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Cone Beam Computed Tomography (CBCT) system isntbst widely used
imaging device in image guided radiation theragyRT), where set of 3D volumetric
image of patient can be reconstructed to identiiy eorrect position setup errors prior to
the radiation treatment. This CBCT system can Santly improve precision of on-line
setup errors of patient position and tumor targealization prior to the treatment.
However, there are still a number of issues thadeeo be investigated with CBCT
system such as 1) progressively increasing defegixels in imaging detectors by its

frequent usage, 2) hazardous radiation exposupattents during the CBCT imaging, 3)
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degradation of image quality due to patients’ negpry motion when CBCT is acquired
and 4) unknown knowledge of certain anatomicaluiest such as liver, due to lack of
soft-tissue contrast which makes tumor motion ieaifon challenging. In this
dissertation, we explore on optimizing the use ohe beam computed tomography
(CBCT) system under such circumstances.

We begin by introducing general concept of IGRT. e When present the
development of automated defective pixel detectilgorithm for X-ray imagers that is
used for CBCT imaging using wavelet analysis. Wt mevestigate on developing fast
and efficient low-dose volumetric reconstructioahteiques which includes 1) fast digital
tomosynthesis reconstruction using general-purgpaphics processing unit (GPGPU)
programming and 2) fast low-dose CBCT image recan8bn based on the Gradient-
Projection-Barzilai-Borwein formulation (GP-BB). Warther developed two efficient
approaches that could reduce the degradation ofTCBtages from respiratory motion.
First, we propose reconstructing four dimensiod&l)(CBCT and DTS using respiratory
signal extracted from fiducial markers implantedliver. Second, novel motion-map
constrained image reconstruction (MCIR) is propaded allows reconstruction of high
guality and high phase resolution 4DCBCT image$ wid more than the imaging dose
used in a standard Free Breathing 3DCBCT (FB-3DCB{an. Finally, we demonstrate
a method to analyze motion characteristics of litvet are particularly important for
image guided stereotactic body radiation thera@¢SBRT). It is anticipated that all the
approaches proposed in this study, which are laattnically and clinically feasible, will

allow much improvement in IGRT process.
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Chapter 1 Introduction

1.1 Radiation therapy

Cancer has a profound influence on the lives ofryeveember of the family
concerned and it is one of the leading causesathda the world. There are a number of
treatment modalities available to treat canceheeitas stand-alone treatments or as
synergetic combinations. There are three mainrtreat techniques that are frequently
used in current clinical settings, which are 1)geuwy, 2) radiation therapy and 3)
chemotherapy. Radiation therapy, or radiotheragilizes high energy, penetrating
waves or particles such as X-rays, gamma rayspiprays, or neutron rays to destroy
tumor cells or keep them from reproducing.[1] llizés ionizing radiation in a strictly
controlled environment to treat cancer. High enexXgsays, gamma rays, and electron
beams are common forms of ionizing radiation uskmhizing radiation can be
administered using external beam therapy or byimdaa radioactive material directly
into a body tissue or cavity. Radiation therapy kgoby damaging the DNA within
cancer cells thus interfering with the cell’s ayilio grow and reproduce. Currently, most
common cancer types are treated with radiatiorafhyem some way and it can be used
as the primary therapy or combined with surgerygnebtherapy, hormone therapy or
some mixture of them. Over past decades, radiat@napy has become the most
common way to treat cancer with nearly 24 all cancers treated with some form of
radiation therapy.[2] The ultimate goal of radiatitherapy is to deliver maximum
radiation dose to the tumor volume while minimiziegcessive dose to surrounding

healthy tissues or organs surrounding the tumor.



1.2 Evolution of radiation therapy

The history of radiation therapy began with thecdigery of X-rays by Wilhelm
Rontgen in 1895, where the internal structurehefliody could be made visible without
the necessity of surgery.[3, 4] Soon after the gdiweaking discovery, in 1898, Nobel
Prize winning scientists [5], discover the radioaetelements polonium and radium and
notice that radiation from radium killed diseasetlsc This was the first historical event
of radiation therapy where radiation took a rol¢ jost in diagnosis but also in treatment.
During World War | and Il, physicists and engine@antinued to develop higher energy
X-ray machines to produce high energy, deeply patieg beams to treat deep-seated
tumors. In the 1960s, the revolutionary megavolthggh energy treatment machine
called linear accelerator (Linac) was introduced which enabled treatment of deep-
seated tumor without exerting excessive damagevelyng skin and tissue to the
patient. Since then, the technologies of radiatf@rapy have proliferated over the last
decades and more sophisticated radiation theraghnigues such as three-dimensional
conformal radiation therapy (SDCRT) [8-10] and m#gy modulated radiation therapy
(IMRT) [11, 12] have been developed and practicethe clinic. However, conventional
simulation and portal imaging techniques to vempiysition of beam delivery limited
potentials for delivering accurate and conformakrbewhile sparing normal tissues of
new treatment techniques. To overcome such lirohatimany investigators have
developed variety of in-room imaging devices tousasnore accurate patient positioning
and target localization and to facilitate the fpttential of 3DCRT and IMRT. The
concept of image guided radiation therapy (IGRT3,[14] has been introduced since

then.



1.3 Image guided radiation therapy (IGRT)

The term IGRT, is defined as process of radiatreattment which use external
imaging devices to identify and correct positiotupeerrors arising from inter-and intra-
fractional variation in patient setup and anatodlyJo date, it is considered as very
promising method of treatment to ensure accuratepaacise radiation delivery to the
target. In IGRT settings, machines that deliveratoh (e.g. Linac) are equipped with
imaging devices to image the tumor immediately miy/prior to the treatment. These
imaging devices are able to provide accurate inébion about patient positioning and
organ motions, which can be used to correct pasitgperrors and control organ motion
effects during the treatment process. By combimmaglern radiation therapy technique
such as 3DCRT or IMRT, the radiation dose delivarguracy is significantly improved,
leading to a substantial reduction in the volumdr@diated normal tissues.[15] This
reduction of the irradiated volume helps reducedamage caused to the health tissues,
allowing us to escalate the dose to the tumor ¢oesse the tumor control probability.
Moreover, IGRT increases the amount of data catbd¢hroughout the course of the
treatment. Over the course of treatment, this médron allows the continued assessment
and refinement of treatment techniques and adaptchianges such as tumor
shrinkage/expansion and changes in shape that oc@y over the course of radiation

therapy.



1.4 Imaging techniques in IGRT

In IGRT setting, there are many types of imagincht®logy that can be used to
verify patient position. In this section, three mwesdely used imaging techniques are
discussed in brief.

A. Radiological imaging

Radiological imaging is the most basic form of immagtechnique where 2D
projections or planar images are acquired. Thisgama then compared with digitally
reconstructed radiograph (DRR) of computed tomdyyafT) images of the patient
acquired for treatment planning and simulation pag The size of the object imaged is
dependent on the size of the detector and thendistbetween the detector and imaging
object.

B. Fluoroscopic imaging

Fluoroscopic imaging is a continuous series ofalagdiical imaging where patient
are continuously imaged with X-rays in real-timeridg patient during/prior to the
treatment. It allows real-time respiratory motiommioring and verification of patient
position using visible anatomical structures or lemped fiducial markers. The
information can be used for the management of -ater intra-fractional tumor motion
and motion adaptive treatment in some cases.

C. Tomographic imaging

Volumetric tomography or CT images can be generatedugh various
reconstruction processes by acquiring series o&yXprojections measured at different
gantry angles. Currently, it is the most populaagng technique that is used in the

process of IGRT. Position setup error of patieah de accurately measured by



comparing translational and rotational differenéevolumetric images with respect to
planning CT images. Helical CT as well as cone b€an{CBCT) system can be used as
tomographic imaging device in IGRT. In particulgantry-mounted CBCT system is the

most widely used tomographic imaging device indlac.

1.5 Cone beam computed tomography (CBCT) systems iBRT

Cone beam computed tomography (CBCT) system iscantly developed
volumetric imaging device for IGRT where seriekibdvoltage (kV) X-ray radiographs
are obtained and reconstructed to produce threerdimnal (3D) volumetric image of
patient to calculate 3D positional offset. [16] TBE volumetric representation verifies
patient position on treatment couch to assist inchmag the planned position with the
current treatment position. Besides tomographiginpaCBCT system is also capable of
providing other imaging techniques such as radpgm imaging and fluoroscopic
imaging.

The two most popular CBCT systems manufactured drydors are On-Board
Imager (OBI, Varian Medical Systems, Inc., PalodAICA) and X-ray Volumetric
Imager (XVI, Elekta Oncology Systems, Crawley, UKFig. 1-1.] Both, adds two
laterally mounted arms, for the X-ray source aiadl flanel detector on the clinical linear
accelerator. This is in addition to the mogavoltdy9/) source and electric portal
imager. In OBI, the left arm is an amorphous-siida-Si) flat panel detector while the

right arm is kV X-ray source. In XVI, these arms @ositioned in opposite way.



Fig. 1-1. On-Board Imager (OBI, Varian Medical &8s, Inc., Palo Alto, CA) (a) and X-ray
Volumetric Imager (XVI, Elekta Oncology Systemsa@iey, UK) (b). Note that position of arms
constituting x-ray source and detector are posttibin opposite way.

The two CBCT image acquisition categories are dladsaccording to the
dimension of the imaging site. If the imaging sltameter is<25 cm, the image falls into
the category ofull-fan scans witHull-fan beam and full bow-tie filter. If the imaging site
diameter is >25 cm, the image is categorizetha&fan scans withhalf-fan beam and
half bow-tie filter. Two types of filter, the fulind half bow-tie filters are added to 1)
reduce skin dose, 2) reduce x-ray scatter, 3) inglimage quality and 4) reduce the
amount of charge trapped in the detector. Subsélguémere are six imaging modes of
CBCT, that are named, 1) standard dose head, 2)itme head, 3) high quality head, 4)
pelvis, 5) pelvis spot light and 6) low dose thorax each setting, energy, current and
scanning time of x-ray are varied to optimize tHe@QT image with respect to different
sites that are imaged. The reconstructed volunfellian scan is up to 25 cm diameter
in anterior-posterior (AP) and left-right (LR) doteons and a maximum of 17 cm long
across cranial and caudal (CC) directionhatf-fan scans, it is up to 50 cm in diameter
across AP and LR directions and maximum of 15 cnosscCC direction. Figure 1-2
shows representation of each scan type. In the ch$alf-fan scans, the flat panel

detector is shifted laterally by 14.8 to 16 cm depeg upon the types of CBCT



machines. Irfull-fan scan mode, the X-ray rotates 200° under the coaudbrm CBCT
image. The X-ray can rotate in one of two possfisitions, anti-clockwise or clock-
wise. In the mode used fbalf-fan scans, the x-ray rotates 360°, moving in a closkwi

direction around the imaging site to form the CB@ikge.

Source

Reconstructed
Volume
-~
APL
LR
(a) (b)
\ Detector/

Fig. 1-2. Schematic view of (a) full-fan and (b)fifan mode CBCT scans.
During the CBCT scan, single exposures are maderéin degree intervals to

the patient, providing individual 2D projection iges. These images are basically
radiographic images of patient measured at diftesgles. The complete series of
images is referred to as the “projection data.”lGRT settings, approximately 364
projections are acquired over 200°%uti-fan scan mode and 656 projections are acquired

over 360° inhalf-fanscan mode to complete “projection data”.

1.6 Volumetric imaging modalities using CBCT system

Using the projection data obtained after the pregssing stage, volumetric image
can be reconstructed by synthesizing projectioa dat¢asured at specified angles. With
CBCT system, there are several types of volumeiniaging techniques that can be

reconstructed and provide useful information duri@®RT procedure. In this section,



four different volumetric imaging modalities thaiutd be reconstructed using projection
data acquired from CBCT system are discussed @f. bri
A. Three dimensional (3D) CBCT

When all projection data are used to reconstruglsi3D volumetric image, the
volumetric image is called 3DCBCT or free breath3CBCT (FB-3DCBCT), which is
most popular and widely used method in IGRT. It meminent role in current
radiotherapy settings due to of its wealthy funwiorole in providing (1) anatomic
information, (2) geometric information and (3) Ctinmbers for possible dose calculation
and on-line/off-line re-optimization of plans aslwas precise patient positioning.[17,
18]

To reconstruct 3DCBCT, algorithm developed by Faldk, Davis and Kress
(FDK)[19] is most widely used reconstruction tecu®. It is an extension of exact 2D
reconstruction algorithms for fan-beam projectiortite 3D case by properly adapting the
weighting factors to the projection data. The FOKoathm can be divided into three
steps: generate weighted projection data whereneosieighting is applied to the
preprocessed projections, ramp filter the projeciimages row-wise, and back-project
the filtered projection data into the volume. OB&CBCT have been reconstructed, they
can be recombined into a single volume for possiBRT procedure.

B. Digital tomosynthesis (DTS)

Digital tomosynthesis (DTS) is a quasi-3D imagieghnique which reconstructs
images form a limited angle of cone beam projestitypically over< 45° scanning
angle.[20-22] Figure 1-3 shows the scanning prdto€cCBCT system when 3DCBCT

and DTS images are acquired. It has advantages@BE&T in terms of lower doses,



short image acquisition times, and less gantrytimtaequirements. This modality could
be beneficial for imaging organs affected by restpiny motions and for those patient

treatments when full gantry rotation is mechanycatipossible.
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Fig. 1-3. Schematic view of (a) CBCT and (b) DT&rsc
C. Four dimensional (4D) CBCT

Image acquisition time of CBCT system is lorxgd (min for thoracic/abdominal
sites) due to limited speed of the linear accebergantry. Due to such reason, when
3DCBCT is applied to thorax, the image quality tenheavily degraded due to patient
respiratory motion. Serious motion-induced artsacompromise the effectiveness of
using CBCT during IGRT. To overcome this probleoyrtdimensional (4D) CBCT has
been developed to provide respiratory phase-redoleimetric images.[23, 24] In such
an imaging modality, all the X-ray projections dnest retrospectively grouped into
different respiratory phase bins according to Wriegt signal tagged on every projection
image. A CBCT image for each breathing phase is tleeonstructed independently,
yielding an image with much less motion-inducedacts. The capability of 4ADCBCT to
significantly reduce the motion artifacts and erdeathe target localization accuracy has

been evaluated, allowing up to 50% reduction impiag target volume (PTV) size.[25]
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D. Low-dose CBCT

Because CBCT uses ionizing X-rays to image, theeelegitimate concern about
hazardous radiation exposure to patients. Dueito ékcessive use of imaging should be
prohibited and the benefits-vs-harm ratio shouldcheefully weighed and debated for
each treatment, especially for pediatric patier@sirrently, many investigators are
developing various low-dose imaging protocol argbathms using CBCT system.

Recently the concept of low-dose CBCT has beenduired. [26-28] In low-dose
CBCT settings, there are rather straight forward/svep reduce the imaging dose by
either 1) minimize the number of x-ray projecti@)y,reduce the current setting in the x-
ray tube, and/or 3) reduce the total exposure (irms). With the current-standard FDK
reconstruction algorithm, however, reducing thejgoiions will cause aliasing artifacts
the severity of which depends inversely on the nemdb projections, and if the current
or exposure is reduced, the noise in the imagedvmgkease. Both of these properties of
the FDK are extremely undesirable, especially & images are used for guiding
precision radiation therapy for cancer eradicatibherefore, improved reconstruction
algorithm is needed to handle such problem.

Introduction of compressed sensing (CS) theory &9, has been proved that
signals which are noisy and sparsely sampled canebenstructed with high image
quality.[31] Especially, the total variation (TV)athod has been particularly useful in CT
reconstruction by exploiting the minimal variatiom x-ray attenuation across body
tissues.[32-37] This theory has become promisirgtism to low-dose fan-beam CT as

well as CBCT reconstruction problem. Consequenglych improved reconstruction
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algorithm can potentially reduce the typical CBGiiaging dose by up to an order of

magnitude for the use not only in IGRT purposediso in diagnostic imaging.

1.7 Motivation of thesis

While CBCT for patient positioning has been showndduce setup error, there
are still a number of issues that needs to be iigated in order to realize the full
potential of an on-board imaging device. In theahg CBCT system can be used to
perform sophisticated radiation therapy techniqonelside adaptive radiation therapy, on-
line re-planning, real-time dose estimation andl-tieze patient monitoring. These
methods are all limited by 1) performance of CB@lagers, 2) the quality of on-board
CBCT images with respect to patient dose and ragwy motion, 3) the speed in which
CBCT can be reconstructed and 4) the variationnbériand intra-fractional tumor
motion during the treatment. Therefore, it is intpat to investigate each limitation in
separate or in combination, and provide solutiansnprove the utilization of CBCT

system during IGRT.

