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Abstract

A new diffusion Monte Carlo study is performed on the isomers of C4H3 and C4H5

emulating the methodology of a previous study [Int. J. Chem. Kinetics 33, 808 (2001)]. Using

the same trial wave function form of the previous study, substantially different isomerization

energies were found owing to the use of larger walker populations in the present work. The

energy differences between the E and I isomers of C4H3 were found to be 10.5 ± 0.5 kcal/mol

and for C4H5, 9.7 ± 0.6 kcal/mol. These results are in reasonable accord with recent MRCI

and CCSD(T) findings.
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1 Introduction

For well over a decade there has been considerable debate over the relative importance

of even-carbon-atom pathways for the formation of aromatics. The addition of acetylene

to n-C4H3 and n-C4H5 was dismissed as unlikely by Miller and Melius based on BAC-MP4

calculations of the energy differences between the normal and iso isomers [1]. Significantly

smaller normal and iso isomer energy differences for C4H3 and C4H5 were calculated using

diffusion Monte Carlo (DMC) in a study by Krokidis, Moriarty, Lester, and Frenklach,

hereafter KMLF [2], and led Frenklach [3] to advocate the importance of such even-carbon-

atom pathways in the formation of the first aromatic. The substantially lower isomer energy

differences predicted by the KMLF DMC calculations recently generated controversy as they

were outliers compared to CCSD(T) calculations by Wheeler et al. [4] and MRCI calculations

by Klippenstein and Miller [5]. The consistency of the results of the latter studies and their

disagreement with the KMLF DMC results has spurred this re-examination of the previous

DMC results. We have repeated KMLF’s DMC calculations as closely as possible to ascertain

their validity.

This paper is organized as follows. Section 2 summarizes the DMC method to the extend

needed for the present purpose. It is followed in Sec. 3 by computational details, and in Sec.

4 by results and discussion.

2 Diffusion Monte Carlo

Diffusion Monte Carlo solves the time-independent Schrödinger equation by stochasti-

cally simulating the time-dependent Schrödinger equation in imaginary time. The method

is well described elsewhere (see,for example, refs. [6, 7, 8, 9, 10, 11, 12]) and therefore we

make comments about the method as as needed for the present purpose. Although the DMC

energy is primarily dependent on the nodes of the trial wave function and not the trial wave

function itself, the quality of the trial wave function greatly influences the variance of the
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energy (and therefore the error bar). The simulation bias of using a finite time step can

be reduced by extrapolating several DMC time step run to zero time step, or by using a

sufficiently small time step that this bias is negligible. However, time steps that are too

small, can make it difficult to converge calculations, and the energies obtained from such

calculations can be unreliable. Walker population size may also introduce bias and produce

irreproducible energies if the population is too small.

3 Computational methodology

3.1 Geometries

In this study optimized molecular geometries were obtained in the B3LYP/cc-pVTZ

approach using the Gaussian 03 ab initio package [13] and are essentially the same as the

B3LYP/cc-pVQZ geometries of the KMLF study. Wheeler et al. reported restricted open-

shell coupled-cluster singles doubles with perturbation triples [ROCCSD(T)] geometries. For

all the isomers except I -C4H3, the differences between B3LYP and ROCCSD(T) bond angles

were at most 1.5◦ and those for bond lengths were at most 0.015Å. These differences amount

to 1.0% for both bond lengths and bond angles.

For I -C4H3, the maximal differences of the B3LYP/cc-pVTZ and ROCCSD(T) ap-

proaches were 24.0◦ and 0.032Å, but as Wheeler et al. noted, this molecule has a relatively

flat potential energy surface about its CCC angle (labeled ”A3”; see Fig. 1 for geometry

definitions). We confirmed the insignificance of the effect of the geometry on the energy

of the I -C4H3 by computing the DMC energy at both the published ROCCSD(T) and the

B3LYP/cc-pVTZ arrangements and found the differences statistically insignificant (0.4 ±

0.4 kcal/mol). The various bond lengths and angles are presented in Tables 1 and 2.
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3.2 Trial Wave Function Construction and DMC Specifications

KMLF used single-determinant trial wave functions constructed from the natural or-

bitals of MCSCF(9,9) calculations [2], incorrectly designated MCSCF(3,3). This notation

means that the highest-lying 9 electrons were distributed among the five highest occupied

and four lowest unoccupied canonical Hartree-Fock orbitals in all possible ways that retain

configurations with 1 singly and 4 doubly occupied orbitals. The Stevens-Basch-Krauss

(SBK) effective core potential (ECP) [14] was used for carbon in conjunction with a large

contracted Gaussian basis set obtained as a fit to numerical Hartree- Fock atomic orbitals

and are listed in the Appendix.

