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Cone Beam Computed Tomography (CBCT) system is the most widely used 

imaging device in image guided radiation therapy (IGRT), where set of 3D volumetric 

image of patient can be reconstructed to identify and correct position setup errors prior to 

the radiation treatment. This CBCT system can significantly improve precision of on-line 

setup errors of patient position and tumor target localization prior to the treatment. 

However, there are still a number of issues that needs to be investigated with CBCT 

system such as 1) progressively increasing defective pixels in imaging detectors by its 

frequent usage, 2) hazardous radiation exposure to patients during the CBCT imaging, 3) 



 

xxi 

degradation of image quality due to patients’ respiratory motion when CBCT is acquired 

and 4) unknown knowledge of certain anatomical features such as liver, due to lack of 

soft-tissue contrast which makes tumor motion verification challenging. In this 

dissertation, we explore on optimizing the use of cone beam computed tomography 

(CBCT) system under such circumstances. 

We begin by introducing general concept of IGRT.  We then present the 

development of automated defective pixel detection algorithm for X-ray imagers that is 

used for CBCT imaging using wavelet analysis. We next investigate on developing fast 

and efficient low-dose volumetric reconstruction techniques which includes 1) fast digital 

tomosynthesis reconstruction using general-purpose graphics processing unit (GPGPU) 

programming and 2) fast low-dose CBCT image reconstruction based on the Gradient-

Projection-Barzilai-Borwein formulation (GP-BB). We further developed two efficient 

approaches that could reduce the degradation of CBCT images from respiratory motion. 

First, we propose reconstructing four dimensional (4D) CBCT and DTS using respiratory 

signal extracted from fiducial markers implanted in liver. Second, novel motion-map 

constrained image reconstruction (MCIR) is proposed that allows reconstruction of high 

quality and high phase resolution 4DCBCT images with no more than the imaging dose 

used in a standard Free Breathing 3DCBCT (FB-3DCBCT) scan. Finally, we demonstrate 

a method to analyze motion characteristics of liver that are particularly important for 

image guided stereotactic body radiation therapy (IG-SBRT). It is anticipated that all the 

approaches proposed in this study, which are both technically and clinically feasible, will 

allow much improvement in IGRT process. 
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Chapter 1  Introduction 

1.1 Radiation therapy 

Cancer has a profound influence on the lives of every member of the family 

concerned and it is one of the leading causes of death in the world. There are a number of 

treatment modalities available to treat cancer, either as stand-alone treatments or as 

synergetic combinations. There are three main treatment techniques that are frequently 

used in current clinical settings, which are 1) surgery, 2) radiation therapy and 3) 

chemotherapy. Radiation therapy, or radiotherapy, utilizes high energy, penetrating 

waves or particles such as X-rays, gamma rays, proton rays, or neutron rays to destroy 

tumor cells or keep them from reproducing.[1] It utilizes ionizing radiation in a strictly 

controlled environment to treat cancer. High energy X-rays, gamma rays, and electron 

beams are common forms of ionizing radiation used. Ionizing radiation can be 

administered using external beam therapy or by placing a radioactive material directly 

into a body tissue or cavity. Radiation therapy works by damaging the DNA within 

cancer cells thus interfering with the cell’s ability to grow and reproduce. Currently, most 

common cancer types are treated with radiation therapy in some way and it can be used 

as the primary therapy or combined with surgery, chemotherapy, hormone therapy or 

some mixture of them. Over past decades, radiation therapy has become the most 

common way to treat cancer with nearly 2/3rd of all cancers treated with some form of 

radiation therapy.[2] The ultimate goal of radiation therapy is to deliver maximum 

radiation dose to the tumor volume while minimizing excessive dose to surrounding 

healthy tissues or organs surrounding the tumor.  
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1.2 Evolution of radiation therapy 

The history of radiation therapy began with the discovery of X-rays by Wilhelm 

Rontgen in 1895, where the internal structures of the body could be made visible without 

the necessity of surgery.[3, 4] Soon after the groundbreaking discovery, in 1898, Nobel 

Prize winning scientists [5], discover the radioactive elements polonium and radium and 

notice that radiation from radium killed diseased cells. This was the first historical event 

of radiation therapy where radiation took a role not just in diagnosis but also in treatment. 

During World War I and II, physicists and engineers, continued to develop higher energy 

X-ray machines to produce high energy, deeply penetrating beams to treat deep-seated 

tumors. In the 1960s, the revolutionary megavoltage high energy treatment machine 

called linear accelerator (Linac) was introduced [6, 7], which enabled treatment of deep-

seated tumor without exerting excessive damage to overlying skin and tissue to the 

patient. Since then, the technologies of radiation therapy have proliferated over the last 

decades and more sophisticated radiation therapy techniques such as three-dimensional 

conformal radiation therapy (3DCRT) [8-10] and intensity modulated radiation therapy 

(IMRT) [11, 12] have been developed and practiced in the clinic. However, conventional 

simulation and portal imaging techniques to verify position of beam delivery limited 

potentials for delivering accurate and conformal beam while sparing normal tissues of 

new treatment techniques. To overcome such limitation, many investigators have 

developed variety of in-room imaging devices to ensure more accurate patient positioning 

and target localization and to facilitate the full potential of 3DCRT and IMRT. The 

concept of image guided radiation therapy (IGRT) [13, 14] has been introduced since 

then.  
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1.3 Image guided radiation therapy (IGRT) 

The term IGRT, is defined as process of radiation treatment which use external 

imaging devices to identify and correct position setup errors arising from inter-and intra-

fractional variation in patient setup and anatomy.[1] To date, it is considered as very 

promising method of treatment to ensure accurate and precise radiation delivery to the 

target. In IGRT settings, machines that deliver radiation (e.g. Linac) are equipped with 

imaging devices to image the tumor immediately during/prior to the treatment. These 

imaging devices are able to provide accurate information about patient positioning and 

organ motions, which can be used to correct positioning errors and control organ motion 

effects during the treatment process. By combining modern radiation therapy technique 

such as 3DCRT or IMRT, the radiation dose delivery accuracy is significantly improved, 

leading to a substantial reduction in the volume of irradiated normal tissues.[15] This 

reduction of the irradiated volume helps reduce the damage caused to the health tissues, 

allowing us to escalate the dose to the tumor to increase the tumor control probability. 

Moreover, IGRT increases the amount of data collected throughout the course of the 

treatment. Over the course of treatment, this information allows the continued assessment 

and refinement of treatment techniques and adapt to changes such as tumor 

shrinkage/expansion and changes in shape that may occur over the course of radiation 

therapy.  
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1.4 Imaging techniques in IGRT 

In IGRT setting, there are many types of imaging technology that can be used to 

verify patient position. In this section, three most widely used imaging techniques are 

discussed in brief.  

A. Radiological imaging 

Radiological imaging is the most basic form of imaging technique where 2D 

projections or planar images are acquired. This image is then compared with digitally 

reconstructed radiograph (DRR) of computed tomography (CT) images of the patient 

acquired for treatment planning and simulation purpose. The size of the object imaged is 

dependent on the size of the detector and the distance between the detector and imaging 

object. 

B. Fluoroscopic imaging 

Fluoroscopic imaging is a continuous series of radiological imaging where patient 

are continuously imaged with X-rays in real-time during patient during/prior to the 

treatment. It allows real-time respiratory motion monitoring and verification of patient 

position using visible anatomical structures or implanted fiducial markers. The 

information can be used for the management of inter-and intra-fractional tumor motion 

and motion adaptive treatment in some cases.  

C. Tomographic imaging 

Volumetric tomography or CT images can be generated through various 

reconstruction processes by acquiring series of X-ray projections measured at different 

gantry angles. Currently, it is the most popular imaging technique that is used in the 

process of IGRT.  Position setup error of patient can be accurately measured by 
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comparing translational and rotational difference of volumetric images with respect to 

planning CT images. Helical CT as well as cone beam CT (CBCT) system can be used as 

tomographic imaging device in IGRT. In particular, gantry-mounted CBCT system is the 

most widely used tomographic imaging device in the clinic. 

1.5 Cone beam computed tomography (CBCT) systems in IGRT 

Cone beam computed tomography (CBCT) system is a recently developed 

volumetric imaging device for IGRT where series of kilovoltage (kV) X-ray radiographs 

are obtained and reconstructed to produce three dimensional (3D) volumetric image of 

patient to calculate 3D positional offset. [16] The 3D volumetric representation verifies 

patient position on treatment couch to assist in matching the planned position with the 

current treatment position. Besides tomographic imaging CBCT system is also capable of 

providing other imaging techniques such as radiographic imaging and fluoroscopic 

imaging.  

The two most popular CBCT systems manufactured by vendors are On-Board 

Imager (OBI, Varian Medical Systems, Inc., Palo Alto, CA) and X-ray Volumetric 

Imager (XVI, Elekta Oncology Systems, Crawley, UK). [Fig. 1-1.] Both, adds two 

laterally mounted arms, for the X-ray source and flat panel detector on the clinical linear 

accelerator. This is in addition to the mogavoltage (MV) source and electric portal 

imager. In OBI, the left arm is an amorphous-silicon (a-Si) flat panel detector while the 

right arm is kV X-ray source. In XVI, these arms are positioned in opposite way. 
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Fig. 1-1. On-Board Imager (OBI, Varian Medical Systems, Inc., Palo Alto, CA) (a) and X-ray 
Volumetric Imager (XVI, Elekta Oncology Systems, Crawley, UK) (b). Note that position of arms 

constituting x-ray source and detector are positioned in opposite way. 

The two CBCT image acquisition categories are classified according to the 

dimension of the imaging site. If the imaging site diameter is ≤25 cm, the image falls into 

the category of full-fan scans with full-fan beam and full bow-tie filter. If the imaging site 

diameter is >25 cm, the image is categorized as half-fan scans with half-fan beam and 

half bow-tie filter. Two types of filter, the full and half bow-tie filters are added to 1) 

reduce skin dose, 2) reduce x-ray scatter, 3) improve image quality and 4) reduce the 

amount of charge trapped in the detector. Subsequently, there are six imaging modes of 

CBCT, that are named, 1) standard dose head, 2) low dose head, 3) high quality head, 4) 

pelvis, 5) pelvis spot light and 6) low dose thorax. In each setting, energy, current and 

scanning time of x-ray are varied to optimize the CBCT image with respect to different 

sites that are imaged. The reconstructed volume in full-fan scan is up to 25 cm diameter 

in anterior-posterior (AP) and left-right (LR) directions and a maximum of 17 cm long 

across cranial and caudal (CC) direction. In half-fan scans, it is up to 50 cm in diameter 

across AP and LR directions and maximum of 15 cm across CC direction. Figure 1-2 

shows representation of each scan type. In the case of half-fan scans, the flat panel 

detector is shifted laterally by 14.8 to 16 cm depending upon the types of CBCT 
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machines. In full-fan scan mode, the X-ray rotates 200° under the couch to form CBCT 

image. The X-ray can rotate in one of two possible positions, anti-clockwise or clock-

wise. In the mode used for half-fan scans, the x-ray rotates 360°, moving in a clockwise 

direction around the imaging site to form the CBCT image. 

 
Fig. 1-2. Schematic view of (a) full-fan and (b) half-fan mode CBCT scans. 

During the CBCT scan, single exposures are made at certain degree intervals to 

the patient, providing individual 2D projection images. These images are basically 

radiographic images of patient measured at different angles. The complete series of 

images is referred to as the “projection data.” In IGRT settings, approximately 364 

projections are acquired over 200° in full-fan scan mode and 656 projections are acquired 

over 360° in half-fan scan mode to complete “projection data”. 

1.6 Volumetric imaging modalities using CBCT system 

Using the projection data obtained after the preprocessing stage, volumetric image 

can be reconstructed by synthesizing projection data measured at specified angles. With 

CBCT system, there are several types of volumetric imaging techniques that can be 

reconstructed and provide useful information during IGRT procedure. In this section, 
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four different volumetric imaging modalities that could be reconstructed using projection 

data acquired from CBCT system are discussed in brief.  

A. Three dimensional (3D) CBCT 

When all projection data are used to reconstruct single 3D volumetric image, the 

volumetric image is called 3DCBCT or free breathing 3DCBCT (FB-3DCBCT), which is 

most popular and widely used method in IGRT. It has prominent role in current 

radiotherapy settings due to of its wealthy functional role in providing (1) anatomic 

information, (2) geometric information and (3) CT numbers for possible dose calculation 

and on-line/off-line re-optimization of plans as well as precise patient positioning.[17, 

18]  

To reconstruct 3DCBCT, algorithm developed by Feldkamp, Davis and Kress 

(FDK)[19] is most widely used reconstruction technique. It is an extension of exact 2D 

reconstruction algorithms for fan-beam projection to the 3D case by properly adapting the 

weighting factors to the projection data. The FDK algorithm can be divided into three 

steps: generate weighted projection data where cosine weighting is applied to the 

preprocessed projections, ramp filter the projection images row-wise, and back-project 

the filtered projection data into the volume. Once 3DCBCT have been reconstructed, they 

can be recombined into a single volume for possible IGRT procedure. 

B. Digital tomosynthesis (DTS) 

Digital tomosynthesis (DTS) is a quasi-3D imaging technique which reconstructs 

images form a limited angle of cone beam projections typically over ≤ 45° scanning 

angle.[20-22] Figure 1-3 shows the scanning protocol of CBCT system when 3DCBCT 

and DTS images are acquired. It has advantages over CBCT in terms of lower doses, 
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short image acquisition times, and less gantry rotation requirements. This modality could 

be beneficial for imaging organs affected by respiratory motions and for those patient 

treatments when full gantry rotation is mechanically impossible.  

 

Fig. 1-3. Schematic view of (a) CBCT and (b) DTS scans 
 

C. Four dimensional (4D) CBCT 

Image acquisition time of CBCT system is long (≥1 min for thoracic/abdominal 

sites) due to limited speed of the linear accelerator gantry. Due to such reason, when 

3DCBCT is applied to thorax, the image quality can be heavily degraded due to patient 

respiratory motion. Serious motion-induced artifacts compromise the effectiveness of 

using CBCT during IGRT. To overcome this problem, four-dimensional (4D) CBCT has 

been developed to provide respiratory phase-resolved volumetric images.[23, 24] In such 

an imaging modality, all the X-ray projections are first retrospectively grouped into 

different respiratory phase bins according to breathing signal tagged on every projection 

image. A CBCT image for each breathing phase is then reconstructed independently, 

yielding an image with much less motion-induced artifacts. The capability of 4DCBCT to 

significantly reduce the motion artifacts and enhance the target localization accuracy has 

been evaluated, allowing up to 50% reduction in planning target volume (PTV) size.[25] 
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D. Low-dose CBCT 

Because CBCT uses ionizing X-rays to image, there is a legitimate concern about 

hazardous radiation exposure to patients. Due to this, excessive use of imaging should be 

prohibited and the benefits-vs-harm ratio should be carefully weighed and debated for 

each treatment, especially for pediatric patients. Currently, many investigators are 

developing various low-dose imaging protocol and algorithms using CBCT system.   

Recently the concept of low-dose CBCT has been introduced. [26-28] In low-dose 

CBCT settings, there are rather straight forward ways to reduce the imaging dose by 

either 1) minimize the number of x-ray projection, 2) reduce the current setting in the x-

ray tube, and/or 3) reduce the total exposure time (ms). With the current-standard FDK 

reconstruction algorithm, however, reducing the projections will cause aliasing artifacts 

the severity of which depends inversely on the number of projections, and if the current 

or exposure is reduced, the noise in the image would increase. Both of these properties of 

the FDK are extremely undesirable, especially if the images are used for guiding 

precision radiation therapy for cancer eradication. Therefore, improved reconstruction 

algorithm is needed to handle such problem. 

Introduction of compressed sensing (CS) theory [29, 30] has been proved that 

signals which are noisy and sparsely sampled can be reconstructed with high image 

quality.[31] Especially, the total variation (TV) method has been particularly useful in CT 

reconstruction by exploiting the minimal variation in x-ray attenuation across body 

tissues.[32-37] This theory has become promising solution to low-dose fan-beam CT as 

well as CBCT reconstruction problem. Consequently, such improved reconstruction 
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algorithm can potentially reduce the typical CBCT imaging dose by up to an order of 

magnitude for the use not only in IGRT purpose but also in diagnostic imaging. 

1.7 Motivation of thesis 

While CBCT for patient positioning has been shown to reduce setup error, there 

are still a number of issues that needs to be investigated in order to realize the full 

potential of an on-board imaging device. In theory, the CBCT system can be used to 

perform sophisticated radiation therapy techniques include adaptive radiation therapy, on-

line re-planning, real-time dose estimation and real-time patient monitoring. These 

methods are all limited by 1) performance of CBCT imagers, 2) the quality of on-board 

CBCT images with respect to patient dose and respiratory motion, 3) the speed in which 

CBCT can be reconstructed and 4) the variation of inter-and intra-fractional tumor 

motion during the treatment. Therefore, it is important to investigate each limitation in 

separate or in combination, and provide solutions to improve the utilization of CBCT 

system during IGRT.   

1.8 Specific aims 

 The specific aims of this dissertation are as follows: 

1. Develop a fully automated approach to identify and compensate defective pixels that 

progressively increases with routine use of X-ray imagers in CBCT system. 

2. Investigate on fast low-dose CBCT imaging modalities and prove the feasibility of its 

use for image guidance in radiation therapy. 

2.1. Develop a digital tomosynthesis (DTS) reconstruction framework using limited 

angle projections data that can be reconstructed almost in real time. 
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2.2. Develop a novel low-dose CBCT reconstruction algorithm that handles low-dose 

CBCT reconstruction problem in a highly efficient manner, with speed 

acceptable for routine use in the clinic. 

3. Investigate on respiratory correlated volumetric imaging framework and prove the 

feasibility of its use for respiratory motion monitoring and image guidance in 

radiation therapy. 

3.1. Develop a method to reconstruct four dimensional (4D) CBCT and DTS 

reconstruction using the respiratory signal extracted from inserted fiducial 

markers in the liver. 

3.2. Develop a novel 4DCBCT reconstruction framework that allows reconstruction 

of high quality and high phase resolution images. 

4. Investigate on inter-and intra-fractional liver motion variation during image guided 

stereotactic body radiation therapy (SBRT) and discuss its clinical outcomes. 

1.9 Dissertation organization 

The remainder of dissertation is organized as follows.  

Chapter 2 presents a method of identifying defective pixels in X-ray imagers 

based on wavelet analysis. This includes introduction of wavelet transform, procedure for 

generating defective pixel map based on wavelet analysis in x-ray imager, how to correct 

defective pixels and experimental results.  

Chapter 3 introduces ultra-fast reconstruction technique for DTS imaging using 

standard general-purpose graphics processing unit (GPGPU) programming interface. This 

includes Feldkamp, Davis, and Kress (FDK) based DTS reconstruction algorithm, DTS 
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image acquisition procedures, GPGPU programming fundamentals and performance 

analysis of the method.  

Chapter 4 proposes novel efficient low-dose CBCT reconstruction algorithm 

based on gradient projection Barzilai-Borwein (GP-BB) formulation that handles low-

dose CBCT reconstruction problem in a highly efficient manner. This includes 

introduction of low-dose CBCT reconstruction problem using compressed sensing (CS) 

framework, mathematical formulation of GP-BB algorithm and its implementation on 

GPGPU programming interface and performance evaluation with other published 

algorithms. 

Chapter 5 presents a method to reconstruct 4D CBCT and DTS reconstruction 

using the respiratory signal extracted from inserted fiducial markers in the liver. This 

includes detailed explanation on extraction of fiducial marker positions from cone-beam 

projection data, generation of breath-induced marker motion signal, validation of the 

marker extraction algorithm, projection sorting process and results with lung SBRT 

patients.  

Chapter 6 proposes novel 4DCBCT reconstruction algorithm framework called 

motion-map constrained image reconstruction (MCIR) that allows reconstruction of high 

quality and high phase resolution 4DCBCT images with no more than the imaging dose 

as well as projections used in standard CBCT scan. This includes detailed illustration of 

MCIR algorithm, how to create motion-map of patient, algorithm implementation and 

performance comparison with other published algorithms using both numerical 

simulation and patient data. 
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Chapter 7 presents investigation of breathing induced liver motion during CBCT 

guided SBRT.  This includes the information of patient that we have analyzed in this 

study, modified marker extraction algorithm of fiducial markers and 3D position tracking 

algorithm of extracted markers. As a result, we discuss accuracy of marker tracking 

algorithm, liver motion types and inter-and intra-fractional liver motion variability in 

detail.  

Chapter 8 summarizes the contribution of this work and discusses future research 

directions.  

 

. 
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Chapter 2  Identifying defective pixels in X-ray 

imager using wavelet analysis 

2.1 Introduction and background 

In recent years, mature electronics and manufacturing methods have led to many 

approaches for the design and construction of digital detectors for X-ray imaging.[38] 

Although various configurations of detectors are available, most detectors are mainly 

composed of two components: X-ray converters, such as scintillators (to provide 

"indirect" detection of X rays by converting the detected X-ray energy into optical 

photons) or photoconductors (to provide "direct" detection of X rays by converting the 

detected X-ray energy into electron-hole pairs), and readout pixel arrays.[39, 40] As an 

optical-photon readout pixel array, charge-coupled devices (CCDs) have been used for a 

long time because of their high-quality, low-noise imaging performance.[41] 

Complementary metal-oxide-semiconductor (CMOS) technologies with their recent 

advances have become an alternative to CCDs, offering a great cost advantage and high 

physical performance.[42] Presently, flat-panel imagers based on arrays of hydrogenated 

amorphous silicon (a-Si:H) thin-film transistors in combination with either a-Si:H 

photodiodes (for indirect detection of X rays) or storage capacitors (for direct detection of 

X rays) are central for digital radiography, especially for cone beam computed 

tomography (CBCT) imaging applications.[40, 43] All of these x-ray imaging detectors 

utilize pixel formats; hence they provide the intrinsic two-dimensional (2D) imaging 

capability. 
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These pixel array detectors are typically fabricated by the semiconductor 

manufacturing process. During fabrication, the non-uniform fabrication conditions over 

the areas of the pixel array, for example, the difference in doping concentrations in 

individual pixel elements, are unavoidable, and these conditions worsen as the detector 

size increases.[44] Unpredictable local defects can also occur in individual pixels or 

partial or complete lines.[45] These defective pixels which are defined as the pixels 

whose signal levels are abnormal from their neighbors, however, are normally accepted 

to a certain extent in commercial detectors. It is noted that local imperfections in the X-

ray converters, such as scintillators and photoconductors, may also be observed as 

defective pixels in X-ray images. 

Basically these defects are considered as fixed-pattern noise (FPN), which 

degrades the image quality. Image information is lost in radiography from individual 

pixels or from partial or complete lines [46], and severe streak and ring artifacts arise in 

CBCT.[47] Therefore, clinical or industrial detectors have to recognize defective pixels 

(including line defects) and correct them to ensure optimal detector efficiency and image 

accuracy. Software processing is usually employed for correction. Above all, the exact 

and reliable identification of defective pixel locations is primary. However, the defective 

pixels in a detector may not be stationary in time and space.[46] Routine use of detectors 

and thus the accumulated radiation damage progressively increase the density of 

defective pixels.[46, 48] Therefore, the frequent evaluation of defective pixels is the only 

way to use a detector reliably.[48] 

In general, defective pixels are identified with dark (in the absence of X rays) and 

white (under X-ray irradiation with no object) images. The dark and white images are 
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also referred to as the offset and flat-field images, respectively. When there is no signal 

variation over large physical areas of a detector, the simple thresholding method with the 

global mean and standard deviation of the pixel values may be used to recognize 

defective pixels because defective pixels usually exhibit intensity values abnormally 

outside the mean value. 

