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Abstract

A wide variety of vacua, and their cosmological realization, may provide an explanation
for the apparently anthropic choices of some parameters of particle physics and cosmology.
If the probability on various parameters is weighted by volume, a flat potential for slow-
roll inflation is also naturally understood, since the flatter the potential the larger the
volume of the sub-universe. However, such inflationary landscapes have a serious problem,
predicting an environment that makes it exponentially hard for observers to exist and
giving an exponentially small probability for a moderate universe like ours. A general
solution to this problem is proposed, and is illustrated in the context of inflaton decay and
leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe.
In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions
can be made for the size of CP violating phases, the rate of neutrinoless double beta
decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the
fundamental scale of supersymmetry breaking.

http://arXiv.org/abs/hep-th/0601028v3


1 Introduction

Our complicated world is based on hundreds of elements that have different properties. The

hundreds of elements reflect the existence of hundreds of stable nuclei. The variety of stable

nuclei requires fine choices of parameters such as αQCD, αQED, mu, md and me. Even a deviation

of a few % in αQCD from the current value could destabilize or stabilize such nuclei as 2H, 2He

and di-neutrons, completely changing the thermonuclear processes, chemical abundances of the

universe and lifetime of stars [1]. Such fine tuning cannot be explained by the naturalness

principle. Rather, it is easily explained by a combination of the many-universe idea (a cosmo-

logical diversity in the choice of theories and their parameters) with anthropic selection [2, 3].

It is only in the sub-universes with fine-tuned parameters that observers made of many species

of atoms exist. This combination also provides a simple solution to both the why-small and

why-now problems of the cosmological constant [4, 5].

Once we accept that the combination of many-universes with anthropic selection plays a role

in determining the values of observed parameters, then we need to change our way of thinking.

The combination not only confirms that the observed values of parameters are consistent with

the existence of observers, but, because the notion of naturalness is replaced by probability,

it changes to some extent the questions that should be asked. The fine tuning of parameters

and initial conditions of inflation is one prominent example: if the probability distribution is

weighted by the volume of the sub-universes, such a fine tuning is rather probable, as long

as theory space allows the inflaton mass to scan [6], or provided appropriate initial conditions

are realized somewhere in the universe [7]. We call such a space of theories containing lots of

inflationary regions an inflationary landscape.

The problem of inflationary landscapes [8, 9] is that we are no longer able to choose the pa-

rameters of the inflation model by hand to fit the observed data; rather these parameters (and

consequently the normalization of the density perturbations) are predicted by a combination

of statistics from the landscape, cosmological dynamics and anthropic conditions [3]. In par-

ticular, it is generically true that as the inflaton mass becomes smaller, so the inflated volume

becomes exponentially larger. This exponential behaviour of the volume-weighted probability

distribution implies not only that a small inflaton mass is very probable [6], but also that the

inflaton mass will become as small as possible until it is prevented by some anthropic reason.

Thus, a naive prediction of inflationary landscapes would be that the inflaton mass is so small

that the environment is exponentially hard for observers to exist [8] because, for example, the

density perturbations are too small or too large (this was called “σ problem” in [8]), the baryon
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asymmetry is too small or there is not enough matter. Whatever the reason, this picture ap-

parently does not lead to our universe.1 Since the slow-roll volume factor selects vacua with

smaller and smaller inflaton mass, we call this the inflation runaway problem.

The σ problem may be solved [8, 9] if the density perturbations arise from fluctuations of

light fields other than the inflaton [11, 12]. Even then, the inflaton mass has to be predicted

at a moderate value, or otherwise, there could be2 the same problem as above, for instance,

in the baryon asymmetry or dark matter abundance. Thus, this is quite a generic problem of

inflationary landscapes. Note, however, that the probability distribution on observable param-

eters depends sensitively on the boundary values of unobservable parameters and amplitudes

being scanned. Thus, the distribution is not exponentially sensitive to observables [13] in some

landscapes where the observable–unobservable correlation is sufficiently week [8].

In this article, we present an idea of how to stop the runaway behaviour of the inflaton mass,

along with its concrete implementation. In section 2.1 we introduce the runaway problem, and in

section 2.2 we point out a caveat that allows a solution. It is crucial to distinguish anthropically

relevant parameters from fundamental parameters, and further

(a) to have a sharp function, or threshold behaviour, of the former in terms of the latter, and

(b) to have an anthropic reason that exponentially disfavours some range of relevant param-

eters.

The runaway problem can be overcome when both (a) and (b) are satisfied. In section 2.3, we

see that (a) can be realized as the reheating temperature TR depends upon the inflaton mass.

If the inflaton decays dominantly to two heavy particles, TR drops rapidly as the inflaton mass

becomes close to twice of the mass of the heavy particle. The inflaton mass is predicted to be

close to twice the mass of the heavy particle. In this article we assume that only the inflaton

mass and the cosmological constant are scanned in the landscape, not the mass of the heavy

particle.3 Section 3 explains how TR can be a relevant parameter. If the baryon asymmetry

is generated by thermal leptogenesis, a very low reheating temperature leads to a low baryon

asymmetry and, if the baryon asymmetry is too low, galaxies cannot form before protons decay.

Thus, too low a TR is exponentially disfavoured. Therefore, both (a) and (b) can be realized,

and the runaway problem is solved. In section 4 we study the possibility that the heavy particles

1After understanding astrophysics and biology better, however, the naive prediction may turn out to be the
solution to Fermi’s paradox “Where is everybody?” [10].

2When the inflaton mass does not affect late time cosmology except for the number of e-foldings, as in the
hybrid inflation model in [8], such a problem does not exist.

3We do so as a first attempt to address the runaway problem in the simplest and easiest situation. There
may be room to lift some of these strong assumptions, but this is beyond the scope of this article.
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produced by inflaton decay are identified with one of the right-handed neutrinos, hoping for

constraints and predictions in the neutrino sector. The last section is devoted to conclusions

and discussion, together with a summary of our predictions. The appendix investigates one of

the uncertainties in the analysis in sections 3 and 4, the effect of evaporation of particles from

proto-galaxies.

2 The Runaway Problem and How to Solve It

2.1 The Inflation Runaway Problem

The probability distribution dP(ξ)/dξ describes the fraction of observers in the overall universe

who are in sub-universes where the fundamental parameters, ξ, are in the range ξ to ξ+ dξ [6].

dP(ξ) = dξ I(ξ)V(ξ)A(α(ξ)). (1)

The initial volume distribution I(ξ) includes the density of vacuum states and the probability

distribution for the initial amplitudes of the inflaton field. The density of states can be, in

principle, calculated from a given landscape, or from a top-down theory [14]. The volume

factor V(ξ) [15, 16] accounts for the expansion of each sub-universe during and after slow-roll

inflation

V(ξ) ∝ e3Ne(ξ). (2)

With these definitions, any volume expansion of the universe prior to the slow-roll stage is

incorporated in the initial factor I(ξ). For instance, if a landscape supports eternal inflation,

its volume expansion is to be incorporated in the initial factor I(ξ). The anthropic factor A(α)

depends only on parameters α of the low energy effective theory and of late time cosmology.

We call these the relevant parameters, some of which are relevant for providing an environment

suitable for observers. Ultimately they depend on the fundamental parameters, α(ξ). The

anthropic factor vanishes for many values of the relevant parameters, for example A(me =

5 MeV) = 0. However, in this paper the only aspect of the anthropic factor that we consider

is the formation of galaxies having an appropriate number of baryons, since we pay attention

only to the scanning of inflation parameters.

It is rather likely that a landscape supports some eternally inflating regions [17, 15, 18];

our standard-model vacuum with a minute cosmological constant may result from one of them.

An eternally inflating vacuum can tunnel or jump into regions of the landscape that support

slow-roll inflation through bubble nucleation or through quantum fluctuation of inflaton fields,
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eventually ending up in a radiation dominated standard-model universe after reheating (c.f.