1.8 Specific aims
The specific aims of this dissertation are afed:
1. Develop a fully automated approach to identify anchpensate defective pixels that
progressively increases with routine use of X-raggers in CBCT system.
2. Investigate on fast low-dose CBCT imaging modait&d prove the feasibility of its
use for image guidance in radiation therapy.
2.1.Develop a digital tomosynthesis (DTS) reconstructiamework using limited

angle projections data that can be reconstructadslin real time.
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2.2.Develop a novel low-dose CBCT reconstruction alponi that handles low-dose
CBCT reconstruction problem in a highly efficientanmer, with speed
acceptable for routine use in the clinic.

3. Investigate on respiratory correlated volumetriagimg framework and prove the
feasibility of its use for respiratory motion maning and image guidance in
radiation therapy.
3.1.Develop a method to reconstruct four dimensiond)(4BCT and DTS

reconstruction using the respiratory signal ex@dcfrom inserted fiducial
markers in the liver.
3.2.Develop a novel 4DCBCT reconstruction frameworkt thilows reconstruction

of high quality and high phase resolution images.

4. Investigate on inter-and intra-fractional liver neot variation during image guided

stereotactic body radiation therapy (SBRT) anduwdisdts clinical outcomes.

1.9 Dissertation organization

The remainder of dissertation is organized as \fiedlo

Chapter 2 presents a method of identifying defecixels in X-ray imagers
based on wavelet analysis. This includes introdaobf wavelet transform, procedure for
generating defective pixel map based on waveldysisan x-ray imager, how to correct
defective pixels and experimental results.

Chapter 3 introduces ultra-fast reconstruction éegple for DTS imaging using
standard general-purpose graphics processing@RiGPU) programming interface. This

includes Feldkamp, Davis, and Kress (FDK) based Dac®nstruction algorithm, DTS
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image acquisition procedures, GPGPU programmingldmrentals and performance
analysis of the method.

Chapter 4 proposes novel efficient low-dose CBCGtonstruction algorithm
based on gradient projection Barzilai-Borwein (GB}Bormulation that handles low-
dose CBCT reconstruction problem in a highly e#fici manner. This includes
introduction of low-dose CBCT reconstruction prableising compressed sensing (CS)
framework, mathematical formulation of GP-BB algiom and its implementation on
GPGPU programming interface and performance evaluawith other published
algorithms.

Chapter 5 presents a method to reconstruct 4D CB&I DTS reconstruction
using the respiratory signal extracted from ingkfiducial markers in the liver. This
includes detailed explanation on extraction of ¢idhmarker positions from cone-beam
projection data, generation of breath-induced nrarketion signal, validation of the
marker extraction algorithm, projection sorting ggss and results with lung SBRT
patients.

Chapter 6 proposes novel 4DCBCT reconstructionrdlgo framework called
motion-map constrained image reconstruction (MGHa} allows reconstruction of high
guality and high phase resolution 4DCBCT image$ wid more than the imaging dose
as well as projections used in standard CBCT sthis. includes detailed illustration of
MCIR algorithm, how to create motion-map of patjealgorithm implementation and
performance comparison with other published algorg using both numerical

simulation and patient data.
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Chapter 7 presents investigation of breathing ieduozer motion during CBCT
guided SBRT. This includes the information of patithat we have analyzed in this
study, modified marker extraction algorithm of falal markers and 3D position tracking
algorithm of extracted markers. As a result, wecubs accuracy of marker tracking
algorithm, liver motion types and inter-and intradtional liver motion variability in
detail.

Chapter 8 summarizes the contribution of this weimkl discusses future research

directions.



Chapter 2 Identifying defective pixels in X-ray

imager using wavelet analysis

2.1 Introduction and background

In recent years, mature electronics and manufagjuniethods have led to many
approaches for the design and construction of aigietectors for X-ray imaging.[38]
Although various configurations of detectors arailable, most detectors are mainly
composed of two components: X-ray converters, sashscintillators (to provide
"indirect" detection of X rays by converting thetelded X-ray energy into optical
photons) or photoconductors (to provide "directtedgon of X rays by converting the
detected X-ray energy into electron-hole pairsy] esadout pixel arrays.[39, 40] As an
optical-photon readout pixel array, charge-coupledices (CCDs) have been used for a
long time because of their high-quality, low-noisenaging performance.[41]
Complementary metal-oxide-semiconductor (CMOS) rietdgies with their recent
advances have become an alternative to CCDs, mfferigreat cost advantage and high
physical performance.[42] Presently, flat-panelgeras based on arrays of hydrogenated
amorphous silicon &Si:H) thin-film transistors in combination with teer a-Si:H
photodiodes (for indirect detection of X rays) twrage capacitors (for direct detection of
X rays) are central for digital radiography, esp#gi for cone beam computed
tomography (CBCT) imaging applications.[40, 43] Afi these x-ray imaging detectors
utilize pixel formats; hence they provide the insic two-dimensional (2D) imaging

capability.

15
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These pixel array detectors are typically fabridatey the semiconductor
manufacturing process. During fabrication, the norferm fabrication conditions over
the areas of the pixel array, for example, theeddfice in doping concentrations in
individual pixel elements, are unavoidable, ands¢éheonditions worsen as the detector
size increases.[44] Unpredictable local defects a@so occur in individual pixels or
partial or complete lines.[45] These defective [Exevhich are defined as the pixels
whose signal levels are abnormal from their neighibbowever, are normally accepted
to a certain extent in commercial detectors. laged that local imperfections in the X-
ray converters, such as scintillators and photogotmils, may also be observed as
defective pixels in X-ray images.

Basically these defects are considered as fixe@qpatnoise (FPN), which
degrades the image quality. Image information & la radiography from individual
pixels or from partial or complete lines [46], aselere streak and ring artifacts arise in
CBCT.[47] Therefore, clinical or industrial detexgchave to recognize defective pixels
(including line defects) and correct them to ensaapemal detector efficiency and image
accuracy. Software processing is usually employedcbrrection. Above all, the exact
and reliable identification of defective pixel ldas is primary. However, the defective
pixels in a detector may not be stationary in tame space.[46] Routine use of detectors
and thus the accumulated radiation damage progedgsincrease the density of
defective pixels.[46, 48] Therefore, the frequerdlaation of defective pixels is the only
way to use a detector reliably.[48]

In general, defective pixels are identified withrkd@n the absence of X rays) and

white (under X-ray irradiation with no object) inegy The dark and white images are
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also referred to as the offset and flat-field insgespectively. When there is no signal
variation over large physical areas of a detet¢ha,simple thresholding method with the
global mean and standard deviation of the pixeueslmay be used to recognize
defective pixels because defective pixels usuaMilet intensity values abnormally
outside the mean value.

However, most detectors show unwanted, large-stgial variations over areas,
which worsen through the working lifetime of thet@#ors. Signal variation in the dark
and white images is most likely caused by the readonplifiers connected to the
columns of the detector panel. Because the reavoplifiers are usually CMOS circuits,
they probably exhibit small gain and offset vanas, both column-to-column and across
each amplifier chip. The exact nature of the noifieamity depends on the particular
device, but it is typically caused by parasiticacances and resistances that can vary as
a function of how far a particular column is awagnh the power supply or the output
amplifier. For example, if a column amplifier isroctected to the output amplifier by a
metal trace, the resistance of that trace will bepeprtional to its length. On a large
device, this dependence can be significant andaffent the transfer gain for the signal
coming from the column amplifier. Obviously, a aoln that is close to the output will
have less parasitic resistance than one that iavay. It is noted that the variations in
thickness of the X-ray converters can also give t@svariable intensity output in X-ray
images.

X-ray equipment can also cause flaws and fieldag@ms, such as the heel effect,

which is an intensity falloff on the anode sidetloé X-ray tube in the X-ray projection
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image, and which usually contributes as large-scae-uniformities or low-spatial-
frequency components in the Fourier domain of irsage

These field variations can be dramatically improusd subtracting an offset
(dark) image from the image to be corrected, amuh ttividing it pixel-to-pixel by an
offset-corrected flat-field (white) image.[49] Thasin-offset or flat-field calibration is a
typical procedure in digital radiography. The flegtid calibration requires many dark and
white images to reduce the statistical uncertasnittiethe pixel values during arithmetic
operations. Considering the amount of potentidt af the detector response, the flat-
field calibration should be frequently performedshould be noted that only calibration
with updated dark and white images can provide aakegimages.[48] Moreover, the
polyenergetic X-ray spectrum basically makes flelgf calibration incomplete because
the pixel response is dependent on the energy artd @xel response in the image with
an object is different with that in the offset-cmted flat-field image due to the beam-
hardening effect.[50]

In this study, a simple method of identifying defee pixels based on wavelet
analysis is presented. The proposed method is atetivfrom the fact that the response
of defective pixels is impulsive and the wavelansform can decompose discontinuities
and sharp spikes in functions. Therefore, the nteisommune to the influence of a
global intensity variation, so it does not requila-field-corrected images with many

measurements, but may require a single pair of dadkwhite images.
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2.2 Wavelet analysis for defective pixel detection

Wavelet Defective pixels usually exhibit singulasponses, unlike normal pixels
in a detector. Therefore, sorting out these impealsiesponses from global signal
variations is the key in the identification of detiee pixels. For this procedure, wavelet
analysis is employed because the low-frequency ooenits in an image can be easily
identified and isolated by wavelet transformati@Qunversely, wavelet transforms well
represent functions that have discontinuous andpsimeaks. Moreover, wavelet
transforms can accurately deconstruct and recartshinite, non-periodic and/or non-
stationary signals.

Wavelet transform is a linear combination of atordecomposition, known as
wavelets, especially for non-stationary functiob$][Functions with discontinuities and
functions with sharp spikes usually take much fewawelet basis functions than sine-
cosine basis functions (e.g. Fourier transformdioieve a comparable approximation.
Since first introduced in the early 1980s, the vetvgansform has become an important
technique in signal or image processing, such & clampression, noise suppression,
feature extractiorgtc[52]

2D image functiori(x, y) of M x N pixels in size can be expressed as [51]

Xy W, Jo:M M@ mn(XY)+ > W, jvmvn’//j,m,n Xy .
f( )J—ZZ (jo.m.n) ( >J—kz Y YW mnyt a(xy) (2.1)

HV,Dj=jom n

where jo is an arbitrary starting scale and tk¢(jo,mn) coefficients define an

approximation off(x, y) at scalgp. TheWV',‘(j,m,n) coefficients add horizontal, vertical,

and diagonal details for scales jo and the superscriftdenotes the directiord, V, and
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D represent horizontal, vertical, and diagonal dioes, respectivelym andn designate
the sizes of the sub-images and depend on thesdpgtalesyp and y are basis functions,
and they are called scaling and wavelet functigaspectively. If we can select the

scaling coefficients of an image and modify there, replace them by zeros, we can

obtain an imageF(x, y) without global signal variations.

Generating
defective pixel map

f”(x,y) Vs. Lt TG

—‘ —‘V—F - ]
Dark image Inverse Wavelet transform Compa.rmg with —> =
J global pixel values []
- ( f(x,y) vs.pt 10 J

Wavelet transform Truncating -
scaling coefficients

‘White image
Wavelet analysis

Fig. 2-1. A sketch illustrating the procedure fengrating a defective pixel map based on waveldyais.
Each of the dark and white images is changed immléi-scale sub-image by wavelet transformations.
Among four sub-images, the one describing scaloefficients, which contains low-frequency band
characteristics, is truncated and padded with z8ies modified image is then turned back by inverse
transformation, and it only contains sharp speckiége abnormal singular signal distribution is dtestby
comparing it with the local pixel mean and its staml deviation, and finally identified as defectpigels.

The identification method of defective pixels indilng line defects is
schematically illustrated in Fig. 2-1. The wavdieinsform is applied to a dark image.
The transformed image is then represented as fdwiinsages. In order to suppress or
remove the large-scale signal variations, the sudge represented by scaling
coefficients is truncated. In other words, the pwaues consisting of the sub-image are
replaced by zeros. And then, the inverse wavedgistorm is applied. The reconstructed
image is now a filtered image of low-spatial-freqog components and it clearly shows
singularities, such as spikes and discontinuitieshe pixel values. We used the Haar
function as a wavelet.[51] For ensuring defectiveels, the surrounding pixel values

were checked again with the local pixel meants standard deviatios, and threshold
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level 7 (viz. 4 + ro). This thresholding procedure may suppress misleddemporal
random pixel responses. The pixel locations ofdékective pixels detected are mapped
to a template. The defective pixel map is compleiiter repeated procedures on a white
image.

In this study, with the determined defective pirehp, digital radiography was
corrected by simple adaptive median filtering. Tiesk size of the median filter was5
5 pixels.

In order to demonstrate the proposed method tdifgletefective pixels in digital
radiography, we implemented the method to an Xiraging detector. The detector was
composed of photodiode arrays and overlying luntees phosphor. The phosphor
(Min-R™ Carestream Health, Inc., USA) is mainly made t#rhium-doped gadolinium
oxysulfide (GdO,S:Tb) and it converts into optical photons, whosember is
proportional to the absorbed energy of X-rays. phetodiode array made by CMOS
process (RadEy¥, Rad-icon Imaging Corp., USA) has a format of 512024 pixels
with a pixel pitch of 48um.[53] Since only one narrow side of the CMOS pHaide
array incorporates the readout electronics, two GffDhotodiode arrays were tiled side-
by-side, and therefore, the actual format was 1024€24 pixels and the field-of-view
(FOV) was about 58 50 mnf. X-ray irradiation was performed with a small Xrabe
employing a tungsten target (Series 5000 Apogedpr@xinstruments, USA). The
operation conditions were a target voltage of 45akd cathode current of 1.0 mA. For
sample images, humanoid hand phantom images wegtered. Due to the FOV of the

detector, a part of phantom was imaged.
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The detector has been used in our laboratory flamg time (more than three
years). Since an FPN (including "ghosts" of hightcast objects) is linearly emphasized
to the absorbed dose, the detector shows scabbikdadd white images. Therefore,

finding defective pixels from the backgrounds whallenging.

2.3 Results

Fig. 2-2. Visual illustration of wavelet analysgsitlentify defective pixels. (a) A dark image obtd from
the CMOS detector. (b) Representation of one-sbat®@mposition by wavelet transform. (c) One-scale
decomposition with selected coefficients deletedl Reconstructed image by inverse wavelet transform

Wavelet analysis of a dark image obtained from@MOS detector operated at
an integration time of 550 ms is visually illusedtin Fig. 2-2. As shown in Fig. 2-2(a),
the 2D display of the dark image shows non-unifalistribution of pixel dark currents

and distinct, different responses of the two phiotbel arrays. Fig. 2-2(b) represents the
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decomposed sub-images by one-scale wavelet tramsféig. 2-2(d) shows the

reconstructed image by the inverse wavelet transfafter truncation of the scaling

coefficients, as shown in the second quadrant gf %i2(c). In this image, the global

signal variations are removed and only singulaziaee shown. The dark images before

and after wavelet analysis can be more apparestiyodstrated by a three-dimensional

(3D) display, as shown in Fig. 2-3(a) and (c), esspely. Fig. 2-3(b) is a 3D plot of the

white image. The large pits of the central regiorthe dark and white images are the

ghosting resulting from the persistent local irediin of X-rays during the usage of the

detector.

Fig. 2-3. 3D displays of detector signals beforé after wavelet transformation. (a) and (b) shaynal
distributions of the dark and white images, respelbt. (c) is the dark image after wavelet analysis

Fig.
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One-dimensional profiles extracted from 2D imagesthe row (or address)
direction before and after wavelet analysis are gamed in Fig. 2-4. Truncation of the
scaling coefficients in wavelet domain effectivelymoves the low-spatial-frequency

components in an image; hence, singularities asityadentified.

