
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Visualization software for data center switch network

Permalink
https://escholarship.org/uc/item/3tw7z8h7

Author
Shahinfard, Aram

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3tw7z8h7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Visualization software for Data Center Switch Network

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Aram Shahinfard

Committee in charge:

Professor Amin Vahdat, Chair
Professor William Griswold
Professor Geoffrey Voelker

2011

Copyright

Aram Shahinfard, 2011

All rights reserved.

The thesis of Aram Shahinfard is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2011

iii

EPIGRAPH

The true sign of intelligence is not knowledge but imagination.

—Albert Einstein

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Abstract of the Thesis . x

Chapter 1 Introduction . 1

Chapter 2 Background . 4
2.1 Current Data Center Network Topologies 4
2.2 Fat-Tree Topology . 6

2.2.1 Routing and Forwarding 6
2.2.2 Flow Scheduling 8

2.3 OpenFlow . 8
2.4 How Much Information research program 9

Chapter 3 Related Works . 12
3.1 VINT . 13
3.2 NAM: Network Animator 13
3.3 Microsoft Visual-I . 14

Chapter 4 Technology Review . 15
4.1 OpenGL . 15
4.2 Java OpenGL - JOGL 16
4.3 PostgreSQL . 18

Chapter 5 Design and Implementation 20
5.1 Capturing Data from the Network 20
5.2 Recognizing Flows from Database 20
5.3 How to Visualize? . 21
5.4 Software Structure . 21
5.5 More Details . 25

Chapter 6 Future Works . 31

v

Chapter 7 Appendix: Source Code . 34

Bibliography . 65

vi

LIST OF FIGURES

Figure 2.1: Typical three-level layered design. 5
Figure 2.2: Sample fat-tree topology with 4 pods. 7

Figure 5.1: Screen shot of the software. 22
Figure 5.2: Screen shot of the software in the animation mode. 23
Figure 5.3: Screen shot of the software in the animation mode. 24

vii

LIST OF TABLES

Table 2.1: Fields from packets used to match against flow entries[5]. 9
Table 2.2: Field lengths and the way they must be applied to flow entries[5]. 10

viii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Amin Vahdat for his support as my

advisor and the chair of my committee. Without his guidance and vision, this

work would not have been as successful.

Further, I would like to acknowledge Professors William Grisworld and

Geoffrey Voelker for their guidance and for serving in my thesis committee.

ix

ABSTRACT OF THE THESIS

Visualization software for Data Center Switch Network

by

Aram Shahinfard

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Amin Vahdat, Chair

Today’s data centers may contain tens of thousands computers. Manually

monitoring these networks is time consuming, so there is an emerging need to au-

tomate these tasks by implementing network management systems. It is important

for network engineers to have a tool enabling them to monitor the network to spot

problems before users are affected. This need is also critical during the network

design since it will make the network debugging easier. A well structured manage-

ment software will also enables the designers to demonstrate the network behavior

before development. One important component of most network management tools

is visualization tool.

Data centers’ network architecture typically consists of a tree of routing

and switching elements with more specialized and expensive equipment moving

up the network hierarchy. When deploying the highest-end IP switches/routers,

resulting topologies may only support 50% of the aggregate bandwidth available at

the edge of the network, while still incurring tremendous cost. Non uniform band-

width among data center nodes complicates application design and limits overall

system performance. UCSD data center switch research group has proposed a new

x

technique on how to leverage largely commodity Ethernet switches to support the

full aggregate bandwidth of clusters consisting of tens of thousands of elements.

The group argues that appropriately architected and interconnected commodity

switches will deliver more performance at less cost than higher-end solutions.

In this project a visualization tool was developed for the proposed network.

This tool uses data captured from the network and use graphic techniques to

visualize the data.

xi

Chapter 1

Introduction

Network monitoring and management are critical tasks of network engi-

neers. Due to the scale of current networks, it is not possible to accomplish these

tasks manually. Using automated software is a more cost and time effective alter-

native. Companies that deal with large-scale and complicated networks are seeing

the emerging need to have smarter network management tools on a daily basis.

In addition to monitoring an existing network, a network management tool

can be used during the design and development phases. Developing a new network

architecture without adequate evidence of accuracy could be very time and cost

consuming. Designers, as well as network engineers, need automated tools to study

the network behavior in order to adjust their design decision, and to debug the

network during the development phase.

One of the main component of management tools is visualization. The use

of visualization to present information is not a new phenomenon. It has been used

in maps, scientific drawings, and data plots for over a thousand years. Computer

graphics has, from its beginning, been used to study scientific problems.

Visualization is an important aspect of data network because of their dy-

namic nature. And graphical displays of networks are particularly attractive, since

they enable designers and engineers to display in a compact way the relevant fac-

tors in a network, how they work in different situations, how they tolerate the

faults, and what the overall structure looks like. The ability to visualize the status

of a network allows human users to rapidly assess the health of the system and

1

2

identifying problems that span across components. Visualization tools help deal

with inconsistencies since autonomic management tools have difficulty when the

structure of the application does not fit the assumptions of the management sys-

tem. A visualization tool allows operators to see the information they need and

then direct the system correctly, without requiring changes to the assumptions of

the management system.

On the other hand, data center networks are getting more and more at-

tention these days as they are growing very fast. Several architectures are being

proposed to utilize these networks more effectively. Having a fully autonomic data

center that is expressed declaratively, maintained and healed automatically is still

quite impossible. For most data centers, human operators need to periodically act

by writing maintenance scripts, controlling updates, and modifying systems. These

characteristics makes data center networks a good candidate for visualization.

Today’s data centers leverage a large number of commodity parts, which

can deliver the required computational and storage capacities, while helping mini-

mize the total cost. On the other hand, the communication networks that are used

to inter-connect these clusters comprise of largely non-commodity parts, simply

because one such solution today can neither provide the necessary communica-

tion band-width nor allow for large clusters to be built. Trying to solve a similar

problem for the telephone network a solution was proposed to interconnect small,

low-cost switches to build a practical multi-stage telephone switching system. Vi-

sualization tools will help operators to understand the current state of the system,

even when the network is in an unstable situation due to an upgrade or failure.

The UCSD data center switch research group had proposed a data center

network architecture that leverages commodity switches interconnected in a fat

tree topology. This topology has the nice property of providing full bisection

bandwidth, something that today’s architectures can only achieve at a very high

cost. Further, they propose a unique routing algorithm called two-level lookup

that aims to balance trace across the network.

In the current thesis a visualization software was developed for the proposed

network as part of a management tool. Data is captured periodically form the

3

network and is saved to a database. The visualization software reads this data and

creates a graphical display to show the state of the network.

The rest of the thesis is organized as follows. Chapter 2 gives a more

detailed overview of the network. Chapter 3 reviews some of the related works.

Chapter 4 discusses the technologies being used to implement this software. Chap-

ter 5 describes the software in more details. And Chapter 6 focuses on software

evaluation.

Chapter 2

Background

This project focuses on visualizing the fat-tree topology for data center

networks. In order to understand the developed software, we need to review the

basic concepts of this topology and its advantages over traditional topologies. In

this chapter will first review the traditional topologies, and then the proposed

fat-tree topology and its advantages. Then I will review the OpenFlow standard

that has been used to develop this network topology. We also need to review the

routing and forwarding mechanism used in order to understand how the software

works.

2.1 Current Data Center Network Topologies

Data center networks are mainly based on a hierarchical, layered topology[6].

They usually consist of two or three-level trees of switches and routers. Here we

will look at the three-level trees. Three-tiered designs have a core tier in the root

of the tree, an aggregation tier in the middle and an edge tier at the leaves of the

tree (figure 2.1).

These data center networks have some shortcomings. The main issues are

that they leverage mostly non-commodity parts and are heavily oversubscribed1.

1oversubscription: Ratio of the aggregate bandwidth available among the end hosts to the
total bisection bandwidth of a particular communication architecture.

4

5

Figure 2.1: Typical three-level layered design[1].

6

2.2 Fat-Tree Topology

Fat-tree topology was invented to increase the efficiency of communications

in networks, influenced by Clos network used by telephone industry.

The proposed data center network architecture[1] leverages strictly com-

modity switches organized in a fat-tree and provides full bisection bandwidth for

tens of thousands of hosts.

Fat-tree consists of three layers: Core, Aggregation and Edge. Switches

used in all layers identical k -port switches2. There are k pods in the tree, each

containing k end hosts. Each end host is connected to one of the k/2 switches in

edge layer. Each edge switch is connected to k/2 of the k ports in aggregation

level switches. There are (k/2) 2 core switches, each one has one port connected

to one of the pods. The ith port of any core switch is connected to pod i.

Figure 2.2 shows a 16-port switch built as a fat-tree topology consisting

4-port switches. This hardware has been built and used by the research group.

And so it was used for the purpose of creating the visualization tool.

The main advantage of this architecture over the traditional multi-level ar-

chitectures is that it uses commodity Ethernet switches to achieve scalable band-

width for large-scale clusters at a significantly lower cost[1]. As claimed, the goal

is to treat the entire data center as a single plug-and-play fabric. Using this archi-

tecture and related protocol such as PortLand data center networks can become

more flexible, efficient, and fault tolerant.

