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Abstract— The efficiency of a communication network de-
pends not only on its control protocols, but also on the un-
derlying network topology. We propose a distributed topol-
ogy management algorithm that constructs and maintains
a backbone topology based on a minimal dominating set
(MDS) of the network. According to this algorithm, each
node determines the membership in the MDS for itself and
its one-hop neighbors based on two-hop neighbor informa-
tion that is disseminated among neighboring nodes. The
algorithm then ensures that the members of the MDS are
connected into a connected dominating set (CDS), which
can be used to form the backbone infrastructure of the com-
munication network for such purposes as routing. The cor-
rectness of the algorithm is proven, and the efficiency is
compared with other topology management heuristics us-
ing simulations. Our algorithm shows better behavior and
higher stability in ad hoc networks than prior algorithms.

Keywords: Topology management; connected dominat-
ing set; topology control.

I. Introduction

The topology of an ad hoc network plays a key role in
the performance of control algorithms in the network. In
many cases, not all network links are needed for communi-
cation purposes. Weeding out redundant and unnecessary
topology information, usually referred to as topology man-

agement, can sigficantly improve the performance of ad hoc
networks, and sustain network operations over extended
period of time. Topology management has been effectively
applied in ad hoc networks to supplement routing control
protocols, such as CEDAR [27], [28], and to schedule effi-
cient channel access to propagate broadcast data [11].

Topology management in ad hoc networks is an approach
to hierarchically organizing networks, and should be dif-
ferentiated from topology control through power control.
Both approaches can serve the energy efficiency and in-
terference reduction purposes, critical for ad hoc wireless
networks. However, power control mechanisms save the
energy consumption of individual nodes and reduce mu-
tual interference by adjusting the transmit power level on
a per-node basis, so that one-hop neighbor connectivity is
balanced and overall network connectivity is ensured [16],
[23], [29]. While topology management mechanisms are
based on hierarchical topology organization, in which a
subset of the network nodes is selected to serve as the net-
work backbone to support essential network control func-
tions [19]. Such approach is commonly known as cluster-

ing. This way, networks nodes are connected to a select
set of clusterheads, which in turn are connected with one
another directly or by means of gateways. Once the net-
work clustering stabilizes, the clusterheads and the gate-

ways coordinates routing and channel access functions to
help reduce the complexity of topology maintenance, and
simplify routing, bandwidth allocation, channel access sup-
ports. With fewer nodes providing overall network control
and data forwarding support, the ad hoc networks create
less interference and consume less energy.

Significant works have focused on topology control al-
gorithms in order to maintain network connectivity and
improve routing performance, while reducing energy con-
sumption and interference. Li et al. proved that network
connectivity is minimally maintained as long as the de-
creased power level keeps at least one neighbor remaining
connected at every 2π/3 to 5π/6 angular separation [20].
Ramanathan et al. proposed to incrementally adjust nodal
power levels so as to keep network connectivity at each
step [25]. Heuristics for energy aware routing using topol-
ogy control mechanisms were also well explored in the
past [18], [21]. However, topologies derived from power
control mechanisms result in unidirectional links, cause
harmful interference in the MAC layer [24], and compli-
cates routing protocol designs [5]. Furthermore, some dis-
tributed implementations of these algorithms can hardly
improve the throughput of mobile networks [25].

In this paper, we focus on topology management mecha-
nisms to elect a minimum and sufficient number of links to
serve as the communication backbone of the network. Ac-
cordingly, the clustering approach to topology management
can be modeled as the minimum dominating set (MDS)
problem and the relevant minimum connected dominating
set (MCDS) problem in graph theory.

The first MDS problem is to find a dominating set of
nodes with the following property: each node is either in
the dominating set, or is adjacent to a node in the domi-
nating set. The problem of computing the minimum dom-
inating set is known to be NP-hard [1], [13] even with the
complete network topology. In distributed environments
such as ad hoc networks, it is impossible to compute the
“minimum” dominating sets. Therefore, we approximate
the MDS solutions by computing a minimal dominating
set using various heuristics in polynomial steps.

The second MCDS problem is to induce a subgraph of
the original graph such that the induced subgraph includes
the MDS, and has the the same number of connected com-
ponents as the original graph. The MCDS problem is an-
other well-known NP-complete problem in graph theory.
Accordingly, MCDS solutions are also approximated by
sub-optimum solutions by computing a minimal connected
dominating set (CDS) in the networks.
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Many heuristics to derive CDS have been proposed in the
past, which followed two strategies: through negotiations
or by applying deterministic criteria. Negotiations require
multiple incremental steps, such as the “core” extraction
algorithm [28], the spanning-tree algorithm [15], the ran-
domize election algorithm SPAN [9] and the latency-aware
algorithm STEM [30], and may incur an election jitter dur-
ing the process due to the lack of consensus about the nodes
being elected as the clusterheads.

In contrast, deterministic criteria can determine the clus-
terheads in a single round. Different heuristics have been
used to form clusters and to elect clusterheads. We discuss
the following popular approaches, which serve as bench-
mark comparisons to our algorithms:

1) Lowest ID: Several approaches utilized the node
identifiers to elect the clusterhead within one or multiple
hops [1], [3], [12], [14], [22]. For simplicity, we refer to
this approach as Lowest ID in our comparative analysis.
Banerjee and Khuller assigned a weight value to each node
for clusterhead election, which is essentially the same as
Lowest ID [4].

2) Max Degree: The node degree is another commonly
used heuristic in which nodes with higher degrees are more
likely to become clusterheads [15], [17], [28]. We refer to
this approach as Max Degree. Chiang et al. have shown
that the Lowest ID algorithm performs better than the
clusterhead election algorithms based on node degrees in
terms of clusterhead stability in ad hoc networks [10].

3) MOBIC: Basu et al. suggested to use the mean
received-signal strength variations as the metric in clus-
terhead elections, which favors relatively stationary nodes
to become the clusterheads [8]. We refer to this approach
as MOBIC.