Fig. 2-5. Templates mapping defective-pixel locasio(a) and (b) are the defective pixel maps obthin
from the dark and white images, respectively. ¢¢he complete defective pixel map by combiningafa)
(b). Insets are the enlarged images, displaye@gative, for the regions indicated by the dottexkiso

Fig. 2-5 shows defective pixel maps generated byelea analysis. Fig. 2-5(a)
and (b) are the maps for the dark and white imagspectively. The map from the dark
image has three defective lines while that fromwte image has one defective line.
Some of defective lines are composed of more theingde line. The total defective pixel
map considering both the dark and white imagesshosvn in Fig. 2-5(c). In order to
observe the behavior of pixel defects, arbitrasdyected regions were investigated. For
easier visualization, the regions are displayeddxyative transformation and the display
is enlarged by a factor 2. Regiobd andW1 are the same regions of the maps of the
dark and white images, respectively. Regib@sandW2 also reflect the same regions in
the maps of the dark and white images. Compddb@ndW1, some of defective pixels
share the same position both in the dark or whiégsnbut some do not because of the
small abnormality in the signal intensity in theitghimage compared with the global

mean pixel value. As shown in the selected regairi32 andW2, some defective pixels
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are very sensitive to X-ray exposure. It shouldnioéed that the defective pixels are
clustered in the map obtained from the white ima@gebably due to the signal leakage of

the defective pixel into its neighborhood.

Fig. 2-6. An example of defective-pixel correctiordigital radiography with the defective pixel mgp)
An image of hand phantom obtained from the CMO®det. (b) Defect-corrected image by adaptive
median filtering operation based on the defectixelpnap.

The defective pixel map that was obtained was tsedrrect defective pixels on
a hand phantom image, as shown in Fig. 2-6. Siragéptive filtering worked well, as
shown in Fig. 2-6(b). The line defects indicatechasws in Fig. 2-6(a) are not shown in
Fig. 2-6(b). The region indicated as a dotted bo¥ig. 2-6(a) has been investigated in
detail, as shown in Fig. 2-7. The arrows in Fig/(d} indicate two pixel defects and one
line defect. As shown in Fig. 2-7(b), two pixel éefs are clearly corrected but a faint

line seam is still shown. Fig. 2-7(c) is a diffeceimage between Fig. 2-7(a) and (b).

Fig. 2-7. Enlarged images indicated by the dotiexiib Fig. 2-6(a). (a) and (b) are the images e=#ford
after the defective-pixel correction, respectivgt). describes the difference between (a) and (b).
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2.4 Discussion and conclusion

In the wavelet transforms, we used the Haar funcée a wavelet. The Haar
function provides an operation similar to ttherivativewhen finding directional wavelet
coefficients. Therefore, there might be artifastsuad the reconstructed singularities. As
shown in Fig. 4, the profile after wavelet transfiations shows sharp spikes adjacent to
the original singular responses in negative validéseshold checking with the local
mean value and standard deviation for the neighgopixel values would prevent the
negative spikes from defective pixels as perfornmethis study. Other filter functions,
which would not cause this kind artifact, as a wetvare alternatives. Although we partly
employed the threshold method, the computationst isocheap because thresholding is
applied to limited regions around singularitiesntiieed by wavelet analysis.

There are several techniques for defective pixalection with various tradeoffs
between the effectiveness and complexity of conmjmnsa The simplest method is to
apply a median filter as demonstrated in this stédgimilar method is mean filtering.
While median filtering replaces the defective piwalh the median around pixel values,
mean filtering uses the average value of the sadimg pixel values. Although mean
filtering is more time-consuming than median filbgy, the image quality is better
because it uses information from more than justa@nine neighboring pixels. In mean
filtering, however, the neighboring pixels need®&good pixels.

Unlike isolated defective pixels in space, cluslepaxel defects are serious
because of the lack of information for correctibnAach and V. Metzler [54] introduced
an iterative deconvolution method in the frequedoynain. They modeled a distorted

radiography due to defective pixels by a multigica of the undistorted radiography by
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the defective pixel map. Then, defect interpolatirould correspond to the
deconvolution of the corresponding spectra. Althouthis method has high
computational complexity, it is particularly suitéal large defective areas. With respect
to line defect interpolation, various interpolati@ehniques are available.[55]

Defective pixels are an inevitable result of thenofacturing process for large
area semiconductor digital detectors. For the sidiaise of detectors over their working
lifetimes, a complete list of the locations of thle defective pixels (or a defective pixel
map) should be prepared, and the defective pixgl needs to be updated by frequent
monitoring. In this study, we introduced the getieraof a defective pixel map based on
wavelet analysis and applied the map to the digadlography that is used for CBCT
imaging. The method does not require gain-and-bffeerected images. Therefore, it is

appropriate to periodic monitoring of CBCT imags\stems.
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Chapter 3 Fast  digital tomosynthesis  (DTS)
reconstruction using general-purpose graphical

processing unit (GPU).

3.1 Introduction

In recent years, the introduction of cone-beam agetg tomography (CBCT)
system in treatment room settings has enabled mesiéation of various image guidance
and adaptive radiotherapy techniques.[14, 17, §6FB& was possible due to the wealth
of information that can be obtained from three-cisienal (3D) CBCT images obtained
immediately prior to treatment, including anatonmiormation for setup [25, 59-61], and
CT numbers for dose calculation [62-64] and onfbffdine re-optimization of plans.
[65-68] All in all, there is minimal doubt that CBChas prominent role in current and
future radiotherapy practices.

In certain clinical settings, however, CBCT may bet the optimal method for
localization because the patient dose is signifif@®-71] and acquisition times are long.
[72-74] In addition, the images may be impossildleatquire for large off-axis patient
set-ups, large patients, and/or bulky immobilizatitevices due to mechanical collisions.
This can become quite unacceptable for clinicaksiith large inter-fraction variations.

As an alternative to full 3D CBCT imaging, theregsowing interest to adopt
digital tomosynthesis (DTS) for use in image-guideadiation therapy (IGRT)
applications.[20-22, 75] This technique takes athga of the CBCT scanning geometry

and results in pseudo 3D images stacked aroundintfaging isocenter that are

28
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reconstructed from projections data scanned atdamprojection angles (typically 40-
60°). The reconstructed images generally contain emamgtomic information for IGRT
applications in clinic [76-80], but due to its limd scan angles, the resolutions are
limited in directions that are not orthogonal t@ tbcanning geometry [81](i.e., due to
pseudo 3D volume).

Current interest in DTS is due to its many advaesagver full 3D CBCT,
including 1) patient dose reduction (> 3 times),[82], 2) scan time reduction (> 4 times
) for faster set-up to beam-on work flow [76, 73;&05], 3) faster image reconstruction
due to less projections data (> 4 times)[81], apdimited scan angle allows more
flexibility in scanning geometries and patient 8ps.[79] In addition to these advantages,
and despite the reduced image quality and resalutiomerous publications have shown
that DTS contains enough image quality and anatamfermation for many IGRT
applications including head-and-neck [78, 82, 83, 8ng [82, 88], liver [82, 89-91],
prostate [84, 86], and breast [79, 80] radiotherdpyparticular, the faster scan time can
be of major benefit for clinical sites (or patigntsat demonstrate large intra-fractional
motion drifts since the influence of this effectto@atment quality will be minimized.

At current, however, there is no commercial systénat allows DTS
reconstruction for clinical IGRT applications, altlgh multiple systems are available for
3D CBCT reconstruction. The current commercial 3BGJ reconstructions can be
accomplished in ~10-15 seconds after image acausifThis is possible because the
reconstruction starts as soon as the first X-rayjeption is acquired. Therefore, it is
anticipated that 3D DTS reconstruction would tak&O<seconds at most if it is to be

commercially implemented. However, a faster reaoicsibn is still desirable if more
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sophisticated image processing (such as noisetesaagduction, etc) and real-time
applications [92] are to be realized. To accommedais need, we have investigated the
data-parallelization approach using graphics pogsunit (GPU). In fact, there has
been increasing number of studies utilizing the potational power of GPU to
accelerate classically heavy and “parallel” compoteal tasks in radiation therapy
including image reconstruction, deformable imageisteation, dose calculation,
treatment plan (re-) optimization, and most impattiahere, DTS reconstruction. [93-99]

General-purpose GPU (GPGPU) computing with the GdaenpJnified Device
Architecture (CUDA, NVIDIA Corporation, Santa Clara&CA) technology is an
innovative combination of computing features thaldes programmers to use general C
language to assign computational tasks to GPddwicg askernelsfrom CPU (orhos).
Kernels are executed through a predetermined numbgarallel threads similar to
multi-threaded programming on traditional CPUs,ttban perform a large number of
similar computations at once (depending on the raxnd§ processing cores in GPU
card). Therefore, in contrast to multi-core CPU$ere only a few threads execute at
each time, CUDA technology can process thousandkreads simultaneously enabling
much faster capacity of information flow.

In this study, we present ultra-fast GPU-based Bac®nstruction scheme using
the recently developed CUDA programming environm@&otthe best of our knowledge,
Yan et al [99] has been the only group to investigate teke af GPU hardware for
accelerating DTS reconstruction for RT applicatiombey used OpenGL application
programming interface (API) to program and assigmgutational tasks to the graphics

hardware (GPU model not stated, however). With #pproach, they were able to
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achieve ~40 seconds to reconstruct 255 slices.|fP#jis paper, we will present much
faster, non-graphics programming strategy using 8UBncoded with thegeneral C
programming, which takes at maximum 2.5 secondsotaplete 256 slices, virtually

eliminating the time allocation for reconstruction.

3.2 FDK-based DTS reconstruction

There are many reconstruction algorithms for DT&gmg.[22, 75] For cone-
beam geometry, however, the well-known FDK algonighroposed by Feldkamp, Davis,
and Kress [19], is the algorithm of choice duetsosimplicity and efficiency. Briefly, in
FDK, the anatomical pixel information at,§ plane, at an arbitrary depth denoted

by f (x,z/y), can be calculated from the following equation]{19

m

1 dz d dt
f(x,z/y)—N—oﬂ:Iﬂ(d 5 S\/d2+p2+§2xR(ﬁ, |o,f)h(d—S p)W (p)dpds (3.1)

whereN, refers to the total number of projectioligefers to the angle of each projection,
d refers to source-to-isocenter distancegfers to voxel-to-detector distangeand¢ are
the detector axes perpendicular and parallel to dkis of rotation, respectively,
R(p, p,&) corresponds to cone beam projection db(g, refers to convolution filter, and
W(p) refers to "half-fan" weighting function for stitimg two opposite projections into a
single large one (used in “half-fan” mode only) (10 Figure 3-1 illustrates the

reconstruction geometry. From this equation, ttlesar that FDK algorithm is composed

of two major calculation-intense steps, includifjgritegral termj___ dp corresponds to

the preprocessingtage that performs convolution filtering of atbjections data, and 2)
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. max L L
integral term I...dﬂ corresponds to theack projectionof the preprocessed projections
S=min g

data, from all angles of measurement, to buildfithed 3D DTS image volume. It is this
back projectionstep that requires the largest computation tinme, @ shown in this
work, this is where GPU gains significant speed-cgmpared with CPU-based

calculations.

Fig. 3-1. The cone-beam-based DTS reconstructiomgéy.

3.3 Imaging device and DTS image acquisition

The patient CBCT data evaluated in this study veecpiired using the On-Board
Imager (OBI v1.4) integrated with the Varian Trijognit (Varian Medical Systems, Palo
Alto, CA). This system consists of a kV X-ray sarKVS) with a flat panebSi
detector (KVD) mounted orthogonal to the gantrysamMsing a robotic arm (Exact™),
sharing approximately the same rotation center with treatment unit. The flat panel

detector consists of 102468 pixels with pixel size of 0.38®.388 mm. The source-to-
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detector distance (SID) is approximately 150 cmhwmaximum gantry rotation speed of
6 degrees-per-second.

There are two main scanning modes with OBI, nartigfull-fan, and 2)half-fan
In the full-fan mode, the detector is centrally placed on the beam during scan
resulting in field-of-view (FOV) of 24-cm diametein this mode, only ~200-degree
scanning is necessary to reconstruct a full 3D CBGIUme. In thehalf-fan mode, the
detector is shifted laterally by 14.8 cm to inceedlse FOV to a maximum of 50-cm
diameter (normally set to 45-cm in clinic). Sinbe detector is shifted during scan, each
projection image requires 180-degree opposite inpagieto obtain the larger projection
image used for reconstruction [100] (see Figure.3FBerefore, this mode requires ~360-

degree scanning to reconstruct a full 3D CBCT vaum

mectm Source

Anatoiny  JIL.

Source De tw

Fig. 3-2. Thehalf-fanscanning geometry of the Varian OBI system. The $waller laterally-shifted
projections with 180-degrees apart can be combimetbtain one larger projection to reconstructrgda
FOV images.

Since there is no “DTS” mode available in the corr®BI version (v.1.4), the
DTS images were reconstructed using subset of girojes data extracted from both the

full-fan andhalf-fan scans obtained in clinic. For thdl-fan scans, the projections from
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157.8-202.5 (45°-scan) were used to reconstruct coronal DTS slwbgreas for the
half-fan scans, the projections from both 157282.3 and 337.5-22.5 (2x45-scan)
were used to reconstruct larger FOV coronal DTE&esli For this study, we chose®°45
scan angle that contained ~80 projections for ftefan and ~160 projections with
2x45-scan angle for thealf-fan mode, each with 1024x768 pixels with 32-bit priecis
The reconstruction volume was set to 512x512x(26,68, 128, or 256) resolution with
1-mm slice thickness, in order to evaluate the mstraction time dependence on
reconstruction volume. In both the CPU and GPU em@ntations, the “stitching and
weighting” of the opposite-angle projections frohe half-fan scans are performed as
part of thepreprocessingstep in the FDK algorithm. Both “stitching” and &ghting”
are necessary to merge the opposite half-fan gropecand to avoid cupping artifact due
to the projections overlap in the middle.[100] Tdéfere, the algorithms are fully
automated and only require uploading of raw prapast data, whether acquired in the
full-fan or half-fan mode. It also needs to be stated here that,nicelily implemented,
the DTS imaging should ideally be acquired infineéfan mode since thhalf-fan mode

is 1) more prone to potential motion artifacts dgrlonger scans, unless larger FOV is
absolutely necessary, 2) the physical scan timeniger, and 3) the similar mechanical

restraints issues exist as in full CBCT scanning.

3.4 CUDA-enabled GPU programming

In this study, we have used the latest releasedDNVIGTX 295 GPU card
(NVIDIA Corporation, Santa Clara, CA) for speeding-DTS image reconstructions.

This model consists of 480 processing cores (2x@dal chip) with 1,242 MHz
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processing clock speed and 1,792 MB memory spduehvis more than enough to store
a typical DTS volume images (~ 256 MB). In terméiafdware, we used Intel Cotei7

CPU with 2.68 GHz clock speed, 12.0 GB DDR3 RAM a084-bit Vista OS.

Load All Projections Data from
Hard Drive to CPU RAM Memory

Assign Reconstruction Volume
to GPU Global Memory

Copy Projection 7 Data from
CPU RAMto GPU Memory

Projection #

Perform Back Projection of

(]
1
)
1
1
1
1
1
1
1
i
Preprocess and Filter :
)
1
)
1
)
1
)
1
Filtered Projection ¢ :
1

Any More Projections ?

Copy the Reconstructed Volume

From GPU Backto CPURAM

Fig. 3-3. The GPU-based DTS reconstruction worwflo

The general work flow of DTS volume reconstructisnllustrated in Figure 3-3.
The program begins by loading all of the X-ray potjons data (~3 MB/projection,
1024x768 with 32-bit precision) onto the CPU RAMeafimage acquisition (~ 240 and
480 MB of RAM needed foffull-fan and half-fan modes, respectively), then each
projection image is sent to the GPU fameprocessingand back projection(shaded in
light green) computations, until all projectionse arsed to build the pseudo 3D DTS

image volume. This reconstruction volume is staredhe GPU global memory at all
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times. For convolution filtering of th@reprocessingstep, we have accelerated the
Fourier transform calculations by utilizing the CBRJIF(or CUDA FFT) library provided
through CUDA. For théack projectionstep, which is the most time consuming part for
CPU, we have parallelized the tasks as threadsPb @ gain massive speed-up. The
preprocessingstep, for the GPU-based implementation, includesidloading of the

projections data from CPU RAM to GPU memory anth2)convolution filtering.

