
UCLA
Department of Statistics Papers

Title
An Evaluation of a Measure of the Proportion of the Treatment Effect Explained by a 
Surrogate Marker

Permalink
https://escholarship.org/uc/item/3tf7s27m

Authors
Paul W. Bycott
Jeremy M.G. Taylor

Publication Date
2011-10-25

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3tf7s27m
https://escholarship.org
http://www.cdlib.org/


An Evaluation of a Measure of the Proportion
of the Treatment Effect Explained by a
Surrogate Marker

Paul W. Bycott, DrPH and Jeremy M.G. Taylor, PhD
Department of Biometrics, Parke-Davis Pharmaceutical Research, Ann Arbor, Michigan
(P.W.B.); Department of Biostatistics, UCLA School of Public Health, Los Angeles,
California (J.M.G.T.)

ABSTRACT: Time-dependent markers, such as CD4 and viral load, are potential surrogate
markers in AIDS clinical trials. A critical issue with surrogate markers is whether changes
in these markers explain the beneficial effect of treatment on the real end point of the
clinical trial. A statistic to measure the proportion of the treatment effect explained by
the surrogate is P(FGS) 5 1 2 g/a, where a is the treatment effect coefficient in a Cox
model and g is the treatment effect coefficient from a time-dependent Cox model adjusted
for the marker. In this article we evaluate the statistical properties of P(FGS). Using a
Monte Carlo study we show that the statistic is not well calibrated, because it can fall
outside the range zero to one, even in very large samples. In the simulation study we
consider situations where the time-dependent marker is measured with error at a fixed
number of times. We show that a method of fitting a time-dependent Cox model
involving smoothing the marker reduces the bias in the estimate of P(FGS) compared with
the standard method of using the current or last observed marker value. We also show
that the estimate of P(FGS) has considerable variability and can have wide confidence
intervals. We conclude that P(FGS) is only likely to be useful in large trials with a strong
treatment effect. The methods are illustrated using CD4 counts from an AIDS clinical
trial of zidovidine versus placebo. Controlled Clin Trials 1998;19:555–568  Elsevier
Science Inc. 1998

KEY WORDS: Clinical trials, longitudinal markers, time-dependent Cox model, ACTG protocol 019,
CD41 T-cell count

INTRODUCTION

There is considerable interest in conducting clinical trials expediently. The
sooner the benefits of a new treatment can be determined, the more rapidly
the treatment can be made available to the general population. A randomized
phase III trial typically studies a clinical end point of primary interest. This
end point, however, may occur only in a small fraction of trial participants
and may take many years to develop, thus dictating a very large and long trial.

Address reprint requests to: Dr. J.M.G. Taylor, Department of Biostatistics, UCLA School of Public
Health, Los Angeles, California 90095-1772.

Received December 29, 1997; accepted June 24, 1998.

Controlled Clinical Trials 19:555–568 (1998)
 Elsevier Science Inc. 1998 0197-2456/98/$19.00
655 Avenue of the Americas, New York, NY 10010 PII S0197-2456(98)00039-7



556 P.W. Bycott and J.M.G. Taylor

A surrogate marker represents a possible alternative end point that could allow
more expedient trials, thus potentially reducing sample-size requirements and
the cost of conducting the study. A marker that serves as a surrogate end point
for a particular treatment must respond quickly to the treatment, must be
prognostic for the true end point, and explain most of the effect of the treatment
on the clinical end point [1]. Much recent discussion of surrogate markers in
AIDS and other diseases has appeared in the literature with some cautionary
words given by Machado et al. [2] and by Fleming and DeMets [3].

Prentice [4] formally defined a surrogate end point to be “a response variable
for which a test of the null hypothesis of no relationship to the treatment groups
under comparison is also a valid test of the corresponding null hypothesis
based on the true endpoint.” This definition is rather restrictive and does
not capture the concept that a marker may explain some but not all of the
treatment effect.