[19]). The volumes of eternally inflating vacua keep expanding forever, and hence the volume

created through nucleation or fluctuation is infinite as well. There is an ongoing effort to

regularize these infinities so that the probability distribution (1) is well-defined [16, 20, 9, 21].

In this article, we assume that such a regulation is possible. We further assume4 that, when

the probability distribution is made well-defined, the classical volume expansion factor (2) is

not exactly cancelled by I(ξ). Such a cancellation appears unlikely, and one of our motivations

to consider the scanning of some inflation parameters is to seek an origin for a flat inflaton

potential in the volume-weighted probability distribution.

Since the number of e-foldings of slow-roll inflation Ne >∼ 60 for our sub-universe, V(ξ)

ensures that the probability distribution involves a powerful exponential dependence on the

parameters of the inflation potential [3]. After integrating over all fundamental parameters

and initial amplitudes of various fields that we cannot observe directly, ξ‖, one obtains the

probability distribution of relevant parameters (fraction of observers who see them)

dP(α) = dα

[∫
dξ‖ (dα/dξ⊥)−1 I(ξ)V(ξ)

]
A(α). (3)

Within the anthropic window, where the anthropic factor is changing only mildly, the overall

probability distribution is governed by the factor in the square bracket. Unless there is an

accidental cancellation between I(ξ) and V(ξ), or unless the region of integration determined

by a landscape is finely designed,5 the distribution of observables is generically exponentially

sensitive to inflation-related quantities such as the density perturbations and the reheating

temperature [8]. An immediate consequence is that an exponentially small fraction of observers

in the universe would see values of these parameters in the middle of the anthropic window

[8, 9]. Since we do not accept this conclusion that our sub-universe is so extraordinarily special,

there must be something wrong with these assumptions or arguments.

In fact, the exponential behaviour from the volume expansion factor V(ξ) is so steep that the

first question to be answered is whether the overall probability distribution can be normalized.

If I(ξ) and A(ξ) are power-law functions, the probability distribution grows forever and is not

well-defined. At a minimum, the exponential behaviour must be cut off so that observable

4Another assumption that we make in this article is that the volume distribution I(ξ)V(ξ)dξ can be treated as
a continuous distribution over field theory parameters ξ. This assumption may be translated into a sufficiently
dense landscape of vacua, or bubble tunneling rates without large hierarchy among them; for more information,
see [8].

5A landscape approximated by an ensemble of chaotic inflation potentials, with a mass-independent cut off
on the maximum field value, is such a possibility [8]. Reference [13] presents an explicit realization.
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parameters have average values that are well-defined. This may be accomplished in three

different ways.

If only a limited number of states are available in a landscape after imposing rigid anthropic

conditions,6 the probability distribution is always normalizable. On the other hand, the most

probable vacuum among them does not necessarily satisfy non-rigid anthropic conditions [8].

Another possibility is that the initial volume factor provides another exponential distribu-

tion, so that the combined volume distribution I(ξ)V(ξ)dξ has two exponentials counteracting

each other. Various properties of the most probable vacuum will be determined by how the

two exponential distributions balance. Without studying landscapes of the fundamental theory

(including eternally inflation regions), it may be hard to understand why the probable vacuum,

supposed to describe our universe, happens to fall inside the anthropic window.

The other possibility is that the probability is rendered well-defined by an anthropic factor

that provides an exponential suppression. Instead of relying on the initial distribution, about

which we know very little, a special form for the anthropic factor is required, offering the hope

of observable consequences. We find this case rather attractive and pursue it in this article.

The problem of this possibility, however, is that it is only outside the anthropic window where

the anthropic factor begins to decrease and counter the exponential growth in the inflation

volume. If we assume that both the volume factor I(ξ)V(ξ) ≈ e3Ne(ξ⊥) and the anthropic factor

A(α(ξ)) ≈ e−F (α(ξ)) are governed by some power functions Ne(ξ) and F (α(ξ)), then the peak

of the probability distribution lies roughly where

∂Ne(ξ⊥)

∂ ln ξ⊥
− ∂F (α(ξ⊥))

∂ ln ξ⊥
≈ 0, and hence Ne(ξ⊥) ≈ F (α(ξ⊥)). (4)

This implies that the majority of observers in the universe live in sub-universes having an

environment exponentially hard for observers to exist: A ≈ e−F (α(ξ)) <∼ e−O(100) ≪ 1. The pow-

erful exponential factor V(ξ) pushes the expectation value of observables outside the anthropic

window (see Fig. 1) [8].7 We call this the inflation runaway problem.

6It should be noted that an anthropic factor from cosmological origins tends not to provide a rigid cut-off
in the range of parameters [22, 8]. Any conditions that involve density perturbations fall into this category.
This is because Lagrangian parameters (or sub-universes) determine only the standard deviation σ of density
fluctuations Q, whereas the conditions are imposed on the real fluctuations Q. The anthropic factor A(σ) can

be calculated from Ã(Q) by assuming a Gaussian distribution:

A(σ) ≈
∫
dQe−(Q/σ)2Ã(Q).

Thus, at most the anthropic factor can provide an exponential suppression.
7This problem persists even if density perturbations are generated by the curvaton [11] or modulated reheat-
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anthropic window window

A V AV

ξ ξ ξ

Figure 1: Schematic picture of the inflation runaway problem. From left to right: the anthropic
factor A, the volume factor V, and the combined probability distribution VA, all on a loga-
rithmic scale. Normalization of each factor is arbitrary, and hence there is no importance in
the absolute height in the figure. The region to the right of the vertical axis is the anthropic
window, and the peak of the probability distribution lies outside the window.

2.2 An Idea to Solve the Problem

There is a caveat in the above argument that we exploit in this article. The volume expansion

factor is a function of the fundamental parameters of inflation models ξ, whereas the anthropic

factor depends on the relevant parameters, α(ξ). The caveat is in the map between them: what

if the map shows a very sharp behaviour?

Let us assume that α(ξ) has a region where it is rapidly varying, i.e., |α′| ≡ |dα/dξ⊥| is

large, as shown in Fig. 2. Then the factor (dα/dξ⊥)−1 in (3) becomes small as parameters enter

this region, as illustrated by a green curve in Fig. 3, and the volume factor V(ξ) becomes a mild

function of α (blue curve in Fig. 3). Although V is exponentially sensitive to ξ, the dependence

on α in this region is much weaker. Thus, the factor in the square brackets in (3) can form a

mild peak, as shown in Fig. 3. If this particular region of α has an overlap with the anthropic

window, where A(α) depends only mildly on α, the combined probability distribution may have

a mild peak inside the anthropic window, as shown in the right of Fig. 3. This explains how

inflationary landscapes can predict average values of observables inside the anthropic window.

In this case, the difficulty in (4) is avoided in the following way. The derivative of the

distribution function in (3) has to be zero somewhere in the anthropic window, forming a peak

ing [12] mechanism, so that their normalization is predicted to lie within the window, i.e., the σ problem is cured
as in [8, 9]. The density perturbations are not the only observables that have to be fixed within moderate values.
For example, a sub-universe with a reheating temperature sufficiently low to give an exponentially suppressed
anthropic factor is far from the one we observe.
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0.6 0.8 1 1.2 1.4 -0.5 0 0.5 1

ξ = (mφ/2mX)

α = TR

log10(mφ/2mX)

log10(TR)

Figure 2: A relevant parameter α(ξ) with a sharp dependence on a fundamental parameter
ξ. This is interpreted as the dependence of the reheating temperature on the inflaton mass,
TR(mφ) in section 2.3, and this figure corresponds to λ′ ≈ 10−3.

in the distribution. There,

−∂ lnα′

∂ lnα
+
∂ ln ξ⊥
∂ lnα

∂ lnNe

∂ ln ξ⊥
N̄e +

∂ lnA
∂ lnα

= 0, (5)

where N̄e is the number of e-foldings of a sub-universe of maximum probability. If α′ is a power

function of α, the first term is of order unity. If Ne and lnA ∼ −F are simple power functions

of ξ⊥ and α, respectively, ∂ lnNe/∂ ln ξ⊥ is also of order unity, and the last term is of order

−F (α). Since we want our own sub-universe to be a highly probable one, N̄e is approximately

the number of e-foldings in our sub-universe, which is much larger than one. On the other

hand, we would like our vacuum to be predicted inside the anthropic window, and hence F (α)

should be of order unity. Thus, the second term must also be of order unity at the peak of the

distribution, in spite of the large value of Ne. This is possible due to the sharp distribution, as

long as
∂ lnα

∂ ln ξ⊥
≈ N̄e (6)

is satisfied. The more the sub-universe inflates, the sharper is the required behaviour of α(ξ).

