and their

polarizations in the semiconductor channel in the 100 nm section left of the right

contact (see Figure 6.1). The VR voltage is adjusted so that IP
R =0. In the upper

panels one can see the zero and finite net current flowing in P and AP configurations

(in P case the current flows in the opposite directions near the top and the bottom

of the channel). In the lower panels we show the amplification of spin polarization

of current ∆Jx from P to AP (according to Equation (6.8) ∆I is proportional to

∆ξ).

6.D Five-terminal magneto-logic gate

The three-terminal MCT can be used for electric readout of a bit of memory

encoded in a magnetization direction of the L terminal. But the same physical

principle of operation can be harnessed to achieve a more complicated functionality.

In Figure 6.5 we present a scheme of a five-terminal system, in which the electric

sensing of spin accumulation is used to perform a logic operation, i.e., two bits of

input are converted to a binary output signal. Let us mention that spintronic logic

gates have been proposed in purely metallic systems [114], but ours is the first

realistic proposal which employs semiconductors as active elements of the system.

The system presented in figure 6.5 works in the following way. The charge

currents are flowing between two pairs of terminals (X and A, Y and B), between

which the bias Vdd is applied. Depending on the alignment of these pairs of mag-

nets, different patterns of spin accumulation are created in the channel. As in

the case of the MCT, the middle contact (M) can be used to directly express the

differences in the average spin accumulation beneath it.

The logic inputs are encoded by magnetization directions of A,B,X, and Y

terminals. We will concentrate on the case in which A and B magnetizations
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Figure 6.5: A five-terminal magneto-logic gate. The logic inputs ‘0’ and ‘1’ are
encoded by magnetization direction of the A,B,X,Y terminals (see text for details).
As shown here, the gate is set to work as a NAND operation between X and Y (A
and B are fixed to ‘1’ values).

are preset, defining the logic function of the gate. This reprogrammability is an

important feature of magnetization-based logic. X and Y are then the logic inputs,

and the current from the (properly biased) M contact gives the result of the logic

operation. Let us focus on an example of the NAND gate. Any other logic function

can be realized by using a finite number of such gates. For the NAND operation, A

and B magnets are set parallel to each other (their direction defining the logical ‘1’).

If both X and Y magnets are set to ‘1’ direction, the spin accumulation beneath

the M contact is small (as the spin injection and extraction occurs between pairs of

parallel magnets). The voltage VM is tuned so that the IM current is zero. If either

X or Y are set to ’0’, there is a larger spin accumulation created and a finite IM=I10

will flow. When both X and Y are set to ‘0’, a current IM=I00=2I10 will result

(the spin accumulation is additive in the linear regime). Now the “digitization”

of the response achieved in the MCT is lost, but if the I10 and I00 currents can

discerned, then we can assign the logical ’1’ to the large output current, and ‘0’ to

the smaller current. Thus we electrically read out the result of the NAND(X,Y)

operation. Further details, and a discussion of a dynamic readout scheme which

could be used in a large-scale circuit, is presented in section 7.D of Chapter 7.
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Electric readout of magnetization

dynamics

In the previous chapter we have shown how in a multi-terminal system we

can manipulate the response of the current to the alignment of magnetizations of

the contacts. In this chapter we will explore the possibility of a dynamical read-

out scheme in such a system based on a time-dependent analysis of the lateral

spin diffusion. In response to time dependence of one of the magnetizations (e.g.

its rotation), a transient current in a terminal (the rotated one, or another) is

triggered. The three-terminal system can then be used as an electric sensor of

magnetization dynamics. This is described in sections 7.A-7.C. An alternative

application is given in section 7.D, in which the transient current response is used

to read-out the outcome of the logic operation in a five-terminal magneto-logic

gate (MLG) introduced in section 6.D of the previous chapter.

7.A The principle of operation

The three-terminal system is shown in Figure 7.1. The difference with respect

to the MCT described in chapter 6 is the fact that the R terminal is now connected

to a capacitor C. Hence, in the steady state there is no IR current. The bias is
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Figure 7.1: A Magnetic Contact Transistor modified for electric readout of mag-
netization dynamics. The right (R) terminal is connected to the capacitor C.
When one of the magnetizations becomes time-dependent, the transient currents
flow out of the R contact. The dimensions used for calculations are hN=100 nm,
wL=wM=wR=400 nm, d=200 nm and the length in z direction lz=2 µm.

applied between the L and M terminals, and there is a current flowing between

them at all times. The voltage on the capacitor depends on the alignment of L and

M magnetizations as well as on the spin selective properties of the R terminal, as in

the non-local spin valve effect. In the following we fix the M terminal magnetization

(e.g. by exchange bias pinning).

In order to change the magnetizations of L and R terminals “on the chip”,

the planar structure can be augmented by a set of current-carrying lines known

from MRAM devices [15]. In MRAM, there are wide metallic strips (so-called ‘bit’

and ‘word’ lines) running above and below the magnets that are to be addressed.

The upper and lower wires are at a 90 degrees angle, so that every magnet is

(when looking from above) located at an intersection of two wires. In order to

switch its magnetization, the current pulses are passed through the appropriate bit

and word lines. These currents generate transient local magnetic fields (through

Ampere’s law) which can switch the magnetization of the addressed terminal. The

two lines are necessary for addressing purposes in a matrix consisting of many

MCTs. Only the magnet located at the intersection of two lines is switched.
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The other magnets over (under) which the activated current-carrying line passes

are unaffected, as the current magnitudes are such that a magnetic field from a

single line is unable to switch the magnetization. Furthermore, using the two lines

(giving two perpendicular magnetic fields which add up) is advantageous because

the presence of magnetic field components non-collinear with the magnet’s easy

axis aids the fast switching [115].

We will discuss two possible modes of operation for this system. In the first

mode, the magnetization of L contact is perturbed, and its dynamics drives a cur-

rent in the R contact. This leads to the possibility of an all-electrical measurement

of magnetization reversal. In the second mode, the L magnetization represents a

bit of memory, and the rotation of the R contact triggers a transient current, the

magnitude of which is related to the relative alignment of L and M magnetizations.

The principle of operation is the same as in the static MCT, with the addi-

tional complication of allowing for changes of R magnetization direction. In the

steady state we have thus four possible configurations of magnetization. The spin

accumulation in the channel is determined by the alignment of L and M termi-

nals. In each situation, the voltage on the capacitor (equal to the potential in the

R contact) is such that there is no net IR. A schematic plot of electrochemical

potentials ξs in the channel beneath the R contact and the potentials µR inside

the R magnet is shown in Figure 7.2. Let us repeat here Equation (6.4) for the R

contact:

µR = ξ +
GR

+ − GR
−

GR
+ + GR

−

∆ξ

2
. (7.1)

When the L magnetization is rotated, ∆ξ changes, and when R magnet is switched,

GR
+ and GR

− trade places. In both cases, the potential µR ceases to give zero net

current, and a transient current charges the capacitor until a new steady state is

reached. A full flip of either L or R magnet leads to a transition of µR between a

pair of dashed lines in Figure 7.2. If the RC time constant of the entire circuit is

shorter than a time-scale of magnetization dynamics, it is possible to trace out the

magnetization dynamics by electrical means. If ∆ξ is unchanged (when only R is



75

ξ
-

ξ
+

∆ξAP

0

10

E
n
e
rg

y
 (

m
e
V

)

∆ξP

ξ
+

ξ
-

Figure 7.2: Spin accumulation under the R contact and voltage inside it for an-
tiparallel (AP) or parallel (P) magnetization alignment of the L and M terminals.
Solid lines are the spin-dependent electrochemical potentials in the semiconductor
channel beneath the R contact. Dashed lines are the values of electrochemical
potential µR in the R contact in the steady state, depending on the R direction,
with arrows denoting the alignment of three magnets.

rotated), then the signal is expected to differ strongly in magnitude depending of

the L/M alignment, due to the ratio of spin splittings in P and AP configuration

of L and M magnets. This leads to a dynamical readout of the L magnetization

direction by rotating the R magnet.

For the electrical tracing of L magnetization dynamics, both M and R magnets

should be pinned in the same direction. In the case of the dynamical readout of

L/M alignment, we need to write separately the memory bit (direction of L magnet)

and read by rotating the R magnet. A proper choice of different coercivities of

two magnets and magnetic field pulses should allow for separate addressing. The

half-selection (unintentional perturbation of magnetization) of L when rotating R

should be diminished, in order not to mix the signal from the L dynamics with the

readout of L alignment.
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7.B Time-dependent formalism

In order to model the transient behavior, we need to add the time dependence

to the formalism of lateral spin diffusion. We are going to be interested in time-

scales of a least tens of picoseconds. The fastest magnetization reversal time is

about 100 ps [12]. A typical period of magnetization precession in ferromagnetic

resonance is also of this order of magnitude. Magnetization switching times used in

commercial devices are of the order of a nanosecond. Consequently, we will use an

adiabatic approximation with respect to the processes occurring on a much faster

(sub-picosecond) time scales: the momentum scattering and dielectric relaxation.

We can then neglect the time derivative in Equation (2.33), and plug in the result-

ing expression for js into the continuity equation (2.32). In this way we obtain a

time-dependent diffusion equation for the spin accumulation ∆n=n+ − n−. In the

linear regime (spin accumulation much smaller than the total carrier density), we

also have a diffusion equation for spin-splitting of electrochemical potential ∆µ.

We integrate out the y dependence of ∆µ(x, y) like in Chapter 5, and obtain the

diffusion equation for the spin splitting ∆ξ=ξ+ − ξ−:

∂∆ξ

∂t
= D

∂2∆ξ

∂x2
+

βi(t)

τsr
(µF

i − ξ) − αi

2τsr
∆ξ − ∆ξ

τsr
. (7.2)

The meaning of the βi(t) parameter of i-th layer is discussed below. Next we

use the fact that the dielectric relaxation (about 100 fs for non-degenerate semi-

conductor with n0=1016 cm−3) is much faster than the time-scale of magnetization

dynamics and spin diffusion, and assume quasi-neutrality n the channel at all times

(n+(t) + n−(t)=0). In the linear regime under consideration (when ∆ξ<kBT ) the

average electrochemical potential µ=(µ+ + µ−)/2 is equal to −eφ (where φ is an

electrostatic potential). At every moment of time µ fulfills the Laplace equa-

tion, with boundary conditions given by currents at the interfaces. In the time-

dependent case these include also a displacement current connected with charging

of the barrier capacitance CB. A Schottky barrier is basically a dipole layer, and

its capacitance can have a strong effect on dynamics of currents on time scales of
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interest here. In order to take the displacement current in the barrier into account,

the boundary condition for spin current has to be modified in the following way:

js =
Gs

e
(µF (t) − µs(t)) +

cB

2e

∂

∂t
(µF (t) − µ(t)) , (7.3)

where µF is an electrochemical potential in a metal (its spin splitting neglected

as usual) and cB is the barrier capacitance per unit area. The second term in

the above equation represents the carriers which flow towards the barrier, but

do not tunnel through it. Instead, they stay in the semiconductor close to the

barrier, making the depletion region slightly thinner or wider. An equal amount

of opposite charge is brought to the metal surface. The charge involved in this

process is negligible compared to the charge already swept out of the depletion

region (which determines the width of the Schottky barrier), and we can keep cB

constant. For small spin splitting (so that the conductivities σ+≃σ−) the same

amount of carriers of each spin is going to be brought from the channel into the

barrier, thus the displacement current is the same for each spin in Equation (7.3).

The equation for layer-averaged ξ is obtained as in Chapter 5:

∂2ξ

∂x2
= − αi

2L2
N

(µF
i − ξ) +

βi(t)

4L2
N

∆ξ − cB

σh

∂

∂t
(µi − ξ) . (7.4)

and the right hand side of Eq. (7.4) is non-zero only under the contacts.

The dynamics of magnetization in a contact is parametrized by a single param-

eter β(t), which characterizes the contact polarization only along the z axis. If we

deal with a coherent precession of magnetization then this is an approximation. In

principle, one should perform calculations of diffusion of spin accumulation treated

as a vector quantity [47], and take into account the noncollinearity of spins and the

magnets in the tunneling process [116, 117, 89]. However, for tunneling barriers

the non-trivial effects of this noncollinearity (the “mixing conductance” in [116])

are expected to be small, and the only thing that matters is the average polariza-

tion along the z direction in the channel. Then we can model the influence of the

contact with magnetization making an angle θ with the z axis by assuming that
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β∼∆G cos θ. On the other hand, if the magnetization reversal is incoherent (e.g.

proceeding by nucleation of domains with opposite magnetization), the parameter

β(t) describes an area average of spin-selectivity of magnetically inhomogeneous

contact, and again β can be taken as proportional to the z component of the

contact’s magnetization.

Summarizing, the magnetization dynamics of ith contact translates into time-

dependence of βi, driving the spin diffusion in Eq. (7.2) and electric potential in

the channel in Eq. (7.4). From ξs we calculate the current IR flowing into the

right contact and charging the capacitor C, and consequently the electrochemical

potential of the R terminal µR=−eVR changes according to dVR/dt=IR/C.

7.C Results of calculations

For the calculations, we use the parameters of GaAs at room temperature from

the previous sections, with doping n0=1016cm−3. The dimensions of the system

are given in Figure 7.1. Again we employ the experimentally verified [36] spin

selectivity G+/G−=2, but in order to achieve signal stronger than noise we take

the barrier conductance to be G=104 Ω−1cm−2. For such barriers of 1 µm2 area

and 10 nm thickness, RB=10 kΩ and CB=10 fF . The external capacitance is taken

as C=40 fF, and the resulting RC time is about 1 ns. The applied voltage VL is

0.1 V.

In Figure 7.3a we present the calculated IR induced by a reversal of the L

magnet from AP to P alignment relative to M. The reversal is parametrized by

βL(t)=β0 cos(2πt/T ), with different reversal times T . The shape of the IR current

pulse follows closely the time-dependence of βL, which is proportional to the z

component of the L magnetization. The time-integrated current is the same for

any reversal time, and it is given by a change of the charge on a capacitor C needed

to switch the R terminal potential between a pair of levels shown as dashed lines

in left and right parts of Figure 7.2.
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Figure 7.3: (a) R current signal for reversal of L magnetization occurring on time-
scale of 3, 5 and 10 ns starting from AP alignment of L relative to M magnet. (b)
R current signal for 2π rotation of R magnet for P and AP alignments of L and M
magnets. The period of rotation is 3 ns.

In Figure 7.3b the transient IR for the 2π rotation of R occurring in 3 ns is

shown. While the average current is zero, the average power of the current pulse

is much higher for the L/M=AP than for P. Two signals of such clearly different

magnitude can be easily distinguished, provided that the stronger signal is above

the noise level (dominated by Johnson noise in our system). In Figure 7.3b the

power of AP pulse is slightly above the noise power in 0.3 GHz bandwidth.

The above calculations show that metal/semiconductor system could be used

to sense the dynamics of magnetization rotation by electrical means. However

the problem of noise is more pronounced in the dynamical case. The operation

of the static MCT could be demonstrated in the laboratory using the currently

available metal/semiconductor spin injecting junctions (as we can always decrease

the bandwidth until the signal becomes stronger than noise). Here the character-

istic time-scale of magnetization reversal sets the minimum bandwidth. Even for

rotations slower compared to the ones achieved in MRAM devices, we need more
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transparent barriers in order to make signal at least comparable to the noise.

Let us note that the possibility of performing operations described above is

closely related to the use of a semiconductor channel. In an all-metal MCT the con-

cept of operation still holds, but the swings of µR are orders of magnitude smaller,

and in order to achieve measurable current we would have to use a macroscopic

capacitor. Clearly, for the dynamical MCT to work we need a semiconductor,

and we need relatively low resistance tunneling barriers. Significant steps towards

making such metal-semiconductor contacts have been made recently [101].

7.D The dynamic readout of the outcome of a logic oper-

ation in the five-terminal system

The dynamic approach to the readout of magnetization alignment presented

above can also be used in a magneto-logic gate (MLG) introduced in Section 6.D.

In Figure 7.4a the modified MLG is presented. The middle (M) contact is con-

nected to the capacitor CM , and the rotation of the M magnetization creates a

transient current IM(t), the magnitude of which gives the outcome of the logic

operation. For a NAND operation described in Section 6.D, A and B magnets

are fixed in the ‘1’ direction (see Figure 7.4a). The profiles of the electrochemical

potentials in the semiconductor channel are shown in Figure 7.4b for different di-

rections of X and Y magnets (the X=’0’, Y=’1’ configuration results in a mirror

image of the X=’1’, Y=’0’ shown by the blue lines in the Figure). As we discussed

in the previous sections of this chapter, the rotation of the contact connected to

the capacitor (M terminal in this case), creates a transient current, the magnitude

of which is proportional to the spin accumulation beneath the contact. For the

case presented in Figure 7.4, the amplitude of the IM(t) oscillation is two times

larger for X=’0’ and Y =’0’ compared to the case when one of them is ’0’ and

the other is ’1’ (for ’11’ case the current is negligible). This is shown in Figure

7.5. Reference [118] contains a detailed account of how this transient current can
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be captured by an external electronic circuit, and then used to control a suitable

write operation applied to magnetic contact of the another gate.
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Figure 7.4: (a) A dynamical five-terminal magneto-logic gate. A and B contacts
are preset so that the logic operation of the gate is NAND(X,Y). The rotation of
the magnetization of the middle (M) contact triggers a current pulse IM(t), which
gives the logic output of the gate. (b) The electrochemical potentials ξs in the
semiconductor channel (solid lines for s=+, dashed lines for s=−). The applied
voltage Vdd= 0.5 V, the semiconductor is GaAs with doping n0=1016 cm−3, the
barriers have total conductances G=1000 Ω−1cm−2 and G+/G−=2.
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Electric detection of light

polarization

Although silicon is expected to be a very good material for spintronic appli-

cation due to a very large spin diffusion length, most of the experimental progress

in the last decade has occurred in III-V semiconductors. The existence of opti-

cal orientation [19] in these direct band-gap materials has allowed optical sensing

of spin accumulation, and practically all the major experiments in semiconductor

spintronics have relied on the optical techniques. The selection rules for optical

transitions near the Γ point in a III-V semiconductor are such that the absorption

of circularly polarized light leads to photoexcitation of spin-polarized electrons

and holes. Conversely, when recombination of spin-polarized carriers occurs, the

emitted light is circularly polarized. In the presence of spin-polarized carriers,

the absorption (and thus also the refractive index) for two circular polarization

becomes different near the band gap, leading to magneto-optical activity. The

spin accumulation can be measured by either Kerr reflection or Faraday rotation,

which are caused by difference in optical constants for two circular polarizations

of light. Seminal experiments in semiconductor spintronics have relied on these

phenomena. Long spin relaxation time of electrons (∼100 ns) in n-GaAs at low

temperatures was measured by first creating the carriers with polarized light, and

83
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then measuring the time-resolved Faraday rotation [20]. Both spin injection into a

semiconductor [22, 23, 71, 36] and spin extraction for the opposite current direction

[75, 38] were also seen through magneto-optics. The spin injection experiments are

especially important for this chapter, since they have used a spin light emitting

diode (spin-LED) setup, in which the polarization of emitted light was caused by

electrical spin injection into a semiconductor . In the following, we will present

a theoretical demonstration how the spin polarization of photoexcited electrons

may be determined by electrical means in a system consisting of a semiconductor

and two ferromagnetic contacts. Such a system could have a device application

as a compact sensor of circular polarization of light. Unlike the currently used

polarimeters, it does not require any additional optical elements, such as beam

splitters and photoelastic modulators [119].

Before we present the details of our system, let us mention other works on

connection between photoexcitation and spin transport. Z̆utić, Fabian, and Das

Sarma have worked out the theory of spin generation by polarized light in p-n

junctions made of paramagnetic and/or ferromagnetic semiconductors [120, 62, 66].

Such a spin-photovoltaic effect has been observed in a p-n heterojunction of n-

AlGaAs/p-InGaAs [121]. Experiments were also conducted in structures consisting

of a single junction of a semiconductor and a ferromagnet, in which the spin-

polarized photocurrent was injected from a semiconductor into the ferromagnetic

metal [122, 123, 124]. The electrical expression of spin polarization in our two-

contact scheme is predicted to be much stronger compared to the difference in

photocurrents for two light polarizations in a single contact device.