Freedman et al. [5] proposed an alternative approach to investigating surro-
gate markers in the context of a binary end point and logistic regression. They
estimate the proportion of information about the treatment’s effect on the true
end point of interest explained by the proposed surrogate marker. Using a
marginal logistic model with only the treatment covariate and a joint model
with both the marker and treatment entered as covariates, they examined the
change in the estimated treatment parameter. The particular statistic suggested,
which we denote by P(FGS), is the difference between treatment effect coefficients
divided by the unadjusted treatment effect coefficient. Lin et al. [6] informally
extended these ideas to the time-dependent Cox proportional hazards model
and suggested comparing the treatment effect coefficient in a time-dependent
Cox model with and without adjusting for the marker. Freedman et al. [5]
suggested a procedure for using their statistic; in particular, they recommended
placing less emphasis on the estimate of P(FGS) but rather determining whether
the lower limit of a confidence interval for P(FGS) was greater than 0 or some
specified value. Their evaluation suggested that only if the unadjusted treat-
ment effect was more than four times its standard error would it be possible
to validate that a surrogate was explaining some of the treatment effect. O’Brien
et al. [7] used P(FGS) to evaluate the proportion of zidovidine’s (AZT) effect on
progression to AIDS explained by HIV viral RNA copy number and by CD4.
The authors used estimates of P(FGS) to conclude that viral RNA explained a
larger proportion of AZT’s effect than CD4, but using them both as joint
surrogates in a Cox model explained the largest proportion. This controversial
conclusion [8] has prompted investigation into the statistical properties of the
P(FGS) statistic [9]. Lin et al. [9] showed that P(FGS) can be quite variable. They
also considered how to estimate standard errors for P(FGS). The current article
is also concerned with an evaluation of the properties of P(FGS).

We were motivated by a particular AIDS clinical trial, ACTG019 part B [10],
an early placebo-controlled randomized clinical trial of AZT in patients with
CD4 counts less than 500 at enrollment in which the primary end points were
survival and development of AIDS or advanced AIDS-related complex. The
compliment part A of this trial in patients with CD4 counts of at least 500 is
not discussed because that part of the trial closed at a much later date. We will
consider the serially measured CD4 counts a potential surrogate for the primary
end points. The Monte Carlo approach we use to evaluate the properties of
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P(FGS) generates data that mimic the type of data collected in ACTG019. In
particular, we consider a plausible stochastic process and measurement error
for CD4 and realistic magnitude of the treatment effect on CD4 and on the
clinical end point.

Z(t) will denote a time-dependent marker, observed at times t1, . . ., tM, and
X will denote the treatment group indicator. Two different Cox models will
be considered, an unadjusted Cox model

l(t;X) 5 l1o(t)eaX, (1)

and an adjusted time-dependent Cox model,

l(t,Z,X) 5 l2o(t)ebZ(t)1gX. (2)

Then P(FGS), defined as 1 2 g/a, is estimated by fitting Eqs. (1) and (2) separately
to the identical dataset. In theory, the more information about treatment that
passes through Z, the closer g will be to zero and hence the closer P(FGS) will
be to one. On the other hand, if g is close to a, then P(FGS) will be close to zero,
implying that the surrogate marker explains little or none of the information
about the treatment.

It is unlikely that models (1) and (2) both fit the observed data. Imagine a
true process underlying the generation of the observations consisting of a
stochastic process for Z(t), possibly influenced by treatment, and a model for
the hazard of the event. Suppose Eq. (2) is the true hazard model, then the
marginal model for the effect of X on the hazard could be obtained, in principle,
by integrating over Z(t). It is difficult to imagine how this process could lead
exactly to Eq. (1), except in trivial cases such as b 5 0. Therefore, we need to
give careful consideration to defining a measure based on a model that may
not fit the data.

Next, we begin by describing ACTG019 trial. Then we consider calibration
of P(FGS), in particular whether the population quantity being estimated is a
reasonable measure. Using Monte Carlo simulations, we evaluate the statistical
properties of P(FGS) in three scenarios in which the marker is a perfect, a partial,
or not a surrogate, and we investigate the variability of P(FGS).