4) Load Balance: In topology management, cluster-
heads usually drain their energy more quickly than normal
nodes. Therefore, a clusterhead election algorithm must
also consider load balancing of the clusterhead role to avoid
node or network failure. Amis et al. provided clusterhead
load balancing, which we call Load Balance, by running
a virtual identifier (VID) and a budget counter at each
node [2]. Load Balance uses the VID for elections, and
the budget for the clusterhead term, thus posing equal op-
portunity for each node to become a clusterhead.

However, the existing heuristics have addressed only
some aspects of characteristics in ad hoc networks, such
as load-balancing, mobility, or algorithmic convergence,
while ignoring the others. We introduce a novel approach
to solving the connected dominating set election problem,
which we call topology management by priority ordering or
TMPO that integrates multiple factors (energy and mo-
bility) into a single metric for cluster election decisions.
Our approach uses the neighbor-aware contention resolu-
tion (NCR) algorithm [6] to provide fast convergence and
load-balancing with regard to the battery life and mobil-
ity of mobile nodes. Based on NCR, TMPO assigns ran-
domized priorities to mobile stations, and elects a minimal
dominating set (MDS) and the connected dominating set
(CDS) of an ad hoc network according to these priorities.

In doing so, TMPO requires only two-hop neighbor in-
formation for the MDS elections. The dynamic priorities
assigned to nodes are derived from the node identifiers and
their “willingness” to participate in the backbone forma-
tions. The willingness of a node is a function of the mobility
and battery life of the node. The integrated consideration
of mobility, battery life and deterministic node priorities
makes TMPO one of the best performing heuristics for
topology management in ad hoc networks.

The rest of the paper is organized as follows. Section II
describes the network topology assumptions made in this
paper. Section III specifies the minimal dominating set
(MDS) election algorithm based on node priorities. Sec-
tion IV describes the algorithm that extends the MDS into
a connected dominating set (CDS) of an ad hoc network.
Section V proves the correctness of these MDS and CDS
election algorithms. Section VI analyzes the average size of
the elected MDS using a probabilistic model. Section VII
compares TMPO with other CDS computation algorithms
using simulations. Section VIII summarizes the paper and
its key contributions.

Clustering algorithms that build clusters within d hops
from the clusterhead (called d-clustering) have also been
proposed [1], [19], [26]. However, d-clustering requires
flooding in search of clusterheads [1], thus obviates the
purpose of the topology management for efficiency. In this
paper, we only consider clustering approaches in which a
host is always one hop away from a clusterhead.

II. Network Assumptions and Notation

This work assumes that an ad hoc network comprises
a group of mobile nodes communicating through a com-
mon broadcast channel using omni-directional antennas
with the same transmission range. The topology of an
ad hoc network is thus presented by an undirected graph
G = (V, E), where V is the set of network nodes, and
E ⊆ V ×V is the set of links between nodes. The existence
of a link (u, v) ∈ E also means (v, u) ∈ E, and that nodes u
and v are within the packet-reception range of each other,
in which case u and v are called one-hop neighbors of each
other. The set of one-hop neighbors of a node i is denoted
by N1

i . Two nodes that are not connected but share at least
one common one-hop neighbor are called two-hop neighbor

of each other.

Each node has one unique identifier, and all trans-
missions are omni-directional with the same transmission
range. Time is synchronized among the network, such that
the current time t is numerically labeled based a predefined
time unit.

In addition, we assume that each node has up-to-date
information about neighbors with two hop distance. Such
information can be acquired by each node broadcasting
any updates about its one-hop neighbors. Bao and Garcia-
Luna-Aceves have proposed approaches for acquiring and
synchronizing two-hop neighbor information [7].

For convenience, the notation and terminology used in
the rest of this paper are summarized in Table I.



3

TABLE I

Notation

MDS The minimal dominating set.
CDS The connected dominating set.
Clusterhead A member of the MDS in a network.
Gateway A node that connects clusterheads to form

the CDS of the network.
Doorway A node that extends the reach of a cluster-

head to form the CDS.
Host A regular client of a network.

N1
i The set of one-hop neighbors of node i.

T Node priority recomputation interval.
i.off Time slot offset of node i for priority re-

computation.
i.prio The priority of node i.
i.type The type of node i, which is one of cluster-

head, host, gateway and doorway.
i.ch The clusterhead elected by node i.
i.workfor A set of clusterheads or doorways that

node i connects to form the CDS.

Ei The energy level of node i.
si The speed of node i in terms of meters per

second.
Wi The willingness value of node i.

III. Minimal Dominating Set

A. Clusterhead Election Approach

Our approach to establishing a minimal dominating set
(MDS) is based on three key observations. First, using
negotiations among nodes to establish which nodes should
be in the MDS incurs substantial overhead when nodes
move around and the quality of links changes frequently.
Hence, nodes should be allowed to make MDS membership
decisions based on local information. Second, because in
an MDS every node is one hop away from a clusterhead,
the local information needed at any node needs to include
only nodes that are one and two hops away from the node
itself. Third, having too many clusterheads around the
same set of nodes does not lead to an MDS. Hence, to attain
a selection of nodes to the MDS without negotiation, nodes
should rank one another using the two-hop neighborhood
information they need.

Based on the above, the approach adopted in TMPO

consists of each node communicating to its neighbors in-
formation about all its one-hop neighbors. Using this in-
formation, each node computes a priority for each node
in its two-hop neighborhood, such that no two nodes can
have the same priority at the same instant of time. A node
then decides to become a clusterhead if either one of the
following criteria are satisfied:
1. The node has the highest priority in its one-hop neigh-
borhood.
2. The node has the highest priority in the one-hop neigh-
borhood of one of its one-hop neighbors.

Figure 1 illustrates the two criteria that make node i a
clusterhead. In Figure 1 (a), node i has the highest priority
among its one-hop neighbors. In Figure 1 (b), node i has
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Fig. 1. Two cases that enable node i becoming a clusterhead.

the highest priority among node b’s one-hop neighbors. The
number next to each node is the sample priority at a partic-
ular moment. For convenience, we represent node priorities
using fractional numbers over the range [0, 1) throughout
this paper. The algorithms can be easily converted to in-
teger operations in practice. We discuss the computation
of node priorities in the following sections.