BackProjection( Volume (V(x.y,2)).
Projection (P(p.£)), Geometry Parameters){
forx =0 to X axis

for y=0to Y axis
Calculate x, y position
Coordinate Transform for Rotation
Calculate Longitudinal Position of Detector (p)
Calculate £(z=0)
Calculate Vertical Increament (£*)
for z=0to Z axis

__Global _BackProjection ( Volume (V(X,.2)).
Projection (P(p.£)). Geometry Parameters){
Calculatex, y positionofthread
Coordinate Transform for Rotation
Calculate Longitudinal Position of Detector (p)

Calculate £(z=0)
/(X.v.2)=V(x.y.Z)+P(p.£ e
\;(iiz_i) V3. =PE.2) Calculate Vertical Increament (£7)
e:nd: ’ forz=0to Z axis
q V(x.y.2)= V(5.2 +P(D.£)
en E=Er &
ead o
: )
CPU Based Back Projection GPU Based Back Projection
(a) (b)

Fig. 3-4. The pseudo code illustrating how (a)@UJ-based and (b) GPU-based DTS reconstructions
were programmed.

Figure 3-4 is a pseudo code that illustrates haw was implemented. In short,
the back-projection volume reconstruction per 512w®ber-of-slices (X and Y axis) can
be parallelized into a single simultaneous caloahatie, no loops) using GPU threads,
and therefore (512xnumber-of-slices)x512 volumeudation would be computed as 512
loops (Z axis) of 512xnumber-of-slices calculationBis means that if number-of-slices
= 256, then a single parallel execution of 512x2585072 calculations is performed for

each loop, for 512 times, to reconstruct the emmage volume.
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The reasons that “512xnumber-of-slices” (x512 |IQmadculation are parallelized
and not “512x512” (xnumber-of-slices loops) instead two folds. 1) For X and Y axis
(Figure 1), coordinate transform are function ohtga angles at which projections are
taken, and hence, coordinate transform calculateeds to be performed for each pixel
in the X-Y plane, whereas Z axis is independenhis, and hence performing Z axis last
would minimize the total calculation time. 2) Inditabn, since “512xnumber-of-slices”
(or X and Y axis) are performed as a single-stepsina parallel calculation, increasing
the number-of-slices would not increase the catmraime. That is, whether 512x16 or
512x256 volume calculations are chosen, it woulllst a single-step massive parallel
calculation.

To gain further speed-up, after completing fineprocessingf each projections
data, befordack projectionwe have re-copied each projections data thatsi@ed in
the global memory (not cached, but writable) of GBlhe texture memory (cached, but
not writable within each core) of GPU since no Hiert manipulation of the projections
data are needed. This way, data-read speed ig,fatdble, and most importantly, the
interpolation for pixel value calculations on préded pixel grid size (512x512) is
automated by the texture memory hardware duringodek projectionstage. If not, a
separate bi-linear interpolation has to be perfarrfer each back projection process,
which delays the reconstruction (as is done in @BEed implementation). This
difference in interpolation calculation between @fU- and GPU-based methods causes
slight variation in pixel values reconstructed gseach technique as will be shown in
Section 3.6. For the CPU-based method, all comipui@ttasks, as illustrated in Figure

3-4, were performed using the CPU hardware destabeve.



38

3.5 Patient cases and performance analysis

The performance of the GPU implementation was deste twenty-five patient
cases of various clinical sites (5 lung, 5 lived, drostate, and 5 head-and-neck cases)
scanned either with tHell-fan or half-fan vendor-established standard mode on the OBI
v.1.4. For lung and liver, the standard “PelMvisilf-fan protocol was used. For prostate,
both the “Pelvishalf-fan and “Pelvis spot lightfull-fan protocols were used. For head-
and-neck cases, all of the head protocols supplye@BI were used, namely “Low dose
head”, “Standard dose head”, and “High quality Fefadl-fan mode. These various
protocols are chosen for evaluation due to theaguent use in clinic for various
treatment applications, due to their image qualifferences, as well as the volume and
site being scanned.

For each clinical case reconstructed using the GiPld-GPU-based methods, the
overall times taken as well as each stage of réxari®n were recorded for comparison,
using the internal clock measurement function piedliby both CPU (clock function in
C) and GPU (cut-timer function in CUDA). In additiothe times taken for the
reconstruction volume of 512x512x(16, 32, 64, 1&8] 256 slices), with 1-mm slice
thickness, were recorded.

For image similarity/difference measurements, ttiter@nce maps between the
two image volumes, the average, and standard dmwatin absolute pixel-value
differences were computed, along with line profilde addition, as part of the
comprehensive image comparisons, the contrastise{€NR) ratio was also computed
for both CPU- and GPU-based techniques, using @®lan 600 phantom scan (The

Phantom Laboratory Inc., Salem, NY). The formuladig/as:
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whereS; and S, correspond to mean-intensity of regiomginside an insert) an

(background), andr, andey, correspond to standard deviation of regiar@db.

3.6 Results

A. Image quality comparison

Fig. 3-5. The CPU-based (left), the GPU-based (fe)ddTS reconstructions, and the difference map
(right) images of (a) lung case scanned with “P&lgrotocol, (b) prostate case scanned with “Pélvis
protocol, (c) prostate case scanned with “Pelvig Bght” protocol, and (d) head-and-neck case sedn
with “Standard dose head” protocol.

Figure 3-5 shows the final reconstructed DTS imagesg the CPU- and GPU-
based implementations, as well as the differencpsmir selected clinical cases. The
images shown were reconstructed with 512x512x286lution, with 1x1x1mrhpixel

size. As can be seen, there are virtually no diffees between the two types of
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implementations on image quality. The minimal difiece that is seen is due to the

differences in pixel interpolation methods usedjescribed in Section 3.4.

Table. 3-1. The average absolute difference inlpiakies and its standard deviation (SD) calculaigdg
512x512x256 reconstruction volume between the Gitld-GPU-based implementations, for each clinical
case examined.

Avg. Abs. Avg. Pixel
Patient Site Scan Technique Scan Mode Diff. SD Value
1 Lung Pelvis Half-fan 0.068 0.17 2.77
2 Lung Pelvis Half-fan 0.069 0.17 2.28
3 Lung Pelvis Half-fan 0.068 0.17 2.32
4 Lung Pelvis Half-fan 0.068 0.17 2.59
5 Lung Pelvis Half-fan 0.069 0.17 2.74
6 Liver Pelvis Half-fan 0.138 0.39 2.61
7 Liver Pelvis Half-fan 0.137 0.38 2.52
8 Liver Pelvis Half-fan 0.092 0.23 227
9 Liver Pelvis Half-fan 0.072 0.16 2.81
10 Liver Pelvis Half-fan 0.091 0.19 2.92
11 Prostate Pelvis Half-fan 0.146 041 231
12 Prostate Pelvis Half-fan 0.148 0.42 2.56
13 Prostate Pelvis Half-fan 0.154 0.43 2.72
14 Prostate Pelvis Half-fan 0.145 043 2.71
15 Prostate Pelvis Half-fan 0.098 0.29 2.54
16 Prostate Pelvis Spot Light Full-fan 0.045 0.14 2.11
17 Prostate Pelvis Spot Light Full-fan 0.045 0.14 2.89
18 Prostate Pelvis Spot Light Full-fan 0.032 0.12 2.99
19 Prostate Pelvis Spot Light Full-fan 0.039 0.12 2.05
20 Prostate Pelvis Spot Light Full-fan 0.037 0.12 1.89
21 Head and Neck Low Dose Head Full-fan 0.077 0.30 3.32
P2 Head and Neck Low Dose Head Full-fan 0.070 0.27 3.69
23 Head and Neck | Standard Dose Head Full-fan 0.058 0.21 3.75
24 Head and Neck | High Quality Head Full-fan 0.056 0.24 3.75
25 Head and Neck | High Quality Head Full-fan 0.052 0.28 3.98

Figure 3-6 shows the selected 2D profile compassbetween the CPU- and
GPU-based implementations (from white dashed lim&sgure 3-5). Besides the residual
differences due to different interpolation techmguthe profiles are virtually identical.
Table 3-1 lists the overall averagdsolutepixel differences and standard deviations
(SD) calculated on the 3D volume (512x512x256) &lir twenty-five patient cases
evaluated. As the table shows, the averagsluteand SD are negligibly small (<3%)

compared to the average pixel values. In additioen CNR calculations with the CatPhan
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phantom images were generally <3% different betwden CPU- and GPU-based
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Fig. 3-6. Two-dimensional profiles comparing thelERnd GPU-based DTS reconstructions,
corresponding to the white dashed lines in Figurfe5(a) lung case scanned with “Pelvis” protogb),
prostate case scanned with “Pelvis” protocol, (ostate case scanned with “Pelvis spot light” protp

and (d) head-and-neck case scanned with “Stanaesel ftead” protocol.

B. Speed-up performance of GPU
Table 3-2 lists the break down of average timeridke each step in the overall
DTS reconstruction process. FDK step consists dh libe preprocessingand back
projectionsteps. As can be seen, there’s significant sppdad-the FDK process with the
GPU-based implementation. There is significant dpgein thepreprocessingtep (> 16

times in thefull-fan), but the greatest speed-up occurs inbiek projectionstep where a
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factor of greater than 168 times is seen infthlefan mode. Overall, there is 87.0 and
79.4 times speed-up in tht&ll-fan and half-fan modes, respectively, for FDK
reconstruction. As one can also infer from Table&,3en average, the GPU
implementation can process > 13 projections-peoisg¢pps) and > 18 pps for tihal-
fan and half-fan modes, respectively. It was also found that tinegiation from
reconstruction to reconstruction is very consis@md less than 20 milli-seconds. This
variation comes from multiple sources includingclgck speed variation, 2) electronic
noise in GPU hardware, and 3) variation in imagspldly load (remember, GPU was
used to display the monitor while computing recangton). However, the time variation
of <20ms is negligible compared with the recongtamctime of 1.5-2.5 seconds (<1.5%
variation).

Table. 3-2. Break down of the average times takepetform each stage of the FDK-based DTS
reconstruction process. The reconstruction to retcoction time variation was consistently within @ali-
seconds or less.

Full-fan DTS (512x512x256)

Projection loading Back
from disk to RAM Preprocessin¢ projection FDK Total
CPU (Sec) 4.53 10.92 97.81 108.78 113.27
GPU (Sec) 4.53 0.67 0.58 1.25 5.78
Speed-up (x) 1.00 16.3 168.6 87.0 19.6

Half-fan DTS (512x512x256)

Projection loading Back
from disk to RAM Preprocessin¢ projection FDK Total
CPU (Sec) 6.39 15.95 179.92 195.88 202.27
GPU (Sec) 6.39 1.33 1.14 2.47 8.86
Speed-up (x) 1.00 12.0 157.8 79.4 22.8

Projection loading step copies the projections d&teed in the hard disk to the

CPU RAM, and as can be seen in the table, thigadlanfew seconds also. However, this
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step can be completely eliminated at the clinicaplementation stage since one can
theoretically upload the projections data onto@#J RAM as the images are acquired
in real-time. Therefore, it can be concluded tlaat,of this study, DTS reconstruction
takes at most 2.5 seconds to reconstruct 512x5®kR&ge volume, thereby virtually

eliminating the time allocation for reconstructiduring DTS-based IGRT.

Time (Sec)
2

—&— CPU DTS
—&— GPU DTS

L . . sy . v T ¥ T T T
] 50 100 150 200 250 ] 50 100 150 200 250
Number of Slices Number of Slices

(a) (b)

Fig. 3-7. Relationship of times taken for the 3D®B12x512x#) volume reconstruction as a function o
number of slices for (a) tHell-fan, and (b) théhalf-fan acquisitions.

Figure 3-7 illustrates the relationship of time dak for DTS volume
reconstruction as a function of number of slices, foth the CPU- and GPU-based
implementations. On increasing the number of slitesn 16 to 256, the time-to-
reconstruct increases drastically for the CPU-basgidementation where from 19.0 to
110.6 seconds and 26.1 to 195.9 seconds increaseowserved for thill-fan andhalf-
fan modes, respectively. In comparison, only minimairéases are observed for the
GPU-based implementation where from 0.73 to 1.Z0rs#s and 1.42 to 2.47 seconds
increase were observed for thil-fan andhalf-fan modes, respectively. The increase in
times is due mainly to the fact that during beek projectionstep, more pixel scoring is

needed as the slices are increased. As was iliedtia Figure 3-4, for the CPU-based
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implementation, this means the Y loop is increased hence the increase in time. For
the GPU-based implementation, however, this mehas anly the number oblock
assignments need to be increased (there is no pY) koo multi-threaded processing on
GPU, therefore the minimal impact on calculatiaondi The differences in time slopes
therefore are due mainly to the multi-threaded iamial-parallel-processing approaches in
the GPU- and CPU-based calculations, respectitelgddition, increasing the number of
slices do not affect thgreprocessingtep, in either case, due to the need for conwolut
filtering of all projections independently befoneyaback projection takes place for image

volume reconstruction.

3.7 Discussion and Conclusion

In this study, we have developed ultra-fast DTSgenaeconstruction algorithm
using CUDA-enabled GPU programming. To the bestwf knowledge, CUDA-based
DTS programming using OBI projections has nevenbetéempted for RT applications.
The times taken for FDK volume reconstruction o28312x256 were less than 1.3 and
2.5 seconds for thaull-fan and half-fan modes, respectively. Increasing the number of
reconstructed slices had negligible impact on trexal time. In addition, these ultra-fast
reconstruction times did not have negative impacthe integrity of the reconstructed
images as there were negligible visual and pix&levaiscrepancies between the CPU-
and GPU-based implementations. With the cost of l#est GPU card being minor
(around $500-US) compared to its positive impacl@RT workflow, as shown in this
work and others [93-99], our community should talké advantage of this latest gadget

for all heavy computational tasks in RT that anéedle for parallel processing.
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As mentioned earlier, Yaat al [99] has been the only group to investigate the
speed-up performance of GPU hardware for DTS reamisn, albeit using the
OpenGL API. In their work, they have down-samplée opriginal projection images
(which we didn’'t do) of size 1024x768 to 512x384uking in total reconstruction time
of ~40 seconds. On testing the same data size (W-dampling), we achieved 0.65
seconds to reconstruct 512x512x256 volume. Thigbisut 66 times faster than their
results. However, this comparison is confoundedthmy fact that we used different
graphics card (ours is much newer hardware andstheas not specified in the paper)
and hence may not be a fair comparison between Glpemd CUDA. Therefore, with
this work, it is not possible to conclude the sigréy of one programming environment
over the other.

We have used 45can angle with ~80 projections for tiud-fan and 2x48-scan
angle with ~160 projections for thalf-fan mode, each projection with 1024x768 pixels
and 32-bit precision (3.072 MB/projection), as thet input condition for our DTS
reconstructions. However, depending on the clingitlation, one may need to use
greater scan angle (or less) for better image tyafiracticality, and quantitative
information. We have found that the times taken tlee GPU-based reconstruction
technique proposed here approximately scales lynedth the number of projections (or
scan angles) used. According to our tests, férs@@n angle with ~160 projections for
thefull-fan and 2x90-scan angle with ~320 projections for thef-fan mode, it took 2.6
and 5.0 seconds, respectively. Therefore, even with 90-scan angle, which is
considered generally too large for DTS application®T, the reconstruction times are

still quite fast and in the realm for on-line use.
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In our GPU-based FDK implementation, we have chosenupload each
projections data onto the global memory of GPU byn@ne for processing (see Figure
3-3). The reason for this approach, instead ofagilay all projections data at once, was
to be able to adapt to the realistic clinical diwra where the projections data are
acquired in the same one-by-one manner, and hengeimplementation allows the
processing of each projection data as soon aslibegme available, in a streamlined
process. As one can infer from Table 3-2, on aweragr implementation can process >
13 projections-per-second (pps) and > 18 pps fer ftil-fan and half-fan modes,
respectively, which includes from loading the potigns from hard disk to CPU RAM to
completely downloading the reconstructed volumenfrGPU global memory to CPU
RAM. Since OBI nominally acquires 11 pps (with Inggg-revolution-per-minute), our
GPU-based implementation is more than sufficienhaadle the incoming projections
data as they are acquired and reconstruct theeardiume immediately after completing
the scan. This, of course, applies irrespectivehefscan-angle range, including the full
3D CBCT. Therefore, theoretically at least, the twitne for image reconstruction
(whether itis 3D DTS or 3D CBCT) can be completiyninated using our approach.

