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Abstract Receding horizon control is emerging as a very promising technique for
the centralized control of fleets of vehicles on land, sea, and in the air. We present
a sufficient condition for collision avoidance within a fleet under receding horizon
control, over an indefinite period of operation.

Keywords Collision avoidance · Multi-agent control · Min-max-min algorithm ·
Receding horizon control

1 Introduction

Airplanes in holding patterns over airports or taxing on runways, ships entering or
leaving harbors, drones circling overhead waiting to be directed to a mission, auto-
mated container terminals in wharves where autonomous robotic vehicles load and
unload ships are all under centralized control, usually under human control, but pro-
gressively more often under computer assisted control. The human control is provided
by air traffic controllers, harbor masters, drone dispatchers, etc.

Receding horizon control (RHC) is emerging as a very promising technique for
more automated and safer centralized control of fleets of vehicles on land, sea, and
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in the air. A common feature of the above cited examples is that, in all of these
situations, collision avoidance is a major issue.1, 2

Receding horizon control is an advanced form of sample-data control. But, unlike
in classical sample-data control, the control is not constant over the sample intervals
and is not determined by a linear compensator and sample-and-hold circuit. In an
idealized version which ignores computing time, at time k�, where � > 0 is the
sampling time and k ∈ N, the state of the dynamical system is measured and then
the RHC digital computer solves an optimal control problem (using as initial state
the measured state) whose cost function expresses the desired goals to be achieved
and whose constraints are defined by the dynamical system limitations as well as
by external considerations. The time horizon T for the optimal control problem is
usually much larger than the sampling time �, and in some cases may be free, i.e., it
may be a decision variable. The optimal control computed at time k� is applied only
for � time units and is then recomputed at time (k +1)�, using as the initial state the
state measured at time (k + 1)�. The reinitialization of the optimal control problem
serves as a feedback mechanism [1].

Typically, the cost function is a weighted sum of desired goals, such as an input
energy term, distance to destination term, and penalty terms for the violation of soft
constraints. The hard constraints, expressed as inequalities, include input constraints
(such as amplitude constraints) and, in the above cited examples, collision avoidance
constraints, which are state-space constraints.

For the RHC scheme to be successful, the optimal control problem that determines
the control must have feasible solutions at each sampling time. In this context, the
control constraints are never an issue, the real issue are the state-space constraints,
which are intended to ensure that the minimum distance between various vehicles
and between vehicles and obstacles remains larger than some safe tolerance.

Now, for example, consider the situation of a car that must be kept at constant
speed within a winding lane. Clearly, under realistic assumptions on the vehicle dy-
namics and steering angles, if at time t = k� the vehicle is on the boundary of the
lane and faces outward, the “remain in-lane” constraint will be violated in the time
interval t ∈ [k�, (k+1)�]. Thus, it is clear that constraint violation will occur unless
some condition on the state at the times t = k�, k = 0,1,2, . . . , can be imposed and
maintained.

Many authors, see e.g. [2] and [3], deal with collision avoidance in RHC by means
of barrier functions that are added to the cost function and which grow to infinity as
the distance between vehicles shrinks to zero. One may be lead to the conclusion
that this approach provides a sufficient condition for collision avoidance, since the

1Quoting from the New York Times, April 26, 2008 “Where we are most vulnerable at this moment is
on the ground. To me, this is the most dangerous aspect of flying.”—Mark V. Rosenker, chairman of the
National Transportation Safety Board. For the six-month period that ended March 30, there were 15 serious
runway incursions, compared with 8 in the period a year earlier. Another occurred at Dallas-Fort Worth
International Airport on April 6 when a tug operator pulling a Boeing 777 along a taxiway failed to stop
at a runway as another plane was landing, missing the tug by about 25 feet.
2On November 7, 2007, the cargo ship Cosco Busan, sailing in heavy fog from the port of Oakland to the
open sea under harbor pilot control, struck the Bay Bridge due to pilot error, resulting in a major oil spill.
That would not have happened under computer control.
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augmented cost function is minimized. However, this is a rather optimistic conclu-
sion, since it does not take into account the effect of control constraints, which are
always present and which can prevent collision avoidance under certain state con-
figurations of the vehicles. So far, it seems, it has not been established that, in a
multi-agent moving obstacle environment, such unfavorable state configurations will
never arise.