B. Components of Node Priorities

Given that clusterheads provide the backbone for a num-
ber of network control functions, their energy consumption
is more pronounced than that of ordinary hosts. Low-
energy nodes must try to avoid serving as clusterheads to
save energy. However, to balance the load of serving as
clusterheads, every node should take the responsibility of
serving as a clusterhead for some period of time with some
likelihood. Furthermore, node mobility has to be consid-
ered in clusterhead elections, so that the MDS experiences
the least structural changes over time.

To take into account the mobility and energy levels of
nodes in their election as members of the MDS, we define
the two-hop neighbor information needed to assign node
priorities as consisting of three components: (a) the identi-
fiers of the node’s neighbors, (b) the present time, and (c)
a “willingness” value assigned to a node as a function of its
mobility and energy level.

We denote the willingness value of node i by Wi, the
speed of node i by a scalar si ∈ (0,∞) in terms of meters
per second, and the remaining energy on node i as Ei ∈
[0, 1). The willingness Wi = f(si, Ei) is a function that
should be defined according to the following criteria:

1. To enhance survivability, each node should have the re-
sponsibility of serve as a clusterhead with some non-zero
probability determined by its willingness value.
2. To help with the stability of the MDS and the frequency
with which clusterhead elections must take place, the will-
ingness value of a node should remain constant as long as
the variation of the speed and energy level of the node do
not exceed some threshold values.
3. To avoid electing clusterheads that quickly lose connec-
tivity with their neighbors after being elected, the willing-
ness value of a node should decrease drastically after the
mobility of the node exceeds a given value.
4. To prolong the battery life of a node, its willingness
value should decrease drastically after the remaining energy
of the node drops below as given level.
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There are many possible functions that can be used to
compute the willingness value of a node while adhering to
the above criteria. Our approach is given by Eq. (1).

Wi = (c1 · Ei) = 2log
2
(c1·Ei) log

2
(si+c2) (1)

in which the constants c1 and c2 eliminate the boundary
conditions in their respective logarithmic operations. We
set c1 < 1, and c2 ≥ 2 so that the component log2(c1 · Ei)
always yields negative values and log2(si + c2) positive val-
ues in Eq. (1), thus rendering desirable higher willingness
values in the high energy and low speed situations, while
giving close to zero values in the low-energy and high-speed
region. Figure 2 illustrates the effect of the two factors on
the willingness values.
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Fig. 2. The willingness function based on speed and remaining energy
when c1 = 0.9 and c2 = 2 in Eq. (1).

C. Clusterhead Election Algorithm

As stated before, time is slotted, and the time parameter
is represented by the current time-slot number. Node pri-
orities are computed using a pseudo-random number gener-
ator based on the node identifiers, their willingness values,
and the current time.

The priorities of nodes change periodically to trigger
clusterhead re-elections aimed at distributing the role of
clusterheads among nodes. The recomputation period is
denoted by T and is a multiple of time slots and is the
same for all nodes in the network.

The priority of each node is recomputed asynchronously
using a time-slot offset so as to avoid synchronous sudden
loss of the old network states. Eq. (2) is used at each node
i to compute locally its time-slot offset, which is denoted
by i.off.

i.off = ⌊Hash(i) · T ⌋ (2)

where the function Hash(x) is a pseudo-random number
generator that produces a uniformly distributed random
number over range [0, 1) based on the input bit-stream x.
The floor operation gives an integer offset.

The recomputation of the priority of a node happens
whenever the current time slot is a multiple of the recom-
putation period T plus the time-slot offset of the node, i.e.,

when the current time is t = kT + i.off, and k = 0, 1, · · ·.
At that time slot, the priority of node i, denoted by i.prio,
is recomputed according to the following formula:

i.prio = Hash(k ⊕ i) · Wi ⊕ i (3)

where the function Hash is the same as the one defined
for Eq. (2), and the sign “⊕” is designated to carry out
the bit-concatenation operation on its operands, and has
lower order than other operations. The concatenation with
i in the final result is included to distinguish the priorities
of different nodes. Once computed, the priority of a node
remains the same during the entire recomputation period
T .

Because each node knows the node identifiers of its two-
hop neighborhood, node i can determine locally which
other nodes must recompute their priorities during the
same time slot from Eq. (2). Because the willingness values
are reported by nodes in its two-hop neighborhood, node i
uses Eq. (3) to compute its own priority and the priorities of
all nodes in its two-hop neighborhood that must recompute
their priorities. Because Eq. (3) renders different priority
values for different node identifiers, only one node can be
selected to have the highest priority during the time slot
when node i must recompute its priority. Once nodes have
consistent two-hop neighborhood information, if node i de-
cides that it must become a clusterhead, its neighbors do
too, because the nodes run the same algorithms using the
same information.

The algorithms for determining the clusterhead status of
node i are described in Figures 3 – 4 using C-style pseudo
code.

/* Initialize */
Init(i, t)
{
1 i.workfor = ∅;
2 Wi = 2log

2
(Ei∗0.9) log

2
(si+2);

3 i.type = Host;

/* Recompute priorities. */
4 for (j ∈ N1

i ∪ (
S

k∈N1

i

N1
k
)) {

5 if (t ≡ 0)
6 j.prio = Hash(j) · Wj ⊕ j;
7 else if (t − j.off mod T ≡ 0)

8 j.prio = Hash( t−j.off
T

⊕ j) · Wj ⊕ j;
9 }
} /* End of Init. */

Fig. 3. TMPO function for initialization.

Function Init in Figure 3 initializes the data structures
at node i. For simplicity, the energy level and speed remain
constant until the beginning of the next recomputation pe-
riod. The willingness value of node i is computed according
to Eq. (1) and the nodal type is initialized to Host (Init

lines 2-3). Node i also computes the priority for each two-
hop neighbor according to the recomputation period of the
neighbor (Init lines 4-9).

Function isClusterhead in Figure 4 elects the cluster-
head of a node i, which is indicated by the field i.ch in the
neighbor data structure.
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isClusterhead(i)
{
1 for (j ∈ N1

i ∪ {i}) {
2 j.ch = j;

/* Find j’s clusterhead. */
3 for (k ∈ N1

j )

4 if (k.prio > j.ch.prio)
5 j.ch = k;

6 if (j.ch ≡ i)
7 i.type = Clusterhead;
8 }
} /* End of isClusterhead. */

Fig. 4. TMPO function for electing a clusterhead.