2.2.1 Routing and Forwarding

In this section, I will review the routing and forwarding algorithm used

in the proposed fat-tree architecture. General knowledge of these algorithms is

necessary to understand the developed software.

Routing has been done using two-level look-up because to achieve full bi-

sectional bandwidth. For each packet, the longest matching prefix algorithm is

initially run on the primary table. If the hit is a terminating entry, then the

2Unlike the multi-level architecture described earlier that might consist of different switches
and routers.

7

Figure 2.2: Sample fat-tree topology with 4 pods[7].

8

packet is forwarded to the port designated by the entry, just as with the regular

IP routing mechanism. However, if the hit is a non-terminating entry, then the

secondary table pointed by the entry is searched as well. The algorithm looks for

the longest matching suffix in the secondary table pointed by the non-terminating

entry. The packet is then forwarded to the port indicated by that entry.

2.2.2 Flow Scheduling

Flow scheduling is a mechanism to leverage global information at data cen-

ter scale. It enables the fabric manager to direct flows to the least utilized paths.

Connected switches are periodically polled for flow statistics. Information gath-

ered from these switches will be send to required switches so that they can update

their flow tables.

2.3 OpenFlow

OpenFlow is an open standard added to commercial Ethernet switches in

order to enable researchers to run their experiments, without requiring vendors to

expose the internal workings of their network devices[8].

OpenFlow has two separate functions for data path and control path. Data

path is on the switch like the classical routers, but the high level routing decisions

are made on a separate controller. Switch and controller communicate together by

OpenFlow protocol, which defines messages, such as packet-received, send-packet-

out, modify-forwarding-table, and get-stats.

The data path of an OpenFlow Switch presents a flow table abstraction[5].

Each flow table entry contains a set of packet fields to match, and an action. When

an OpenFlow Switch receives a packet that it has no matching flow entries, it sends

this packet to the controller. The controller then makes a decision on whether to

the packet, or to add a new flow entry. The controller is responsible for determining

how to handle packets without valid flow entries, and it manages the switch flow

table by adding and removing flow entries. Each flow table entry contains three

main parts that are as below:

9

Table 2.1: Fields from packets used to match against flow entries[5].

Ingress
Port

Ether
source

Ether
dst

Ether
type

VLAN
id

IP
src

IP
dst

IP
proto

TCP/
UDP
src
port

TCP/
UDP
dst
port

• Header fields to match against packets.

• Counters to update for matching packet.

• Actions to apply to matching packets.

Header fields are used in order to visualize the flows of the network. In

order to understand the rest of this thesis better, we need to know about the

header fields.

Table 1.1 shows the header fields that an incoming packet is compared

against. These fields together create a 10-tuple that can be used to uniquely

define each flow. Our visualization tool will read these fields from a database

in order to distinguish all the available flows in the network. The fields in the

OpenFlow 10-tuple are listed in Table 1.1 and details on the properties of each

field are described in Table 1.2.

2.4 How Much Information research program

This thesis was originally part of How Much Information research program

(http://hmi.ucsd.edu/howmuchinfo.php) in UCSD school of International Rela-

tions and Pacific Studies. This HMI research program was created to answer

questions like: ”what is the rate of new information growth each year?”, ”who

produces the greatest amounts of information annually?” and ”how does informa-

tion growth in North America compare with growth in other geographies, markets,

and people globally?” Data visualization was an important part of this research

program. As mentioned in the first chapter data visualization is one of the most

useful tools that can be used to help researchers understand large scale data. The

10

Table 2.2: Field lengths and the way they must be applied to flow entries[5].

Field Bits When ap-
plicable

Notes

Ingress Port All packets Numerical representa-
tion of incoming port.

Ethernet source
address

48 All packets
on enabled
ports

Ethernet desti-
nation address

48 All packets
on enabled
ports

Ethernet type 16 All packets
on enabled
ports

A Type 0 switch is
required to match the
type in both standard
Ethernet and 802.2
with a SNAP header
and OUI of 0x000000.
The special value of
0x05FF is used to
match all 802.3 pack-
ets without SNAP
headers.

VLAN id 12 All packets
of Ether-
net type
0x8100

IP source ad-
dress

32 All IP
packets

Can be subnet masked

IP destination
address

32 All IP
packets

Can be subnet
masked.

IP protocol 8 All IP
packets

Transport
source port /
ICMP Type

16 All TCP,
UDP, and
ICMP
packets

Only lower 8 bits used
for ICMP Type.

Transport des-
tination port /
ICMP Code

16 All TCP,
UDP, and
ICMP
packets

Only lower 8 bits used
for ICMP Code.

11

HMI project was defined to process and find meaningful information from massive

amount of data available to the industry.

The current thesis was also defined as collaboration between the ”How Much

Information” program and the ”Data Center Switch” program in fall 2008. The

original plan was for this thesis to be part of the HMI data visualization program,

but the partnership with the HMI was canceled in winter 2008.

Chapter 3

Related Works

There are many works that have attempted to reduce or eliminate human

involvement in monitoring and maintaining networks. And many of them have

used visualization for this purpose. The use of visualization to present information

is not a new phenomenon. It has been used in maps, scientific drawings, and

data plots for over a thousand years. Most of the concepts learned in devising

these images carry over in a straight forward manner to computer visualization.

Computer graphics has always been used to study scientific problems. With the

latest technology in computer graphics, visualization has became more popular

among scientists to study complex challenges. Communication network researchers

are not an exception.

Network simulators have always been powerful tools for designing and study-

ing networks behavior and adjusting design decisions. For researchers who design

network protocols, simulation allows the evaluation of network protocols under

varying network conditions, and especially under interaction with other protocols.

For network traffic researcher, simulation is critical as it allows them to recreate

problematic points on the network and study the cause of problems. Security

researchers use visualization to generate a simulation of an attack in order to un-

derstand the source and cause.

Many tools have been developed that attempt to reduce or eliminate human

involvement in network monitoring. Visualization tools have been mostly focusing

on network security issues, while our work here focuses on visualization for the

12

13

specific data center network proposed by our research group.

3.1 VINT

VINT is attempting to facilitate the design and deployment of new wide

area Internet protocols by providing network researchers with an improved set of

simulation tools[2]. The VINT project, through the ns simulator and related soft-

ware, provides several critical innovations that broaden the range of conditions un-

der which protocols can be evaluated while making this experimentation tractable.

Abstraction, emulation, scenario generation, visualization and extensibility are the

main characteristic of VINT.

The VINT project, using ns as its simulator base and NAM as its visual-

ization tool, has constructed a common simulator containing a large set of models

for use in network research. By including algorithms still in the research phase of

development, users of the simulator are able to explore how their particular work

interacts with these future techniques. Furthermore, because of the many proto-

cols and models included with the system, researchers are often able to modify

and construct their own simulations based on the provided models with relative

ease. In several cases, modules developed outside the VINT project have been

incorporated as a standard component to the simulator.

3.2 NAM: Network Animator

Nam, the network animator that was developed at the VINT project, pro-

vides packet-level animation, protocol graphs, time-event plots of protocol actions,

and scenario editing capabilities[3]. NAM can collect detailed protocol information

from a trace file created by a simulator like ns or can use processing data from a

live network to produce a trace. It usually runs offline by reading the trace file

from the disk but can also play traces from a running program through a UNIX

pipe.

The trace file contains static network layout and dynamic events such as

14

packet arrivals, departures, and drops and link failures. The input file for wireless

networking simulations also includes information on node location and movement.

3.3 Microsoft Visual-I

Visual-I has been designed for the management of networks and applica-

tions inside large data centers by Microsoft Visualization and Interaction (VIBE)

Research Group[4]. It was designed to ease the visualization of logical structures

with information overlays that leverage the structure to help users correlate data.

Visual-I provides a single view of the entire cloud service, as a network. It shows

high-level objects as a single unit. The images are animated, with decorations and

displays such as CPU load and activity information updating as the data changes.

It also let past behavior to be replayed. This helps operators correlate the overlaid

data across time to discover recurring and time-dependent behaviors. This feature

of Visual-I is similar to our work, as we let the operator to run the system for a

specific time period.

Chapter 4

Technology Review

Like any other software implementation, while starting to design this soft-

ware I made some technology choices based on the project requirements, future

directions and compatibility with the rest of the group. In this chapter I will

explain each of these technologies, reasons that I decided to use them, and their

benefits. Although my choices seemed to be the best possibilities, they were not

completely convenient for the project, so I will also explain their shortcomings.

This software was developed using Java OpenGL (JOGL), which is a wrap-

per library that allows OpenGL to be used in the Java programming language. It

allows use of object-oriented tools for Java with hardware-accelerated 2D and 3D

graphics.

Data, captured from the network, is recorded in PostgreSQL database,

which is an open source ORDBMS, and read by the program in order to visu-

alize the network current state. In this chapter I will first review OpenGL and

JOGL, theirs advantages over other graphic libraries, and then I will describe the

PostgreSQL database and its advantages.