ACTG019 CLINICAL TRIAL

Description of ACTG019

The ACTG019 clinical trial part B was a randomized double-blind trial in
asymptomatic HIV-infected adults who had CD4 counts of fewer than 500/
mm3 on entry into the study [10]. Subjects were randomly assigned to one of
three treatment arms: placebo, AZT 500 mg/day, or AZT 1500 mg/day. The
trial was conducted to determine the safety of AZT and its efficacy in prolonging
survival and in delaying the onset of AIDS or advanced AIDS-related complex.

The protocol stipulated that patients’ CD4 values were to be measured at
baseline, 8, 16, 32, 48, 64, and 80 weeks. There were 428 individuals in the
placebo arm, 453 in the low-dose arm, and 456 in the high-dose arm. All
analyses here combine the low-dose and high-dose arms, because there is no
significant difference in time to AIDS between the two arms. In the placebo
arm, 33 subjects progressed to AIDS, whereas 25 progressed in the combined
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Figure 1 Dependence of the hazard of AIDS on the current CD4 count by treatment
arm. – – –, Placebo; ——, AZT.

treatment arm, showing a significant impact of AZT in reducing AIDS. The
blinded part of the trial was stopped before many of the later enrollers had
their 64- and 80-week follow-up measurements. Average follow-up was 50
weeks with a maximum of about 108 weeks. The median number of CD4
measurements per subject was 3.7, indicating many missing observations and
considerable loss to follow-up.

Surrogate Properties of CD4

Figure 1 depicts the estimated annual hazard of AIDS as a function of
CD4 in the two treatment groups using the method proposed by Breslow [11]
smoothed using cubic splines. To calculate the hazard, we first transform CD4
counts by taking fourth roots [12]. For a specific observed CD41/4 value Y we let

O 5 the observed number of failures with AIDS for CD41/4 values in [Y 2 1,
Y 1 1],

E 5 the total exposure time with CD41/4 values in [Y 2 1, Y 1 1].

Then, the estimate of the hazard for a specific value of CD41/4 is

l̂(Y) 5
O
E

.

This graph shows that the hazard increases substantially in the placebo arm
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when the CD4 count falls below 100 and in the treatment group when it falls
below 75. The curves differ substantially, indicating that CD4 count does not
capture all information about the effect of AZT. This suggests that CD4 is not
a perfect surrogate marker for AZT. The graph, however, does not indicate
whether CD4 is a partial surrogate marker. The estimate of P(FGS) from fitting
Eqs. (1) and (2) is 20.02, obtained using the OBS method for fitting a time-
dependent Cox model, as described below. This value of P(FGS) is near 0. Other
estimates of P(FGS) using slightly different methods (not shown) are also near
0, suggesting that CD4 captures none of the effect of AZT. This article examines
whether we can meaningfully interpret estimated values of P(FGS).

CALIBRATION OF P(FGS)

Because P(FGS) is supposed to represent the proportion of the treatment effect
explained by the marker, we would expect P(FGS) to fall between 0 and 1;
however, an estimate of P(FGS) derived from a set of observations can be negative
or larger than 1. Consider a joint distribution for the stochastic process of Z(t)
and the event time. Let P̂(FGS) 5 1 2 ĝ/â. Then P̂(FGS) estimates a population
quantity P*, or functional, of this joint distribution. In this section we examine
the value of P* under a variety of joint distributions of Z(t) and the event time.
We look at the value of P* under several combinations of b and g in Eq. (2)
and under differing effects of treatment on the longitudinal mean structure of Z.

We estimate the value of P* using the following procedure. First, the number
of subjects is set at 6000 and then values of Z(t) are simulated for each subject
over a fine grid of time points for 27 months. The stochastic process for Z(t)
may differ between the treatment and the placebo arms. Then, event times are
simulated for each subject assuming model (2), and fit both models (1) and (2)
to obtain the estimate of a and g and hence P*.