If node i becomes a clusterhead after computing the
MDS using function isClusterhead, its clusterhead-type
attribute needs to be propagated to its two-hop neighbors
for further computations.

D. Effect of Willingness Value in Clusterhead Election

We analyze the effect of the willingness value in the prob-
ability of a node becoming a clusterhead.

We denote the priority of node nk by pk and its willing-
ness value by Wk in the following discussion. According to
Eq. (3), the priority pk is a random variable uniformly dis-
tributed over the range (0, Wk]. Therefore, the probability
of priority pk being less than x is P{pk < x} = x

Wk

.
Suppose that we have a node with other n−1 contenders

in the clusterhead election, where each is assigned a willing-
ness value over the range (0, 1]. To derive the probability
of a node being elected as a clusterhead in the group, we
sort nodes by their willingness values in decreasing order,
and denote the sorted nodes as n1, n2, · · ·, nn, accordingly.
The node of our interest is located at the k-th position,
nk. As a result, the willingness value range is divided into
n ranges where the priority values of these nodes may re-
side: (Wn+1, Wn], (Wn, Wn−1], · · ·, (W2, W1]. The con-
stant Wn+1 = 0 is added to normalize the expressions.

Therefore, the probability of node nk being elected as
clusterhead with other n − 1 contenders is:

P{nk becoming clusterhead} =

n
∑

i=k

W i
i − W i

i+1

i ·
∏i

j=1 Wj

.

Figure 5 shows the variation of the probability of node
i being elected as the clusterhead when it has five other
nodes contending for the clusterhead role. The other five
nodes have fixed willingness values as indicated in the fig-
ure, while node i’s willingness increases from 0.01 to 1.
As the probability of node i being elected as clusterhead
increases in response to the increments in its willingness,
those of the other nodes decrease. When the willingness
value becomes larger, the probability increases faster. Node
n5’s probability of becoming clusterhead is almost negligi-
ble in the figure.

Once elected, the clusterheads and the gateways help
to reduce the complexity of maintaining topology infor-
mation, and can simplify such essential functions as rout-
ing, bandwidth allocation, channel access, power control
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Fig. 5. Probability becoming a clusterhead when node i increases
Wi from 0 to 1, and other n odes remain constant.

or virtual-circuit support, in which cases, the clusterhead
stability is another important factor in keeping the cluster
maintenance cost down [1].

IV. Connected Dominating Set

A. CDS Election

Because the maximum distance from a clusterhead in the
minimal dominating set (MDS) to the closest clusterhead
is three, which we prove in Theorem 2, we can derive the
CDS of a network by adding some nodes to the MDS, such
that clusterheads within two or three hops are connected.
Two other types of nodes, called doorways and gateways,
are elected to derive the CDS based only on the priorities
of the neighbors with two hops from each node.

The CDS of a network topology is constructed in two
steps. In the first step, if two clusterheads in the MDS
are separated by three hops and there are no other cluster-
heads between them, a node with the highest priority on
the shortest paths between the two clusterheads is elected
as a doorway, and is added to the CDS. Therefore, the ad-
dition of a doorway brings the connected components in
which the two clusterheads reside one hop closer.

In the second step, if two clusterheads or one clusterhead
and one doorway node are only two hops away and there
are no other clusterheads between them, one of the nodes
between them with the highest priority becomes a gateway

to connect clusterhead to clusterhead or doorway to clus-
terhead. After these steps, the CDS is formed. Figures 6 –
7 specify the two steps, and the function TMPO in Figure
8 combines all the topology management algorithms.

Function isDoorway in Figure 6 determines whether
node i can become a doorway for other clusterheads. To
decide whether node i becomes a doorway for clusterhead
n and j, node i needs to assert that

1. Clusterheads n and j are not two hops away (isDoor-

way lines 3-7 illustrated by case (a) in Figure 9).
2. There is no other clusterhead m on the shortest path
between clusterhead n and j (isDoorway lines 8-11 illus-
trated by case (b) and (c) in Figure 9).
3. There is no other node m with higher priority than node
i on the three-hop path between clusterhead n and j (is-
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isDoorway(i)
{
1 if (i.type ≡ Clusterhead)
2 return;

3 for (j ∈ N1
i and j.type ≡ Clusterhead) {

4 for (k ∈ N1
i and k 6= j

and k.type 6= Clusterhead) {
5 for (n ∈ N1

k
, n.type≡Clusterhead

and n 6∈ N1
i ∪ N1

j ) {

/* Case (a) in Figure 9. */
6 if (∃m ∈ N1

i , {j, n} ⊆ N1
m)

7 continue n;

8 for (m ∈ N1
i ) {

/* Case (b) or (c) in Figure 9. */
9 if (n ∈ N1

m and ((m.type ≡ Clusterhead) or
(∃p ∈ N1

i ∩ N1
m, p.type ≡ Clusterhead)))

10 continue n;
11 } /* m */

12 for (m ∈ N1
i ∩ N1

n) {
/* Case (d) in Figure 9. */

13 if ((m.prio > i.prio) or
14 (∃p ∈ N1

j ∩ N1
m, p.prio > i.prio))

15 continue n;
16 } /* m */

17 i.type = Doorway;
18 i.workfor = i.workfor ∪{j, n};
19 } /* n */
20 } /* k */
21 } /* j */
} /* End of isDoorway. */

Fig. 6. TMPO function for electing a doorway.

Doorway lines 12-16 illustrated by case (d) in Figure 9).
If the three assertions are satisfied, node i becomes a

doorway (isDoorway line 17). The attribute i.workfor is
the set of clusterheads that make node i become a door-
way (isDoorway line 18). A doorway needs to notify its
one-hop neighbors about its current status for gateway elec-
tions.