4.1 OpenGL

Open Graphics Library is a standard specification defining a cross-language,

cross-platform API for writing applications that produce 2D and 3D computer

graphics. The interface has many function calls which can be used to draw com-

15

16

plex three-dimensional scenes from simple primitives. OpenGL is widely used in

scientific visualization and information visualization. Prior to OpenGL program-

mers had to develop their graphical applications for each individual platform, and

had to have knowledge of the graphic hardware. Now applications can create the

same result in different operating systems because of OpenGLs graphic adaptor.

OpenGL has two main purposes; first it hides the complexities of inter-

facing with different 3D accelerators, by presenting a single, uniform interface.

Second it hides the differing capabilities of hardware platforms, by requiring that

all implementations support the full OpenGL feature set.

OpenGL will accepts primitives (points, lines, polygons) and convert them

to pixels. There are two ways of creating commands. Programmer can create a

list of commands or immediately executed functions. Each command directs a

drawing action or causes special effects. A list of these commands can be created

for repetitive effects. This is one of the more routine ways that the program

interface is used. But it is also possible to create and execute one time commands

within the perimeters of the computer graphics as well.

4.2 Java OpenGL - JOGL

Java OpenGL is a Java package providing bindings to the OpenGL libraries

for the Java Virtual Machine. It allows programmers to use the object-oriented

tools for Java with hardware accelerated two or three dimensional graphics while

leveraging their existing knowledge of OpenGL. Hardware accelerated graphics

helps to improve user perceived performance in Java programs with heavy graphics

requirements.

Java OpenGL allows access to most features available to C programming

language programmers, with a few exceptions like the window-system related calls

in GLUT, and some extensions. The base OpenGL C API is accessed in JOGL via

Java Native Interface calls. As such, the underlying system must support OpenGL

for JOGL to work.

JOGL, which is used in this project, is different from some other Java

17

OpenGL wrappers as it exposes the procedural OpenGL API via methods on a

few classes, rather than attempting to map OpenGL functionality onto the object

oriented programming paradigm. The majority of the JOGL code is automatically

generated from the OpenGL C header files. The procedural and state machine

nature of OpenGL is inconsistent with the typical method of programming under

Java. However, the straightforward mapping of the OpenGL C API to Java meth-

ods makes conversion of existing C applications and example code much simpler.

The layer of abstraction provided by JOGL makes runtime execution quite

efficient, but is more difficult to code compared to higher-level abstraction libraries

like Java3D. Because most of the code is automatically generated, changes to

OpenGL can be rapidly added to JOGL.

Although the project could have been done without JOGL, by using more

light-weighted libraries, this design decision was made to make future adjustment

easier. One of which could be changing it to support three dimensional visualiza-

tion. The current software only supports two dimensional, but creating the three

dimensional version is also possible due to my technology choice. Choosing to

program using JOGL was more time consuming as I had no prior experience with

this wrapper or any other graphic libraries, and I had to spend some time at the

beginning to learn the basic concepts. But the trade off was creating a platform

that could support future advanced development.

Despite the advantages JOGL and in general OpenGL provide to this

project, they had some shortcomings. OpenGL is a low-level, procedural API

which closely matches many of the algorithms and methods graphics programmers

have used historically. But it means that the programmer have to dictate the exact

steps required to render a scene; as oppose to descriptive APIs, where a program-

mer only needs to describe a scene and can let the library manage the details of

rendering it. This means I had to have a good knowledge of the graphics pipeline.

Although the procedural approach to graphics is an important strength of

OpenGL, it simultaneously is a weakness for many Java programmers like me. I

have always used Java using object-oriented methodologies, and OpenGL’s pro-

cedural method does not mesh well with object-oriented approaches and good

18

engineering practice. For these reasons the learning process was quite time con-

suming.

As mentioned before, one of my concerns for choosing to program with

JOGL was to make the software more flexible for future changes. Despite giving

the project this advantage, my technology choice seemed to be an extra burden for

some part of the project. In some phases of implementing the software, I found

JOGL unnecessary and extremely heavy.

With such trade-off between development speed and flexibility in mind, I

chose to stay with JOGL, and gain the required knowledge and make the software

a better platform for future improvement.

4.3 PostgreSQL

PostgreSQL is an open source object-relational database management sys-

tem (ORDBMS) that supports a large part of the SQL standard and offers many

modern features such as complex queries, foreign keys, triggers, views, transac-

tional integrity and multi-version concurrency control. It can also be extended

by the user in many ways, especially by taking advantage of its support for user-

defined data types.

PostgreSQL works as a client/server model. Each session consists of a server

process and the users client application. The server process manages the database

files, accepts connections to the database, and performs database actions on behalf

of the clients. Users application performs database operations. Communication

between the server and client (if on different hosts) is handled over TCP/IP network

connection. The server can handle multiple concurrent connections from clients.

In general, PostgreSQL is a fast and mature database that provides relia-

bility, stability, scalability and extensibility. Besides these general advantages we

decide to use it in our project for several reasons: First, and probably most impor-

tant, it is open source; and as we were using it for research purposes it provides

us with flexibility of customization. Second, PostgreSQL is cross-platform and

supports all major operating systems (Windows, Linux, Mac OS X, UNIX). The

19

visualization tool is designed on Windows, but the rest of our group use mainly

Linux. Third, user-defined data types are supported which was a key feature in

our database tables. Last, there are a number of PostgreSQL-specific ties which

make migration to other databases a non-trivial process, so we have the flexibility

to change our design decision later.

Chapter 5

Design and Implementation

In this chapter, I will explain the implementation of the software in more

details. I will first discuss how the data is captured from the network and saved to

the database, how the software recognize individual flows from the database and

how the data is being visualized, then I will explain the software structure, classes

and functions.

The complete code has been attached in Appendix A. The code has two

basic functionalities: finding and processing the data, drawing and animating the

data.

5.1 Capturing Data from the Network

This part of the project was done by other researchers from the DCSwitch

research team. Nelson Huang added required functionalities to the core code of

the project. This code captures every flow that is created in the network. This

data is then recorded to the database, which will be discussed later. My software

later reads this data from the database.

5.2 Recognizing Flows from Database

As mentioned in section 2.3, OpenFlow has a 10-tuples that can be used

to uniquely identify individual flows in the network. In order to recognize active

20

21

flows the database is searched for entries with same OpenFlow 10-tuples (more

details in DBOperation class), and then the path will be calculated based on the

source and destination end hosts and the upward switches. Each flow entry in

the database has the sender id and next switch id, based on this information the

upward path will be recognized. There is always only one downward path from

each core switch to each end host, so the downward path will be recognized based

on the core switch and receiver. During my development process there were some

issues with the way data was captured to the database; one of these issues was

redundant entries. These redundant entries will be dropped while the path is being

recognized.

5.3 How to Visualize?

One of the main challenges of this project was to find the best way to vi-

sualize the network. My main choices were between using graphs to show statistic

of the network, using three dimensional presentations, or using the two dimen-

sional image that has been used in the research papers to represent the network

(figure 2.2). Since the project was done during the design phase of the network

and the research group was already using this image everywhere as the network

representation I decided to go with the same choice. My software now draws the

network as shown in the figure 2.2 (screen shot shown in figure 5.1) and while on

the animation mode, it shows the movement of data on the network by changing

the color of active components (screen shots shown in figures 5.2 and 5.3). Red

lines will be drawn over the cables while they are being used to transfer data from

one point to another. The thickness of these red lines shows the portion of the

bandwidth that is being used.

5.4 Software Structure

As mentioned before Java OpenGL was used to program this project. There

are two main parts to the software, one part deals with accessing the database,

22

Figure 5.1: Screen shot of the software.

23

Figure 5.2: Screen shot of the software in the animation mode.

24

Figure 5.3: Screen shot of the software in the animation mode.

25

processing the data, storing the data in to appropriate data structures and finally

updating the state of the software. The other part is in charge of visualizing the

data captured from the database and running the animation.

This software contains four main classes: MainWindow, Node, FlowData

and DBOperation. These classes contain the main functionality and logic of the

software. I will describe theses classes in more details in the next section.

StreightLine, Texture, TextureManager and Toolbar classes contain the draw-

ing aspect of the software. StreightLine draws the cables of the network. The

others are common JOGL classes and discussing them in more details are beyond

the scope of this thesis.

5.5 More Details

Node Class

A Node could be both a switch and an end host in the network. This class

has been created to structure the distinction between different item of the network

based on their role, their pod number and their placement in the pod.

The Node class has the following attributes:

• desc (description): it has one of the following values:

– aggr: node is an aggregation switch.

– edge: node is an edge switch.

– core: node is a core switch.

– host: node is an end host.

• podNum: Which pod does the node belong to?

• index: placement of the node in the pod. This will be between 0 and 3 for

end hosts and core switches. And 0 or 1 for edge and aggregation switches.

• selected: this item is for further development.

26

• active: showing if the node is sending or receiving data.

• degree: showing how many active connection the node has.