The stochastic process for Z(t), based on our experience with analyzing CD4
counts [13, 14] is a model with an underlying mean structure, a random inter-
cept, and Brownian motion. In previous work we [13, 14] and others [15]
have shown that this model with the addition of measurement error describes
longitudinal fourth root CD4 counts well. The mean structure for the placebo
arm is a constant decline, whereas the mean structure for the treatment arm
is a linear increase for 8 weeks followed by a linear decrease. The vector of
Z(t) values for subject i is given by

Zi 5 Xih 1 Vibi 1 BMi,

where Xi is a known matrix consisting of a column of 1’s and a column of time
points where Zi values are recorded for the placebo arm, and an additional
column equal to (tij 2 0.15332)1 for the treatment arm. The time tij denotes
observation time j for subject i measured in units of years, and (tij 2 0.15332)1

is zero if this quantity is negative. The fixed effects vector is set as h 5 (4.25,
20.20)T for the placebo arm and as h 5 (4.25, 1.10, 21.30)T for the treatment
arm. These values correspond approximately to those observed in ACTG019.
Vi is a known matrix consisting of a column of 1’s and bi is the individual
intercept that is assumed to have a normal distribution with mean 0 and
variance 0.10 for both treatment arms. BMi, the Brownian motion term, is
normally distributed with mean 0 and variance parameter c2 5 0.15 for both
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Table 1 Calibration Results for P(FGS) Varying Treatment’s Effect on Z
Longitudinally and Under Different Hazard Functions

Longitudinal Proportion
Effect b g â ĝ P̂(FGS) of Events

Full 22 20.5 20.80 20.46 0.43 0.08
Full 22 21 21.28 20.95 0.26 0.07
Full 22 22 22.20 21.90 0.14 0.06

Half 22 20.5 20.65 20.50 0.23 0.09
Half 22 21 21.05 20.91 0.13 0.08
Half 22 22 22.04 21.93 0.05 0.07

Quarter 22 20.5 20.54 20.48 0.11 0.09
Quarter 22 21 21.01 20.97 0.04 0.08
Quarter 22 22 21.94 21.92 0.01 0.07

None 22 20.5 20.43 20.47 20.09 0.10
None 22 21 20.88 20.94 20.07 0.08
None 22 22 21.86 21.93 20.04 0.07

Full 0 20.5 20.42 20.42 20.002 0.17
Full 0 21 20.96 20.96 20.001 0.15
Full 0 22 22.02 22.03 20.005 0.12

treatment arms. For Brownian motion, the covariance between values at tij and
tik is c2min(tij,tik). Failure times with AIDS occur under a proportional hazards
model [Eq. (2)] with a constant baseline hazard (l20(t) 5 2.5). There is no
censoring other than at the end of the study. As well as the above “full” model
for the treatment effect on Z, we also consider “half,” “quarter,” and “none”
models. The difference between “full,” “half,” “quarter,” and “none” for the
treatment effect on the mean structure of Z is obtained by changing the magni-
tude of the nonnegative slope for Z from randomization until 8 weeks in the
treatment arm and adjusting the slope of decline after 8 weeks to be parallel
to the placebo arm. When the effect is “none,” the placebo and treatment arms
have the same slope of decline starting from baseline [h 5 (4.25, 2.20, 0)]. For
a “half” effect, the positive slope from baseline to 8 weeks is half way in
magnitude between the “full” effect and “none” models [h 5 (4.25, 0.45, 20.65)].
For a “quarter” effect, h 5 (4.25, 0.125, 20.325). We also consider a variety of
values for b and g. The values b 5 22 and g 5 21 correspond approximately
to what we found in our analysis of ACTG019. When b 5 0, we set the baseline
hazard at 0.0025. Results are presented in Table 1. “Proportion of Events”
is the proportion of individuals progressing to AIDS. These proportions are
intentionally set low to reflect the fact that in the actual ACTG019 trial there
was approximately 95% censoring. We note that the estimates of g are close
to the true values of g; similarly we expect the values for P̂(FGS) to be a good
approximation of P*.