In this paper, we present a sufficient condition for recursive feasibility, which en-
sures the perpetual collision avoidance for a fleet of vehicles with time-invariant dy-
namics, operated under centralized RHC and confined to operate within a bounded
region of physical space.

The motivation behind our sufficient conditions is that, if the vehicles have a suf-
ficiently large initial separation, then they will maintain a minimum separation for a
given time horizon. Hence, our sufficient condition is in the form of two inequalities
that must be included in the RHC optimal control problem. The first inequality re-
quires that the minimum separation between individual vehicles is at least ρmin > 0
over the entire interval [0,�]. The second inequality requires that the minimum spa-
tial separation between individual vehicles at the sampling time t = � is at least
r > ρmin. Reasoning by induction, it is easy to conclude that, provided there exists a
feasible solution to the resulting augmented optimal control problem for any set of
initial states, in a region of interest, that are pairwise at least r apart, the fleet can be
kept collision-free perpetually.

An enhancement of our sufficient condition, allowing one to take into account state
measurement errors and disturbances can be obtained in a reasonably straightforward
manner by making use of the results in [4]. This enhancement leads to a requirement
of larger separation.

Since the sufficient condition deals only with feasibility, it should be clear that the
cost function, but not the constraints, of the centralized RHC optimal control problem
can be changed as time goes on without affecting the recursive feasibility of the RHC
problem.

Also, on some thought, it becomes clear that if r > 0 is a satisfactory separa-
tion distance at each sampling time for a fleet of Nv vehicles, it is also a satisfac-
tory separation distance for any subfleet of less than Nv vehicles. This observation
leads to the conclusion that vehicles can be assembled into a fleet as time goes on.
Thus, we see that our sufficient condition is compatible with sophisticated control
schemes.

Finally, to be realistic, for use in an environment where totally unforeseen circum-
stances can occur, RHC must be used only as a powerful aid for a human operator,
with additional features added that permit the human operator to intervene when an
emergency condition arises.

In Sect. 2, we present the optimal control problem associated with the RHC
scheme. In Sect. 3, we present our main theoretical result, the sufficient condition
for perpetual collision avoidance. In Sect. 4, we discuss the numerical evaluation of
the function ψ(r), which accounts for the worst-case minimum distance between ve-
hicles given the initial separation was r . In Sect. 5, we present a numerical evaluation
of the function ψ(r) for the case of four drones flying at constant speed in a circle. In
the concluding Sect. 6, we summarize our findings.
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2 Receding Horizon Control Law Formulation

Any RHC law is based on the recursive solution of an associated optimal control
problem. We begin by describing a generic optimal control problem for the central-
ized RHC of a fleet of vehicles.

Suppose that we have Nv vehicles. We assume that, for each i = 1, . . . ,Nv , the ith
vehicle dynamics are given by a time-invariant differential equation of the form

ẋi (t) = hi(xi(t), ui(t)), t ≥ 0, xi(0) = ζi, (1)

where xi(t) ∈ R
n is the state of the vehicle at time t , ζi is the initial state, ui(t) ∈ R

m

is the input at time t and hi : R
n × R

m → R
n.3 We will denote the solutions of (1)

by x
(ζi ,ui )
i (t) and we will assume that a part of the state denoted by x

(ζi ,ui )
iP (t) ∈ R

d

represents the Cartesian coordinates of the vehicle with respect to a fixed arbitrary
origin, where d ∈ {2,3} will take a value depending on the particular model used.
Note that, without loss of generality, we can consider the initial time to be zero since
the model is time invariant.

We assume that the inputs are elements of the space

U = {u(·) ∈ Lm
∞,2[0, T ] | ‖u(t)‖∞ ≤ α

}
, (2)

where Lm
∞,2[0, T ] is a pre-Hilbert space with the same elements as Lm∞[0, T ], but

endowed with the inner product and norm of Lm
2 [0, T ], with α < ∞ and T < ∞ a

fixed horizon. We use the space Lm
∞,2[0, T ], because it makes it possible to establish

the continuity and differentiability of the solutions of (1) with respect to the controls
as well as to relate the optimality conditions for discretizations of the continuous
optimal control problem to those of the original optimal control problem; see Sect. 5.4
in [5].

Since most numerical optimization methods require differentiability of the dis-
cretized differential equation with respect to the controls, we introduce the following
assumption.