Such a stream-lined approach using GPU, couldlasaf tremendous help in the
stationary-gantry tomosynthesis array for radicpgr (STAR) system, where multi-
source carbon nanotubes (CNT) are attached toah&yghead, immediately below the
multileaf collimators (MLC), for stationary DTS imgeng for on-line image guidance.
Since this system is intended for multiple DTS imggwithin a single treatment session,

there could be a benefit in utilizing our propos&dU-based reconstruction strategy.
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In this study, we have investigated DTS reconsioaatising both théull-fan and
half-fan modes. However, use of thalf-fan mode should be discouraged as this would
1) increase the scan time, 2) increase the liketihof patient pose change between
opposite angle scans resulting in motion artifaBjseliminate the possibility of single-
breath-hold DTS scans, and 4) increase the patiese. In addition, most IGRT
application suffices with viewing/registering thardet and its nearby structures
[39,42,44,46] making larger FOV (malf-fanmode), in general, a non-necessity.

For image registration of the reconstructed DTSun@ (called treatment-DTS)
for image guidance, one cannot use the planningv@uime as the reference, but a
separate reference DTS volume (called reference}d&8ds to be constructed.[76, 86,
101] This is because the information presentedseudo-3D DTS images is different
from the full 3D CT images. To reconstruct refefiXTS volume, one needs to first
construct digitally reconstructed radiographs (DRRtone-beam geometry, using ray-
tracing technology [92, 102], simulating virtual OBrojections, each with the same
gantry angle as the actual projections to be tak&mce the DRR projections are
constructed, it is matter of using the same FDKosllgm, used in this study, to
reconstruct the reference-DTS volume. Figure 3-8wshan example treatment- and
reference-DTS slice for a head-and-neck patien¢ exsmined in this study. With the
current implementation on GPU, it takes ~140 m#éicends-per-DRR calculation with
1024x768 pixel resolution. Therefore, to recondtreéerence-DTS (DRR calculation +
FDK) from 80 DRR projections for full-fan mode, it takes about 12.5 seconds. Since
time constraints on calculating reference-DTS va@uis) not as strict as the treatment-

DTS, this achievement is reasonable for routine inseinic. With the reference- and
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treatment-DTS calculators fully developed, we plarvaluate the effectiveness of DTS-

guided IGRT on various clinical sites and develdpgtive protocols.

Fig. 3-8. The DTS images reconstructed using @)aBI projections (treatment-DTS) and (b) the DRR
projections constructed from the planning CT imageference-DTS).

The current maximum gantry rotation speed is seb wegrees/second (i.e., 1
rpm). This means that, for a48can angle, it would take 7.5 seconds to comjetge
acquisitions for dull-fan scan. If the reconstruction is performed immedyaadter, then
it would take < 9 seconds from acquisition to voéumeconstruction. With rapid
automatic-to-manual image registration (< 30 seshntbrresponding couch shift (< 10
seconds), beam loading (< 10 seconds), and beanemelsing the latest volumetric
modulated arc therapy (VMAT) [103] technology, winican deliver a single treatment
fraction in generally less than 2 minutes [103,]1@4is quite possible to treat a patient
from DTS scan to completion of radiation delivery under 3 minutes. With intra-
fraction motions and drifts being a major concesritee radiation is being delivered, this
new work flow would ensure that patient pose is r@gnlikely) maintained during the
entire treatment fraction. In addition, of courgatient throughput will be naturally
increased, an advantage that requires no furthbogdtion.

In this study, an ultra-fast reconstruction techeidqor DTS based on the FDK

algorithm using CUDA-based GPU programming is pemeb The performance of
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proposed algorithm was tested on twenty-five pateases (5 lung, 5 liver, 10 prostate,
and 5 head-and-neck) scanned either with a fullefahalf-fan mode on the OBl CBCT
system. The GPU-based implementation achieved, adt,n1.3 and 2.5 seconds to
complete full reconstruction of 512x512x256 volunfer; the full-fan and half-fan
modes, respectively. This resulted in speed imprare of > 87 times compared with
the central processing unit (CPU)-based implememtatvith visually identical images
and negligible pixel-value discrepancy. With thchi@vement, we have shown that time
allocation for DTS image reconstruction is virtyaleliminated and that clinical
implementation of this approach has become quipeamg. In addition, with the speed
achievement, further image processing and real-am@ications that may have been

prohibited prior due to time restrictions can nosvtempered with.
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Chapter 4 Fast low-dose CBCT reconstruction using

Barzilai-Borwein formulation

4.1 Introduction

In recent years, the introduction of cone-beam aateytomography (CBCT) in
radiation therapy has enabled a precise, on-lingtipning (and on-line/off-line re-
planning) of patients[14, 18]. This is possible do¢he wealth of information contained
in the three-dimensional (3D)-CBCT images includifjganatomic information[14, 18],
2) geometric information[58, 105], and 3) CT nunsbfar possible dose calculations for
treatment verifications and plan re-optimizati@2s[106].

Because CBCT uses ionizing X-rays to image, howetr@re is a legitimate
concern of hazardous radiation exposure to paf&djtsDue to this, the excessive use
should be prohibited and the benefits-vs-harm ratiould be carefully weighed and
debated for each treatment, especially for pedigtatients. This concern has now
become an issue of central importance in North Agagnot only in radiation oncology,
but in broader radiology community (e.g., Image &% and Image Gently
campaigns).

There are rather straightforward ways to reducarttaging dose for CBCT, that
is, either 1) minimize the number of X-ray projecis, 2) reduce the current setting in the
X-ray tube (mA), and/or 3) reduce the total expestime (ms). With the current-
standard FDK reconstruction algorithm[19], howewveducing the projections would

cause aliasing artifact (for example, see Figuresd 7) the severity of which depends

50
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inversely on the number of projections, and if th& and/or ms is reduced, the noise in
the image would increase. Both of these propedig¢te FDK are extremely undesirable,
especially if the images are used for guiding @ieai radiation therapy for cancer
eradication.

In recent years, the exciting advances in compdessasing theory has shown
that sparse signals (at least in some known tramsétmmain) can be reconstructed from
much smaller number of samples than the Nyquisjuiacy would mandate[29, 30, 33,
37, 107-114]. In layman’s terms, this means thatlgyedeal images can be reconstructed
even if only a few projections are available. Tinisurn, means that the imaging dose can
be safely reduced without compromising the imagalityu Past works have shown that,
for CT-type reconstructions (both fan- and conenigathe total variation (TV)
formulation has been particularly useful in exphgtthe prior knowledge of minimal
variation in the X-ray attenuation characteristi@soss human body[33, 37, 107, 108,
110-112, 114]. However, a practical implementatminthis method still remains a
challenge. The main problem is the iterative natifreolving the TV-based compressed
sensing formulation, which generally requires npldti iterations of forward and
backward projections of large datasets in clinicédlasible time frame (e.g., <1 min).
Solving this rather cumbersome problem would reguimultiple innovations
encompassing 1) computationally efficient pargtledgramming with proper hardware
and 2) mathematical formulation of an efficient rebaalgorithm for fast-solution-
convergence. The former issue has been resolvesssfally with the use of graphics
processing units (GPU)[32, 93, 95, 115, 116]. dpproach reduced the computational

time from several hours to few minutes [32, 115]tHis paper, the main motivation of
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our work is to propose a solution to the latteuéssn order to achieve a clinically
realistic reconstruction time(s) on the GPU hardmaith an equivalently realistic image
guality for on-line image-guided radiation therdp@RT).

In this work, we propose a gradient projection athon that handles the TV-
norm regularized least squares problem, based @ Bharzilai-Borwein (BB)
formulation[117, 118], in such an efficient manribat we get a clinically reasonable
patient image in ~12-30 iterations for a total restaction time of ~34-78 seconds using
a single GPU card (NVIDIA GTX 295, Santa Clara, C&omparison of our novel
approach with the FDK and other published compress@asing techniques are presented

in detail with numerical and physical phantoms, arttead-and-neck clinical patient data.

4.2 Low-dose CBCT reconstruction algorithm
The main problem is to solve the constrained crro@imization problem of the
form:

min f(x) =|Ax-bl + 2TV(x) s.txz0 (4.1)

wherex = unknown CBCT volume imagé, = Radon transform operatdr,= measured
projections data,A = regularization constant, andV = Total Variation (TV)
regularization term. In this paper, the matricess@enoted as a boldface-uppercase letters
and the vectors are denoted as a boldface-loweletises. Note that, in Equation 1, the
three-dimensional (3D) CBCT volume(i,j,k), is vectorized as a (1xN) dimensional
matrix, x(I). Thus, we will use the two volume representatioxg,,k) and x(I),

interchangeably in this chapter. The TV term wedusethis study is defined as:
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[x(i +1,5,k)  x(i,j, k) +
v (%G, k) = [[x@, i +1k)  x(i, i k)P + (4.2)
[xGi, i,k +1)  x(i, i,k

In its form, the first term in Equation 4.1, i.éxe fidelity term, enforces fidelity
of x with the measured projections data and the semnd i.e., the regularization term,

promotes sparsity inherent in the X-ray attenuatioaracteristics of the human body.

4.3 Gradient projection Barzilai-Borwein formulation

Q (a) 0 (b)

const

. Xn=nt
(@)
where,
X, =argmin{|x’,, ‘ s H.\"n,l—.\'n,ng <¢} Where, o)
b ox Taiad] > xopr
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Fig. 4-1. lllustrations of (a) forward-backward ifjig-type optimization, and (b) our one-step prepd
approach to solve the TV-based constrained congémization problem in Equation 4.1.

Algorithms of significant acceptance and populantysolving Equation 4.1, so
far, have mostly been based on separating the ®vmst and optimizing them
individually in an alternating manner, i.e., theward-backward splitting technique[32,
33, 107, 108, 110, 114, 115]. Figure 4-1a illustsathis approach. At iteratiom as

commonly used in the gradient descent algorithnisxeal small step sizeconstiS chosen
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to reduce the fidelity term to obtain an intermeelisolutionx,.1. The (n+1)-th solution
Xn+1 Which has the minimal total variation is then skartaround th&,.; to complete an
iteration. This procedure is repeated until a @esBolutionxe is achieved. As we will
show in this work, however, that this approach mayresult in a fast convergence due
to this two-step approach. Intuitively, an algamtithat optimally reaches,.1 in a single
step, at each iteration, using a variable step $izg) would be more efficient
computationally and faster in convergence (seerkigulb). This is our intuition and is
exactly what is proposed here.

We propose to use a gradient projection algorithat iteratively seeks a solution
to Equation 4.1 in the direction of the projecteddient while enforcing a non-negativity
of the found solution. Led, be the gradient dfx,) defined as:

g, = AT(Ax, - b)+ v TV (x,) (4.3)
where' is the transpose operator of the Radon transforimi>xma, which is physically
interpreted as a back-projection operationxoWe then solve Equation 4.1 iteratively
using the gradient projection method:

X :[xn- a, pn]+ where[ ]* = max ,0] (4.4)

where
_g,(1) ifg,(1)s 0 orx,(1)>0
" 0 otherwise

P, (1) (4.5)
Here, o, denotes the step size at iteratmr denotes the voxel position index,
andp, denotes the projected gradient of the funct{®hat x.

The speed of convergence would be highly depermlienhoosing a proper “step-

size’an In Equation 4.4, at each iteration. Remember,léss the number of iterations
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used to find the optimal solutiott, the less the number of times one needs to cleul
theA andAT, which are computationally very expensive.

There are few approaches in choosing an appropaatacluding 1) a fixed,
small &, throughout, and 2) a variablg, obtained through a back-tracking line-search
method that satisfies a certain condition for eimguconvergence. For example, the well-
known Armijo condition[119] enforces not only a nobonic decrease in the objective
function but also a sufficient decrease of the dbje function in each iteration for
guaranteeing the convergence. The first, “fixegp-siee” method is simple to implement
yet finding an appropriates is not trivial as there’'s a tradeoff between caogeace
speed and image quality. The second, “line-seamuéthod is popular and guarantees a
monotonic convergence but incurs a relatively higmputational burden as the back-
tracking line-search is an iterative process ialfifsvhich is analogically similar to that
illustrated in Figure 4-1a, i.e., iteration withteration.

In this work, we propose a third and alternativethrod using an approximate
second-order solver, proposed by Barzilai and Borw@B)[117, 118], where the
objective function may not be monotonically decnegsas in the back-tracking “line-
search” method, but much faster convergence iseaetli Unlike most traditional
approaches that ensure convergence to an optimatioso by imposing a rather
conservative condition of monotonic decrease ofdhjective function at each and every
iteration, the BB method relaxes this constant ekes® requirement in order to achieve
even faster convergence in the long run [117, 1&}ecifically, the conventional
approaches calculate each step-size based onniemtcgradient of the cost function. As

a result, a monotonic convergence is guaranteedughout the iterative process.
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However, in the BB approach, the step-size is an@sesed on both the current gradient
and the previous gradient which could result ima-monotonic convergence. Utilization
of this additional information, i.e., the past gead, results in a faster convergence
although the monotonic convergence behavior isgunaranteed. Basically, it calculates
each step with the formulation (compare with Ecuraé.4):

X = %0 - Hi'puJ (4.6)
whereH, is an approximation to the true Hessiarf(®j atx, (i.e., approximate second-
order solver). To calculatd,™, the BB formulation makes a simple approximationhe
Hessian by settingd, = ™I, wherel denotes an identity matrix and" is chosen to
approximate the true Hessian over the most reeamnitération steps as:

P.- Py 1= 10X, - x, ] (4.7)
where ™ is calculated at each iteration that satisfies dfiqgn 4.7. In practical

implementation, the optimaf™ is solved in the least squares sense by:

(n) — an' Xn—1JT|-pn- pn—1J
- ‘x ~x P (4.8)

2
Once;™ is calculated, the Equation 4.6 is updated by:

Xow1 = [Xn - (7/I(n))-1 pn]+ (49)

Forn = 0, sincex,.1 andpn.1 in Equation 4.8 are not known, we initializ€"t”)*

n n-1

as:

(}7(0) )-1 _ Hg(n) Hi

- (4.10)
|ag”;

which is the closed form solution of the optimassize in the quadratic fidelity

term in Equation 4.1[119].
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The advantage of this technique is that, firsgath iteration, one needs to only
carry overxn.1 andpn.1 to calculate;™, which must be calculated in the previous step
anyway. Thus, unlike, for example, the GP-BL methdtere the step size is calculated
via an iterative procedure (step 3 in Figure 2+Boye on this later), there are patra
calculations/iterations that need to be perforneecbimputes, which affects the speed of
the optimization much favorably. Second, as foumdhe original BB publication[117],
the convergence of Equation 4.6 should be fast@mn the standard first-order methods
such as the back-tracking line-search discussedealamd as we’ll show in this work.
And, finally, since the entir§x) is minimized simultaneously in Equation 4.1 and no
alternatively as in the other works discussed apa:g., Figure 4-la, the overall
complexity of the implementation is simplified wilstill guaranteeing an optimal

solution.

4.4 Algorithm implementation

In our implementation of this Gradient-ProjectioarBilai-Borwein (GP-BB)
method, to speed up the algorithm further, theofeihg has been adopted:

A. Forn = 0, we initializexo = FDK. This result in a faster convergence comgare
with settingxo = 0.

B. Two-resolution-level optimization. That is, we figetx to 256x256x70 volume,
optimize, then resample to 512x512x70 volume feeeond-level optimization.
The resolution at level one and two are 0.97x0.9¥x2m and 0.49x0.49x2.0-
mm, respectively.

C. The entire code is structured and implemented witE the CUDA programming
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environment (NVIDIA, Santa Clara, CA) to utilize ethmassive parallel

computational capability of the GPU hardware. Wedua single GTX 295 card

(~$500’°) that consists of 480 processing cores with 1.2# Glock speed and

1,792 MB memory. In terms of CPU, we used Intel €617 with 2.68 GHz

clock speed, 12.0 GB DDR3 RAM, on a 64-bit Windo@3.

For our application, three major computational saskere parallelized in the
CUDA environment: 1) the forward projectidx 2) the back projectioA’, and 3) the
vector operations to calculate™, Ax-b, TV(.) etc. For the forward projection
operations, we have set each detector pixel as @ tBRead and summed the image
voxels that happen to lie in the path from the ebeam source to the corresponding
pixel. Since this summation of voxels, in the raytp can be independently computed for
each detector pixel, this feature has been utilitedhe GPU coding as a parallel
computations [116]. For the back projection operatj we have instead set the each
image voxel as a GPU thread. Similar strategiesewsiplemented on the vector

operations as well.