8.A System requirements for detection of light polariza-

tion

The system is shown in Figure 8.1. It consists of a stack of semiconductor layers

(a substrate transparent to light with frequency of interest, and a p-n junction
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above it) covered with a two ferromagnetic contacts (left (L) and right (R) one),

and a metallic gate in between them. The beam of light propagates along the y

direction (the growth direction of the semiconductor stack) from the side of the

transparent substrate. It becomes absorbed inside the p-n junction, in which the

photoexcited electrons and holes are separated. The total thickness of the p-n

junction H is comparable to light penetration depth (about a micron for photon

energy light slightly above the band gap of a typical semiconductor), so that most

of the photons are absorbed. The electrons are swept upwards towards the gate and

the electrodes, and they accumulate in n-type channel of thickness h. The effective

spin diffusion length is large in the presence of a strong electric field in the junction

(see Chapter 2), and we assume that all the photoelectrons are harvested into the

n channel without an appreciable loss of their spin polarization. Note that h≪H ,

so that the density of the spin-polarized electrons in this region is larger than

the average density in the whole p-n junction at the moment of excitation. The

photocurrent is split through two Schottky barriers with ferromagnets of opposite

magnetizations. As in the previous chapters, the barriers are assumed to be very

thin due to modification by heavy interfacial doping. The spin selectivity of the

metal-semiconductor contacts leads to the dependence of the photocurrent injected

into the ferromagnet on the relative orientation of the magnet’s magnetization and

the spin polarization of the photoelectrons. The two ferromagnets have antiparallel

magnetizations, so that for a given circular polarization of light one of them will

extract larger photocurrent than the other. The measurement of the two currents

leads to an electrical sensing of the polarization of the absorbed light.

The choice of the semiconductor materials is governed by the light wavelength

of interest. The transparent substrate should have the band gap larger than the en-

ergy of the photons. For the light-absorbing material, the lower and upper bounds

for the light frequency are set, respectively, by the threshold of band gap transitions

and by the onset of transitions between the split-off valence band and the conduc-

tion band. In this energy range a there is strong optical orientation in a III-V semi-
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Figure 8.1: A detector of circular polarization of light. The magnetizations of
the ferromagnetic contacts are along the z direction perpendicular to the channel
plane. The metal gate between the contacts is separated from the channel by a
thin insulating barrier. The n-type channel has thickness h, which is smaller than
the overall thickness H of the light-absorbing semiconductor (note that the p-type
region can have thickness much larger than h).

conductor. In the bulk material, the heavy and light hole bands are degenerate,

leading to optical excitation of both types of holes. In order to quantify the spin

polarization the beam intensity is decomposed into two generating terms of photo-

excited electrons I+ and I− which correspond, respectively, to electrons with spin

up and spin down. The resulting spin polarization is ρ≡(I+−I−)/(I++I−)=±1/2

where the sign depends on the helicity of light [19].

The metallic gate between the terminals is essential to the stability of the

system. It screens the in-plane electric field due to excess electrons in the channel

by bringing “mirror” charges to the metal surface adjacent to the insulator. The

screening is effective for a high aspect ratio between the channel length and the

thickness of the insulating barrier separating it from the gate. Consequently, the

system is electrostatically stable as in MOSFET devices, and the transport along

the axis connecting the ferromagnets may be assumed to be purely diffusive. The

gate may have an additional role if the p-n junction of Fig. 8.1 is replaced by an
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alternate design with a unipolar doped structure. In this case the gate should

be biased so that a charge accumulation (inversion) layer is formed if an n-doped

(p-doped) semiconductor is used. In such a case, the gate electric field in the

semiconductor replaces the built-in field of the p-n junction in the function of

sweeping the electrons into the conduction channel.

The scale of the system is set by the spin diffusion length, about 1 µm in

GaAs at room temperature, which limits the travel distance of the spin-polarized

electrons in the system. For high detection efficiency, the thickness h of the con-

duction channel should be much less than the spin diffusion length. The width of

the gate (equal to the separation between the two magnetic contacts) must also be

less than the diffusion length. According to the discussion of the lateral spin valve

in Chapter 5, in order to have a larger spin accumulation beneath the contacts the

pillar structure (a “closed” geometry) is used.

8.B Transport of photoexcited spin-polarized carriers

The polarized light beam creates non-equilibrium spin-dependent components

of the density ∆ns, s=± for spin up or spin down. The spin accumulation is then

∆n=∆n+−∆n−. In order to simplify the numerical procedures and extract analyt-

ical expressions when possible we consider weak excitations, i.e. ∆ns much smaller

than the carrier concentration in the paramagnetic channel at equilibrium, n0. In

this regime the electrochemical potential µs is linear in ∆ns. There is no charge

neutrality in the channel (where electrons are accumulated), but the electric field

is screened by the gate. The time-dependent spin diffusion equations are derived

just like in the previous chapters, with the addition of the term corresponding to

the optical generation of carriers of spin s denoted by Is (generated density per

unit time). The continuity equation is then given by

∂∆ns

∂t
=

1

e
∇ · js −

∆ns − ∆n−s

2τsr
+ Is . (8.1)
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As before we average the (electro)chemical potential over the thickness of the

channel, and using a very simplified approach to transport in the vertical direction

(the electrons swept up from the p region are added to the effective photogeneration

term Is) we obtain

∂ξs

∂t
= D

∂2ξs

∂x2
+

2DGs

hσ
(µF − ξs) +

2kBT

n0
Is , (8.2)

where σ is the conductivity of the n channel, µF is the electrochemical potential

in the metal (we include the possibility of applying the bias VF =−µF /e), and the

term involving the barrier conductances Gs is present only for parts of the channel

covered by ferromagnets. The kBT factor multiplying the effective photogeneration

rate Is is specific to the case of non-degenerate electrons.

8.C Results and discussion in steady state

We introduce the total electron generation rate IT and the spin generation rate

ID

IT = I+ + I− ID = I+ − I− , (8.3)

and using the notation introduced in Chapter 5 we obtain the steady state solution

beneath the contacts for spatially uniform photoexcitation:

ξ± = (1 ± λ)
[
Aeλsx + Be−λsx

]
+ (λ ∓ 1)

[
Ceλcx + Fe−λcx

]

+µL(R) +
2kBTL2

sc

Dn0

(α ∓ β)(IT ± ID) + 2IT

α2 − β2 + 2α
. (8.4)

Between the magnets (beneath the gate) we have the following general form of the

solution:

ξ±(x) = Ac + Bcx ±
(
Cce

x
LN + Fce

− x
LN

)
− kBT

Dn0

(IT

2
x2 ∓ IDL2

N

)
. (8.5)

The unknown coefficients in the above general solutions (A, .., F and Ac, ..., Fc) are

determined by conditions of continuity of ξs and its first derivative at boundaries

between the sections of the channel. In addition, the derivatives of ξx (which are
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proportional to spin-resolved currents) vanish at the outer boundaries. The total

currents flowing into the ferromagnets are:

IL = lz
∑

s=±

∫

L

GL
s

e

[
µL − ξs(x)

]
dx

IR = Z
∑

s=±

∫

R

GR
s

e

[
µR − ξs(x)

]
dx (8.6)

where lz denotes the contact length along the z direction and the integrals are

performed under the contacts.

The key discriminant for the light polarization direction is the current asymme-

try (CA) coefficient defined as CA≡|IL/IR−1|, where we assume that the currents

have been balanced by a small voltage adjustment when the light is unpolarized.

We have performed our calculations using the parameters of a GaAs/Fe system

at room temperature. The equilibrium electron concentration in the n-type GaAs

channel is taken to be n0=2 · 1015 cm−3 and the effective channel thickness h=100

nm. The barrier conductances are G+=2G−=500 Ω−1cm−2 for one contact, and

the roles of + and − are switched for the other one. In the channel, the semicon-

ductor diffusion coefficient D is 180 cm2/sec and the mobility ν=7000 cm2/V-sec.

The semiconductor spin relaxation time is τsr=80 ps [19], with corresponding spin

diffusion length LN=1.2 µm. Accordingly, the dimensionless quantity α=1. The

spin selectivity of the barriers γB=β/α is set to 1/3, according to the spin-injection

experiments in Fe/GaAs system [71, 36].

Fig. 8.2 shows the electrochemical potential profiles in the semiconductor chan-

nel for excitation level at which the nonequilibrium density is δn++δn−≃0.04n0.

This corresponds to light with ~ω=1.5 eV (band gap of GaAs) and power of about

1 W/cm2, when the light is absorbed in a layer of 1 µm thickness and all the

photoelectrons are then drawn into the 100 nm thick n-type channel. The sepa-

ration of the ferromagnets is d=200 nm and the contact widths are 3LN/8=450

nm. Using these parameters we obtain a ∼15% difference between the left and

right ferromagnet currents. In Figure 8.2a we see from the slopes of the elec-

trochemical potentials that spin-up electrons move towards the right ferromagnet
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Figure 8.2: (a) The steady state profiles of the electrochemical potentials. The
resulting right current (IR) is 15% higher than the left current (IL). (b) The cor-
responding current asymmetry (CA) coefficient as a function of the ferromagnetic
contact width w. For all cases, α=1, spin selectivity β/α=1/3, the temperature is
300K, µL=µR, and the same weak intensity level is used. The sub-gate region is
centered and extends over 200 nm.

(and spin-down electrons go in the opposite direction). The right contact extracts

preferentially spin-up carriers. Flipping the helicity results in a mirror image of

the spatial profile and in switching the roles of ξ+ and ξ−. The larger current is

extracted from the side with the larger spin depletion. Fig. 8.2b shows the depen-

dence of CA on the ferromagnetic contact width w with an optimal value relative

to the spin diffusion length.

Analogously to the discussion from Chapter 5, the existence of a peak in the

CA may be understood by the behavior in two extreme cases. For very wide

contacts (w≫LN) most of the current in each contact is due to electrons excited

beneath it, and only a small fraction of electrons (the ones excited in the middle

section of the system) can “choose” which contact to tunnel into. On the other

hand, very small contacts cannot extract the polarized carriers fast enough from

the channel. More discussion from the time-dependent point of view follows below

in Section 8.D.

Let us mention that although the principle of operation of our proposal is

straightforward, it is different than the existing electrical measurement scheme

with a single ferromagnetic contact on top of the semiconductor layer [123, 122]. If
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the contacts are separated by less than the spin diffusion length than the spin ac-

cumulation profile in the channel ”senses“ the antiparallel contacts. Consequently,

the difference in the relative current magnitude from each terminal is sharper com-

pared to the difference in photocurrents for different light polarizations in a single

contact scheme.

In Figure 8.3a we show the value of CA for the optimal value of the con-

tact width as a function of α for three different values of barrier spin selectivity

|γB|=|β/α. The fixed parameters are the spin diffusion length LN=1.2 µm and the

ferromagnets’ separation d = LN/6. Curves for different values of ρ and γB show

that the CA is proportional to ργB, and that it is independent of the excitation

level in the linear regime (|∆n±|≪n0). The linear dependence on γB comes from

the difference between two currents being linear in the spin selectivity. We recall

that in lateral spin valves electrons traverse two barriers leading to quadratic de-

pendence of magneto-resistive effect on γB (see Eq. 4.3). In the detector scheme

the role of one ferromagnetic contact (injector) is replaced by the photexcitation

process (ρ), and in a properly designed system the carriers may “select” their

preferable extracting terminal.

The optimal contact widths wopt for which these CA values were obtained are

plotted in Fig. 8.3c. The lowering of wopt with increasing α can be understood in

the following way. For highly conductive contacts, the inhomogeneity of extraction

dominates the spatial dependence of spin densities. This means that electrons

coming from the gate region will immediately leave the channel when reaching the

contact as it would be the path of minimal resistance. Moreover, the photo-excited

electrons which are created beneath the far edge of the contact will go into this

contact, and never explore the rest of the channel by diffusion. Thus, they do

not have the chance to contribute to the current asymmetry. We also note that

wopt is weakly dependent on the spin selectivity of the barriers. This observation

simplifies the procedure for choosing the contact width as α can be easily obtained

from the I-V curve of the junction without need of the knowledge of β, which is
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Figure 8.3: (a) current asymmetry versus α for three cases of spin selectivity. (b)
and (d) are, respectively, the current from the left contact and the magnitude of
the current difference between the left and right contacts. All calculations are done
for a structure with an optimal contact widths shown in (c). The spin diffusion
length is LN=1.2 µm and the separation between the ferromagnetic contacts is
d=0.2 µm.

harder to measure.

Fig. 8.3b and Fig. 8.3d show, respectively, the current from the left contact

and the magnitude of the current difference between the left and right contacts for

excitation with left-hand circular polarization. The semiconductor parameters and

the light intensity are the same as before (Fig. 8.2). The contact length along the z

axis of Fig. 8.1 is 1 µm. Although we are using the same excitation level the current

is reduced with α as the optimal contact width becomes smaller (thus diminishing

the total volume of the light-absorbing region). For the case of |γB|=5/6 and

α ≥ 10 the CA is about 50%.
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8.D The time dependent analysis

The circular polarization of a pulse of light may also be determined by this

spintronic system. We start by a numerical simulation of the time-dependent

diffusion (Eq. (8.2)). The initial condition corresponds to a quiescent medium:

∆ns(x, y, t = 0)=0. Figure 8.4 shows the currents through the two ferromagnetic

contacts as a result of excitation by two consecutive Gaussian-shaped pulses of

opposite polarization. The width of the pulses is 100 ps. In Figure 8.4a the

pulse repetition rate is 0.5 GHz, with all the parameters as in Fig. 8.3, and the

average light power of 5 W/cm2 (calculated using the same assumptions as in

the steady-state case). In Fig. 8.4b we use barrier conductances ten times larger,

and 1 GHz repetition rate with average light power of 10 W/cm2. In both cases,

the peak power is 40 W/cm2. The contact widths have been optimized in both

cases according to the steady state analysis above. Accordingly, in the higher

conductance barriers case (lower panel) the contact widths are equal to LN/6.

The contact length along the z axis in Fig. 8.1 is 1 µm.

The electrical noise is dominated by thermal fluctuations, as the shot noise is

irrelevant at predicted current levels. The pulses of 100 ps amount to a bandwidth

of 10 GHz so that the Johnson-Nyquist current fluctuations in the highly resistive

contacts are of the order of 10 nA. This value is comparable with the difference

between IR and IL hence sets an lower bound for the pulse widths. In order to

improve the performance one should either improve the CA as discussed previously,

use stronger excitations in order to improve the signal to noise ratio, or use longer

light pulses to decrease the noise bandwidth.

There is ∼100 ps (∼20 ps) lag between the peak of the light pulse (not shown)

and the peak of the current in Figure 8.4a(b). This lag is caused by a finite time

which is needed for electrons to leave the channel by tunneling through the barriers.

A simple estimate of the time associated with the flush-out of the photoexcited

carriers is obtained in the following way. We set up equations for time-dependence
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Figure 8.4: Time-resolved current response to light pulses alternating in polariza-
tion. The solid (dashed) line is from the left (right) magnetic contact. (a) Low
conductance barriers with the light pulse rate is 0.5 GHz and the two pulses cen-
tered at 0.8 ns and 2.8 ns. (b) Barriers of higher conductance with the repetition
rate is 1 GHz with two pulses centered at 0.8 ns and 1.8 ns.

of spin densities after an instantaneous excitation, neglecting the diffusion inside

the channel and assuming a spatially uniform distribution. Integrating out the x

and y coordinates in the continuity equation (Eq. (8.1)) yields,

∂∆ns

∂t
=

1

e

w

(2w + d)h
(jL + jR) − ∆ns − ∆n−s

2τsr
, (8.7)

where jL and jR are the average current densities at the interfaces. In order to

express the currents in terms of the non-equilibrium densities, we use of the bound-

ary conditions relating the electrochemical potentials to the tunneling currents

and employ the relation between the chemical potential and the non-equilibrium

density in the linear regime. We arrive at the following equations for the total

photoexcited density δn=∆n+ + ∆n− and for the photoexcited spin polarization
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∆n=∆n+ − ∆n−:

∂

∂t
δn = −δn

τf
,

∂

∂t
∆n = −(

1

τf
+

1

τsr
)∆n , (8.8)

in which the carriers “flush-out” time τf is given by

τf =
(2w + d)h

w

σ

2D(G+ + G−)
=

2w + d

w

τsr

α
. (8.9)

The total current out of the system is proportional to δn, so it decays exponentially

with time-constant τf . This time constant is spin independent and depends only on

the total resistances of the FM/semiconductor barriers and of the semiconductor

layer. The difference IL − IR is proportional to the spin accumulation ∆n, and

decays on a time-scale of τ−1
CA=τ−1

sr + τ−1
f . These results agree very well with the

numerical calculations using the full time-dependent diffusion equation. We can see

that the time-scale after which an excited system returns to its equilibrium state is

given by τf , which limits the repetition rate of light pulses. It is also favorable to

have τf<τsr, so that the photoelectrons leave the channel before losing their spin

polarization; the time-scale on which the CA effect disappears is bounded from

above by the spin relaxation time τsr. However, too short τf is also undesirable.

The explanation of this leads to an alternative understanding of the optimal contact

size discussed for the steady state case.

In order to analyze the effect of short τf , we have to relax the simplifying

approximation of uniformity of ∆ns, and we reintroduce the diffusion processes.

A typical time for the density perturbation to propagate through distance l is

τdiff∼l2/D. If the carriers tunnel into each of the contacts faster than they diffuse

between them, both contacts do not “sense” each other. The time-integrated CA

will vanish in such a case, as electrons leave the channel through the nearer contact,

and the average IL and IR currents will be the same. The requirement for τf to

be smaller than τsr but larger than τdiff leads to inequalities:

l2

L2
N

α <
2w + d

w
< α , (8.10)
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where l = w+d is a typical distance on which an electron has to diffuse to get from

under one contact to another. From the above inequalities, we can qualitatively

recover the results of Fig. 8.3a and Fig. 8.3c. For α < 2, the spin relaxation is

faster than the flush-out time and the right hand side of the inequality is violated.

Consequently, further reduction of α results in weaker CA effect in agreement with

the steady state behavior shown in Fig. 8.3a. In the limit of large α, it is possible to

satisfy the left hand side of the inequality by shrinking the contact width compared

with the gate width: w < d. The diffusion process is faster than the flushing time

if w is smaller than L2
N/(dα). The spin flip processes are of no importance on these

time scales as long as LN>d so that the right part of the inequality is fulfilled.

The CA is maximal in this regime, and wopt ∝ 1/α, as one can see in Fig. 8.3d.

Satisfying both conditions of the inequality results in high CA effect which in

steady state corresponds to the plateau of Fig. 8.3a. The time domain analysis

clarifies the relatively weak dependence of wopt on the spin selectivity. This is seen

from the fact that the flush-out time, the diffusion time, and the spin relaxation

time involve only α, LN , and the length scales of the structure in hand.
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Ultrafast light-induced

demagnetization in transition

metals

When an itinerant ferromagnet is excited by a short (∼100 fs) pulse of light,

its magnetization drops by a sizable fraction in less than a picosecond. The first

observation [13] of such an effect in nickel was a surprise, as it had been believed

that the time-scale of magnetization dynamics is given by a spin-lattice (phonon-

magnon scattering) relaxation time, which is of the order of tens of picoseconds

[125, 126, 127]. During last ten years, similar ultrafast effects have been observed in

transition metals such as Ni [13, 128, 129, 130, 131, 132], Fe [133, 134], Co [135, 136]

and CoPt3 [137, 138, 139]. In most of these works time-resolved magneto-optics

was employed, but the ultrafast dynamics of magnetization is confirmed by other

techniques, such as second harmonic generation [128], spin-resolved photoemis-

sion [130, 136], and THz generation caused by time-dependence of macroscopic

magnetization [131, 134].

In Section 9.A we review the experimental results in metals and existing the-

ories of the ultrafast magnetization dynamics. There we also present our un-

derstanding of the phenomenology of the process. We work within a “minimal”

97
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model of an itinerant ferromagnet, in which the relevant excitations are single-

particle excitations (SPEs), which can be envisioned within the band picture, and

the collective modes (spin waves). In section 9.B we describe the influence of

laser pulse excitation on SPEs, and we analyze the role of spin-flip scattering of

SPEs (Elliott-Yafet spin relaxation) on in light-induced demagnetization demag-

netization. In section 9.C we discuss the coupling between the SPEs and the spin

waves.

A theory of ultrafast light-induced demagnetization in the sp-d model (which

is not a reliable “minimal” model for transition metals) is presented in Chapter

10.

9.A Previous work and phenomenology of the ultrafast de-

magnetization

With the exception of the THz emission, all the experimental methods probe

the magnetization dynamics indirectly, by coupling to the electronic states of the

material [140]. Problems with interpretation of obtained signals are specific to

each experimental method. Most attention has been paid to the artifacts in the

magneto-optical (MO) response caused by carrier excitation effects, which have

been termed “dichroic bleaching” effects. They have been shown to contribute sig-

nificantly to the time-resolved Kerr response for degenerate pump and probe mea-

surements in Ni [129]. A theoretical calculation [141] of magneto-optical response

of non-equilibrium electrons in Ni confirmed that the Kerr response at very short

time-scale does not correspond to the sample magnetization. On the other hand,

the results of Kerr and Faraday measurements for different probe wavelengths in

CoPt3 did not any apparent dichroic bleaching, suggesting that the significance of

these effects varies between different materials. It seems that in order to gauge

the correlation between the magneto-optical signal and magnetization dynamics

during the first couple hundreds of femtoseconds, a careful calculation of optical
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Figure 9.1: Typical magneto-optical (MO) response of a transition metal ferro-
magnet excited by a strong pump pulse at t=0. The values of tmin are between
300 fs and 2 ps in different experiments. It is unclear if the MO signal at tmin

is proportional to the macroscopic magnetization Mmin. On the other hand, for
times larger than tf∼1 ps the MO signal corresponds to real magnetization, the
dynamics of which for t>tf is due to heat diffusion, spin-lattice relaxation, and
slow precession about a thermally modified easy axis (on a time-scale of hundreds
of picoseconds). Typical values of Mf seen in experiments correspond to a drop of
magnetization of at least a couple percent.

transitions and carrier dynamics is necessary.