Assumption 2.1 (Lipschitz Continuity) Consider the system defined by (1). We as-
sume that there exists L ∈ (0,∞) such that, for all x1, x2 ∈ B, a sufficiently large ball
in R

n, for all u1, u2 ∈ {u ∈ R
m | ‖u‖∞ ≤ α} and, for all i ∈ {1, . . . ,Nv},

‖hi(x1, u1) − hi(x2, u2)‖ ≤ L(‖x1 − x2‖ + ‖u1 − u2‖) , (3)
∥∥∥∥
∂hi

∂x
(x1, u1) − ∂hi

∂x
(x2, u2)

∥∥∥∥≤ L(‖x1 − x2‖ + ‖u1 − u2‖) , (4)

∥∥∥∥
∂hi

∂u
(x1, u1) − ∂hi

∂u
(x2, u2)

∥∥∥∥≤ L(‖x1 − x2‖ + ‖u1 − u2‖) . (5)

3To simplify exposition, we assume that the states and inputs of all vehicle model are of the same dimen-
sion.
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To make our notation more compact, we define

Nv � {1,2, . . . ,Nv}, (6)

U � U × U × · · · × U (Nv times), (7)

R � R
n × R

n × · · · × R
n (Nv times), (8)

u � (u1, u2, . . . , uNv ) ∈ U, (9)

ζ � (ζ1, ζ2, . . . , ζNv ) ∈ R. (10)

We assume that we are given the initial states ζ = (ζ1, ζ2, . . . , ζNv ), for the vehicle
dynamics in (1), a time horizon T ∈ R+, a sample time � ∈ R+ with � ≤ T , a prob-
lem specific differentiable cost function f 0 : R × U → R and a set of q problem
specific differentiable constraint functions f j : R × U → R, j = 1, . . . , q .4

Since in this paper we are only interested in collision avoidance, the specific form
of the functions f j (·), j = 1, . . . , q , is not relevant to our discussion.

In addition, we include a set of collision avoidance constraints of the form:

∥∥x(ζi ,ui )
iP (t) − x

(ζj ,uj )

jP (t)
∥∥2 ≥ ρ2

min, ∀i, j ∈ Nv, i 	= j, ∀t ∈ [0,�], (11)

∥∥x(ζi ,ui )
iP (�) − x

(ζj ,uj )

jP (�)
∥∥2 ≥ r2, ∀i, j ∈ Nv, i 	= j, (12)

x
(ζi ,ui )
i (�) ∈ S, ∀i ∈ Nv, (13)

where ρmin ∈ R+ is the minimum safety distance between the vehicles, r ≥ ρmin, and
S ⊂ R

n is a compact set with interior.
Combining these elements, we obtain the following optimal control problem.

Optimal Control Problem 2.1 Given the initial states ζ = (ζ1, . . . , ζNv ) ∈ R, of the
vehicles at time t = 0, compute the set of inputs û = (û1, . . . , ûNv ) ∈ U as a solution
of the problem:

(OCP) min
u={u1,...,uNv }∈U

f 0(ζ, u), (14)

s.t. f j (ζ,u) ≤ 0, j = 1, . . . , q, (15)
∥∥x(ζi ,ui )

iP (t) − x
(ζj ,uj )

jP (t)
∥∥2 ≥ ρ2

min, ∀i, j ∈ Nv, i 	= j, ∀t ∈ [0,�],
(16)

∥∥x(ζi ,ui )
iP (�) − x

(ζj ,uj )

jP (�)
∥∥2 ≥ r2, ∀i, j ∈ Nv, i 	= j, (17)

x
(ζi ,ui )
i (�) ∈ S, ∀i ∈ Nv. (18)

4Cost functions with an integral term, free time optimal control problems and constraints on the derivatives
of the input functions can be transformed into this form. See Sect. 4.1.2 in [5].
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Assuming that the computing time required to solve Optimal Control Problem 2.1
is negligible with respect to �, the RHC law is defined as follows.

Algorithm 2.1 (Receding Horizon Control Law) Given the states ζi , i = 1, . . . ,Nv ,
of the vehicles at time t = 0.