However, most detectors show unwanted, large-scale signal variations over areas, 

which worsen through the working lifetime of the detectors. Signal variation in the dark 

and white images is most likely caused by the readout amplifiers connected to the 

columns of the detector panel. Because the readout amplifiers are usually CMOS circuits, 

they probably exhibit small gain and offset variations, both column-to-column and across 

each amplifier chip. The exact nature of the non-uniformity depends on the particular 

device, but it is typically caused by parasitic capacitances and resistances that can vary as 

a function of how far a particular column is away from the power supply or the output 

amplifier. For example, if a column amplifier is connected to the output amplifier by a 

metal trace, the resistance of that trace will be proportional to its length. On a large 

device, this dependence can be significant and can affect the transfer gain for the signal 

coming from the column amplifier. Obviously, a column that is close to the output will 

have less parasitic resistance than one that is far away. It is noted that the variations in 

thickness of the X-ray converters can also give rise to variable intensity output in X-ray 

images. 

X-ray equipment can also cause flaws and field variations, such as the heel effect, 

which is an intensity falloff on the anode side of the X-ray tube in the X-ray projection 
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image, and which usually contributes as large-scale non-uniformities or low-spatial-

frequency components in the Fourier domain of images. 

These field variations can be dramatically improved by subtracting an offset 

(dark) image from the image to be corrected, and then dividing it pixel-to-pixel by an 

offset-corrected flat-field (white) image.[49] This gain-offset or flat-field calibration is a 

typical procedure in digital radiography. The flat-field calibration requires many dark and 

white images to reduce the statistical uncertainties in the pixel values during arithmetic 

operations. Considering the amount of potential drift of the detector response, the flat-

field calibration should be frequently performed. It should be noted that only calibration 

with updated dark and white images can provide adequate images.[48] Moreover, the 

polyenergetic X-ray spectrum basically makes flat-field calibration incomplete because 

the pixel response is dependent on the energy and each pixel response in the image with 

an object is different with that in the offset-corrected flat-field image due to the beam-

hardening effect.[50] 

In this study, a simple method of identifying defective pixels based on wavelet 

analysis is presented. The proposed method is motivated from the fact that the response 

of defective pixels is impulsive and the wavelet transform can decompose discontinuities 

and sharp spikes in functions. Therefore, the method is immune to the influence of a 

global intensity variation, so it does not require flat-field-corrected images with many 

measurements, but may require a single pair of dark and white images. 
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2.2 Wavelet analysis for defective pixel detection 

Wavelet Defective pixels usually exhibit singular responses, unlike normal pixels 

in a detector. Therefore, sorting out these impulsive responses from global signal 

variations is the key in the identification of defective pixels. For this procedure, wavelet 

analysis is employed because the low-frequency components in an image can be easily 

identified and isolated by wavelet transformation. Conversely, wavelet transforms well 

represent functions that have discontinuous and sharp peaks. Moreover, wavelet 

transforms can accurately deconstruct and reconstruct finite, non-periodic and/or non-

stationary signals. 

Wavelet transform is a linear combination of atomic decomposition, known as 

wavelets, especially for non-stationary functions.[51] Functions with discontinuities and 

functions with sharp spikes usually take much fewer wavelet basis functions than sine-

cosine basis functions (e.g. Fourier transforms) to achieve a comparable approximation. 

Since first introduced in the early 1980s, the wavelet transform has become an important 

technique in signal or image processing, such as data compression, noise suppression, 

feature extraction, etc.[52]  

2D image function f(x, y) of M × N pixels in size can be expressed as [51] 
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where j0 is an arbitrary starting scale and the ),,( 0 nmjWϕ  coefficients define an 

approximation of f(x, y) at scale j0. The ),,( nmjWk
ψ  coefficients add horizontal, vertical, 

and diagonal details for scales j ≥ j0 and the superscript k denotes the direction; H, V, and 
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D represent horizontal, vertical, and diagonal directions, respectively. m and n designate 

the sizes of the sub-images and depend on the applied scales. ϕ and ψ are basis functions, 

and they are called scaling and wavelet functions, respectively. If we can select the 

scaling coefficients of an image and modify them, i.e. replace them by zeros, we can 

obtain an image ),(
~

yxf  without global signal variations. 

 

Fig. 2-1. A sketch illustrating the procedure for generating a defective pixel map based on wavelet analysis. 
Each of the dark and white images is changed into a multi-scale sub-image by wavelet transformations. 
Among four sub-images, the one describing scaling coefficients, which contains low-frequency band 
characteristics, is truncated and padded with zeros. The modified image is then turned back by inverse 

transformation, and it only contains sharp speckles. The abnormal singular signal distribution is checked by 
comparing it with the local pixel mean and its standard deviation, and finally identified as defective pixels. 
 

The identification method of defective pixels including line defects is 

schematically illustrated in Fig. 2-1. The wavelet transform is applied to a dark image. 

The transformed image is then represented as four sub-images. In order to suppress or 

remove the large-scale signal variations, the sub-image represented by scaling 

coefficients is truncated. In other words, the pixel values consisting of the sub-image are 

replaced by zeros. And then, the inverse wavelet transform is applied. The reconstructed 

image is now a filtered image of low-spatial-frequency components and it clearly shows 

singularities, such as spikes and discontinuities in the pixel values. We used the Haar 

function as a wavelet.[51] For ensuring defective pixels, the surrounding pixel values 

were checked again with the local pixel mean µ, its standard deviation σ, and threshold 
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level τ (viz. µ ± τ⋅σ). This thresholding procedure may suppress misleads of temporal 

random pixel responses. The pixel locations of the defective pixels detected are mapped 

to a template. The defective pixel map is completed after repeated procedures on a white 

image. 

In this study, with the determined defective pixel map, digital radiography was 

corrected by simple adaptive median filtering. The mask size of the median filter was 5 × 

5 pixels. 

In order to demonstrate the proposed method to identify defective pixels in digital 

radiography, we implemented the method to an X-ray imaging detector. The detector was 

composed of photodiode arrays and overlying luminescent phosphor. The phosphor 

(Min-RTM, Carestream Health, Inc., USA) is mainly made of a terbium-doped gadolinium 

oxysulfide (Gd2O2S:Tb) and it converts into optical photons, whose number is 

proportional to the absorbed energy of X-rays. The photodiode array made by CMOS 

process (RadEyeTM, Rad-icon Imaging Corp., USA) has a format of 512 × 1024 pixels 

with a pixel pitch of 48 µm.[53] Since only one narrow side of the CMOS photodiode 

array incorporates the readout electronics, two CMOS photodiode arrays were tiled side-

by-side, and therefore, the actual format was 1024 × 1024 pixels and the field-of-view 

(FOV) was about 50 × 50 mm2. X-ray irradiation was performed with a small X-ray tube 

employing a tungsten target (Series 5000 Apogee, Oxford Instruments, USA). The 

operation conditions were a target voltage of 45 kV and cathode current of 1.0 mA. For 

sample images, humanoid hand phantom images were acquired. Due to the FOV of the 

detector, a part of phantom was imaged. 
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The detector has been used in our laboratory for a long time (more than three 

years). Since an FPN (including "ghosts" of high contrast objects) is linearly emphasized 

to the absorbed dose, the detector shows scabbed dark and white images. Therefore, 

finding defective pixels from the backgrounds was challenging. 

2.3 Results 

 

Fig. 2-2. Visual illustration of wavelet analysis to identify defective pixels. (a) A dark image obtained from 
the CMOS detector. (b) Representation of one-scale decomposition by wavelet transform. (c) One-scale 
decomposition with selected coefficients deleted. (d) Reconstructed image by inverse wavelet transform. 

 
Wavelet analysis of a dark image obtained from the CMOS detector operated at 

an integration time of 550 ms is visually illustrated in Fig. 2-2. As shown in Fig. 2-2(a), 

the 2D display of the dark image shows non-uniform distribution of pixel dark currents 

and distinct, different responses of the two photodiode arrays. Fig. 2-2(b) represents the 
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decomposed sub-images by one-scale wavelet transform. Fig. 2-2(d) shows the 

reconstructed image by the inverse wavelet transform after truncation of the scaling 

coefficients, as shown in the second quadrant of Fig. 2-2(c). In this image, the global 

signal variations are removed and only singularities are shown. The dark images before 

and after wavelet analysis can be more apparently demonstrated by a three-dimensional 

(3D) display, as shown in Fig. 2-3(a) and (c), respectively. Fig. 2-3(b) is a 3D plot of the 

white image. The large pits of the central region in the dark and white images are the 

ghosting resulting from the persistent local irradiation of X-rays during the usage of the 

detector. 

 

Fig. 2-3. 3D displays of detector signals before and after wavelet transformation. (a) and (b) show signal 
distributions of the dark and white images, respectively. (c) is the dark image after wavelet analysis. 

 

 

Fig. 2-4. Comparative signal profiles before and after wavelet analysis. 
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One-dimensional profiles extracted from 2D images in the row (or address) 

direction before and after wavelet analysis are compared in Fig. 2-4. Truncation of the 

scaling coefficients in wavelet domain effectively removes the low-spatial-frequency 

components in an image; hence, singularities are easily identified. 

 

Fig. 2-5. Templates mapping defective-pixel locations. (a) and (b) are the defective pixel maps obtained 
from the dark and white images, respectively. (c) is the complete defective pixel map by combining (a) and 

(b). Insets are the enlarged images, displayed in negative, for the regions indicated by the dotted boxes. 
 

Fig. 2-5 shows defective pixel maps generated by wavelet analysis. Fig. 2-5(a) 

and (b) are the maps for the dark and white images, respectively. The map from the dark 

image has three defective lines while that from the white image has one defective line. 

Some of defective lines are composed of more than a single line. The total defective pixel 

map considering both the dark and white images are shown in Fig. 2-5(c). In order to 

observe the behavior of pixel defects, arbitrarily selected regions were investigated. For 

easier visualization, the regions are displayed by negative transformation and the display 

is enlarged by a factor 2. Regions D1 and W1 are the same regions of the maps of the 

dark and white images, respectively. Regions D2 and W2 also reflect the same regions in 

the maps of the dark and white images. Comparing D1 and W1, some of defective pixels 

share the same position both in the dark or white maps, but some do not because of the 

small abnormality in the signal intensity in the white image compared with the global 

mean pixel value. As shown in the selected regions of D2 and W2, some defective pixels 
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are very sensitive to X-ray exposure. It should be noted that the defective pixels are 

clustered in the map obtained from the white image, probably due to the signal leakage of 

the defective pixel into its neighborhood. 

 

Fig. 2-6. An example of defective-pixel correction in digital radiography with the defective pixel map. (a) 
An image of hand phantom obtained from the CMOS detector. (b) Defect-corrected image by adaptive 

median filtering operation based on the defective pixel map. 
 

The defective pixel map that was obtained was used to correct defective pixels on 

a hand phantom image, as shown in Fig. 2-6. Simple adaptive filtering worked well, as 

shown in Fig. 2-6(b). The line defects indicated as arrows in Fig. 2-6(a) are not shown in 

Fig. 2-6(b). The region indicated as a dotted box in Fig. 2-6(a) has been investigated in 

detail, as shown in Fig. 2-7. The arrows in Fig. 2-7(a) indicate two pixel defects and one 

line defect. As shown in Fig. 2-7(b), two pixel defects are clearly corrected but a faint 

line seam is still shown. Fig. 2-7(c) is a difference image between Fig. 2-7(a) and (b). 

 

Fig. 2-7. Enlarged images indicated by the dotted box in Fig. 2-6(a). (a) and (b) are the images before and 
after the defective-pixel correction, respectively. (c) describes the difference between (a) and (b). 
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2.4 Discussion and conclusion 

In the wavelet transforms, we used the Haar function as a wavelet. The Haar 

function provides an operation similar to the derivative when finding directional wavelet 

coefficients. Therefore, there might be artifacts around the reconstructed singularities. As 

shown in Fig. 4, the profile after wavelet transformations shows sharp spikes adjacent to 

the original singular responses in negative values. Threshold checking with the local 

mean value and standard deviation for the neighboring pixel values would prevent the 

negative spikes from defective pixels as performed in this study. Other filter functions, 

which would not cause this kind artifact, as a wavelet are alternatives. Although we partly 

employed the threshold method, the computational cost is cheap because thresholding is 

applied to limited regions around singularities identified by wavelet analysis. 

There are several techniques for defective pixel correction with various tradeoffs 

between the effectiveness and complexity of computations. The simplest method is to 

apply a median filter as demonstrated in this study. A similar method is mean filtering. 

While median filtering replaces the defective pixel with the median around pixel values, 

mean filtering uses the average value of the surrounding pixel values. Although mean 

filtering is more time-consuming than median filtering, the image quality is better 

because it uses information from more than just one of the neighboring pixels. In mean 

filtering, however, the neighboring pixels need to be good pixels. 

Unlike isolated defective pixels in space, clustered pixel defects are serious 

because of the lack of information for correction. T. Aach and V. Metzler [54] introduced 

an iterative deconvolution method in the frequency domain. They modeled a distorted 

radiography due to defective pixels by a multiplication of the undistorted radiography by 
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the defective pixel map. Then, defect interpolation would correspond to the 

deconvolution of the corresponding spectra. Although this method has high 

computational complexity, it is particularly suited to large defective areas. With respect 

to line defect interpolation, various interpolation techniques are available.[55] 

Defective pixels are an inevitable result of the manufacturing process for large 

area semiconductor digital detectors. For the reliable use of detectors over their working 

lifetimes, a complete list of the locations of all the defective pixels (or a defective pixel 

map) should be prepared, and the defective pixel map needs to be updated by frequent 

monitoring. In this study, we introduced the generation of a defective pixel map based on 

wavelet analysis and applied the map to the digital radiography that is used for CBCT 

imaging. The method does not require gain-and-offset corrected images. Therefore, it is 

appropriate to periodic monitoring of CBCT imaging systems. 
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Chapter 3  Fast digital tomosynthesis (DTS) 

reconstruction using general-purpose graphical 

processing unit (GPU). 

3.1 Introduction 

In recent years, the introduction of cone-beam computed tomography (CBCT) 

system in treatment room settings has enabled implementation of various image guidance 

and adaptive radiotherapy techniques.[14, 17, 56-58] This was possible due to the wealth 

of information that can be obtained from three-dimensional (3D) CBCT images obtained 

immediately prior to treatment, including anatomic information for setup [25, 59-61], and 

CT numbers for dose calculation [62-64] and on-line/off-line re-optimization of plans. 

[65-68] All in all, there is minimal doubt that CBCT has prominent role in current and 

future radiotherapy practices. 

In certain clinical settings, however, CBCT may not be the optimal method for 

localization because the patient dose is significant [69-71] and acquisition times are long. 

[72-74] In addition, the images may be impossible to acquire for large off-axis patient 

set-ups, large patients, and/or bulky immobilization devices due to mechanical collisions. 

This can become quite unacceptable for clinical sites with large inter-fraction variations. 

As an alternative to full 3D CBCT imaging, there is growing interest to adopt 

digital tomosynthesis (DTS) for use in image-guided radiation therapy (IGRT) 

applications.[20-22, 75] This technique takes advantage of the CBCT scanning geometry 

and results in pseudo 3D images stacked around the imaging isocenter that are 
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reconstructed from projections data scanned at limited projection angles (typically 40-

60°). The reconstructed images generally contain enough anatomic information for IGRT 

applications in clinic [76-80], but due to its limited scan angles, the resolutions are 

limited in directions that are not orthogonal to the scanning geometry [81](i.e., due to 

pseudo 3D volume). 

Current interest in DTS is due to its many advantages over full 3D CBCT, 

including 1) patient dose reduction (> 3 times) [81, 82], 2) scan time reduction (> 4 times 

) for faster set-up to beam-on work flow [76, 79, 83-86], 3) faster image reconstruction 

due to less projections data (> 4 times)[81], and 4) limited scan angle allows more 

flexibility in scanning geometries and patient set-ups.[79] In addition to these advantages, 

and despite the reduced image quality and resolution, numerous publications have shown 

that DTS contains enough image quality and anatomic information for many IGRT 

applications including head-and-neck [78, 82, 83, 87], lung [82, 88], liver [82, 89-91], 

prostate [84, 86], and breast [79, 80] radiotherapy. In particular, the faster scan time can 

be of major benefit for clinical sites (or patients) that demonstrate large intra-fractional 

motion drifts since the influence of this effect on treatment quality will be minimized. 

At current, however, there is no commercial system that allows DTS 

reconstruction for clinical IGRT applications, although multiple systems are available for 

3D CBCT reconstruction. The current commercial 3D CBCT reconstructions can be 

accomplished in ~10-15 seconds after image acquisition. This is possible because the 

reconstruction starts as soon as the first X-ray projection is acquired. Therefore, it is 

anticipated that 3D DTS reconstruction would take < 10 seconds at most if it is to be 

commercially implemented. However, a faster reconstruction is still desirable if more 
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sophisticated image processing (such as noise, scatter reduction, etc) and real-time 

applications [92] are to be realized. To accommodate this need, we have investigated the 

data-parallelization approach using graphics processing unit (GPU). In fact, there has 

been increasing number of studies utilizing the computational power of GPU to 

accelerate classically heavy and “parallel” computational tasks in radiation therapy 

including image reconstruction, deformable image registration, dose calculation, 

treatment plan (re-) optimization, and most importantly here, DTS reconstruction. [93-99] 

General-purpose GPU (GPGPU) computing with the Compute Unified Device 

Architecture (CUDA, NVIDIA Corporation, Santa Clara, CA) technology is an 

innovative combination of computing features that enables programmers to use general C 

language to assign computational tasks to GPU (or device) as kernels from CPU (or host). 

Kernels are executed through a predetermined number of parallel threads, similar to 

multi-threaded programming on traditional CPUs, that can perform a large number of 

similar computations at once (depending on the number of processing cores in GPU 

card). Therefore, in contrast to multi-core CPUs, where only a few threads execute at 

each time, CUDA technology can process thousands of threads simultaneously enabling 

much faster capacity of information flow. 

In this study, we present ultra-fast GPU-based DTS reconstruction scheme using 

the recently developed CUDA programming environment. To the best of our knowledge, 

Yan et al. [99] has been the only group to investigate the use of GPU hardware for 

accelerating DTS reconstruction for RT applications. They used OpenGL application 

programming interface (API) to program and assign computational tasks to the graphics 

hardware (GPU model not stated, however). With this approach, they were able to 
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achieve ~40 seconds to reconstruct 255 slices. [99] In this paper, we will present much 

faster, non-graphics programming strategy using CUDA, encoded with the general C 

programming, which takes at maximum 2.5 seconds to complete 256 slices, virtually 

eliminating the time allocation for reconstruction. 

3.2  FDK-based DTS reconstruction 

There are many reconstruction algorithms for DTS imaging.[22, 75] For cone-

beam geometry, however, the well-known FDK algorithm proposed by Feldkamp, Davis, 

and Kress [19], is the algorithm of choice due to its simplicity and efficiency. Briefly, in 

FDK, the anatomical pixel information at (x,z) plane, at an arbitrary depth y, denoted 

by )/,( yzxf , can be calculated from the following equation [19]: 

         (3.1)      

where No refers to the total number of projections, ß refers to the angle of each projection, 

d refers to source-to-isocenter distance, s refers to voxel-to-detector distance, p and ξ are 

the detector axes perpendicular and parallel to the axis of rotation, respectively, 

),,( ξβ pR  corresponds to cone beam projection data, )(⋅h  refers to convolution filter, and 

W(p) refers to "half-fan" weighting function for stitching two opposite projections into a 

single large one (used in “half-fan” mode only) [100]. Figure 3-1 illustrates the 

reconstruction geometry. From this equation, it is clear that FDK algorithm is composed 

of two major calculation-intense steps, including 1) integral term ∫
+∞
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integral term ∫
=

β

ββ

β
max

min

...d  corresponds to the back projection of the preprocessed projections 

data, from all angles of measurement, to build the final 3D DTS image volume. It is this 

back projection step that requires the largest computation time, and as shown in this 

work, this is where GPU gains significant speed-up compared with CPU-based 

calculations.  

 

Fig. 3-1. The cone-beam-based DTS reconstruction geometry. 

3.3 Imaging device and DTS image acquisition 

The patient CBCT data evaluated in this study were acquired using the On-Board 

Imager (OBI v1.4) integrated with the Varian Trilogy unit (Varian Medical Systems, Palo 

Alto, CA). This system consists of a kV X-ray source (KVS) with a flat panel aSi 

detector (KVD) mounted orthogonal to the gantry axis using a robotic arm (Exact™), 

sharing approximately the same rotation center with the treatment unit. The flat panel 

detector consists of 1024×768 pixels with pixel size of 0.388×0.388 mm. The source-to-



 

 

33 

detector distance (SID) is approximately 150 cm, with maximum gantry rotation speed of 

6 degrees-per-second. 

There are two main scanning modes with OBI, namely 1) full-fan, and 2) half-fan. 

In the full-fan mode, the detector is centrally placed on the beam axis during scan 

resulting in field-of-view (FOV) of 24-cm diameter. In this mode, only ~200-degree 

scanning is necessary to reconstruct a full 3D CBCT volume. In the half-fan mode, the 

detector is shifted laterally by 14.8 cm to increase the FOV to a maximum of 50-cm 

diameter (normally set to 45-cm in clinic). Since the detector is shifted during scan, each 

projection image requires 180-degree opposite image pair to obtain the larger projection 

image used for reconstruction [100] (see Figure 3-2). Therefore, this mode requires ~360-

degree scanning to reconstruct a full 3D CBCT volume. 

 

Fig. 3-2. The half-fan scanning geometry of the Varian OBI system. The two smaller laterally-shifted 
projections with 180-degrees apart can be combined to obtain one larger projection to reconstruct a larger 

FOV images. 
 

Since there is no “DTS” mode available in the current OBI version (v.1.4), the 

DTS images were reconstructed using subset of projections data extracted from both the 

full-fan and half-fan scans obtained in clinic. For the full-fan scans, the projections from 
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157.5°-202.5° (45°-scan) were used to reconstruct coronal DTS slices, whereas for the 

half-fan scans, the projections from both 157.5°-202.5° and 337.5°-22.5° (2×45°-scan) 

were used to reconstruct larger FOV coronal DTS slices. For this study, we chose 45°-

scan angle that contained ~80 projections for the full-fan and ~160 projections with 

2×45°-scan angle for the half-fan mode, each with 1024×768 pixels with 32-bit precision. 

The reconstruction volume was set to 512×512×(16, 32, 64, 128, or 256) resolution with 

1-mm slice thickness, in order to evaluate the reconstruction time dependence on 

reconstruction volume. In both the CPU and GPU implementations, the “stitching and 

weighting” of the opposite-angle projections from the half-fan scans are performed as 

part of the preprocessing step in the FDK algorithm. Both “stitching” and “weighting” 

are necessary to merge the opposite half-fan projections and to avoid cupping artifact due 

to the projections overlap in the middle.[100] Therefore, the algorithms are fully 

automated and only require uploading of raw projections data, whether acquired in the 

full-fan or half-fan mode. It also needs to be stated here that, if clinically implemented, 

the DTS imaging should ideally be acquired in the full-fan mode since the half-fan mode 

is 1) more prone to potential motion artifacts during longer scans, unless larger FOV is 

absolutely necessary, 2) the physical scan time is longer, and 3) the similar mechanical 

restraints issues exist as in full CBCT scanning. 

3.4 CUDA-enabled GPU programming 

In this study, we have used the latest released NVIDIA GTX 295 GPU card 

(NVIDIA Corporation, Santa Clara, CA) for speeding-up DTS image reconstructions. 