2.3 A Mass Threshold in Inflaton Decays

After inflation the universe must reheat, so that the inflaton must decay. We assume that

the inflaton mass scans (ξ = mφ) and that V(mφ) (or the combination I(ξ)V(ξ)) increases as

mφ decreases. As the inflaton mass mφ is scanned, mass thresholds in the inflaton decay rate

7



-6 -4 -2 2 -6 -4 -2 2

log10(TR/T+) log10(TR/T+)

threshold region

anthropic window
AV

(α
′−1)

threshold region

anthropic window

TR,0

(dP/dα)

Figure 3: Left: various factors of the probability distribution, namely, A,V and (dα/dξ)−1,
on a logarithmic scale. The normalization of each factor is arbitrary, and hence there is no
importance to the absolute height. Right: combined probability distribution dP/dα. Note
that the peak of the distribution is inside the anthropic window. [In this figure, the plateau of
the volume factor in the threshold region corresponds to N̄e ∼ 10. This is why the peak TR,0 is
close to the upper end of the threshold region.]

automatically provide a sharp behaviour in the reheating temperature TR: thus we take α(ξ)

to be a single relevant parameter, the reheating temperature TR(mφ). Suppose the inflaton φ

decays dominantly to a pair of heavy fermions, φ→ ψX + ψX , through the operator

L =
1

2
λφψXψX + h.c., (7)

and that the universe is reheated by ψX decaying to a fermion ψY and a scalar Y through

L = λ′ψXψY Y + h.c.. (8)

For mφ > 2mX , the 2-body decay rate of the inflaton is

Γ(φ→ ψX + ψX) =
1

16π
λ2mφ

√
β, (9)

where
√
β describes the mass threshold, and β ≡ 1 − (2mX/mφ)2 decreases sharply as the

inflaton mass mφ approaches the threshold 2mX from above. The 2-body decay channel closes

when mφ < 2mX , forcing the inflaton to decay through a 3-body channel

φ→ ψX + ψ∗
X → ψX + ψY + Y, (10)

where ψ∗
X is virtual, with a decay rate

Γ(φ→ ψX + ψY + Y ) ≈ 1

16π

(
2λ

′2

16π2

)
λ2
m3

φ

m2
X

(11)
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for mX < mφ < 2mX . The decay rate of the inflaton suddenly decreases by roughly (λ′/4π)2 as

the inflaton crosses the threshold at mφ ≃ 2mX . Since the reheating temperature TR is given

by
√

ΓMpl, it drops rapidly

from T+ ≡ min(λ, λ′)
√
mφMpl/16π, (12)

to T− ≡ λλ′

4π

√
mφMpl/16π, (13)

as mφ passes through the threshold at 2mX , as shown in Fig. 2. This illustrates the origin of

the sharp behaviour in α(ξ): the late-time cosmology parameter α is TR and the high-energy

parameter ξ is the inflaton mass, mφ. Of course the idea in section 2.2 will work only when

the anthropic factor depends exponentially onn TR, so that we will be led to consider theories

where the baryon asymmetry and/or the dark matter relic density depend on TR.

Let us examine more explicitly how the averaged value of low-energy observables are deter-

mined in the example of α(ξ) = TR(mφ) above. The threshold behaviour of TR is approximated8

by

TR(mφ)|mφ≈2mX
≈
{
T+β

1/4
[
mφ > 2mX(1 + λ

′2/(16π))
]
,

T−|β|−1/4
[
mφ < 2mX(1 − λ

′2/(16π))
]
.

(14)

Here, we have assumed that the reheating process above the threshold is governed by the decay

of the inflaton φ, rather than the decay of ψX . We focus on the part of the threshold with

mφ > 2mX , and substitute α(ξ) = TR(mφ) = β1/4T+ in (6) to give

TR,0 ≈
T+

N̄
1/4
e

(15)

for a highly probable universe, such as our own. This is an important result. Our mechanism

requires the reheat temperature of our sub-universe to lie in the upper half9 of the threshold

region, so that TR,0 >
√
T+T− ≈

√
max(λ, λ′)/(4π)T+. However, even for a huge volume factor

V, this requirement is very mild: max(λ, λ′) < 4π/N̄
1/2
e . In the following sections we find that

a sufficient exponential suppression of the anthropic factor will provide a somewhat stronger

constraint on max(λ, λ′).

8The approximation of TR using 3-body decay also exhibits sharp behaviour because the virtual ψX is
almost on shell as mφ approaches the threshold from below. The definition of β is 2[(mφ/2mX)− 1] around the
threshold.

9Here, we assume that the volume factor increases as the inflaton mass decreases, as in Fig. 3. There may
be another peak in the lower half of the threshold region, as in Fig. 3, but it depends on all the power-law
components of all the factors in the probability distribution whether this peak exists or not, and which peak is
higher. We just ignore this peak in this article.
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It is instructive to see in more detail how the probability distribution is maximized in this

example of a mass threshold in inflaton decays. Assuming there is no significant structure in

I(mφ)dmφ around mφ ≈ 2mX , the initial distribution is approximated by

I(mφ)dmφ ∝ d(mφ − 2mX) ∝
(
TR

T+

)4

d ln (TR/T+) . (16)

Meanwhile, assuming that the e-fold number Ne(mφ) does not have significant structure around

mφ ≃ 2mX , we adopt the Taylor expansion

Ne(mφ) ≈ Ne(2mX) ×
(

1 − c

(
mφ − 2mX

2mX

))
≈ N̄e(1 − cβ), (17)

with an order one coefficient c. Here Ne is assumed to increase as mφ decreases (as in the case

of landscapes of chaotic-inflation regions [6, 8, 9]), hence the minus sign. The volume expansion

factor is now approximated by

V(mφ) ≈ e3N̄ee−3cN̄e(TR/T+)4 . (18)

The overall probability distribution (ignoring the contribution from the anthropic factor in the

anthropic window) is

V(mφ)I(mφ)dmφ ≈ e3N̄ee−3cN̄e(TR/T+)4
(
TR

T+

)4

d ln(TR/T+) (19)

has a peak around TR/T+ ≈ (1/N̄e)
1/4, reproducing (15). This is how the typical TR is deter-

mined from this distribution, and will be the reheating temperature of our sub-universe TR,0 if

our vacuum is to be typical. The inflaton mass mφ is predicted in this framework almost at the

threshold 2mX with a deviation of order (TR,0/T+)4 ≈ 1/N̄e, and the reheating temperature is

suppressed by (1/N̄e)
1/4 from the naive expectation T+ because the inflaton mass is very close

to the threshold.

The above argument shows how the probability distribution can form a peak within the

anthropic window. We need to further make sure that this is the only peak, or at least, the

biggest peak in the probability distribution. For mφ ≪ mX , TR(mφ) is not a particularly sharp

function. TR different by a factor of a few would be a result of mφ different by a similar degree,

which means the number of e-folding different by a similar degree. Increase of Ne by a factor of

2 implies that the volume factor is multiplied by an extra factor of e3Ne , since e3Ne×2 = e3Nee3Ne .

Thus, we still need something that counters this exponential growth of probability distribution,

10



and we expect the anthropic factor to do this job; A(α) ≈ e−F (α) with α = TR now. If both

Ne(ξ) and F (α(ξ)) are approximated by simple power functions of ξ = mφ below the threshold,

or TR < T−, it is sufficient to make sure that

F (T−) >∼ N̄e (20)

and that F (mφ) is increasing faster than Ne(mφ) as mφ decreases, in order to guarantee that

there is no other peak outside this threshold region.