In the magneto-optical experiments, the MO signal is seen to decrease immedi-

ately after the light pulse and reaches a minimum tmin, which is between 300 fs [129]

and 2 ps [13] (see Figure 9.1). Then the MO signal recovers partially at slightly

later time tf∼1 ps, and the subsequent dynamics is much slower (spin-lattice relax-
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ation, heat diffusion, and magnetization precession triggered by heating-induced

change in anisotropy). According to the preceding discussion, it is unclear to what

extent the minimum of MO signal at tmin is a dichroic bleaching artifact (especially

for tmin≪1 ps), so it is hard to say how much exactly the magnetization decreases

during this time. On the other hand, it is easy to check that after tf the MO signal

agrees with the expected value of the equilibrium Mf=M(Tf)=M0

√
1 − Tf/Tc for

the final temperature of the metal Tf (Tc is the critical temperature). This result

follows from calculating the energy injected into the sample (from pulse fluence,

the absorption coefficient and sample thickness) and using the total specific heat

of a metal (e.g. CNi=4 · 106 J/Km3 for nickel) to get the final temperature Tf.

Mf(Tf) calculated in this way agrees quite well with the demagnetization at ∼1

ps delay seen in Refs. [13, 129, 132]. Furthermore, in Ref. [129] it was shown,

that for t≥1 ps the MO signal could be well fitted by calculated changes of the

equilibrium magnetization M(T ) due to heat diffusion. As we discuss below, the

electrons (SPE) equilibrate with the lattice on the time-scale of energy relaxation

time τE≃0.5 ps. The magnetization achieves equilibrium with both the carriers

and the lattice slightly later, about a picosecond after the laser pulse. The mech-

anism of this spin-related equilibration process is our main subject here. Since

the experimental results at shortest time-scales are often controversial, we want

to de-emphasise the question of what is the ultimate shortest time of magnetiza-

tion dynamics, and concentrate on the physical mechanism of the heating of the

magnetization on a time scale of a picosecond.

Initially, the apparent ultrafast decrease of magnetization seen in MO exper-

iments was interpreted as a rise of “spin temperature”, and fitted using a phe-

nomenological three-temperature model [13, 142]. In this approach the system

is divided into three reservoirs: carriers, lattice and spins. Excitation by light

amounts to injecting energy into the carrier system. Just after the light pule and

carrier thermalization, the carriers can have a very high electronic temperature

Te (possibly higher than the critical temperature). Each reservoir is described by
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its temperature, and phenomenological equations are written down for heat flow

between each pair of reservoirs:

Ce(Te)
dTe

dt
= −Gel(Te − Tl) − Ges(Te − Ts) + P (t) , (9.1)

Cs(Ts)
dTs

dt
= −Gsl(Ts − Tl) − Ges(Ts − Te) (9.2)

Cl(Tl)
dTl

dt
= −Gel(Tl − Te) − Gsl(Tl − Ts) . (9.3)

The subscripts e,s, and l denote the electronic, spin and the lattice reservoirs,

respectively. The corresponding heat capacities are denoted by Ca and the coupling

constants are Gab. The influence of the optical pulse on the electronic system is

described by the absorbed power P (t).

Physical underpinnings and time-scales of two of the Gab couplings are known.

For carrier-lattice (electron-phonon) interaction see, e.g., Refs. [143, 144], and for

spin-lattice interactions see Ref. [127]. A new ingredient, a direct carrier-spin cou-

pling Ges has to be postulated in order to explain the ultrafast demagnetization.

Apart from the lack of detailed microscopic understanding of such carrier-spin cou-

pling, there are two major deficiencies of the three-temperature model. The first is

that treating carriers and spins as separate entities is a controversial starting point

for the transition-metal itinerant ferromagnets. If such an approach is possible, the

nature of an effective separation into subsystems should be elucidated. The second

shortcoming is the fact that that only the energy transfer between reservoirs is con-

sidered. As the key phenomenon to be described is the change of magnetization,

a correct physical description should involve the mechanism according to which

the angular momentum (spin and orbital) is exchanged between the subsystems

[140, 145].

Apart from a phenomenological three-temperature model, a microscopic the-

ory based on Hubbard model with orbital degeneracy embedded into a crystal

field has also been proposed [146, 142]. In this approach the cooperative effect of

a coherent laser field and the spin-orbit coupling is calculated, resulting in pre-

dictions for magnetization dynamics during the ∼100 fs time of the light pulse.
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Time-resolved photoemission experiments [130], in which the spin splitting of d

bands is monitored, show that a large part of the reduction in exchange splitting

occurs well after the laser pulse. This shows that the possible laser field assisted

process is certainly accompanied by further demagnetization due to dynamics of

the system itself, without the assistance of the laser field. A similar approach to

laser-controlled spin dynamics in antiferromagnets [147] looks more promising in

light of recent experimental developments in these materials [148]. Here we are

going to treat the optical excitation as a source of incoherent ultrafast heating of

the electronic population, and we will concentrate on the magnetization dynamics

after the carrier thermalization.

Recently, Koopmans et. al. (Refs. [43, 145]) have proposed another theoretical

model of demagnetization in itinerant transition-metal ferromagnets. In these

works the carriers (assumed spinless in Ref. [43]) have been assumed to interact

with a separate spin system (an ensemble of two-level systems). The nature of

this separation into carrier and “pure spin” degrees of freedom is unclear. A

process of Elliott-Yafet [149, 150] spin relaxation has been proposed to be the

driving force of the demagnetization process, and the scattering of carriers with

impurities and phonons has been considered. Furthermore, an idea that there is

a connection between the ultrafast demagnetization and Gilbert damping [1, 151]

of slow (typical period ∼100 ps) magnetization precession has been put forth in

Ref. [43]. In Section 9.B we will critically assess the relevance of the Elliott-Yafet

spin relaxation for demagnetization process. In Section 9.C we will introduce

another mechanism of demangetization, based on SPE-magnon interaction, and

we will re-examine the idea of the connection between ultrafast dynamics and

Gilbert damping in this context.

A “minimal” model of an itinerant ferromagnet which we study takes into ac-

count two types of low-energy excitation of the electronic system. The first are the

single-particle excitations (SPEs), or electron-hole excitations. In such an excita-

tion a state occupied in the equilibrium distribution is emptied (a hole is created),
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and another electron is added in a different state. If the net carrier spin is changed,

this is a Stoner excitation [152]. These SPEs are directly created by absorption of

the laser pulse. For them we can talk about Elliott-Yafet spin relaxation, and the

electronic temperature Te describes their distribution after the thermalization. The

second type of excitations are collective spin excitations: spin waves (magnons).

They can be envisioned as linear combinations of a large number of single-particle

Stoner excitations [153]. We can assign to them a “spin” temperature Tsw, which

characterizes the distribution of bosonic spin-wave excitations. The spin waves are

coupled to the SPEs [152, 154], and we are going to argue that fast heating of the

quasiparticles leads to a generation of spin waves. In our opinion, this is a natural

explanation of ultrafast demagnetization in transition metals, which also provides

a link between the demagnetization and Gilbert damping of slow magnetization

precession.

9.B Spin relaxation of quasiparticles - nonequilibrium Stoner

model

In the process of optical absorption only the single-particle excitations are

directly affected. A natural setting for the discussion of their dynamics is a band

(Stoner) model of an itinerant ferromagnet [152]. The deficiencies of this model as

the overall description of itinerant ferromagnetism are well known: it predicts much

too large Curie temperatures [155] and gives a wrong temperature dependence of

magnetization at low temperatures (a correct description requires the spin waves,

see e.g. [51]). Clearly, the Stoner excitations are not the most important kinds

of magnetization fluctuations (and including the spin waves is not the whole story

either, see e.g. Ref. [156]).
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9.B.1 Photoexcitation and its effect on single-particle excitations.

Before the excitation, the system is in equlibrium at temperature T0, which

we take as room temperature (as in most of the experiments). The bands are

spin-split, and for simplicity we assume the spin-projected densities of states Ds

(per atom) to be rigidly split by exchange energy ∆. The numbers of electrons

with majority (s=↑) and minority (s=↓) spin per atom are denoted by Ns. The

splitting is proportional to the magnetization: ∆=UM , with M=N↑ − N↓ in the

units of µB, and the on-site (Hubbard) Coulomb energy U.

A laser pulse creates a nonequilibrium distribution of electrons and holes for

energies E in the range |E−EF|<~ω, with typical photon energy ~ω=1.5 eV. The

subsequent dynamics of the quasiparticles has been a subject of many studies, see

e.g. Refs. [157, 158]. The quasiparticles excited far away from EF scatter very

quickly by Coulomb interaction with the rest of the Fermi sea, and their achieves

the Fermi-Dirac form with an elevated electronic temperature Tei after the ther-

malization time τth. This time is of the order of 100 fs in metals, e.g. τth=80 fs

in Ni [159]. It scales with the carrier temperature after thermalization as T−2
ei , so

that the thermalization becomes faster with increasing excitation level. As the car-

rier distribution approaches the thermal form, the energy transfer into the lattice

(carrier-phonon scattering) becomes more effective [157]. When the thermalization

is fast enough, we can assume that there is practically no transfer of energy into

the lattice during τth, and energy relaxation through phonon emission follows after

the thermalization. The energy relaxation occurs on time-scale τE. Typical energy

relaxation time is close to a picosecond, with the latest value reported for Ni being

τE≈0.3−0.4 ps [159].

For fluence F≃1 mJ/cm2 and 10 nm thick Ni film a 4% drop of magnetization

after 1 ps was observed [129]. Using the optical constants of Ni (or the fraction of

photons absorbed fabs given in Ref. [129]) we get that the pump pulse injects the

energy of 0.01 eV/atom into the electronic system. In another experiment [132],

light pulse with fluence F=5 mJ/cm2 impinging on 30 nm thick film led to ∼15 %



105

demagnetization, and we calculate the injected energy to be ∼0.04 eV/atom. Let

us note, that the demagnetization ∆M in Ni for 1 ps time delay has been shown

[132] to be roughly linear with pump fluence for F<20 mJ/cm2. The results of

Ref. [129] fit roughly the same linear relationship, after correcting for different

sample thickness. If we write the final equilibrium temperature of the sample as

Tf=T0 + ∆Tf with T0 being the room temperature, then for injected energy of 0.01

(0.04) eV/atom we get ∆Tf equal to about 40 (150) K. As we have noted before,

the magnetization at ∼1 ps time delay agress with the equlibrium value of M(Tf).

In order to convert the optically injected energy into the changes of electronic

temperature ∆Te=Tei−T0 we need to know the electronic specific heat ce=γTe for

Te around room temperature. A low temperature value of the γ coefficient in Ni

is 103 J/K2m3, but as the total density of states at the Fermi level changes sig-

nificantly with temperature (due to the temperature dependence of the exchange

splitting), so does the γ coefficient. A room temperature value of γ=3.8 · 103

J/K2m3 was measured in Ni [160], and a value of γ=6 · 103 J/K2m3 was calculated

[142]. Using these two values of γ as lower and upper bounds, we can derive the

range of changes of electron temperature corresponding to a given energy change

using the total energy of electrons E(T )=E(T=0) + 1
2
γT 2

ei. For excitation corre-

sponding to ∼4% demagnetization we get an increase of the electronic temperature

∆Te between 70 and 110 K, whereas for excitation corresponding to ∼15% demag-

netization we get ∆Te between 260 and 330 K.

In the following, we will concentrate on the low-fluence case when ∆Te≤100

K, for which the demagnetization of a few percent is seen. We will assume that the

numbers of excited electrons of both spins is the same. In nickel this is supported

by calculation of band-by-band decomposed optical absorption [141]. We will also

neglect the spin relaxation of quasiparticles during the fast thermalization. Then,

immediately after the end of the pump pulse (the pulse time is usually comparable

to the thermalization time) we have an excited system of quasiparticles described

by temperature Tei, but N↑ and N↓ (and thus the magnetization) are the same as
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Figure 9.2: Spin-projected density of states in Ni from (from Ref. [93]). Majority
(minority) spin is denoted by ↑(↓). The zero of energy is at the Fermi level EF.

before the excitation.

In Ref. [43] the elevated electronic temperature Te was assumed to be the sole

cause of spin-flip scattering. As we discuss below, for the Elliott-Yafet spin relax-

ation to occur, is not enough to specify the temperature of SPEs. The quasiparticle

system has to be out of its internal spin equilibrium, i.e., the chemical potentials

µs for minority and majority spins have to be unequal. It has to be stressed, that

for SPE spin scattering it is the chemical potential imbalance ∆µ=µ↑ − µ↓, not

the elevated Te itself, which is the driving force for spin-flip scattering of carriers

leading to a net change of magnetization.

For the simple model of excitation described above, we derive an estimate of

∆µ using the Sommerfeld expansion [51, 152]. To the lowest order in temperatures,
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the spin-splitting of chemical potentials is given by

∆µ =
π2

6
k2

B(T 2
ei − T 2

0 )
[D′

↓(µ0)

D↓(µ0)
−

D′
↑(µ0)

D↑(µ0)

]
, (9.4)

where µ0 is the common chemical potential before the excitation. Although from

the above expression it might seem that any sign of ∆µ is allowed, the negative

sign would imply that the equilibrium magnetization would increase with rising

temperature, which is very unlikely (see Ref. [152], chapter 12). Let us remark,

that the requirement of the thermodynamic stability of the finite magnetization in

the Stoner model puts certain (often complicated) restrictions on the allowed form

of the spin-split densities of states [155, 161, 162], and ∆µ>0 can be derived from

them in the limit of small magnetization.

Using the calculated densities of states Ds for Ni [163] we derive an estimate for

∆µ corresponding to ∆Te=100 K. Taking into account the reduced spin splitting

at room temperature by rigid shifting of Ds, we estimate ∆µ<10 meV.

9.B.2 Spin relaxation due to impurity and phonon scattering

Now we consider the spin-dependent scattering of the excited SPEs. We take

into account only the processes involving the SPEs and the lattice: electron-

impurity and electron-phonon scattering. These correspond to Elliot-Yafet re-

laxation of the electronic spin into the lattice. The scattering w of SPEs with the

spin waves, in which the spin is transferred from one kind of electronic excitation

to the other, will be considered in the next section. The Boltzmann-like spin-flip

rates for both impurity and electron-phonon scattering are proportional to ∆µ,

and they depend weakly on Te, the temperature of SPEs. For electron-impurity

scattering, as long as kBTe and ∆µ are smaller than the energy scale on which the

densities of states Ds(E) change appreciably, we get (see Chapter 2)

∂N↑
∂t

= −δN↑
τ↑↓

+
δN↓
τ↓↑

= −∂N↓
∂t

, (9.5)

in which δNs are the nonequilibrium parts of the density of carriers with spin s.

The spin flip scattering times τss′ are Te-independent under the conditions given
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above, and they are connected one to another by the following relation (see Chapter

2 or Ref. [59]):
τ↑↓

D↑(µ0)
=

τ↓↑
D↓(µ0)

. (9.6)

For the spin relaxation due to phonon scattering we follow the standard treat-

ment of electron-phonon scattering (see Ref. [143], chapter 8.3) and modify it to

include the spin-flip processes. We generalize the Eliashberg-MacMillan function

α2F [143, 144] used in description of electron-phonon scattering, to the case of

spin-flip scattering in a ferromagnet (the spin-flip Eliashberg function for a para-

magnet was introduced in Ref. [164]). The Eliashberg function corresponding to

spin flip from spin s to s′ is defined as

α2Fss′(ǫ, ǫ
′, Ω) =

1

~Ds(ǫ)

∑

k,k′

|Mss′

kk′ |2δ(ǫ − ǫks) δ(ǫ′ − ǫk′s′) δ(Ω − ωkk′) (9.7)

where Mss′

kk′ is the matrix element for spin-flip scattering due to electron-phonon

interaction, and ωkk′ is the frequency of the phonon with the wave vector k − k′.

The index k includes the band index in the case of multiple bands. Below we

use a standard approximation of taking both ǫ and ǫ′ equal to the Fermi energy,

which here we take as µ0, the chemical potential before the excitation. After some

manipulation (along the lines of Ref. [143], chapter 8.3) we get for the spin-flip

scattering:

∂N↑
∂t

= −2πD↑(µ0)

∫
dΩα2F↑↓(Ω)

[
2n(Tl, Ω)∆µ − (~Ω + ∆µ)n(Te, ~Ω + ∆µ)

+(~Ω − ∆µ)n(Te, ~Ω − ∆µ)
]

, (9.8)

≃ −2πD↑(µ0)

∫
dΩα2F↑↓(Ω)

[2kBTl

~Ω
+ 1 − ~Ω

3kBTe

]
∆µ , (9.9)

where n(T, E) is the Bose-Einstein distribution at temperature T and energy E,

and we have used the high temperature approximation in the second expression

(to the lowest order in ~Ω/kBTe). In the equation for ∂N↓/∂t we exchange the spin

indices and change the sign of ∆µ. Note that the product Dsα
2Fs,−s is the same

for both directions of spin s (see Eq. (9.7)).
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Now let us define the nonequlibrium part of the magnetization, δM :

δM ≡ δN↑ − δN↓ = 2δN↑ =
2∆µ

D−1
↑ (µ0) + D−1

↓ (µ0)
. (9.10)

This δM is a difference between the actual magnetization M and its equilibrium

value at temperature Te while keeping the spin splitting of the bands ∆ constant.

δM is then a function of both Te, and the value of M itself:

δM(M, Te) = M − M0(∆ = UM, Te) , (9.11)

where M0 is obtained by filling the bands spin-split by ∆ with carriers of temper-

ature Te up to a common chemical potential.

Both the impurity scattering and the phonon scattering lead to the same form

of the equation for δM . which we write as

∂

∂t
δM = −δM

τsr
, (9.12)

where τsr is the spin relaxation time, and the same equation holds for ∆µ. We

have already encountered this equation in our analysis of spin diffusion in Chapter

2. The derivation of microscopic formulas shows that as long as kBTe and ∆µ are

smaller than the energy scale on which Ds change appreciably, the spin relaxation

time τsr is a constant. Thus, the same τsr applies to equations for ∆µ of the order

of µeV created by spin injection, and to equations for ∆µ of the order of meV for

spin relaxation of SPE excited by light.

In the next section we estimate τsr from the transport experiments, from which

the spin diffusion length in a ferromagnet can be inferred. Actually, the value de-

rived from the spin diffusion length is a lower bound on τsr above, since we exclude

the scattering with spin waves from τsr defined in this section. However, before

we give our estimate of τsr, let us analyze in more detail how the magnetization

dynamics follows from Eq. (9.12).

The ∂/∂t derivative in Eq. (9.12) accounts for the change in δM due to spin

flip scattering, and so the equation for the dynamics of the magnetization M reads

dM(t)

dt
= −M(t) − M0(M(t), Te(t))

τsr
, (9.13)



110

where M0(M, Te) is the magnetization calculated for bands spin-split by ∆(t) =

UM(t) (in the rigid-shift approximation) and carrier temperature Te. The time

dependence of Te(t) needs to be solved for, e.g. using a two-temperature model.

As a simplification we can assume that Te simply decays exponentially, with time

constant τE, towards the final equilibrium temperature Tf.

In the regime of moderate excitation in which we work, using the Ds of Ni [163]

we get that just after SPE thermalization we have δM≃−3 · 10−3 µB/atom. Using

the magnetization of Ni at room temperature equal to M(T=0)×
√

1 − T/Tc=0.35

µB/atom (with Tc= 631 K), we get δM/M≃3%. Let us consider some limiting cases

of behavior of Eq. (9.13) for such a value of inital δM , and for Te decaying towards

Tf with a characteristic time constant τE (which is about 0.5 ps in Ni).

If τsr≫τE, there is no ultrafast demagnetization within the Elliott-Yafet based

model. In about a picosecond the electronic and lattice temperatures settle at Tf,

while the magnetization is practically unchanged. However, the spins of electrons

are still out of equilibrium, albeit with ∆µ given by Eq. (9.4) with Tei=Tf. Then,

the spin relaxation proceeds, and after a time of the order of τsr the magnetization

achieves the final equlibrium value Mf(Tf).