When b 5 22, and treatment has a longitudinal effect (“full,” “half,” or
“quarter”), as the magnitude of g increases in absolute value the estimate of
P(FGS) decreases. This is because the proportion of the treatment effect on the
hazard that goes unexplained by its effect on the mean structure of Z increases.
Similarly, when b 5 22 and treatment has a “full” longitudinal effect on Z,
the estimate of P(FGS) at all values of g is higher than when treatment has only
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a “half” or “quarter” effect. The reason for this is that more of the overall effect
of treatment is passing through Z, and therefore Z explains more of the effect
of treatment on progression to the end point.

When b 5 22 and treatment has no effect longitudinally on Z, P(FGS) is
consistently estimated to be negative, indicating that the statistic is poorly
calibrated when the amount of information about treatment’s effect on the true
end point explained by the marker is small. Because the estimate of P(FGS) is
always negative and never positive, we would not make the mistake in this
scenario of claiming that the marker explains some positive percentage of the
treatment effect when, in fact, it explains none of it. Finally, when b 5 0, the
estimate of P(FGS) is close to 0 for all levels of g, implying that the effect of
treatment on Z longitudinally is irrelevant because Z plays no role in the joint
hazard function with treatment. In other simulations with different values of
the longitudinal parameters (not shown), we have found situations where the
estimate of P(FGS) is substantially more negative than for the “none” rows in
Table 1 and situations where the estimate of P(FGS) is negative even in the
presence of a true positive longitudinal effect of treatment on Z.

MONTE CARLO STUDY: EVALUATION OF P(FGS)

Measurement Error

This section describes properties of the Freedman et al. approach to assessing
a surrogate marker in the presence of substantial measurement error. We as-
sume that the observed value (Zi) equals the “true” value (Zi*) plus independent
measurement error.

Fitting a Time-Dependent Cox Model

Estimation of P(FGS) requires fitting a time-dependent Cox model, which re-
quires knowing the value of the time-dependent variable at every event time.
We adopt a two-stage approach in which we first impute marker values, de-
noted by Ẑi*, at the event times and then uses these to fit the Cox model. In
the simulation study we consider four different approaches for imputing values
of Zi*: using the true (but unobserved) values of Z* (denoted by TRUE), using
the last observed value of Z (denoted by OBS), using the Tsiatis et al. [16]
method with a random intercept and Brownian motion model (denoted by
BM), and using the method of fitting a straight line separately to each subject’s
set of Z values and using the interpolation from that [17] (denoted by IRL).
Bycott and Taylor [14] give a more complete description and comparison of
these methods for fitting a time-dependent Cox model.

Design of the Simulation Study

We simulate data when CD4 is a perfect surrogate, a partial surrogate, and
not a surrogate. In each of these scenarios, we simulate 200 data sets, each with
300 subjects randomized with equal probability to either the treatment or
placebo arm and followed for up to 27 months. Observed Z values are recorded
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Table 2 Parameter Values for Perfect, Partial, and Nonsurrogate Cases
Group b g Treatment Affects Z h s2

b

Perfect Surrogate
Placebo 22 0 Yes (4.2520, 20.2812) 0.1347
Treatment 22 0 Yes (4.2143, 1.1476, 21.2097) 0.1224

Partial Surrogate
Placebo 22 21 Yes (4.2520, 20.2812) 0.1347
Treatment 22 21 Yes (4.2143, 1.1476, 21.2097) 0.1224

Nonsurrogate
Placebo 22 21 No (4.2520, 20.2812) 0.1347
Treatment 22 21 No (4.2143, 2.2812,0.0) 0.1224

at 3-month intervals starting at t 5 0 according to a random intercept, plus
Brownian motion, plus measurement error model of the form

Zi 5 Zi* 1 ei,

where Zi* is the true CD41/4 value defined by the mixed effects model above.
In this model, the Brownian motion term has mean 0 and variance c2 5 0.15
and ei z N (0, 0.10) for both treatment arms. We simulate failure times with
AIDS to occur under a proportional hazards model l2o(t)ebZ*(t)1gX, with g2o(t) 5
2.5. The parameter values for the three scenarios are described in Table 2. The
values in scenarios 1 and 2 are designed to mimic that observed in analysis of
data from ACTG019. The percentage of censored observations under the three
scenarios are 85%, 88%, and 86%, respectively. To each dataset we fit the
unadjusted Cox model [Eq. (1)] and the Cox model adjusted by Ẑ* (the predicted
true value), using the four methods described above.