This model consists of 480 processing cores (2×240 dual chip) with 1,242 MHz 
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processing clock speed and 1,792 MB memory space, which is more than enough to store 

a typical DTS volume images (~ 256 MB). In terms of hardware, we used Intel CoreTM i7 

CPU with 2.68 GHz clock speed, 12.0 GB DDR3 RAM, on a 64-bit Vista OS. 

 

Fig. 3-3. The GPU-based DTS reconstruction work flow. 
 

The general work flow of DTS volume reconstruction is illustrated in Figure 3-3. 

The program begins by loading all of the X-ray projections data (~3 MB/projection, 

1024×768 with 32-bit precision) onto the CPU RAM after image acquisition (~ 240 and 

480 MB of RAM needed for full-fan and half-fan modes, respectively), then each 

projection image is sent to the GPU for preprocessing and back projection (shaded in 

light green) computations, until all projections are used to build the pseudo 3D DTS 

image volume. This reconstruction volume is stored in the GPU global memory at all 
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times. For convolution filtering of the preprocessing step, we have accelerated the 

Fourier transform calculations by utilizing the CUFFT (or CUDA FFT) library provided 

through CUDA. For the back projection step, which is the most time consuming part for 

CPU, we have parallelized the tasks as threads in GPU to gain massive speed-up. The 

preprocessing step, for the GPU-based implementation, includes 1) uploading of the 

projections data from CPU RAM to GPU memory and 2) the convolution filtering. 

 

Fig. 3-4. The pseudo code illustrating how (a) the CPU-based and (b) GPU-based DTS reconstructions 
were programmed. 

 
Figure 3-4 is a pseudo code that illustrates how this was implemented. In short, 

the back-projection volume reconstruction per 512×number-of-slices (X and Y axis) can 

be parallelized into a single simultaneous calculation (ie, no loops) using GPU threads, 

and therefore (512×number-of-slices)×512 volume calculation would be computed as 512 

loops (Z axis) of 512×number-of-slices calculations. This means that if number-of-slices 

= 256, then a single parallel execution of 512×256=131,072 calculations is performed for 

each loop, for 512 times, to reconstruct the entire image volume. 
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The reasons that “512×number-of-slices” (×512 loops) calculation are parallelized 

and not “512×512” (×number-of-slices loops) instead are two folds. 1) For X and Y axis 

(Figure 1), coordinate transform are function of gantry angles at which projections are 

taken, and hence, coordinate transform calculation needs to be performed for each pixel 

in the X-Y plane, whereas Z axis is independent of this, and hence performing Z axis last 

would minimize the total calculation time. 2) In addition, since “512×number-of-slices” 

(or X and Y axis) are performed as a single-step massive parallel calculation, increasing 

the number-of-slices would not increase the calculation time. That is, whether 512×16 or 

512×256 volume calculations are chosen, it would still be a single-step massive parallel 

calculation. 

To gain further speed-up, after completing the preprocessing of each projections 

data, before back projection, we have re-copied each projections data that was stored in 

the global memory (not cached, but writable) of GPU to the texture memory (cached, but 

not writable within each core) of GPU since no further manipulation of the projections 

data are needed. This way, data-read speed is faster, stable, and most importantly, the 

interpolation for pixel value calculations on predefined pixel grid size (512×512) is 

automated by the texture memory hardware during the back projection stage. If not, a 

separate bi-linear interpolation has to be performed for each back projection process, 

which delays the reconstruction (as is done in CPU-based implementation). This 

difference in interpolation calculation between the CPU- and GPU-based methods causes 

slight variation in pixel values reconstructed using each technique as will be shown in 

Section 3.6. For the CPU-based method, all computational tasks, as illustrated in Figure 

3-4, were performed using the CPU hardware described above.   
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3.5 Patient cases and performance analysis 

The performance of the GPU implementation was tested on twenty-five patient 

cases of various clinical sites (5 lung, 5 liver, 10 prostate, and 5 head-and-neck cases) 

scanned either with the full-fan or half-fan vendor-established standard mode on the OBI 

v.1.4. For lung and liver, the standard “Pelvis” half-fan protocol was used. For prostate, 

both the “Pelvis” half-fan and “Pelvis spot light” full-fan protocols were used. For head-

and-neck cases, all of the head protocols supplied by OBI were used, namely “Low dose 

head”, “Standard dose head”, and “High quality head” full-fan mode. These various 

protocols are chosen for evaluation due to their frequent use in clinic for various 

treatment applications, due to their image quality differences, as well as the volume and 

site being scanned. 

For each clinical case reconstructed using the CPU- and GPU-based methods, the 

overall times taken as well as each stage of reconstruction were recorded for comparison, 

using the internal clock measurement function provided by both CPU (clock function in 

C) and GPU (cut-timer function in CUDA). In addition, the times taken for the 

reconstruction volume of 512×512×(16, 32, 64, 128, and 256 slices), with 1-mm slice 

thickness, were recorded. 

For image similarity/difference measurements, the difference maps between the 

two image volumes, the average, and standard deviations in absolute pixel-value 

differences were computed, along with line profiles. In addition, as part of the 

comprehensive image comparisons, the contrast-to-noise (CNR) ratio was also computed 

for both CPU- and GPU-based techniques, using the CatPhan 600 phantom scan (The 

Phantom Laboratory Inc., Salem, NY). The formula used was: 
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where Sa and Sb  correspond to mean-intensity of regions a (inside an insert) and b 

(background), and  σa and σb correspond to standard deviation of regions a and b. 

3.6 Results 

A. Image quality comparison 

 

Fig. 3-5. The CPU-based (left), the GPU-based (middle) DTS reconstructions, and the difference map 
(right) images of (a) lung case scanned with “Pelvis” protocol, (b) prostate case scanned with “Pelvis” 

protocol, (c) prostate case scanned with “Pelvis spot light” protocol, and (d) head-and-neck case scanned 
with “Standard dose head” protocol. 

 
Figure 3-5 shows the final reconstructed DTS images using the CPU- and GPU-

based implementations, as well as the difference maps, for selected clinical cases. The 

images shown were reconstructed with 512×512×256 resolution, with 1×1×1mm3 pixel 

size. As can be seen, there are virtually no differences between the two types of 
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implementations on image quality. The minimal difference that is seen is due to the 

differences in pixel interpolation methods used, as described in Section 3.4. 

Table. 3-1. The average absolute difference in pixel values and its standard deviation (SD) calculated using 
512×512×256 reconstruction volume between the CPU- and GPU-based implementations, for each clinical 

case examined. 

 

Figure 3-6 shows the selected 2D profile comparisons between the CPU- and 

GPU-based implementations (from white dashed lines in Figure 3-5). Besides the residual 

differences due to different interpolation techniques, the profiles are virtually identical. 

Table 3-1 lists the overall average absolute pixel differences and standard deviations 

(SD) calculated on the 3D volume (512×512×256) for all twenty-five patient cases 

evaluated. As the table shows, the average absolute and SD are negligibly small (<3%) 

compared to the average pixel values. In addition, the CNR calculations with the CatPhan 
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phantom images were generally <3% different between the CPU- and GPU-based 

techniques. 

 

Fig. 3-6. Two-dimensional profiles comparing the CPU- and GPU-based DTS reconstructions, 
corresponding to the white dashed lines in Figure 5, for (a) lung case scanned with “Pelvis” protocol, (b) 
prostate case scanned with “Pelvis” protocol, (c) prostate case scanned with “Pelvis spot light” protocol, 

and (d) head-and-neck case scanned with “Standard dose head” protocol. 
 

B. Speed-up performance of GPU 

Table 3-2 lists the break down of average time taken for each step in the overall 

DTS reconstruction process. FDK step consists of both the preprocessing and back 

projection steps. As can be seen, there’s significant speed-up in the FDK process with the 

GPU-based implementation. There is significant speed-up in the preprocessing step (> 16 

times in the full-fan), but the greatest speed-up occurs in the back projection step where a 
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factor of greater than 168 times is seen in the full-fan mode. Overall, there is 87.0 and 

79.4 times speed-up in the full-fan and half-fan modes, respectively, for FDK 

reconstruction. As one can also infer from Table 3-2, on average, the GPU 

implementation can process > 13 projections-per-second (pps) and > 18 pps for the full-

fan and half-fan modes, respectively. It was also found that time variation from 

reconstruction to reconstruction is very consistent and less than 20 milli-seconds. This 

variation comes from multiple sources including 1) clock speed variation, 2) electronic 

noise in GPU hardware, and 3) variation in image display load (remember, GPU was 

used to display the monitor while computing reconstruction). However, the time variation 

of <20ms is negligible compared with the reconstruction time of 1.5-2.5 seconds (<1.5% 

variation). 

Table. 3-2. Break down of the average times taken to perform each stage of the FDK-based DTS 
reconstruction process. The reconstruction to reconstruction time variation was consistently within 20 milli-

seconds or less. 

Full-fan DTS (512×512×256) 

  
Projection loading 
from disk to RAM Preprocessing 

Back 
projection FDK Total 

CPU (Sec) 4.53 10.92 97.81 108.78 113.27 

GPU (Sec) 4.53 0.67 0.58 1.25 5.78 

Speed-up (×) 1.00 16.3 168.6 87.0 19.6 
      

Half-fan DTS (512×512×256) 

  
Projection loading 
from disk to RAM Preprocessing 

Back 
projection FDK Total 

CPU (Sec) 6.39 15.95 179.92 195.88 202.27 

GPU (Sec) 6.39 1.33 1.14 2.47 8.86 

Speed-up (×) 1.00 12.0 157.8 79.4 22.8 
 

Projection loading step copies the projections data stored in the hard disk to the 

CPU RAM, and as can be seen in the table, this can take few seconds also. However, this 
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step can be completely eliminated at the clinical implementation stage since one can 

theoretically upload the projections data onto the CPU RAM as the images are acquired 

in real-time. Therefore, it can be concluded that, as of this study, DTS reconstruction 

takes at most 2.5 seconds to reconstruct 512×512×256 image volume, thereby virtually 

eliminating the time allocation for reconstruction during DTS-based IGRT. 

 

Fig. 3-7. Relationship of times taken for the 3D DTS (512×512×#) volume reconstruction as a function of 
number of slices for (a) the full-fan, and (b) the half-fan acquisitions. 

 
Figure 3-7 illustrates the relationship of time taken for DTS volume 

reconstruction as a function of number of slices, for both the CPU- and GPU-based 

implementations. On increasing the number of slices from 16 to 256, the time-to-

reconstruct increases drastically for the CPU-based implementation where from 19.0 to 

110.6 seconds and 26.1 to 195.9 seconds increase were observed for the full-fan and half-

fan modes, respectively. In comparison, only minimal increases are observed for the 

GPU-based implementation where from 0.73 to 1.27 seconds and 1.42 to 2.47 seconds 

increase were observed for the full-fan and half-fan modes, respectively. The increase in 

times is due mainly to the fact that during the back projection step, more pixel scoring is 

needed as the slices are increased. As was illustrated in Figure 3-4, for the CPU-based 
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implementation, this means the Y loop is increased and hence the increase in time. For 

the GPU-based implementation, however, this means that only the number of block 

assignments need to be increased (there is no Y loop) for multi-threaded processing on 

GPU, therefore the minimal impact on calculation time. The differences in time slopes 

therefore are due mainly to the multi-threaded and non-parallel-processing approaches in 

the GPU- and CPU-based calculations, respectively. In addition, increasing the number of 

slices do not affect the preprocessing step, in either case, due to the need for convolution 

filtering of all projections independently before any back projection takes place for image 

volume reconstruction.  

3.7 Discussion and Conclusion 

In this study, we have developed ultra-fast DTS image reconstruction algorithm 

using CUDA-enabled GPU programming. To the best of our knowledge, CUDA-based 

DTS programming using OBI projections has never been attempted for RT applications. 

The times taken for FDK volume reconstruction of 512×512×256 were less than 1.3 and 

2.5 seconds for the full-fan and half-fan modes, respectively. Increasing the number of 

reconstructed slices had negligible impact on the overall time. In addition, these ultra-fast 

reconstruction times did not have negative impact on the integrity of the reconstructed 

images as there were negligible visual and pixel-value discrepancies between the CPU- 

and GPU-based implementations. With the cost of the latest GPU card being minor 

(around $500-US) compared to its positive impact on IGRT workflow, as shown in this 

work and others [93-99], our community should take full advantage of this latest gadget 

for all heavy computational tasks in RT that are suitable for parallel processing. 
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As mentioned earlier, Yan et al. [99] has been the only group to investigate the 

speed-up performance of GPU hardware for DTS reconstruction, albeit using the 

OpenGL API. In their work, they have down-sampled the original projection images 

(which we didn’t do) of size 1024x768 to 512x384 resulting in total reconstruction time 

of ~40 seconds. On testing the same data size (by down-sampling), we achieved 0.65 

seconds to reconstruct 512x512x256 volume. This is about 66 times faster than their 

results. However, this comparison is confounded by the fact that we used different 

graphics card (ours is much newer hardware and theirs was not specified in the paper) 

and hence may not be a fair comparison between OpenGL and CUDA. Therefore, with 

this work, it is not possible to conclude the superiority of one programming environment 

over the other. 

We have used 45°-scan angle with ~80 projections for the full-fan and 2×45°-scan 

angle with ~160 projections for the half-fan mode, each projection with 1024×768 pixels 

and 32-bit precision (3.072 MB/projection), as the set input condition for our DTS 

reconstructions. However, depending on the clinical situation, one may need to use 

greater scan angle (or less) for better image quality, practicality, and quantitative 

information. We have found that the times taken for the GPU-based reconstruction 

technique proposed here approximately scales linearly with the number of projections (or 

scan angles) used. According to our tests, for 90°-scan angle with ~160 projections for 

the full-fan and 2×90°-scan angle with ~320 projections for the half-fan mode, it took 2.6 

and 5.0 seconds, respectively. Therefore, even with the 90°-scan angle, which is 

considered generally too large for DTS applications in RT, the reconstruction times are 

still quite fast and in the realm for on-line use. 
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In our GPU-based FDK implementation, we have chosen to upload each 

projections data onto the global memory of GPU one-by-one for processing (see Figure 

3-3). The reason for this approach, instead of uploading all projections data at once, was 

to be able to adapt to the realistic clinical situation where the projections data are 

acquired in the same one-by-one manner, and hence, our implementation allows the 

processing of each projection data as soon as they become available, in a streamlined 

process. As one can infer from Table 3-2, on average, our implementation can process > 

13 projections-per-second (pps) and > 18 pps for the full-fan and half-fan modes, 

respectively, which includes from loading the projections from hard disk to CPU RAM to 

completely downloading the reconstructed volume from GPU global memory to CPU 

RAM. Since OBI nominally acquires 11 pps (with 1 gantry-revolution-per-minute), our 

GPU-based implementation is more than sufficient to handle the incoming projections 

data as they are acquired and reconstruct the entire volume immediately after completing 

the scan. This, of course, applies irrespective of the scan-angle range, including the full 

3D CBCT. Therefore, theoretically at least, the wait time for image reconstruction 

(whether it is 3D DTS or 3D CBCT) can be completely eliminated using our approach. 

Such a stream-lined approach using GPU, could also be of tremendous help in the 

stationary-gantry tomosynthesis array for radiotherapy (STAR) system, where multi-

source carbon nanotubes (CNT) are attached to the gantry head, immediately below the 

multileaf collimators (MLC), for stationary DTS imaging for on-line image guidance. 

Since this system is intended for multiple DTS imaging within a single treatment session, 

there could be a benefit in utilizing our proposed GPU-based reconstruction strategy. 
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In this study, we have investigated DTS reconstruction using both the full-fan and 

half-fan modes. However, use of the half-fan mode should be discouraged as this would 

1) increase the scan time, 2) increase the likelihood of patient pose change between 

opposite angle scans resulting in motion artifacts, 3) eliminate the possibility of single-

breath-hold DTS scans, and 4) increase the patient dose. In addition, most IGRT 

application suffices with viewing/registering the target and its nearby structures 

[39,42,44,46] making larger FOV (in half-fan mode), in general, a non-necessity. 

For image registration of the reconstructed DTS volume (called treatment-DTS) 

for image guidance, one cannot use the planning CT volume as the reference, but a 

separate reference DTS volume (called reference-DTS) needs to be constructed.[76, 86, 

101] This is because the information presented in pseudo-3D DTS images is different 

from the full 3D CT images. To reconstruct reference-DTS volume, one needs to first 

construct digitally reconstructed radiographs (DRR) in cone-beam geometry, using ray-

tracing technology [92, 102], simulating virtual OBI projections, each with the same 

gantry angle as the actual projections to be taken. Once the DRR projections are 

constructed, it is matter of using the same FDK algorithm, used in this study, to 

reconstruct the reference-DTS volume. Figure 3-8 shows an example treatment- and 

reference-DTS slice for a head-and-neck patient case examined in this study. With the 

current implementation on GPU, it takes ~140 milli-seconds-per-DRR calculation with 

1024×768 pixel resolution. Therefore, to reconstruct reference-DTS (DRR calculation + 

FDK) from 80 DRR projections for a full-fan mode, it takes about 12.5 seconds. Since 

time constraints on calculating reference-DTS volume is not as strict as the treatment-

DTS, this achievement is reasonable for routine use in clinic. With the reference- and 
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treatment-DTS calculators fully developed, we plan to evaluate the effectiveness of DTS-

guided IGRT on various clinical sites and develop adaptive protocols. 

 

Fig. 3-8. The DTS images reconstructed using (a) the OBI projections (treatment-DTS) and (b) the DRR 
projections constructed from the planning CT images (reference-DTS). 

 
The current maximum gantry rotation speed is set to 6 degrees/second (i.e., 1 

rpm). This means that, for a 45°-scan angle, it would take 7.5 seconds to complete image 

acquisitions for a full-fan scan. If the reconstruction is performed immediately after, then 

it would take < 9 seconds from acquisition to volume reconstruction. With rapid 

automatic-to-manual image registration (< 30 seconds), corresponding couch shift (< 10 

seconds), beam loading (< 10 seconds), and beam delivery using the latest volumetric 

modulated arc therapy (VMAT) [103] technology, which can deliver a single treatment 

fraction in generally less than 2 minutes [103, 104], it is quite possible to treat a patient 

from DTS scan to completion of radiation delivery in under 3 minutes. With intra-

fraction motions and drifts being a major concern as the radiation is being delivered, this 

new work flow would ensure that patient pose is (more likely) maintained during the 

entire treatment fraction. In addition, of course, patient throughput will be naturally 

increased, an advantage that requires no further elaboration. 

In this study, an ultra-fast reconstruction technique for DTS based on the FDK 

algorithm using CUDA-based GPU programming is proposed. The performance of 
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proposed algorithm was tested on twenty-five patient cases (5 lung, 5 liver, 10 prostate, 

and 5 head-and-neck) scanned either with a full-fan or half-fan mode on the OBI CBCT 

system. The GPU-based implementation achieved, at most, 1.3 and 2.5 seconds to 

complete full reconstruction of 512×512×256 volume, for the full-fan and half-fan 

modes, respectively. This resulted in speed improvement of > 87 times compared with 

the central processing unit (CPU)-based implementation, with visually identical images 

and negligible pixel-value discrepancy. With this achievement, we have shown that time 

allocation for DTS image reconstruction is virtually eliminated and that clinical 

implementation of this approach has become quite appealing. In addition, with the speed 

achievement, further image processing and real-time applications that may have been 

prohibited prior due to time restrictions can now be tempered with. 
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Chapter 4  Fast low-dose CBCT reconstruction using 

Barzilai-Borwein formulation  

4.1 Introduction 

In recent years, the introduction of cone-beam computed tomography (CBCT) in 

radiation therapy has enabled a precise, on-line positioning (and on-line/off-line re-

planning) of patients[14, 18]. This is possible due to the wealth of information contained 

in the three-dimensional (3D)-CBCT images including 1) anatomic information[14, 18], 

2) geometric information[58, 105], and 3) CT numbers for possible dose calculations for 

treatment verifications and plan  re-optimizations[62, 106]. 

Because CBCT uses ionizing X-rays to image, however, there is a legitimate 

concern of hazardous radiation exposure to patients[69]. Due to this, the excessive use 

should be prohibited and the benefits-vs-harm ratio should be carefully weighed and 

debated for each treatment, especially for pediatric patients. This concern has now 

become an issue of central importance in North America, not only in radiation oncology, 

but in broader radiology community (e.g., Image Wisely and Image Gently 

campaigns). 

There are rather straightforward ways to reduce the imaging dose for CBCT, that 

is, either 1) minimize the number of X-ray projections, 2) reduce the current setting in the 

X-ray tube (mA), and/or 3) reduce the total exposure time (ms). With the current-

standard FDK reconstruction algorithm[19], however, reducing the projections would 

cause aliasing artifact (for example, see Figures 6 and 7) the severity of which depends 
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inversely on the number of projections, and if the mA and/or ms is reduced, the noise in 

the image would increase. Both of these properties of the FDK are extremely undesirable, 

especially if the images are used for guiding precision radiation therapy for cancer 

eradication. 

In recent years, the exciting advances in compressed sensing theory has shown 

that sparse signals (at least in some known transform domain) can be reconstructed from 

much smaller number of samples than the Nyquist frequency would mandate[29, 30, 33, 

37, 107-114]. In layman’s terms, this means that nearly ideal images can be reconstructed 

even if only a few projections are available. This in turn, means that the imaging dose can 

be safely reduced without compromising the image quality. Past works have shown that, 

for CT-type reconstructions (both fan- and cone-beam), the total variation (TV) 

formulation has been particularly useful in exploiting the prior knowledge of minimal 

variation in the X-ray attenuation characteristics across human body[33, 37, 107, 108, 

110-112, 114]. However, a practical implementation of this method still remains a 

challenge. The main problem is the iterative nature of solving the TV-based compressed 

sensing formulation, which generally requires multiple iterations of forward and 

backward projections of large datasets in clinically feasible time frame (e.g., <1 min). 

Solving this rather cumbersome problem would require multiple innovations 

encompassing 1) computationally efficient parallel-programming with proper hardware 

and 2) mathematical formulation of an efficient search algorithm for fast-solution-

convergence. The former issue has been resolved successfully with the use of graphics 

processing units (GPU)[32, 93, 95, 115, 116]. This approach reduced the computational 

time from several hours to few minutes [32, 115]. In this paper, the main motivation of 
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our work is to propose a solution to the latter issue in order to achieve a clinically 

realistic reconstruction time(s) on the GPU hardware with an equivalently realistic image 

quality for on-line image-guided radiation therapy (IGRT). 

In this work, we propose a gradient projection algorithm that handles the TV-

norm regularized least squares problem, based on the Barzilai-Borwein (BB) 

formulation[117, 118], in such an efficient manner that we get a clinically reasonable 

patient image in ~12-30 iterations for a total reconstruction time of ~34-78 seconds using 

a single GPU card (NVIDIA GTX 295, Santa Clara, CA). Comparison of our novel 

approach with the FDK and other published compressed sensing techniques are presented 

in detail with numerical and physical phantoms, and a head-and-neck clinical patient data.  

4.2 Low-dose CBCT reconstruction algorithm 

 The main problem is to solve the constrained convex optimization problem of the 

form: 

(4.1)  
                                                

where x = unknown CBCT volume image, A = Radon transform operator, b = measured 

projections data, λ = regularization constant, and TV = Total Variation (TV) 

regularization term. In this paper, the matrices are denoted as a boldface-uppercase letters 

and the vectors are denoted as a boldface-lowercase letters. Note that, in Equation 1, the 

three-dimensional (3D) CBCT volume, x(i,j,k), is vectorized as a (1xN) dimensional 

matrix, x(l). Thus, we will use the two volume representations, x(i,j,k) and x(l), 

interchangeably in this chapter. The TV term we used in this study is defined as: 
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In its form, the first term in Equation 4.1, i.e., the fidelity term, enforces fidelity 

of x with the measured projections data and the second term, i.e., the regularization term, 

promotes sparsity inherent in the X-ray attenuation characteristics of the human body.  