Function isGateway in Figure 7 determines whether
node i becomes a gateway to connect two clusterheads or
one clusterhead and another doorway, k and j (isGate-

way lines 3-8). According to Figure 10, if there is another
clusterhead or doorway between node k and j (isGate-

way line 10), or there is another node with higher priority
than node i between node k and node j (isGateway line
11), node i cannot become a gateway. Otherwise, node i
becomes a gateway, and the attribute i.workfor is the set
of nodes that make i become a gateway (isGateway lines
13-16).

Function TMPO is called after every neighbor informa-
tion update or when the recomputation period of a neigh-
bor starts. After calling TMPO, if node i changes its
role between clusterhead, doorway, gateway and host, then
node i needs to propagate its new status to its neighbors.
Note that the status changes to and from doorway and
gateway are propagated only to one-hop neighbors, while
the status changes from/to clusterheads are required to
propagate within two hops, so as to inform other nodes
when constructing the CDS. It is the responsibility of a

isGateway(i)
{
1 if (i.type ∈ {Clusterhead, Doorway})
2 return;

3 for (j ∈ N1
i

4 and j.type ∈ {Clusterhead, Doorway}) {
5 for (k ∈ N1

i and k 6= j and k 6∈ N1
j and

6 k.type ∈ {Clusterhead, Doorway} and
7 (k.type 6≡ Doorway or
8 j.type 6≡ Doorway) {
9 if (∃n ∈ N1

j ∩ N1
k
, n 6= i and

(/* Case (a) in Figure 10. */
10 n.type ∈ {Clusterhead, Doorway} or

/* Case (b) in Figure 10. */
11 n.prio > i.prio))
12 continue k;
13 else {
14 i.type = Gateway;
15 i.workfor = i.workfor ∪{j, k};
16 }
17 } /* k */
18 } /* j */
} /* End of isGateway. */

Fig. 7. TMPO function for electing a gateway.

TMPO(i, t)
{
1 i.oldType = i.type;
2 Init(i, t);
3 isClusterhead(i);
4 isDoorway(i);
5 isGateway(i);

6 /* i’s status changes? */
7 if (i.type 6= i.oldType)
8 Propagate i.type;
} /* End of TMPO. */

Fig. 8. TMPO description

neighbor protocol to propagate the changes in node types
to the one- and two-hop neighbors in time.

B. CDS Connections

The backbone topology is constructed by using links
between the elected clusterheads, doorways and gateways
present in the original network topology according to the
following rules:

R1: All links between clusterheads are kept in the back-
bone topology.
R2: The one-hop links from doorways and gateways to the
nodes in their respective sets workfor are kept in the back-
bone topology. Some nodes in the workfor set may be out-
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Fig. 9. Four cases that may disable node i from becoming a doorway
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Fig. 10. Two cases that disable node i from becoming a gateway.

side of the one-hop neighborhood for doorways, and there
are no links from the doorways to these nodes.

The links of the original network topology between gate-
ways or between doorways are not kept in the CDS. Door-
ways are alway attached to a clusterhead on one end and
a gateway on the other end. Gateways are alway attached
with clusterheads or doorways.
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Fig. 11. A network topology control example.

Figure 11 illustrates the backbone topology construction
process using TMPO in four steps on a network graph
generated by randomly placing 100 nodes over a 1000×1000
square meter area. The radio reception range is 200 meters
for all nodes. In Figure 11 (a), every node is a host and
network connectivity is very dense in some parts of the net-
work, which increases the overhead of network control func-
tions. In Figure 11 (b), clusterheads are elected, but are
disconnected from each other. Hosts are attached to their
corresponding clusterheads in their one-hop neighborhood.
In Figure 11 (c), gateways are elected. Without adding
doorways for extending the coverage of clusterheads, we
see that adding gateways alone cannot guarantee the con-
nectivity of the backbone topology. Once the doorways
are added after the clusterheads election in Figure 11 (d),
gateways are again inserted, and the CDS is formed over
the original network topology using the CDS construction
rules.

The stability of the backbone topology is an important
goal in TMPO, and is achieved by the following mecha-
nisms. First, the period of willingness adjustment is long
to allow enough time to adjust to clusterhead changes. Sec-
ond, the willingness value is directly related with the speed
of nodes. Fast moving nodes get fewer chances to become
a clusterhead than slowly moving or static nodes, thus de-
creasing the possibility of topology changes due to mobility.
Third, the willingness value is also related to the remaining
energy of the node, so that the clusterhead role is sustained
longer and fewer topology changes happen. Forth, except
for clusterheads, doorways and gateways are not put in
the routing tables built over the CDS, but only provide
links between clusterheads. When doorways or gateways
fail, there can be other hosts taking over the role, without
any routing updates. The transient period between clus-
terhead connection re-establishment is equal to the delay
of the neighbor protocol propagating one-hop neighbor up-
dates. Lastly, nodes change their priorities asynchronously,
thus avoiding synchronization problems from clusterhead
changes and routing updates.

C. Application of Topology Management

The CDS obtained from TMPO reduces the topology
information at each node with just enough links to main-
tain network connectivity. Previous research has gone
down this path using different topology control algorithms,
and applied the derived backbone topology to efficient data
forwarding or the provision of QoS services [28], [9].

C.1 Efficient Routing

Routing information requires only enough active nodes in
the network for connectivity and data forwarding purposes
among hosts and routers. The number of active nodes can
be dramatically smaller than the total number of nodes
in the network. The CDS of an ad hoc network provides
the backbone of the network for this purpose, where clus-
terheads are responsible for receiving or delivering data
packets to hosts under their dominance, while gateways
and doorways forward data packet between clusterheads
for which they work.

Another application for the CDS problem consists of car-
rying out reliable broadcasts in ad hoc networks, such that
each message from a source node reaches every other net-
work node reliably. Without proper control, broadcast
messages may incur very high overhead as each node is
exposed to multiple copies of the same message. Utilizing
the CDS in the network, only clusterheads need to broad-
cast, while the intermediate doorways and gateways relay
the message between gateways and can use more reliable
mechanisms to do so.

C.2 Energy Conservation

Energy consumption by nodes in an ad hoc network is
due to the data flows generated or forwarded by each node,
as well as the signaling overhead of network control proto-
cols. In a network with a flat network topology manage-
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ment, nodes can consume large amounts of energy by main-
taining routing information exchanges with every neighbor.