Step 1. Set k = 0.
Step 2. Set tk = k�.
Step 3. Measure the vehicle states xi(tk), i = 1, . . . ,Nv , and set ζi = xi(tk).
Step 4. Solve Optimal Control Problem 2.1 for the optimal controls ûi (t), i =

1, . . . ,Nv , with t ∈ [0, T ], and define the controls ui(t), i = 1, . . . ,Nv , with
t ∈ [tk, tk + T ], by

ui(t) = ûi (t − tk), t ∈ [tk, tk + T ], i = 1, . . . ,Nv. (19)

Step 5. Apply the control ui during the time interval [tk, tk + �) to the ith vehicle,
with i = 1, . . . ,Nv .

Step 6. Increase k by one and go back to Step 2.

This is a feedback law because the optimal control problem is resolved every �

seconds, using the observed states of the vehicles as new initial states ζi . In a more
sophisticated scheme, the time needed to solve the optimal control problem and dis-
turbances can be accounted for; see [4].

Note that there is nothing in this formulation that ensures that a feasible solution
of Optimal Control Problem 2.1 exists and, in particular, that no collisions will occur
over the time of operation.

The selection of the cost function f 0(·, ·) depends on the particular physical prob-
lem. Consider the following examples:

Example 2.1 Control of a fleet of commercial airplanes, each flying to a possibly
different destination. In this case, one might wish to minimize a weighted sum of two
terms, the first being the fuel consumption and the second being the deviation from
the scheduled arrival time. The time horizon T becomes a variable in this application,
since as the airplanes get closer to their destinations the time-to-go becomes shorter
and shorter. Thus, the function f 0(·, ·) might have the following form:

f 0(ζ, u,T ) =
Nv∑

i=1

∫ T

0
‖ui(t)‖2dt + w(T − T ∗)2, (20)

where T ∗ is the desired arrival time and w > 0 is a weighting factor.

Example 2.2 A set of airplanes confined to fly in a bounded space for a long time
(as in a holding pattern over an airport). In this case, minimizing fuel consumption
might be the most sensible thing to do, and the cost function f 0(·, ·) might have the
following form:

f 0(ζ, u) =
Nv∑

i=1

∫ T

0
‖ui(t)‖2dt. (21)
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In addition, a set of inequalities for ensuring that the airplanes remain in the holding
pattern needs to be added:

f j (ζ,u) = max
t∈[0,T ]

∥∥x
(ζj ,uj )

jP (t) − xc

∥∥2 − ρ2, j = 1, . . . ,Nv, (22)

where xc ∈ R
d is the center of the circular holding pattern and ρ > 0 is its radius.

Example 2.3 Vehicles joining a holding pattern from arbitrary initial positions. In this
case, one would not impose inequalities to keep the vehicles in the holding pattern,
but instead one would use a cost function that imposes a penalty for straying outside
the holding pattern, e.g.,

f 0(ζ, u) =
Nv∑

i=1

∫ T

0
‖ui(t)‖2dt + w

Nv∑

i=1

∫ T

0

(∥∥x(ζi ,ui )
i (t) − xc

∥∥2 − ρ2)2dt. (23)

3 Problem of Perpetual Collision Avoidance

We begin with a definition. Let

S � S × · · · × S (Nv times), (24)

where S ⊂ R
n has a nonempty interior. For any r > 0, we define the set of admissible

initial states, parameterized by r , by

I(r) �
{
ζ = (ζi)

Nv

i=1 ∈ S

∣
∣∣ ‖ζiP − ζjP ‖ ≥ r ∀i, j ∈ Nv, i 	= j

}
. (25)

The easiest way to visualize the set I(r) is as a set of elements in R
Nv×n. Thus,

suppose that Nv = 2 and n = 1. In this case, we see from Fig. 1 that I(r) is R
2, with

a diagonal strip cut out (i.e., it consists of two half planes). In general, it is R
Nv×n

with a diagonal cylinder cut out.

Proposition 3.1 Suppose that there exists an r > ρmin > 0 such that, for every ζ =
(ζi, . . . , ζNv ) ∈ I(r), there exists a set of feasible controls u = (u

f

1 , . . . , u
f
Nv

) ∈ U

such that the states x
(ζi ,u

f
i )

i (t), t ∈ [0, T ], i ∈ Nv , satisfy the constraints (15)–(18).
If the set of the initial states ζ = (x1(0), . . . , xNv (0)) is in I(r), then for all

k = 0,1,2, . . . . Algorithm 2.1 will construct a set of optimal controls ui(t), t ∈
[k�, (k + 1)�], that satisfy the constraints (15)–(18).