4.3 Gradient projection Barzilai-Borwein formulation 

 

Fig. 4-1. Illustrations of (a) forward-backward splitting-type optimization, and (b) our one-step proposed 
approach to solve the TV-based constrained convex optimization problem in Equation 4.1. 

 
Algorithms of significant acceptance and popularity in solving Equation 4.1, so 

far, have mostly been based on separating the two terms and optimizing them 

individually in an alternating manner, i.e., the forward-backward splitting technique[32, 

33, 107, 108, 110, 114, 115]. Figure 4-1a illustrates this approach. At iteration n, as 

commonly used in the gradient descent algorithms, a fixed small step size αconst is chosen 
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to reduce the fidelity term to obtain an intermediate solution xn+1
’. The (n+1)-th solution 

xn+1 which has the minimal total variation is then searched around the xn+1
’ to complete an 

iteration. This procedure is repeated until a desired solution xopt is achieved. As we will 

show in this work, however, that this approach may not result in a fast convergence due 

to this two-step approach. Intuitively, an algorithm that optimally reaches xn+1 in a single 

step, at each iteration, using a variable step size (αopt) would be more efficient 

computationally and faster in convergence (see Figure 4-1b). This is our intuition and is 

exactly what is proposed here. 

We propose to use a gradient projection algorithm that iteratively seeks a solution 

to Equation 4.1 in the direction of the projected gradient while enforcing a non-negativity 

of the found solution. Let gn be the gradient of f(xn) defined as: 

(4.3) 

where T is the transpose operator of the Radon transform matrix A, which is physically 

interpreted as a back-projection operation on x. We then solve Equation 4.1 iteratively 

using the gradient projection method: 

(4.4)
 

where 

(4.5) 

Here, αn denotes the step size at iteration n, l denotes the voxel position index, 

and pn denotes the projected gradient of the function f(x) at xn. 

The speed of convergence would be highly dependent on choosing a proper “step-

size”αn in Equation 4.4, at each iteration. Remember, the less the number of iterations 
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used to find the optimal solution x*, the less the number of times one needs to calculate 

the A and AT, which are computationally very expensive. 

There are few approaches in choosing an appropriate αn including 1) a fixed, 

small αn throughout, and 2) a variable αn obtained through a back-tracking line-search 

method that satisfies a certain condition for ensuring convergence. For example, the well-

known Armijo condition[119] enforces not only a monotonic decrease in the objective 

function but also a sufficient decrease of the objective function in each iteration for 

guaranteeing the convergence. The first, “fixed step-size” method is simple to implement 

yet finding an appropriate αn is not trivial as there’s a tradeoff between convergence 

speed and image quality. The second, “line-search” method is popular and guarantees a 

monotonic convergence but incurs a relatively high computational burden as the back-

tracking line-search is an iterative process in itself, which is analogically similar to that 

illustrated in Figure 4-1a, i.e., iteration within iteration. 

In this work, we propose a third and alternative method using an approximate 

second-order solver, proposed by Barzilai and Borwein (BB)[117, 118], where the 

objective function may not be monotonically decreasing as in the back-tracking “line-

search” method, but much faster convergence is achieved. Unlike most traditional 

approaches that ensure convergence to an optimal solution by imposing a rather 

conservative condition of monotonic decrease of the objective function at each and every 

iteration, the BB method relaxes this constant decrease requirement in order to achieve 

even faster convergence in the long run [117, 120]. Specifically, the conventional 

approaches calculate each step-size based on the current gradient of the cost function. As 

a result, a monotonic convergence is guaranteed throughout the iterative process. 
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However, in the BB approach, the step-size is chosen based on both the current gradient 

and the previous gradient which could result in a non-monotonic convergence. Utilization 

of this additional information, i.e., the past gradient, results in a faster convergence 

although the monotonic convergence behavior is not guaranteed. Basically, it calculates 

each step with the formulation (compare with Equation 4.4): 

     (4.6) 

where Hn is an approximation to the true Hessian of f(x) at xn (i.e., approximate second-

order solver). To calculate Hn
-1, the BB formulation makes a simple approximation to the 

Hessian by setting Hn = η(n)I , where I  denotes an identity matrix and η(n) is chosen to 

approximate the true Hessian over the most recent two iteration steps as: 

                     (4.7)                  

where η(n) is calculated at each iteration that satisfies Equation 4.7. In practical 

implementation, the optimal η(n) is solved in the least squares sense by: 

 
   (4.8)

 

Once η(n) is calculated, the Equation 4.6 is updated by: 

     (4.9) 

For n = 0, since xn-1 and pn-1 in Equation 4.8 are not known, we initialize (η
(n=0))-1 

as: 

      (4.10)
 

which is the closed form solution of the optimal step size in the quadratic fidelity 

term in Equation 4.1[119]. 
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The advantage of this technique is that, first, at each iteration, one needs to only 

carry over xn-1 and pn-1 to calculate η(n), which must be calculated in the previous step 

anyway. Thus, unlike, for example, the GP-BL method where the step size is calculated 

via an iterative procedure (step 3 in Figure 2-2c, more on this later), there are no extra 

calculations/iterations that need to be performed to compute αn which affects the speed of 

the optimization much favorably. Second, as found in the original BB publication[117], 

the convergence of Equation 4.6 should be faster than the standard first-order methods 

such as the back-tracking line-search discussed above, and as we’ll show in this work. 

And, finally, since the entire f(x) is minimized simultaneously in Equation 4.1 and not 

alternatively as in the other works discussed above; e.g., Figure 4-1a, the overall 

complexity of the implementation is simplified while still guaranteeing an optimal 

solution. 

4.4 Algorithm implementation 

In our implementation of this Gradient-Projection-Barzilai-Borwein (GP-BB) 

method, to speed up the algorithm further, the following has been adopted: 

A. For n = 0, we initialize x0 = FDK. This result in a faster convergence compared 

with setting x0 = 0. 

B. Two-resolution-level optimization. That is, we first set x to 256×256×70 volume, 

optimize, then resample to 512×512×70 volume for a second-level optimization. 

The resolution at level one and two are 0.97×0.97×2.0-mm and 0.49×0.49×2.0-

mm, respectively. 

C. The entire code is structured and implemented in C with the CUDA programming 
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environment (NVIDIA, Santa Clara, CA) to utilize the massive parallel 

computational capability of the GPU hardware. We used a single GTX 295 card 

(~$500US) that consists of 480 processing cores with 1.24 GHz clock speed and 

1,792 MB memory. In terms of CPU, we used Intel Core i7 with 2.68 GHz 

clock speed, 12.0 GB DDR3 RAM, on a 64-bit Window 7 OS. 

For our application, three major computational tasks were parallelized in the 

CUDA environment: 1) the forward projection A, 2) the back projection AT, and 3) the 

vector operations to calculate η(n), Ax-b, TV(..), etc. For the forward projection 

operations, we have set each detector pixel as a GPU thread and summed the image 

voxels that happen to lie in the path from the cone-beam source to the corresponding 

pixel. Since this summation of voxels, in the ray path, can be independently computed for 

each detector pixel, this feature has been utilized in the GPU coding as a parallel 

computations [116]. For the back projection operations, we have instead set the each 

image voxel as a GPU thread. Similar strategies were implemented on the vector 

operations as well. 

4.5 Performance evaluation and experimental setup 

To evaluate the performance of our GP-BB algorithm, we have compared it with 

three other algorithms, the two of which are published. First, the adaptive-steepest-

descent-projections-onto-convex-set (ASD-POCS) method proposed by Sidky and Pan 

[33] (described in Figure 4-1a) was implemented. Second, the soft-threshold filtering 

approach (STF) proposed by Yu and Wang [114] was implemented. This algorithm is 

essentially similar to the ASD-POCS except that an approximate solution is proposed 
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over iteratively calculating the second step, shown in Figure 4-1a (i.e., minimizing the 

total variation step), to reduce the computational burden.  Third and finally, we have 

implemented a first-order Gradient-Projection-Backtracking-Linesearch (GP-BL) 

algorithm that attempts to simultaneously minimize the both terms in Equation 4.1 in a 

single step as opposed to the forward-backward splitting technique in ASD-POCS and 

STF. This single step approach is similar to the GP-BB except that an acceptable αn in 

Equation 4.4 is searched without the approximate second-order Hessian information as 

explored in the GP-BB method. Essentially, at each iteration in Equation 4.4, αn is found 

through the back-tracking line-search along the direction of the current gradient. 

 

Fig. 4-2. Illustration of the computational processes required at each iteration for the four algorithms: (a) 
ASD-POCS, (b) STF, (c) GP-BL, and (d) GP-BB. 

 
Computational processes required at each iterative process for each of these 

algorithms are illustrated in Figure 4-2. First, the ASD-POCS iteration is shown in Figure 

2a. The algorithm starts by finding the intermediate solution '1n+x  through a SART-type 

approach with a constant step-size where a promotion of the data fidelity term only is 
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considered (step 1). The TV-norm is then minimized around this '1n+x  through an 

iterative, convex optimization process for which we employed a commonly used steepest 

descent approach in this paper (step 3). Therefore, at each iterative step of the ASD-

POCS algorithm, an additional iterative process is required (step 3). Second, the STF 

approach proposed by Yu and Wang [114] is illustrated in Figure 4-2b. As shown on the 

figure, the algorithm starts exactly same as the ASD-POCS for step 1. However, instead 

of using an iterative, convex optimization procedure to minimize the TV around the 

intermediate solution '1n+x , the algorithm employs a batch, non-iterative, soft-threshold 

filtering algorithm to remove the extra iterative step, and hence reduces the 

computational time. The soft-threshold filtering procedure is denoted by )'(1, 1nx +wS  in 

step 2 on Figure 4-2b. It is a regularization function that updates the '1n+x , as a function 

of TV( '1n+x ), using a closed form heuristic formula. Interested readers are encouraged to 

read Yu and Wang [114] for details. Third, the GP-BL algorithm proposed here, 

alternatively to the GP-BB, is illustrated in Figure 4-2c. It starts by calculating the 

gradient of the cost function consisting of the data fidelity and the regularization terms 

(step 1), followed by a projection of the gradient (step 2). At step 3, a back-tracking line-

search is performed by evaluating the objective function with a decreasing step size nα  

until a certain condition is satisfied to ensure convergence. For that we employed the 

well-known Armijo condition stated by the inequality in step 3 which not only enables a 

monotonic decrease in the objective function but also satisfies a sufficient decrease 

criterion for convergence to the optimal solution. In this study, we set the constants δ  

and β  to 0.02 and 0.7, respectively. Once the step size nα  is obtained, a gradient descent 
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step is conducted while enforcing the non-negative constraint (step 4). Finally, the 

proposed GP-BB algorithm is illustrated in Figure 4-2d. Referring to the figure, steps 1 

and 2 are the same as those in the GP-BL algorithm. However, as we have illustrated our 

algorithm mathematically, the iterative back-tracking line-search in Figure 4-2c is 

replaced by a much simpler, non-iterative vector operations for the computation of 

)(nη (step 3). Therefore, favorably compared with the GP-BL approach, finding the step 

size is performed without the extra iterative calculation of the back-tracking line-search. 

The gradient descent step is then conducted using  (step 4). It should 

be noted here though that there have been very recent studies reporting the effectiveness 

of the BB-based approaches for CT reconstruction. These efforts could complement our 

work in developing the most mature form of the BB-based CT/CBCT reconstruction 

techniques. 

The Shepp-Logan numerical phantom, the CatPhan 600 physical phantom (The 

Phantom Laboratory, Salem, NY), and a clinically-treated head-and-neck patient acquired 

from the TrueBeam system (Varian Medical Systems, Palo Alto, CA) were used for 

comparison purposes. For the TrueBeam scans, a total of 364 projections were acquired 

in a 200-degree rotation, in a full-fan mode. The imager has 1024×768 pixels with 

0.388×0.388-mm resolution. This was down-sampled to 512×384 pixels with 

0.776×0.776-mm for the reconstructions. Evenly spaced angles were sub-sampled and 

used for varying the number of projections for the image reconstruction.
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4.6 Results 

Figure 4-3 shows the reconstructed 2D images of the Shepp-Logan phantom using 

the four algorithms described earlier. A total of 40 projections in fan-beam geometry 

were used for the reconstructions. As can be seen, the Gradient Projection (GP)-type 

algorithms outperforms the forward-backward splitting-type algorithms in terms of image 

quality and speed of convergence. At about 50 and 30 iterations, the GP-BL and GP-BB 

algorithms show convergence, respectively, whereas the ASD-POCS and STF algorithms 

clearly still needs further convergence at 50 iterations. Visually, the GP-BB shows the 

fastest convergence and this is quantitatively demonstrated in Figures 4-4 and 4-5. In 

Figure 4-4, the line profile comparison is shown after 30 iterations, for example. It is 

clear from this figure that the level of agreement to the ground truth goes in the order of 

GP-BB > GP-BL > STF & ASD-POCS. This finding holds true at all levels of iterations, 

as illustrated in Figure 4-5. Here, the relative error is defined as the mean-squared percent 

error from the ground truth pixel values: 

 (4.11) 

 
 

where xi,j,k corresponds to the voxel values in the reconstructed volume x and xGroundTruth 

refers to the ground-truth values of the Shepp-Logan phantom used. As can be seen from 

the figure, all three algorithms other than the GP-BB continue to decrease at 50 iterations, 

whereas the GP-BB algorithm reaches saturation at ~25-30 iterations. One thing to note is 

that, due to the non-monotonic feature of the BB algorithm discussed in section II, the 

relative error does not decrease in a smooth manner due to the inherent properties of 

calculating the step size without conducting a line-search at each iterative step.  
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Fig. 4-3. The reconstructed images of the Shepp-Logan phantom, using the respective four algorithms, as a 
function of 10, 30, and 50 iterations. A total of 40 projections in fan-beam geometry were used for the 

reconstructions. 
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Fig. 4-4. Line profiles of the respective four algorithms with the (a) full line across the Shepp-Logan 
phantom, and (b) magnified view of the right one-third. The figure inset shows where the line profiles were 

generated. 
 

 

Fig. 4-5. Mean-squared relative percent error as a function of the number of iterations, for the respective 
four algorithms. The Shepp-Logan numerical phantom was used as the gold standard. 

 
In order to show the computational efficiency of each algorithm, we have 

measured the computational time performances of the four algorithms implemented on 

the same GPU card (see Table 4-1). To conduct a fair comparison, we kept all 

experimental conditions the same for all algorithms. That is, the number of iterations was 
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set to 50, the reconstruction volume was set to 256×256×64, the number of projections 

used was 42, the detector size was 512×384, the unknown CBCT volume image was all 

initialized to zero (i.e., 0=)0(x ), and the multi-resolution optimization was not used. It is 

found that the GP-BL algorithm takes the longest time to compute due to the high 

computational cost of conducting the back-tracking line-search, at each iteration. It can 

also be observed that those algorithms that have iterations within iterations, i.e., ASD-

POCS and GP-BL, the standard deviation is also large compared to the other two 

algorithms that do not have a second iteration loop. The GP-BB and STF algorithms have 

a consistent computational time and, moreover, their convergence is noticeably faster 

than the other two algorithms. It should be noted, though, that our implementations of the 

ASD-POCS and STF may not have been exactly reproduced as the ones originally 

proposed and implemented. Although we attempted to make the fairest comparison by 

best implementing the original ideas of the algorithms using the published information, it 

is difficult to reproduce the same exact performance due to a difference in the 

experimental setup and data used. As a result, we acknowledge that our evaluations of 

these algorithms may not represent their best possible implementation and thus 

performance and image quality. 

Table. 4-1. Time measurement profile of each algorithm processed for 50 iterations. 
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In addition to the comparisons with the compressed-sensing-type algorithms, 

we’ve also compared the GP-BB against the conventional and commercially-used, 

filtered backprojection-type algorithm proposed by Feldkamp, Davis, and Kress (FDK, 

1984)8. Figure 4-6 show the 3D volumes reconstructed with the two algorithms, using 

some or all of the 364 projections acquired from the TrueBeam CBCT system. 

Reconstruction times are labeled on the figure. As can be seen, even with the dose 

reduction to 1/9th (=40/364 projections), Figure 4-6b shows a reasonable image quality 

achieved by the GP-BB algorithm comparable to that of the FDK reconstructed image 

using all of 364 projections (Figure 4-6c) with less noise, while completing this in under 

12.6 seconds. Needless to say, the image quality of Figure 4-6b is better with minimal 

aliasing artifacts compared with that of Figure 4-6a, which is FDK reconstructed volume 

using the same 40 projections. To note, this achievement of 12.6 seconds is about an 

order of magnitude faster than that of the latest report on the GPU-accelerated forward-

backward splitting-type algorithms, discussed in Figure 1a[32, 115]. 

Figure 4-7 shows a matrix view of the various image qualities achieved, using the 

GP-BB algorithm, as functions of both the number-of-projections and the number-of-

iterations, for the head-and-neck example patient. The window and level were kept the 

same for all images. The first row show the images reconstructed with the FDK for 

comparison. It is observed that as the number-of-projections increases, the image quality 

increases in both the FDK and GP-BB algorithms, and as the number-of-iterations 

increases in GP-BB, the image quality increases too. It is also observed that, in GP-BB, 

the qualitative increase in image quality is relatively more significant from 90 to 120 

projections than from 120 to 180 projections. This also means that the FDK-initialized 
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GP-BB algorithm always does better than just the FDK alone, for any number-of-

iterations per given number-of-projections. 

 

Fig. 4-6. Spatial and contrast resolution slices of the reconstructed CatPhan 600 phantom using (a) FDK 
with 40 projections, (b) GP-BB with 40 projections in 12 iterations, and (c) FDK with 364 projections. The 

reconstruction times are listed on the figure. 
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Fig. 4-7. A matrix view of the various image qualities achieved, using the GP-BB algorithm, as 
functions of number-of-projections and number-of-iterations, for the head-and-neck example patient. The 

window and level were kept the same for all images.  
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Table. 4-2. List of the reconstruction times recorded for various projections and iterations tested. 
 

Time [sec] # of projections (views) used 

# of iterations 60 90 120 180 364 

FDK 0.27 0.34 0.50 0.75 1.45 

6 9.891 14.48 19.25 28.35 58.11 

12 17.58 25.57 33.77 49.94 101.83 

18 24.88 36.55 48.21 71.92 146.51 

24 32.92 47.62 62.86 92.86 188.37 

30 39.91 58.87 77.99 116.55 234.51 

 
 

Table 4-2 shows a comprehensive list of the reconstruction times recorded for 

various combinations of input condition, encompassing that of the examples shown in 

Figure 4-7. From this list and Figure 4-7, we can deduce that, although subjective, 

visually a “reasonable” image quality for clinical use can be obtained in the range of ~12-

30 iterations with ~120-180 projections. The range of reconstruction times would be 

between ~34-117 seconds, that is, all are within ~2 minutes or less. In terms of dose 

reduction, this would be on the order of ~1/3-1/2 depending on the projections used (i.e., 

120/364 or 180/364 projections, respectively). 

Figure 4-8 displays, side-by-side, the GP-BB-reconstructed images using 120 

projections (Figures 4-8b-e) in closer comparison with the FDK-reconstructed image 

using 364 projections (Figure 4-8a; currently in-use in clinic). The images using only the 

120 projections are displayed here, as opposed to images using 180 projections, since our 

interest is in generating a reasonable quality images with a minimally necessary radiation 



 

 

70 

 

Fig. 4-8. Selected images from Figure 6; (a) FDK using 364 projections, (b) GP-BB with 12 iterations 
using 120 projections, (c) GP-BB with 18 iterations using 120 projections, (d) GP-BB with 24 iterations 

using 120 projections, and (f) GP-BB with 30 iterations using 364 projections. The reconstruction times are 
listed on the figure. 
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dose. Also, as mentioned, there’s a relatively more benefit in terms of image quality 

going from 90 to 120 than from 120 to 180 projections (Figure 4-7), i.e., diminishing 

increase in image quality for a given increase in dose. The GP-BB-reconstructed image 

using 364 projections is also displayed (Figure 4-8f) to show the limiting image quality 

that can be achieved with the GP-BB algorithm. First of all, the upper-limit GP-BB image 

using 364 projections is a visually better quality image than that of the FDK (i.e., less 

noise, streaking artifacts around bones, etc.), which reaffirms our results in Figure 4-7 

that, given equal dose, the GP-BB always does better. But, more importantly, the image 

qualities of the 120-projection-images are comparable to the FDK image, and, with a 

reasonable reconstruction times of ~34-78 seconds. Of course, the necessary image 

quality for clinical use is quite subjective and requires further (clinical) testing to 

determine for each site, which is of our future research, it is still encouraging that a 

“visually” similar quality images can be obtained in one-third the dose, in a “reasonable” 

time frame. To the best of our knowledge, this computational speed achieved using the 

GP-BB algorithm is the fastest compressed sensing-type optimization that have been 

proposed for the CBCT reconstruction to date [32, 33, 37, 110, 113-115]. 

4.7 Discussion 

A. Algorithm performance 

The translation of compressed sensing-based CBCT reconstruction algorithms 

onto radiation therapy clinical settings has been difficult due to the fact that its 

mathematical formulation needs to be solved numerically rather than analytically, thus 

requiring a prohibiting time to solve. A single, complete iteration involves at least one 
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forward and one backward projection calculations, which are computationally expensive. 

Although significant amount of computational time can be spared by parallelizing the 

task with GPU programming [95, 116, 121-123], still, the majority of time (e.g., >80%) 

spent in the reconstruction is on calculating the forward and backward projections. 

Therefore, for an algorithm/technique to be efficient, it must 1) require a minimal number 

of forward and backward projection calculations per iteration, and 2) converge in a 

minimal number of total iterations. 

Besides the well-known forward-backward splitting technique that we compared 

in this work, there are other compressed sensing-based methods with a focus on 

achieving faster convergence than previously reported [37, 124] that base on the 

Nestrov’s first order method. However, on reviewing their works, it was observed that 

although the convergence rate (determining the number of iterations needed to reach a 

desired solution) outperforms the comparing counterparts, the algorithms require multiple 

forward and backward projection calculations at each iteration[37] or an extra iterative 

procedure to calculate the additional unknown parameters, leading to an increased 

reconstruction times. The non-convex prior image constrained compressed sensing 

(NCPICCS) algorithm reported by Ramirez-Giraldo, et al.[124] also suffers from the 

similar complexities where an extra-calculation of forward and backward projection is 

required to calculate each step size. The GP-BB algorithm, on the other hand, requires 1) 

only one forward and one backward projection calculations per iteration, which is the 

least number required for solving any iterative reconstruction techniques, and 2) a simple 

gradient step size calculation (i.e., Equation 4-8) that needs only the prior and current 

values of the gradient and the image volume, which occupy <300MB of memory, thus 
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facilitating easy incorporation onto a single GPU card memory (1.7GB storage). In our 

implementation, calculating the step size takes a negligible time, so the great majority of 

the time is spent on the forward and backward projection calculations (e.g., >98% of 

time). This demonstrates that the GP-BB algorithm requires only a minimal 

computational load needed to reach a solution
 

B. Dose reduction 

It needs to be stated that, if reconstruction time is of no issue and thus enough 

iterations are allowed, all of the compressed sensing-type algorithms evaluated in this 

study will eventually reach an optimal solution as anticipated from Figure 5. That means, 

if an equal number of projections are used with each algorithm, then the achieved image 

quality at the end will be identical and hence no benefit, in terms of dose and/or image 

quality, will be observed for any one algorithm. However, we do not have an infinite time 

to spare, especially in an on-line IGRT environment, and hence an algorithm that can 

produce the most optimal image under a reasonable time and with a least amount of 

projections (i.e., dose), is favored. Our proposed GP-BB algorithm relatively fits well in 

this respect. In the Catphan phantom experiment, the GP-BB produced a reasonable 

image with a highly under-sampled projections (40/364≅89% dose reduction; see Figure 

6), in ~12.6 seconds. However, for a clinical patient case, about 120 projections or more 

were needed to generate a reasonable quality images, taking a respectable ~34-78 

seconds. This achievement still represents a significant dose reduction of ≅67%, but any 

further dose reduction (i.e., less number of projections) is generally not recommended 

due to a fast degradation of the image quality, although the reconstruction times will 

further decrease. This has also been the observation of earlier works as well [32, 112, 
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115]. The possible reason for needing more projections in patients than in phantoms is 

that the internal anatomy of humans are relatively less sparse, and thus require more data 

to properly represent it. In addition, since the sparseness is organ-patient specific, much 

research is needed to determine the appropriate number of projections needed, and hence 

the achievable dose reduction, for each organ and patient. The appropriate mAs setting, 

per projection, would be another parameter that needs to be studied as well. Utilizing 

prior information such as the planning CT would be a one good way to decide what dose 

reduction is possible/appropriate for each case.
 