For P(FGS) we consider bias, variability, and coverage rate of 100(1 2 a)%
confidence intervals. The asymptotic 100(1 2 a)% confidence interval for P(FGS)

is given by P̂(FGS) 6 Z12a/2(var(P̂(FGS)))1/2. The variance of P(FGS) for each simulated
dataset is calculated using an asymptomatic approximation

var(P̂(FGS)) 5
ĝ2

â23var(ĝ)
ĝ2

1
var(â)

â2
2

2cov(â,ĝ)
âĝ 4. (3)

The parameters ĝ and â are the maximum partial log-likelihood estimates from
the two Cox models and var(ĝ) and var(â) are obtained from the inverse
information matrix. Because the term cov(â,ĝ) is not trivial to calculate, we use
a “bootstrap-like” approximation in which we first estimate corr(â,ĝ) by the
correlation coefficient across the 200 simulations. We then obtain cov(â,ĝ) from
the expression cov(â,ĝ) 5 corr(â,ĝ)(var(â))1/2(var(ĝ))1/2, using the same correla-
tion for all of the 200 datasets.

Results for P(FGS)

Table 3 shows results for estimation of P(FGS). Occasional values of P̂(FGS) across
the 200 simulations are extreme outliers. To reduce the influence of these points,
we present the 10% trimmed mean (the arithmetic mean after discarding the
lowest 10% and highest 10% of the data) of P̂(FGS) across the simulations for
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each method. The ratio of MSEs (where MSE is defined to be the variance of
an estimate plus the squared bias of the estimate) is from this trimmed sample
relative to TRUE. The “true” values of P(FGS), denoted by P*, are 0.39 and
20.32 for the partial and nonsurrogate cases, respectively, calculated using the
methods described above. We use these estimates as the “true” values for the
purpose of constructing confidence intervals and MSE calculations. In the per-
fect surrogate case, the TRUE approach gives a trimmed mean of 1.04, the
results for the BM and IRL approaches are also close to the true value of 1.
The OBS approach has a trimmed mean value for P(FGS) of 0.79, well below the
target value of 1 and substantially less than the smoothing approaches.

For the perfect and partial surrogate cases, because the OBS approach does
not account for measurement error, the risk parameter estimate for b is biased
downward. This approach then explains less about the treatment effect in the
joint model. P̂(FGS) is, therefore, biased downward, leading to actual coverage
of a nominal 90% confidence interval for P(FGS) well below the nominal level.
Smoothing substantially reduces this bias. The two smoothing approaches give
ratios of the mean squared errors of approximately 1 (Table 3, column 5). In
these scenarios, smoothing gives more accurate estimates of P(FGS) than simply
using the nearest preceding value of Z. Moreover, these smoothed estimates
have good efficiency properties.

For the nonsurrogate case, the OBS approach has the largest bias in the
estimate of P(FGS), but its considerably smaller variance estimate makes this
approach more efficient than the TRUE approach. The TRUE approach and all
the smoothing approaches in general have the actual coverage rate around
90%. Once again, because of the bias, the OBS approach gives actual coverage
well below the nominal 90% level.

VARIABILITY OF P(FGS)

In examining the properties of P(FGS), we found it has tremendous variability,
which is a glaring drawback of this measure for determining the amount of
information explained by a potential surrogate end point. In columns 6 and 7
of Table 3, we present the interquartile range (IQR) and the range across the
200 simulation runs for each of the three scenarios. In scenarios one and two,
the range of P̂(FGS) for the various techniques essentially covers the whole parameter
space for P(FGS) between 0 and 1, as well as values well outside of the acceptable
range. For scenario three, P̂(FGS) never gets close to 1 for any of the approaches but
does on several occasions have values below, and often substantially below, 0.