In the present study, we carried out MCSCF calculations using the GAMESS ab initio

package [15]. The DMC trial wave functions were of the form of a Slater determinant (con-

structed from the MCSCF natural orbitals) multiplied by a 10-parameter Schmidt-Moskowitz

correlation function (SMBH) [16]. The latter contains terms with explicit dependence on

electron-electron, electron-nucleus, and electron-other-nucleus distances. The correlation

function serves to reduce the variance in the local energy of both VMC and DMC compu-

tations. The parameters of the SMBH correlation function were optimized by minimization

of the absolute deviation functional [17, 18] of the local energy on a fixed sample of 12800

walkers. Three cycles of optimization and VMC were performed for each isomer and the

correlation function parameters from the last optimization were used in subsequent DMC

calculations. The calculations were performed following the Reynolds et al. [6] algorithm

using single-electron moves, 128 processor runs with 100 walkers per processor and the

small time step of 0.0050H−1 which is not expected to have a substantial time step bias.

This assumption was tested in DMC calculations that were performed using a time step of

0.0025H−1. Decorrelated energies from blocks of 200 steps were averaged across the proces-

sors and outliers lying more than 4 standard deviations from the mean were removed during

the final statistical averaging.
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3.3 Thermochemistry

The zero-point energies and thermal corrections were computed using Gaussian 03 at

the B3LYP/cc-pVTZ and QCISD/6-31(d) levels of theory. The harmonic frequencies were

scaled by 0.965 for B3LYP [19] and 0.9537 for QCISD [20]. Enthalpies of formations were

computed from the atomization energies and standard experimental enthalpies of formation

for the atoms, and not from isodesmic reactions that benefit from cancellation of errors with

other ab initio methods. With DMC, the statistical error of each of the constituent molecules

that are part of an isodesmic calculation would lead to a large overall error.

The atomization energy (EA) is defined for the present systems for the general reaction,

C4Hx → 4C + xH (1)

as

Emethod
A =

N∑

i=1

βiE
method
atom(i) − Emethod

molecule − Emethod
ZPE (2)

where βi is the stoichiometric coefficient of atom i and method corresponds to either DMC or

other ab initio level of theory. For DMC, zero-point energies (Emethod
ZPE ) were generated from

QCISD/6-31(d) frequency calculations performed at the QCISD/6-31(d) minimum geometry.

Scaled zero-point energies were used in the present DMC calculations and are given in Table

4. Subtracting the atomization energy of the isomer from the standard heats of formation

of the atoms at 0K (∆fH
o
0,i is the experimental enthalpy of formation at 0 K of atom i [21])

yields the enthalpy of formation at 0K;

∆fH0 =
N∑

i

βi∆fH
o
0,i − EA (3)

Applying temperature corrections (∆H298K), one obtains the enthalpy of formation at 298K,

∆fH298 = ∆fH0 + ∆H298 (4)

5



The temperature correction contains the difference of the classical approximations for the

rotational, translational and vibrational energies evaluated at the two temperatures (0K and

298K), and the experimental elemental corrections. Our computed ∆fH0 are presented in

Table 5 and the ∆fH298 are given in Table 6.

4 Results and Discussion

In this study we focus primarily on comparing isomerization energies which are the

non-relativistic Born-Oppenheimer energy differences (which do not contain the zero- point

vibrational energies) between the E and I isomers (∆Ee) for the C4H3 and C4H5 systems.

This is the most fundamental comparison one can readily make to the published CCSD(T)

results [4], and does not introduce energy differences due to vibrational zero point energies.

As seen from Table 4, the choice of ab initio method used to compute the frequencies changes

enthalpies of formation by at least a few tenths kcal/mol and can potentially obscure the

underlying DMC energy differences between the isomers. From Table 3 we see that our DMC

isomerization energies of 10.5 ± 0.5 kcal/mol for C4H3 and 9.7 ± 0.6 kcal/mol for C4H5, are

in good agreement with the complete basis set limit ROCCSD(T) calculations of Wheeler et

al. (11.1 kcal/mol and 9.9 kcal/mol, respectively) and in poor agreement with isomerization

energies deduced from the KMLF study (6.2 ± 1.2 kcal/mol for C4H3and 6.7 ± 1.2 kcal/

mol for C4H5). Furthermore, VMC energies of the trial wave functions used in the present

DMC study where found to be 9.6 ± 0.4 kcal/ mol for C4H3 and 10.8 ± 0.6 kcal/mol for

C4H5, suggesting that the single determinantal wave functions used in this study should give

isomerization energies that are in agreement with ROCCSD(T). The DMC isomerization

energies do not change substantially with the smaller 0.0025H−1 time step yielding a ∆Ee

of 10.1 ± 0.7 kcal/mol C4H3 and 9.5 ± 0.5 kcal/mol for C4H5, so that time step error is not

a likely source of the discrepancy of the present results with KMLF.