To balance energy consumption as well as to maintain
network connectivity, TMPO elects a backbone of routers
(the CDS) to serve the network routing functionalities
based on their energy levels and mobility. Only cluster-
heads, doorways and gateways need to stay awake contin-
uously. Hosts that are not serving data forwarding can be
put in sleeping mode so as to conserve energy and pro-
long the network lifetime. Routers in the CDS buffer in-
formation for sleeping hosts until they wake up and receive
the packets. If a backbone router becomes a host and the
buffered data are not delivered to the destination host yet,
the backbone router can keep holding the data and deliver
or delegate them later.

V. Correctness

Theorem 1: The set of clusterheads elected by the algo-
rithm is a dominating set.
Proof: By the definition of a dominating set, a node is
either a dominator itself, or is a one-hop neighbor of a
dominator. Because a node either has the highest priority
among its one-hop neighbors such that it becomes a dom-
inator itself, or has a neighbor with the highest priority
among the one-hop neighbors of the node, which elects the
neighbor as a dominator, the network always has a dom-
inating set elected after function isClusterhead is called
at each node. �

Theorem 2: In a dominating set, the maximum distance
to another closest clusterhead from any clusterhead is
three.

a b c d e

f

Fig. 12. The maximum distance between the closest clusterheads.

Proof: We prove the theorem by contradiction. Assume
that the maximum distance from a clusterhead a to the
closest clusterhead e is four, as illustrated in Figure 12, ac-
cording to Theorem 1, node c must have been covered by a
clusterhead f , which is one hop closer to a than e, thus con-
tradicting the assumption that e is the closest clusterhead
to a. 2

Theorem 3: Two clusterheads that are within three hops
from each other are connected by a path in the CDS.
Proof: There are three cases to consider for the proof
according to the number of hops between the two cluster-
heads.

1. The two clusterheads are one hop away. In this case,
they are directly connected according to rule R1 in the
CDS.
2. The two clusterheads are two hops away. In this case,
one of the intermediate nodes between the clusterheads ei-
ther is a clusterhead itself, or becomes a gateway according
to the isGateway algorithm. Because the link between

gateway and clusterhead is kept in the backbone topology
by rule R2, the two clusterheads are connected in the CDS.
3. The two clusterheads are three hops away. In this case,
if there is any clusterhead on the shortest paths between
the two clusterheads, then the connectivity problem is con-
verted to the previous two cases. Otherwise, one of the
nodes on the shortest paths has to become a doorway ac-
cording to function isDoorway. Because the doorway is
treated like a clusterhead when electing gateways (function
isGateway), one of the nodes between the newly elected
doorway and the other clusterhead must become a gateway.
Because the link between the doorway and the clusterhead
for which it works is kept in the backbone topology as well
as the links from the elected gateway to the doorway and
the clusterhead (rule R2), the path between the two clus-
terheads is preserved in the backbone topology. That is,
the two clusterheads are still connected via clusterheads,
doorways or gateways in the CDS. 2

Theorem 4: After TMPO terminates, the CDS has the
same number of connected components as the original
graph.
Proof: We prove that any pair of clusterheads that are
connected in the original graph is still connected via a path
in the CDS after TMPO terminates.

Suppose that the two clusterheads are v0 and vn, and
the path between them is p = v0 · v1 · v2 · · · vn−1 · vn in
the original graph. For the endpoints of any link vi · vi+1

on the path p, where i = 0, 1, · · · , n − 1, there exist one
or two clusterheads that cover node vi and vi+1. For the
case of one clusterhead, the clusterheads of vi and vi+1 are
trivially connected. For the case of two clusterheads, the
distance between the clusterheads is less than three. From
Theorem 3, it follows that the two clusterheads are still
connected in the backbone topology. Therefore, there is a
path between v0 and vn that is composed of clusterheads of
the nodes on the path p and other clusterheads, doorways
or gateways that connect them. That is, v0 and vn are still
connected in the CDS. 2

VI. Performance Analysis of TMPO

Clusterhead Election

Guha and Khuller [15] and Jia et al. [17] evaluated the
performance of algorithms for constructing dominating sets
based on the performance ratio, which is the approximate
ratio of the cost of a solution derived from an algorithm to
the optimal one. In contrast, we evaluate the performance
of TMPO by the percentage of nodes being elected as
clusterheads.

Despite the fact that TMPO actually provides a node-

weighted MDS election algorithm based on the willingness
parameter, the performance of the specified algorithm can
be evaluated regardless of such weights. Therefore, we con-
sider the case in which all nodes have the same willingness
to become a clusterhead, that is, Wi = 1, ∀i ∈ V . Further-
more, we analyze the probability of a node being elected
as a clusterhead with the simplifying assumptions that all
nodes have the same effective transmission range r to com-
municate with each other, and that the network is created
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by uniformly placing an infinite number of nodes on an
infinite 2-dimensional plane with average node density ρ.

With the above assumptions, the number of nodes within
an area of size S is a random variable following a Poisson
distribution as given in Eq. (4).

p(k, S) =
(ρS)k

k!
e−ρS . (4)

Because node priorities are evenly distributed over (0, 1]
according to Eq. (3), nodes have equal chances to become
clusterheads using TMPO. That is, the probability of a

node winning over k other contenders is
1

k + 1
.

For convenience, the variable T (N) and U(N) are in-
troduced to denote two probabilities when the number of
contenders k follows a Poisson distribution with mean N .
T (N) denotes the probability of a node winning among
its contenders. Because the number of contenders follows a
Poisson distribution with mean N and all nodes have equal
chances of winning, the probability T (N) equals

T (N) =

∞
∑

k=1

1

k + 1

Nk

k!
e−N =

eN − 1 − N

NeN
.

Note that k starts from 1 in the expression for T (N), be-
cause a node with no contenders does not win at all. U(N)
is the probability that a node has at least one contender,
which is simply 1 − e−N .