C. Regularization parameter  

Regularization parameter λ, in Equation 4-1, is one of the most influential 

parameters affecting the image quality. It was our experience that the higher this value, 

the blurrier and smoother the images, and the smaller it is, the sharper and noisier the 

images, in opposite. This is due to the fact that λ is the weighting factor for the TV-norm 

regularization term in Equation 4-1. Thus if λ is high, then more weight is given in the 

GP-BB optimization to minimize the variation across the image and hence the blurrier 

but smoother the look. Oppositely, if λ is low, then more weight is given to the fidelity 

term in Equation 4-1 and hence the high frequency information will survive, thus 

preserving the noise and streaks. For example, we observed some irregular ripples in a 

uniform phantom region, in Figure 4-4, when a small is applied, demonstrating the 

importance of a proper/optimal λ selection. 

Recently, there have been considerable interests in optimizing the λ value in a 

regularization-type optimization problems[26, 125]. Although the purpose of these works 

is for different applications, we anticipate that similar strategies can also be applied to the 
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TV-based CBCT reconstruction problem as well. But, for now, since there is no global 

standard in λ value(s)[112] for CBCT reconstructions, the selection of λ was subjectively 

picked by painstakingly repeating a large range of values. From this experience, we 

learned that for fewer projections, a relatively high λ is needed to suppress the 

overwhelming noise and streaks, while for more projections, a relatively low λ is 

sufficient. Specifically, with 100 or less projections, we set λ = 0.0075, and for >100 

projections, we set λ = 0.0025, for the head-and-neck patient case. Obviously, more 

research is needed in finding an optimal λ values for various situations, and that this 

value is likely not only number-of-projections dependent, but will also be patient and site 

dependent as well. For best clinical practice, an automated selection of λ based on a prior 

knowledge, whatever that may be (including a planning CT), will help facilitate the 

clinical translation of this technology into a busy on-line radiation therapy environment. 
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Chapter 5   Fiducial marker motion based four 

dimensional (4D) CBCT and DTS 

5.1 Introduction 

The introduction of cone-beam computed tomography (CBCT) system in 

treatment settings has allowed implementation of various image guidance techniques for 

precise target localization [14, 18, 21, 60, 126]. With the help of CBCT system, the 

utilization of respiratory correlated four dimensional imaging schemes such as 4D CBCT 

and 4D digital tomosynthesis (DTS) for image guidance have become recently possible, 

and thereby it is possible to verify mobile internal organs and tumor target volume prior 

to the radiotherapy treatment [89, 127-129]. In fact, clinical adaptation of four 

dimensional CBCT for patient's lung stereotactic body radiation therapy (SBRT) 

treatment has started to be carried out very recently [130-132]. 

Besides the lung tumor cases, respiration induced intrafractional target motion is 

also particular concern in abdominal cancers such as liver [133, 134] and thereby 

verification process of its motion is necessary. However, since features of liver is not 

clearly visible in CBCT, it is difficult to assess and verify the breath induced motion prior 

to the treatment. Quite recently, fiducial markers inserted to or near tumor have been 

utilized for on-line imaging guidance using CBCT to improve precision of SBRT [135, 

136] and thereby, opened the accessibility to asses movement of target tumor through 

four dimensional image guidance techniques.   

On sorting the motion phases of cone-beam projection data for generating 4D 

reconstructed images, 5 types of acquiring patients' breath induced signal have previously 
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been demonstrated : using external gating system such as 1) thoracic belt containing a 

pressure sensor [137], 2) infrared  reflector camera system [137, 138], 3) optical patient 

body surface measurement, and 4) gated acquisition of projection data [139], and direct 

method using 5) analysis on projection data [24]. Methods using external gating system 

and gated acquisition of projection data can be problematic since it could increase the 

complexity during patient setup and possible occurrence of error between signal and 

target motion [140, 141]. Method of analyzing projection data as an alternative, is 

suitable on calculating breathing phase, however, signal do not describe true diaphragm 

displacement [24] and therefore only phase wise sorting is achievable.  

In this chapter, we will demonstrate the use of fiducial markers imaged at cone-

beam projections to generate breath induced motion signal of liver for reconstructing 4D 

DTS as well as CBCT images. This method is advantageous to above types since the 

motion signal is extracted directly from markers inserted at internal organ near or at the 

tumor. In addition, measuring amplitude displacement of motion could be also 

achievable, which makes amplitude wise as well as phase wise sorting can be done 

selectively. 

5.2 Imaging condition and patient data 

A The projection data of liver cancer patient was acquired using On-Board Imager 

(OBI) CBCT system (Varian Medical Systems, Inc., Palo Alto, CA) which consists of a-

Si flat panel detector and kV X-ray source mounted on a Varian 21EX Clinac. The flat 

panel detector consists of 1024×768 pixels with pixel size 0.388×0.388 mm per each. 
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The measured source to detector distance (SID) was approximately 150 cm with gantry 

rotation speed of 6 degrees per second which takes about 1 min for full gantry rotation. 

Images were scanned with “Standard dose 150 cm bow tie” mode, where 651 

projections data were acquired over 364° with 120 kVp, 80 mA and 25 ms for each 

projection. The FOV of both cases were 50 ×50 cm. Both projections were acquired with 

an aluminum bowtie filter placed directly under X-ray tube to compensate the large area 

projection geometry. 

5.3 Extraction of fiducial marker position from CBCT imager 

On extracting fiducial marker positions from each projection data of OBI, we 

have implemented feature extraction algorithm of marker which its shape and size is 

priory known. Since the fiducial markers are made up of gold, the contrast of fiducial 

marker is clearly distinctive in the projection data. The feature extraction algorithm 

consists of 5 steps: 1) sub-sample the region of interest (ROI) where fiducial markers are 

imaged in the projection data, 2) apply edge enhancement filter (canny edge operator) to 

highlight the feature of fiducial markers on the region which is extracted, 3) undergo fast 

Fourier transform (FFT) of highlighted region, multiply with the FFT signal of priory 

obtained ideal fiducial marker image, and then apply inverse FFT (convolution with ideal 

fiducial marker), 4) apply certain threshold value to the image to extract regions of 

fiducial markers, and finally 5) find the center of mass of each fiducial markers which are 

extracted from the image.     
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Fig. 5-1. General work flow of fiducial marker extraction algorithm. 
 

The general work flow of fiducial marker extraction algorithm is illustrated in 

Figure 5-1. The reason for sub-sampling ROI where fiducial markers are present in the 

projection data at first step is due to the fact that the size of region where fiducial markers 

are distributed is small compare to the size of projection data and therefore, it is 

inefficient, less accurate and time consuming to find the markers by processing the 

feature extraction algorithm on whole projection image. If we could find the ROI where 

fiducial markers are present and process the feature extraction algorithm only on that sub-

sampled region, it would be much accurate, efficient and faster. The ROI where fiducial 

markers are imaged in the projection data can be found by assigning a volume 

surrounding the fiducial markers in planning CT data, and forward projecting the 

assigned volume through CBCT projecting condition. Then the region of area in each 

projection data where forward projected volume intersects would be the ROI where 

fiducial markers are imaged. In the 2nd step, the edge enhancement filter applied on the 

sub-sampled image to optimally visualize the marker edges and feature of fiducial 

markers. As a edge enhancement filter, well known "canny edge operator" was used to 

enhance the edges. The canny edge operator uses a filter based on the first derivative of a 
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Gaussian filter kernel to reduce the noise of the image initially, followed by finding the 

intensity gradient of the image which corresponds to the edges. Thereby, only the edge of 

the feature can be enhanced without increasing noise component present in the image. 

The edge enhanced image where feature of fiducial marker is clearly visible, is then 

convolved with the priory obtained ideal fiducial marker image in order to boost up the 

pixel values of fiducial marker region. The convolution process was done with the use of 

FFT by simply multiplying Fourier transformed components of edge enhanced image and 

ideal fiducial marker image. Through multiplying the frequency component of ideal 

fiducial marker, pixel values which correspond to feature of fiducial marker in the image 

can be increased and become distinguishable from other regions. Finally, this region can 

be separated by applying threshold on the image and position of each fiducial marker can 

be extracted by calculating center of mass on each fiducial region.  

In this study, we have implemented fiducial marker position extracting algorithm 

on MATLAB program. The volume surrounding the fiducial markers in planning CT was 

set as 5 cm3 cube centered at -15 cm, 0, 0 from center of x, y and z axis respectively. The 

threshold was assigned as 80% value to the maximum pixel value of processing image 

after the convolution step, and center of mass on each fiducial marker was calculated by 

the use of CENTROID function provided by MATLAB.  

5.4 Generation of breath induced marker motion signal 

The breath induced marker motion signal can be generated by compiling the 

extracted position of fiducial markers for every cone-beam projections. However, certain 

angular region exists during patient scanning where fiducial markers are missing at the 
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projection data due to limited field of view (FOV) coverage of OBI at "half-fan" scanning 

mode geometry. Therefore, it is necessary to 1) select a signal from fiducial markers 

which has the least missing margin and 2) extract additional reference of breath induced 

signal to analyze and predict the angular margin where fiducial markers are missing in 

order to complete full breathing signal during patient scanning.  

 

Fig. 5-2. Signal ‘‘profiling’’ of diaphragm and marker motion to predict signal at missing scan angular 
region. 

 
In this study, we have predicted motion signal through ‘‘profiling’’ the diaphragm 

motion and marker motion signal. Ruan et al. [142] have introduced a real-time approach 

to systematically estimate baseline, frequency variation and fundamental pattern change 

of respiratory signal and predict the motion signal based on these observations. Prediction 

method through signal ‘profiling’ can be done in three stages : 1) phase estimation of 

missing region through tracking the fitted elliptical shape in augmented state space and 

Poincaré sectioning principle with diaphragm motion signal, 2) estimation of 

fundamental pattern through unwarping the actual marker motion signal at each state of 

phases. 3) assembling the estimates on to displacement signal space. The diaphragm 

motion signal was acquired from analyzing of projection data[24] (See Figure 5-2). As 

specified earlier, the motion signal from analyzing of projection data signal do not 
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describe true diaphragm displacement however, can be used as estimate of phase since 

phase pattern of respiratory motion is clearly distinguishable. The estimate of 

fundamental pattern at particular phase can be derived from mean average of existing 

marker motion signals at same phase by assuming that motion pattern of marker is stable.     

Note that the purpose of replacing the missing signal was to complete the breath 

induced signal during patient scanning, and thereby preserving the overall quality of 

reconstructed images. Since information of fiducial markers are missing in projection 

data at the replacing margin, the image quality of region surrounding fiducial markers 

will never be affected no matter how much the replacement signal contains error with the 

actual motion.  

5.5 Amplitude wise and phase wise sorting 

The breath induced signal from extraction fiducial marker motion was then 

analyzed to process the phase wise sorting and amplitude wise sorting of acquired 

projection data. Through dividing the signal by separate respiratory periods, we have 

divided the projection data into four phases: peak-exhale phase, mid-inhale phase, peak-

inhale phase, mid-exhale phase and four amplitudes: low amp, mid-low amp, mid-high 

amp and high amp. The reason for assigning less number of phases than 4DCT number of 

phases is due to insufficient number (~651) of projection data for a patient was available 

to be divided and reproduce tolerable image quality after the reconstruction.  

In this study, 87.5% to 12.5% of phase length was assigned as peak-exhale phase, 

12.5% to 37.5% of phase length as mid-inhale phase, 37.5% to 62.5% of phase length as 

peak-inhale phase and, 62.5% to 87.5% of phase length was assigned as mid-exhale 
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phase in terms of phase wise sorting. Similarly for amplitude wise sorting, 87.5% to 

12.5% of signal height was assigned as low amp, 12.5% to 37.5% of signal height as mid-

low amp, 37.5% to 62.5% of signal height as mid-high amp and, 62.5% to 87.5% of 

signal height was assigned as high amp. 

5.6 4D CBCT and   DTS reconstruction 

For 4D CBCT, the reconstruction was done with well known FeldKamp (FDK) 

algorithm [19] which performs backprojection after filtration of projection data to 

reconstruct each sorted phase. The FDK algorithm was modified in order to suit the 

“half-fan” mode of cone-beam projection geometry. The resolution of voxel grid was set 

as 512× 512 × 64 with a resolution of approximately 1.0 mm (LR)× 1.0 

mm(AP)×2.5mm(CC).  

On-board DTS are reconstructed by using subset of projection data which was 

acquired for CBCT using a FDK-type algorithm since the OBI system implemented for 

clinical use cannot support the imaging sequence of DTS. The theory of reconstructing 

DTS is almost the same as CBCT, except that DTS is created under limited angle 

projections whereas CBCT is reconstructed over all angle projections [21, 22, 99]. For 

reconstructing 4D DTS, projection data can be used from subsets of 4D projection 

datasets for reconstructing 4D CBCT. The total scan angle from "half-fan" mode was 

assigned as +90°± 22.5° and -90°± 22.5° from the rotation center. The resolution of voxel 

grid for 4D DTS was set as 512×512×64 with a resolution of approximately 1.0 mm 

(LR)×2.5 mm(AP)×1.0mm(CC). In terms of software, we have used C language for 

reconstruction process. 
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5.7 Results 

 

Fig. 5-3. Breath induced marker motion of three fiducial markers implanted on the patient. 

 

Fig. 5-4. Marker motion signal and its corresponding phase estimate through signal ‘‘profiling’’ prior (a) 
and after (b) the prediction. 

 
Figure 5-3 shows the breath induced marker motion of three fiducial markers 

implanted on the patient. It is shown that no.2 fiducial marker has the least missing 

margin where marker starts to disappear from 99th projections to 234th projections which 

corresponds to approximately 67.5° degree. Figure 5-4 shows the marker motion signal 

and its corresponding phase estimate through signal ‘‘profiling’’ prior (a) and after (b) 

the prediction. It is clear that the joint of phase estimates between measured and predicted 
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region is smooth without major discontinuity. Moreover, it can be observed that the 

fundamental shape of marker motion signal has been restored after the prediction which 

makes overall signal likely natural. Figure 5-5 shows amplitude wise and phase wise 

reconstructed image of 4D CBCT (a) and DTS (b) at every state and corresponding 3D 

image. In comparison, motional artifact of fiducial marker (white arrow) is less in 

amplitude wise than phase wise reconstructed images due to lesser amount of residual 

motion at each state of sorting process. 

 

Fig. 5-5. Amplitude wise and phase wise reconstructed image of 4D CBCT (a) and DTS (b) at every state 
and corresponding 3D image. 
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5.8 Discussion and conclusion 

In this study, we have demonstrated the use of fiducial markers imaged at CBCT 

projections to generate breath induced motion signal of liver to generate 4D DTS as well 

as CBCT images. The result showed that amplitude wise sorting showed less motional 

artifact than phase wise sorting. To the best of our knowledge, the motion of 

transcutaneously inserted metal markers has never been attempted for 4D sorting 

applications. Proposed method is advantageous compared to other methods in ways that 

1) it does not require external gating system and 2) amplitude as well as phases wise 

sorting is selectively achievable.  

Problem arises on certain angular region (18.5% of total scan) during patient scan 

where fiducial markers are missing at the projection data due to limited field of view 

(FOV) coverage of OBI at "half-fan" scanning mode geometry. However, we have shown 

that this missing region can be replaced by predicting the motion signal through 

‘‘profiling’’ the diaphragm motion and marker motion signal. Besides using diaphragm 

signal to predict the period of missing region, the marker motion signal itself can be used 

as to predict the approximate length of the period. If the periodic variation of the signal is 

low, then average of periodic length can be used as the periodic length of missing region. 

Else wise, we can apply adaptive learning technique [142] to assign higher weights on 

recent observations to missing region if periodic patter of motion signal is substantially 

varying. This adaptive learning technique can also be applied to predict fundamental 

pattern change if the amplitude of signal is unstable. In this study, such variation was not 

observed and thereby simple mean of observations were used as predicted signal. These 

predictions may contain error with the actual signal, however, as specified in section 5.4., 
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such replacement will not be problematic since information of fiducial markers are 

missing at the projection data in that angular region. Therefore, image quality of the 

region surrounding fiducial markers will never be affected no matter how much the 

predicted signal contains error after reconstruction process. Moreover, such problem can 

be handled if the patient is fully scanned with "spotlight mode" like as in prostate cancer. 

All in all, we have shown the feasibility of motion tracking as well as 4D 

reconstruction of CBCT and DTS of liver through transcutaneously inserted metal 

markers and can be directed towards utilizing the technique for on-line image-guided 

adaptive radiotherapy. 
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Chapter 6  Motion constrained image reconstruction 

(MCIR) for 4DCBCT reconstruction 

6.1  Introduction 

Image guided radiation therapy (IGRT) utilizing external imaging devices to 

verify position setup errors of patient just before/during treatment beam delivery is 

widely used in current radiation therapy setting [17, 143]. In particular, cone-beam 

computed tomography (CBCT) mounted on linear accelerators are most widely used 

imaging device in IGRT, due to its wealthy functional role in providing patient’s (1) 

anatomic information [14, 18], (2) geometric information [58, 105] and (3) CT numbers 

for possible dose calculation and on-line/off-line re-optimization of plans. [62, 106] With 

aid of CBCT, implementation of various image guidance and adaptive radiotherapy 

techniques to enhance precision of treatment delivery become possible. [59-61, 126] 

Consequently, there is minimal doubt that CBCT has prominent role in current 

radiotherapy settings. 

Image acquisition time of CBCT is long (≥1 min for thoracic/abdominal sites) due 

to limited speed of the linear accelerator gantry. [72-74] In addition, there are challenges 

in verifying the trajectory of mobile tumors caused by breathing. For example, when 

CBCT is applied to thorax, the image quality can be heavily degraded due to patient 

respiratory motion. Serious motion-induced artifacts compromise the effectiveness of 

using CBCT during IGRT. [144]  

To overcome this problem, four-dimensional CBCT (4DCBCT) has been 

developed to provide respiratory phase-resolved volumetric images. [24, 137, 145-147] 
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In such an imaging modality, all the X-ray projections are first retrospectively grouped 

into different respiratory phase bins according to breathing signal tagged on every 

projection image. A CBCT image for each breathing phase is then reconstructed 

independently, yielding an image with much less motion-induced artifacts. The capability 

of 4DCBCT to significantly reduce the motion artifacts and enhance the target 

localization accuracy has been evaluated, allowing up to 50% reduction in planning target 

volume (PTV) size. [25, 148] 

 

Fig. 6-1. Axial view of free-breathing 3DCBCT (FB-3DCBCT) (a) where all 647 X-ray projection data are 
used to reconstruct without considering breathing motion and 4DCBCT (b) where peak-inhale respiratory 
phase are grouped retrospectively, and only its corresponding phase (29 from 647 projections) are used to 
reconstruct the image. In FBCBCT, the diaphragm is blurred due to motion artifact (white arrow), and in 

4DCBCT, severe streaking artifact exists due to inadequate number of projections to reconstruct the 
volumetric image. 

 
Although 4DCBCT is capable of improving the motion artifacts and target 

localization accuracy, it poses another challenge for reconstruction. In fact, unless 

oversampling of X-ray projections are taken (which unavoidably increase the imaging 

dose by multiple folds[24, 25, 148]), the phase binning approach leads to insufficient 

number of X-ray projections in each respiratory phase bin and thus causes severe 
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streaking artifacts, when a standard 3DCBCT scanning protocol and reconstruction 

algorithm (FDK [19]) is applied (See Figure 6-1). This is also known as the under 

sampling artifact where the number of projections is insufficient to reconstruct a 

reasonable quality CBCT images. 

In the past, many attempts have been made towards removing or relieving this 

problem. For example, scanning protocols of multiple gantry rotations and slow gantry 

rotations have been proposed to considerably increase the number of projections per 

phase. [146, 147, 149] In either case, reducing the mAs to avoid increasing the imaging 

dose to patients inevitably degrades image quality. 

Advanced reconstruction techniques have also been proposed. For example, 

motion estimation and correction methods have been incorporated into the 

reconstruction.[150] It has also been proposed to split the reconstruction region according 

to a volume of interest and treat the reconstructions separately.[151] Meanwhile, a 

number of research efforts have been made on post-processing of the 4DCBCT images. 

For instance, a prior image-based approach [152] has been developed by first 

reconstructing a blurred CBCT image with all projections and then using it to estimate 

and remove the streaking artifacts. It has also been investigated to enhance the CBCT 

image by first deforming images at all phases into a single one and superimposing them 

together.[153, 154] The efficacy of these approaches, however, largely depends on the 

accuracy of the algorithms involved, such as deformable image registration algorithms. 

One of the most advanced approaches to date is the prior image constrained compressed 

sensing (PICCS) algorithm which can reconstruct high quality 4DCBCT without 

compromising imaging dose.[139] It first reconstructs a prior image by using all 
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projections and then reconstructs each phase image by regularizing both the total 

variation of the image itself and the total variation of the difference from the prior 

image.[108, 155, 156] Due to its high quality imaging performance and relative 

simplicity of the algorithm, PICCS has been evaluated in many different applications. 

[108, 155, 156] 

In this study, we propose a novel 4DCBCT reconstruction algorithm called 

Motion-Map Constrained Image Reconstruction (MCIR) that utilizes a motion-map to 

achieve high-quality images from a highly under-sampled projection data. The MCIR 

algorithm allows 1) reconstruction of high quality 4DCBCT phase images with no more 

than the imaging dose used in a standard 3DCBCT scan, and 2) high phase resolution 

4DCBCT sets with up to 20 phases using a typical patient’s free-breathing 3DCBCT (FB-

3DCBCT) scan. Comparison of our novel approach with the standard FDK and PICCS 

algorithms are presented in detail with numerical moving phantoms, and lung clinical 

patient data. 

6.2  Review of 4DCBCT reconstruction 

The common concept of CBCT reconstruction of all types (e.g. 3DCBCT and 

4DCBCT) is to essentially solve the problem of finding unknown X-ray attenuation 

coefficients of image voxels from X-ray projections data measured from various gantry 

angles. In 4DCBCT, the first step in reconstruction is to group the X-ray projections into 

various respiratory phase bins (e.g. 10 phases) according to breathing phase tagged to 

each projection image. In the next step, a set of 3DCBCT for each breathing phase is then 

reconstructed from the sorted projections to constitute a 4DCBCT. One thing to note here 
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is that when a particular 4DCBCT phase image is reconstructed, substantial amount of 

projection data that are not within the phase window is discarded after the sorting 

process. Under such circumstance, projection data that are left to solve the unknown 

4DCBCT phase voxels are then often insufficient to allow high quality image 

reconstruction. The main contribution of the proposed MCIR algorithm is to address this 

issue by intelligently differentiating the moving voxels in the volumetric image from the 

stationary ones.
 