In the following sections, we discuss what kind of cosmological scenarios can provide such

an exponential anthropic factor A(TR) ≈ e−F (TR).

Independently of particular realization of A(TR), however, one can see the following. It

follows from the requirement F (T−) >∼ N̄e that T−/T+ is sufficiently small. This means that

there is an upper limit on
T−
T+

=
max(λ, λ′)

4π
, (21)

and hence on
T+√

mφMpl/(16π)
= min(λ, λ′) ≤ max(λ, λ′). (22)

Thus, the reheating temperature of our universe TR,0 given by (15) is also bounded from above,

once N̄e and mφ are known. Although the upper bound itself depends on such issues as

particular cosmological scenarios that determine F (TR), N̄e, and mφ, yet it is generic that

we have an upper bound on TR,0 for individual cosmological scenario. We see a particularly

important consequence in the scenario in section 4.

In this article, we consider the scanning of a single parameter of the inflaton potential that

causes both mφ and Ne to vary. It is beyond the scope of this article to explore the possibility of

solving the runaway problem for more complicated inflationary landscapes with more than one

scanning inflationary parameters. We just note here that the scanning of multiple inflationary

parameters generically leads to exponential behaviour in multiple directions on the space of

observable parameters, requiring multiple anthropic reasons for exponential suppression in the

number of observers.

Our analysis in this article is based on an assumption that only two parameters are scanned

in a landscape: the cosmological constant and the mass of the inflaton. All other parameters are

assumed not to be effectively scanned: some parameters may not be scanned in the landscape

[23, 24], or some of the parameters are scanned in the landscape but have already been pinned

down to the value of our sub-universe via some anthropic argument. The two parameter
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scanning of (mφ,Λ
4) is certainly minimal in considering the runaway problem, and at least the

first place to start.

3 An Exponential Anthropic Factor

The two crucial ingredients for solving the runaway problem are to have a sharp threshold

behaviour of a relevant parameter as the inflaton mass changes, and to have the anthropic factor

A decreasing exponentially with this relevant parameter—not just as a power law. Since we

have seen in the previous section that the reheating temperature exhibits a sharp behaviour as

the inflaton mass passes a threshold 2mX , it would be sufficient if, in some range of parameters,

A depends exponentially on TR. In the following sections, we show how this occurs in some

cosmological scenarios.

The basic idea is the following. The baryon symmetry YB ≡ nB/s decreases in some cosmo-

logical scenarios if TR decreases; thermal leptogenesis [25] is an example—there is insufficient

production of right-handed neutrinos in the thermal plasma if TR is less than the mass of the

lightest one. Although the number of baryons in a given comoving volume determines the max-

imum number of galaxies available, and hence contributes to the anthropic factor, the baryon

asymmetry itself is usually only a power-law function of TR, and is not enough to counter the

exponential growth of the volume factor. Some other physics consideration is necessary in order

for TR to be exponentially relevant to the anthropic factor.

After density perturbations grow during the era of matter domination, baryons begin to

self-gravitate to form bound states. In order for these bound states to evolve into such highly

non-linear structures as galaxies, the systems must release energy. When the number density

of baryons is too low, the cooling through bremsstrahlung is so inefficient that the time scale

for the cooling becomes longer than the lifetime of a proton. This observation leads to an

exponentially suppressed anthropic factor, as shown below in more detail.

The baryon asymmetry remains constant in thermal leptogenesis as long as TR > M1, where

M1 is the mass of the lightest right-handed neutrino:

YB,0 ≡
(nB

s

)

TR>M1

≃ 0.35 ×
(

ΓN1

M2
1 /Mpl

)
ǫCP, (23)

where ΓN1
/(M2

1 /Mpl) is nN1
/s, assuming out-of-equilibrium decay and ignoring g∗, the effective

statistic degrees of freedom. The CP asymmetry ǫCP is given by

ǫCP =
3

16π

Im((h1αh
∗
jα)2M1/Mj)

|h1α|2
. (24)
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As TR drops below M1, however, the baryon asymmetry from thermal leptogenesis is much

less than (23), because leptogenesis stops before reheating completes. After the end of the

slow roll era, the inflaton field oscillates and the temperature of the thermal plasma behaves

as T 4 ∼ T 2
Rρ

1/2
infl. [26]. Thermal leptogenesis stops roughly when T ∼ M1, and the subsequent

entropy production continues until T ∼ TR, diluting the lepton asymmetry by a factor of

(TR/M1)
5 [26]. Furthermore, the number density of right-handed neutrinos is less than usual

because
(nN1

s

)

T=M1

∼ ΓN1
tT=M1

∼
(

ΓN1

ρ
1/2
infl/Mpl

)

T=M1

∼ ΓN1

(M2
1 /Mpl)

(
TR

M1

)2

. (25)

Thus, the baryon asymmetry decreases as

YB ≃ YB,0

(
TR

M1

)7

(26)

for 100 GeV < TR < M1. The baryon asymmetry goes down rapidly10 as TR decreases, and

so does the number of Milky-Way type galaxies in a given comoving volume. However, since

this is only a power law of TR, this is not enough to produce the desired exponential anthropic

factor.

Let us assume that the dark matter density of our universe does not depend on TR (when

TR is in the range, say, above the electroweak scale). Thermal relics of stable particles that

weigh of order 100 GeV (WIMPs) are a good enough candidate. Under this assumption, the

epoch of matter-radiation equality remains almost unchanged. On the other hand, a single

Milky-Way type galaxy has a fixed11 baryonic mass, of order Mgal. ∼ (1011–1012)M⊙, and

10An implicit assumption here is that the branching ratio of the inflaton decay to right-handed neutrinos is
small enough. In particular, none of the particles ψX , ψY and Y in the model of threshold behaviour in the
previous section can be identified with the right-handed neutrinos.

11The total mass of a galaxy is an important parameter of environment for the existence of observers. At least,
the gravitational potential of a galaxy must be deep enough so that a supernova explosion cannot blow up the
galaxy. Furthermore, correlations have been found observationally between luminosity (and mass) and metalicity
of galaxies, and between the metalicity and sizes and orbiting radii of planets [27]. Thus, there will be a band (or
at least lower bound) in the mass of galaxies suitable for the existence of observers, once all other cosmological
and particle-physics parameters are fixed. In our universe, it will contain 1011–1012M⊙, and the lower bound
of the band will be no less than 108–109M⊙—the constraint from the supernova explosion. The band (or the
lower bound) itself will be different from ours in a sub-universe different from ours. For instance, the supernova
constraint will beMgal >∼Mgal,SN.min., whereMgal,SN.min.(Tvir/mp) ≈ 10−3M⊙ with the virial temperature at the
epoch runaway cooling starts. Constraints from the metalicity will require further astrophysical understanding.
Because we do not know the anthropic band (lower bound) in universes quite different from ours, in this article
we simply use the estimate Mgal ∼ (1011–1012)M⊙. These enormous astrophysical uncertainties, however, do
not change one of our main claims that an exponential anthropic factor follows by requiring galaxies to form
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hence a galaxy has to collect baryons from much wider comoving volume in sub-universes hav-

ing small baryon asymmetry. The galactic comoving scale enclosing a baryon of order Mgal

enters the horizon later if the baryon asymmetry is smaller. The horizon entry becomes as

late as the epoch of matter-radiation equality if YB were12 of order ∼ (MgalT
3
eq/mpM

3
pl) ∼

(10−15–10−14)(Teq/0.6 eV)3. For YB less than that, the galactic comoving scale would be pro-

portional to Y
−1/3
B , the horizon-entry time to Y −1

B , and the number density of the baryon

asymmetry [photons] at horizon entry to Y 3
B [to Y 2

B]. This number density is diluted by Q3 as

the universe continues to expand, until the density perturbation of the galactic comoving scale

goes non-linear. The density in over-dense regions increases further by of order 100 during

the virialization process, and the evolution of gravitationally bound systems decouple from the

expansion of the rest of the universe,13 giving proto-galaxies with

ρ ≈ 100T 4
eq(YB/10−14.5)2(0.6 eV/Teq)

6Q3, (27)

nγ ≈ (TeqQ)3(YB/10−14.5)2(0.6 eV/Teq)
6, (28)

nB ≈ 1000nγYB, (29)

at the epoch of virialization for YB < (10−15–10−14)(Teq/0.6 eV)3. Since the galactic comoving

scale enters the horizon after matter-radiation equality for such low baryon asymmetry, the

virial temperature of baryons is roughly given by [28]

Tvir ∼ mpQ, (30)

which is of order 10 keV for Q ∼ 10−5.