FlowData Class

For every active flow in the network one instance of FlowData class will be

created. This class keeps all the specific information about the flow including the

OpenFlow 10-tuple, all the switches envolved in the path from source to destina-

tion, flow duration, packet count, byte count and all the critical timestamps.

Each FlowData contains one FlowTuple that includes the OpenFlow 10-

tuple information. Each FlowTuple has the following attributes:

• inPort: Incoming port.

• dlVlan: VLAN id

• dlType: Ethernet type

• nwSrc: Ethernet source

• nwDst: Ethernet destination

• nwProto: IP protocol

• tpSrc: TCP/UDP source

• tpDst: TCP/UDP destination

• dlSrc:

• dlDst

The path that each flow travels is recognized by the following variables:

• srcHostIndex: Index number of the source host.

• dstHostIndex: Index number of the destination host.

• upEdgeSwitch: Index number of the edge switch of the upward path.

27

• upAggrSwitch: Index number of the aggregation switch of the upward path.

• coreSwitch: Index number of the core switch.

• downAggrSwitch: Index number of the aggregation switch of the downward

path.

• downEdgeSwitch: Index number of the edge switch of the downward path.

One of the important functions of this class is isPathBroken. This function

checks that the path that has been assigned to the flow is valid; it checks that

it has all the switches, and that if the sender and receiver are not on the same

pod then there is a core switch available to the path. This function was created

because during the development there were some invalid entries in the database.

So I added this function to make sure all the flows that I find on the network are

valid and I can show the complete path.

DBOperation

This class takes care of all the database operations. The basic operations

are making the connection to the database, receiving the flow data by different

attributes, finding the oldest and newest flow and finding the switch index by

using the switch id.

The getFlowData function comes with three different signatures. One will

query all the flows from the database, second one only selects data between two

given timestamps and the last one will select flows after a specific time.

The getFlowDataFromResultSet function is called by all of the getFlowData

functions to process the result set returned by the database and it outputs an array

of FlowData. As mentioned before, there are currently some redundant entries in

the database because of some capturing errors. The getFlowDataFromResultSet

function drops these redundant entries, and makes sure that only valid FlowData

are sent back to the calling functions.

The getMinDate and getMaxDate functions return the newest and oldest

flow entries of the database.

28

Besides the main database table, there is another table called dcswitch graph

nodes. This table holds the id of all switches in the network and assigns them to

their location. The findSwitchIndex functions query this table with the switch id

and return a Node that contains the description, pod number and index number

of the requested switch. The main purpose of this table is to make it easier for

future changes, since the switch ids will change based on the used hardware.

MainWindow Class

This class contains the main method, it first read config.properties file in

order to find out about the network architecture. This file includes all the essential

information about the network like how many pods are on the network, how many

layers the network has, how many end hosts are on each pod and how many

aggregation and edge switches are on each pod. Although during the development

process we only used a system with four pods and three layers, this file was created

for future changes and to make the software more flexible for design changes. When

this file is read, we can draw the appropriate network.

When the network is recognized one object will be created for every node on

the network as well as every cable. This is because we want to be able to interact

with each of these components individually. Also one feature that might be added

in the future is making each component selectable and just visualizing the data

related to that component.

The next step is creating the connection to the database. While the con-

nection is established a call to getFlowData function will return all the valid flows

from the database. These flows will be saved in an array of FlowData, ready to be

displayed.

The following part of the code focuses on setting up the Java OpenGL

requirements. The canvas is initiated here, and the drawing frame, panels, content

pane and other required drawing components are all set up here.

init function initiates the objects for the network components. The follow-

ings are array of Nodes :

• endHosts: all the end hosts.

29

• edAgSwitches: all aggregation and edge switches.

• coreSwitches: all the core switches.

Six arrays of integers will be initiated for all the cables on the network. The

integers represent how many flows are traveling over the cable.

• upLinkActive 1: all upward cables between end hosts and edge switches.

• upLinkActive 2: all upward cables between edge switches and aggregation

switches.

• upLinkActive 3: all upward cables between aggregation switches and core

switches.

• downLinkActive 1: all downward cables between end hosts and edge switches.

• downLinkActive 2: all downward cables between edge switches and aggrega-

tion switches.

• downLinkActive 3: all downward cables between aggregation switches and

core switches.

drawHost, drawEdgeAggregation and drawCore functions are called by the

drawScene function, they read the property file and draw the component on the

desired location on the screen.

updateAnimation function checks the status of the animation. The anima-

tion speed is set by frame rate variable. If one round of animation is done, this

function will check if the current round of the animation is done, and reset the

variables if it is. If it is not, then it will change the variables for the next step

of the animation. This updates basically involve changing the colors of the active

components.

setupFlowInformation reads the flow data received from the database and

sets up the initial state of the required components to active, this includes the

sender end host, the link from the end host to the edge switch, and finally the edge

switch.

30

findAggCoreLink function gets one aggregation and one core switch and re-

turns an integer that indicates the index of the link between them, if any. Similarly

findEdgeAggLink function gets one edge and one aggregation switch and returns

an integer that indicates the index of the link between them.

Chapter 6

Future Works

In this chapter I will explain some of the ideas that I had about the future

works of the projects. The main ideas includes: adding the ability to work real

time, making the network components selectable, running the animation for a

selected period of time or selected part of the network and showing statistical

graphs.

Real time animation

The available software queries the database, finds and processes the avail-

able flows and animates them regardless of their timestamps. Obviously one very

useful addition to the software would be making the animation to run on real time.

It was not possible to develop during the time of this project mainly because of the

way data was captured from the hardware to the database. This feature could be

particularly very useful for the network monitoring, the network operator could use

this tool to monitor the network for accuracy or too look for any fault congestion

or any other misbehavior in the network.

Although this could be a very valuable addition to the software, the software

was not designed initially to support it. One main obstacle in developing to develop

this feature is the current use of database. Saving the flows to the database and

then reading them back by the software is not a practical solution for the real

time animation; it would be more useful to connect the software directly to the

31

32

hardware.

Animation for specific time period

As I explained in the previous chapter, this software now only animates all

the flows in the network at the same time. But there are two functions that can

query the database for specific time period. These functions have been developed,

but not used in the software.

This feature could be very useful if the network operator or designer wants

to know what had happened in the network during a period of time. This feature

does not need lots of work to be done since the database functions already exist.

The only development necessary for this feature is adding the GUI required for

selecting the timestamps, and calling the appropriate function.

Animation for specific components

The software as available now animates the entire flows available to the

database, regardless of senders, receivers or any other parts of the paths. One

extra feature that could be developed is to let the users select which component of

the network they want to focus on and only show the flows traveling to/from that

component.

The hardest part of adding this feature is dealing with the zoning of the

screen and making the zones clickable. This part has already been done; every

node on the network is now selectable. Next step is querying the database for those

specific flows and displaying them. This feature also needs to be associated with

the previous one since the user may only needs to see traffic from one component

in a specific time period.

Showing statistical graphs

This project started as visualization software, so there was no focus on

displaying any kind of statistical graphs. Having graphs could be useful for any

network management, monitoring tool. The types of graphs that might be useful

33

for this project are: traffic rate for cables, connection rate between two end hosts

and the path that has been taken for these connections.

The visualization software could provide a right click drop-down menu for

each component of the network and let the users to choose the criteria they want

to see on a graph and the types of graphs they want to see.

Chapter 7

Appendix: Source Code

The maincode:

public class MainWindow implements GLEventListener {
protected static int pod num;

protected Texture host tex;

protected Texture host s tex;

protected Texture switch tex;

protected Texture switch s tex;

protected Texture cable tex;

protected GLU glu;

protected static Point pickPoint;

protected Hashtable<Integer, Node> namedNodes;

// drawables indexed

public static Properties props = new Properties();

protected static Properties db props = new Properties();

protected static int hosts per pod;

protected static int edge per pod;

protected static int number layer;

34

35

protected static Node endHosts[];

protected static Node edAgSwitches[];

protected static Node coreSwitches[];

protected static int upLinkActive 1[];

// links between end hosts and edge switches going upward

protected static int upLinkActive 2[];

// links between edge and aggregation switches going upward

protected static int upLinkActive 3[];

// links between aggregation and edge switches going upward

protected static int downLinkActive 1[];

// links between end hosts and edge switches going downward

protected static int downLinkActive 2[];

// links between edge and aggregation switches going downward

protected static int downLinkActive 3[];

// links between aggregation and edge switches going downward

protected static FlowData[] currFlowData;

protected static double hostStartY;

protected static double edgeStartY;

protected static double aggrStartY;

protected static double coreStartY;

protected static double hostEndY;

protected static double edgeEndY;

protected static double aggrEndY;

protected static double coreEndY;

protected static int frame rate;

protected static int frame count;

protected static final int STOPPED = -1;

protected static final int RUNNING = 0;