6.3 MCIR algorithm 

The key intuition of the MCIR algorithm lies in the observation that when a 

patient exhibits respiratory motion, not all parts of the patient’s anatomy are in motion. 

Figure 6-2 illustrates this point. Tissues that are inside the lungs (e.g. tumor) move 

significantly, whereas outside are nearly stationary (e.g. bones, muscles, etc.). Suppose 

we can distinguish voxels between ones that are moving and stationary via what we call a 

“motion-map”, then a series of 4DCBCT images can be reconstructed by updating FB-

3DCBCT only those voxels that are moving according to a corresponding phase, and 

keeping voxels constant for those voxels that are stationary. 

 

Fig. 6-2. 4DCT image of lung cancer patient at (a) peak inhale 0% phase and (b) exhale 50% phase. Using 
the dotted white line as reference, the lung tumor inside the right lobe exhibits significant up/down motion, 

while the bones and surrounding muscle tissues are relatively stationary. 
 

The main advantage of such approach is that since the number of mobile voxels to 

be reconstructed in each phase is less than the total voxels in 3D image, the overall 
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unknowns in each phase is now smaller. Therefore, there are more projection data to 

reconstruct a higher quality phase images than if such information wasn’t utilized.  

In this chapter, the matrices are denoted as a boldface-uppercase letters and the 

vectors are denoted as a boldface-lowercase letters. In the MCIR algorithm, we represent 

the unknown 4DCBCT phase volume as: 

(6.1) 

where  xphase  = unknown 4DCBCT phase volume, x3D = a priori reconstructed FB-

3DCBCT volume (using any conventional algorithm including FDK[19] and 

SART[157]), U = diagonal motion-map matrix and kphase = phase-specific update vector.  

Equation (6.1) demonstrates that our approach is to start from the FD-3DCBCT 

image and then identify the phase specific motion information by referring to the motion-

map matrix U. The diagonal motion-map matrix U, which represents the weighting 

factors associated with all voxels is defined mathematically as follows: 

(6.2) 

Here, ai corresponds to the i-th diagonal element of motion-map matrix U, where 

the value ranges between 0 to 1 and ai would be close to 1 when the voxel value varies 

largely with respiratory motion and close to 0 when voxel value varies minimally with 

breathing. The main reason for adding square root term on U in Equation (6.1) is to 

simplify the updating equation for solving xphase, which we will show shortly. 

Remember that in 4DCBCT reconstruction, projection data that are available for 

each phase is limited in number due to the sorting process. Therefore, it is important to 

select reconstruction model that appropriately handles such circumstance to give you an 

adequate image. Recent studies have shown that compressed sensing type of CBCT 

phasephase 3D kUxx 21/+=
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reconstruction based on total variation formulation has shown that efficient 

reconstruction can be performed with limited number of projections.[33, 107, 108, 110, 

158, 159] Thus, utilizing this theory, keeping 4DCBCT volume xphase as unknown, the 

mathematical model for the MCIR algorithm is setup to solve the constrained convex 

optimization of the form: 

(6.3)                                                          

where Aphase = Radon transform operator at a specific phase, bphase = phase sorted 

projection 

data, λ = regularization constant, and TV(·) = Total Variation (TV) regularization term. 

The TV term we used in this study is 

defined as: 

(6.4) 

 

where i, j and k corresponds to Left-Right (LR), Anterior-Posterior (AP) and Cranial-
 

Caudal (CC) coordinates in 3D volume space, respectively. Here, elements of vector x 

are indexed by 3D coordinates for notational simplicity.  In this form, the first term in 

Equation (6.3) is the fidelity term, which enforces fidelity of xphase with the sorted 

projection data. The second term (the regularization term) promotes sparsity inherent in 

the X-ray attenuation characteristics of the human body. 

In Equation (6.1), we have defined the 4DCBCT phase volume xphase as a 

combination of FB-3DCBCT with the phase-specific update vector kphase that is weighted 

by the motion-map matrix U. The FB-3DCBCT, x3D, can be easily computed using all 

available projections. Assuming that we already know the value of motion-map matrix U, 
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which we will discuss in section 6.4, we can calculate to solve Equation (6.3). This is 

done by substituting Equation (6.1) into (6.3) and calculating the gradient of the right 

hand side of Equation (6.3) with respect to  kphase, which then becomes: 

(6.5) 

where n = number of iterations, α = gradient step size, AT
phase = back-projection 

matrix of sorted projections and = gradient operator. Note here that by 

modeling xphase with square root term of U (Equation (6.1)), the updating equation 

simplifies to multiplying U, instead of its square. 

In Equation (6.5), we can notice that the gradient (second term)  of Equation (6.3) 

with respect to kphase becomes the product of motion-map matrix U with the original 

gradient of TV based CBCT reconstruction algorithm[159] (i.e. gradient of Equation 

(6.3) with respect to xphase). As a result, the update energy will mainly be imparted on the 

voxels with the associated weight factor ai closer to 1 while spending little energy to 

update the voxels with values close to 0. Those voxels having weight ai=0 in U will 

preserve the voxel value in the FD-3DCBCT, x3D.
 

6.4 Motion-map calculation 

In the previous section, we have mathematically formulated the updating equation 

of MCIR algorithm (Equation (6.5)) to minimize the cost function given by Equation 

(6.3). As you can imagine, calculating the motion-map U is a critical step in 

implementing Equation (6.5). The effectiveness of the MCIR algorithm is largely 

dependent upon how well the motion-map represents the mobile anatomy. 
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There can be a number of ways to calculate the motion-map of a patient. One 

intuitive way is to utilize a planning 4DCT dataset via calculation of deformable motion 

vectors. However, this approach may not be very useful since the patient posture must be 

very close, if not identical, between the 4DCT and at the time of treatment. In addition, 

considerable motion-to-motion variation on daily basis [160] as well as with registration 

uncertainty [161] exists which may hamper the precision of the motion-map. 

In this study, we have developed a novel and effective method that obtains the 

motion-map directly from the projection data obtained at the time of the CBCT scan. In 

this way, no external prior-knowledge information is needed to obtain the motion map. 

The idea behind this concept is that when the FB-3DCBCT is reconstructed, the regions 

that are subject to varying degrees of respiratory motion would contain larger data 

inconsistency (i.e. motion artifact) compared to the regions that are stationary. Intuitively, 

if we can incorporate such information and reconstruct with an effective strategy, a 

precise motion-map matrix U can be calculated. This is our intuition, which led to the 

following. 

To calculate the motion-map matrix U, first, the FB-3DCBCT is reconstructed 

using all of the projections. For this, any reconstruction method can be used (e.g. 

FDK[19] or compressed sensing type algorithms). In this study, we have used the FDK 

approach for its computational efficiency compared to other iterative reconstruction 

techniques. Second, for each phase, the FB-3DCBCT is updated with the phase-wise 

sorted projection data while minimizing 1-norm difference from the reconstructed FB-

3DCBCT as a regularization term. Third, sub-motion-error vector for each phase denoted 

by uphase is calculated by taking the difference between the updated FB-3DCBCT with the 
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original FB-3DCBCT. Mathematically, the sub-motion-error vector can be represented 

as: 

                                                                                      (6.6) 

where 

   (6.7) 

Here, xphase = updated FB-3DCBCT with phase-wise sorted projection data with 

1-norm constraint, x3D = a priori reconstructed FB-3DCBCT volume, and η = 

regularization constant for 1-norm term. In Equation (6.7), we can notice that the original 

FB-3DCBCT, x3D, is being updated with phase information, x*
Phase, while promoting 

sparsity in the difference between the original FB-3DCBCT and the updated value, xPhase. 

In this way, we can rigorously update the original FB-3DCBCT with phase information 

in the sections that contain motion-induced data inconsistency while keeping the 

consistent regions with values from the original FB-3DCBCT. Then, by taking the 

difference between FB-3DCBCT and x*
Phase , sub-motion-error vector can be calculated 

representing motion-errors corresponding to each phase. Finally, when sub-motion-error 

vector has been calculated for all phases, we can calculate a normalized motion-map 

matrix U = diag{ a1, a2, …, aM} defined as: 

     
                 (6.8)  

 
where N = total number of phase bins that are sorted. Figure 6-3 illustrates the process of 

obtaining U in the MCIR algorithm. It can be seen that a large portion of U exhibits very 

low values (closer to 0) except the regions that contain motion. 
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Fig. 6-3. Illustration of generating a motion-map, U. First, xFB-3DCBCT is reconstructed using a conventional 
algorithm (e.g., FDK). Second, sub-motion-error vector for each phase (uphase) is calculated by taking the 
difference between updated FB-3DCBCT with FB-3DCBCT. Finally, motion-map matrix U is calculated 

by normalizing absolute sum of sub-motion-error vector uphase at all phases. As can be seen, image U 
exhibits very low values (dark ~0), except near the diaphragm and lung (white ~1). 

 
Solving Equation (6.7) for all phases could be time-consuming. It turns out that 

approximately solving the problems with only a few iterations provides enough 

information for generating the desired motion-map. As a result, the motion-map can be 

generated with much less computations compared to the computation required for 

reconstructing the phase-specific images, indicating that the overall overhead for 

generating the motion-map is small.
 

6.5 Practical implementation of MCIR 

After the motion-map U is generated, Equation (6.5) has all of the necessary data 

to iteratively search for the best solution, for each 4DCBCT phase, with the original FB-
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3DCBCT as the starting volume. The MCIR algorithm pseudo code is shown in Figure 6-

4. The process is as follows. First, FB-3DCBCT is reconstructed with the FDK algorithm 

using all X-ray projections that were obtained. Second, FB-3DCBCT is updated with 

phase-wise sorted projections such that regions containing the motion induced data 

inconsistency are updated with the phase information while enforcing consistency on 

motion-free regions with the original values from the FB-3DCBCT. The updated volume 

is subtracted with the original FB-3DCBCT to generate sub-motion-error vector, u, at 

each phase. Third, the absolute values of the sub-motion-error matrices are element-wise 

added and normalized to the maximum values to obtain the motion-map matrix U. 

Finally, for all phases, the MCIR is performed by initializing all voxels as the original 

FB-3DCBCT and updating the values according to Equation (6.5), at each iterative step. 

 

Fig. 6-4. The flow of MCIR algorithm for 4DCBCT reconstruction at each phase. Note here that the second 
term of the equation in step 3-2 is first-order gradient of Equation (6.7). 

 
As can be noticed, the MCIR algorithm is an iterative process, which is 

computationally heavy, taking hours of CPU time to reach the solution. Efficiently 

solving this would require (1) parallel programming with proper hardware, and (2) 

deriving a mathematical formulation to achieve fast-solution-convergence. To handle the 
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former issue, we have parallelized our code with the graphics processing unit (GPU) in 

the CUDA C/C++ programming environment. In this way, major computational tasks 

such as (1) forward projection, (2) back projection, and (3) vector as well as filter 

operations can be efficiently parallelized [32, 115, 162]. For the latter issue, we have used 

our recently published gradient projection algorithm based on the Barziliai-Borwein (GP-

BB) formulation that can handle compressed sensing type of CBCT reconstruction based 

on total variation formulation in extremely efficient manner. [118, 159]
 

6.6 Numerical simulations and patient data 

To evaluate the performance of our proposed MCIR algorithm, we have tested on 

both numerical phantom and lung cancer patients, with the X-ray projections obtained 

from the TrueBeamTM system (Varian Medical Systems, Palo Alto, CA). The results were 

then compared with the (1) clinical FD-3DCBCT reconstructed from the OBITM (FDK), 

(2) 4DCBCT reconstructed with FDK, and (3) 4DCBCT reconstructed using PICCS, a 

best known 4DCBCT algorithm to date. For the numerical phantom study, we have used 

a dynamic chest phantom similar to those used in previous 4DCBCT related studies.[152, 

163] It is a numerical phantom that emulates respiratory motion with two circular objects 

deforming expand-shrink and moving left-right. (See Figure 6-5) We first set the 

breathing period to 5 seconds with a cosine function and acquired 600 simulated 

projections over one minute of full gantry rotation. We then divided and sorted the 

projections into even 40 phases. This means, on average 15 projections were used to 

reconstruct each phase. 
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Fig. 6-5. Physical moving phantom at peak inhale 0% and exhale 50% used in our numerical simulation. 
Two circular objects located left and right parts are set to deform expand-shrink and move left-right. 

 
For the clinical lung cancer patient case, a total of 674 projections were acquired 

over one minute gantry rotation, in a half-fan scanning geometry, representing a typical 

FB-3DCBCT clinical scan. The imager has 1024 × 768 pixels with 0.388 × 0.388 mm2 

resolution. This was down-sampled to 512 × 384 pixels with 0.776 × 0.776 mm2 for the 

reconstructions. During the acquisition, each projection data was tagged with the phase 

information from the RPMTM system. Using this information, we divided and sorted the 

projections into 20 phases. On average, about 34 projections were assigned to each phase. 

The 4DCBCT volumes were reconstructed with 512 × 512 × 70 voxels at the resolution 

level of 0.97 × 0.97 × 2.0 mm3.
 

6.7 Results 

Figure 6-6 shows a numerical 4D phantom simulation results including the 

ground truth images at two phases 0 and 50%, 4DCBCT reconstructed using FDK, 

4DCBCT reconstructed using CS, 4DCBCT reconstructed using PICCS, and 4DCBCT 

reconstructed using our MCIR algorithm. In order to ensure that the images for all 
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iterative algorithms (CS, PICCS, and MCIR) to reach as close to its convergence, we 

have run 1000 iterations for all with the same GP-BB step-size approach. [118, 164] 

Since the MCIR algorithm starts with a FB-3DCBCT as an initial input, we have kept all 

initial input as FB-3DCBCT for the CS and PICCS algorithms as well. As is expected, 

severe streaking artifacts appear in the 4DCBCT reconstructed using the FDK algorithm 

(Fig.6-6 (b), (g)). Visually, many of the structures in the medial aspect of the phantom are 

nearly indistinguishable. 4DCBCT using the CS algorithm (Fig.6-6 (c), (h)) significantly 

mitigates such artifact, as expected. However, it is still evident that anatomical structures 

are blurred due to some patching artifact (i.e., dark-gray streaks). As for PICCS and 

MCIR, there are noticeable improvements in image quality from the CS (Fig.6-6 (d), (i)) 

(e.g, reduced patching artifact). Visually, the image quality seems nearly equivalent to 

each other. By taking a closer look, however, we see that the boundary of the moving 

balls in either side of the phantom is slightly sharper in the MCIR algorithm. Figure 6-7 

show measured line profiles across the left ball in the phantom, for a 50% phase image. 

The line profile of the MCIR algorithm follows closest to the ground truth (see expanded 

view in the subset). In digging deeper, we have calculated the root mean square error 

(RMSE) for all 40 phase images, which is illustrated in Figure 6-8. Here, the RMSE is 

defined as the root of mean-squared percent error from the ground truth pixel values: 

 

              (6.9)                                                   

 

where, xi,j,k correspond to the voxel values in the reconstructed volume x and xGroundTruth 

refers to the ground truth values of the numerical chest phantom that we used in this 
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study. It is clear from the figure that the level of agreement to the ground truth is in the 

order of MCIR > PICCS > CS > FDK, for all phases. The FDK algorithm had the largest 

RMSE of 42.6±6.5% ranging from 33.7%-61.2%. The CS algorithm performed much 

better than FDK, which had RMSE of 0.87±0.13% ranging from 0.65%-1.14%. The 

RMSE for PICCS varied from 0.47%-0.78% with an average of 0.58%±0.08%. Finally, 

the MCIR algorithm showed the best performance with 0.44% ± 0.04% ranged from 

0.37%-0.52%. This finding holds true at all levels of iterations as well, as shown in 

Figure 6-9, where RMSE was calculated at each iterative step. As can be seen from the 

figure, the MCIR algorithm needs less than 100 iterations to achieve RMSE < 1% from 

the ground truth, whereas the CS or PICCS need many more iterations to reach that level. 

This is mainly due to the fact that, unlike other algorithms, the update energy is mainly 

focused on the mobile voxels in our MCIR algorithm. This suggests that the MCIR 

algorithm outperforms the CS and PICCS, in terms of image quality but, the speed of 

algorithm to reach the optimum solution is also faster. 

 

Fig. 6-6. A numerical 4D phantom simulation results. (a),(f) ground truth phantom image at two phases 0 
and 50%. (b),(g) 4DCBCT reconstructed using FDK. (c),(h) 4DCBCT reconstructed using CS. (d),(i) 

4DCBCT reconstructed using PICCS. (e),(j) 4DCBCT reconstructed using our MCIR algorithm. 
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Fig. 6-7. Measured line profile of moving object of phantom at 50% phase. Position of measured line is 
illustrated by yellow dotted line inside the phantom image. 

 
Fig. 6-8. Comparison of root mean square error (RMSE) between 4DCBCT reconstructed using FDK, CS, 

PICCS and our MCIR across all phases. 
 



 

 

105

 
Fig. 6-9. Variation of RMSE measured over each iteration during 4DCBCT reconstruction of 0% phase 

phantom for CS, PICCS and our MCIR algorithm. Note that FDK is discarded from comparison since it is 
not iterative reconstruction procedure. 

 

 
 

Fig. 6-10. Coronal slice of FB-3DCBCT reconstructed using clinical lung cancer patient data  
(a) and its corresponding motion-map using proposed motion-map reconstruction approach (b). The 
motion-map intensity is highest across diaphragm is the highest (blue) which is true when patient is 

breathing. 
 

Figure 6-10 shows a coronal slice of FB-3DCBCT reconstructed using a clinical 

lung cancer patient data and its corresponding motion-map generated using the proposed 

motion-map reconstruction approach (in color scale from 0 to 1). As we expect from our 
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clinical experience regarding thoracic anatomy, the motion-map intensity should be and 

is the highest around the diaphragms. It is also evident that the motion-map inside the 

lungs has varying degrees of intensity as well, which is also expected. One undesirable 

result, though, is that there is also some intensity in the soft tissue on the left side of the 

patient. This is due to the fact that the field of view (FOV) in our CBCT scanner is not 

enough to cover all of the patient’s anatomy and, therefore, a truncation error would 

accumulate when the motion-map is generated. However, this is not an issue of concern 

as long as the motion-map captures all of the relevant part of the anatomy that are 

moving, which we absolutely need to visualize for 4D IGRT applications. That is, since 

the motion-map is a weighting vector that updates the initial FB-3DCBCT with phase-

wise sorted projections that have already been used to reconstruct the FB-3DCBCT, 

updating the non-mobile regions with the phase-wise sorted projections would be really 

minimal, so there won’t be much change in that region anyway. 

 

Fig. 6-11. Coronal and Sagittal slice of clinical lung cancer patient of FB-3DCBCT (a),(f), and our  
proposed MCIR algorithm at 0% phase (b), (g), 25% phase (c),(h), 50% phase (d),(i) and 75% phase (e),(j). 
The image qualities of MCIR at all phases are almost equivalent to image quality of FB-3DCBCT and well 

represent the respiratory motion (See diaphragm). 
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Figure 6-11 shows coronal and sagittal slices of the lung cancer patient with the 

FB-3DCBCT, and the MCIR algorithm at 0%-peak-exhale, 25%-mid-inhale, 50%-peak-

inhale, and 75%-mid-exhale. It is clear that the MCIR’s image quality, at all phases, are 

almost equivalent to that of FB-3DCBCT, in terms of low contrast and noise, but 

moreover, the diaphragm positions are clearly distinctive. This confirms that although 

only 34 projections were used to reconstruct each phase, our MCIR algorithm can 

reconstruct all 20 phases of the breathing curve without the agitating streak artifacts that 

are caused by insufficient projections. 

 

Fig. 6-12. A lung cancer patient results of FB-3DCBCT, 4D-FDK, MCIR and PICCS algorithm. 
 

Finally, Figure 6-12 displays the lung cancer patient’s 4DCBCT (50% phase) 

reconstructed with the FB-3DCBCT (using FDK), 4D-FDK, MCIR, and PICCS 

algorithms. As expected, severe streaking artifact exists in the 4D-FDK. In contrast, both 

the MCIR and PICCS algorithms significantly outperform that of the 4D-FDK. In closer 

visual inspection, it is also observed that the streaking artifact is relatively further reduced 

in the MCIR as compared to the PICCS result. As an example, the diaphragm boundary 

show reduced streaks. 
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6.8 Discussion 

A. Algorithm performance 

In the evolution of lung cancer IGRT, transitioning from FB-3DCBCT to 

4DCBCT is essential due to the fact that the extent of tumor motion is the key 

information in maximizing target localization accuracy. [24, 145, 165-167] With the use 

of conventional FDK reconstruction algorithm, the only way to achieve this is to increase 

the scanning time to acquire more projections, which inevitably increases the radiation 

exposure to patients. 

In this study, we proposed a novel 4DCBCT reconstruction approach called the 

MCIR, and have successfully shown that at least up to 20 high quality phase images can 

be reconstructed using the same input dataset as a single clinical CBCT scan, without 

increasing the imaging dose. 

The main innovation comes from recognizing that when a thoracic anatomy is 

subjected to respiratory motion, not all parts of the anatomy are significantly moving. 

Therefore, if we could somehow distinguish between the regions that are moving more 

and less, we could reconstruct a high quality 4DCBCT by updating the voxels with 

significant motion using the corresponding phase sorted projections while keeping the 

voxels that don’t move from the FB-3DCBCT data. 

The results both in numerical simulation as well as a patient data showed that the 

MCIR algorithm outperforms many other popular-and-advanced algorithms such as the 

CS and PICCS. It should be noted though, however, that the implementation of the CS 

and PICCS may not have been exactly reproduced as the ones originally proposed and 

implemented, as all of these algorithms were interpreted and written in-house. We 
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attempted to make the fairest comparison by implementing the codes as close to the 

publications as possible, however, it cannot be guaranteed that the same exact 

performance was observed. As a result, we fully acknowledge that our evaluation of these 

algorithms may not represent their best possible performance, although similarities such 

as the well-known patching artifact in CS [108, 168, 169] was also readily observed in 

our implementation. It would be quite valuable to compare head-to-head with the original 

implementations if the chance ever came up with the corresponding investigators, which 

could be a near-future study. 

The performance of our MCIR algorithm is heavily dependent upon the quality of 

the FB-3DCBCT and the projection data. It was observed that when the initial quality of 

FB-3DCBCT is poor, that propagated through the subsequent processing with the MCIR. 

This is, of course, quite obvious since the MCIR algorithm updates phase-specific 

information from the FB-3DCBCT as its base. Therefore, to maximize the performance 

of MCIR, it is important to acquire high quality projection data, which will translate to 

high quality FB-3DCBCT. This characteristic is applicable to PICCS as well, since that 

algorithm also uses the FB-3DCBCT as a prior knowledge. 

The MCIR algorithm involves two independent iterative steps, including 1) sub-

motion-error vector, and 2) 4DCBCT calculations. In the clinical patient case, it was 

shown that ≤6 iterations were generally sufficient to calculate the sub-motion-error 

vector, and ≤80 iterations to generate the 4DCBCT. As a result, the overall overhead for 

computing the motion-map matrix is quite manageable.
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B. Motion-map estimation 

Precise motion-map estimation is also an important factor that influences the 

performance of the MCIR algorithm. In this study, we proposed an effective method to 

obtain the motion-map directly from the X-ray projection data. Results showed that in 

both the numerical simulations and patient case it effectively distinguished the regions 

that are stationary and moving. One limitation that was observed in a clinical patient case 

was the accuracy of the motion-map can be degraded due to a parameter that may be 

outside our control, which is the physical FOV size, leading to truncation errors that 

would accumulate during the motion-map calculations. However, as discussed, this is not 

a critical issue as long as the motion-map captures real mobile regions of the thoracic 

anatomy, which is mostly within the lungs. Since motion-map is a weighting vector 

designed to update FB-3DCBCT using phase-wise sorted projections that have already 

been reconstructed into the initial FB-3DCBCT, updating the non-moving regions with 

phase-wise sorted projections would have minimal effect in that region. Nevertheless, 

how such errors would affect the image quality needs to be rigorously validated, which 

will be part of our future study, as the current study mainly focused on introducing the 

MCIR algorithm and its concepts. In addition to this, we’ll follow-up with additional 

methods of calculating the motion-map.
 