Proof Since by assumption the set of initial states ζ = (x1(0), . . . , xNv (0)) ∈ I(r),
and since we have assumed that, for every ζ ∈ I(r), there exists a feasible control

u
f
i ∈ U such that the states x

(ζi ,u
f
i )

i , i ∈ Nv , satisfy the constraints (15)–(18), Al-
gorithm 2.1 will construct a set of optimal controls ui(t), i ∈ Nv , t ∈ [0, T ], which
satisfy the constraints (15)–(18).
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Fig. 1 Set of initial states I(r)

for Nv = 2 and n = 1

Since by (17) and (18) the final states (x1(�), . . . , xNv (�)) ∈ I(r), it follows by
induction, that, for all k = 1,2,3, . . . , the optimal control problem faced by Algo-
rithm 2.1 will have feasible solutions; hence, its optimal solutions will be feasible.5 �

Corollary 3.1 (Perpetual Collision Avoidance) Suppose that the assumptions of
Proposition 3.1 are satisfied and that the fleet of Nv vehicles is controlled by the
centralized RHC Algorithm 2.1. Then:

(a) The vehicles will never collide.
(b) The state of the vehicles will remain bounded.

The proof is straightforward by induction since both properties are satisfied at each
interval [k�, (k + 1)�], with k = 0,1,2, . . . .

We now turn to the task of developing a function ψ : R → R that can be used for
testing whether a particular value r ≥ ρmin, of the minimum initial physical separation
between vehicles is large enough to ensure perpetual collision avoidance.

For any i, j ∈ Nv , i 	= j , we define the functions d2
ij : S × U × [0,�] → R by

d2
ij (ζ, u, t) �

∥∥x(ζi ,ui )
iP (t) − x

(ζj ,uj )

jP (t)
∥∥2

. (26)

The value d2
ij (ζ, u, t) is the squared distance between the vehicles i and j at time

t for the given sets of initial states ζ and controls u.
Next, we define the function φ1 : S × U × [0,�] → R by

φ1(ζ, u, t) � min
i,j∈Nv, i 	=j

d2
ij (ζ, u, t). (27)

The value φ1(ζ, u, t) is the shortest distance squared between any two vehicles at
time t ∈ [0,�].

5This argument is known in the literature as recursive feasibility (see [6]) or robust feasibility (see [7]).
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Next, we define the function φ2 : S × U → R by

φ2(ζ, u) � min
t∈[0,�]φ1(ζ, u, t). (28)

The value φ2(ζ, u) is the shortest distance squared between any two vehicles dur-
ing the time interval [0,�].

Next, we define the function φ3 : R+ × S → R+ by

φ3(r, ζ ) � max
u∈U

{
φ2(ζ, u)

∣∣f j (ζ,u) ≤ 0, j = 1, . . . , q,

φ1(ζ, u,�) ≥ r2; x
(ζi ,ui )
i (�) ∈ S, ∀i ∈ Nv

}
, (29)

if there exists a u that satisfies the constraints in (29), and we define φ3(r, ζ ) = 0
otherwise.

The value φ3(r, ζ ) is the largest among the shortest squared distances between any
two vehicles during the time interval [0,�] achievable with the available controls, in
the presence of the constraints in the optimal control problem OCP.

Finally, we define the function ψ : R+ → R+ by

ψ(r) � min
ζ∈I(r)

φ3(r, ζ ). (30)

The following result should be obvious.

Proposition 3.2 If there exists an r ≥ ρmin such that ψ(r) ≥ ρ2
min then for every set

of initial states (ζi)
Nv

i=1 ∈ I(r) there exist a set of inputs (ui)
Nv

i=1 ∈ U such that the
assumptions of Proposition 3.1 are satisfied.

The questions that still remain are: (a) whether the function ψ(r) is computable;
(b) whether there is an r ≥ ρmin such that ψ(r) ≥ ρ2

min. We will address the first of
these questions in Sect. 4. In Sect. 5, we will show an example for which such an r

exists under a reasonable selection of the parameter �.