36

protected static final int PAUSED = 1;

protected static int activityStatus;

protected static Timestamp minTimestamp;

protected static Timestamp maxTimestamp;

protected static long current time;

protected static JLabel minTimeLabel;

protected static JLabel maxTimeLabel;

protected static JFrame frame;

protected static GLCanvas canvas;

protected static Animator animator;

protected static JPanel runPanel;

protected static JButton runButton;

protected static JButton stopButton;

protected static String runText;

protected static String stopText;

protected static String pauseText;

protected static String minTimeText;

protected static String maxTimeText;

protected static ImageIcon runIcon;

protected static ImageIcon pauseIcon;

protected static ImageIcon stopIcon;

protected static boolean flowDisplayDone[];

public static void main(String[] args) throws Exception {

37

pod num = 4;

props.load(new FileInputStream(”test”));

hosts per pod = Integer.parseInt(

props.getProperty(”HOSTS PER POD”));

edge per pod = Integer.parseInt(

props.getProperty(”EDGE AGG PER POD”));

number layer = Integer.parseInt(

props.getProperty(”NUMBER OF LAYER”));

DBOperation.creatConnection();

currFlowData = DBOperation.getFlowData();

int len = currFlowData.length;

flowDisplayDone = new boolean[len];

init();

frame rate = Integer.parseInt(

props.getProperty(”FRAME RATE”));

activityStatus = STOPPED;

canvas = new GLCanvas();

canvas.setBackground(new Color(0.93f, 0.93f, 0.93f));

canvas.addGLEventListener(new MainWindow());

canvas.addMouseListener(new MouseListener() {
public void mouseClicked(MouseEvent e) {
}
public void mouseEntered(MouseEvent e) {
}
public void mouseExited(MouseEvent e) {
}

38

public void mousePressed(MouseEvent e) {
if(e.getButton() == MouseEvent.BUTTON1) {
pickPoint = e.getPoint();

canvas.display();

}
}
public void mouseReleased(MouseEvent e) {
}

});

frame = new JFrame(”Fat Tree Visualization”);

frame.add(canvas);

animator = new Animator(canvas);

frame.setSize(1000, 1000);

frame.setVisible(true);

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

animator.stop();

System.exit(0);

}
});

runText = props.getProperty(”RUN BUTTON TEXT”);

pauseText = props.getProperty(”PAUSE BUTTON TEXT”);

runPanel = new JPanel();

runButton = new JButton(runText);

runIcon = new ImageIcon(

props.getProperty(”RUN ICON FILE”));

pauseIcon = new ImageIcon(

props.getProperty(”PAUSE ICON FILE”));

39

runButton.setIcon(runIcon);

runButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e) {

JButton source = (JButton) e.getSource();

switch(activityStatus) {
case STOPPED:

activityStatus = RUNNING;

frame.getRootPane().setCursor(null);

source.setText(pauseText);

source.setIcon(pauseIcon);

stopButton.setEnabled(true);

try {
setupFlowInformation();

} catch (Exception e1) {
e1.printStackTrace();

}
if(!animator.isAnimating()) animator.start();

break;

case RUNNING:

activityStatus = PAUSED;

frame.getRootPane().setCursor(null);

source.setText(runText);

source.setIcon(runIcon);

animator.stop();

break;

case PAUSED:

activityStatus = RUNNING;

source.setText(pauseText);

source.setIcon(pauseIcon);

if(!animator.isAnimating())animator.start();

break;

40

}
}

});

stopText = props.getProperty(”STOP BUTTON TEXT”);

stopIcon = new ImageIcon(props.getProperty(”ST ICON FILE”));

stopButton = new JButton(stopText);

stopButton.setIcon(stopIcon);

stopButton.setEnabled(false);

stopButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e) {

JButton source = (JButton) e.getSource();

if(activityStatus != STOPPED) {
activityStatus = STOPPED;

runButton.setText(runText);

runButton.setIcon(runIcon);

source.setEnabled(false);

init();

if(!animator.isAnimating()) animator.start();

}
}

});

runPanel.setAlignmentX(Component.CENTER ALIGNMENT);

runPanel.setMaximumSize(

new Dimension(Integer.MAX VALUE, 20));

runPanel.setBorder(new BevelBorder(BevelBorder.RAISED));

runPanel.add(runButton);

runPanel.add(stopButton);

frame.getContentPane().add(runPanel, BorderLayout.SOUTH);

41

}

public void init(GLAutoDrawable drawable) {
glu = new GLU();

try {
host tex = TextureManager.instance().newTexture(

props.getProperty(”HOST IMAGE FILE”),

drawable.getGL());

host s tex = TextureManager.instance().newTexture(

props.getProperty(”ACTIVE HOST IMAGE FILE”),

drawable.getGL());

switch tex = TextureManager.instance().newTexture(

props.getProperty(”SWITCH IMAGE FILE”),

drawable.getGL());

switch s tex = TextureManager.instance().newTexture(

props.getProperty(”ACTIVE SWITCH IMAGE FILE”),

drawable.getGL());

} catch (IOException e) {
e.printStackTrace();

}
namedNodes = new Hashtable¡Integer, Node¿();

}

private static void init() {
int len = currFlowData.length;

endHosts = new Node[pod num*hosts per pod];

edAgSwitches = new Node[pod num*edge per pod*2];

coreSwitches = new Node[pod num*1];

upLinkActive 1 = new int[pod num*hosts per pod];

upLinkActive 2 = new int[pod num*edge per pod*2];

upLinkActive 3 = new int[pod num*edge per pod*2];

42

downLinkActive 1 = new int[pod num*hosts per pod];

downLinkActive 2 = new int[pod num*edge per pod*2];

downLinkActive 3 = new int[pod num*edge per pod*2];

for(int i = 0; i < pod num*hosts per pod; i++) {
upLinkActive 1[i] = 0;

downLinkActive 1[i] = 0;

}
for(int i = 0; i < pod num*edge per pod*2; i++) {

upLinkActive 2[i] = 0;

upLinkActive 3[i] = 0;

downLinkActive 2[i] = 0;

downLinkActive 3[i] = 0;

}
}

public void reshape(GLAutoDrawable drawable, int x,

int y, int width, int height) {
GL gl = drawable.getGL();

gl.glViewport(0, 0, width, height);

gl.glMatrixMode(GL.GL PROJECTION);

gl.glLoadIdentity();

glu.gluOrtho2D(0.0, 1.0, 0.0, 1.0);

gl.glMatrixMode(GL.GL MODELVIEW);

gl.glLoadIdentity();

}

public void display(GLAutoDrawable drawable) {
updateAnimation();

GL gl = drawable.getGL();

gl.glClear(GL.GL COLOR BUFFER BIT

43

| GL.GL DEPTH BUFFER BIT);

if(pickPoint != null) selectObj(gl);

drawScene(gl, GL.GL RENDER);

gl.glFlush();

}

void drawScene(GL gl, int mode) {
int count = 0;

gl.glColor3f(0.93f, 0.93f, 0.93f);

gl.glClearColor(0.93f, 0.93f, 0.93f, 0.93f);

gl.glClear(GL.GL COLOR BUFFER BIT

| GL.GL DEPTH BUFFER BIT);

gl.glEnable(GL.GL TEXTURE 2D);

gl.glTexEnvf(GL.GL TEXTURE ENV,

GL.GL TEXTURE ENV MODE, GL.GL MODULATE);

double portion = (double)1/(pod num*hosts per pod+pod num-1);

double space = (double)(1-(pod num*hosts per pod*portion))

/(pod num-1);

for(int i = 0; i < pod num*hosts per pod; i++) {
if(endHosts[i] == null) {
int pod = i/hosts per pod;

int ndx = i % hosts per pod;

endHosts[i] = new Node(Node.END HOST, pod, ndx);

}
boolean active = (endHosts[i].isActive())?true:false;

drawHost(gl, endHosts[i], active, space, portion);

if(mode == GL.GL SELECT) {
gl.glLoadName(count);

namedNodes.put(count, endHosts[i]);

44

count++;

}
}

double portion sw = (double)(1-(pod num-1)*space)/

(pod num*edge per pod);

for(int i = 0; i < pod num*edge per pod*2; i++) {
if(edAgSwitches[i] == null) {

int pod = i/(edge per pod*2);

int row = (i-(edge per pod*2*pod))/2;

int ndx = i%(edge per pod*2);

String str = (row==0)?Node.EDGE SW:Node.AGGR SW;

edAgSwitches[i] = new Node(str, pod, ndx);

}
boolean active = (edAgSwitches[i].isActive())?true:false;

drawEdgeAggregation(gl, edAgSwitches[i], active, space,

portion, portion sw);

if(mode == GL.GL SELECT) {
gl.glLoadName(count);

namedNodes.put(count, edAgSwitches[i]);

count++;

}
}

for(int i = 0; i < pod num; i++) {
if(coreSwitches[i] == null)

coreSwitches[i] = new Node(Node.CORE SW, i, 0);

boolean active = (coreSwitches[i].isActive())?true:false;

drawCore(gl, coreSwitches[i], active, space, portion, portion sw);

if(mode == GL.GL SELECT) {
gl.glLoadName(count);

45

namedNodes.put(count, coreSwitches[i]);

count++;