For sub-universes with such a low baryon asymmetry, the condition for runaway cooling [29]

of the proto-galaxies,

Γcool > (GNρ)
1/2 , (31)

is not satisfied. Here, Γcool is defined in terms of the energy-loss rate per particle

dEloss/dt = −ΓcoolTvir. (32)

before protons decay, providing the anthropic band (lower bound) of galaxy masses does not decrease as fast as

Y
3/2
B . Our quantitative predictions for the upper bound of the reheating temperature are not greatly affected

either. Even if there are uncertainties of several orders of magnitude in the anthropic bound on YB in (36) or
(45), the limit on TR is changed very little because the baryon asymmetry depends so sensitively on TR in (26)
or (44). See also section 5.

12For ΩCDMh2 ≃ 0.113 and ΩBh
2 ≃ 0, Teq ∼ 0.63 eV.

13The cosmological constant has to be small enough, so that the universe remains matter dominated until
this epoch. This only leads to a power-law suppression in the number of states in landscapes, and we ignore
such a power-law contribution to the probablity distribution.
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Proto-galaxies can release energy by emitting photons. The contributions to Γcool from the

two relevant processes, namely bremsstrahlung p + e → p + e + γ and Compton scattering

e− + γ → e− + γ, are given by [30]

ΓBrems ≈ 9
α3

m2
e

nB√
Tvir/me

, (33)

ΓComp ≈ 27π3

810

α2

m2
e

T 4
γ

me
, (34)

where Tγ ∼ n
1/3
γ is the typical photon energy. To see that (31) is not satisfied, first note that

Compton scattering is more efficient than bremsstrahlung right after virialization; second, the

rate (34) does not satisfy (31).

Although [28] used the condition (31) as an anthropic criterion, the cooling condition (31)

not being satisfied only implies14 that runaway cooling does not happen right after virializa-

tion. Instead, quasi-static cooling occurs on a time scale of order Γ−1
cool, allowing gravitational

contraction. During quasi-static cooling, the gravitationally bound system maintains virial

equilibrium, and the Jeans mass remains equal to the total mass of the bound system [29].

Hierarchical cooling [31] does not occur. Thus, sub-structures of galaxies, such as clumps of

molecular clouds or hydrogen-burning stars, are not formed during quasi-static cooling. As

the quasi-static cooling proceeds, the system becomes more dense and hotter,15 and eventually

the cooling condition (31) is satisfied, so that hierarchical cooling starts, and smaller struc-

tures begin to grow.16 Thus, we do not find it really safe to claim that the anthropic factor is

exponentially suppressed whenever the cooling condition (31) is not satisfied.

The cooling time scale cannot be arbitrary long;17 galaxies must form before protons decay,

14The size of the cosmological constant determines the largest structures with order one density perturbations,
but it is more appropriate to think that the upper bound on the cosmological constant is set by requiring that
galaxies in the anthropic mass band be formed. Since the landscape picture prefers the largest anthropically
allowed cosmological constant, it is possible that structures containing baryons of order Mgal (or the lower
anthropic mass bound for galaxies) are the largest. If so, the destruction of proto-galaxies through mutual
gravitational interactions before cooling starts is no longer an anthropic problem [29]. See, however, also
footnote 17 and section 5.

15At an earlier stage of gravitational contraction, the source of gravitational potential energy is dominated

by dark matter, and thus the temperature of baryons may not increase as in the standard TB ∝ ρ
1/3
B relation.

But after a baryonic core with ρB ∼ ρCDM is formed, as a result of gravitational contraction of baryons, the
temperature of the baryons (including electrons) begins to increase.

16It is the density at this epoch that should be used in evaluating the anthropic conditions in [32], ensuring
that the halo not be too dense. See section 5.

17 Main-sequence stars and planetary systems around them are considered to have formed from cold clouds
in galactic discs in our universe. Not all the particles are heated up to the virial temperature at the beginning
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which we assume happens with a lifetime of order τp ≈ 1036 years:

Γ−1
cool < τp ≈ 1036yrs. (35)

Since relativistic particles, namely photons, cannot be trapped in a gravitational potential well

without sufficient scattering interactions, the number density of photons continues to decrease

because of the expansion of the entire universe. On the other hand, the number density of

protons remains constant in the virialized systems. Thus, the cooling time scale is set by the

bremsstrahlung process.18 Using (28)–(30) and (33) in the anthropic condition (35), we see

that (
10−20

YB

)3(
2 × 10−5

Q

)2.5

<∼ 1. (36)

If YB <∼ 10−18, however, the p̄p pair annihilation in the early universe is incomplete,19 so

that p̄ survive with an abundance of order np̄/s ∼ 10−18, which, by charge conservation, is also

the e+ abundance. The bremsstrahlung cooling rate should be evaluated by using np,p̄ in (33),

instead of nB. But, since the cross section of e+e− pair annihilation is larger than that of (e, p)

bremsstrahlung, pair annihilation starts before cooling. As the number densities of electrons

and positrons decrease, the (e, p) bremsstrahlung cooling rate also decreases; the total energy

carried by electrons (and positrons) is only ne,ē/np,p̄. In the end, only electrons are left with the

abundance ne = np − np̄, and ΓBrems reduces to the one with nB again. Anti-protons annihilate

with protons before proto-galaxies begin to cool. Thus, even for YB <∼ 10−18, the anthropic

bound (36) is still valid.20

The anthropic bound (36) has to be satisfied by the actual density perturbationQ. Assuming

that Q follows a Gaussian distribution characterized by its standard deviation σ, we obtain the

anthropic factor

A(σ, YB) ≈
∫

(Q/2×10−5)>(10−20/YB)6/5

dQe−(Q/σ)2 ≈ e−(10−20/YB)12/5(2×10−5/σ)2 . (37)

of virialization, as argued in [33]. But, if it takes too long time for proto-galaxies to cool, would-be discs may
be heated and evaporate before runaway cooling starts. This anthropic condition is not taken into acount in
section 3 and 4. See discussion in section 5.

18Here, we assume that all the particles in proto-galaxies remain bounded gravitationally forever. However,
this is not really correct; some particles evaporate from proto-galaxies before runaway cooling starts. See
discussion in the appendix for the effects of evaporation.

19TW thanks G. Perez for bringing this issue to our attention.
20We assume that e+-e− and p-p̄ pair annihilation emit photons and relativistic pions that freely escape from

the gravitational potential of proto-galaxies.
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Since YB ∝ T 7
R for TR < M1 in the thermal leptogenesis scenario, this anthropic factor indeed

depends exponentially on TR(mφ).