For the other extreme case, τsr≪τE, we have the possibility of significant ul-

trafast demagnetization. Now it is important to consider how M0(M, Te) changes

when M is decreasing, and Te is kept (approximately) constant. It is easy to see

that when the band splitting ∆ is decreased, the splitting of chemical potentials

∆µ goes up. Consequently, M0 goes down, and the total magnetization M is re-

laxing towards a “moving target” of M0. For example, when initial ∆µ=10 meV,

δM/M=3%. When magnetization actually changes by this δM , an additional

splitting of ∆µ≃7 meV is created by shifting of majority and minority bands with

respect to each other (here we have used the value of room temperature exchange

splitting ∆=0.25 in Ni from Ref. [130]). Let us note that it is possible to show

within the Stoner model that ∆µ cannot increase in this process. The condition
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for stability of magnetization M is (see e.g. Ref. [155]):

2U <
1

D↑(µ0)
+

1

D↓(µ0)
, (9.14)

and together with Eq. (9.10) this forces ∆µ to decay in time when the exchange

splitting ∆=UM is decreasing. However, it is clear that due to changes of M0 the

demagnetization can continue for a time longer than τsr. Investigation of possible

behavior of M(T ) for various parameters, such as the shapes of Ds around the

initial µ0 and the ratio of times τsr/τE is left for future research. The question of

whether it is possible for M(t) to initially “overshoot” Mf (as it is suggested by

the magneto-optical experiments) is especially worth investigating.

Finally, for τsr≈τE we expect the demagnetization ∆M during time τE to be

of the order of initial δM (assuming that the effects of decaying Te(t) making ∆µ

smaller and decreasing M0 making ∆µ larger roughly cancel each other). This

initial drop might not be enough to reach the real equilibrium M(Tf), and further

demagnetization at constant Te=Tf might occur.

In Section 9.B.3 we derive an estimate of τsr≃0.4 ps, which is very close to

the measured τE≃0.4 ps [159]. Using our estimate of ∆µ≤10 meV and densities

of states from Ref. [163] we get δM/M≤3%. This is comparable to the observed

∆M/M≃4% [129].

To summarize, simple estimates of the significance of the Elliott-Yafet spin

relaxation process for ultrafast demagnetization show that this mechanism should

be taken into account. However, it is rather improbable that this is the sole expla-

nation of demagnetization. As we have noted before, this approach to demagneti-

zation is expected to work as well as the Stoner model does, and the Stoner model

is well known to be not reliable at finite temperatures. For example, deriving the

M(T ) dependence in the spirit of the above equations leads to T 2 behavior at low

temperatures. This is not observed, instead the Bloch T 3/2 law due to spin waves

is seen. A mechanism of ultrafast demagnetization beyond the nonequilibrium

Stoner model discussed in this section is given in Section 9.C.
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9.B.3 Estimate of Elliott-Yafet spin relaxation time from transport

measurements in metals

The derivation and discussion of spin diffusion equations is given in Chapter

2. In a ferromagnetic material the spin relaxation time τsr is given by

τsr = e2L2
σ−1
↑ + σ−1

↓

D−1
↑ + D−1

↓
=

4e2L2

σ(1 − β2)(D−1
↑ + D−1

↓ )
, (9.15)

where L is the spin diffusion length, the densities of states Ds are taken a the

Fermi level, σs are spin-resolved conductivities, and β is the spin-asymmetry of

conductivity defined by equations:

σ↑(↓) =
σ

2
(1 + (−)β) , (9.16)

in which σ is the total conductivity.

Using the above, and given the total conductivity of a ferromagnet, the spin

polarization of the current inside it (parametrized by β), and the densities of states

at the Fermi level we can derive the spin-flip times from the spin diffusion length.

We will use a value of L≈20 nm for Ni obtained [165] from GMR measurements

at low temperatures (T=4 K). We use the densities of states from available calcu-

lations [163, 93], and conductivity σNi=1.6 · 105 Ω−1cm−1. For β we use a value

for permalloy (Ni79Fe21) from Refs. [166, 167], as the values for pure Ni are not

available. With all these we get

τNi
sr ≈ 0.4 ps . (9.17)

This could be considered an upper bound for spin flip times in Ni at room tempera-

ture (we generally expect more scattering at higher temperatures), with the caveat

of uncertainty in β and the fact that Ns can change significantly with growing T

due to the decrease of the band spin-splitting. Thus, the above value should be

treated as a rough estimate.
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9.C Carrier - spin wave interaction

In this section we sketch an alternative approach to magnetization dynamics.

We consider the interaction between the SPEs heated by the laser and the spin

waves. An excitation of a spin wave corresponds to a decrease of the magnetization

by one unit of µB, so that the magnetization in units of µB/atom is given by

M = Msat −
1

N

∑

q

nsw(ωq) , (9.18)

where Msat is the saturation magnetization, N is the number of atoms, ωq is the

frequency of the magnon with wave vector q, and nsw is the distribution function

of spin waves. If the spin wave system is in the state of internal thermal equibrium

at temperature Tsw, then nsw is the Bose-Einstein distribution n(ωq, Tsw).

We use a general form of the model Hamiltonian describing the coupling be-

tween the spin waves and the single particle excitations [154]:

He-sw =
∑

kqn,n′

V nn′

kq

(
a†

qc
†
nkcn′k+q + aqc

†
n′kcnk−q

)
, (9.19)

where a†
q and aq are creation and annihilation operators for bosonic spin waves,

c†nk and cnk are the operators for fermionic single-particle excitations (electrons

near the Fermi energy), V nn′

kq are matrix elements describing the coupling of two

kinds of excitations, and n,n′ label different bands.

In the simplest possible case of a single spin-split band the band indices n,n′

correspond to the two possible spin directions. In a usual textbook treatment

we have then V ss′∼δs,−s′, and one gets that for bands spin-split by ∆ the spin

waves with ~ωq<∆ cannot be scattered by electrons. However, in the presence of

spin-orbit coupling it is possible [154] for the spin wave to be created/annihilated

without changing the “spin” label of an electronic state (the electronic eigenstates

are not pure spin states in the presence of spin-orbit interaction). Due to such

non-spin-flip scattering even the magnons with small q can interact with SPEs.

From the coupling of small-q spin waves to the SPEs follows a model for the

Gilbert damping of magnetization precession [151, 154]. A uniform precession can
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be identified with an out-of-equilibrium population δnq of the spin wave modes

with small q (large wavelength). The decay rate γq of δnq calculated from a

Boltzmann-like scattering approach is

γq =
2π

~

∑

k,n,n′

|V nn′

kq |2
(
f(ǫn′k−q) − f(ǫnk)

)
δ(ǫnk − ǫn′k−q − ~ωq) , (9.20)

where f(ǫ) is the Fermi-Dirac distribution of electrons of energy ǫ. An analogous

expression for the spin wave damping can be derived from the RPA treatment

of the Hubbard model [156, 168], justifying the use of an effective magnon-SPE

Hamiltonian from Eq. (9.19).

The Gilbert damping coefficient α is related to the spin wave decay rate in the

following way [154]:

α = lim
q→0

γq

2ωq

. (9.21)

This definition makes sense, i.e. it leads to a finite value of α, because for small ωq

Equation (9.20) gives γq∼ωq. This is basically a phase-space argument (the initial

and final electron energy has to be inside the energy layer having ~ωq thickness

around the Fermi energy), which holds when ~ωq is smaller than the energy on

which the densities of states change, and for the matrix element V nn′

kq constant for

the wave-vectors involved (both initial and final electron wave vectors are ∼kF).

These conditions should hold for ωq of the order of tens of THz (~ω od the order

of 10 meV) as well as for ωq of the order of 1 GHz, which corresponds to a typical

precession frequency in ferromagnetic resonance experiments. Thus, we will assume

in the following that

γq = 2αωq (9.22)

holds for energies ~ωq comparable to kBTe of the excited carriers.

In the case of light-induced demagnetization we face a problem complemen-

tary to the Gilbert damping case. Above we have calculated the decay rate of

nonequilibrium occupation of the long-wavelength spin wave mode, assuming the

equilibrium distribution of electrons. For demagnetization, we have to calculate

the generation rate of spin waves due to nonequilibrium distribution of carriers.
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Using the same Boltzmann-like approach, we get for the magnetization dynamics

due to spin wave generation the following expression:

dM

dt
= − 1

N

∑

q

γq

(
n(ωq, Te) − n(ωq, Tsw)

)
, (9.23)

where n(ω, T ) is the Bose-Einstein distribution at temperature T , and Tsw is the

temperature of spin waves. In the above expression we have made a rather crude

simplifying assumption that during the demagnetization spin waves maintain a

thermal distribution at time-dependent “spin” temperature Tsw(t). We also use

the spin wave dispersion given by

~ωq = Aq2 , (9.24)

with spin stiffness A, and we employ Eq. (9.22) arriving at

dM

dt
= − αk

5/2
B

2π2~nA3/2
Γ
(5

2

)
ξ
(5

2

)[
T 5/2

e − T 5/2
s

]
, (9.25)

where n is the density of atoms, and ξ(x) is the Riemann function [169]. This

formula is a large step forward from the purely phenomenological three temperature

model presented before. It connects the magnetization dynamics to the electronic

temperature Te and the “spin” temperature Tsw, which is identified here with the

temperature describing the distribution of spin waves. The coupling coefficient is

connected to macroscopic quantities: Gilbert damping α and spin stiffness A.

9.C.1 Comparison with the results of Koopmans et al.

In Ref. [43] the characteristic demagnetization time τM was derived in the

following way. A weak excitation was assumed, and a constant Te was used. The

demagnetization time was then defined as

τ−1
M =

dM
dt

∣∣
t=0

∆M(t = ∞)
, (9.26)

where ∆M(t=∞) is the total demagnetization. Within their model (which we

consider oversimplified), the authors of Ref. [43] obtained

τM ≈ ~

kBTC

1

α
, (9.27)
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in which TC is the critical temperature. For nickel, the above expression gives

τM= 100 fs.

We derive the expression for τM within our model, assuming ∆Te≪T0 and

using Eq. (9.18) to obtain ∆M(t=∞). To the lowest order in ∆Te/T0 we get

τM =
~

kBT0

1

α

3

5

Γ
(

3
2

)
ξ
(

3
2

)

Γ
(

5
2

)
ξ
(

5
2

) ≈ 0.78
~

kBT0

1

α
. (9.28)

This formula is analogous Eq. (9.27), with the crucial difference of the initial

temperature T0 replacing the critical temperature TC . Since the demagnetization

experiments are conducted at room temperature, which is of the same order as TC

(e.g. in Ni we have TC=631 K), the order-of-magnitude agreement between the

above τM and the observed time-scale of initial drop in magnetization still holds.

Using the value of α=0.038 in Ni [43] we get that at room temperature τM≈0.5

ps, which is in qualitative agreement with the experimental results. Although our

estimate for τM is similar to the value of 100 fs derived in Ref. [43], we deem our

approach to be more realistic for itinerant ferromagnets than the model used in

Ref. [43].

9.D Summary

In this chapter we have presented an outline of a theory of ultrafast light-

induced demagnetization in transition metals. We have considered two mechanisms

of decay of magnetization due to heating of carriers (single-paticle excitations) by

a laser pulse.

The first is basically a non-equlibrium extension of the Stoner (band) model of

ferromagnetism. The magnetization changes due to Elliott-Yafet (EY) spin relax-

ation of carriers scattering with impurities and phonons. The necessary condition

for EY spin scattering to occur is the creation of a splitting of chemical potential

for two spins, ∆µ. This splitting is caused by heating of carriers, and its magni-

tude depends on the shape of spin-projected densities of states at the Fermi level.
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The characteristic time-scale on which the magnetization changes is given by spin-

relaxation time τsr which is bounded from below by the spin relaxation time used

in the theory of spin diffusion (see Chapter 2). It is important to note that this

time is independent of the excitation level, at least as long as it is moderate (in

the lower range of pump fluences used in experiments). Using the values of τsr

inferred from transport measurements, we have estimated the maximal change of

magnetization ∆M/M≤3% for Ni with excitation corresponding to a rise of elec-

tronic temperature ∆Te≃100 K. The experimental result is ∆M/M≃4%. Since in

deriving our estimate we have consistently erred on the side of too large ∆M , we

cannot say that the EY mechanism provides a full explanation of the experiments.

It seems that it could be important, and it deserves further exploration, e.g. by

doing calculations using more accurate densities of states. However, due to the

well-known unreliability of the Stoner model at finite temperatures, it is unclear

whether a more detailed investigation of this approach is going to lead to more

realistic results.

The second mechanism is the excitation of spin waves by hot carriers. In con-

trast to the EY process, magnetization change in this mechanism is directly driven

by the rise of the electronic temperature Te. We use the definition of characteristic

demagnetization time τM from Ref. [43], and arrive at a simple expression connect-

ing the Gilbert damping constant α and the initial temperature of the ferromagnet

with τM.
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Ultrafast demagnetization in the

sp-d model: application to

(III,Mn)V ferromagnetic

semiconductors

In Chapter 9 we have discussed the ultrafast light-induced demagnetization

in transition metals. Recently, an analogous phenomenon, including a complete

destruction of ferromagnetic order in less than a picosecond, has been observed in

(III,Mn)V ferromagnetic semiconductors [170, 44]. In these materials, the ferro-

magnetism is described by the sp-d model [171, 172, 173], in which the localized

spins (formed by d-shell electrons of Mn ions) are coupled by exchange interactions

with the spins of the carriers (electrons of s symmetry and holes of p symmetry).

This clear-cut separation into the systems of carriers (which are directly excited

by light) and the localized spins (which provide most of the macroscopic magne-

tization) allows for formulation of the physically transparent theory of ultrafast

demagnetization. In our model, the excited carriers are described by an elevated

electronic temperature, which leads to enhancement of the spin-flip scattering rate

between the localized spins and the carriers’ spins. The resulting transfer of the

118
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angular momentum from the localized spins to the carriers is termed the “inverse

Overhauser effect”. If the nonequilibrium spin polarization injected into the carri-

ers’ system is relaxed fast enough by spin relaxation (due to the spin-orbit inter-

action experienced by the carriers), the localized spin system can be siginificantly

demagnetized during the carriers’ energy relaxation time.

In Section 10.A we introduce the sp-d model, give some basic information

about the (III,Mn)V semiconductors, and discuss the mean-field theory of ferro-

magnetism in these materials. In Section 10.B we discuss the specific features

of the photoexcitation process in ferromagnetic semiconductors such as GaMnAs.

Section 10.C contains the description of our approach to the modeling of the hot

carrier bath. The main differences with respect to usual treatment is that we allow

for the presence of the dynamic spin polarization of carriers, and that the carriers’

temperature Te changes on the time-scale of the energy relaxation of carriers. Then

in Section 10.D we outline the derivation of the rate equations for the dynamics of

the localized spin coupled to the carrier bath (the details are given in Appendix

A). The transition rates are due to spin-flip scattering with the carrier spins, and

they depend on the instantaneous state of the carrier system at a given time. This

derivation generalizes to the non-stationary case the results from Ref. [174], in

which the heating of Mn spins by electrons excited by cw light was considered in

a (II,Mn)VI based quantum well. The rate equations have to be augmented by a

phenomenological treatment of the bath dynamics. In Section 10.E we calculate

the ultrafast demagnetization using a simplified band structure (a single spin-split

band), introduce the equations governing the carrier dynamics, and discuss how

the energy and spin relaxation of carriers influences the demagnetization process.

Complications introduced by valence band-structure of a ferromagnetic semicon-

ductor are discussed in Section 10.F, where we use an effective Hamiltonian [175]

model of the spin-split valence band to calculate the hole-Mn spin-flip transition

rate. Finally, we discuss the connection to the experiments (Refs. [170, 44]) in

Section 10.G.
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Although many features which we discuss are specific to the (III,Mn)V ferro-

magnetic semiconductors, the general results are directly applicable to any system

described by analogous s(p)-d(f) model, in which the indirect (carrier-mediated)

exchange interaction between localized spins dominates over other mechanisms of

d-d coupling (e.g. superexchange). However, when the non-carrier-mediated d-d

exchange coupling is strong (e.g. in the europium chalcogenides [176]), the start-

ing point of the calculation should not be the interaction of a single spin with the

carriers (which is our approach here), but the enhancement of the carrier-magnon

scattering. A similar treatment should be applied to a recent measurement [177] of

the ultrafast magnetization dynamics in GaMnAs excited with the pump fluence

3 orders of magnitude smaller than in Ref. [170]. In this case, our assumption of

complete obliteration of the carrier-mediated exchange coupling by excitation of

carriers might not hold, and spin-wave modes of coupled Mn spins should be the

starting point of the calculation.

10.A The sp-d model and its application to (III,Mn)V fer-

romagnetic semiconductors

A model of ferromagnetism ideally suited for investigation of magnetization

quenching induced by excitation of carriers is the sp-d model. In this approach,

most of the macroscopic magnetization comes from the localized d-shell spins (or

f shells, in case of the rare earth elements), which are coupled by an exchange

interaction to itinerant s or p carriers. This model was introduced independently

by Zener [172, 173] and by Vonsovskii [171] in order to describe the transition

metals, but was abandoned when the lack of sharp separation into s carriers and d

spins in metals was understood. Later, the s-d(f) model was succesfully applied to

magnetic semiconductors such as the chalcogenides of europium [176]. Recently,

it has been again used in itinerant ferromagnets, in order to analyze the situations

in which an interplay between the transport and magnetic properties is critical.



121

Examples include spin-transfer torque [11] and an enhancement of Gilbert damping

in a magnet due to pumping of spin currents into adjacent non-magnetic material

[178].

Most importantly for us, the p-d model is describes the basic physics of ferro-

magnetism in diluted magnetic semiconductors (DMS). These materials are created

by doping a small (x∼5%) molar fraction of magnetic ions (most often Mn) into

a non-magnetic host semiconductor. The DMS based on II-VI materials, such as

CdTe, were researched intensively since the seventies (for a review of work until

1988 see e.g. Refs. [179, 180]). The d shells of doped magnetic ions form localized

spins, which are coupled by the isotropic sp-d exchange interaction to the carriers:

the Hamiltonian of the interaction is Ĥsp−d ∼ γŜ · ŝ, with the exchange constant γ

and the localized and carrier spins denoted by Ŝ and ŝ, respectively. This exchange

interaction causes the giant Zeeman splittling of the carriers bands in magnetic

fields. Also, in the presence of free carriers the sp-d interaction could lead to a

carrier-mediated exchange interaction between the localized spins. The simplest

form of such an interaction is RKKY, named after Rudermann, Kittel, Kasuya,

and Yosida, who have proposed it in the fifties for a system of nuclear magnetic mo-

ments interacting by hyperfine contact interaction (having the same Hamiltonian

as the sp-d exchange) with the conduction electrons. However, the carrier concen-

trations achievable in bulk (II,Mn)VI materials are too low for carrier-mediated

exchange to dominate over antiferromagnetic superexchange [181] interaction be-

tween the localized spins. As a consequence, the II-VI based DMS were either

paramagnets, or spin glasses at very low temperatures and high magnetic ion con-

centrations. Only in 1997 the RKKY-driven ferromagnetism was seen in a CdMnTe

quantum well modulation-doped with holes [182, 183], but the Curie temperature

was of the order of only one Kelvin.

Ferromagnetism was seen at much higher temperatures in III-V semiconductors

doped with Mn, specifically Ga1−xMnxAs and In1−xMnxAs [26, 27], and critical

temperature of 110 K was achieved in GaMnAs in the end of nineties [28] (a
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current record is ∼ 170 K in GaMnAs). In (III,Mn)V materials the Mn ions are

acceptors (when they substitute the cations), and their d shells can be treated as

well-localized 5/2 spins [65]. For a molar fraction x∼5% of Mn, the concentration

of holes if on the order of 1020 cm−3 (strong compensation due to defects acting as

donors inherent in these materials has to be taken into account in order to derive

this number). At these hole densities a mean-field theory of Zener [172, 173, 28,

29] has been successful in describing many features of ferromagnetism in these

materials. It correctly predicts the critical temperature Tcr, increasing trend in Tcr

with the density of carriers, and magnetic anisotropies [175]. A derivation of the

critical temperature in the Zener model is sketched below. A recent review of the

theory of these materials is Ref. [175]. Here we use the simplest effective model of

these materials, in which the sp-d interaction is added to the host Hamiltonian.

The strong correlation between the presence of the delocalized (or at least

weakly localized) holes and ferromagnetic ordering of Mn spins has been firmly es-

tablished experimentally. The optical induction of ferromagnetic transition (through

cw photoinjection of holes) has been shown [184], and the critical temperature and

the coercive field has been altered by changing the density of holes in InMnAs by

applying the gate voltage [31, 185]. Most importantly for us, the sub-picosecond

light induced demagnetization has been recently observed in InMnAs [170] and

GaMnAs [44]. A complete quenching of ferromagnetic order was achieved in InM-

nAs for pump fluences above 10 mJ/cm2. This should be contrasted with behavior

in Ni, where the demagnetization saturates at higher fluences while not reaching

the complete demagnetization [132]. Since the carrier concentration is much lower

in ferromagnetic semiconductors as compared to metals, their magnetization is

more amenable to manipulation by external stimuli.