Table 5 presents enthalpies of formation at 0K and Table 6 gives them at 298K for the
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various approaches. These include those of Miller and Melius BAC-MP4 [1], Klippenstein and

Miller QCISD(T) and MRCI [5], KMLF DMC, along with present DMC values. Although the

current DMC isomerization energies are consistent with ROCCSD(T) isomerization energies,

the computed DMC ∆fH0 are consistently 4.0 ± 0.2 kcal/mol larger than the former for

all the isomers. This is a common occurrence since experience shows that larger percentage

of the correlation energy is often recovered for atoms (carbon here) than for molecules, and

thus enthalpies of formation based on atomization energies are frequently too large. This

emphasizes the importance of comparing underlying energy differences rather than individual

enthalpies of formation.

The DMC error bars that are reported do not take into account the fixed-node error

that is expected to be an order of magnitude larger than the statistical error reported in the

present calculations. The nodal accuracy of the KMLF trial wave functions was not fully

characterized. The closest systematic DMC study is that of Grossman of the G1 set [22].

He found the mean absolute deviation of the DMC atomization energies from experiment to

be 2.9 kcal/mol for single determinant (with SBK ECPs) trial wave functions. Because the

present trial wave functions similarly consist of single determinants used with the SBK ECPs,

we expect the accuracy of these DMC studies to be comparable to that of the Grossman

study. Therefore with the conservative assumption that all errors are additive, DMC (single

time step) estimates of ∆fH0 of the isomers are 134.9 ± 3.2 kcal/mol (E -C4H3), 122.8 ± 3.2

kcal/mol (I -C4H3), 92.9 ± 3.3 kcal/ mol (E -C4H5), and 82.7 ± 3.3 kcal/mol (I -C4H5).

During the present study, it was found that the various isomers had different rates of

initial decay to the ground state energy. Therefore, if one were not careful in fully relaxing

individual isomers, then isomerization energies were found to be smaller than those of the

fully relaxed systems. It was also found that the trial wave functions did not yield repro-

ducible DMC results unless walker populations of at least 6400 walkers were used. We note

that it was typical practice around the time of the KMLF study to run DMC calculations

with substantially smaller walker populations than is present practice. In light of the present
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findings, we believe that small walker populations are the basis of the discrepancies between

the present DMC results and those of KMLF.

5 Conclusions

New DMC calculations of C4H3 and C4H5 have yielded isomerization energies in good

agreement with recent ROCCSD(T) and MCSCF calculations and refute previous DMC

calculations with a similar trial wave function.
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Table 1: Geometries of the C4H3 isomers

E-n-C4H3 I-C4H3

B3LYP/cc-pVTZ ROCCSD(T)a B3LYP/cc-pVTZ ROCCSD(T)a

Bond Length (Å)

d1 1.077 1.079 1.088 1.088
d2 1.314 1.326 1.088 1.084
d3 1.094 1.091 1.303 1.319
d4 1.422 1.434 1.315 1.347
d5 1.201 1.214 1.229 1.233
d6 1.061 1.064 1.061 1.064

Bond Angle (◦)

A1 136.6 135.2 116.1 117.2
A2 118.6 119.1 121.9 121.3
A3 125.6 124.4 180.0 156.0
A4 177.6 177.9 180.0 185.8
A5 180.8 180.8 180.0 177.9

a Geometry parameters taken from Ref. [4]
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Table 2: Geometries of the C4H5 isomers

E-n-C4H5 I-C4H5

B3LYP/cc-pVTZ ROCCSD(T)a B3LYP/cc-pVTZ ROCCSD(T)a

Bond Length (Å)

d1 1.077 1.079 1.087 1.086
d2 1.313 1.326 1.296 1.311
d3 1.095 1.093 1.346 1.357
d4 1.458 1.465 1.087 1.086
d5 1.084 1.084 1.390 1.396
d6 1.333 1.343 1.079 1.080
d7 1.081 1.082 1.080 1.081
d8 1.083 1.084

Bond Angle (◦)

A1 138.0 136.6 121.9 121.5
A2 118.4 118.7 179.7 179.7
A3 125.7 124.8 118.0 118.6
A4 116.2 116.8 125.8 124.6
A5 123.8 123.0 121.2 120.9
A6 121.5 121.3 118.3 118.6
A7 117.0 117.5
Dihedral 90.1 90.0

a Geometry parameters taken from Ref. [4]
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Table 3: Isomerization Energies (∆Ee in kcal/mol).