In order to see whether this exponentially small anthropic factor is small enough to contain

the exponentially large volume factor, we need to be a little more specific about the inflationary

landscape. We approximate the inflationary landscape by an ensemble of chaotic inflation

potentials, with only one parameter mφ to be scanned. The volume factor is given by V ≈ e3Ne

with Ne(mφ) ≈ Mpl/mφ, because the largest value of the inflaton field for classical slow-roll

inflation is φ ≈ M
3/2
pl /m

1/2
φ . The amount of inflation increases as mφ decreases, and thus the

volume factor can, in principle, be countered by the threshold behaviour and the anthropic

factor we have discussed. The asymptotic behaviour of the anthropic factor A ≈ e−F (TR(mφ)) is

given by

F (TR(mφ)) ∝ Y
−12/5
B σ−2 ∝ T

−84/5
R m−2

φ ∝ m−27.2
φ , (38)

where σ ∼ mφ/Mpl for chaotic inflation and TR ∝
√

Γ(φ) ∝ m
3/2
φ for mX

<∼ mφ ≪ 2mX [see

(11)]. Thus, as mφ decreases, F (TR(mφ)) increases much faster than Ne(mφ) and we conclude

that the exponential anthropic factor from thermal leptogenesis is able to tame the volume

factor from chaotic inflation.

The anthropic factor (37) should begin to decrease within the range of T− < TR < T+ covered

by the threshold behaviour, so that the peak of the probability distribution is determined by

the argument in the previous section. The requirement (20) on T− now reads

YB(T−) <∼ 10−20 × (mφ/Mpl)
5/12 ≈ 10−22, (39)

where the COBE normalization was used to determine the inflaton mass mφ ≃ 1013 GeV

in chaotic inflation. This is translated into T−/M1 <∼ 10−1.6, or equivalently, (T−/T+) <∼
10−1.6N̄

−1/4
e (M1/TR,0) <∼ 10−3(M1/TR,0), with N̄e ∼ [2.4 × 1018 GeV/1013 GeV]. Thus, the

coupling constants for the reheating have to satisfy only a mild condition: max(λ, λ′) <∼
10−2(M1/TR,0). Therefore, we obtain the upper bound on the reheating temperature as outlined

in the previous section:

TR,0 <∼
√

1012 GeVM1, (40)

and the lightest right-handed neutrino has to be somewhat lighter than 1012 GeV.

We have seen in this section that thermal leptogenesis can solve the runaway problem of

chaotic inflation, with only a mild constraint on the coupling constants involved; λ, λ′ <∼ 10−2.

We have also obtained some predictions; the upper bound on the lightest right-handed neutrino

mass M1 < 1012 GeV, and the upper bound on the reheating temperature of our universe (40).
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Although these predictions are not directly testable in low-energy experiments, they provide

extra constraints on the parameter space of thermal leptogenesis.

4 Non-thermal Leptogenesis

The key ingredient in section 2 is the existence of a heavy particle ψX , with mass mX ∼ 1013

GeV that is not scanned in a landscape. This hypothetical particle ψX realized the sharp

threshold behaviour in the reheating temperature, and stopped the inflaton mass runaway at

2mX . Can ψX be related to other observable physics?

The tiny masses of left-handed neutrinos combined with the see-saw [34] mechanism suggest

that right-handed neutrinos exist, with masses of order 1015 GeV for order 1 Dirac Yukawa

couplings and 1013 GeV for order 10−1 Dirac Yukawa couplings. Thus, a natural question

arises: can a right-handed neutrino be identified with the hypothetical particle ψX? If this idea

works, one may be able to make further arguments in the future why mX is not scanned in

landscapes by looking at how the masses of right-handed neutrinos arise. In this section, we

show that one of the right-handed neutrinos can indeed be identified with the threshold particle.

This means that the inflaton mass, and consequently the density perturbation, is determined

by the physics of right-handed neutrinos.

Let us assume that the inflaton decays to a pair of right-handed neutrinos N1 with a branch-

ing ratio very close to 1 via the interaction

L =
1

2
λφN1N1 + h.c.. (41)

The right-handed neutrinos decay to a lepton l and a Higgs scalar hu through

L = λ′iαNilαhu + h.c., (42)

These two operators are the same as (7) and (8), allowing exactly the same behaviour as in

section 3. The inflaton mass is predicted to be ≃ 2mN1
, and the reheating temperature of our

sub-universe is suppressed by roughly 1/N
1/4
e relative to the reheating temperature naturally

expected when the inflaton mass is safely above the threshold 2mN1
.

An important difference from the scenario in the previous section, however, is that the

baryon asymmetry does not decrease as fast as in (26). The lepton asymmetry from the

thermal leptogenesis certainly goes down as in (26), but there is an extra contribution from

the the leptogenesis in the decay of right-handed neutrinos produced by inflaton decay [25]. Its
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lepton asymmetry is given by

YB ≃ 0.5
TR

mφ

ǫCP ≡ ỸB,0

(
TR

TR,0

)
, (43)

and decreases very slowly as TR decreases. Thus, the lepton (or baryon) asymmetry is domi-

nated by this contribution for low reheating temperatures. Since the baryon asymmetry still

depends on TR, the sharp behaviour of TR(mφ) can be used to solve the runaway problem.

The lepton asymmetry, however, depends so weakly on TR, as opposed to (26), that a baryon

asymmetry as low as YB ∼ 10−22 is not achieved for TR larger than the electroweak scale.

For reheating temperatures lower than the electroweak scale, the baryon asymmetry decreases

much faster, i.e.,

YB ≈ ỸB,0

(
100 GeV

TR,0

)(
TR

100 GeV

)5

, (44)

because the sphaleron process stops after the temperature of the thermal plasma drops below

100 GeV, and the baryon asymmetry generated at high temperature is diluted by radiation

produced from inflaton decay. Thus, the reheating temperature below the threshold, T−, is

likely to be lower than the electroweak scale, but not much less.

The anthropic bound (36) on YB (and on the density perturbation Q) was based on an

assumption that the dark matter energy density does not change, but, with a reheating tem-

perature lower than the electroweak scale, this assumption may not hold. If cold dark matter is

a thermal relic of a stable particle with mass of order 100 GeV (WIMP dark matter), production

after reheating may be highly suppressed. The relic number density is frozen when the plasma

temperature is around 10 GeV, and is diluted by a factor of order (TR/10 GeV)5 due to the

following entropy production from inflaton decay. Gravitinos produced from thermal scattering

are also a candidate for dark matter in gauge-mediated supersymmetry breaking scenarios, and

their number density also decreases as the reheating temperature decreases—not exactly in the

same manner for TR above the electroweak scale, though.

For TR sufficiently less than 10 GeV for WIMP dark matter, the dominant component of

dark matter is left-handed neutrinos. The effect of a lower dark matter density is incorporated

by taking Teq to be mν ≈ 0.03 eV in (27)–(29). Thus, the anthropic bound (36) is replaced by

(
10−21

YB

)3(
2 × 10−5

Q

)2.5

< 1. (45)

Note that the galactic comoving scale enclosing a baryonic mass of Mgal is longer than the

free-streaming length of neutrinos for YB as low as 10−21, and the neutrinos can be treated as
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cold dark matter in the earlier stage of galaxy formation. The same argument as in the previous

section leads to an exponential cut off for low reheating temperature and small inflaton mass,

and it is sufficient to take T− so that

YB(T−) <∼ 10−21 × (mφ/Mpl)
5/12 ≈ 10−24. (46)

Thus, T− ∼ 1 GeV is sufficient for TR,0 ∼ 105.5 GeV, and T− ∼ 10 GeV for TR,0 ∼ 1010.5 GeV.

Since YB depends on TR quite sensitively in (44) for low TR, the exponential anthropic factor in

(37) is powerful enough to tame the volume factor of chaotic inflation. At the same time, one

will notice that various uncertainties already mentioned in footnotes in the previous section do

not lead to a large uncertainty in the constraint on T−.

One can also see that the bound (45) (and (46)) is valid for gravitino dark matter as well,

essentially because left-handed neutrinos become the dominant cold dark matter and the other

components are small and no longer relevant.