The Hamiltonian of the sp-d model consists of the single-particle carrier part

ĤC , localized spin part ĤS and the sp-d coupling ĤCS:

Ĥ = ĤC + ĤS + ĤCS . (10.1)

We do not explicitly consider the carrier-carrier interaction , carrier-phonon inter-
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action, and the lattice dynamics. However, these interactions are included phe-

nomenologically in our treatment of the carrier bath below (Section 10.C). The

carrier part of the Hamiltonian is given by

ĤC =
∑

nk

ǫnka
†
nkankσ , (10.2)

where n is the band index, k is the wave-vector, and ǫnk is the energy. In the case

of (III,Mn)V semiconductors, the valence band structure near the Γ point can be

obtained from a k ·p model, such as 6×6 Luttinger Hamiltonian commonly used in

these systems [29] (see Appendix B for details of this approach). Although the fer-

romagnetic semiconductors are known to be heavily disordered, we have neglected

the disorder potential in Eq. (10.2). If the disorder can be treated perturbatively,

then its influence on the treatment below is not expected to be strong, as we work

in the regime of very strong excitation of carriers, in which more subtle features

of bands are going to be averaged out anyway. On the other hand, if the effects of

disorder are non-perturbative (e.g. the holes are in an impurity band rather than

in the host valence band, as it has recently been suggested in Ref. [186]), a new

energy dispersion (e.g. a single weakly dispersive band) should be introduced in

Eq. (10.2).

The localized spin Hamiltonian ĤS includes Zeeman coupling to the external

magnetic field. In the ferromagnetic phase, the splitting of the localized spin S due

to exchange interaction with carriers exceeds the typical Zeeman splitting, and the

only role of the Zeeman term is to choose the direction of the magnetization. We

disregard possible S-S exchange coupling by mechanisms other [181] than indirect

carrier-mediated exchange.

Finally, the exchange coupling is given by

ĤCS = − γ

V

∑

l

∑

nk,n′k′

Ŝl · 〈nk|̂s|n′k′〉 ei(k′−k)Rl a†
nkan′k′ , (10.3)

where Ŝl is the spin operator of localized spin at Rl, ŝ is the carrier spin operator

and γ is the exchange constant. In the literature on diluted magnetic semicon-

ductors, the γ parameter is called α and β for the conduction and valence band
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electrons, respectively [179]. The typical values in (III,Mn)V materials are α≈10

and β≈−50 meV·nm3. The exchange energy J per unit cell is J=N0γ, where N0

is the density of the cations. Accordingly, N0α≈0.2 eV and N0β≈−1 eV.

For a single band, the sum over n states is simplified to

Ĥ1
CS = − γ

V

∑

l

∑

k,k′

Ŝl · ŝkk′ ei(k′−k)Rl , (10.4)

where the scalar product of spin operators can be expressed using spin ladder

operators as:

Ŝl · ŝkk′ =
1

2
(Ŝ+

l ŝ−kk′ + Ŝ−
l ŝ+

kk′) + Ŝz
l ŝ

z
kk′ , (10.5)

and the explicit form of carrier spin operators is

ŝz
kk′ =

1

2
(a†

k↑ak′↑ − a†
k↓ak′↓) (10.6)

ŝ+
kk′ = a†

k↑ak′↓ , ŝ−kk′ = a†
k↓ak′↑ . (10.7)

We assume the magnetization (the average localized spin) in the z direction,

and treat the sp-d Hamiltonian in a mean-field approximation. The mean-field

felt by the carriers is obtained by performing the simplest virtual crystal disorder

averaging of localized spins positions:

Ĥmf
C = −niγ〈Sz〉

∑

n,n′,k

〈nk|ŝz|n′k〉a†
nkan′k , (10.8)

where ni is the density of localized spins and 〈Sz〉 is the average localized spin.

The energy of the carrier spin splitting is defined as

∆ = −niγ〈Sz〉 . (10.9)

The typical value of ∆ in GaMnAs and InMnAs with the highest critical temper-

atures is of the order of 0.1 eV. On the other hand, by averaging Eq. (10.3) with

respect to the carriers we arrive at

Ĥmf
S = δ

∑

l

Ŝz
l , (10.10)



125

where the energy splitting of different m levels of a localized spin is

δ = −ncγ〈sz〉 , (10.11)

with nc the carrier density and 〈sz〉 the average carrier spin. The typical magnitude

of δ in (III,Mn)V materials is of the order of 1 meV. When the localized spins are

magnetized along one of the high-symmetry directions of the crystal (which we

labeled as z), the average carrier spin is collinear with them (see Appendix C for

derivation), and the above equations are consistent.

In the mean-field theory of ferromagnetism [187, 28, 29, 188, 30, 175] only the

two averaged fields 〈Sz〉 and 〈sz〉 are taken into account, and the free energy of

their interaction is minimized. For temperatures below the critical temperature

Tcr, the gain in energy from polarization of the two spin systems outweighs the

free energy penalty due to decreased entropy of the ordered state, and the system

becomes magnetized. The derivation of the critical Curie temperature Tcr is a

simple exercise in the application of the mean-field theory to two coupled spin

systems, which was actually first given published in 1963 [187]. The magnetization

of the localized spins due to the exchange interaction with the carriers is given by

a Brillouin function BS for spin S [51], with S=5/2 in GaMnAs and InMnAs:

〈Sz〉 = −SBS(δS/kBT ) = SBS(ncγ〈sz〉S/kBT ) . (10.12)

On the other hand, the non-zero value of average carrier spin 〈sz〉 entering the

above equation is caused by the effective field due to the localized spins:

〈sz〉 = − χ∆

(gµB)2nc

=
χniγ〈Sz〉
(gµB)2nc

, (10.13)

in which χ is the magnetic susceptibility of the carriers. We plug Eq. (10.13) into

Eq. (10.12), and expand the Brillouin function for small values of its arguments

(BS(x)≈S+1
3S

x + O(x3)), obtaining the critical temperature

kBTcr =
niS(S + 1)γ2χ

3(gµB)2
. (10.14)
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In a single parabolic band the susceptibility χ is proportional to n
1/3
c . This explains

qualitatively the observed increase of Tcr with increasing hole concentration. How-

ever, in order to reproduce the observed trends in Curie temperature for different

hole-doped ferromagnetic semiconductors, it is essential to go beyond the single-

band model and to include the spin-orbit coupling in calculation of χ [28, 29, 30].

10.B Light excitation of the carrier system in (III,Mn)V

To construct a model of the excited carrier bath, it is helpful to first an-

alyze qualitatively the process of carrier photoexcitation in ferromagnetic semi-

conductors. The cw (magneto)optical spectra of GaMnAs are qualitatively dif-

ferent from results in pure GaAs, as they show very strong effects of disorder

[189, 190, 191, 192]. There is no gap in the absorption, which is at least of the

order of 104 cm−1 for all energies [191]. The origin of strong absorption inside the

host gap is a matter of controversy (see Figure 10.1). It has been proposed that the

additional optical transitions are between the valence band and the dispersionless

levels (located about 0.7 Eg above the valence band) originating from As antisites

or Mn interstitials [193]. Transitions terminating inside the Mn derived impurity

band ∼0.1 eV above the valence band edge have also been suggested [194, 191, 186].

In addition, the role of the inter-valence band transitions is increased in the

disordered material, in which the k-selection rule is relaxed. As a result, the

absorption of light with energy smaller than the bandgap of the host material

leads to a strong excitation in the valence band, which occurs due to inter-valence

transitions, and due to possible transitions from below the Fermi energy into the

localized states within the gap. The initial distribution of photoholes is expected

to be very broad, determined only by energy conservation (not by k-selection). We

are going to use the broadness of the distribution of the carriers after the excitation

and their total number as free parameters of the theory. Some flexibility in the used

values of total hole density immediately after the excitation p is also justified by
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Figure 10.1: The band structure of GaMnAs (solid lines) calculated using 8 band
k · p model with mean-field sp-d exchange interaction (|∆|=0.15 eV). The dotted
lines denote the possible positions of midgap energy levels of different origins. In
the model without an impurity band, the Fermi energy is typically around −0.1
eV for hole density p∼1020 cm−3 (the zero of energy is at the top of the valence
band without the exchange splitting).

the fact that the initial densities p0 are usually known with the order of magnitude

accuracy. A typical width of hole distribution after excitation used in the following

is of the order of 0.1 eV, a value comparable to the exchange splitting of the valence

band. In Section 10.G we use the experimental data to argue that the above energy

scale is sensible.

The optical experiments in InMnAs are limited to samples with very small

Mn concentrations [195] or energies above the fundamental bandgap [196]. The

role of different defects has not been investigated as closely as in GaMnAs, but

the observed [44] ultrafast electron trapping time suggests that InMnAs does have

a large concentration of midgap defects characteristic for low-temperature grown

III-V semiconductors. We can also use the results of this chapter to argue for
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the presence of strong transitions involving the valence band and states not in the

conduction band, on the ground that the number of states available for optical

transitions in the conduction band is far too small to explain the demagnetization

results.

This picture of photoexcitation is confirmed by the ultrafast demagnetization

measurements [44] in GaMnAs excited by 0.6 eV pump, far below 1.5 eV bandgap

of GaAs . The results are similar to the ones observed [170] in InMnAs (bandgap

of 0.4 eV) excited by the same pump beam, showing that excitation into the

conduction band plays a minor role in the demagnetization process.

10.C Model of the carrier bath

According to the discussion in the previous section, immediately after the

photoexcitation the distribution of carriers is very broad. We will approximate it

by a thermal distribution described by carrier temperature Te. in Section 10.G we

estimate the initial Te≈1000 K for demagnetization experiments from Ref. [170].

The interaction between the carriers and the localized spins produces a mean-

field part (Eq. (10.8)) and a secondary term corresponding to simultaneous flips of

the itinerant and localized spins. The latter causes exchange of angular momentum

between the excited carriers and the localized spin system. Due to the spherical

symmetry of the sp-d Hamiltonian, the sp-d interaction alone conserves the total

spin, and it can only move the spin polarization from one system to another. The

mechanism of this transfer of spin is going to be described in detail in the next

section. Now we concentrate on the features of the carrier bath which are specific

to the case at hand: the possibility of dynamic spin polarization and the energy

relaxation of carriers.

The spin transferred into the carrier system is not conserved due to the spin-

orbit interaction. In its presence the scattering within the electronic system is

accompanied by spin relaxation [33] (ultimately into the lattice). However, the
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spin relaxation occurs on a finite time-scale τsr. If the rate at which the carriers re-

lax their spins is smaller than the rate at which angular momentum is injected into

the carrier population, there is a dynamic spin polarization of the carriers. In this

case the average carrier spin deviates from the mean-field value determined by ∆

splitting of the bands. In the case when the carriers occupy a single spin-split band,

there is a simple way of introducing the dynamic polarization into our formalism.

We assume that populations for both spin directions are described by Fermi-Dirac

distributions with the common temperature Te but different quasi-chemical po-

tentials µs (spin s=↑,↓). This is equivalent to saying that we coarse-grain the

dynamics on a time-scale larger than the time in which the energy is redistributed

within the carrier system (by carrier-carrier scattering), and we explicitly consider

only the slower processes: spin relaxation of carriers and energy transfer into the

lattice. It is similar to the situation encountered in semiconductor lasers, where

the processes of thermalization of electrons and holes separately occur faster than

the recombination, and the resulting globally out-of-equilibrium situation can be

described by using the quasi-equilibrium form of the carrier distribution, with

different quasi-chemical potentials for electrons and holes.

The above approximation of having a single band split into two subbands with

definite spin character is valid when the spin-splitting is larger than the spin-orbit

interaction energy (as the latter always leads to some mixing of spin states). In the

case of the valence band of the (III,Mn)V semiconductor, the spin-orbit interaction

(∆so≃0.3 eV) cannot be treated as a small perturbation compared to the exchange

splitting of bands (∆≃0.1 eV). We analyze the dynamical spin polarization in this

case in Section 10.F.

As we discuss in detail in the following sections, dynamic polarization of car-

riers affects the spin-flip scattering rate. This is a back-action effect of the S sys-

tem on the carrier system: demagnetization of localized spins causes the dynamic

polarization of carriers, which in turn influences the rate of transfer of angular

momentum between the systems. Additionally, as the average S spin changes in
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time, so does the ∆ splitting of the carrier bands.

Apart from the dynamic polarization effects, we also have to take into account

that the carriers are not in thermal equlibrium with the lattice, and in the first

picoseconds after the photoexcitation they are described by a temperature different

than the lattice. We model the carrier-phonon interaction (leading to the cooling

of carriers) and carrier-carrier scattering (maintaining the thermal distribution)

phenomenologically. In metals, the electron-phonon energy relaxation time is a

couple hundreds of femtoseconds [157, 159]. In semiconductors, the regime of

excitation as strong as used in Ref. [170] to demagnetize InMnAs, has not been

investigated in detail. Theoretical calculations of energy relaxation of holes deep

in the valence band indicate that emission of optical phonons is very efficient for

these states [197]. Calculated emission of 7 phonons during a picosecond should

correspond to significant cooling of the carriers. Näıve extrapolation of energy-loss

curves [198] to hole temperatures of ∼1000K also gives a sub-picosecond energy

relaxation time. In the following, we will use an energy relaxation time τE of

the order of picosecond, and assume Te(t) = Te(0) exp(−t/τE). More generally,

the carrier and lattice temperatures could be solved for using a two-temperature

model [144]. However, in the case of (III,Mn)V semiconductors the rise in lattice

temperature due to heat transfer from the carriers described by such Te is quite

small, so that the final common temperature of carriers and the lattice is less than

100 K. As we discuss in detail further on, such a temperature corresponds to very

slow demagnetization dynamics, and for the purpose of calculating the ultrafast

process, we can then assume that the carrier temperature simply decays towards

zero.

In the following, all the averages with respect to carrier degrees of freedom

will be taken using a density matrix of non-interacting electrons ρ̂C , which is not

necessarily of the equilibrium form, but remains diagonal in the basis of carrier

Hamiltonian’s eigenstates |α〉=|nk〉 (with the mean-field spin splitting taken into
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account). These averages are denoted as 〈...〉C≡TrC{ρ̂C ...}, and they are given by

〈a†
αaβ〉C = δαβ fα (10.15)

〈a†
αaβa†

γaδ〉C = δαβδγδ fαfγ + δαδδβγ fα(1 − fβ) (10.16)

where fα is the average occupation of α state. In a single-band model, the α...δ

indices refer to |sk〉 states with spin s=↑,↓, and fsk is a Fermi-Dirac function at

temperature Te with spin-dependent chemical potential µs.

10.D Rate equations for the localized spin

The framework of the sp-d model allows for clear separation of carrier (C)

and localized spin (S) systems. The mean-field parts of their mutual interaction

are given by Eq. (10.8) and (10.10). The spin-splitting ∆ of the carriers’ band

is proportional to the instantaneous 〈Sz〉, and the splitting δ of localized spins

changes with the average carrier spin 〈sz〉. We assume that any correlation between

localized spins beyond the mean-field Zener approach is obliterated by the strong

scattering of excited carriers. Each localized spin feels the dynamics of the other

spins only through their average value, which influences the state of the carrier

system (its spin splitting ∆). Essentially, we consider an ensemble of paramagnetic

S spins interacting with a bath, the properties of which depend on the average S.

The ferromagnetism enters only as an initial condition: the S system is polarized

at t=0. Below we derive the equations for the dynamics of the average S spin due

to the interaction with the carrier bath, the state of which depends on the average

S.

The Hamiltonian of the localized S spins and the carriers system is written as

ĤS−C = Ĥ0 + V̂ = ĤC + Ĥmf
C +

∑

l

(δŜz
l + V̂l) , (10.17)

where ĤC is the carrier band Hamiltonian (Eq. (10.2)), Ĥmf
C is the mean-field

spin-splitting from Eq. (10.8), δ is the mean-field localized spin splitting defined in
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Eq. (10.11) and the spin-flip term of l-th localized spin V̂l comes from part of sp-d

interaction which is off-diagonal in Ŝz basis. We write it in the following way:

V̂l = Ŝ+
l F̂− + Ŝ−

l F̂+ (10.18)

where F̂± are proportional to the ladder operators of carrier spin. In the general

case of multiple bands (as in Eq. (10.3)) we have

F̂± = − γ

2V

∑

nk,n′k′

〈nk|̂s±|n′k′〉a†
nkan′k′ , (10.19)

whereas for a single band we have

F̂+(−) = − γ

2V

∑

k,k′

a†
k↑(↓)ak′↓(↑) . (10.20)

Now we follow a standard way of deriving the Master equation for the density

matrix of the localized spin system interacting with a carrier bath (see e.g. Ref. [199]).

The total density matrix of the system is assumed to factorize into the carrier and

localized spin density operators:

ρ̂(t) ≈ ρ̂C(t)ρ̂S(t) , (10.21)

and the Liouville equation for time-dependence of ρ̂(t) is turned into an equation

for ρ̂S(t) by tracing out the carrier degrees of freedom. However, unlike in standard

treatment [199], the state of the carrier bath changes in time, as discussed in the

previous section.

The usual derivation of the Master equation implies coarse-graining of the sys-

tem dynamics on time-scale ∆t longer than the correlation time of the bath τc.

This is the condition on which the Markov approximation rests. For the gas of

carriers described by the effective temperature kBTe≈0.1 eV, we can expect this

time to be of the order of a few femtoseconds. Let us define a time-scale τρ in

which changes in the carriers’ density matrix ρ̂C(t) occur. The contributions to

the evolution of ρ̂C(t) are as follows. The carrier temperature changes appreciably

during energy relaxation time τE∼1 ps. The spin splitting of the band ∆(t) is
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proportional to the average localized spin 〈S(t)〉, which we expect to decrease dur-

ing a characteristic demagnetization time τM. The build-up of the dynamic spin

polarization of the carriers is determined by two processes: transfer of spin from

the S system occurring during the aforementioned time τM, and the spin relax-

ation of carriers characterized by time τsr (for very short τsr there is no dynamical

polarization). Now we will assume that all these result in the time τρ much larger

than the bath correlation time τc, so that we can choose our coarse-graining step

∆t so that

τc ≪ ∆t ≪ τρ . (10.22)

In such a case, at each coarse-grained time-step tn we can derive a Master equation

with carriers described by ρ̂C(tn) treated as approximately constant during ∆t. In

this way we can use the Markov approximation locally in time, having separated

the “macroscopic” back-action of the localized spin system on the bath, which

occurs on a longer time-scale. The Master equation for the localized spin density

matrix ρ̂S is then derived exactly as in the usual case (see Ref. [199]), only with

the transition rates depending on time tn. The details of the derivation are given

in Appendix A. We write the equations in the continuum limit, keeping in mind

that they cannot be used for times shorter than ∆t, thus obtaining the following

rate equations for the diagonal elements of the localized spin density matrix

d

dt
ρS

m,m = −(Wm−1,m + Wm+1,m)ρS
m,m

+Wm,m+1ρ
S
m+1,m+1 + Wm,m−1ρ

S
m−1,m−1 , (10.23)

where Wn,m is the transition rate from m to n level of the localized spin induced

by sp-d interaction with the carriers. The time dependence of the transition rate

is understood for clarity. Then the average localized spin evolves according to

d

dt
〈Sz(t)〉 =

∑

m

m
d

dt
ρS

m,m . (10.24)

The general formula for Wm,m±1 is (see Appendix Afor detailed derivation)

Wm,m±1(t) =
1

~2
S∓

m,m±1

∫ ∞

−∞
dt′ e±iδt′/~C>

∓±(t; t′) , (10.25)
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in which the matrix element (squared) for the flip of the localized spin in Eq. (10.25)

is given by

S∓
m,m±1 = S(S + 1) − m(m ± 1) , (10.26)

where S is the magnitude of the localized spin. The correlation function of the

carriers C>
ij (t; t′), with i,j=±, is given by (reverting to the coarse-grained notation

with tn replacing t)

C>
ij (tn; t′) = TrC{ρ̂C(tn)F̃ i

n(tn + t′)F̃ j
n(tn)} , (10.27)

whereTrC{...} is the trace with respect to the carrier states and F̃ i
n(t′′) are operators

defined in Eqs. (10.19) and (10.20) written in the “local” interaction picture at

coarse-grained time tn:

F̃ i
n(t′′) = exp

{
i

~
Ĥ0(tn)t′′

}
F̂ i(t′′) exp

{
− i

~
Ĥ0(tn)t′′

}
, (10.28)

where F̂ i(t′′) is the Schrödringer picture operator, and Ĥ0(tn), defined in Eq. (10.17),

depends on the coarse-grained time tn through the mean-field spin splittings δ and

∆. These correlation functions C>
ij (t; t′) decay for t′ larger than the correlation

time τc, which has to be much shorter than the time on which ρ̂C(t) changes. For

this reason the integration domain in Eq. (10.25) is effectively t′ ∈ (−τc, τc). In

this range of t′, the above definitions of C>
ij and F̂ i(t) make sense.