4.5 Performance evaluation and experimental setup

To evaluate the performance of our GP-BB algoritiva,have compared it with
three other algorithms, the two of which are putdis First, the adaptive-steepest-
descent-projections-onto-convex-set (ASD-POCS) otkthroposed by Sidky and Pan
[33] (described in Figure 4-1a) was implementedcoBd, the soft-threshold filtering
approach (STF) proposed by Yu and Wang [114] wgdemented. This algorithm is

essentially similar to the ASD-POCS except thatapproximate solution is proposed
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over iteratively calculating the second step, shawifrigure 4-1a (i.e., minimizing the
total variation step), to reduce the computatidmaiden. Third and finally, we have
implemented a first-order Gradient-Projection-Baakking-Linesearch (GP-BL)
algorithm that attempts to simultaneously minimiae both terms in Equation 4.1 in a
single step as opposed to the forward-backwardtisglitechnique in ASD-POCS and
STF. This single step approach is similar to theBBPexcept that an acceptahbidg in
Equation 4.4 is searched without the approximatersdorder Hessian information as
explored in the GP-BB method. Essentially, at agafation in Equation 4.4¢, is found

through the back-tracking line-search along thedfion of the current gradient.

() ASD-POCS (b) STF
Stepl:  x', =x,—a,_, A" (4x,]-b) Stepl:  x' =x,-a,, A (Alx]-b)
Step2: X, =argmin{jx’, [ sz X0 —x,, H: <ég} Step2: x,, =S, {x .}
Step3: i x,,(7.k)<0, x,_ (i j,k)=0 Step3: if x,1.7.k) <0, x_,(.7.k)=0
©) GP-BL ) GP-BB

Stepl: g, = AT(A[x,]-5)+ AV, [TV (x,)],

Step2: p,(i.jk)y=g, G j.k). ifg,(ijk)<0 orx, (i jk)=0
7% = [x.—x.[p. Tpk—ll

Stepd:  x,,=x,—a,p, o=l

1l
s - e (k)1
StepS: i %0500, %4076 =0 SEPAL Mo ST B
Step5: if x,.,(.j.k)<0, x, (0. j.k)=0

Stepl: g, =A"(A[x,]-b)+ AV [TV (x,),
Step2:  p, (i j.k)=g,G j.k), ifg(ij,k)<0 orx (i,7,k)=0
Step3:  while f(x,—a,p,) = f(x,)-da,glp,. a,=pfa, Step3:

Fig. 4-2. lllustration of the computational processequired at each iteration for the four algongh(a)
ASD-POCS, (b) STF, (c) GP-BL, and (d) GP-BB.

Computational processes required at each itergireeess for each of these
algorithms are illustrated in Figure 4-2. Firsg thSD-POCS iteration is shown in Figure
2a. The algorithm starts by finding the intermegligblutionx,.,' through a SART-type

approach with a constant step-size where a promatiche data fidelity term only is
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considered (step 1). The TV-norm is then minimizsdund thisx,,"' through an
iterative, convex optimization process for which emaployed a commonly used steepest
descent approach in this paper (step 3). Theretdreach iterative step of the ASD-
POCS algorithm, an additional iterative processerguired (step 3). Second, the STF
approach proposed by Yu and Wang [114] is illusttah Figure 4-2b. As shown on the
figure, the algorithm starts exactly same as th®A®CS for step 1. However, instead
of using an iterative, convex optimization procedtio minimize the TV around the
intermediate solutiorx,,;', the algorithm employs a batch, non-iterative {-fmfeshold

filtering algorithm to remove the extra iterativde and hence reduces the

computational time. The soft-threshold filteringopedure is denoted b§,.(X,.,") in

step 2 on Figure 4-2b. It is a regularization fiorctthat updates thg,,,', as a function
of TV(X,.;'), using a closed form heuristic formula. Interdsteaders are encouraged to
read Yu and Wang [114] for details. Third, the GP-Blgorithm proposed here,
alternatively to the GP-BB, is illustrated in Figud-2c. It starts by calculating the
gradient of the cost function consisting of theadfielity and the regularization terms
(step 1), followed by a projection of the gradiésiep 2). At step 3, a back-tracking line-
search is performed by evaluating the objectivection with a decreasing step siazg
until a certain condition is satisfied to ensuren@rgence. For that we employed the
well-known Armijo condition stated by the inequglih step 3 which not only enables a
monotonic decrease in the objective function bbb atatisfies a sufficient decrease
criterion for convergence to the optimal solutiém.this study, we set the constats

and S to 0.02 and 0.7, respectively. Once the step gjzes obtained, a gradient descent
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step is conducted while enforcing the non-negativaestraint (step 4). Finally, the
proposed GP-BB algorithm is illustrated in Figur2dl Referring to the figure, steps 1
and 2 are the same as those in the GP-BL algoritowever, as we have illustrated our
algorithm mathematically, the iterative back-trawckiline-search in Figure 4-2c is

replaced by a much simpler, non-iterative vectoerapons for the computation of

n'" (step 3). Therefore, favorably compared with theB&Papproach, finding the step
size is performed without the extra iterative cldtion of the back-tracking line-search.
The gradient descent step is then conductgd= (™) " ugstgp 4). It should
be noted here though that there have been verntretigdies reporting the effectiveness
of the BB-based approaches for CT reconstructidres& efforts could complement our
work in developing the most mature form of the B&séd CT/CBCT reconstruction
techniques.

The Shepp-Logan numerical phantom, the CatPhanp&§6ical phantom (The
Phantom Laboratory, Salem, NY), and a clinicalgated head-and-neck patient acquired
from the TrueBea' system (Varian Medical Systems, Palo Alto, CA) evesed for
comparison purposes. For the TrueB&astans, a total of 364 projections were acquired
in a 200-degree rotation, in a full-fan mode. Theager has 1024x768 pixels with
0.388%0.388-mm resolution. This was down-sampled 5bH2x384 pixels with
0.776x0.776-mm for the reconstructions. Evenly sdaangles were sub-sampled and

used for varying the number of projections forithage reconstruction.
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4.6 Results

Figure 4-3 shows the reconstructed 2D images oStiepp-Logan phantom using
the four algorithms described earlier. A total & @rojections in fan-beam geometry
were used for the reconstructions. As can be sthenGradient Projection (GP)-type
algorithms outperforms the forward-backward splgttype algorithms in terms of image
guality and speed of convergence. At about 50 &nieBations, the GP-BL and GP-BB
algorithms show convergence, respectively, whetlea®\SD-POCS and STF algorithms
clearly still needs further convergence at 50 tters. Visually, the GP-BB shows the
fastest convergence and this is quantitatively destmated in Figures 4-4 and 4-5. In
Figure 4-4, the line profile comparison is showtelaf30 iterations, for example. It is
clear from this figure that the level of agreementhe ground truth goes in the order of
GP-BB > GP-BL > STF & ASD-POCS. This finding holdlae at all levels of iterations,
as illustrated in Figure 4-5. Here, the relativ@ers defined as the mean-squared percent

error from the ground truth pixel values:

Z;((Xi,j,k _ Xi?jr'(:(undTruth)Z (411)
ReletiveError (%) = -~ T x100
(x

Grouncﬂ'ruth)2
i,j.k

Tk
wherex;;x corresponds to the voxel values in the reconstcligblumex andx®rundmn
refers to the ground-truth values of the Shepp-bggfaantom used. As can be seen from
the figure, all three algorithms other than the B?eontinue to decrease at 50 iterations,
whereas the GP-BB algorithm reaches saturation@®B364terations. One thing to note is
that, due to the non-monotonic feature of the Bgpathm discussed in section Il, the

relative error does not decrease in a smooth maduerto the inherent properties of

calculating the step size without conducting a-Bearch at each iterative step.
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Fig. 4-3. The reconstructed images of the Shepmhgihantom, using the respective four algorithres a
function of 10, 30, and 50 iterations. A total &f grojections in fan-beam geometry were used fer th
reconstructions.
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Fig. 4-5. Mean-squared relative percent error fasmetion of the number of iterations, for the respes
four algorithms. The Shepp-Logan numerical phantaas used as the gold standard.

In order to show the computational efficiency ofcleaalgorithm, we have
measured the computational time performances ofdte algorithms implemented on
the same GPU card (see Table 4-1). To conduct racfanparison, we kept all

experimental conditions the same for all algorithiisat is, the number of iterations was
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set to 50, the reconstruction volume was set t0<256x64, the number of projections
used was 42, the detector size wasx3B2, the unknown CBCT volume image was all

initialized to zero (i.e.x® =0), and the multi-resolution optimization was noedslt is

found that the GP-BL algorithm takes the longestetito compute due to the high
computational cost of conducting the back-tracking-search, at each iteration. It can
also be observed that those algorithms that havratibns within iterations, i.e., ASD-
POCS and GP-BL, the standard deviation is alsoelarxgmpared to the other two
algorithms that do not have a second iteration.|ddye GP-BB and STF algorithms have
a consistent computational time and, moreover,r tbenvergence is noticeably faster
than the other two algorithms. It should be notbdugh, that our implementations of the
ASD-POCS and STF may not have been exactly repeatas the ones originally
proposed and implemented. Although we attemptechd&e the fairest comparison by
best implementing the original ideas of the aldon$ using the published information, it
is difficult to reproduce the same exact perforneardue to a difference in the
experimental setup and data used. As a result,ckieosvledge that our evaluations of
these algorithms may not represent their best plessimplementation and thus

performance and image quality.

Table. 4-1. Time measurement profile of each atgoriprocessed for 50 iterations.

ASDPOCS STF GPBL GP-BB
Total
Computational 6047 2T 66.37 2436
Time (Sec)
Average

Computational
TimeTteration
(Sec)
Standard
Deviation

120 0.45 132 0.49

036 0.03 0.183 0.04
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In addition to the comparisons with the compresssusing-type algorithms,
we've also compared the GP-BB against the conveati@and commercially-used,
filtered backprojection-type algorithm proposed Fsldkamp, Davis, and Kress (FDK,
1984¥. Figure 4-6 show the 3D volumes reconstructed with two algorithms, using
some or all of the 364 projections acquired frone fhrueBearftt CBCT system.
Reconstruction times are labeled on the figure.cAs be seen, even with the dose
reduction to 1/8 (=40/364 projections), Figure 4-6b shows a reasienanage quality
achieved by the GP-BB algorithm comparable to tifathe FDK reconstructed image
using all of 364 projections (Figure 4-6¢) withdawise, while completing this in under
12.6 seconds. Needless to say, the image qualiBigufre 4-6b is better with minimal
aliasing artifacts compared with that of Figureaj-&hich is FDK reconstructed volume
using the same 40 projections. To note, this aemmnt of 12.6 seconds is about an
order of magnitude faster than that of the latepbrt on the GPU-accelerated forward-
backward splitting-type algorithms, discussed iguFé 1a[32, 115].

Figure 4-7 shows a matrix view of the various imggalities achieved, using the
GP-BB algorithm, as functions of both the numbepudjections and the number-of-
iterations, for the head-and-neck example pati€ehé window and level were kept the
same for all images. The first row show the imagasonstructed with the FDK for
comparison. It is observed that as the number-gjeptions increases, the image quality
increases in both the FDK and GP-BB algorithms, asdthe number-of-iterations
increases in GP-BB, the image quality increasesltde also observed that, in GP-BB,
the qualitative increase in image quality is regly more significant from 90 to 120

projections than from 120 to 180 projections. Tdliso means that the FDK-initialized
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GP-BB algorithm always does better than just theKF#lone, for any number-of-

iterations per given number-of-projections.

12.57 sec

1.45 sec

Fig. 4-6. Spatial and contrast resolution slicethefreconstructed CatPhan 600 phantom using (K) FD
with 40 projections, (b) GP-BB with 40 projectionsl? iterations, and (c¢) FDK with 364 projectiofitie
reconstruction times are listed on the figure.
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Fig. 4-7. A matrix view of the various image quiakt achieved, using the GP-BB algorithm, as
functions of number-of-projections and number-efdtions, for the head-and-neck example patierd. Th
window and level were kept the same for all images.
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Table. 4-2. List of the reconstruction times reaatdor various projections and iterations tested.

Time [sec] # of projections (views) used

# of iterations 60 90 120 180 364
FDK 0.27 0.34 0.50 0.75 1.45

6 9.891 | 1448 | 19.25 | 28.35 | 58.11

12 1758 | 25.57 | 33.77 | 49.94 | 101.83

18 24.88 | 36.55 | 48.21 | 71.92 | 146.51

24 3292 | 4762 | 62.86 | 92.86 | 188.37

30 39.91 | 58.87 | 77.99 | 116.55| 234.51

Table 4-2 shows a comprehensive list of the recoctsbn times recorded for
various combinations of input condition, encompagdhat of the examples shown in
Figure 4-7. From this list and Figure 4-7, we cadute that, although subjective,
visually a “reasonable” image quality for cliniagde can be obtained in the range of ~12-
30 iterations with ~120-180 projections. The ran@eexonstruction times would be
between ~34-117 seconds, that is, all are within #2utes or less. In terms of dose
reduction, this would be on the order of ~1/3-1/pateding on the projections used (i.e.,
120/364 or 180/364 projections, respectively).

Figure 4-8 displays, side-by-side, the GP-BB-retrmigted images using 120
projections (Figures 4-8b-e) in closer comparisath the FDK-reconstructed image
using 364 projections (Figure 4-8a; currently ir-us clinic). The images using only the
120 projections are displayed here, as opposaddges using 180 projections, since our

interest is in generating a reasonable quality esagith a minimally necessary radiation
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Fig. 4-8. Selected images from Figure 6; (a) FDK@864 projections, (b) GP-BB with 12 iterations

using 120 projections, (c) GP-BB with 18 iteratiarssng 120 projections, (d) GP-BB with 24 iterason

using 120 projections, and (f) GP-BB with 30 itevas using 364 projections. The reconstruction e
listed on the figure.
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dose. Also, as mentioned, there’'s a relatively mweaefit in terms of image quality
going from 90 to 120 than from 120 to 180 projensiqFigure 4-7), i.e., diminishing
increase in image quality for a given increaseased The GP-BB-reconstructed image
using 364 projections is also displayed (Figureh)4t® show the limiting image quality
that can be achieved with the GP-BB algorithm.tfefsall, the upper-limit GP-BB image
using 364 projections is a visually better qualityage than that of the FDK (i.e., less
noise, streaking artifacts around bones, etc.)chviheaffirms our results in Figure 4-7
that, given equal dose, the GP-BB always doesrb&td, more importantly, the image
gualities of the 120-projection-images are comparab the FDK image, and, with a
reasonable reconstruction times of ~34-78 secondiscoOrse, the necessary image
quality for clinical use is quite subjective andquees further (clinical) testing to
determine for each site, which is of our futureesssh, it is still encouraging that a
“visually” similar quality images can be obtainedane-third the dose, in a “reasonable”
time frame. To the best of our knowledge, this cotaponal speed achieved using the
GP-BB algorithm is the fastest compressed sengipg-bptimization that have been

proposed for the CBCT reconstruction to date [&,3¥, 110, 113-115].

4.7 Discussion

A. Algorithm performance
The translation of compressed sensing-based CBECdnstruction algorithms
onto radiation therapy clinical settings has bedificdlt due to the fact that its
mathematical formulation needs to be solved nuraltyicather than analytically, thus

requiring a prohibiting time to solve. A single,ngplete iteration involves at least one
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forward and one backward projection calculationiiclv are computationally expensive.
Although significant amount of computational timancbe spared by parallelizing the
task with GPU programming [95, 116, 121-123], stile majority of time (e.g., >80%)
spent in the reconstruction is on calculating tbenvard and backward projections.
Therefore, for an algorithm/technique to be effitjet must 1) require a minimal number
of forward and backward projection calculations geration, and 2) converge in a
minimal number of total iterations.