Now we can derive the upper bound on the reheating temperature of our universe, using the

constraint (46). Higher reheating temperature TR,0 (and higher T+) requires larger coupling

constant, because T+ ≈ min(λ, λ′i=1,α)×1015 GeV, where mφ ∼ 1013 GeV is used for chaotic

inflation. This means larger T−/T+ ∼ max(λ, λ′)/(4π). Since the constraint (46) sets an

upper limit on T−, TR,0 cannot be arbitrary high. Let us assume N̄e
1/4 ∼ 10. For TR,0 ∼ 107

GeV, T+ ∼ 108 GeV, which means that min(λ, λ′i=1,α) ∼ 10−7. The threshold behaviour

of TR(mφ) can cover the range from T+ to T− ∼ (max(λ, λ′)/4π)T+ >∼ 1 GeV. Thus, for

λ ∼ λ′i=1,α ∼ 10−7, the anthropic factor is already sufficiently exponentially small at the lower

end of the threshold. For TR,0 ∼ 108 GeV, T− cannot be less than 100 GeV, and the anthropic

factor is not exponentially small. The upper bound on the reheating temperature of our sub-

universe, TR,0, is only slightly above 107 GeV.

At the same time we obtain the upper bound on the Dirac Yukawa coupling constants of

the lightest right-handed neutrinos:21 |λ′i=1,α| <∼ 10−7.

Leptogenesis through inflaton decay accounts for the baryon asymmetry of our universe

YB,0 ∼ (0.4–0.9)×10−10 only when TR,0 >∼ 106 GeV, since the CP asymmetry in (24) cannot be

more than order one. Thus, we see that the range of reheating temperatures of our universe is

narrowed down to one order of magnitude, 106 GeV ∼ 107 GeV. This means that the CP phase

in leptogenesis is no less than of order 0.1. If there is no significant accidental cancellation with

other combinations of CP phases in the lepton sector, there is a chance that CP violation will

21Dirac Yukawa coupling constants of other right-handed neutrinos are not constrained. Thus, the CP asym-
metry can be large enough to account for the lepton/baryon asymmetry of order 10−10.
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be seen in the next-generation of neutrino oscillation experiments.

The other prediction, |λ′i=1,α| <∼ 10−7, implies that the mass matrix of left-handed neutrinos

is virtually of rank 2, if there are 3 right-handed neutrinos. Some predictions on the rate of

neutrinoless double beta decay are available in the rank 2 case; see [35] for more information.

These predictions are based on chaotic inflation, where the inflaton mass is determined by

the COBE normalization mφ ≃ 1013 GeV. We immediately learn that one of the right-handed

neutrinos has a mass mφ/2.

With weak-scale supersymmetry breaking22 arising from gauge mediation, our prediction

for the range of reheating temperatures TR,0 has a significant further implication. In these

theories, the gravitino is the best dark matter candidate for a wide range of gravitino masses,

100 keV–100 GeV. The relic density of gravitinos produced from the thermal plasma is given

by [36]

Ω3/2h
2 ≃ 0.2

(
TR

106 GeV

)(
10 MeV

m3/2

)(
mg̃(100 GeV)

1 TeV

)2

, (47)

and depends on two totally unknown parameters m3/2 and TR. Only the ratio (TR/m3/2) can be

determined from the observed value of Ωh2 ≃ 0.113. But, now that the reheating temperature

is essentially predicted the gravitino mass is determined, m3/2 ≃ 20 MeV–200 MeV. This in

turn determines the fundamental scale of supersymmetry breaking,
√
F ≈ 108–109 GeV.

5 Conclusions and Discussion

If the fundamental theory allows more than one vacuum, and if many vacua are realized cos-

mologically, then cosmology may play an important role in choosing the low energy theory

and its parameters. In inflationary landscapes, where models and parameters of inflation are

scanned cosmologically, sub-universes with a small inflaton mass dominate the volume of the

universe, making slow-roll inflation a probable consequence. The problem of inflationary land-

scapes [8, 9], however, is that the probability distribution tends to be exponentially sensitive

to some late-time cosmological parameters, and hence does not correctly predict their observed

values. We call this the inflation runaway problem.

Landscapes and many-universes are about the world outside the horizon of our universe,

and we usually think that no sign of them can be seen. One also usually considers that the an-

22In supersymmetric theories, the Affleck–Dine mechanism is another way to generate the baryon asymmetry.
However, a negative mass squared is generated only when the Kähler potential satisfies certain conditions. If a
landscape supports a region where the conditions are satisfied, an extra consideration is necessary.
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thropic conditions depend on only a limited number of relevant parameters, most of which have

already been measured, so that there are no predictions. Without a well-understood top-down

tool to figure out the statistic distribution of vacua on a landscape, it seems almost impossible

to determine theories or parameters that are yet to be tested in experiments. It is important

to note, however, that inflationary landscapes have a generic prediction: the probability dis-

tribution is exponentially sensitive to some parameters. This is where the runaway problem

comes from. The problem is so severe that there may be very few possible solutions, from which

indications may be obtained for particle physics to be explored in the future.

Some ideas have already been proposed to evade this problem. For instance, eternal infla-

tion of false-vacuum type or chaotic-type may strongly select only one inflationary region in a

landscape [8, 9]. The observational consequences for the curvature of the universe and for lower

multipoles of CMB spectrum are discussed in [19] and references therein. Maybe the funda-

mental theory of phsycis has an inflationary landscape carefully designed to avoid the volume

factor exponentially sensitive to some parameters [8, 13]. If such landscapes involve chaotic

type inflation, we may expect tensor perturbations. A fundamental cut off scale parametri-

cally larger than the observed Planck scale may also have something to do with the apparent

fine tuning problems of certain low-energy supersymmetric theories [38]. An alternative is to

have density perturbations generated by a curvaton or by modulated reheating [8, 9], whose

observational consequences are discussed in the literature [11, 39, 13].

In this article, we have proposed a new solution to the runaway problem, which is connected

to the particle physics of inflaton decay and baryogenesis. In spite of the exponential distribution

from the inflationary landscapes, observables are predicted successfully in the middle of the

allowed anthropic windows. The key ingredient is to distinguish between parameters describing

inflation and those that are directly observed. The latter are not necessarily given by simple

power-law functions of the former. For instance, the reheating temperature drops sharply as

the inflaton mass approaches the threshold for two body decay. In this case, the inflationary

landscape predicts the inflaton mass to be close to twice the mass of the threshold particle.

A sufficiently sharp threshold behaviour for TR requires small couplings in operators relevant

to reheating, and hence a low TR in our universe that depends on the cosmological scenario:

TR <∼ 1012 GeV in the thermal leptogenesis scenario of section 3, and 106 GeV <∼ TR <∼
107 GeV in the inflaton-decay leptogenesis scenario of section 4. Chaotic inflation is assumed.

In both sections, the anthropic limit was set by requiring that bremsstrahlung and runaway

hierarchical cooling of proto-galaxies start before protons decay. Although we have ignored

various uncertainties, the upper bound obtained on TR illustrates a completely new way to
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obtain information on particle cosmology from anthropic reasoning.

In section 4 the particle produced by inflaton decay was identified with a right-handed

neutrino, allowing the inflaton mass, and some other parameters including the normalization of

density perturbations, to be set by physics of the neutrino sector. This provides a mechanism

for understanding the values of inflation parameters in terms of observable particle physics.

In this particular scenario, there are several predictions that again demonstrate how this line

of anthropic argument can lead to observable tests. One CP violating phase of the neutrino

sector must be of order 0.1 or larger. The low energy neutrino mass matrix is forced to be

essentially rank 2, so that the rate for neutrinoless double beta decay will be constrained by a

particular relationship involving the neutrino mixing angles and the observed neutrino masses.

Furthermore, in supersymmetric theories with gauge mediation, dark matter is predicted to

be gravitinos with mass in the range 20–200 MeV. This corresponds to a fundamental scale of

supersymmetry breaking of 108–109 GeV, which can be tested by precise measurements of the

superpartner spectrum and by the nature of the decay of the next-to-lightest superpartner [37].

It should be noted that the above predictions are based on an assumption that the anthropic

limit is set by the comparison between the rate of bremsstrahlung cooling and proton decay.