In the general case of the multiple bands the transition rates are given by:

Wm,m±1 =
γ2

4

2π

~
S∓

m,m±1

∑

nn′

∫
d3k

(2π)3

∫
d3k′

(2π)3
|〈n′k′|ŝ±|nk〉|2fnk(1 − fn′k′)

×δ(ǫ̃nk − ǫ̃n′k′ ± δ) , (10.29)

where n and n′ are labeling the subbands, fnk is the occupation of |nk〉 state, and

ǫ̃nk are the band energies with the mean-field exchange interaction with localized

spins taken into account. The distribution functions, energies ǫ̃nk, and δ depend

implicitly on time, as we discussed before.

For a single spin-split band we replace n and n′ by two spin indices and recover

the formula given by us in Ref. [170]. An analogous expression has been used in
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Ref. [174], where heating of the Mn spins by photoelectrons was considered in a

paramagnetic (II,Mn)VI quantum well. Actually, in the case of carriers being a

true reservoir of energy and polarization, Eqs. (10.23) and (10.29) were derived

originally by Korringa [200] in order to describe the relaxation of nuclear spins

coupled to carriers’ spins by hyperfine interaction.

The rate equation (10.23) has to be augmented by equations governing the

dynamics of the carrier distribution function fnk. A discussion of these additional

equations follows in the next section.

10.E Demagnetization due to carriers in a single spin-split

band

Let us concentrate now on a model of a single spin-split band of s symmetry.

From it, we deduce the general features of the behavior of the system in a simple

way. The treatment of the dynamical polarization of carriers is especially trans-

parent in this case. We make use of the distribution functions fs for spin s=↑,↓
characterized by two different chemical potentials µs and a common temperature

Te (see Sec. 10.C).

We define reduced transition rates W+− and W−+ given by Wm,m−1 and Wm,m+1,

respectively, with the localized spin matrix elements S±
m,m∓1 removed (see Eq. (10.29)).

In a single band with spin-splitting ∆, the transition rate W+− can be rewritten

using the spin-resolved densities of states Ds(E):

W+− =
γ2

4

2π

~

∫
dE f↑(E)(1 − f↓(E − δ))

×D↑(E)D↓(E − δ) , (10.30)

and W−+ is obtained by exchanging the spins and changing the sign of δ. Manipu-

lating the explicit forms of occupation functions we obtain a generalization of the

detailed balance condition to the case of different chemical potentials for two spin
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directions:
W−+

W+−
= eβe(δ−∆µ) , (10.31)

where βe=1/kBTe and ∆µ=µ↑ − µ↓ is the spin splitting of the carriers’ chemical

potential. For µ↑=µ↓ we recover the usual detailed balance condition.

When the localized S=1/2, Eq. (10.24) can be transformed into the Bloch-like

equation for the dynamics of average localized spin 〈Sz(t)〉:
d

dt
〈Sz(t)〉 = −〈Sz(t)〉 − S0(t)

T1(t)
, (10.32)

where S0(t) is the instantaneous equilibrium value of the spin, given by the tran-

sitions rates at time t:

S0(t) =
1

2

W+−(t) − W−+(t)

W+−(t) + W−+(t)
= −1

2
tanh

{
βe(t)(δ(t) − ∆µ(t))

}
, (10.33)

and the relaxation time is given by

T1(t) = (W+−(t) + W−+(t))−1 . (10.34)

Note that in applications to (III,Mn)V semiconductors we are going to be

interested in the regime of βeδ≪1 and in the localized spin S=5/2. If the dynamic

spin splitting also fulfills βe∆µ≪1, we can approximate the Eq. (10.24) for any

magnitude of spin S by the following expression:

d

dt
〈Sz(t)〉 ≃ −2W+−(t)〈Sz(t)〉 . (10.35)

For the conditions considered below, this equation gives a very good description of

the initial stage of the localized spin dynamics, in which the carrier temperature is

very high. When the temperature drops so that the above inequalities are violated,

one has to solve the full eqs. (10.23) and (10.24) for S>1/2, and the Bloch equation

(10.32) for S=1/2.

We now introduce the phenomenological equations describing the dynamics of

the carrier bath. The time dependence of Te comes from the cooling of carriers by

phonon emission, and we model it by a simple decay (see Section 10.C)

Te(t) = Te(0) e−t/τE , (10.36)
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where τE is the energy relaxation time of highly excited carriers. The changes of

chemical potentials are governed by a second phenomenological equation for the

dynamics of the average carrier spin 〈sz(t)〉:

d

dt
〈sz(t)〉 = −ni

nc

d

dt
〈Sz(t)〉 − 〈sz(t)〉 − s0(∆, Te)

τsr
. (10.37)

The first term on the right describes the transfer of angular momentum by spin-

flips (with nc/ni being the ratio of the carrier density to the localized spin density),

and the second term describes the relaxation (on time scale τsr) of the average

carrier spin towards the instantaneous equilibrium value s0 determined by the spin

splitting ∆ and the carrier temperature Te. The above set of single-band equations

was used in Refs. [170] and [44] to qualitatively model the demagnetization in

(III,Mn)V semiconductors [170, 44].

10.E.1 The inverse Overhauser effect

The demagnetization process described by the above equations occurs in the

following way. We model the absorption of a ∼100 fs light pulse as an instantaneous

increase of concentration and temperature of carriers. The heating of the carriers

by a pulse of light modifies the spin-flip transition rates W+− and W−+. The

broader the carrier distributions (the higher the Te), the larger these rates. When

the dynamic spin splitting ∆µ is zero, the detailed balance of transition rates tells

us that the localized spin is going to evolve towards a new value corresponding

to a high temperature Te. This final value of 〈Sz〉, and the rate at which it is

approached, change with the decrease of the carrier temperature. In addition,

the possible build-up of polarization of the carriers changes the spin-flip transition

rates in such a way that the spin transfer is blocked, and without spin relaxation

in the carrier system a “polarization bottleneck” occurs. This is analogous to

the “magnetic resonance bottleneck” known in electron spin resonance of localized

moments in metals [201]. In the latter, the resonance spectrum of the localized

spins is changed when the spin relaxation of carriers is long enough for the two
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spin systems to become “locked” together in precession. Here, in the extreme case

of very slow spin relaxation, the initial demagnetization can result in a flip of all

the carriers of one spin direction, leaving the carrier system in a “dynamic half-

metallic state”. After such a saturation of demagnetization process, the rate of

spin flip is determined by the (low) rate of the carrier spin relaxation.

The basic principle of demagnetization is analogous to the well-known Over-

hauser effect [202], in which the itinerant spins are optically pumped, and this

injected polarization is transferred by s-d type interaction to the localized spins.

Although the original Overhauser effect involves pumping of angular momentum

into one of the spin populations, the essence of the effect is taking one spin popu-

lation out of equilibrium with another, and thus inducing the transfer of angular

momentum between them. One generalization of the Overhauser effect was pro-

posed and realized experimentally by Feher [203, 204]. The idea was to heat up

the electrons by passing a current through the sample in order to induce spin-flips

between the electrons spins and nuclear spins. Depending on the parameters of

both spin systems, increase of either nuclear spin polarization [203] or electron

polarization [205] is predicted. The “inverse Overhauser effect” presented here is

related to the latter: by heating up the carriers, we induce the transfer of angular

momentum from the localized spins to the electron (hole) spins.

10.E.2 Carriers as a reservoir of angular momentum: ∆µ=0

We first analyze the case in which the carrier spin relaxation is so fast that the

carriers are a good sink of polarization, so that ∆µ=0 at each moment of time.

The occupation factors fs are the same for both spins, and are characterized by

the time varying temperature Te and chemical potential µ.

When the temperature is not too high, i.e., kBTe is smaller than the energy

scale on which the densities of states change appreciably (but still much larger

than localized spin splitting δ), the transition rate (10.30) can be approximated
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Figure 10.2: Transition rate W+− in a single parabolic band with effective mass
meff=1 and γ=50 meV·nm3 as a function of carrier temperature and band splitting
∆. The concentration of carriers is 1020 cm−3.

by

W+−(t) ≈ γ2

4

2π

~
kBTe(t)D+(µ)D−(µ) . (10.38)

It shows that the rate of demagnetization scales with Te, and that large densities of

states for both spins around the Fermi level are needed. Together with the γ2 scal-

ing, this shows that in (III,Mn)V ferromagnetic semiconductors the holes (having

larger mass and exchange constant) are much more effective in the demagnetization

process than the electrons.

Fig. 10.2 and 10.3 illustrate the dependence of W+− from Eq. (10.30) on tem-

perature Te, spin splitting ∆, and carrier concentration. We use the density of

states of a parabolic band, with effective mass meff=1, which roughly corresponds

to the density-of-states mass in the valence band of GaMnAs. W+− goes to zero

for low carrier temperature, when phase-space blocking limits the number of states

which can scatter. It also decreases for increasing spin-splitting ∆, when the num-
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Figure 10.3: Transition rate W+− for ∆=0.15 eV and different carrier temperatures,
as a function of carrier density. Other parameters are the same as in Figure 10.2

ber of minority spins available for spin-flip goes down. This effect is stronger for

smaller carrier concentrations and lower temperatures. For Te close to 1000 K the

corresponding characteristic time T1 is of the order of a picosecond. Whether a full

demagnetization occurs depends on the rate of energy relaxation of carriers. If the

carrier temperature does not drop significantly within the time T1(0) (calculated

at the initial carrier temperature Te), then a significant demagnetization occurs on

this time-scale. On the other hand, if the Te changes strongly on the scale of T1(0),

then we have to solve our equations with W+−(t) updated according to carrier tem-

perature changes from Eq. (10.36). We are interested in the dynamics occurring

during the first picosecond. When T1(t) becomes much larger than 1 ps, then for

our purposes the demagnetization process is effectively stopped. Such an effect of

cooling of carriers on demagnetization is illustrated in Figure 10.4. For all energy

relaxation times τE the initial slope of 〈Sz(t)〉 is the same, given approximately by

Eq. (10.38) evaluated for Te(0), but the time at which the demagnetization ceases
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Figure 10.4: Demagnetization of the localized spins S=5/2 (normalized to 1) in a
single band model with meff=1 and γ=50 meV·nm3 for different energy relaxation
times of carriers. The concentration of carriers nc=1020 cm−3, and the density
of localized spins is such that the band splitting ∆=150 meV (corresponding to
x≈0.055 in GaMnAs).

and the saturation value depend on τE . This shows that the time-scale on which

the ultrafast demagnetization occurs can be given by τE, which is not related to

magnetic properties of the material. From this point of view, it is not the fact

that the magnetization drop occurs in less than a picosecond which is interesting.

Instead it is the magnitude of the demagnetization which demands explanation.

10.E.3 The effects of the dynamic spin polarization of carriers: ∆µ 6=0

The efficiency of the “inverse Overhauser effect” is limited by the finite spin

relaxation time of the carriers. Each spin flip which leads to the demagnetization,

if not followed by carrier spin relaxations, diminishes the phase space available

for next transition of this kind. The result is the decrease of the net number of

spin-flips during the time τE, which translates into smaller total demagnetization.
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Figure 10.5: Demagnetization of the localized spin S for different carrier spin

relaxation times, with energy relaxation time τE=0.5 ps. The effective mass of a

single spin-split band is (a) meff=1 and (b) meff=0.5. All the other parameters are

same as in Fig. 10.4. The total drop in magnetization becomes smaller for longer

carrier spin relaxation times.

Let us concentrate on the case in which W+− is the transition which leads to

the demagnetization of the localized spins. The corresponding electron spin flip is

from spin ↑ to ↓, so that the demagnetization of S spins leads to ∆µ<0. In the

limit of negligible δ and ∆µ smaller than kBTe, we can approximate Eq. (10.30)

by

W+−(t) ≈ γ2

4

2π

~
kBTe(t)D+(µ↓)D−(µ↓)

×
(

1 +
∆µ

2kBTe

+ ...
)

. (10.39)

From this we see that W+− decreases in the presence of dynamic spin polarization.
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When |∆µ| becomes comparable to kBTe, W+− goes to zero.

A rough estimate of what τsr is short enough to be considered instantaneous can

be given assuming a constant density of states D for both spins. The localized spin

splitting is then |δ|=|γ∆|D/2, and the second term in Eq. (10.37), corresponding

to spin relaxation can be written as D∆µ/2ncτsr. We want it to dominate over the

first term (spin transfer from localized S), for ∆µ small enough that the transition

rate W+− is still unaffected by such dynamic spin splitting, i.e. for ∆µ≪kBTe. The

resulting inequality is

DkBTe

4Sni
> W+−(∆µ ≈ 0, Te)τsr , (10.40)

which means that the ratio of the density of carriers available for the spin flip to

the localized spin density is larger than the product of spin-flip rate and carrier

spin relaxation time. Using Eq. (10.38) we can transform this inequality into a

very simple, but physically less intuitive form:

τsr <
~

4πδ
, (10.41)

In (III,Mn)V semiconductors for typical value of localized spin splitting δ is a

couple of meV, the spin relaxation time has then to be smaller than 100 fs for spin

bottleneck to become unimportant.

The “spin bottleneck” effect is illustrated in Figure 10.5, where calculated

〈Sz(t)〉 are plotted for different values of carrier spin relaxation time τsr. The

bottleneck effect is stronger in Figure 10.5a, where the effective mass meff=1 and

carrier concentration nc=1020 cm−3. In Figure 10.5b, where meff=0.5, the difference

between results for τsr=10 fs and τsr=0 is smaller. When the effective mass meff is

smaller, while keeping nc and ∆ the same, the average carrier spin is decreased,

as the Fermi energy becomes larger compared with ∆. Then δ is smaller, making

the inequality (10.41) easier to fulfill.
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10.F Demagnetization due to holes in the valence band of

(III,Mn)V semiconductor

For the case of (III,Mn)V semiconductors the carriers relevant for ultrafast

demagnetization are the holes. If they reside in an impurity band, the single

band theory described above could be applied, but currently there is no simple

quantitative model for this case. Below we perform calculations for the case of

holes residing inside the valence band. We use an “effective Hamiltonian” model

[29, 175] in which a mean-field p-d term from Eq. (10.8) is added to the 6 band

Luttinger Hamiltonian (see Appendix B). In this way we can analyze quantitatively

the influence of the strong spin-orbit interaction on the spin-flip transition rate.

A typical plot of energy dispersions in (III,Mn)V calculated by k · p method

with exchange splitting ∆=0.15 eV is shown in Figure 10.1. The corresponding

spin-resolved densities of states are shown in Figure 10.6. Their calculation is

described in Appendix E. In order to calculate the W+− transition rate we cannot

use Eq. (10.30) which requires only the densities of states. In the p symmetry

band the matrix elements of carrier spin ladder operators ŝ± are non-trivial due to

spin-orbit coupling, and cannot be neglected. The full Eq. (10.29) has to be used.

The presence of strong spin-orbit interaction suppresses the spin-flip transition

rate, compared to the value predicted by Eq. (10.30). If we disregard for a moment

the orbital parts of the |nk〉 eigenstates, the squared matrix element |〈n′k′|ŝ−|nk〉|2

is maximal when the spin part of |nk〉 state is | ↑〉, and the spin part of |n′k′〉 is

| ↓〉. If both states contained equal mixtures of spin up and down, the squared

matrix element would be 1/4. When the orbital parts of the states are taken

into account, the spin-orbit interaction diminishes the matrix elements between

the states with different spin character, because it aligns orthogonal orbital wave

functions (of different orbital angular momentum l) with opposite spins s. In

the limit of infinite spin-orbit interaction, a spin-flip between pure spin-up and

spin-down states is impossible, because the orbital parts of |nk〉 states are exactly
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orthogonal. This limit is realized in the case of the 4 band Luttinger Hamiltonian

for the holes. We have evaluated analytically the spin-flip transition rate in the

spherical 4×4 Luttinger model at zero spin splitting, and obtained that the result

of the exact Eq. (10.29) is smaller by a factor of 5/18 than the value obtained from

densities of states in Eq. (10.30) (see Appendix D for derivation). This sets a limit

on how much the spin-orbit interaction can suppress the transition rates for small

∆ in the full 6 band model.

For the actual calculation of the time-dependence of magnetization, we have

evaluated the transition rates from Eq. (10.29) using the band-structure obtained

from the 6×6 Luttinger Hamiltonian (for the details of the numerical procedure

see Appendix E). In all the following calculations, we have put δ=0, which is

justified by the smallness of δ in ferromagnetic semiconductors, and the fact that

we are primarily interested in the regime of high Te, where δ can be completely
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disregarded. In Figure 10.7 we plot W+− for GaMnAs and InMnAs for various

carrier temperatures, exchange splittings and hole densities. The transition rates

are larger for GaMnAs, which can be traced mostly to larger density of states in

the valence band compared to InMnAs.

The presence of strong spin-orbit interaction makes including the dynamic

spin polarization of carriers much harder than in a single-band case (discussed in

Section 10.E.3). Due to a large spin-orbit splitting ∆SO≃0.3 − 0.4 eV the |nk〉
states have mixed spin character even in presence of exchange splitting ∆≈0.1

eV, and a simple introduction of different distribution functions fs for two spin

directions is not possible. Performing an ensemble Monte Carlo calculation of

dynamics of strongly excited holes [206] with spin degree of freedom taken into

account is a vast undertaking beyond the purpose of this investigation. We resort

to an approximate method of including the effects of non-zero ∆µ.

Above we have calculated the exact transition rates for ∆µ=0. We have

also calculated the corresponding W+− assuming constant matrix elements and

only taking spin-resolved densities of states calculated from Luttinger Hamilto-

nian (Eq. (10.30)). The inclusion of matrix elements leads to decrease of W+−

by a factor of 0.25-0.3 in the most relevant range of high Te and ∆≃0.1 eV (not

shown). We assume that this ratio of exact and DOS-derived W+− also holds in

the case of a finite ∆µ (but small compared to EF and kBTe). We have calculated

the demagnetization with finite spin relaxation time of the holes using the prop-

erly down-scaled transition rates from Eq. (10.30) with finite ∆µ. The results are

shown in Figure 10.8. The effect of spin bottleneck on demagnetization is clearly

very weak for τsr≤10 fs. For τsr=100 fs the total demagnetization is diminished by

∼50% compared to the case of short τsr. These results agree with estimates from

the inequality (10.41), which is fulfilled for δ∼1 meV and τsr=10 fs.

In the presence of the strong spin-orbit interaction, the hole spin relaxation is

expected to be very fast, occurring on the momentum scattering time-scale [19].

For example, in pure GaAs the spin relaxation of holes was measured to be about



148

0 0.5 1 1.5
0.8

0.85

0.9

0.95

1

GaMnAs

(a)

τ
sr

=0

τ
sr

=10 fs

τ
sr

=100 fs

time (ps)

N
o

rm
a

liz
e

d
 〈

 S
z
 〉

0 0.5 1 1.5
0.9

0.92

0.94

0.96

0.98

1

InMnAs

(b)

τ
sr

=0
τ

sr
=10 fs

τ
sr

=100 fs

time (ps)

N
o

rm
a

liz
e

d
 〈

 S
z
 〉

Figure 10.8: Demagnetization of the Mn spin in (a) GaMnAs and (b) InMnAs. The
solid lines are calculated using the exact transition rates at ∆µ=0 (dynamical spin
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the exchange integral β=−50 meV·nm3, and the molar fraction of Mn is x=0.054
(initial spin splitting ∆=−0.15 eV). The energy relaxation time τE is 0.5 ps.

100 fs at room temperature [207]. The calculated [208] momentum scattering of

holes in GaMnAs at low temperature is about 10 fs, and it is expected to be

shorter when the holes are highly excited. There is one caveat in the case of ex-

change spin-split bands in (III,Mn)V. The lifting of the heavy-light hole degeneracy

by confinement in quantum wells makes the spin relaxation time longer [209, 210],

with measured values of 4 ps for holes close to Γ point in modulation-doped GaAs

quantum wells [211]. An analogous effect is expected in exchange-split bands.

However, for the carrier densities and temperatures under consideration we are



149

mostly interested in spin relaxation of holes with quite large wavevectors (|k|≈1−3

nm−1). For such large |k| the effect of lifted degeneracy on spin relaxation becomes

much weaker [210]. For example, at a wavevector of this magnitude in the direc-

tion perpendicular to the magnetization the band-mixing terms in the Luttinger

Hamiltonian overcome the p-d interaction, and the spin splitting becomes negli-

gible. Taking all this into account it is reasonable assume that in an excited and

disordered sample the hole spin relaxation time should be shorter than in pure

GaAs.