C. Regularization parameters 

In the MCIR algorithm, there are two different weighting parameters that need to 

be assigned. That is 1) the TV regularization parameter λ [Eq.(6.3)] and 2) the 1-norm 

regularization parameter η [Eq.(6.7)]. The former parameter is one of the most influential 

parameters affecting the image quality of 4DCBCT. That is, when λ is high, the blurrier 
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and smoother the images, and the smaller it is, the sharper and noisier the images. This is 

due to the fact that λ is a weighing factor of TV regularization term in the energy function 

of Equation (6.3). Thus, if λ is high, more emphasis is given to minimize TV and 

therefore the blurrier but smoother the look. In opposite, if λ is low, then more emphasis 

will be given to the fidelity term (first term in Equation (6.3)) and therefore preserving 

the noise and high frequency information. 

The latter parameter η, is the parameter that determines the sparseness of the 

motion map. The higher this value, more sparse the motion-map matrix (i.e., more zeros), 

which will emphasize the regions that has rigorous motion, while smaller this value, the 

motion-map matrix has less sparseness, giving non-zero values to regions that show 

relatively little movement. Therefore, when the sparse motion-map matrix, U, is 

uploaded in MCIR, the result would be an image that rigorously emphasize only the 

voxels that has large data inconsistency due to motion, while other regions are left as that 

of FB-3DCBCT. Vise versa is true for less sparse motion-map matrices. 

Although some investigators have proposed ways to optimize the weighing 

parameters (e.g., λ, η) in iterative optimization problems [26, 125], there is really no 

global standard in deterministically calculating them. Therefore, the selection of λ and η 

were subjectively picked through numerous repeat simulations. In this study, we have set 

λ = 0.001 and η = 0.5 for the lung cancer patient case. It is obvious that further research 

is needed to find a class of optimal λ and η values for various clinical sites and patient 

sizes, but we emphasize again that the currently study mainly focused on introducing the 

MCIR concept. 
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6.9 Conclusion 

In this paper, we propose a novel 4DCBCT reconstruction algorithm utilizing a 

motion-map constraint as part of the framework. Up to 20 phases of clinically viable 

4DCBCT images could be reconstructed while requiring no more projection data and 

imaging dose than a typical clinical CBCT scan. This makes our MCIR algorithm 

potentially useful in an on-line IGRT environment. 
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Chapter 7  Liver motion analysis using CBCT imager 

7.1 Introduction 

Stereotactic body radiation therapy (SBRT) of liver cancer is technically 

challenging. [170] Similar to lung cancer, there’s a significant inter- and intra-fractional 

organ motion induced by respiration [171-174] and that radiation tolerance of normal 

liver is very low. [175-177] The former necessitates a use of larger margin, while the 

latter discourages it. To make the matter worse, the tumor itself is typically not very 

distinguishable against the normal liver in in-room cone beam computed tomography 

(CBCT) imaging, leading to uncertainties in image registration and setup. [178-181] 

Since dose-response relationship exists in both primary and metastatic liver 

cancer, with higher dose resulting in improved outcome [182, 183], the narrowest 

possible safety margin is prerequisite in maximizing the therapeutic ratio. Consequently, 

the most accurate and precise target localization technique(s), which minimizes margin 

size, is essential in liver SBRT. To this end, the use of stereotactic body frame (SBF) and 

abdominal compression (AC) plate have been popular, in limiting most diaphragm 

motion to <10 mm. [184-189] Even with reduced motion, however, the problem with 

image registration uncertainty still remains. An effective solution to this lack of soft 

tissue contrast is the use of percutaneously inserted fiducial markers as a surrogate. [190-

198] This approach is quite effective because the metal markers are radio-opaque and 

hence are readily visible in X-ray projections. Therefore, using markers to characterize 

the daily liver motion and subsequently adjusting the treatment setup is an effective 

strategy in increasing the treatment accuracy. 
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Having said that, a relatively little is known about the motion variations in the 

liver, especially within different regions in the organ. In our previous report, we have 

presented an effective, template-based technique in automatically extracting 2D marker 

positions from the X-ray projections. [194] In this study, we have used this technique to 

analyze the motion characteristics of liver. Using 2D positional information at each 

angular projection as input, we employed a robust 3D motion estimation algorithm to 

construct the motion traces. From such, we analyzed inter- and intra-fractional motion 

correlation, correlation with that of the motion acquired during 4DCT simulation, marker 

to marker motion variations within the liver, and variations in the gating window between 

fractions. With the massive motion information gathered, we systematically deduced 

useful information that could potentially aid in increasing the overall treatment accuracy 

of liver SBRT. 

7.2 Patient data for liver motion analysis 

The Varian Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA) 

with the On-Board Imager (OBI) was used to acquire CBCT X-ray projections of 20 

patients undergoing 2-8 fractions per course. Images were acquired using the half-fan 

scan mode, where ~650 projections were acquired over the 360 gantry rotation using 

either the pelvis mode (125kVp, 80mA, 13ms/frame) or the low-dose thorax mode (110 

kVp, 20 mA, 20ms/frame). The half-fan mode is designed to obtain a larger field of view 

(FOV) especially when the size of detector cannot cover FOV of patient body. In this 

mode, the detector is shifted laterally to take only half of the projection of the scanned 

patient for each acquirement angle. This acquisition mode reconstructs FOV of about 45 
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cm in diameter and 15 cm in axial length. Each patient had 3 fiducial markers (2×5-mm 

gold) implanted around the tumor for image guidance. In total, 85 fractions with >55,000 

X-ray projections were acquired. 

Table.7-1. Patient characteristics data. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 7-1 provides the technical details of the patient data. Two to eight fractions 

were prescribed with three to four being the most popular (accounting for 12/20 cases). 

One to three markers were embedded in the liver, per patient, with an average of 2.45 

markers, with total of 49 markers. The mean marker-to-marker distance was 36.2 mm 

Patient 
no. 

Fractions 
treated 

Observable 
marker(s) 

Marker distance (mm) Target 
Location 

Imaging 
protocol (1,2) (1,3) (2,3) 

1 5 3 1.9 30.0 29.1 S8 pelvis mode 

2 2 3 2.08 22.9 21.8 S4 pelvis mode 

3 7 3 47.7 29.7 19.0 S4, S7 pelvis mode 

4 2 3 27.3 52.6 26.0 S1 pelvis mode 

5 4 3 23.1 31.8 21.9 S8 pelvis mode 

6 8 3 30.3 95.3 79.1 S2 low-dose thorax 

7 3 2 43.1 - - S6, S2 low-dose thorax 

8 3 2 25.1 - - S4 low-dose thorax 

9 8 2 107.5 - - S3, S8 low-dose thorax 

10 3 2 5.3 - - S6 low-dose thorax 

11 4 3 19.3 27.3 15.7 S6, S7 low-dose thorax 

12 3 1 - - - S8 low-dose thorax 

13 4 1 - - - S1 low-dose thorax 

14 4 3 24.0 39.6 36.9 S5 low-dose thorax 

15 4 2 43.9 - - S4, S8 low-dose thorax 

16 5 2 30.9 - - S4, S8 low-dose thorax 

17 3 3 26.4 23.5 30.4 S4 low-dose thorax 

18 6 3 51.9 33.0 47.9 S7 low-dose thorax 

19 3 2 36.8 - - S4 low-dose thorax 

20 4 3 74.8 90.6 23.8 S4 low-dose thorax 
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(range: 1.9-107.5 mm). In terms of CBCT scans, 5/20 patients were imaged with the 

high-dose pelvis mode and 15/20 patients were imaged with the low-dose thorax mode.  

7.3 Modified marker extraction algorithm 

We recently proposed a novel template-based marker extraction algorithm. [194] 

The algorithm is robust against any shape, size, orientation, and the number-of-seeds in 

an X-ray projection image. Briefly, the algorithm consists of: 1) sub-sample a small 

region of interest (ROI) containing all of the markers in the projection image, 2) apply 

edge enhancement filter using spatial derivatives to highlight the marker features, 3) 

calculate fast Fourier transform (FTT), enhance the marker-related signals via 

multiplication with FFT of an ideal marker image, and apply inverse FFT, 4) apply 

universal threshold to extract the shadow of the marker, and finally, 5) calculate the 

center-of-mass (COM) position of the shadow. 

For this study, we have modified our algorithm significantly. In the original 

implementation, we would choose a single ROI that encompasses all of the markers. 

After that, the algorithm would extract all maker positions inside the ROI, 

simultaneously. This procedure was efficient when all markers are closely positioned 

with each other such that the ROI dimension did not exceed about 200×200 pixels (77.60 

mm × 77.60 mm), and that patients are scanned with a high quality pelvis mode where the 

markers are clearly distinguishable from the similarly high-attenuating bones and the 

couch structures, at all scan angles. However, the accuracy of the algorithm fell 

significantly beyond the ROI dimension of 200×200 pixels, as well as when patients were 

imaged with the low-dose thorax mode, where the image noise was higher. To overcome 
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this, we have modified our algorithm/process in that instead of calculating multiple 

marker positions simultaneously, each marker was calculated separately through 

assigning a multiple, and much smaller ROIs (30×30 pixels, 11.64 mm × 11.64 mm). The 

overall workflow of the marker extraction and the subsequent respiratory signal 

generation procedures are illustrated in Figure 7-1. It is a semi-automatic process where 

we start by manually assigning the initial position of each marker at the first and the last 

projections. Then, the marker extraction is performed simultaneously in two opposing 

directions until either they meet at the last overlapping projection or terminate when the 

markers are absent. The reason for this approach is that, for the half-fan scanning 

geometry, there are usually a range of scan angles that do not contain the markers due to 

the off-center position of the detector. This angular range varies from patient to patient 

and from fraction to fraction, as well as from marker to marker. Therefore, it is efficient 

to analyze the forward and reverse directions simultaneously and is relatively easy to 

terminate the process when the markers disappear from the projections. Now, right after 

manually assigning the marker positions in the first and last projections, an ROI mask of 

size 30×30 pixels is centered on each marker. Then the algorithm determines the COM 

positions for each image. As the COM positions are determined, the ROI mask is re-

centered on the new position and the search for the next COM position begins on the 

subsequent image. This process assumes that the marker from one projection to the next 

would only move within the ROI area defined. With the typical OBI frame rate of 11-12 

frames/sec (0.08 sec/frame), we anticipated that it is a safe assumption to make even with 

abrupt change in patient motion. 
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Fig. 7-1. (a) The overall workflow of the marker extraction process. The extraction is performed 

simultaneously in the two opposing directions until either they meet at the last overlapping projection or the 
markers are absent in the image. (b) The height and width positions extracted as a function of the projection 

angle. 
 

7.4 3D position estimation algorithm 

After identifying the 2D marker positions on all >55,000 X-ray projection images, 

each marker was back projected, in the room coordinate system, and the corresponding 

3D position was estimated. The main idea behind this is the prior knowledge that the 

positions are confined within a respiratory/oscillatory motion. Assuming that patient is 
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immobilized while acquiring CBCT, there would be at least two or more projections at 

different angles imaged at same 3D position during multiple breathing cycles. Therefore, 

gathering marker center positions at all different angles would generate 3D distribution of 

marker centers which they coincide. Since motion is oscillatory, we have assumed that 

finding a closest point of marker center at given angle to central axis of 3D distribution 

would give close estimation of marker position in 3D. Such implicit assumption is 

valuable only if 1) breathing motion is oscillatory, 2) oscillatory motion is confined to 

fixed axis and 3) patient is immobilized while acquiring CBCT scan. Basically, we 

project each marker onto a priori calculated 3D axial, respiratory motion trajectory, line. 

And, the 3D axial line is initially calculated by fitting a line that intersects two points that 

correspond to the average positions of the marker in the inhalation and exhalation phases. 

This approach is similar to that proposed by Becker et al. [199] where they estimate the 

3D position by: 1) sorting the marker positions into several phases, 2) each phase is 

grouped and back projected, 3) an average 3D point of the most-likely intersection is 

calculated for each phase, and 4) each marker position is then re-projected and the final 

3D position is calculated by determining an orthonormal point that is closest to the 

average 3D position of that phase. Using this approach, the mean root mean square error 

was <0.4 mm on a phantom study. Once the two average points representing the two 

phases are calculated, a line vector intersecting the two points are obtained by the 

following equation (See Figure 7-2): 
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Fig. 7-2. Illustration of the process in which a 1D respiratory motion trajectory line is obtained. The 
projections are sorted into either a high- or low-amplitude signals. Then a line is drawn to intersect the two 

average points. 
 

(7.1) 

where variables x, y, z, faxial, Pexhal, Pinhal, and µaxial refer to the anterior-posterior (AP) 

plane, left-right (LR) plane, cranial-caudal (CC) plane, axial line function, average 

exhalation and inhalation positions, and a scalar weighting variable, respectively. Once 

the faxial is derived, the next step is to project each marker again to calculate the 

corresponding 3D coordinate position. Projection of the 2D marker position on the 

detector plane to a 3D position in the room coordinate space can be first derived by 

drawing a line vector between the 2D marker positions to the X-ray point source. 

Mathematically, this can be derived by the following equation: 

 

(7.2) 
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where ffid, Pfid, Psrc, IDD, SID, and µfid refer to the projected line vector, the marker 

position in the detector plane, the X-ray source position, the isocenter-to-detector 

distance, the X-ray source-to-isocenter distance, and a scalar weighting variable, 

respectively. Note here that x, y, z coordinates are transformed, with respect to the 

projection angle θ, since the gantry rotates during the image acquisition. Finally, using 

the two line vectors obtained in Equations 7.1 and 7.2, the ultimate 3D marker position is 

estimated by calculating an orthonormal point that lies along the Equation 2 line and is 

closes to the Equation 1 line (See Figure 7-3). Mathematically, this can be solved using 

the following equation: 

( ) ( ) ( ) 2

23 minarg,, fidfidaxialaxialposD ffzyxf µµ −=     (7.3) 

where f3D pos(x,y,z) refers to the estimated 3D marker position. Equation 7.3 can be solved 

by calculating the derivative with respect to µaxial, setting the equation to zero, and 

solving for the µfid that satisfies the equality. This calculation was performed on all 

markers extracted from the >55,000 projection images.  

 

Fig. 7-3. An illustration of how a 3D marker position is estimated. An orthonormal point along the function 
ffid is calculated that lies closest to the faxial line. 
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7.5 Data analysis 

To analyze accuracy of our modified marker tracking algorithm quantitatively, 

numerical simulation was performed. We have assume that cylindrically shaped marker 

located at beam iso-center is moving periodically with cosine wave function of 1) 

constant and 2) randomly varying amplitude in AP, LR and CC directions 

simultaneously. Knowing that total time spent to acquire CBCT with single gantry 

rotation is one minute, total 674 projections of digitally reconstructed radiograph (DRR) 

were generated to process marker extraction as well as marker tracking algorithm in half-

fan geometry. Amplitude of motion was assumed to be 1.0 mm, 1.0 mm and 3.0 mm in 

AP, LR and CC directions when it was constant and 0.6 ~ 1.2 mm for AP, LR and 2.4 

mm ~ 3.4 mm for CC when it was random. The breathing period of marker motion was 

set to be fixed at 4 seconds.  

Then, based on the 3D positions estimated, we analyzed a number of liver motion 

characteristics. First, we evaluated the relative motion tendencies between the three 

primary directions: LR, AP, and CC. Second, the average and standard deviation of the 

breathing periods during 4DCT simulation and CBCT scans were calculated. Third, the 

peak-to-peak motion amplitudes in the LR, AP, and CC directions were calculated. These 

amplitudes were compared with that of those determined from the maximum intensity 

projection (MIP) CT images derived from the 4DCT planning dataset. Fourth, the 

appropriate gating window was retrospectively determined for each fraction. Since the 

marker motion is generally the greatest in the CC direction, a histogram of the marker 

positions in the CC direction is calculated, for each CBCT scan. Then, the (relative) 

gating window was defined using the following equation: 
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where Min.CC., Max.CC., and Cumul.Hist.(50%), refer to the most caudal location, the 

most cranial location, and a median CC (z) coordinate position where 50% of the marker 

positions are below and above. Thus, we define the gating window to be a fraction of the 

length between the maximum inhalation to the maximum exhalation position that 

contains half of the marker postions. The algorithms and analysis were implemented on 

MATLAB (The MathWorks Inc., Natick, MA).  

7.6 Results 

A. Accuracy of marker extraction algorithm 

Figure 7-4 shows the result of marker tracking algorithm where series of DRR 

with moving marker are extracted and tracked in 3D space. It is evident that the result of 

marker tracking algorithm is closely related to the motion that has been simulated for all 

cases. To provide the accuracy of algorithm numerically, we have calculated average 

relative error of motion at each LR, AP and CC direction as follows: 

100
)(

N

1
  (%)Error  Relative

2

2

×
−

= ∑
i i

ii

t

tp
                               (7.5) 

Where, N, i, pi and ti refer to number of simulated DRRs, projection index 

number, position of estimated marker position and position of true marker position 

respectively. It was found that relative error of LR, AP and CC directions were 0.68%, 

0.68% and 1.69 x 10-7% when amplitude was fixed and 3.35%, 1.44% and 0.01% when 

amplitude was randomly varying. The maximum displacement error for each direction 

was measured 0.07 mm (LR), 0.07 mm (AP) and 0.00013 mm (CC) when amplitude was 
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fixed and 0.18 mm (LR), 0.13 mm (AP) and 0.00013 mm (CC) when amplitude was 

varying. 

 

Fig. 7-4. Comparison of simulated marker tracking result with ground truth value on AP (a), LR (b), CC (c) 
direction with fixed amplitude breathing and AP (d), LR (e), and CC (f) direction with random amplitude 
breathing. Note that CC motion on both cases (c,f) appear to be single due to almost perfect match with 

each other. 
 

B. Liver motion types 

 

Fig. 7-5. Trajectories of all 49 markers reconstructed, during their 1st fraction CBCT scans, viewed from the 
(a) anterior, (b) posterior, (c) left, and (d) right beam’s eye view. 
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Fig. 7-6. An example patient showing the three types of LR motion with the corresponding three markers 
implanted. 

 
Figure 7-5 shows the orthogonal projection views of all 49 marker trajectories, 

overlaid on a representative liver contour. As expected, the most dominant motion is in 

the CC direction. But more interestingly, there is a non-negligible motion in the AP 

direction as well, irrespective of their location in the liver. Also, the motion in the AP and 

CC directions are highly correlated. That is, when the markers move cranially, they tend 

to move posteriorly, and vice versa. The LR motion had a more variable relationship with 

the AP/CC motions, and appeared random with respect to the location. That is, when the 

markers moved towards cranial-posterior direction, 58% of the markers moved to the 

patient-right (Type I motion), 22% of the markers moved to the patient-left (Type II 

motion), and 20% of the markers had minimal/none motion (Type III motion). Table 7-2 

list the classified motion types for each marker. The motion types were location 

dependent. Among the 20 patients, only 6/20 patients had all the markers show same type 

of motion, while 2/20 patients had all markers show different type of motion. The rest of 

12/20 patients had markers that were distributed among the three motion classifications. 
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Figure 7-6 shows the LR motion trajectory of the three markers for a patient (#14 in 

Table II) illustrating all three different motions.  

Table.7-2. Three types of motion relationships identified along the LR and the AP/CC directions, that is, 
when the marker moves towards the cranial-posterior direction, it also moves to the: (Type I) patient-right, 

(Type II) patient-left, and (Type III) minimal/none motion. 
 

Patient no. 
No. of markers in motion 

Type I Type II Type III 
1 3 - - 
2 3 - - 
3 1 - 2 
4 1 2 - 
5 3 - - 
6 - 1 2 
7 - 1 1 
8 2 - - 
9 - 1 1 
10 2 - - 
11 3 - - 
12 - - 1 
13 1 - - 
14 1 1 1 
15 1 - 1 
16 1 - 1 
17 3 - - 
18 1 1 1 
19 2 - - 
20 - 3 - 

 
 

C. Liver motion variability 

Table 7-3 lists the comprehensive peak-to-peak amplitude, across the three 

dimensions, and the breathing period observed during the 4DCT simulation and the 

CBCT scans. Breathing period during the 4DCT scans were recorded by the RPM 

system (Varian Medical Systems, Palo Alto, CA). As observed, the CC and LR directions 

were generally the most and least dominant motions, respectively, except one patient (#9, 

marker 1) where the LR motion was significantly larger than the AP motion. The range of 

motion for the twenty patients were 3.00 ± 2.04 mm, 5.08 ± 3.12 mm and 17.93 ± 5.11 
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mm in the planning 4DCT, and 2.77 ± 1.6 mm, 5.29 ± 3.10 mm and 16.46 ± 5.69 mm in 

the treatment CBCT, for LR, AP, and CC directions, respectively. The range of 

respiratory period was 3.94 ± 0.65 and 4.18 ± 0.75 seconds during the 4DCT simulation 

and the CBCT scans, respectively. Some patients had a considerable disparity in motion 

characteristics between the simulation and treatment. The absolute difference in the 

motion magnitude ranged from 0.03-8.60 mm, 0.01-6.81 mm, and 0.15-9.25 mm across 

LR, AP, and CC directions, respectively. Correspondingly, the absolute mean difference 

was 0.93 ± 1.33 mm, 0.98 ± 1.12 mm and 3.37 ± 2.55 mm, respectively. It was observed 

that 4/20 patients had absolute motion difference in the CC direction of at least >5 mm 

for all markers embedded. 8/20 (40%) patients had the mean motion smaller during the 

CBCT scans than the 4DCT simulation, while 3/20 (15%) patients had the mean motion 

greater by at least 2 mm or larger. Change in breathing pattern from during the 4DCT 

simulation to the CBCT scans ranged from -1.99 to +1.02 seconds, with an average of -

0.16 ± 0.75 seconds. 

Table.7-3. The comprehensive list of peak-to-peak amplitude, across the three dimensions, and the 
breathing period observed during the 4DCT simulation and the CBCT scans. The two cases with the most 

significant inter-marker motion variations are underlined. 