4 Numerical Evaluation of ψ(r)

To evaluate ψ(r), we must discretize the differential equation (1). Although
pseudospectral methods, such as those described in [8], are currently favored for solv-
ing optimal control problems over classical approaches such as Euler discretization,
in the case of multi-agent optimal control problems with large number of collision
avoidance constraints fast results can be obtained using forward Euler discretiza-
tion together with the accelerator technique based on outer approximation presented
in [9].

Thus, consider the use of the forward Euler method. Let N ∈ N be the number of
steps to be used to discretize the interval [0, T ] and let σ = T

N
be the step size. We

will assume that the values of � and N were chosen so that N� = �
σ

is a positive
integer.
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Next, following the approach outlined in Sect. 5.4 of [5], we introduce the finite-
dimensional control subspace of UN ⊂ U defined by

UN �
{

u(·) ∈ U
∣∣∣ u(t) =

N−1∑

k=0

ū(k)πk(t)

}

, (31)

where ū(k) ∈ R
m, for each k = 0, . . . ,N − 1, is a discrete-time control and

πk(t) =
{

1, if t ∈ [kσ, (k + 1)σ ),

0, otherwise.
(32)

By analogy with (7) and (9), we let

ū �
(
ū(0), . . . , ū(N − 1)

) ∈ R
N×m, (33)

ŪN �
{
ū = (ū(0), . . . , ū(N − 1)

) ∣∣‖ū(k)‖∞ ≤ α, k = 0, . . . ,N − 1
}
, (34)

ŪN � ŪN × · · · × ŪN (Nv times), (35)

ūN � (ū1, . . . , ūNv ) ∈ ŪN . (36)

We approximate the differential equation (1) by the difference equation obtained
using the Euler forward method,

zi(k + 1) = zi(k) + σhi

(
zi(k), ūi (k)

)
, k ∈ N, zi(0) = ζi, (37)

where ζi is the initial state, zi(k) ∈ R
n is the discretized state, and ūi (k) ∈ R

m is the
discretized control, for all k ∈ N.

We will denote by (z
(ζi ,ūi )
i (k))Nk=0 the solution of (37), which approximates the

solution of (1), at the times t = kσ , for ui(t) =∑N−1
k=0 ūi (k)πk(t) and the same initial

state.
Finally, we need to define appropriate approximations f̄ j : R × ŪN → R for the

functions f j (·, ·), j = 1, . . . , q . This needs to be handled on a case by case basis. For
example, a suitable approximation of the constraint defined in (22) would be

f̄ j (ζ, u) = max
k=0,...,N

∥∥z
(ζj ,ūj )

jP (k) − xc

∥∥2 − ρ2, j = 1, . . . ,Nv. (38)

We now define approximations for the functions d2
ij , φl , l = 1,2,3, and ψ , as

follows. For any i, j ∈ Nv , let d̄2
ij : S × ŪN × {0,1, . . . ,N�} → R be defined by

d̄2
ij (ζ, ūN , k) �

∥∥z(ζi ,ūi )
iP (k) − z

(ζj ,ūj )

jP (k)
∥∥2

. (39)

Let φ̄1 : S × ŪN × {0,1, . . . ,N�} → R be defined by

φ̄1(ζ, ūN , k) � min
i,j∈Nv, i 	=j

d̄2
ij (ζ, ūN , k). (40)
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Let φ̄2 : S × ŪN → R be defined by

φ̄2(ζ, ūN ) � min
k=0,...,N�

φ̄1(ζ, ūN , k), (41)

and let φ̄3 : R+ × S → R+ be defined by

φ̄3(r, ζ ) � max
ūN∈ŪN

{
φ̄2(ζ, ūN )

∣∣ f̄ j (ζ, ūN ) ≤ 0, j = 1, . . . , q,

φ̄1(ζ, ūN ,N�) ≥ r2, z
(ζi ,ūi )
i (N�) ∈ S, ∀i ∈ Nv

}
(42)

if there exists a ūN that satisfies the constraints in (42), and we define φ̄3(r, ζ ) = 0
otherwise.