In the experiments on (III,Mn)V spin lifetimes of electrons between 1 ps in

highly excited InMnAs [212, 213] and 30 ps in much more weakly excited GaMnAs

[214] were seen. To the best of our knowledge, no signal attributable to hole spin

relaxation has ever been seen on a time-scale of the temporal resolution of the

experiments. If τsr≤10 fs, the measurements would be particularly challenging due

to time-resolution constraints on the laser pulse time. Also, at such time-scale

the carrier dynamics is in the non-Markovian regime [215], and τsr is a typical

time-scale of the spin-dependent correlated relaxation dynamics.

In Fig. 10.8 we can see that for τsr<100 the spin bottleneck effect is qualita-

tively unimportant, and it becomes negligible for τsr=10 fs.Without the bottleneck,

we obtain a typical magnitude of demagnetization in (III,Mn)V within a picosec-

ond to be of the order of 10%. For the same carrier density, initial Te=1000 K

and τE=0.5 ps, the drop in magnetization is more pronounced in GaMnAs (20%

demagnetization) than in InMnAs (10%). A discussion of the connection between

these calculations and experiments follows below.

10.G Comparison with experimental results

We can estimate the initial temperature of carriers in experiments on InMnAs

from Ref. [170] in the following way. There are two time-scales in demagnetization:

an ultrafast one (<1 ps), and a subsequent much slower (∼100 ps) demagnetiza-
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tion due to spin-lattice relaxation. For example, for pump fluence of 3 mJ/cm2,

an ultrafast quenching of ∼ 50% of magnetization was followed by a complete de-

magnetization 100 ps later. On the latter time-scale we can safely use a thermal

description of the spin system. The full demagnetization means that the localized

spin temperature TS had risen above the Curie temperature, which was 50 K in the

sample used. This tells us that 100 ps after the excitation the lattice temperature

TL was at least 50 K. The energy (per atom), which had to be transferred into the

lattice to heat it up from initial temperature Ti (before the excitation) up to the

final TL is given by

∆EL =

∫ TL

Ti

cL(T )dT , (10.42)

where cL is the specific heat of the lattice (per atom), which in the temperature

range of interest is given by the Debye formula:

cL(T ) =
12π4

5
kB

( T

ΘD

)3

, (10.43)

where ΘD=280 K is the Debye temperature of InAs.

The energy transferred into the lattice needs now to be related to the energy

deposited initially by the light pulse into the valence band. In the process of

absorption, the energy of the pump photon (~ω=0.6 eV) is split into a kinetic

energy of a created hole and an energy of an excited state within a gap (we disregard

the photoelectrons because the low density of states in the conduction band makes

this excitation channel insufficient to explain the experiments). The Fermi level

before the excitation is situated between 0.1 and 0.3 eV below the top of the valence

band for hole densities of 1020 and 3 × 1020 cm−3, respectively. Thus, the energies

of the newly created holes are a sizable fraction of the photon energy. As a rather

safe estimate we will take the fraction of the pump pulse energy imparted to the

holes as R=1/4.

Now we can derive an estimate of the carrier temperature Te(0) just after the

absorption of the pump pulse. We assume that after 100 ps all the absorbed energy

has been transferred to the lattice. The observed spin temperature TS is larger than



151

50K, and gives a lower bound for the final lattice temperature TL. We calculate

the energy given to the lattice using Eqs. (10.42) and (10.43), with initial Ti=10 K

and final TL=50 K A fraction R of this energy was excess kinetic energy of holes

in the valence band after the excitation. Using the density of states of InMnAs

with ∆=0.15 eV calculated before, we obtain the temperature of carriers which

gives such an excess energy. In this way we obtain an estimate of the initial Te,

which we find to be between 1500 and 1000 K for hole densities changing between

1020 and 3 × 1020 cm3. The analogous calculation in GaMnAs gives Te smaller by

a factor of 2 (due to the larger density of states). These results justify our use of

a typical initial Te=1000 K.

Let us now address the corresponding demagnetization in InMnAs for pump

fluence of 3 mJ/cm2. The hole concentration before the excitation is about 3×1020

cm−3, estimated from critical temperature of 50 K and magnetization measure-

ments [170]. After the excitation the total number of holes is larger but, because

the initial p is not certain, we will simply use a value of total p=3 × 1020 cm−3.

The measured sample was a 25 nm thick layer of InMnAs grown on GaSb. For

such thickness, the confinement leads to formation of hole subbands, with typical

energy spacing between them of the order of 10 meV. This confinement energy is

much less than the disorder broadening and the thermal spread of photoexcited

carriers (both ∼0.1 eV), so that our calculation of spin-flip transition rates using

the bulk band-structure should be a good approximation. In the previous section,

we have seen that for p=3×1020 cm−3 the sub-picosecond drop in magnetization is

about 10%. Experimentally a 50% drop in Kerr signal was observed within ∼200

fs after the pump pulse. The step-like character of the magnetization drop is not

reproduced by our theory, which predicts a smoother demagnetization. However,

the carrier-induced artifacts (termed “dichroic bleaching” in Ref. [129]) obscuring

the magnetization dependence of the magnetooptical signal are possible at very

short time-scale. The magnitude of the total demagnetization is in qualitative

agreement with our calculations.
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For pump fluence of 10 mJ/cm2, for which a complete quenching of ferro-

magnetic order is observed, the role of multi-photon absorption processes becomes

pronounced, and photocarriers are created in a very large region of the Brillouin

Zone (as in experiments from Ref. [216], where a pump with ~ω=3.1 eV was used

in GaMnAs). Our k · p model with “rigid” spin splitting (i.e. k-independent ex-

change constant) is not applicable far away from the Γ point. Also, for very strong

excitation the assumption of quasi-thermal distribution of holes can fail.

In GaMnAs the experiments show a similar behavior [44] after 1 picosecond,

with 30% magnetization drop for fluence of ∼8 mJ/cm2. This value is very close

to the predictions of our theory for p=3 × 1020 cm−3. For the same fluence InM-

nAs was already nearly completely demagnetized. Although our theory predicts

larger demagnetization in GaMnAs than in InMnAs, in order to make meaningful

comparisons one has to achieve comparable excitation parameters (total p and Te

after the pulse).

10.H Summary

We have presented the investigation of the ultrafast demagnetization induced

by an incoherent light excitation in a system described by the sp-d model. The

physical picture of demagnetization is very transparent, with sp-d interaction pro-

viding the mechanism of spin transfer from the localized spins into the system of

excited carriers. This process is closely related to effects known from systems of

electronic and nuclear spins coupled by hyperfine contact interaction, and thus

we have termed it the inverse Overhauser effect. The demagnetization basically

comes from very fast T1 relaxation of the localized spins due to sp-d interaction

with the hot carriers’ spins. In a simple one-band model the rate of spin flip scat-

tering of itinerant and localized spins is proportional to the square of the sp-d

exchange constant, the product of electronic densities of states at Fermi energy

for two spin directions, and the temperature of the carriers. Due to the carrier
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temperature dependence, the rapid demagnetization can occur only for a time of

the order of energy relaxation time τE. Thus, the sub-picosecond time scale of

the demagnetization process simply comes from the characteristic time of carrier-

phonon interaction. The total magnitude of demagnetization during the τE time

depends only on the spin-flip scattering efficiency if the carrier system is a good

spin sink, i.e. the carrier spin relaxation time τsr is shorter than the time-scale on

which the dynamic spin polarization of carriers builds up. A long τsr leads to spin

bottleneck that suppresses the demagnetization.

A large part of the discussion was aimed at the specific case of (III,Mn)V

semiconductors. There, a non-trivial band structure with spin-orbit interaction has

to be taken into account. We have performed the calculations of spin-flip transition

rate using an effective k·p Hamiltonian approach. An approximate calculation of

the effects of dynamical spin polarization of holes has been used to argue that the

holes can be treated as a perfect sink for the angular momentum transferred from

the localized spins. A qualitative agreement with demagnetization experiments

in these materials was obtained: the theory shows that the magnetization can

drop by ∼10% within the energy relaxation time of the holes. More theoretical

and experimental work on electronic and optical properties of (III,Mn)Vs, will be

necessary in order to better reconcile experiments and theory.
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Appendix A

Derivation of the Master equation

for the localized spin dynamics

General theory: Redfield equation with time-dependent coefficients

The Hamiltonian of the localized S spin and the carriers system is written as

ĤS−C = Ĥ0 + V̂ = ĤC + Ĥmf
C + δŜz + V̂ , (A.1)

where ĤC is the carrier band Hamiltonian (Eq. (10.2)), Ĥmf
C is the mean-field

spin-splitting from Eq. (10.8), δ is the mean-field localized spin splitting defined

in Eq. (10.11) and the spin-flip term of the localized spin V̂ is coming from part

of sp-d interaction which is off-diagonal in Ŝz basis:

V̂ = Ŝ+F̂− + Ŝ−F̂+ ≡
∑

i

ŜiF̂ i , (A.2)

with carrier spin-flip operators F̂± operators given by Eq. (10.19). In this equation

we have introduced a general notation with i index labeling different pairs of prod-

ucts of the spin system Si and the bath F i operators. In the case at hand here,

the same index i denotes different raising/lowering indices of F and S operators.

This notation is slightly cumbersome, but it is general and it will allow for a quick

transition to a different set of operators in the definition of Ṽ (e.g. sometimes it

is more convenient to write Ṽ =S̃xF̃ x + S̃yF̃ y + S̃zF̃ z). We will keep it throughout

154
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this section for the sake of generality, and use the specific form of V̂ in the next

section.

We express all the operators in the interaction picture with respect to some

reference time t0. We employ a notation in which a Schrödringer picture operator

Â is denoted by Ã(t) in the interaction picture. The density matrix of the whole

system (localized spins and carriers) is given in the interaction picture by

ρ̃(t) = Û−1(t, t0) ρ̂(t) Û(t, t0) , (A.3)

where the free evolution operator Û0(t, t0) is given by:

Û0(t, t0) = T exp
(
− i

~

∫ t

t0

Ĥ0(t)
)

, (A.4)

in which T denotes the time-ordering operator. The operators Ã(t) are defined

analogously. The time-dependence of Ĥ0(t) comes from the mean-field spin split-

tings ∆ and δ, which change during the magnetization dynamics. However, if the

difference t− t0 is smaller than the characteristic time on which Ĥ0(t) changes, we

can use instead of Eq. (A.4) a simpler expression without the time-ordering. Let

us define the temporally “local” interaction picture for times t sufficiently close to

a certain time tn:

Ãn(t) = exp
( i

~
Ĥ0(tn)(t − tn)

)
Â(t) exp

(
− i

~
Ĥ0(tn)(t − tn)

)
. (A.5)

The above expression is a good approximation to the Eq. (A.3) with t0=tn for

t − tn short enough for H0 to be approximated by a constant.

The derivation relies on the fundamental Markovian assumption of very short

time-scale of the bath “memory” (quantified by the bath correlation time τc defined

below) compared to the characteristic time-scales of the dynamics of the system

(the localized spins) interacting with the bath (the carriers). We coarse-grain the

time into steps tn−1, tn, tn+1, ... which are separated by intervals ∆t fulfilling the

inequalities:

τc ≪ ∆t ≪ τρ , (A.6)
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in which the characteristic time-scale of the total system dynamics τρ appears.

The time ∆t is long enough for the bath fluctuations to become uncorrelated, but

short compared to the time on which the density matrix changes (so that we can

put ρ̂(tn)≈ρ̂(tn−1)). Our goal is to derive the equation of motion for the localized

spin density matrix which holds on the time-scale of ∆t.

The exact equation for the dynamics of the total density matrix (in the inter-

action picture) is the Liouville equation:

∂ρ̃(t)

∂t
= − i

~
[Ṽ (t), ρ̃(t)] . (A.7)

The localized spins are described by a reduced density matrix ρ̃S defined by

ρ̃S(t) = TrC{ρ̃(t)} , (A.8)

in which the trace is taken with respect to the carriers (C) degrees of freedom. The

interaction picture is taken with respect to a certain time tn−1 (in Eq. (A.3) we put

t0=tn−1). We integrate the Liouville equation from tn−1 to tn (one coarse-graining

step forward):

ρ̃(tn) = ρ̃(tn−1) −
i

~

∫ tn

tn−1

[Ṽ (τ), ρ̃(τ)]dτ . (A.9)

Then we plug this expression back into the original equation and trace out the bath

degrees of freedom, obtaining the equation for the localized spin density matrix:

∂

∂t
ρ̃S(tn) = − i

~
TrC

{
[Ṽ (tn), ρ̃(tn−1)]

}
− 1

~2

∫ tn

tn−1

TrC

{
[Ṽ (tn), [Ṽ (τ), ρ̃(τ)]]

}
dτ .

(A.10)

Now we assume that the density matrix ρ̃ can be simply factorized in the localized

spin (S) and the carrier bath (C) density matrices:

ρ̃(t) ≈ ρ̃C(t)ρ̃S(t) , (A.11)

and we define the bath average of the operator Ã(t) as

〈Ã(t)〉tn ≡ TrC{ρ̃C(tn)Ã(t)} . (A.12)
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The first term on the right-hand side of the Eq. (A.10) is zero, because

〈Ṽ (tn)〉tn−1
∼ 〈F̃±〉tn−1

= 0 , (A.13)

for the average localized spin 〈S〉 oriented along one of high-symmetry directions

of the crystal (see Appendix C). In the second term we note that under the inte-

gral the density matrix ρ̃(τ) is needed for times τ ∈ [tn−1, tn]. According to our

assumptions, ρ̃ does not change significantly in such a time period, and we can

simply replace ρ̃(τ) by ρ̃(tn) in Eq. (A.10). Thus we obtain a closed equation for

ρ̃(tn):

∂

∂t
ρ̃S(tn) = − 1

~2

∫ tn

tn−1

〈[Ṽ (tn), [Ṽ (τ), ρ̃S(tn)]]〉tn dτ

= − 1

~2

∫ ∆t

0

〈[Ṽ (tn), [Ṽ (tn − t′), ρ̃S(tn)]]〉tn dt′ (A.14)

where in the second line we have changed the integration variable to t′=tn−τ . Since

we assume that ∆t=tn − tn−1 is short enough for the change in the total density

matrix ρ̃(tn)− ρ̃(tn−1) to be small, and consequently H0(t)≈H0(tn)≈ H0(tn−1), we

can use the “local” interaction picture (Eq. (A.5)) for the operators in the above

equations.

Now we plug in the explicit form of the localized spin-bath interaction from

Eq. (A.2), and after some algebra we arrive at the Master equation:

∂

∂t
ρ̃S(tn) = − 1

~2

∑

i,j

∫ ∆t

0

dt′

(
[S̃i(tn), S̃j(tn − t′)ρ̃S(tn)] C>

ij (tn; t′)+

− [S̃i(tn), ρ̃S(tn)S̃j(tn − t′)] C<
ij (tn; t′)

)
, (A.15)

where we have defined the correlation functions:

C>
ij (tn; t) = 〈eiH0(tn)t/~F̂ ie−iH0(tn)t/~ F̂ j〉tn = 〈F̃ i

n−1(tn)F̃ j
n−1(tn − t)〉tn (A.16a)

C<
ij (tn; t) = 〈F̂ j eiH0(tn)t/~F̂ ie−iH0(tn)t/~〉tn = 〈F̃ j

n−1(tn − t)F̃ i
n−1(tn)〉tn (A.16b)

They are defined just like the usual correlation functions (see e.g. Ref. [143]), only

the operators are in the “local” interaction picture at time tn. After introducing
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the correlation functions Cij we can define the bath correlation time τc as such that

for |t|>τc the correlation functions defined above are practically zero. The use of

the “local” interaction picture is justified by the fact that τc is much smaller than

the time on which H0 changes. Now we can see, that the derivative of ρ̃S at time

tn depends only on the history of the bath for times at most τc before tn. Since

∆t≫τc, we can as well extend the limits of dt′ integration to infinity. We also revert

from a coarse-grained to a continuous time notation, with time t replacing tn. We

only have to remember not to use our equations to investigate the dynamics on

time-scale smaller than ∆t≫τc. The Master equation for the localized spin density

matrix is finally given by:

∂

∂t
ρ̃S(t) = − 1

~2

∑

i,j

∫ ∞

0

dt′

(

[S̃i(t), S̃j(t − t′)ρ̃S(t)] C>
ij (t; t′)+

− [S̃i(t), ρ̃S(t)S̃j(t − t′)] C<
ij (t; t′)

)
. (A.17)

The derivation of the equations for different elements of the localized spin

density matrix is a rather tedious exercise. The matrix elements are

ρ̃S
mm′(t) = 〈m|ρ̃S(t)|m′〉 , (A.18)

with m,m′ labeling the different energy levels of the localized spin in the mean-

field δŜz. A general form of the Master equation for ρ̃S
mm′ derived using the above

approximations is known as the Redfield equation [217, 218, 199], which we write

below after reverting to the Schrödringer picture

d

dt
ρ̂S

nm(t) = −iωnmρ̂S
nm(t) +

∑

ab

Rnmab(t)ρ̂
S
ab(t) , (A.19)

where Rnmab(t) are the elements of the Redfield tensor and ωnm=(En − Em)/~,

with the energies En of the localized spin experiencing the mean-field exchange

splitting. In the standard case (see e.g. [218, 199]) the elements of the Redfield

tensor are constants. Here, their time dependence comes from the dynamics of the

bath. They can be written as

Rnmab(t) = −
∑

k

(Γ+
nkka(t)δmb + Γ−

bkkm(t)δna) + Γ+
bmna(t) + Γ−

bmna(t) , (A.20)
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where

Γ+
mabn(t) =

1

~2

∑

ij

Si
maS

j
bn

∫ ∞

0

dt′ e−iωbnt′ C>
ij (t; t′) , (A.21a)

Γ−
mabn(t) =

1

~2

∑

ij

Sj
maS

i
bn

∫ ∞

0

dt′ e−iωmat′ C<
ij (t; t′) , (A.21b)

and Si
nm are the matrix element of the localized spin operators between different

eigenstates of Ŝz.

Let us define the Fourier transform of the correlation function:

Cij(t; ω) =

∫ ∞

−∞
Cij(t; t

′)eiωt′dt′ . (A.22)

Note that

C>
ij (t; ω) = C<

ji(t;−ω) , C<
ij (t; ω) = C>

ji(t;−ω) , (A.23)

and that if the bath density matrix at time t is of the equilibrium form described

by temperature Te(t) (βe(t)=1/kBTe(t)), then the correlation functions fulfill the

Kubo-Martin-Schwinger detailed balance condition (see e.g. [143]):

C>
ij (t; ω) = eβe(t)~ωC<

ij (t; ω) . (A.24)

We also write

∫ ∞

0

Cij(t; t
′)eiωnmt′dt′ =

∫ ∞

−∞

dω

2π

iCij(t; ω)

ωnm − ω + iη

= iP
∫ ∞

−∞

dω

2π

Cij(t; ω)

ωnm − ω
+

1

2
Cij(t; ωnm) . (A.25)

where P denotes the principle values of the integral.

We are mostly interested in the dynamics of the diagonal elements of the

density matrix, since they determine the average 〈Sz〉. Although generally ρ̂S
nn can

be driven by ρ̂S
ab (with a6=b) on the right-hand side of Equation (A.19), below we

will show that this is not the case here. Thus, for the dynamics of ρ̂S
nn only the

“diagonal” elements of the Redfield tensor are important, and we write them as

Rnnaa(t) = −δna

∑

k

Wkn(t) + Wna(t) , (A.26)
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where we have defined the transition rates

Wnm(t) = Γ+
mnnm(t) + Γ−

mnnm(t) . (A.27)

Using Equations (A.21a-A.21b), (A.23) and (A.25) we get

Wnm(t) =
1

~2

∑

ij

Si
mnS

j
nmC>

ij (t; ωmn) . (A.28)

Rate equation for spin-flip scattering

Let us now concentrate on our case, in which the localized spin-bath interaction is

given by Eq. (A.2). In Appendix C we show that for magnetization in 〈100〉 and

〈111〉 directions only the “spin-flip” correlation functions C±∓(t; t′) are non-zero.