}
}

double space between = Double.parseDouble(

props.getProperty(”SPACE BETWEEN OVERLAP LINKS”));

double h pos = Double.parseDouble(

props.getProperty(”HOST Y POS”));

double e pos = Double.parseDouble(

props.getProperty(”EDGE Y POS”));

double a pos = Double.parseDouble(

props.getProperty(”AGGR Y POS”));

double c pos = Double.parseDouble(

props.getProperty(”CORE Y POS”));

for(int i = 0; i < pod num*hosts per pod; i++) {
int pod = i/hosts per pod;

gl.glLineWidth(10.0f);

gl.glBegin(GL.GL LINES);

gl.glColor3f(0f, 0f, 0f);

double startX = pod*space+i*portion+portion/2;

double endX = pod*space+((i%2==0)?i+1:i)

*portion+((i%2==0)?-1:1)*space between;

double midX = 0.01;

gl.glLoadName(count);

count++;

gl.glVertex2d(pod*space+i

*portion+portion/2, portion+h pos);

gl.glVertex2d(pod*space+((i%2==0)?i+1:i)

*portion+((i%2==0)?-1:1)*space between, e pos);

46

gl.glEnd();

if(upLinkActive 1[i] > 0) {
gl.glColor3f(1f, 0f, 0f);

gl.glLineWidth(upLinkActive 1[i]);

gl.glBegin(GL.GL LINES);

StreightLine sl = new StreightLine(

pod*space+i*portion+portion/2, portion+h pos,

pod*space+((i%2==0)?i+1:i)

*portion+((i%2==0)?-1:1)*space between, e pos);

double h = sl.height/frame rate;

double X = pod*space+i*portion+portion/2;

double Y = portion+h pos;

for(int jj = 0; jj < frame count; jj++) {
X = sl.getXCordByHeight(X, Y, h);

Y = sl.getYCordByHeight(X, Y, h);

}
gl.glVertex2d(pod*space+i*portion+portion/2,

portion+h pos);

gl.glVertex2d(sl.getXCordByHeight(X, Y, h),

sl.getYCordByHeight(X, Y, h));

gl.glEnd();

}
if(downLinkActive 1[i] > 0) {

gl.glColor3f(1f, 0f, 0f);

gl.glLineWidth(downLinkActive 1[i]);

gl.glBegin(GL.GL LINES);

StreightLine sl = new StreightLine(

pod*space+i*portion+portion/2, portion+h pos,

pod*space+((i%2==0)?i+1:i)*portion+

((i%2==0)?-1:1)*space between, e pos);

double h = -1*sl.height/frame rate;

47

double X = (pod*space+((i%2==0)?i+1:i)

*portion+((i%2==0)?-1:1)*space between);

double Y = e pos;

for(int jj = 0; jj < frame count; jj++) {
X = sl.getXCordByHeight(X, Y, h);

Y = sl.getYCordByHeight(X, Y, h);

}
gl.glVertex2d(pod*space+((i%2==0)?i+1:i)

*portion+((i%2==0)?-1:1)*space between, e pos);

gl.glVertex2d(sl.getXCordByHeight(X, Y, h),

sl.getYCordByHeight(X, Y, h));

gl.glEnd();

}
}

for(int i = 0; i < pod num*edge per pod*2; i++) {
int pod = i/(edge per pod*2);

int col = i/edge per pod;

gl.glColor3f(0f, 0f, 0f);

gl.glLineWidth(10.0f);

gl.glBegin(GL.GL LINES);

gl.glLoadName(count);

count++;

gl.glVertex2d(pod*space+(edge per pod*col+1)

*portion, e pos+portion sw);

gl.glVertex2d(pod*space+(edge per pod*((i%2==0)

?col:((i%4==1)?col+1:col-1))+1)*

portion, e pos+portion sw);

gl.glEnd();

if(upLinkActive 2[i] > 0) {
gl.glColor3f(1f, 0f, 0f);

48

gl.glLineWidth(upLinkActive 2[i]);

gl.glBegin(GL.GL LINES);

StreightLine sl = new StreightLine(

pod*space+(edge per pod*col+1)*portion, e pos+portion sw,

pod*space+(edge per pod*((i%2==0)?col:((i%4==1)

?col+1:col-1))+1)*portion, e pos+a pos+portion sw);

double h = sl.height/frame rate;

double X = pod*space+(edge per pod*col+1)*portion;

double Y = e pos+portion sw;

for(int jj = 0; jj < frame count; jj++) {
X = sl.getXCordByHeight(X, Y, h);

Y = sl.getYCordByHeight(X, Y, h);

}
gl.glVertex2d(pod*space+(edge per pod*col+1)

*portion, e pos+portion sw);

gl.glVertex2d(sl.getXCordByHeight(X, Y, h),

sl.getYCordByHeight(X, Y, h));

gl.glEnd();

}
if(downLinkActive 2[i] > 0) {

gl.glColor3f(1f, 0f, 0f);

gl.glLineWidth(downLinkActive 2[i]);

gl.glBegin(GL.GL LINES);

StreightLine sl = new StreightLine(

pod*space+(edge per pod*col+1)*portion, e pos+portion sw,

pod*space+(edge per pod*((i%2==0)?col:((i%4==1)

?col+1:col-1))+1)*portion, e pos+a pos+portion sw);

double h = -1*sl.height/frame rate;

double X = (pod*space+(edge per pod*

((i%2==0)?col:((i%4==1)?col+1:col-1))+1)*portion);

double Y = e pos+a pos+portion sw;

49

for(int jj = 0; jj < frame count; jj++) {
X = sl.getXCordByHeight(X, Y, h);

Y = sl.getYCordByHeight(X, Y, h);

}
gl.glVertex2d(pod*space+(edge per pod*((i%2==0)

?col:((i%4==1)?col+1:col-1))+1)

*portion, e pos+a pos+portion sw);

gl.glVertex2d(sl.getXCordByHeight(X, Y, h),

sl.getYCordByHeight(X, Y, h));

gl.glEnd();

}
}

for(int i = 0; i < pod num*edge per pod*pod num/2; i++) {
int pod = i/pod num;

int half = i/edge per pod;

int which agg = (half%2==0)?2:3;

//aggregation index is 2 for first half and 3 for second

int which link = (i%2==0)?1:2;

int core ndx = Integer.parseInt(props.getProperty(

”AGGR ”+pod+” ”+which agg+” ”+which link));

gl.glColor3f(0f, 0f, 0f);

gl.glLineWidth(10.0f);

gl.glBegin(GL.GL LINES);

gl.glLoadName(count);

count++;

gl.glVertex2d(pod*space+(2*half+1)*portion,

e pos+a pos+2*portion sw);

gl.glVertex2d(core ndx*space +

(hosts per pod*core ndx+2)*portion, c pos-portion sw);

50

gl.glEnd();

if(upLinkActive 3[i] > 0) {
gl.glColor3f(1f, 0f, 0f);

gl.glLineWidth(upLinkActive 3[i]);

gl.glBegin(GL.GL LINES);

StreightLine sl = new StreightLine(

pod*space+(2*half+1)*portion, e pos+a pos+2*portion sw,

core ndx*space+(hosts per pod*core ndx+2)*portion,

c pos-portion sw);

double h = sl.height/frame rate;

double X = pod*space+(2*half+1)*portion;

double Y = e pos+a pos+2*portion sw;

for(int jj = 0; jj < frame count; jj++) {
X = sl.getXCordByHeight(X, Y, h);

Y = sl.getYCordByHeight(X, Y, h);

}
gl.glVertex2d(pod*space+(2*half+1)*

portion, e pos+a pos+2*portion sw);

gl.glVertex2d(sl.getXCordByHeight(X, Y, h),

sl.getYCordByHeight(X, Y, h));

gl.glEnd();

}

if(downLinkActive 3[i] > 0) {
gl.glColor3f(1f, 0f, 0f);

gl.glLineWidth(downLinkActive 3[i]);

gl.glBegin(GL.GL LINES);

StreightLine sl = new StreightLine(

pod*space+(2*half+1)*portion, e pos+a pos+2*portion sw,

core ndx*space+(hosts per pod*core ndx+2)

51

*portion, c pos-portion sw);

double h = -1*sl.height/frame rate;

double X = core ndx*space+(hosts per pod*core ndx+2);

double Y = c pos-portion sw;

for(int jj = 0; jj < frame count; jj++) {
X = sl.getXCordByHeight(X, Y, h);

Y = sl.getYCordByHeight(X, Y, h);

}
gl.glVertex2d(core ndx*space+(hosts per pod*core ndx+2)

*portion, c pos-portion sw);

gl.glVertex2d(sl.getXCordByHeight(X, Y, h),

sl.getYCordByHeight(X, Y, h));

gl.glEnd();

}
}

}

private void processHits(int hits, int buffer[]) {
Node node;

int offset = 0;

if(hits != 1) return;

// skip the number of names

offset++;

// skip the two z values

offset++;

offset++;

// assume each selected object only has one name

int name = buffer[offset++];

node = namedNodes.get(name);

52

node.setSelected(true);

return;

}

void selectObj(GL gl) {
int selectBufSize = 200;

int selectBuf[] = new int[selectBufSize];