Finally, we define ψ̄ : R+ → R+ by

ψ̄(r) � min
ζ∈I(r)

φ̄3(r, ζ ). (43)

By definition, the evaluation of φ̄3(r, ζ ) involves solving a constrained max-min
problem. This can be done either by converting this max-min problem into a con-
strained nonlinear programming problem, i.e.,

φ̄3(r, ζ ) = − min
ūN∈ŪN , σ∈R

−
{
σ
∣∣ d̄2

ij (ζ, ūN , k) ≥ σ,

∀i, j ∈ Nv, i 	= j, ∀k = 0, . . . ,N�,

d̄2
ij (ζ, ūN ,N�) ≥ r2, ∀i, j ∈ Nv, i 	= j,

f̄ j (ζ, ūN ) ≤ 0, j = 1, . . . , q,

z
(ζi ,ūi )
i (N�) ∈ S, ∀i ∈ Nv

}
, (44)

which can be solved by means of any number of nonlinear programming algorithms,
or it can be naturally formulated as a constrained min-max problem, i.e.,

φ̄3(r, ζ ) = − min
ūN∈ŪN

{
max

i,j∈Nv, i 	=j,
k=0,...,N�

−d̄2
ij (ζ, ūN , k)

∣∣∣ d̄2
ij (ζ, ūN ,N�) ≥ r2, ∀i, j ∈ Nv, i 	= j

f̄ j (ζ, ūN ) ≤ 0, j = 1, . . . , q

z
(ζi ,ūi )
i (N�) ∈ S, ∀i ∈ Nv

}
, (45)

which can be solved using a specialized min-max algorithm, such as the Polak-He
algorithm (see Sect. 2.6.1 of [5]).

The function φ3(r, ζ ) is continuous, but may not be differentiable in ζ . Hence the
evaluation of ψ̄(r) requires the use of a derivative-free algorithm such as the Hooke-
Jeeves algorithm [10].
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5 Example: Drones under Centralized Control

Consider the case of Nv small drones in a holding pattern that is confined to a planar
disk (i.e., they are allowed to fly in two dimensions only). We will assume that all
the drones have the same dynamical model, with their state defined, for all i ∈ Nv ,
by

xi(t) =

⎡

⎢⎢⎢
⎣

pxi(t)

pyi(t)

vi(t)

θi(t)

⎤

⎥⎥⎥
⎦

, (46)

ui(t) =
[
ai(t)

δi(t)

]

, (47)

hi(xi(t), ui(t)) =

⎡

⎢⎢⎢
⎣

vi(t) · cos(θi(t))

vi(t) · sin(θi(t))

ai(t)

δi(t)

⎤

⎥⎥⎥
⎦

, (48)

where pxi(·) and pyi(·) are the Cartesian x-coordinate and y-coordinate, respec-
tively, of the position of drone i, for a given arbitrary origin, vi(·) is the speed,
θi(·) is the heading angle, ai(·) is the acceleration, and δi(·) is the yaw rate. In
spite of its simplicity, this model describes quite well the dynamics of a fixed-wing
aircraft, whose attitude, altitude, and forward speed are stabilized by an autopilot.
It has been used previously in other applications, including air traffic management
[11] and UAV trajectory planning [12]. Recall that, in this example, the position vec-
tor is

xiP (t) =
[
pxi(t)

pyi(t)

]

∈ R
2, ∀i ∈ {1, . . . ,Nv}. (49)

For each i = 1, . . . ,Nv , the speed vi(·) was constrained to lie in the range
[vmin, vmax] with vmin = 13 (m/s) and vmax = 16 (m/s), to ensure the stability
of the drones in the air. Also, the yaw rate was required to satisfy the inequal-
ity |δi(t)| ≤ 30 (deg/s), and the acceleration was required to satisfy |ai(t)| ≤
0.5 (m/s2).

Let the set S be defined by

S �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

px

py

v

θ

⎞

⎟⎟⎟
⎠

∈ R
4
∣∣∣
∥∥∥∥

(
px

py

)∥∥∥∥≤ ρ and v ∈ [vmin, vmax]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (50)
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Table 1 Results for arbitrary
values of r r (m) ψ̄(r) (m)

23 3.6306

25 4.3654

27 4.6679

where ρ > 0 has to be chosen so that the drones have enough space to maneuver.
To enforce the speed bounds, we defined 2Nv constraint functions by

f j (ζ,u) = max
t∈[0,T ]

vj (t) − vmax, (51)

f (Nv+j)(ζ, u) = max
t∈[0,T ]

−vj (t) + vmin, (52)

with j = 1, . . . ,Nv , where vj (t) is the speed of j -th drone at time t . These constraints
where approximated by

f̄ j (ζ, u) = max
k=0,...,N

v̂j (k) − vmax, (53)

f̄ (Nv+j)(ζ, u) = max
k=0,...,N

−v̂j (k) + vmin, (54)

where v̂j (·) is the approximation of the speed vj (·) obtained by solving the difference
equation (37).