When various other anthropic conditions are imposed, some of which are listed in footnotes in

section 3, the anthropic limit in the YB–Q plane may be stronger, and the upper bounds on TR

may become weaker. Including other uncertainties in galaxy formation and in the anthropic

conditions, the above predictions may be modified. There is no doubt that further studies in

astrophysics will be important in making the predictions more precise and reliable. As a step

in this direction, we discuss possible effects of particle evaporation from proto-galaxies in the

appendix, concluding that the upper bound on TR will not be greatly changed, partly because,

in scenarios in section 3 and 4, YB is highly sensitive to TR.

As the astrophysics and anthropic conditions become better understood, the upper bounds

of the reheating temperature will change numerically. But, the idea for stopping the runaway

by a combination of threshold effects and exponential anthropic factors will survive; extra

anthropic conditions would only strengthen our conclusion that the exponential distribution

of inflationary landscapes can be tamed. No matter how sophisticated and complicated the

astrophysical analysis becomes, the upper bound on the reheating temeperature persists as

long as the threshold behaviour of the inflaton decay plays a crucial role.
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Appendix: Evaporation

In proto-galaxies that cannot cool, some fraction of the baryons in the high-energy tail of the

Boltzmann distribution have sufficient speed to escape, as noted in [40]. We ignored this effect

in the main text, and devote this appendix to investigating the extent to which the conclusions

could be changed by evaporation.

There are two important points in discussing evaporation from proto-galaxies. One is that

the evaporation of particles from isolated proto-galaxies results in their gravitational contraction

[41]. The other is that the proto-galaxies are comprized of multiple components: dark matter

particles and baryons (including electrons and possibly their anti-particles). We begin for

simplicity with the evolution of proto-galaxies made purely of cold dark matter particles, and

later extend the discussion to take account of baryons.

Nearly 1% of particles in the Maxwell–Boltzmann distribution have velocities larger than

the escape velocity of proto-galaxies and hence evaporate. The time scale of evaporation is

set by how quickly the lost population of particles in the high-energy tail of the Boltzmann

distribution is restored by particle–particle interactions. Two-body interactions via gravity

always exist, no matter what the nature of the dark matter particle, with an efficiency given

by

Γgrav. ≈
(GNρ)

1/2

NDM
, (48)

where NDM is the typical number of dark matter particles in one proto-galaxy [41]. Note that

the number of baryons is very large, of order NB ∼ 1068 for Mgal ≃ 1011M⊙, and NDM is

extremely large if dark matter is composed of elementary particles with a moderate mass, such

as 100 GeV, or even lighter. Thus, the gravitational encounter of two dark-matter particles is

not effective within the time scale of bremsstrahlung cooling.

24



When dark-matter particles have two-body non-gravitational scattering with a cross section

σDD, the relaxation due to this scattering occurs at the rate nDMσDDvvir, where nDM is the

number density of dark-matter particles. The evaporation is roughly 1% of the relaxation rate,

so that evaporation of dark-matter particle does not occur before bremsstrahlung cooling, if

10−2nDMσDDvvir <∼ ΓBrems. (49)

Using (27) and (33), this holds true as long as

σDD <∼ 10 pb
( mDM

100 GeV

)( YB

10−22

)(
2 × 10−3

Q

)
(50)

for dark matter with ρDM/s ≃ 0.8 eV, and

σDD <∼ 10−22.5 b

(
YB

10−24

)(
2 × 10−3

Q

)
(51)

for neutrino dark matter with nν/s ≃ 10−1.5. It is clear that cross sections for axion–axion

scattering and neutrino–neutrino scattering satisfy (50) and (51), respectively, for the values of

YB given in the right-hand sides. Thus, the anthropic bounds (36) and (45) in section 3 and 4

are unaffected by the evaporation of dark matter in such cases.

While the inequality (50) is satisfied by most dark matter candidates, for example WIMPs,

it could be violated when the interactions between dark matter particles are significant. In

that case, the anthropic bound (36) in section 3 will be affected; dark-matter evaporation

leads to the gravitational contraction of proto-galaxies, and then the baryon number density is

also enhanced and bremsstrahlung cooling begins to work. At some point in the gravitational

contraction due to evaporation and quasi-static bremsstrahlung cooling, runaway cooling starts.

Thus, evaporation changes the estimate of the time scale before the hierarchical cooling starts,

which is to be compared with the proton lifetime in (35). However, even for such dark matter

candidates, the estimated anthropic bound in (36) is not greatly affected by the evaporation of

dark matter particles, since unitarity implies that(50) is not violated by a large amount—not

by of order 1010. When the anthropic bounds on YB is translated to an upper bound on the

reheating temperature TR, the effect will be quite minor since YB is very sensitive to TR in (26).

Let us now bring baryons into the discussion, ignoring the evaporation of dark matter par-

ticles. Baryons-baryon scattering has a large cross section and the Boltzmann distribution is

repopulated much more quickly. We do not go into a detailed estimate of the evaporation rate

of baryons, but an important point is that this evaporation is accompanied by a gravitational
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contraction of the baryons. As long as there is no efficient energy transfer between dark-matter

particles and baryons, baryons fall into the potential well of proto-galaxies as the evaporation

proceeds, so that the evaporation soon stops. Thus, the discussion in the main text is unaf-

fected by the evaporation of baryons (and electrons) if the energy transfer between dark matter

particles and baryons does not occur effeciently.

Consider the case that the dark-matter particle is lighter than the proton, for example

the case of axions or neutrinos. Since the axion-nucleon and neutrino-nucleon scattering cross

sections are so small, an inequality similar to (51) is safely satisfied. Thus, the energy transfer

does not take place between axion or neutrino dark matter with baryons before bremsstrahlung

cooling starts, and the conclusion of the previous paragraph holds.

When dark matter particle has a mass of order 100 GeV–1 TeV, the kinetic energy of a

proton typically increases by of order unity in a single collision with a dark-matter particle.

Once a proton is kicked by that amount, it has a good chance to escape the gravitational

potential. The typical rate for this to happen is nDMσDNvvir, which is to be compared with

ΓBrems. Energy transfer from dark matter to baryons does not occur before bremsstrahlung

cooling, if the dark-matter nucleon scattering cross section σDN satisfies

σDN <∼ 0.1 pb
( mDM

100 GeV

)( YB

10−22

)(
2 × 10−3

Q

)
. (52)

Most candidates for dark matter have a scattering cross section with protons that is much

smaller than 0.1 pb, and hence the discussion in section 3 is not affected by baryon evaporation

from proto-galaxies.

In the rare cases that energy is transferred from dark matter to baryons, the baryons may

evaporate efficiently from proto-galaxies since dark matter particles keep supplying energy

to the baryons allowing them to escape. Since protons and electrons are light and minor

components in proto-galaxies, the energy supply continues until proto-galaxies loose virtually

all their protons and electrons. Thus, bremsstrahlung cooling should work in a time scale

shorter than that of the energy transfer to baryons and evaporation of baryons. This anthropic

condition sets a constraint in the YB–Q plane in addition to the proton lifetime constraint (35).

An argument can be constructed essentially in the same way as in the main text, and in the

end, the main qualitative result is maintained even with evaporation: namely, an exponential

anthropic factor results from the failure of structure formation, and an upper bound on the

reheating temperature is required to make YB(T−) small enough. Since (52) is not a stringent

constraint, and since YB is very sensitive to TR, the upper bound on TR is not affected very

much, even quantitatively.
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It should be noted, however, that the discussion so far, both in the appendix and hence in

the main text, assumes that proto-galaxies are homogeneous, allowing a crude estimate of the

impact of evaporation. The limit on the cross section, such as 10 pb, may change a little when

one takes into account the concentration of particles at the centre of the proto-galaxies and

the profiles of the matter distribution and gravitational potential. The limit may also change

when additional anthropic conditions, such as those in footnotes in section 3, are taken into

account, or when Mgal ∼ 1011M⊙ is replaced by an anthropic lower bound on Mgal, yet to be

determined precisely. Further study of such issues may change the argument in this appendix

quantitatively, but the way of thinking will remain valid.
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