Besides the well-known forward-backward splittieghnique that we compared
in this work, there are other compressed sensisgéhanethods with a focus on
achieving faster convergence than previously repoift37, 124] that base on the
Nestrov’s first order method. However, on reviewthgir works, it was observed that
although the convergence rate (determining the murob iterations needed to reach a
desired solution) outperforms the comparing coynates, the algorithms require multiple
forward and backward projection calculations atheieration[37] or an extra iterative
procedure to calculate the additional unknown patars, leading to an increased
reconstruction times. The non-convex prior imagest@ined compressed sensing
(NCPICCS) algorithm reported by Ramirez-Girala,al[124] also suffers from the
similar complexities where an extra-calculationfafward and backward projection is
required to calculate each step size. The GP-B8riéihgn, on the other hand, requires 1)
only one forward and one backward projection caltohs per iteration, which is the
least number required for solving any iterativeorestruction techniques, and 2) a simple
gradient step size calculation (i.e., Equation 4k&t needs only the prior and current

values of the gradient and the image volume, whbictupy <300MB of memory, thus
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facilitating easy incorporation onto a single GPafdcmemory (1.7GB storage). In our
implementation, calculating the step size takesd@igible time, so the great majority of
the time is spent on the forward and backward ptige calculations (e.g., >98% of
time). This demonstrates that the GP-BB algorithequires only a minimal
computational load needed to reach a solution
B. Dose reduction

It needs to be stated that, if reconstruction timef no issue and thus enough
iterations are allowed, all of the compressed sghBipe algorithms evaluated in this
study will eventually reach an optimal solutionaadicipated from Figure 5. That means,
if an equal number of projections are used witthealgorithm, then the achieved image
quality at the end will be identical and hence eoéddit, in terms of dose and/or image
guality, will be observed for any one algorithm.vver, we do not have an infinite time
to spare, especially in an on-line IGRT environmemd hence an algorithm that can
produce the most optimal image under a reasonabke and with a least amount of
projections (i.e., dose), is favored. Our propoS&dBB algorithm relatively fits well in
this respect. In the Catphan phantom experimemt, GFP-BB produced a reasonable
image with a highly under-sampled projections (8@£89% dose reduction; see Figure
6), in ~12.6 seconds. However, for a clinical pdtease, about 120 projections or more
were needed to generate a reasonable quality imagksig a respectable ~34-78
seconds. This achievement still represents a sgnif dose reduction af67%, but any
further dose reduction (i.e., less number of ptopas) is generally not recommended
due to a fast degradation of the image qualityhoalgh the reconstruction times will

further decrease. This has also been the obsemvafiearlier works as well [32, 112,
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115]. The possible reason for needing more prajastin patients than in phantoms is
that the internal anatomy of humans are relatiledg sparse, and thus require more data
to properly represent it. In addition, since tharspness is organ-patient specific, much
research is needed to determine the appropriatdeuai projections needed, and hence
the achievable dose reduction, for each organ atidri. The appropriate mAs setting,
per projection, would be another parameter thatside be studied as well. Utilizing
prior information such as the planning CT wouldabene good way to decide what dose
reduction is possible/appropriate for each case.
C. Regularization parameter

Regularization parametex, in Equation 4-1, is one of the most influential
parameters affecting the image quality. It was experience that the higher this value,
the blurrier and smoother the images, and the smailis, the sharper and noisier the
images, in opposite. This is due to the fact thistthe weighting factor for the TV-norm
regularization term in Equation 4-1. Thuskiis high, then more weight is given in the
GP-BB optimization to minimize the variation acrdege image and hence the blurrier
but smoother the look. Oppositely,Aifis low, then more weight is given to the fidelity
term in Equation 4-1 and hence the high frequemdgrimation will survive, thus
preserving the noise and streaks. For example, gereed some irregular ripples in a
uniform phantom region, in Figure 4-4, when a smsllapplied, demonstrating the
importance of a proper/optimalselection.

Recently, there have been considerable interestgtimizing theA value in a
regularization-type optimization problems[26, 12Although the purpose of these works

is for different applications, we anticipate themi¢ar strategies can also be applied to the
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TV-based CBCT reconstruction problem as well. Boit,now, since there is no global
standard ik value(s)[112] for CBCT reconstructions, the setecof A was subjectively
picked by painstakingly repeating a large rangevalfies. From this experience, we
learned that for fewer projections, a relativelyghil is needed to suppress the
overwhelming noise and streaks, while for more gutipns, a relatively lowk is
sufficient. Specifically, with 100 or less projemts, we sek = 0.0075, and for >100
projections, we set = 0.0025, for the head-and-neck patient case. @disly, more
research is needed in finding an optimaValues for various situations, and that this
value is likely not only number-of-projections dedent, but will also be patient and site
dependent as well. For best clinical practice, @oraated selection af based on a prior
knowledge, whatever that may be (including a plagnCT), will help facilitate the

clinical translation of this technology into a bumy-line radiation therapy environment.
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Chapter 5 Fiducial marker motion based four

dimensional (4D) CBCT and DTS

5.1 Introduction

The introduction of cone-beam computed tomograp®BGT) system in
treatment settings has allowed implementation obua image guidance techniques for
precise target localization [14, 18, 21, 60, 124jth the help of CBCT system, the
utilization of respiratory correlated four dimensa imaging schemes such as 4D CBCT
and 4D digital tomosynthesis (DTS) for image gumahave become recently possible,
and thereby it is possible to verify mobile intdroegans and tumor target volume prior
to the radiotherapy treatment [89, 127-129]. Int,faclinical adaptation of four
dimensional CBCT for patient's lung stereotacticdyparadiation therapy (SBRT)
treatment has started to be carried out very rgcgr80-132].

Besides the lung tumor cases, respiration inductdfractional target motion is
also particular concern in abdominal cancers suzhiver [133, 134] and thereby
verification process of its motion is necessaryweeer, since features of liver is not
clearly visible in CBCT, it is difficult to asseasd verify the breath induced motion prior
to the treatment. Quite recently, fiducial markerserted to or near tumor have been
utilized for on-line imaging guidance using CBCTitoprove precision of SBRT [135,
136] and thereby, opened the accessibility to ass@gement of target tumor through
four dimensional image guidance techniques.

On sorting the motion phases of cone-beam projediiata for generating 4D

reconstructed images, 5 types of acquiring patibnésth induced signal have previously
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been demonstrated : using external gating systein as 1) thoracic belt containing a
pressure sensor [137], 2) infrared reflector cansgsstem [137, 138], 3) optical patient
body surface measurement, and 4) gated acquisifipmojection data [139], and direct
method using 5) analysis on projection data [24étiMds using external gating system
and gated acquisition of projection data can bélproatic since it could increase the
complexity during patient setup and possible o@nwoe of error between signal and
target motion [140, 141]. Method of analyzing potjen data as an alternative, is
suitable on calculating breathing phase, howevgnas do not describe true diaphragm
displacement [24] and therefore only phase wisergpis achievable.

In this chapter, we will demonstrate the use ofi¢idl markers imaged at cone-
beam projections to generate breath induced maigmal of liver for reconstructing 4D
DTS as well as CBCT images. This method is advaaiag) to above types since the
motion signal is extracted directly from markersarted at internal organ near or at the
tumor. In addition, measuring amplitude displacemeh motion could be also
achievable, which makes amplitude wise as well lags@ wise sorting can be done

selectively.

5.2 Imaging condition and patient data
A The projection data of liver cancer patient waeguared using On-Board Imager
(OBI) CBCT system (Varian Medical Systems, Inc.loPdto, CA) which consists of a-
Si flat panel detector and kV X-ray source mourdeda Varian 21EX Clinac. The flat

panel detector consists of 102468 pixels with pixel size 0.388.388 mm per each.
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The measured source to detector distance (SID)appsoximately 150 cm with gantry
rotation speed of 6 degrees per second which takast 1 min for full gantry rotation.
Images were scanned with “Standard dose 150 cm tl@wnode, where 651
projections data were acquired over 364° with 12p,k80 mA and 25 ms for each
projection. The FOV of both cases were>380 cm. Both projections were acquired with
an aluminum bowtie filter placed directly under &yrtube to compensate the large area

projection geometry.

5.3 Extraction of fiducial marker position from CBCT imager

On extracting fiducial marker positions from eaaiojection data of OBI, we
have implemented feature extraction algorithm ofkmawhich its shape and size is
priory known. Since the fiducial markers are mageofi gold, the contrast of fiducial
marker is clearly distinctive in the projection aafThe feature extraction algorithm
consists of 5 steps: 1) sub-sample the regiontefast (ROI) where fiducial markers are
imaged in the projection data, 2) apply edge entraieat filter (canny edge operator) to
highlight the feature of fiducial markers on thgiosm which is extracted, 3) undergo fast
Fourier transform (FFT) of highlighted region, mplly with the FFT signal of priory
obtained ideal fiducial marker image, and then ypplerse FFT (convolution with ideal
fiducial marker), 4) apply certain threshold valiee the image to extract regions of
fiducial markers, and finally 5) find the centerrofiss of each fiducial markers which are

extracted from the image.
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Fig. 5-1. General work flow of fiducial marker exttion algorithm.

The general work flow of fiducial marker extractiatgorithm is illustrated in
Figure 5-1. The reason for sub-sampling ROl whatecial markers are present in the
projection data at first step is due to the faat the size of region where fiducial markers
are distributed is small compare to the size ofjgqution data and therefore, it is
inefficient, less accurate and time consuming ta fthe markers by processing the
feature extraction algorithm on whole projectiorage. If we could find the ROl where
fiducial markers are present and process the feaxtraction algorithm only on that sub-
sampled region, it would be much accurate, efficard faster. The ROI where fiducial
markers are imaged in the projection data can hendoby assigning a volume
surrounding the fiducial markers in planning CT ajaand forward projecting the
assigned volume through CBCT projecting conditibhen the region of area in each
projection data where forward projected volume rggets would be the ROI where
fiducial markers are imaged. In the 2nd step, thgeeenhancement filter applied on the
sub-sampled image to optimally visualize the markdges and feature of fiducial
markers. As a edge enhancement filter, well knoeanhy edge operator" was used to

enhance the edges. The canny edge operator udtes based on the first derivative of a
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Gaussian filter kernel to reduce the noise of thage initially, followed by finding the
intensity gradient of the image which correspordhe edges. Thereby, only the edge of
the feature can be enhanced without increasingenmsnponent present in the image.
The edge enhanced image where feature of fiducaken is clearly visible, is then
convolved with the priory obtained ideal fiduciabrker image in order to boost up the
pixel values of fiducial marker region. The conuaua process was done with the use of
FFT by simply multiplying Fourier transformed conmgmts of edge enhanced image and
ideal fiducial marker image. Through multiplyingetfrequency component of ideal
fiducial marker, pixel values which correspond eatlire of fiducial marker in the image
can be increased and become distinguishable frber oggions. Finally, this region can
be separated by applying threshold on the imageasition of each fiducial marker can
be extracted by calculating center of mass on &duahial region.

In this study, we have implemented fiducial marngesition extracting algorithm
on MATLAB program. The volume surrounding the ficalanarkers in planning CT was
set as 5 cthcube centered at -15 cm, 0, O from center ofand z axis respectively. The
threshold was assigned as 80% value to the maxipinat value of processing image
after the convolution step, and center of massamh éiducial marker was calculated by

the use of CENTROID function provided by MATLAB.

5.4 Generation of breath induced marker motion sigal
The breath induced marker motion signal can be rgée@ by compiling the
extracted position of fiducial markers for everyneebeam projections. However, certain

angular region exists during patient scanning wthielgcial markers are missing at the
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projection data due to limited field of view (FO®¥Qverage of OBI at "half-fan" scanning
mode geometry. Therefore, it is necessary to lgcsed signal from fiducial markers
which has the least missing margin and 2) extrddttianal reference of breath induced
signal to analyze and predict the angular margieretiducial markers are missing in

order to complete full breathing signal during patiscanning.

\ I / k[w]!“w 4,#?]\/\&’}]}@%"’\ Eiplaciitinpla
/ MW

W WS AR | estimates on to the
I X Wil missing region
Dregiingin Sigpal : | /] Assemble the
/7 ‘A : estimates
Lottt M r
Analyze

| Fit elliptical shape in
AT augmented space and fundamental
pattem

— process Poincaré section
Marker Signal

Fig. 5-2. Signal “profiling” of diaphragm and mieer motion to predict signal at missing scan angula
region.

In this study, we have predicted motion signal tigto “profiling” the diaphragm
motion and marker motion signal. Ruan et al. [14&}e introduced a real-time approach
to systematically estimate baseline, frequencyatian and fundamental pattern change
of respiratory signal and predict the motion sigmaded on these observations. Prediction
method through signal ‘profiling’ can be done imeth stages : 1) phase estimation of
missing region through tracking the fitted elligiicshape in augmented state space and
Poincaré sectioning principle with diaphragm moti@ignal, 2) estimation of
fundamental pattern through unwarping the actuakeramotion signal at each state of
phases. 3) assembling the estimates on to disptatesignal space. The diaphragm
motion signal was acquired from analyzing of proft data[24] (See Figure 5-2). As

specified earlier, the motion signal from analyziafj projection data signal do not
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describe true diaphragm displacemlemivever, can be used as estimate of phase since
phase pattern of respiratory motion is clearly idgtishable. The estimate of
fundamental pattern at particular phase can bevetbrirom mean average of existing
marker motion signals at same phase by assumihgiibtzon pattern of marker is stable.
Note that the purpose of replacing the missingaigras to complete the breath
induced signal during patient scanning, and thenet®gserving the overall quality of
reconstructed images. Since information of fiduecradrkers are missing in projection
data at the replacing margin, the image qualityegfion surrounding fiducial markers
will never be affected no matter how much the reghaent signal contains error with the

actual motion.

5.5 Amplitude wise and phase wise sorting

The breath induced signal from extraction fiducmarker motion was then
analyzed to process the phase wise sorting anditadglwise sorting of acquired
projection data. Through dividing the signal by aepe respiratory periods, we have
divided the projection data into four phases: pesgkale phase, mid-inhale phase, peak-
inhale phase, mid-exhale phase and four amplitudesamp, mid-low amp, mid-high
amp and high amp. The reason for assigning les®eauof phases than 4DCT number of
phases is due to insufficient number (~651) of mtope data for a patient was available
to be divided and reproduce tolerable image quaftigr the reconstruction.

In this study, 87.5% to 12.5% of phase length veasgaed as peak-exhale phase,
12.5% to 37.5% of phase length as mid-inhale pl#&&% to 62.5% of phase length as

peak-inhale phase and, 62.5% to 87.5% of phasdhlengs assigned as mid-exhale
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phase in terms of phase wise sorting. Similarly dorplitude wise sorting, 87.5% to
12.5% of signal height was assigned as low am»%20 37.5% of signal height as mid-
low amp, 37.5% to 62.5% of signal height as midahamp and, 62.5% to 87.5% of

signal height was assigned as high amp.

5.6 4D CBCT and DTS reconstruction

For 4D CBCT, the reconstruction was done with valbwn FeldKkamp (FDK)
algorithm [19] which performs backprojection aftBitration of projection data to
reconstruct each sorted phase. The FDK algorithra madified in order to suit the
“half-fan” mode of cone-beam projection geometrizeTresolution of voxel grid was set
as 512x 512 x 64 with a resolution of approximately 1.0 mm (LR)1.0
mm(AP)x2.5mm(CC).

On-board DTS are reconstructed by using subsetr@égion data which was
acquired for CBCT using a FDK-type algorithm sirthe OBI system implemented for
clinical use cannot support the imaging sequenc®Td. The theory of reconstructing
DTS is almost the same as CBCT, except that DT8reated under limited angle
projections whereas CBCT is reconstructed ovenmdjle projections [21, 22, 99]. For
reconstructing 4D DTS, projection data can be ugeth subsets of 4D projection
datasets for reconstructing 4D CBCT. The total saagle from "half-fan" mode was
assigned as +96°22.5° and -902 22.5° from the rotation center. The resolution axel
grid for 4D DTS was set as 51812x64 with a resolution of approximately 1.0 mm
(LR)*2.5 mm(APX1.0mm(CC). In terms of software, we have used @uage for

reconstruction process.
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5.7 Results
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Fig. 5-3. Breath induced marker motion of threaididl markers implanted on the patient.
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Fig. 5-4. Marker motion signal and its corresponddmase estimate through signal “profiling” pri¢a)
and after (b) the prediction.

Figure 5-3 shows the breath induced marker motibthee fiducial markers
implanted on the patient. It is shown that no.2udidl marker has the least missing
margin where marker starts to disappear frof P®jections to 231 projections which
corresponds to approximately 67.5° degree. Figeeshows the marker motion signal
and its corresponding phase estimate through sitprafiling” prior (a) and after (b)

the prediction. It is clear that the joint of ph@&stimates between measured and predicted
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region is smooth without major discontinuity. Moveo, it can be observed that the
fundamental shape of marker motion signal has lbestored after the prediction which
makes overall signal likely natural. Figure 5-5wkoamplitude wise and phase wise
reconstructed image of 4D CBCT (a) and DTS (b)vatrye state and corresponding 3D
image. In comparison, motional artifact of fiduciamarker (white arrow) is less in

amplitude wise than phase wise reconstructed imegesto lesser amount of residual

motion at each state of sorting process.