The function φ̄3 was computed using a modified version of Polak-He algorithm
using ε-active sets (see Sect. 2.6.1 and Algorithm 2.6.23 of [5]), and the function
ψ̄ was computed using Hooke-Jeeves algorithm [10], with a new general step de-
fined by random choice of a vector from I(r) randomly. The coordinate search in
Hooke-Jeeves algorithm can be parallelized, and hence we ran the simulations using
four cores of a 2 GHz Intel Xeon computer using the Parallel Computing Toolbox
in MATLAB. We used LSSOL in [13] as the QP-solver for the internal iterations in
Polak-He algorithm.

The parameters of the problem were chosen as Nv = 4, � = 7 (s), ρmin = 4 (m),
ρ = 150 (m), and N� = 35. The parameters for Polak-He algorithm, following the
notation in Sect. 2.6.1 of [5], were chosen as δ = 1, γ = 10, α = 0.1, β = 0.85, and
a value of ε = 1000 for the ε-active sets algorithm. Values of ψ(r) for three values
of r are shown in Table 1, where we can see that for r = 23 (m) the airplanes can get
closer than the minimum distance allowed ρmin. Each simulation used 5000 vectors
from I(r), chosen randomly, and took approximately 7 hours to complete.

In the worst-case scenario, i.e. at the initial conditions that achieve the minimum
pairwise distance between drones, the trajectories for each drone are plotted at Fig. 2
in the case r = 23 (m). Note that the initial conditions of the drones shown in Fig. 2
are not symmetrical, with two of the drones (top and bottom of the figure) starting as
close as possible and facing each other.

To test our results, we carried out a simulation using 4 drones flying in a bounded
space, three of them flying in circles and a fourth drone joining them. We imple-
mented the RHC Algorithm 2.1 using the models and parameters described above,
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Fig. 2 Worst-case scenario
when r = 23 (m). Drones are
shown at their initial positions.
Trajectories represent 3 (s) of
flight time. Flight time between
dots is 0.1 (s)

Fig. 3 Drones at t = 0 (s)

and added the following cost function:

f 0(ζ, u) = 1

2

Nv∑

i=1

∫ T

0

(
‖ui(s)‖2 + (∥∥x(ζi ,ui )

iP (s)
∥∥2 − r̂2)2

)
ds, (55)

where r̂ = 100 (m) is the radius of the formation circle. The positions of each
drone and their trajectories are plotted for different times in Figs. 3 to 6. A video
with the simulation is also available at http://www.eecs.berkeley.edu/~hgonzale/
formation_flight.

http://www.eecs.berkeley.edu/~hgonzale/formation_flight
http://www.eecs.berkeley.edu/~hgonzale/formation_flight


90 J Optim Theory Appl (2010) 145: 76–92

Fig. 4 Drones at t = 7 (s)

Fig. 5 Drones at t = 14 (s)

6 Conclusions

We have presented a sufficient condition that guarantees perpetual collision avoid-
ance for a fleet of vehicles under centralized control. The sufficient condition can
be phrased as follows: if the minimum initial distance between vehicles is greater
than r , then there exists a control such that the vehicles do not collide for the next �

seconds, and the minimum distance between vehicles at time � will be no less than r .
Resorting to recursive feasibility arguments, we then concluded that the vehicles
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Fig. 6 Drones at t = 21 (s)

would never collide. Although finding a satisfactory separation r requires many hours
of computing time, this is not a serious drawback, since the computation need not be
done in real time. Rather, once computed, the value r can be used at any time after
that.

The results in this paper must be seen as a first step in developing a practical colli-
sion free, centralized control strategy. To allow for variations in ambient conditions,
such as rising and receding tides, or wind conditions, different values of the mini-
mum separation r will have to be precomputed for a variety, or ranges, of ambient
conditions. In addition, model uncertainty will have to be accounted for. Finally, to
allow for the unscheduled appearance of small craft, such as private planes, or small
boats, any centralized control scheme will have to be supplemented with a freedom
for individual vehicles in the fleet to carry out limited evasive maneuvers.
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