In addition, N1 is introduced to denote the average num-
ber of one-hop neighbors of a node, which according to the
assumptions we have made equals

N1 = ρπr2

As mentioned before, a node i becomes a clusterhead if
either of the following two conditions holds:
1. Node i has the highest priority among its one-hop neigh-
bors;
2. Node i does not have the highest priority in its one-hop
neighbors, but has the highest priority among the one-hop
neighbors of one of i’s own one-hop neighbors.

For the first condition, the probability is:

p1 =

∞
∑

k=0

Nk
1

k!
e−N1 ·

1

k + 1
=

U(N1)

N1
.

For the second condition to be satisfied, it must be true
that node i has a one-hop neighbor with higher priority,
while node i also has the highest priority around one of its
one-hop neighbors. Many situations can render node i as
the clusterhead in this case. Therefore, we have to consider
the lower bound of the probability that node i becomes a
clusterhead by considering only a single one-hop neighbor j
that makes node i a clusterhead. Under this simplification,
the geometric relation between node i and node j is shown
in Figure 13, and the distance between them is denoted by
tr.

Accordingly, we need to compute the probability of node
i having the highest priority within the one-hop neighbors

r

tr
jA(t) i

Fig. 13. Clusterhead election.

of node j, and the probability of node i having lower pri-
ority in the portion of its one-hop neighborhood outside of
node j’s coverage (the shaded area in Figure 13).

Denote the number of nodes in the shaded area by A(t).
We have

A(t) = 2ρr2
[π

2
− a(t)

]

,

where a(t) = arccos t
2 −

t
2

√

1 −
(

t
2

)2
. Therefore, the prob-

ability of node i having a lower priority than the nodes in
the shaded area is

p2 =

∞
∑

k=1

A(t)k

k!
e−A(t) k

k + 1
= U(A(t)) − T (A(t)) .

In addition, node i should have the highest priority
among node j’s one-hop neighborhood, of which the prob-
ability is:

p3 =
∞
∑

k=0

Nk
1

k!
e−N1

1

k + 2
=

N1 − 1

N1
· T (N1) + e−N1 .

Because the probability density function of parameter t is
p(t) = 2t, the probability that node i becomes a clusterhead
can be obtained by multiplying the above two probabilities
and integrating over the range t ∈ (0, 1]:

p4 =

∫ 1

0

p2 · p3 · 2tdt =

(

N1 − 1

N1
· T (N1) + e−N1

)

·

∫ 1

0

[U(A(t)) − T (A(t))]2tdt .

Because the two conditions are mutually exclusive, the
probability of node i becoming a clusterhead is thus:

pch = p1 + (1 − p1) · p4

=
U(N1)

N1
+

(

1 −
U(N1)

N1

) (

N1 − 1

N1
· T (N1) + e−N1

)

·

∫ 1

0

[U(A(t)) − T (A(t))]2tdt .

Nodes are homogeneous in the randomly generated net-
work with regard to their priority generations and one-hop
neighbor information. Therefore, the probability of becom-
ing a clusterhead is also the same for all nodes. Given an
area with N nodes in an infinitely large network with uni-
form node density, the expected size of the MDS in the
area is:

|MDSN | = N · pch . (5)
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To validate the result in Eq. (5) with the performance of
function isClusterhead, we randomly created a number
of networks by placing 100 nodes onto a 1000×1000 square
meter plane. The opposite sides of the square are seamed
together so as to emulate the infinite plane. All nodes
have the same transmission range, which increases from 1
to 400 meters in the individual experiment setting so as
to evaluate the performance of TMPO at different node
densities.

A near-optimum MDS election is also carried out for
comparison purposes in the same network topology. The
near-optimum election algorithm is based on the afore-
mentioned Max Degree algorithm, eliminating redundant
clusterheads in the MDS.
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Fig. 14. Comparison between theoretical analyses and simulations.

Because we ran the experiments in different network sce-
narios for many times, and recomputed the MDS at each
experiment setting, we achieve the average performances
of both algorithms. The analytical results and the results
from the experiments of TMPO and the near-optimum
MDS algorithm are shown in Figure 14. As the results
in the left portion of Figure 14 illustrate, the number of
elected clusterheads drops quickly as the node transmis-
sion range increases, because clusterheads have larger and
larger coverage.

The performance ratios of TMPO vs. the analytical
model, and the near-optimum MDS algorithm vs. the ana-
lytical model are shown in the right portion of Figure 14. It
appears that the near-optimum MDS algorithm performs
close to the lower-bound of the MDS, while the perfor-
mance of TMPO digresses when the node transmission
range increases. The performance ratio between TMPO

and the analytical results offsets from 1 by as far as 48%,
and is due to the simplifications made in our analytical
model.

VII. Simulations

We compare the performance of TMPO with the op-
timum topology management algorithm and four other
topology management algorithms based on different heuris-
tics using simulations. To establish a fair comparison
among these algorithms, some MDS stability optimizations
and clusterhead negotiation procedures presented in the
original papers are omitted. The algorithms differ from
one another only in the clusterhead election process, and
use the same procedure to connect clusterheads using door-
ways and gateways to form the CDS, which does not need

negotiation packets and actually improves the performance
of the original algorithms based on other heuristics. The
following five schemes are compared with TMPO:

• OPTIMUM: This is a near-optimum approach that
uses global topology information, the MDS is constructed
by selecting nodes with the highest degree one by one until
all nodes outside the MDS are covered by the MDS. In-
dividual nodes with low degree in the MDS are inspected
and eliminated from the MDS if the node and its dominated
nodes are covered by other clusterheads in the MDS.
• Lowest ID [1], [3], [12], [14], [22]: In this approach,
the node identifier is used to elect MDS members. A node
is elected into the MDS if it has the lowest identifier in
the one-hop neighborhood of itself or one of its one-hop
neighbors.
• Max Degree [15], [17], [28]: In this approach, a node is
elected into the MDS if it has the highest degree in the one-
hop neighborhood of itself or one of its one-hop neighbors.
• MOBIC [8]: In this approach, each node computes a
mobility metric based on the received-signal strength vari-
ations from its one-hop neighbors. A node becomes a clus-
terhead if it has the lowest mobility metric in the one-hop
neighborhood of itself or one of its one-hop neighbors.
• Load Balance [2]: This approach is similar to Lowest

ID except that it is based on a virtual identifier (VID)
assigned to each node. The VID of a node increases every
time slot if the node is a host, or remains constant if the
node is a clusterhead. Each clusterhead runs a budget that
decreases every time slot. A clusterhead resets its VID to 0
and returns to host status when the budget runs out, thus
providing load balancing between network nodes.