As a result, we have

Γmabn ∼ S+
maS

−
bnC−+ + S−

maS
+
bnC+− , (A.29)

and it is easy to see that the rate equations for the diagonal elements of the den-

sity matrix involve only the diagonal elements, and the equations for off-diagonal

elements involve only off-diagonal ρS
nm. The rate equation for ρS

nn is

d

dt
ρS

m = −(Wm−1,m + Wm+1,m)ρS
m + Wm,m+1ρ

S
m+1 + Wm,m−1ρ

S
m−1 , (A.30)

where the t dependence is understood. The transition rates are given by Equation

(A.28), which we rewrite as

Wm,m±1 =
1

~2
|S±

m±1,m|2 C>
∓±(t;±δ/~) , (A.31)

in which the localized spin splitting δ appears. The Fourier transform of the

correlation function is

C>
∓±(t;±δ) =

∫ ∞

−∞
e±iδt′/~C>

∓±(t; t′)dt′ (A.32)

with

C>
∓±(t; t′) =

γ2

4V 2

∑

nk,n′k′

∑

lq,l′q′

〈nk|ŝ∓|n′k′〉〈lq|ŝ± |l′q′〉 〈a†
nk(t′)an′k′(t′)a†

lqal′q′〉t ,

(A.33)
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in which the eigenstates |nk〉 are taken at time t. The creation and annihilation

operators have the following time-dependence in the “local” interaction picture:

a†
nk(t′) = a†

nke
iǫnk(t)t′ (A.34a)

ank(t′) = anke
−iǫnk(t)t′ . (A.34b)

Using the expression for the average of the operator product:

〈a†
αaβa†

γaδ〉t = δαβδγδ fαfγ + δαδδβγ fα(1 − fβ) , (A.35)

we get

C>
∓±(t; t′) =

γ2

4

∑

n,n′

∫
d3k

(2π)3

∫
d3k′

(2π)3
|〈nk|ŝ∓|n′k′〉|2 ei(ǫnk−ǫn′k′

)t/~fnk(1 − fn′k′) ,

(A.36)

and finally the transition rates are given by

Wm,m±1 =
2π

~

γ2

4
|S±

m±1,m|2
∑

n,n′

∫
d3k

(2π)3

∫
d3k′

(2π)3
|〈n′k′|ŝ±|nk〉|2 fnk(1 − fn′k′)

× δ(ǫnk − ǫn′k′ ± δ) . (A.37)
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k · p Hamiltonian for (III,Mn)V

magnetic semiconductors

The k ·p theory is explained in many books and review articles (see e.g. [17]).

The starting point is the set of Bloch eigenstates eik0run(r) at a given point k0

in the Brillouin zone (here it is the Γ point, k0=0), with n numbering the bands

which we take into account. The k ·p effective Hamiltonian is a k-dependent n×n

matrix, which gives us the energies and eigenvectors at a k point close to k0. We

use the following set of basis states at Γ point of the III-V semiconductor:

u1 = |S〉|↑〉 ,

u2 = i|S〉|↓〉 ,

u3 =
1√
2

(|X〉 + i|Y 〉)|↑〉 = |3
2

3

2
〉 ,

u4 =
i√
6

[
(|X〉 + i|Y 〉)|↓〉 − 2|Z〉|↑〉

]
= |3

2

1

2
〉 ,

u5 =
1√
6

[
(|X〉 − i|Y 〉)|↑〉 + 2|Z〉|↓〉

]
= |3

2
− 1

2
〉 ,

u6 =
i√
2

(|X〉 − i|Y 〉)|↓〉 = |3
2
− 3

2
〉 ,

u7 =
1√
3

[
(|X〉 + i|Y 〉)|↓〉 + |Z〉|↑〉

]
= |1

2

1

2
〉 ,

u8 = − i√
3

[
(|X〉 − i|Y 〉)|↑〉 − |Z〉|↓〉

]
= |1

2
− 1

2
〉 .
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The first two are the conduction band states, and the remaining 6 functions are

the valence band states. The phases of these functions are chosen so that u2, u4,

u6, and u8 are the time-reversal counterparts of the u1, u3, u5, and u7 functions,

respectively (the time reversal operator is σ̂yK̂, where K̂ is the complex conjugation

operator). In this basis, the Kane Hamiltonian is given by





Eg + ~
2k2

2m̃e
0 i√

2
V k+

√
2
3
V kz

i√
6
V k− 0 i√

3
V kz

1√
3
V k−

0 Eg + ~2k2

2m̃e
0 i√

6
V k+

√
2
3
V kz

i√
2
V k−

1√
3
V k+

i√
3
V kz

− i√
2
V k− 0 P + Q L M 0 i√

2
L −i

√
2M√

2
3
V kz − i√

6
V k− L∗ P − Q 0 M −i

√
2Q i

√
3
2
L

− i√
6
V k+

√
2
3
V kz M∗ 0 P − Q −L −i

√
3
2
L∗ −i

√
2Q

0 − i√
2
V k+ 0 M∗ −L∗ P + Q −i

√
2M∗ − i√

2
L∗

− i√
3
V kz

1√
3
V k− − i√

2
L∗ i

√
2Q i

√
3
2
L i

√
2M P − ∆so 0

1√
3
V k+ − i√

3
V kz i

√
2M∗ −i

√
3
2
L∗ i

√
2Q i√

2
L 0 P − ∆so





(B.1)

where we have defined

V = −i
~

m0

〈S|p̂x|X〉 =

√

Ep
~2

2m0

,

P = − ~
2

2m0

γ̃1k
2 ,

Q = − ~
2

2m0
γ̃2(k

2
x + k2

y − 2k2
z) ,

L = i
~

2

m0

√
3γ̃3kzk−

M = − ~
2

2m0

√
3(γ̃2(k

2
x − k2

y) − i2γ̃3kxky) ,

= − ~
2

2m0

√
3(γ̃k2

− − µ̃k2
+) ,

with electron mass m0, bandgap energy Eg, energy Ep associated with the mo-

mentum matrix element between the conduction and the valence bands, spin-orbit

splitting ∆so, γ̃=(γ̃3+ γ̃2)/2, and µ̃=(γ̃3−γ̃2)/2. In the above Hamiltonian we have

neglected the terms linear in k in the valence band submatrix (see e.g. Ref. [17]
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ch. 3.3). Because we use 8 bands, the conduction band effective mass m̃e is renor-

malized:
1

m̃e
=

1

me
− 1

m0

Ep

3

(
2

Eg
+

1

Eg + ∆so

)
, (B.2)

where me is the effective mass in the single band model. Similarly, the renormalized

Luttinger parameters γ̃i are related to the usual γi by

γ̃1 = γ1 −
Ep

3Eg

, (B.3a)

γ̃2 = γ2 −
Ep

6Eg

, (B.3b)

γ̃3 = γ3 −
Ep

6Eg
, (B.3c)

The γi parameters are used in the 6 band Luttinger Hamiltonian [219, 220], which

has the same form as the 6 × 6 valence band submatrix of the Hamiltonian (B.1),

only with γ̃i replaced by γi. The band parameters for GaAs (InAs) are: Eg=1.52

eV (0.42 eV), ∆so=0.34 eV (0.39 eV), Ep=28.8 eV (21.5 eV), me=0.067 (0.026),

γ1=6.98 (20.0), γ2=2.06 (8.5), γ3=2.93 (9.2).

The sp-d exchange Hamiltonian in the mean-field approximation is given by

Ĥs−d = −niγ〈Ŝ〉 · ŝ , (B.4)

where γ is the exchange constant (equal to α for the conduction band and β for

the valence band), ni is the density of the localized spins and 〈Ŝ〉 is the average

localized spin. The matrix of the spin operator in the basis of the 8 states given

above has a block-diagonal form, with the conduction band spin 2 × 2 matrix

ŝ=σ̂/2, and the 6 × 6 valence band matrices:

ŝ+ =





0 i√
3

0 0
√

2
3

0

0 0 2
3
i 0 0 −

√
2

3

0 0 0 i√
3

0 0

0 0 0 0 0 0

0 0
√

2
3

0 0 i
3

0 0 0 −
√

2
3

0 0





(B.5)
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ŝ− =





0 0 0 0 0 0

− i√
3

0 0 0 0 0

0 −2
3
i 0 0

√
2

3
0

0 0 −i√
3

0 0 −
√

2
3√

2
3

0 0 0 0 0

0 −
√

2
3

0 0 − i
3

0





(B.6)

and

ŝz =





1
2

0 0 0 0 0

0 1
6

0 0 i
√

2
3

0

0 0 −1
6

0 0 −i
√

2
3

0 0 0 −1
2

0 0

0 −i
√

2
3

0 0 −1
6

i
3

0 0 i
√

2
3

0 0 1
6





. (B.7)

The operators of the spin in directions other than ẑ are given by

ŝx =
1

2
(ŝ+ + ŝ−) , (B.8a)

ŝy = − i

2
(ŝ+ − ŝ−) . (B.8b)



Appendix C

Some symmetry properties of

exchange-split bands in a cubic

semiconductor

The addition of a mean-field exchange interaction with localized spins ∆〈S〉 · ŝ
(with 〈S〉 the average localized spin and ŝ the carrier spin operator) to the carriers’

Hamiltonian lowers its symmetry. Let us take the full cubic group Oh as the

initial symmetry. This is an approximation for zinc-blende crystals which lack

the center of inversion, but we are not concerned here with small effects brought

by this lowered symmetry. When the average localized spin 〈S〉 is parallel to

one of 〈100〉 directions (we denote the magnetization direction as n), the order

of the group drops from 48 to 8, with the remaining symmetry operations being

the identity, rotations by π
2
,π,3π

2
around n axis and inversion multiplying all the

previous operations. Analogously, for magnetization in 〈111〉 direction there are 6

remaining symmetry operations (with rotations by 2π
3

and 4π
3

around n), and for

n parallel to 〈110〉 there are only 4 operations (with rotation by π around n ).

In the following we assume that the carriers’ density matrix is diagonal in the

basis of the energy eigenstates, giving the occupation function fα for the energy

ǫα (α=nk). First, let us prove that the average of the carrier spin-flip operators

F̂± is zero, as we asserted in Appendix A. Denoting the carrier average by 〈...〉C
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we have

〈F̂±〉C ∼
∑

αβ

〈α|ŝ±|β〉〈a†
αaβ〉C =

∑

α

〈α|ŝ±|α〉fα . (C.1)

Now we change the sum over all states α to a sum over an “irreducible” set of states

(e.g. an irreducible Brillouin Zone (IBZ)), and generate the symmetry-equivalent

states by rotations. For example, for a given state |α〉 we have symmetry-equivalent

states |αn〉=exp(−iφnŝ
z)|α〉, with allowed set of angles φn depending on the ori-

entation of the localized spin magnetization (defining the ẑ axis) with respect to

crystal axes. The ladder operators transform in the following way:

eiφŝz

ŝ±e−iφŝz

= e±iφŝ± . (C.2)

For the localized spin along the 〈100〉 directions, we get

〈F̂±〉 ∼
∑

α∈IBZ

fα〈α|ŝ±|α〉(1 ± i − 1 ∓ i) = 0 , (C.3)

and similarly we get zero for other high-symmetry directions: 〈111〉 and 〈110〉.
Let us look now at the correlation function Cij(t) (see Appendix A) for i=j.

It is proportional to

C±±(t) ∼
∑

αβ

fαfβ〈α|ŝ±|α〉〈β|ŝ±|β〉+
∑

αβ

eiωαβtfα(1−fβ)〈α|ŝ±|β〉〈β|ŝ±|α〉 . (C.4)

The first term is a product of two 〈F̂±〉C , and so it vanishes in the cases discussed

above. In the second term we have to transform pairs of states α,β simultaneously,

and the resulting phase factors are now e2iφn . As a consequence, it vanishes for n

parallel to 〈100〉 and 〈111〉, but not 〈110〉 (this was also noted in Ref. [222]) . In all

the calculations in Chapter 10 we always assume that the magnetization is along

one of the 〈100〉 directions, so that the Cii correlation functions are zero. Only the

“spin-flip” correlations

C±∓ ∼
∑

α,β

eiωαβtfα(1 − fβ)|〈α|ŝ±|β〉|2 (C.5)

remain.



Appendix D

Spin-flip transition rate in the 4

band spherical Luttinger model

The 4 band Luttinger Hamiltonian in spherical approximation is given by

Ĥsph = − ~
2

2m0

[(γ1 +
5

2
γ2)k

2 − 2γ2(k · ĵ)2], (D.1)

where γ1,γ2 are Luttinger parameters and ĵ is the spin-3/2 operator. The γ2

parameter in the above Hamiltonian is best approximated by an average of γ2 and

γ3 used in non-spherical Luttinger Hamiltonian. This Hamiltonian corresponds to

the limit of infinite spin-orbit splitting energy, and it is quite accurate for states

close in energy to the top of the valence band. Its diagonalization is easily done

for k parallel to ẑ (j quantization) axis. The eigenvectors are the eigenstates of ĵz,

and the energies are

ǫhh(k) =
−~

2k2

2mhh
, ǫlh(k) =

−~
2k2

2mlh
(D.2)

with mhh=m0/(γ1 − 2γ2) (for jz=±3/2) and mlh=m0/(γ1 + 2γ2) (for jz=±1/2).

Spherical symmetry of the Hamiltonian allows us to generate all the |nk〉 eigen-

vectors from |jz〉 states by a rotation in spin-3/2 space:

|nk〉 = e−iφĵze−iθĵy |jz〉 , (D.3)

where k vector is pointing in the direction described by (θ, φ) angles in the spherical

coordinate system.
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We use the following basis of |jz〉 states:

|3/2〉 =
1√
2
|(X + iY ) ↑〉 ,

|1/2〉 =
i√
6
|(X + iY ) ↓ −2Z ↑〉 ,

| − 1/2〉 =
1√
6
|(X − iY ) ↑ +2Z ↓〉 ,

| − 3/2〉 =
i√
2
|(X − iY ) ↓〉 .

In this basis the Hamiltonian (D.1) reads:

Ĥsph = − ~
2

2m0





P + Q M L 0

M∗ P − Q 0 −L

L∗ 0 P − Q M

0 −L∗ M∗ P + Q




, (D.4)

where

P = γ1k
2 ,

Q = γ2(k
2
x + k2

y − 2k2
z) ,

M =
√

3γ2k
2
− ,

L = −2i
√

3γ2k−kz ,

where k−=kx − iky.

From Wigner-Eckart theorem [223] we have that the spin operator ŝ−=1
3
ĵ−,

and in the above basis it is given by

ŝ− =





0 0 0 0

−i/
√

3 0 0 0

0 −2i/3 0 0

0 0 −i/
√

3 0




. (D.5)

The non-trivial operation in Equation (D.3) is the rotation about the ŷ axis,
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d̂(θ)=exp(−iθĵy), the matrix of which is given by

d̂(θ) =





c3 −i
√

3c2s −
√

3cs2 is3

−i
√

3c2s c(c2 − 2s2) −is(2c2 − s2) −
√

3cs2

−
√

3cs2 −is(2c2 − s2) c(c2 − 2s2) −i
√

3c2s

is3 −
√

3cs2 −i
√

3c2s c3




, (D.6)

where c=cos θ/2 and s=sin θ/2.

Using all this we arrive at the following form of the spin-flip matrix element

〈n′k′|ŝ−|nk〉 = − i

3
e−iφ

∑

m=−3/2...1/2

√
15/4 − m(m + 1)

× ei(φ′−φ)m dn′,m(θ′) dm+1,n(θ) . (D.7)

In the following we calculate analytically the spin-flip transition rate in the

limit of zero spin splitting of the valence band (∆=0 and thus δ=0). The W+−

matrix element is given by the following formula

W+− =
γ2

4

2π

~

∑

nn′

∫
d3k

(2π)3

∫
d3k′

(2π)3
|〈n′k′|ŝ±|nk〉|2

× fnk(1 − fn′k′) δ(ǫ̃nk − ǫ̃n′k′) , (D.8)

where γ is the exchange constant and fnk is the occupation of the |nk〉 state. Using

the simple energy dispersion of spherical Hamiltonian we arrive at

W+− =
γ2

4

2π

~

∑

nn′

In′n

∫ ∞

0

dEDn(E)Dn′(E)f(E)(1 − f(E)) , (D.9)

where Dn(E) is the density of states for the n-th subband and

In′n =
1

(4π)2

∫
dΩ

∫
dΩ′ |〈n′k′|ŝ−|nk〉|2 , (D.10)

where
∫

dΩ is the integral over all the possible directions of k. Because of the

double averaging over all possible directions of k and k′, the In′n factor is actually

independent of n and n′, and is equal to 5/72. So we finally get

W+− =
γ2

4

2π

~

5

72

∫ ∞

0

dED(E)D(E)f(E)(1 − f(E)) , (D.11)
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with the total density of states

D(E) =
1

π2~2

(
mhh

√
2mhh

~2
E + mlh

√
2mlh

~2
E
)

. (D.12)

In the limit of no spin splitting, the density of states for one spin is 1/2 of the

above D(E). Thus, in the naive calculation disregarding the matrix elements, one

would have a factor of 1/4 instead of 5/72 in Equation (D.11). This reduction of

W+− by 5/18 compared to the result obtained from densities of states is expected

to be weaker in 6 band Luttinger model, where a finite value of spin-orbit splitting

is used. Our numerical integration procedures described in Appendix E were tested

on the spherical 4 band model, reproducing the above results with high accuracy.



Appendix E

Numerical calculations of

densities of states and transition

rates in a k · p model

We have calculated the valence bandstructure of (III,Mn)V ferromagnetic semi-

conductor using an effective k · p Hamiltonian approach [175]. The explicit forms

of the 8 × 8 Kane Hamiltonian, the 6 × 6 Luttinger Hamiltonian, and the Hp−d

matrix are given in Appendix B (see also Refs. [180, 29, 222]). In the presence

of exchange splitting the symmetry of the Hamiltonian is lowered, and the irre-

ducible part of the Brillouin zone (IBZ) is 1/8 of the entire zone (assuming that

the magnetization is in one of 〈100〉 directions). Since the k ·p model that we use

is accurate up to wave-vectors about 1/4 of the BZ away from the Γ point [221],

and we restrict all the k-space integrals to this region, we can choose our effective

IBZ to be a cube (e.g. ki≥0, i=x,y,z). We have divided this IBZ into N3 cubic

cells, and diagonalized the k · p Hamiltonian for k vectors located at the centers

of the cells.

An example of spin-split bandstructure for GaMnAs with ∆=0.15 eV is plotted

in Figure 10.6 The spin-projected densities of states Ds in this Figure have been

172



173

calculated from the formula

Ds(E) =
∑

n

∫
d3k

(2π)3
δ(E − ǫnk) 〈nk|P̂s|nk〉 , (E.1)

where ǫnk is the energy of the |nk〉 eigenstate, and P̂s is the operator projecting

on a given spin direction s=↑,↓:

P̂s = |s〉〈s| .

We have numerically evaluated the Equation (E.1) using Gilat’s method [224,

225]. In this method, the isoenergy surfaces within each cell are approximated by

planes. The area of such a plane of energy E for N -th band intersecting the k-th

cell is given by Snk(E), which is a function of energy gradient ∇kǫnk calculated at

the k point [224]. If we treat the matrix elements as constant within each cell, we

have then

Ds(E) ≈ 8

(2π)3

∑

n

∑

k∈IBZ

〈nk|P̂s|nk〉Snk(E)

|∇kǫnk|
. (E.2)

At the additional computational expense of calculating the gradients of the spin-

projection operator matrix elements, we have employed a generalization of this

method [225], which takes into account the variation of these matrix elements inside

the cell. The resulting Ds(E) are practically free of visible numerical inaccuracies

for N≥30.

The calculation of the transition rate W+− (Eq. (10.29)) which involves a

double integration over the relevant part of Brillouin Zone (restricted by occupation

factors), is performed in the following way. Omitting the overall constant, we write

the transition rate as

W+− =
∑

n

∫
d3k

(2π)3
fnk

∑

n′

∫
d3k′

(2π)3
(1 − fn′k′) |〈n′k′|ŝ−|nk〉|2 δ(ǫnk − ǫn′k′ − δ) .

(E.3)

For the numerical calculation, we approximate it by

W+− ≈ 8∆k3

(2π)6

∑

n,k∈IBZ

f(ǫnk)(1−f(ǫnk−δ))
∑

n′,k′

|〈n′k′|ŝ−|nk〉|2Sn′k′(E − δ)

|∇k′ǫn′k′| , (E.4)
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where ∆k3 is the volume of the cell in k-space. The integral with respect to k

has been converted to a sum over the cells in IBZ (times the symmetry factor of

8). The domain of the second integral is a full Brillouin Zone, and we evaluate

it by Gilat’s method, with matrix elements taken as constant inside the cells.

For the evaluation of matrix elements, we use only the eigenvectors obtained by

diagonalization of the Hamiltonian within the IBZ, and transform them into other

parts of BZ using symmetry transformations (four-fold rotation around ẑ axis

and inversion, all having simple representations in |jm〉 basis). The accuracy of

this numerical approach has been tested by numerical calculation of W+− for the

spherical 4 band Luttinger model, which is done analytically in Appendix D. With

N=30, we have achieved 5 digit accuracy in reproducing the reduction factor of

5/18. We have also checked how the transition rates calculated in 6 band model

change with N . The difference between results for N=20 and 30 is about 2%.

Taking into account all the other approximations used by us and uncertainties in

values of some of the parameters (e.g. hole concentration), we have used N=20

for the calculations presented in this dissertation.
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