Patie
nt 

Moda
lity 

Mean amplitude (mm SD) 
Breathing 

Period 

(Sec SD) Marker 1  Marker 2  Marker 3  

LR AP CC LR AP CC LR AP CC 

1 
MIP 5.38 8.96 27.5 4.41 9.94 27.5 2.77 8.07 25 5.15 (0.45) 

OBI 3.06 
(0.52) 

10.31 
(1.54) 

32.38 
(3.25) 

3.08 
(0.59) 

10.32 
(1.58) 

32.40 
(3.18) 

3.50 
(0.71) 

9.83 
(1.33) 

30.11 
(3.55) 

5.16 (0.41) 

2 

MIP 2.85 2.77 10 2.03 3.74 10 1.76 3.8 10 4.19 (0.39) 

OBI 2.39 
(0.72) 

3.89 
(0.61) 

12.12 
(1.17) 

2.37 
(0.68) 

3.86 
(0.64) 

12.08 
(1.21) 

2.20 
(0.38) 

3.75 
(0.51) 

12.29 
(1.07) 

 
3.60 (0.45) 

 

3 
MIP 2.75 5.51 12.5 0.98 3.67 12.5 0.98 3.67 12.5 3.90 (0.69) 

OBI 2.24 
(0.51) 

3.52 
(0.60) 

9.55 
(1.38) 

1.30 
(0.59) 

2.54 
(0.58) 

8.23 
(1.59) 

1.05 
(0.62) 

3.11 
(0.49) 

9.06 
(1.25) 

3.23 (0.58) 
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Table.7-3. Continued 

Patie
nt 

Moda
lity 

Mean amplitude (mm SD) 
Breathing 

Period 

(Sec SD) Marker 1  Marker 2  Marker 3  

LR AP CC LR AP CC LR AP CC 

4 
MIP 2.52 6.72 17.5 0.98 5.88 17.5 2.52 5.88 15 3.84 (0.47) 

OBI 1.11 
(0.38) 

6.39 
(0.83) 

16.84 
(1.44) 

1.8 
(0.38) 

6.98 
(1.13) 

16.43 
(1.25) 

3.65 
(0.74) 

7.10 
(1.51) 

13.56 
(2.06) 

3.92 (0.36) 

5 
MIP 3.53 3.53 25 0.98 3.53 22.5 0.98 2.64 22.5 4.75 (0.58) 

OBI 1.54 
(0.41) 

2.37 
(0.41) 

15.83 
(0.99) 

1.09 
(0.37) 

2.33 
(0.74) 

14.82 
(1.03) 

1.06 
(0.33) 

2.89 
(0.54) 

15.63 
(1.10) 

3.73 (0.44) 

6 
MIP 0.98 5.87 17.5 0.98 3.91 17.5 2.94 3.91 17.5 3.95 (0.13) 

OBI 0.92 
(0.27) 

6.41 
(0.66) 

18.62 
(1.20) 

0.95 
(0.28) 

6.45 
(0.62) 

19.11 
(1.26) 

3.44 
(0.68) 

3.07 
(0.57) 

18.99 
(1.41) 

4.58 (0.43) 

7 
MIP 2.36 4.72 25 0.98 4.72 22.5 0.98 5.7 22.5 3.60 (0.11) 

OBI 2.92 
(0.31) 

5.91 
(0.43) 

18.58 
(1.25) 

1.11 
(0.84) 

5.79 
(0.36) 

18.28 
(0.89) 

N/A 3.90 (0.33) 

8 
MIP 1.88 1.88 10 1.88 2.85 10 1.88 6.49 17.5 3.71 (0.12) 

OBI 2.54 
(0.40) 

2.05 
(0.56) 

11.74 
(0.69) 

4.06 
(1.43) 

2.73 
(0.82) 

10.62 
(0.92) 

N/A 4.16 (0.23) 

9 
MIP 5.68 0.98 10 2.84 1.79 20 1.90 4.79 20 4.16 (0.27) 

OBI 5.84 
(1.05) 

1.15 
(0.52) 

7.99 
(0.78) 

1.08 
(0.35) 

2.09 
(0.63) 

17.24 
(1.82) 

N/A 4.54 (0.78) 

10 
MIP 8.82 13.25 22.5 7.07 16.78 25 6.18 15.89 25 4.60 (0.19) 

OBI 5.97 
(0.30) 

12.56 
(0.76) 

20.96 
(1.26) 

7.01 
(5.63) 

16.28 
(0.76) 

23.58 
(1.74) 

N/A 4.72 (0.32) 

11 
MIP 3.84 3.84 20.00 4.73 3.78 17.50 3.79 3.78 17.50 3.93 (0.12) 

OBI 4.05 
(0.28) 

4.16 
(0.18) 

20.56 
(0.87) 

3.89 
(0.51) 

3.72 
(0.80) 

17.35 
(1.07) 

3.72 
(0.29) 

3.55 
(0.38) 

16.82 
(1.03) 

4.26 (0.41) 

12 
MIP 1.65 5.42 12.50 2.64 3.53 10.00 5.30 3.53 12.50 4.09 (0.13) 

OBI 1.15 
(0.72) 

5.43 
(0.66) 

10.62 
(1.05) 

N/A N/A 4.24 (0.25) 

13 
MIP 3.15 5.16 20.00 8.60 4.30 22.50 6.87 5.15 17.50 3.54 (0.11) 

OBI 3.42 
(0.47) 

5.35 
(0.70) 

17.47 
(1.48) 

N/A N/A 3.47 (0.25) 

14 
MIP 1.85 4.62 17.5 0.98 5.54 20.00 1.85 5.55 22.50 3.86 (0.12) 

OBI 1.95 
(0.37) 

3.70 
(0.52) 

15.49 
(1.24) 

0.92 
(0.39) 

3.71 
(0.80) 

14.88 
(1.16) 

0.86 
(0.32) 

5.51 
(1.68) 

15.16 
(1.23) 

3.61 (0.32) 

15 
MIP 2.67 0.98 15.00 0.98 2.67 12.50 0.98 2.67 25.00 4.59 (0.33) 

OBI 4.16 
(0.42) 

7.79 
(0.78) 

23.43 
(1.32) 

2.08 
(0.57) 

5.41 
(0.34) 

21.75 
(1.41) 

N/A 6.02 (0.21) 
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Table.7-3. Continued 

Patie
nt 

Moda
lity 

Mean amplitude (mm SD) 
Breathing 

Period 

(Sec SD) Marker 1  Marker 2  Marker 3  

LR AP CC LR AP CC LR AP CC 

16 
MIP 2.67 6.23 15.00 1.88 9.80 17.50 0.98 8.02 17.50 3.62 (0.53) 

OBI 2.31 
(0.40) 

8.16 
(1.04) 

16.07 
(1.60) 

1.40 
(0.45) 

7.88 
(0.95) 

15.18 
(1.66) 

N/A 3.31 (0.41) 

17 
MIP 4.28 3.42 15.00 4.28 3.42 15.00 6.26 3.42 15.00 3.10 (0.08) 

OBI 4.81 
(1.15) 

5.2 
(0.53) 

12.77 
(1.03) 

4.70 
(0.88) 

4.06 
(0.84) 

14.14 
(0.89) 

5.66 
(1.07) 

3.23 
(0.44) 

13.03 
(1.36) 

5.09 (0.64) 

18 
MIP 0.98 2.49 17.50 4.98 3.32 22.50 0.98 2.49 17.50 2.12 (0.22) 

OBI 1.93 
(0.50) 

2.53 
(0.61) 

12.43 
(1.96) 

3.05 
(0.74) 

3.59 
(0.75) 

16.47 
(3.46) 

1.03 
(0.42) 

1.96 
(0.56) 

11.79 
(1.88) 

3.29 (0.59) 

19 
MIP 4.48 4.48 17.50 3.59 4.49 17.50 3.58 5.38 17.50 4.17 (0.13) 

OBI 2.91 
(0.34) 

3.17 
(0.60) 

11.32 
(1.05) 

2.25 
(0.47) 

3.84 
(0.68) 

10.20 
(1.22) 

N/A 3.26 (0.21) 

20 
MIP 1.71 3.41 15.00 4.26 6.81 25.00 5.11 8.52 27.50 4.50 (0.32) 

OBI 1.92 
(0.48) 

3.96 
(0.61) 

14.37 
(0.94) 

4.51 
(0.44) 

9.19 
(0.58) 

23.62 
(1.31) 

5.85 
(0.53) 

10.53 
(0.74) 

24.92 
(1.62) 

4.52 (0.39) 

 
 

Figure 7-7 illustrates inter- and intra-fractional motion variability, in CC 

direction, of four representative patients. As observed, there are considerable variations in 

the majority of patients (Figure 7-7a-c). Not only is the peak-to-peak amplitude changing 

between fractions, the intra-fractional breathing pattern also varies significantly (Figure 

7-7c, Fraction 1). And, unless the image registration between the 4DCT (MIP) and CBCT 

is accurate, sometimes, the motion magnitude extends out of the margin observed in the 

planning MIP CT, for a significant proportion of the time (Figure 7-7a, Fractions 2-5). 

The most extreme case is observed in Figure 7-7c, Fraction 1, where up to 1 cm (sudden) 

shift in the baseline is seen accompanied by a severe irregularity in the breathing pattern. 

For this fraction, >7 mm deviation out of the MIP margin was observed, potentially 

compromising the SBRT accuracy significantly. 
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Fig. 7-7. Four representative patients illustrating the typical inter- and intra-fractional motion variations: (a) 
Patient #1, (b) Patient #14, (c) Patient #18, and (d) Patient #12. Also shown is the “MIP Margin” motion 

range determined by the planning MIP CT. 
 

The variability in the inter-fractional motion is nicely captured by the necessary 

gating window needed for each fraction, as illustrated in Figure 7-8. For some patients, 

the fractional change in the gating window was quite significant (>20% for Patients #3, 

#5, #13, #14, #15, and #18), with the largest having 29.5-56.4% range between fractions 

(Patient #14). In all, the gating window ranged between 16.25-56.5%, for the population. 

The marker-to-marker motion variability, within different locations in the liver, 

was also significant in some cases. Two most significant cases are underlined in Table 7-

3 (Patients #9 and #20). As can be seen, the difference in the motion magnitude between 

the markers is nearly 1 cm, in the CC direction. Figure 7-9 shows the Patient #20 motion 

trajectory between the two markers. It is evident that, at all three directions, the motion 

magnitude differences are great, with the Marker #3 having a predominantly larger 
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motion. Figure 7-10 illustrates a clear trend in the absolute difference in the motion 

magnitude between the markers as the distance increases (R2=0.69, linear-fit). This 

suggests that marker(s) in closest proximity to the target should bear more weight when 

performing image registration for patient setup, which also suggests that the markers 

should be implanted as close as possible to the gross tumor.  

 

Fig. 7-8. The appropriate % gating window determined based on the marker motion trajectory of each 
fraction, for each patient. 

 

 
 

Fig. 7-9. The inter-marker motion variability in the (a) LR, (b) AP, and (c) CC directions, for Patient #20. 
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 Fig. 7-10. Scatter plot showing the absolute inter-marker motion magnitude difference as a function of the 
marker-to-marker separation. 

7.7 Discussion 

A. 3D motion tracking 

In liver SBRT, the fiducial markers are important due to the fact that 1) the tumor 

contrast is very low in the CBCT images, and 2) the motion induced by respiration is 

significant. This is why liver motion characterization studies have been largely performed 

with the markers in the past, including with the RTRT system in Japan. [191, 192, 195, 

196, 198, 200, 201] For the RTRT system, using fluoroscopic imaging with multiple X-

rays, the precise 3D marker positions can be extracted near real-time with sub-millimeter 

accuracy. Another predominant feature is that it is able to track/verify such information at 

all/most time during treatment. However, of course, the cost of employing such a design 

is the added imaging dose. 

In this study, we have demonstrated that CBCT X-ray projection images can also 

be used to track and verify the 3D motion trajectories, as has some investigators in the 

past. [199, 202, 203] However, to the best of our knowledge, the use of the projections to 

study the motion characteristics of the liver have not been rigorously studied yet. The 
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main advantages of utilizing the projection images is that, first, it does not require 

additional hardware (if you have a CBCT system on your linear accelerator), and second, 

that the same projection data can be used to reconstruct a 3D image volume for image-

guided radiotherapy (IGRT), thus avoiding extra imaging dose to patients. Although the 

projection images do not provide real-time motion information during treatment, like as 

in the RTRT or the CyberKnife systems (AccuRay, Sunnyvale, CA), the motion data it 

does provide, prior to the treatment, is still very valuable in understanding and guiding 

the patient set up [199, 202, 203], for 4DCBCT reconstructions [194], and potentially 

useful in various adaptive radiotherapy (ART) strategies. 

 

Fig. 7-11. Typical projection images taken with the (a) pelvis mode, and the (b) low-dose thorax mode. The 
white dotted circles indicate where the markers should be located. 

 
In this study, a sizable portion of the markers could not be used for analysis (in 

9/20 patients, only 1-2 markers were tracked, see Table 7-1), even though all patients had 

3 markers implanted each. There were three main reasons for this. First, in the half-fan 

scanning geometry, due to the off-centering of the detector panel, there occasionally exist 

too large of scan angles with the markers being outside of the field of view (FOV). 
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Second, some markers were too cranially or caudally located from the isocenter and thus 

did not appear in the projection images. And, finally, since a large portion of the patients 

were imaged with the low-dose thorax mode (15/20 patients), some projection images 

were just too noisy to allow visualization of the markers (see Figure 7-11). 

On validating the accuracy of our modified marker tracking algorithm, we have 

limited our investigation to cosine type breathing pattern at each direction (LR, AP and 

CC). It was found that the relative error to true motion for all directions were << 1.0% 

when amplitude was fixed and << 4% when amplitude was randomly varying. Moreover, 

the result showed that relative motion error on CC direction (motion across projection 

orientation) was significantly less than error on both LR and AP direction (motion along 

projection orientation). This has also been the observation of earlier work as well [199].  

It is noted by the readers that our marker tracking algorithm is based on prior 

knowledge of 3D marker position gathered from 2D marker positions at all angles. 

Therefore, it is obvious that more consistent and regular the breathing pattern is; tracking 

process would more be accurate. Evaluating uncertainty of tracking algorithm with 

irregular breathing period or abrupt motion (e.g. cough) was beyond scope of our work. 

However, it is anticipated from our example study that as motion irregularity gets severe, 

uncertainty of tracking would also increase due to the fact that accuracy of a priori 

calculated 3D axial line (see section 7.4) is to some extent, dependent upon regularity of 

breathing. Nonetheless, it is entirely necessary to evaluate and improve our algorithm in 

such severe conditions comprehensively, which is going to be our next step.   

In this study, we have limited our investigation upon fiducial markers with single 

sized cylindrical shaped (2×5-mm gold). The main reason for this is that entire patient 
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that we analyzed had fixed shaped markers implanted in them. However, we anticipate 

that our marker extraction as well as modified tracking algorithm would work as accurate 

as for different shaped or sized markers, as long as feature of marker is clearly visible and 

extractable from CBCT projections.
 

B. Liver motion 

Our results indicate that, in general, the liver motion is most dominant in the CC 

direction, followed by the AP direction, and the LR direction. In one exceptional case 

(Patient #9, Marker #1), we found that the LR motion magnitude was significantly larger 

than the AP motion magnitude (5.84 vs 1.18 mm). In addition, the motion in the AP and 

CC directions were highly correlated, where, when the markers moved cranially, they 

moved posteriorly, and vice versa. The LR motion, however, had a more variable 

relationship with the AP/CC motions, and appeared random with respect to the location. 

Thus, since there are some correlations and some randomness to the liver motion, this 

suggests that a careful attention is needed in characterizing the tumor motion during the 

planning and the treatment processes. 

There were significant motion variability observed between the 4DCT and the 

CBCT scans. The absolute difference in the motion magnitude ranged from 0.03-8.60 

mm, 0.01-6.81 mm, and 0.15-9.25 mm across LR, AP, and CC directions, respectively. It 

was observed that 4/20 patients had absolute motion difference in the CC direction of at 

least >5 mm for all markers implanted. Changes in breathing period ranged from -1.99 to 

+1.02 seconds, with an average of -0.16 ± 0.75 seconds. This suggests that, for some 

patients, the planning 4DCT images do not accurately represent the patient motion 

characteristics throughout the treatments. In addition, a recent study by Vergalasova et al. 
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[204] points out that a free-breathing 3DCBCT is very limited in capturing the full range 

of motion, and that the appearance of the motion-blurred ITV is heavily dependent on the 

breathing pattern of the day. With this, and since Figure 7-7 has shown the range of 

possible inter- and intra-fractional variability that can be observed in the liver motion, 

this strongly suggests that free-breathing 3DCBCT scans may not be accurate enough in 

guiding the liver SBRT treatments, even with the markers implanted. Perhaps the best 

solution is to take 4DCBCT scans for all fractions. [194] 

We also found that the motion pattern and magnitude depends strongly on the 

location within the liver. As Figure 10 has shown, the motion magnitude tends to be 

different as the distance between the markers increased. This finding is consistent with 

the previous works [178, 180] where the accuracy of the tumor position prediction 

decreases with the increasing distance between the implanted markers and the tumor. 

From 20 patients of analysis, we found that difference of motion was significant, when 

distance of separation exceeded > 7 cm. Thus, it is highly recommended that markers be 

implanted as closely to the gross tumor as possible (< 7cm in our study), while avoiding 

implanting directly in the tumor to avoid possible spread of tumor cells. 

7.8 Conclusion 

This study analyzed the liver motion characteristics of 20 patients undergoing 

SBRT. A large variation in motion was observed, inter- and intra-fractionally, and that as 

the distance between the markers increased, the difference in the absolute range of 

motion also increased. This suggests that marker(s) in closest proximity to the target be 

used. 
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Chapter 8  Conclusions and future work 

This dissertation presents on optimizing the use of CBCT system used under 

IGRT settings which includes 1) improving the performance of CBCT imagers by 

correcting the defective pixels inherent to its frequent usage and detector fabrication 

process, 2) improving the quality of on-board CBCT images with respect to patient dose 

and respiratory motion, 3) enhancing the speed in which corresponding volumetric 

imaging modalities can be reconstructed and 4) proposing a way to understand the 

variation of inter-and intra-fractional tumor motion during the image guided treatment 

using CBCT system. These methodologies are anticipated to be useful to perform 

sophisticated radiation therapy techniques in the future which include adaptive radiation 

therapy, on-line re-planning, real-time dose estimation, and real-time patient monitoring. 

The contribution of each chapter is addressed as follows. In chapter 2, we 

presented a method of identifying defective pixels in the X-ray imagers, particularly used 

for CBCT imaging based on wavelet analysis. The wavelet transform was applied to the 

gain and offset X-ray images and the sub-image represented by scaling coefficients was 

truncation to suppress or remove the large-scale signal variations. And then, inverse 

wavelet transform was applied. The reconstructed imaged filtered low-spatial-frequency 

components, and singularities, such as spikes and discontinuities which represent the 

location of defective pixels were detected.  Defective pixels were corrected with simple 

median filter. Our approach demonstrates an approach to periodically monitor the 

performance of X-ray imagers and compensate the degradation of its performance due to 

frequent usage.  
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In chapter 3, we demonstrated an ultra-fast reconstruction technique for digital 

tomosynthesis (DTS) imaging using general-purpose graphics processing unit (GPGPU) 

programming interface. All the computation tasks that need to reconstruct DTS were 

parallelized as thread in GPU to gain massive speed-up. This resulted speed improvement 

of up to 87 times compared with the CPU-based implementation with visually identical 

images and small pixel-value discrepancies and CNR differences. With this achievement, 

we have shown that time allocation form DTS image reconstruction is virtually 

eliminated that clinical implementation of this approach has become quite appealing. In 

addition, with the speed achievement, further image processing and real-time applications 

that was prohibited prior due to time restrictions can be now tempered with. 

In chapter 4, we presented a novel gradient projection algorithm, based on 

gradient projection Barzilai-Borwein (GP-BB), which handles the total variation (TV)-

norm regularization-based least square problem for low-dose CBCT reconstruction in a 

highly efficient manner, with speed acceptable for routine use in the clinic. In our 

implementation, CBCT was reconstructed by minimizing an energy function consisting 

of a data fidelity term and a TV-norm regularization term. Both terms are simultaneously 

minimized by calculating the gradient projection of the energy function with the step size 

determined using an approximated Hessian calculation at each iteration, based on 

Barzilai-Borwein formulation. To speed up the process, the entire algorithm was 

designed to run with a single GPU card. With this implementation, a clinically viable 

patient image could be obtained ~34-78 sec while simultaneously cutting the dose by 

approximately 67%. This demonstrated conventionally time consuming, iterative, low-

dose CBCT reconstruction potentially useful in an on-line IGRT setting.  
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In chapter 5, we demonstrated the method to generate breath induced motion 

signal of liver for reconstructing 4D DTS as well as CBCT images based on both phase 

wise and amplitude wise sorting of projection data. The reconstruction process was done 

in four steps which were 1) selecting region of interest (ROI) of fiducial marker position 

from projection data, 2) generating of breath induced marker motion signal based on its 

position and predict motion signal through signal ‘‘profiling’’ on the missing margin of 

marker due to limited field of view (FOV) in ‘‘half-fan’’ geometry, 3) process both 

amplitude wise and phase wise sorting with marker motion signal and 4) reconstruct both 

4D CBCT and DTS images. With such implementation, we demonstrated that motion 

tracking as well as 4D reconstruction of CBCT and DTS of liver through tracking of 

metal markers are possible and can be directed towards utilizing the technique for on-line 

image-guided adaptive radiotherapy. 

In chapter 6, we proposed a novel 4DCBCT reconstruction algorithm framework 

called Motion-Map Constrained Image Reconstruction (MCIR), that allows 

reconstruction of high quality and high phase resolution 4DCBCT images with no more 

than the imaging dose as well as projections used in a standard Free Breathing 3DCBCT 

(FB-3DCBCT) scan. In MCIR algorithm, the unknown 4DCBCT volume at each phase 

was mathematically modeled as combination of FB-3DCBCT and phase-specific update 

vector which has an associated motion-map matrix. The motion-map matrix, which is the 

key innovation of MCIR algorithm, was defined as the matrix that distinguishes voxels 

that are moving from stationary ones. This 4DCBCT model was then reconstructed with 

compressed sensing (CS) reconstruction framework such that the voxels with high 

motion would be aggressively updated by the phase-wise sorted projections and the 
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voxels with less motion would be minimally updated to preserve the FB-3DCBCT. 

Examination of the MCIR algorithm showed that high phase resolution 4DCBCT with 

sets up to 20 phases using a typical patient’s FB-3DCBCT scan could be reconstructed 

without compromising the image quality. Moreover, both in numerical as well as in real 

patients’ data sets, the image quality of the MCIR algorithm outperformed the other 

algorithms. With this achievement, we have demonstrated the potential for providing 

high-quality 4DCBCT information during on-line image-guided radiation therapy (IGRT) 

and adaptive radiation therapy (ART) environment, without sacrificing imaging dose. 

In chapter 7, we have investigated motion characteristics of liver based on fiducial 

markers tracked with the X-ray projections of the CBCT scans, taken immediately prior 

to the treatments. The CBCT projections data for each fraction, for each patient, were 

analyzed and the 2D positions of the markers were extracted using an in-house algorithm. 

From the 2D extracted positions, a 3D motion trajectory of the markers was constructed, 

from each CBCT scans, resulting in left-right (LR), anterior-posterior (AP), and cranio-

caudal (CC) location information of the markers. We then analyzed the inter- and intra-

fraction liver motion variability, within different locations in the organ, and as a function 

of the breathing cycle. A large variation in motion was observed, inter- and intra-

fractionally, and that as the distance between the markers increased, the difference in the 

absolute range of motion also increased. Our investigation demonstrated that that 

marker(s) in closest proximity to the target be used while patients are treated during 

CBCT guided Stereotactic body radiation therapy (SBRT) of liver cancer. 

Future work includes larger clinical trials to evaluate the clinical utilities of 

various methods that we have proposed in this dissertation. This includes investigations 
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of our various volumetric reconstruction methodologies (low-dose CBCT, DTS and 4D 

CBCT) on 1) quantifying the improvement in patient positioning and tumor target 

localization accuracy, 2) usefulness in adaptive radiotherapy (ART) including on-line re-

planning.  

Determining the optimal CBCT scanning protocols for the use of low-dose CBCT, 

DTS and 4D CBCT are also promising direction to be investigated. Comprehensive 

analysis on what minimal number of projections, mAs, and scanning geometry can work 

with such reconstruction modalities and still produce reasonable quality images for 

clinical use needs to be done in the future studies. 

Finally, we anticipate that our method of analyzing the motion trajectory of liver 

can be a promising tool to enable further sophisticated image guidance techniques such as 

real-time tumor tracking. To make such technique realizable, optimizing the 

computational speed and more rigorously validating accuracy as well as uncertainty of 

3D position estimation algorithm is another promising direction that needs to be 

investigated. 
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