IntBuffer selectBuffer = BufferUtil.newIntBuffer(selectBufSize);

int viewport[] = new int[4];

int hits;

gl.glGetIntegerv(GL.GL VIEWPORT, viewport, 0);

gl.glSelectBuffer(selectBufSize, selectBuffer);

gl.glRenderMode(GL.GL SELECT);

gl.glInitNames();

gl.glPushName(0);

gl.glMatrixMode(GL.GL PROJECTION);

gl.glPushMatrix();

gl.glLoadIdentity();

glu.gluPickMatrix((double) pickPoint.x,

(double) (viewport[3] - pickPoint.y), 10, 10, viewport, 0);

glu.gluOrtho2D(0.0, 1.0, 0.0, 1.0);

drawScene(gl, GL.GL SELECT);

gl.glMatrixMode(GL.GL PROJECTION);

gl.glPopMatrix();

gl.glFlush();

hits = gl.glRenderMode(GL.GL RENDER);

selectBuffer.get(selectBuf);

53

processHits(hits, selectBuf);

}

void updateAnimation() {
frame count++;

if(frame count == frame rate) {
for(int i = 0; i < currFlowData.length; i++) {

if(!currFlowData[i].isPathBroken() && !flowDisplayDone[i]) {
Node srcHost=currFlowData[i].getSrcHostIndex();

Node dstHost=currFlowData[i].getDstHostIndex();

Node upEdgeSwch=currFlowData[i].getUpEdgeSwitch();

Node upAggrSwch=currFlowData[i].getUpAggrSwitch();

Node coreSwch=currFlowData[i].getCoreSwitch();

Node downAggrSwch=currFlowData[i].getDownAggrSwitch();

Node downEdgeSwch=currFlowData[i].getDownEdgeSwitch();

boolean samePod = false;

if(srcHost.getPodNum() == dstHost.getPodNum())

samePod = true;

if((srcHost != null && dstHost != null) && (samePod ‖
(upEdgeSwitch != null && upAggrSwitch != null

&& coreSwitch != null

&& downAggrSwitch!=null && downEdgeSwitch != null)))

int srcIndex = srcHost.getPodNum()*

hosts per pod + srcHost.getIndex();

int dstIndex = dstHost.getPodNum()*

hosts per pod + dstHost.getIndex();

int upEdgeSwIndex = upEdgeSwitch.getPodNum()*

hosts per pod + upEdgeSwitch.getIndex();

int upAggrSwIndex = upAggrSwitch.getPodNum()*

hosts per pod + upAggrSwitch.getIndex();

int coreSwIndex = -1;

54

int downAggrSwIndex = -1;

int downEdgeSwIndex = -1;

if(coreSwitch != null)

coreSwIndex = coreSwitch.getPodNum();

if(downAggrSwitch != null)

downAggrSwIndex = downAggrSwitch.getPodNum()*

hosts per pod + downAggrSwitch.getIndex();

if(downEdgeSwitch != null)

downEdgeSwIndex = downEdgeSwitch.getPodNum()*

hosts per pod + downEdgeSwitch.getIndex();

if(endHosts[srcIndex].isActive()) {
// From edge to aggregation (upward)

endHosts[srcIndex].setActive(false);

edAgSwitches[upAggrSwIndex].setActive(true);

upLinkActive 1[srcIndex] = updateLink(

upLinkActive 1[srcIndex], false);

int l = findEdgeAggLink(upEdgeSwitch, upAggrSwitch);

upLinkActive 2[l] = updateLink(upLinkActive 2[l], true);

} else if(!samePod) {
if(edAgSwitches[upEdgeSwIndex].isActive()) {
//From aggregation to core (upward)

edAgSwitches[upEdgeSwIndex].setActive(false);

coreSwitches[coreSwIndex].setActive(true);

int l = findEdgeAggLink(upEdgeSwitch, upAggrSwitch);

upLinkActive 2[l] = updateLink(upLinkActive 2[l], false);

l = findAggCoreLink(upAggrSwitch, coreSwitch);

upLinkActive 3[l] = updateLink(upLinkActive 3[l], true);

} else if(edAgSwitches[upAggrSwIndex].isActive()) {
// From core to aggregation (downward)

edAgSwitches[upAggrSwIndex].setActive(false);

edAgSwitches[downAggrSwIndex].setActive(true);

55

int l = findAggCoreLink(upAggrSwitch, coreSwitch);

upLinkActive 3[l] = updateLink(upLinkActive 3[l], false);

l = findAggCoreLink(downAggrSwitch, coreSwitch);

downLinkActive 3[l] = updateLink(downLinkActive 3[l], true);

} else if(coreSwitches[coreSwIndex].isActive()) {
// From aggregation to edge switch (downward0

coreSwitches[coreSwIndex].setActive(false);

edAgSwitches[downEdgeSwIndex].setActive(true);

int l = findAggCoreLink(downAggrSwitch, coreSwitch);

downLinkActive 3[l] = updateLink(downLinkActive 3[l], false);

l = findEdgeAggLink(downEdgeSwitch, downAggrSwitch);

downLinkActive 2[l] = updateLink(downLinkActive 2[l], true);

} else if(edAgSwitches[downAggrSwIndex].isActive()) {
// From edge to destination (downward)

edAgSwitches[downAggrSwIndex].setActive(false);

endHosts[dstIndex].setActive(true);

int l = findEdgeAggLink(downEdgeSwitch, downAggrSwitch);

downLinkActive 2[l] = updateLink(downLinkActive 2[l], false);

downLinkActive 1[dstIndex] = updateLink(

downLinkActive 1[dstIndex], true);

} else if(edAgSwitches[downEdgeSwIndex].isActive()) {
// End of the path

edAgSwitches[downEdgeSwIndex].setActive(false);

//updateArray(switchActive[downEdgeSwIndex]);

endHosts[dstIndex].setActive(false);

downLinkActive 1[dstIndex] = updateLink(

downLinkActive 1[dstIndex], false);

flowDisplayDone[i] = true;

}
} else {
if(edAgSwitches[upEdgeSwIndex].isActive()) {

56

// From aggregation to edge (downward)

edAgSwitches[upEdgeSwIndex].setActive(false);

//updateArray(switchActive[upEdgeSwIndex]);

edAgSwitches[downEdgeSwIndex].setActive(true);

int l = findEdgeAggLink(upEdgeSwitch, upAggrSwitch);

upLinkActive 2[l] = updateLink(upLinkActive 2[l], false);

l = findEdgeAggLink(downEdgeSwitch, downAggrSwitch);

downLinkActive 2[l] = updateLink(downLinkActive 2[l], true);

} else if(edAgSwitches[upAggrSwIndex].isActive()) {
// From edge to destination (downward)

edAgSwitches[upAggrSwIndex].setActive(false);

endHosts[dstIndex].setActive(true);

int l = findEdgeAggLink(downEdgeSwitch, downAggrSwitch);

downLinkActive 2[l] = updateLink(

downLinkActive 2[l], false);

downLinkActive 1[dstIndex] =

updateLink(downLinkActive 1[dstIndex], true);

} else if(edAgSwitches[downEdgeSwIndex].isActive()) {
// End of the path

edAgSwitches[downEdgeSwIndex].setActive(false);

endHosts[dstIndex].setActive(false);

downLinkActive 1[dstIndex] =

updateLink(downLinkActive 1[dstIndex], false);

flowDisplayDone[i] = true;

}
}
}
}

}
frame count = 0;

}

57

}

public void displayChanged(GLAutoDrawable drawable,

boolean modeChanged, boolean deviceChanged) {
}

void drawHost(GL gl, Node node, boolean active,

double space, double portion) {
int host no = node.getPodNum()*hosts per pod + node.getIndex();

int pod = node.getPodNum();

double width diff = (double)(host tex.getTextureWidth()

-host tex.getImageWidth());

double height diff = (double)(host tex.getTextureHeight()

-host tex.getImageHeight());

hostStartY = Double.parseDouble(props.getProperty(

”HOST Y POS”));

hostEndY = hostStartY+ portion;

double hostStartX = pod*space+host no*portion;

double hostEndX = pod*space+(host no+1)*portion;

if(!active)

gl.glBindTexture(GL.GL TEXTURE 2D, host tex.getName());

else

gl.glBindTexture(GL.GL TEXTURE 2D, host s tex.getName());

if(node.isSelected()) gl.glColor3f(0.63f, 0.63f, 0.63f);

else gl.glColor3f(0.93f, 0.93f, 0.93f);

gl.glBegin(GL.GL QUADS);

gl.glTexCoord2d(width diff/host tex.getTextureWidth()/2, //0

(height diff/ 2+host tex.getImageHeight()-1)/

58

host tex.getTextureHeight()); //1

gl.glVertex2d(hostStartX, hostStartY);

gl.glTexCoord2d(width diff/host tex.getTextureWidth()/2, //0

height diff/host tex.getTextureHeight()/2); //0

gl.glVertex2d(hostStartX, hostEndY);

gl.glTexCoord2d((width diff/2+host tex.getImageWidth()-1)