Comparing the smoothing techniques (BM and IRL) across the three scenar-
ios, we see that they do not reduce this tremendous variability compared with
OBS, and they are not noticeably worse than TRUE. To decrease this tremendous
variability and obtain more precise estimates of the treatment parameters g

and a, the sample size for each individual trial would have to be made substan-
tially larger. An explanation for the cause of the wide variability in P(FGS) is that
for a few datasets â is very small and ĝ is moderate sized, causing P(FGS) to
blow up, giving extreme outliers.
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Table 4 Median Value (Median of the Estimated Variances) of P(FGS)

Categorized by Significance of Log-Rank Test
Perfect Partial

p Value Surrogate Surrogate Nonsurrogate

<0.001 0.65(0.04) 0.32(0.01) 20.02(0.02)
(0.001, 0.01) 0.78(0.09) 0.39(0.02) 20.17(0.04)
(0.01, 0.05) 0.98(0.22) 0.40(0.04) 20.24(0.10)
(0.05, 0.10) 1.30(0.47) NA 20.54(0.24)
.0.10 1.70(1.56) 0.04(225.86) 20.95(1.04)

Table 4 shows the median of the estimates of P(FGS) and the median of the
estimated variances of P(FGS) [using Eq. (3)] when the true Z values are measured
without error. For each of the three scenarios, we categorize the median esti-
mated value of P(FGS) and its variance by the significance level of the log-rank
test of a 5 0 in the marginal Cox model.

Our simulation studies show that to obtain a precise estimate of P(FGS), the
parameter estimate of a must be at least three to four times larger than its
standard error, especially when the true value of P(FGS) is near 0 or 1. This is
far larger than is required to observe a significant impact of treatment on
delaying the progression to an event and lends strong support to larger and/
or longer clinical trials if this method of evaluating a possible surrogate marker
is going to be used. Also, even under the perfect surrogate scenario and â >
four times its standard error, the median width of the 90% confidence intervals
for P(FGS) is still 0.63, which covers everything from a moderately weak surrogate
to a nearly perfect surrogate.

Table 4 also implies that even though we may gain precision in our estimate
of P(FGS) when a is very significant, this estimate may be quite biased. The more
significant the marginal treatment effect in Table 4, the further, in general, our
median estimates of P(FGS) are from the “true” value. This observation holds
particularly for the perfect and nonsurrogate cases and less so for the partial
surrogate case.

Another way to think about P(FGS) is that it would be nice to say with some
certainty that the marker explains at least 50% or 75% of the effect of treatment.
Again, using the true Z values measured without error under the perfect
surrogate scenario, we can evaluate this by looking at the lower limit of a 90%
confidence interval and seeing how often it is at least 0.5 or 0.75. The lower
limit is at least 0.5 only 33% of the time and greater than 0.75 only 4.5% of
the time.

In summary, the fact that Z is measured with error seems to have a large
effect on P(FGS). Under all these scenarios, P(FGS) is quite variable, especially when
Z is a perfect surrogate or a nonsurrogate. The various smoothing techniques
do not reduce this large variability but do reduce bias in the estimate of P(FGS).
Because of the tremendous variability of P(FGS), we recommend that it be used
only as a measure of the amount of information explained by a potential
surrogate end point if the parameter estimate of a is at least three times the
size of its standard error. Only under this condition is reasonable precision
achieved for P(FGS); however, in a trial with such a strong treatment effect, it
seems unlikely that even a perfect surrogate end point can explain all or nearly
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all of the information about the effect of treatment on the true end point of
interest. Also, even though the estimate of P(FGS) may be reasonably precise, we
saw in Table 4 that it may be considerably biased.