Molecule VMCa DMCb ROCCSD(T)c DMCa

C4H3 9.6(0.4) 6.2(1.2) 11.1 10.5(0.5)

C4H5 10.8(0.6) 6.7(1.2) 9.9 9.7(0.6)

aPresent work using SBK ECP for C and MCSCF trial wave functions.

bValues deduced from Ref.[2].

cValues from Ref.[4].
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Table 4: Zero-Point Vibrational Energies (in kcal/mol)

Molecule B3LYP/cc-pVTZa QCISD/6-31(d)b

E-n-C4H3 28.4 28.5

I-C4H3 27.4 27.9

E-n-C4H5 43.0 43.2

I-C4H5 42.4 42.5

aHarmonic B3LYP/cc-pVTZ frequencies scaled by 0.9650.

bHarmonic QCISD/6-31(d) frequencies scaled by 0.9537.
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Table 5: Enthalpies of formation at 0K (∆fH0 in
kcal/mol).

Molecule ROCCSD(T)a QCISD(T)b DMCc DMCd

E-n-C4H3 130.8 131.1 126.6(0.6) 135.0(0.3)

I-C4H3 119.0 119.1 119.8(0.6) 122.9(0.3)

E-n-C4H5 89.1 89.0 84.0(0.6) 92.9(0.4)

I-C4H5 78.4 78.7 76.6(0.6) 82.8(0.4)

aValues from Ref.[4].

bValues from Ref.[23].

cValues deduced from Ref.[2].

dPresent work using scaled QCISD/6-31(d) zero-point vibrational energies.
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Table 6: Enthalpies of formation at 298K (∆fH298 in
kcal/mol).

Molecule BAC-MP4a QCISD(T)b MRCIb DMCc DMCd

E-n-C4H3 129.9(8.6) 130.8 131.9 126.0(0.6) 134.3(0.3)

I-C4H3 111.3(15.9) 119.3 120.8 119.4(0.6) 122.5(0.3)

E-n-C4H5 86.1(9.1) - - 83.5(0.6) 90.3(0.4)

I-C4H5 74.1(7.3) - - 76.2(0.6) 80.3(0.4)

aValues from Ref.[1].

bValues from Ref.[5].

cValues from Ref.[2].

dPresent work using scaled QCISD/6-31(d) zero-point vibrational energies.
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Figure Captions

Figure 1 The numerical values for the different geometry parameters are located in
Tables 1 and 2
a Bond angles (denoted A1-A7 and Dihedral angle) are in degrees.
b Bond lengths (denoted d1-d8) are in Angstroms.
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APPENDIX

Table 1: Gaussian Basis Set used for C Atoma.

Shell Exponent Coefficient

S 819.2000 -0.0000620
409.6000 0.0001158
204.8000 -0.0002879
102.4000 -0.0000447
51.2000 -0.0006288
25.6000 -0.0027651
12.8000 0.0037249
6.4000 -0.0369135
3.2000 -0.1205673
1.6000 -0.0179754
0.8000 0.1736282
0.4000 0.4120941
0.2000 0.3651538
0.1000 0.1884090

P 819.2000 0.0000191
409.6000 0.0000100
204.8000 0.0000776
102.4000 0.0003556
51.2000 0.0007104
25.6000 0.0036337
12.8000 0.0088456
6.4000 0.0290517
3.2000 0.0560032
1.6000 0.1438918
0.8000 0.2102160
0.4000 0.3376644
0.2000 0.2361849
0.1000 0.2119805

S 0.2718000000 1.00000000
P 0.2718000000 1.00000000
S 0.1213000000 1.00000000
P 0.1213000000 1.00000000
D 0.8582000000 1.00000000
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aSee Ref. [24].
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Table 2: Gaussian Basis Set used for H Atoma.

Shell Exponent Coefficient

S 25600.00 0.0000036
12800.00 -0.0000081
6400.000 0.0000199
3200.000 -0.0000207
1600.000 0.0000571
800.0000 -0.0000314
400.0000 0.0002032
200.0000 -0.0000061
100.0000 0.0008849
50.0000 0.0004022
25.0000 0.0042053
12.0000 0.0043356
6.0000 0.0211119
3.0000 0.0253706
1.5000 0.1010152
0.7000 0.1493879
0.3500 0.3339335
0.1600 0.3131527
0.0800 0.1892405

S 0.325840 1.0000000
S 0.102741 1.0000000
P 0.757000 1.0000000

aSee Ref. [24].
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