/host tex.getTextureWidth() , //1

height diff/host tex.getTextureHeight()/2); //0

gl.glVertex2d(hostEndX, hostEndY);

gl.glTexCoord2d((width diff/ 2+host tex.getImageWidth()-1)

/host tex.getTextureWidth() , //1

(height diff/ 2+host tex.getImageHeight()-1)

/host tex.getTextureHeight()); //1

gl.glVertex2d(hostEndX, hostStartY);

gl.glEnd();

}

void drawEdgeAggregation(GL gl, Node node, boolean active,

double space, double portion, double portion sw) {
int sw no = node.getPodNum()*edge per pod*2 + node.getIndex();

int pod = node.getPodNum();

int row = node.getIndex()/2;

int col = pod*edge per pod+sw no%edge per pod;

double width diff = (double)(switch tex.getTextureWidth()

-switch tex.getImageWidth());

double height diff = (double)(switch tex.getTextureHeight()

-switch tex.getImageHeight());

double y pos = Double.parseDouble(

59

props.getProperty(”EDGE Y POS”));

double add pos = Double.parseDouble(

props.getProperty(”AGGR Y POS”));

double startX = pod*space+(2*col+1)*portion-portion sw/2;

double endX = pod*space+(2*col+1)*portion+portion sw/2;

double startY = y pos+((portion sw+add pos)*row);

double endY = y pos+portion sw+((portion sw+add pos)*row);

if(active)

gl.glBindTexture(GL.GL TEXTURE 2D, switch s tex.getName());

else

gl.glBindTexture(GL.GL TEXTURE 2D, switch tex.getName());

gl.glBegin(GL.GL QUADS);

gl.glTexCoord2d(width diff/switch tex.getTextureWidth()/2,

(height diff/2+switch tex.getImageHeight()-1)

/switch tex.getTextureHeight());

gl.glVertex2d(startX, startY);

gl.glTexCoord2d(width diff/switch tex.getTextureWidth()/2,

height diff/switch tex.getTextureHeight()/2);

gl.glVertex2d(startX, endY);

gl.glTexCoord2d((width diff/2+switch tex.getImageWidth()-1)

/switch tex.getTextureWidth(),

(double)(switch tex.getTextureHeight()

-switch tex.getImageHeight())/switch tex.getTextureHeight()/ 2);

gl.glVertex2d(endX, endY);

gl.glTexCoord2d((width diff/2+switch tex.getImageWidth()-1)

60

/switch tex.getTextureWidth(),

(height diff/2+switch tex.getImageHeight()-1)

/switch tex.getTextureHeight());

gl.glVertex2d(endX, startY);

gl.glEnd();

}

void drawCore(GL gl, Node node, boolean active, double space,

double portion, double portion sw) {
int sw no = node.getPodNum();

double width diff = (double)(switch tex.getTextureWidth() -

switch tex.getImageWidth());

double height diff = (double)(switch tex.getTextureHeight() -

switch tex.getImageHeight());

double y pos = Double.parseDouble(

props.getProperty(”CORE Y POS”));

double coreStartX = sw no*space+(hosts per pod*sw no+2) *

portion-portion sw/2;

double coreStartY = y pos-portion sw;

double coreEndX = sw no*space+(hosts per pod*sw no+2) *

portion+portion sw/2;

double coreEndY = y pos;

if(active)

gl.glBindTexture(GL.GL TEXTURE 2D, switch s tex.getName());

else

gl.glBindTexture(GL.GL TEXTURE 2D, switch tex.getName());

gl.glBegin(GL.GL QUADS);

gl.glTexCoord2d(width diff/switch tex.getTextureWidth()/2,

61

(height diff/2+switch tex.getImageHeight()-1) /

switch tex.getTextureHeight());

gl.glVertex2d(coreStartX, coreStartY);

gl.glTexCoord2d(width diff/switch tex.getTextureWidth()/2,

height diff/switch tex.getTextureHeight()/2);

gl.glVertex2d(coreStartX, coreEndY);

gl.glTexCoord2d((width diff/2+switch tex.getImageWidth()-1) /

switch tex.getTextureWidth(),

(double)(switch tex.getTextureHeight()-

switch tex.getImageHeight())/

switch tex.getTextureHeight()/2);

gl.glVertex2d(coreEndX, coreEndY);

gl.glTexCoord2d((width diff/2+switch tex.getImageWidth()-1)/

switch tex.getTextureWidth(),

(height diff/2+switch tex.getImageHeight()-1)/

switch tex.getTextureHeight());

gl.glVertex2d(coreEndX, coreStartY);

gl.glEnd();

}

private static void setupFlowInformation() throws Exception {
for(int i = 0; i < currFlowData.length; i++) {

if(!currFlowData[i].isPathBroken() && !flowDisplayDone[i]) {
//read flow data and show them

Node srcHost = currFlowData[i].getSrcHostIndex();

Node dstHost = currFlowData[i].getDstHostIndex();

Node upEdgeSwch = currFlowData[i].getUpEdgeSwitch();

Node upAggrSwch = currFlowData[i].getUpAggrSwitch();

62

Node coreSwch = currFlowData[i].getCoreSwitch();

Node downAggrSwch = currFlowData[i].

getDownAggrSwitch();

Node downEdgeSwIndex = currFlowData[i].

getDownEdgeSwitch();

int srcIndex = srcHost.getPodNum()*

hosts per pod + srcHost.getIndex();

int upEdgeSwIndex = upEdgeSwitch.getPodNum()

*hosts per pod + upEdgeSwitch.getIndex();

boolean samePod = false;

if(srcHost.getPodNum() == dstHost.getPodNum())

samePod = true;

if((srcHost != null && dstHost != null) &&

(samePod ——

(upEdgeSwitch != null && upAggrSwitch != null &&

coreSwitch != null

&& downAggrSwitch != null &&

downEdgeSwIndex != null))) {
endHosts[srcIndex].setActive(true);

upLinkActive 1[srcIndex] = updateLink(

upLinkActive 1[srcIndex], true);

edAgSwitches[upEdgeSwIndex].setActive(true);

}
}

}
}

static int findAggCoreLink(Node agg, Node core) {
int pod = agg.getPodNum();

int ndx = agg.getIndex();

int temp1 = Integer.parseInt(

63

props.getProperty(”AGGR ”+pod+” ”+ndx+” 1”));

int temp2 = Integer.parseInt(

props.getProperty(”AGGR ”+pod+” ”+ndx+” 2”));

if(temp1 == core.getPodNum())

return pod*hosts per pod + ((ndx%2==0)?0:2);

else if(temp2 == core.getPodNum())

return pod*hosts per pod + ((ndx%2==0)?1:3);

else {
return -1;

}
}

static int findEdgeAggLink(Node edge, Node agg) {
if(edge.getPodNum() != agg.getPodNum()) {

return -1;

}
int pod = edge.getPodNum();

int ndx = edge.getIndex();

int r = (edge.getIndex()%2 ==

agg.getIndex()%2)?(ndx%2*2):(ndx*2+1);

return pod*hosts per pod + r;

}

void updateArray(boolean[] a) {
boolean res = false;

for(int i = 0; i < a.length-1; i++) {
res = res — a[i];

}
a[a.length-1] = res;

}

64

static int updateLink(int a, boolean sign) {
if(sign) {

if(a < 10)

return a+1;

} else {
if(a > 0)

return a-1;

}
return a;

}

}

Bibliography

[1] M Al-Fares, A Loukissas, and A Vahdat. A scalable, commodity data center
network architecture. Proceedings of the ACM SIGCOMM conference, 2008,
2008.

[2] Deborah Estrin, Mark Handley, John Heidemann, Steven McCanne, Ya Xu,
and Haobo Yu. Network visualization with the VINT network animator nam.
Technical Report 99-703b, University of Southern California, March 1999. re-
vised November 1999, to appear in IEEE Computer.

[3] Deborah Estrin, Mark Handley, John Heidemann, Steven McCanne, Ya Xu,
and Haobo Yu. Network visualization with nam, the vint network animator.
Computer, 33:63–68, November 2000.

[4] D. Fisher, D.A. Maltz, A. Greenberg, Xiaoyu Wang, H. Warncke, G. Robertson,
and M. Czerwinski. Using visualization to support network and application
management in a data center. In Internet Network Management Workshop,
2008. INM 2008. IEEE, pages 1 –6, oct. 2008.

[5] http://www.openflow.org/documents/openflow-spec v0.8.9.pdf. OpenFlow
Switch Specication.

[6] Alexander Loukissas. Implementation and simulation of the two-level lookup.
Master’s thesis, UCSD, 2008.

[7] Niranjan Mysore, Pamboris, Farrington, Huang, Miri, Radhakrishnan, Subra-
manya, and Vahdat. Portland: A scalable fault-tolerant layer 2 data center
network fabric. Proceedings of the ACM SIGCOMM conference, 2009, 2009.

[8] Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick
McKeown. Implementing an openflow switch on the netfpga platform. In
Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’08, pages 1–9, New York, NY, USA,
2008. ACM.

65