DISCUSSION AND CONCLUSIONS

To expedite clinical trials and contain costs, an alternative end point to the
true one is often considered to evaluate the performance of a new therapeutic
agent. For a marker to be a surrogate for the true end point for a particular
agent, it must be prognostic of the true end point, respond quickly to the
treatment, and explain nearly all of the effect of the treatment on the true end
point. Expecting a marker to explain nearly all of the effect of treatment on
the true end point is restrictive. In the context of logistic regression, Freedman
et al. [5] proposed a statistic, denoted by P(FGS), which aims to measure the
proportion of information about treatment’s effect on the true end point ex-
plained by the marker. Following Lin et al. [6], we considered this statistic in
a time-dependent Cox model. Our studies show that P(FGS) is poorly calibrated.
Estimates can and will frequently be outside the range 0 to 1 in small samples.
Therefore, P(FGS) cannot be considered a proportion.

When a covariate is measured with error and used in the time-dependent
Cox model, we found the estimate of P(FGS) was, on average, biased toward 0. In
the scenarios we considered, the estimate of P(FGS) was highly variable, especially
when the marker was a perfect surrogate or a nonsurrogate, corresponding to
the extremes of the parameter space for P(FGS). Confidence intervals for P(FGS)

were frequently quite wide, enclosing a substantial fraction of the 0 to 1 range.
Smoothing techniques did not effectively reduce the estimated variability

of P(FGS) but did effectively reduce the bias in the estimate of P(FGS). Because of
the tremendous variability of this statistic, we recommend using it as a summary
measure only if the marginal treatment effect was three to four times its standard
error. In this situation, the variability of P(FGS) was reduced, but the estimates
were biased. Thus, to use P(FGS) to validate a new marker, a trial of substantial
size and/or length would need to be conducted to obtain a reasonably precise
estimate of the amount of information explained by the intermediate end point.
Longer and/or larger trials can be prohibitively expensive and time consuming
if they need to be conducted to revalidate old markers or validate new markers
for each new class of drugs that is developed.

We found the estimate of P(FGS) for the ACTG019 trial to be 20.02, calculated
using the OBS method, with 90% confidence interval (20.32, 0.28). Use of the
various smoothing techniques did not significantly alter this estimate. In view
of the poor properties of P̂(FGS), we believe it would be unwise to give any
strong interpretation of this value other than demonstrating that CD4 is not a
perfect surrogate. We believe that other methods of investigating surrogate
markers are likely to be more fruitful, for example, a graphical approach [16]
or by meta-analysis [18].

It is worth considering if there are circumstances when P(FGS) might be useful
and how it might be used. If many events are expected in a short period of
time, surrogate markers are unnecessary so P(FGS) is likely to be contemplated
only when there is a high proportion of censored observations. Furthermore,
implicit in the definition of P(FGS) is the assumption that the treatment arms will
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differ in their effect on the real end point. We see no role for P(FGS) if treatment
has either no effect or a minor effect on the real end point.

Even if one could establish a high value of P(FGS) for a particular marker, it
does not explain how to use that marker as the end point in a trial. One could
consider end points such as change in the marker from baseline, or time to
cross a specified threshold value, or changes of a certain magnitude considered
to be important.

P(FGS) itself does not constitute an end point in a trial; rather it summarizes
some analyses of data from the trial. P(FGS) can be calculated after the trial is
complete. If P(FGS) is found to be near 1, or just “high enough,” one might be
prepared to risk using this surrogate as the end point in the next trial of a
similar type of drug.

A second use of P(FGS) might be to compare two potential markers. If one
marker shows a higher value of P(FGS) than the other marker, then it might be
the preferred surrogate end point for the next trial. When two markers are
available, a combination of the two may be a better surrogate than either
one alone.

A third possible use of P(FGS) is as a guide to stopping a trial (i.e., continually
update P(FGS) as the trial evolves); if at some point before the intended conclusion
of the trial P(FGS) can be confirmed as high, then switch the primary end point
to the surrogate and stop the trial if there is a significant effect of the treatment
on the surrogate. We doubt, however, that this procedure would save much
time, because the amount of time required to confirm that P(FGS) is high is likely
to be just as long as the time required to show that the treatment has an effect
on the real end point.

This work was partially supported by National Institutes of Health grants AI07370 and AI29196.
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