The simulations are carried out in ad hoc networks gen-
erated over a 1000×1000 square meter area with 100 nodes
moving in random directions at random speeds. In order
to simulate infinite plane, the opposite sides of the area
is seamed together so that the simulation plane forms a
torus. To mobility scenarios are simulated, of which the
speed is selected from 0 to 5 meters/second in low mobility
scenarios, or from 0 to 50 meters/second in high mobility
scenarios. In each mobility scenario, the radio transmission
range is set at different values in each simulation, chosen
from 100 to 500 meters, so as to demonstrate the effects of
the one-hop neighborhood density in the clusterhead elec-
tions. In TMPO, the node priority recomputation period
is one minute.

Different types of nodes consume energy at different
rates. We ignore the energy consumed due to local com-
putations, but assume that the energy consumption rate is
only dependent on the type of the node. A host consumes
0.6% of the total energy per minute in these algorithms,
a clusterhead consumes 3%, and a doorway or a gateway
consumes 2.4%. Every node starts with an energy level of
1 at the beginning of each simulation.

The algorithms are compared using six different metrics,
and the results are shown in Figures 15-17:

The simulations stop once any node runs out of energy in
the network. The simulation duration (Figure 15(a)) mea-
sures the load balancing capability of the heuristics to pro-
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Fig. 15. Simulation duration and energy left.

long the system lifetime by rotating the clusterhead roles
between network nodes. MOBIC and Lowest ID per-
form the worst, because the clusterheads are mostly fixed
over certain nodes throughout the simulations. In Lowest

ID, the fact that the node with the lowest identifier is al-
ways in the MDS terminates the simulations in fixed time.
TMPO is one of the best heuristics.

The mean and the standard deviation of the energy left
per node when the simulation is over (Figure 15 (b)) indi-
cate the load balancing capability of the heuristics. After
each simulation, TMPO leaves the network nodes with the
least energy and the lowest standard deviation because of
its energy-awareness when selecting the MDS, while Low-

est ID performs the worst because it always has nodes
that are always or never elected to the MDS. The curves
peak at transmission range 300- or 350-meter because the
two-hop neighborhood of each node begins to overlap in the
opposite directions on the plain, which renders less cluster-
heads and more opportunities to rotate clusterhead roles
for some heuristics.

The average number of clusterheads (Figure 16 (a)) is
measured each time slot when clusterhead recomputation
happens. As Figure 16 (a) shows, all heuristics perform
almost identically, which suggests that the MDS cardinality
can hardly prove the advantage of topology management
algorithms. It is the topology stability and load-balancing
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(c) Cluster membership change rate.

Fig. 16. Statistics about clusterheads.

features of the algorithms that make the difference.

The clusterhead change rate (Figure 16 (b)) measures the
stability of the MDS in a mobile network. TMPO, Low-

est ID and Load Balance are the best performing, be-
cause they depend on relatively static attributes for cluster-
head election, such as node identifiers and priorities which
change less frequently than node locations. OPTIMUM,
Max Degree and MOBIC perform the worst because the
MDS elections depend on the volatile mobility and network
topology of ad hoc networks.

The cluster membership change rate (Figure 16 (c)) mea-
sures the stability of network connections in the presence
of mobility. The cluster membership change rates align to
the clusterhead change rates of the examined heuristics.
TMPO, Lowest ID and Load Balance still perform the
best in both high and low mobility scenarios.

Given the above metrics, it is not easy to see the ad-
vantages of different heuristics. The combined metric (Fig-
ure 17) is the product of the average energy, its standard
deviation, the average number of clusterheads, the cluster-
head change rate and the cluster membership change rate
of the respective simulations. Although it is meaningless to
simply multiply several independent metrics, the product
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Fig. 17. Combined evaluations.

fairly compares the overall performance if the individual
metrics are equally important. The lower the combined
metric of a heuristic, the better the heuristic performs in
terms of the clusterhead load-balancing capability and the
MDS/CDS stability. As shown in Figure 17, TMPO per-
forms near, if not always, the best among all heuristics
in both low mobility and high mobility scenarios. Load

balance is the second best in general. The simulations
favored Load balance, because it assumes that all nodes
start with the same energy level [2], which is the setup of
the simulations.

Overall, when the mobility increases from 5 me-
ter/second to 50 meters per second, TMPO shows better
load balancing capability (Figure 15) and higher topology
maintenance stability (Figure 17).

VIII. Conclusion

We have presented TMPO, a novel energy-aware topol-
ogy management approach based on dynamic node prior-
ities in ad hoc networks. TMPO consists of two parts
that implement the MDS and CDS elections, respectively.
TMPO builds a stable and energy-aware CDS from the
MDS to simplify the topology information for sufficient net-
work connectivity and efficient data communication. Com-
pared to five prior heuristics of MDS and CDS elections in
ad hoc networks, TMPO offers four key advantages. First,
TMPO obtains the MDS and CDS of the network without
any negotiation stage; only two-hop neighbor information
is needed. Second, TMPO allows nodes in the network to
periodically recompute their priorities, so as to balance the
clusterhead role and prolong the battery life of each node.
Third, TMPO introduces the willingness value of a node,
which decides the probability of the node being elected into
the MDS according to the battery life and mobility of the
node. Fourth, TMPO introduces doorway concept for the
CDS in addition to the well-known gateway and cluster-
head concepts.

A key contribution of this work consists of converting
the static attributes of a node, such as node identifier, into
a dynamic control mechanism that incorporates the three
key factors for topology management in ad hoc networks
— the nodal battery life, mobility, and load balancing.
Although existing proposals have addressed all these as-
pects, TMPO constitutes a more comprehensive approach.
TMPO is unique in that the election of the MDS is locally
determined, without the need for any negotiation phase.
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