3D CBCT
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Phase|

Peak exhale Peak inhale Mid exhale Mid inhale
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Fig. 5-5. Amplitude wise and phase wise reconstdiginage of 4D CBCT (a) and DTS (b) at every state
and corresponding 3D image.
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5.8 Discussion and conclusion

In this study, we have demonstrated the use otidumarkers imaged at CBCT
projections to generate breath induced motion sighkver to generate 4D DTS as well
as CBCT images. The result showed that amplitude worting showed less motional
artifact than phase wise sorting. To the best of koowledge, the motion of
transcutaneously inserted metal markers has negen lattempted for 4D sorting
applications. Proposed method is advantageous geahpa other methods in ways that
1) it does not require external gating system andr@plitude as well as phases wise
sorting is selectively achievable.

Problem arises on certain angular region (18.5%taf scan) during patient scan
where fiducial markers are missing at the projectiata due to limited field of view
(FOV) coverage of OBI at "half-fan" scanning mod®etry. However, we have shown
that this missing region can be replaced by preadjcthe motion signal through
“profiling” the diaphragm motion and marker moticsignal. Besides using diaphragm
signal to predict the period of missing region, tha@rker motion signal itself can be used
as to predict the approximate length of the peribtthe periodic variation of the signal is
low, then average of periodic length can be usati@periodic length of missing region.
Else wise, we can apply adaptive learning technigd@] to assign higher weights on
recent observations to missing region if periodattgr of motion signal is substantially
varying. This adaptive learning technique can dlsoapplied to predict fundamental
pattern change if the amplitude of signal is unstaln this study, such variation was not
observed and thereby simple mean of observatioms used as predicted signal. These

predictions may contain error with the actual sighawever, as specified in section 5.4.,
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such replacement will not be problematic since rimfation of fiducial markers are
missing at the projection data in that angular aegiTherefore, image quality of the
region surrounding fiducial markers will never bieaeted no matter how much the
predicted signal contains error after reconstracpoocess. Moreover, such problem can
be handled if the patient is fully scanned withdight mode" like as in prostate cancer.
All in all, we have shown the feasibility of motiomacking as well as 4D
reconstruction of CBCT and DTS of liver throughngautaneously inserted metal
markers and can be directed towards utilizing #ehique for on-line image-guided

adaptive radiotherapy.
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Chapter 6 Motion constrained image reconstruction

(MCIR) for 4ADCBCT reconstruction

6.1 Introduction

Image guided radiation therapy (IGRT) utilizing extal imaging devices to
verify position setup errors of patient just befdrging treatment beam delivery is
widely used in current radiation therapy settin@,[143]. In particular, cone-beam
computed tomography (CBCT) mounted on linear acatdes are most widely used
imaging device in IGRT, due to its wealthy functbmole in providing patient’'s (1)
anatomic information [14, 18], (2) geometric infation [58, 105] and (3) CT numbers
for possible dose calculation and on-line/off-lneeoptimization of plans. [62, 106] With
aid of CBCT, implementation of various image guicrand adaptive radiotherapy
techniques to enhance precision of treatment dglibecome possible. [59-61, 126]
Consequently, there is minimal doubt that CBCT kmeminent role in current
radiotherapy settings.

Image acquisition time of CBCT is longl( min for thoracic/abdominal sites) due
to limited speed of the linear accelerator gar[f2-74] In addition, there are challenges
in verifying the trajectory of mobile tumors causky breathing. For example, when
CBCT is applied to thorax, the image quality canheavily degraded due to patient
respiratory motion. Serious motion-induced artéacompromise the effectiveness of
using CBCT during IGRT. [144]

To overcome this problem, four-dimensional CBCT CHLT) has been

developed to provide respiratory phase-resolvedmetric images. [24, 137, 145-147]
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In such an imaging modality, all the X-ray projecis are first retrospectively grouped
into different respiratory phase bins accordingbteathing signal tagged on every
projection image. A CBCT image for each breathingage is then reconstructed
independently, yielding an image with much lessiominduced artifacts. The capability
of 4DCBCT to significantly reduce the motion artifa and enhance the target
localization accuracy has been evaluated, allowmgp 50% reduction in planning target

volume (PTV) size. [25, 148]

(a) FB-3DCBCT (b) 4DCBCT

Fig. 6-1. Axial view of free-breathing 3SDCBCT (FED&BCT) (a) where all 647 X-ray projection data are
used to reconstruct without considering breathingion and 4DCBCT (b) where peak-inhale respiratory
phase are grouped retrospectively, and only iteesponding phase (29 from 647 projections) are tsed
reconstruct the image. In FBCBCT, the diaphragbiliusred due to motion artifact (white arrow), and i

4DCBCT, severe streaking artifact exists due tdégmate number of projections to reconstruct the
volumetric image.

Although 4DCBCT is capable of improving the motiamtifacts and target
localization accuracy, it poses another challenge réconstruction. In fact, unless
oversampling of X-ray projections are taken (whigiavoidably increase the imaging
dose by multiple folds[24, 25, 148]), the phasenlyig approach leads to insufficient

number of X-ray projections in each respiratory qghdin and thus causes severe
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streaking artifacts, when a standard 3DCBCT scanmirotocol and reconstruction
algorithm (FDK [19]) is applied (See Figure 6-1)hig is also known as the under
sampling artifact where the number of projectiossinsufficient to reconstruct a
reasonable quality CBCT images.

In the past, many attempts have been made towardeving or relieving this
problem. For example, scanning protocols of mudtigantry rotations and slow gantry
rotations have been proposed to considerably iser¢he number of projections per
phase. [146, 147, 149] In either case, reducingriAs to avoid increasing the imaging
dose to patients inevitably degrades image quality.

Advanced reconstruction techniques have also beepoped. For example,
motion estimation and correction methods have beeoorporated into the
reconstruction.[150] It has also been proposeglibthe reconstruction region according
to a volume of interest and treat the reconstrostigeparately.[151] Meanwhile, a
number of research efforts have been made on poségsing of the 4ADCBCT images.
For instance, a prior image-based approach [15Z been developed by first
reconstructing a blurred CBCT image with all praj@es and then using it to estimate
and remove the streaking artifacts. It has alsom beeestigated to enhance the CBCT
image by first deforming images at all phases at&ingle one and superimposing them
together.[153, 154] The efficacy of these approachewever, largely depends on the
accuracy of the algorithms involved, such as deédrie image registration algorithms.
One of the most advanced approaches to date grithreimage constrained compressed
sensing (PICCS) algorithm which can reconstructh hguality 4DCBCT without

compromising imaging dose.[139] It first reconstau@ prior image by using all
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projections and then reconstructs each phase inhggeegularizing both the total
variation of the image itself and the total vapatiof the difference from the prior
image.[108, 155, 156] Due to its high quality inragiperformance and relative
simplicity of the algorithm, PICCS has been evadain many different applications.
[108, 155, 156]

In this study, we propose a novel 4DCBCT reconsitvacalgorithm called
Motion-Map Constrained Image Reconstruction (MCtRat utilizes a motion-map to
achieve high-quality images from a highly under-pbad projection data. The MCIR
algorithm allows 1) reconstruction of high qualtpCBCT phase images with no more
than the imaging dose used in a standard 3DCBCif, stad 2) high phase resolution
ADCBCT sets with up to 20 phases using a typictpts free-breathing 3SDCBCT (FB-
3DCBCT) scan. Comparison of our novel approach with standard FDK and PICCS
algorithms are presented in detail with numericalvimg phantoms, and lung clinical

patient data.

6.2 Review of 4DCBCT reconstruction

The common concept of CBCT reconstruction of afiety (e.g. 3DCBCT and
ADCBCT) is to essentially solve the problem of fimgl unknown X-ray attenuation
coefficients of image voxels from X-ray projectiodata measured from various gantry
angles. In 4DCBCT, the first step in reconstruci®io group the X-ray projections into
various respiratory phase bins (e.g. 10 phasegrdiog to breathing phase tagged to
each projection image. In the next step, a seD&BCT for each breathing phase is then

reconstructed from the sorted projections to ctutstia 4ADCBCT. One thing to note here
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is that when a particular 4ADCBCT phase image isnstucted, substantial amount of
projection data that are not within the phase wimde discarded after the sorting
process. Under such circumstance, projection dwt dre left to solve the unknown
ADCBCT phase voxels are then often insufficient abow high quality image

reconstruction. The main contribution of the pragb$1CIR algorithm is to address this
issue by intelligently differentiating the movingxels in the volumetric image from the

stationary ones.

6.3 MCIR algorithm

The key intuition of the MCIR algorithm lies in th@bservation that when a
patient exhibits respiratory motion, not all pasfsthe patient’s anatomy are in motion.
Figure 6-2 illustrates this point. Tissues that argide the lungs (e.g. tumor) move
significantly, whereas outside are nearly statignarg. bones, muscles, etc.). Suppose
we can distinguish voxels between ones that arang@nd stationary via what we call a
“motion-map”, then a series of 4DCBCT images carrdmonstructed by updating FB-
3DCBCT only those voxels that are moving accordimga corresponding phase, and

keeping voxels constant for those voxels that &igosary.

Fig. 6-2. 4DCT image of lung cancer patient atp@gk inhale 0% phase and (b) exhale 50% phasegUsin
the dotted white line as reference, the lung tuimside the right lobe exhibits significant up/domotion,
while the bones and surrounding muscle tissuesetavely stationary.

The main advantage of such approach is that shecaumber omobilevoxels to

be reconstructed in each phase is less than thé voxels in 3D image, the overall
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unknowns in each phase is now smaller. Therefdweretare more projection data to
reconstruct a higher quality phase images thancif snformation wasn't utilized.

In this chapter, the matrices are denoted as admsdippercase letters and the
vectors are denoted as a boldface-lowercase leltetise MCIR algorithm, we represent
the unknown 4DCBCT phase volume as:

= X +U "k (6.1)

phase phase

where Xphase = unknown 4DCBCT phase volumggp = a priori reconstructed FB-
3DCBCT volume (using any conventional algorithm luging FDK[19] and
SART[157]),U = diagonal motion-map matrix akghase= phase-specific update vector.

Equation (6.1) demonstrates that our approach &ad from the FD-3DCBCT
image and then identify the phase specific mottdarmation by referring to the motion-
map matrixU. The diagonal motion-map matrid, which represents the weighting
factors associated with all voxels is defined miathtcally as follows:

U =diafa, ,a, .3, ,...8,} where,M = volumedimensionanda, =[0,1] (6.2)

Here,a corresponds to thieth diagonal element of motion-map mattix where
the value ranges between 0 to 1 andiould be close to 1 when the voxel value varies
largely with respiratory motion and close to 0 whaxxel value varies minimally with
breathing. The main reason for adding square rewh tonU in Equation (6.1) is to
simplify the updating equation for solvikghase Which we will show shortly.

Remember that in 4ADCBCT reconstruction, projectiate that are available for
each phase is limited in number due to the sogmogess. Therefore, it is important to
select reconstruction model that appropriately kesduch circumstance to give you an

adequate image. Recent studies have shown thatresseg sensing type of CBCT
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reconstruction based on total variation formulatidras shown that efficient
reconstruction can be performed with limited numbkprojections.[33, 107, 108, 110,
158, 159] Thus, utilizing this theory, keeping 4DCB volume Xphase @S unknown, the
mathematical model for the MCIR algorithm is setopsolve the constrained convex
optimization of the form:

(6.3)

where Aphase = Radon transform operator at a specific phdmgse = phase sorted

2
min f(xphase) :‘ 5 + j“-I-V(Xphasg S.t. Xphase2 0 prOjeCtion

X phase

Aphasex phase” b

phase|

data,\ = regularization constant, afid/(-) = Total Variation (TV) regularization term.

The TV [x(i+1,7,k)- x(i, i, k)P + term we used in this study is
v (xG, j.k) = [[xd,j+1k)- x@, i,k +

[x(i, P K+1)- x(i,j,k)]2 defined as:

(6.4)

wherei, | andk corresponds to Left-Right (LR), Anterior-Poster{@P) and Cranial-
Caudal (CC) coordinates in 3D volume space, resdgt Here, elements of vector x
are indexed by 3D coordinates for notational sioili In this form, the first term in
Equation (6.3) is the fidelity term, which enforcédelity of Xphase With the sorted
projection data. The second term (the regularinatésm) promotes sparsity inherent in
the X-ray attenuation characteristics of the hutmaahy.

In Equation (6.1), we have defined the 4DCBCT phaskime Xphase as a
combination of FB-SDCBCT with the phase-specifidate vectokphasethat is weighted
by the motion-map matrix). The FB-SBDCBCT xsp, can be easily computed using all

available projections. Assuming that we alreadywkrioe value of motion-map matriy,
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which we will discuss in section 6.4, we can caltellto solve Equation (6.3). This is
done by substituting Equation (6.1) into (6.3) aradculating the gradient of the right

hand side of Equation (6.3) with respectigase Which then becomes:

ml
phase ~—

X X r;;hase + OCU [2A;hase( Aphasex r;;hase - bphasg +V (TV(X r;;hasﬁ))] (6 5)

wheren = number of iterationsy = gradient step sizé\Tphase: back-projection
matrix of sortedV  projections and = gradient operafdote here that by
modeling Xphase With square root term obl (Equation (6.1)), the updating equation
simplifies to multiplyingU, instead of its square.

In Equation (6.5), we can notice that the grad{satond term) of Equation (6.3)
with respect tokphasebecomes the product of motion-map matdxwith the original
gradient of TV based CBCT reconstruction algorith&g] (i.e. gradient of Equation
(6.3) with respect tapnasd. As a result, the update energy will mainly bgarted on the
voxels with the associated weight facercloser to 1 while spending little energy to
update the voxels with values close to 0. Thoseelgkaving weigh=0 in U will

preserve the voxel value in the FD-3DCBQTp.

6.4 Motion-map calculation

In the previous section, we have mathematicallynidated the updating equation
of MCIR algorithm (Equation (6.5)) to minimize tlo®st function given by Equation
(6.3). As you can imagine, calculating the motioapmU is a critical step in
implementing Equation (6.5). The effectiveness loé tMCIR algorithm is largely

dependent upon how well the motion-map represéetsiobile anatomy.
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There can be a number of ways to calculate theomatiap of a patient. One
intuitive way is to utilize a planning 4DCT datas#d calculation of deformable motion
vectors. However, this approach may not be verfulsence the patient posture must be
very close, if not identical, between the 4DCT atdhe time of treatment. In addition,
considerable motion-to-motion variation on dailysisg160] as well as with registration
uncertainty [161] exists which may hamper the @ied of the motion-map.

In this study, we have developed a novel and effeanethod that obtains the
motion-map directly from the projection data obé&lmat the time of the CBCT scan. In
this way, no external prior-knowledge informatianneeded to obtain the motion map.
The idea behind this concept is that when the FBBOT is reconstructed, the regions
that are subject to varying degrees of respiratontion would contain larger data
inconsistency (i.e. motion artifact) compared te tagions that are stationary. Intuitively,
if we can incorporate such information and recarcdtiwith an effective strategy, a
precise motion-map matriy can be calculated. This is our intuition, whicld ke the
following.

To calculate the motion-map matriX, first, the FB-3DCBCT is reconstructed
using all of the projections. For this, any recamsion method can be used (e.g.
FDK[19] or compressed sensing type algorithms)this study, we have used the FDK
approach for its computational efficiency compatedother iterative reconstruction
techniques. Second, for each phase, the FB-3DCBClpdated with the phase-wise
sorted projection data while minimizing 1-norm diffnce from the reconstructed FB-
3DCBCT as a regularization term. Third, sub-motesrer vector for each phase denoted

by upnaseis calculated by taking the difference betweenupeated FB-3DCBCT with the
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original FB-3DCBCT. Mathematically, the sub-motierror vector can be represented

as:

= Xap - X (6.6)

Phase

u

phase

where

X;hase = argmin{HAXPhase_ bphast + WH‘XSD - XPhaSJ } s.t XPhaseZ 0 (67)

1
Here, Xphase= updated FB-SDCBCT with phase-wise sorted propectiata with
1-norm constraint,xsp = a priori reconstructed FB-3DCBCT volume, and =
regularization constant for 1-norm term. In Equat{6.7), we can notice that the original
FB-3DCBCT, x3p, is being updated with phase informationpnass While promoting
sparsity in the difference between the original IBEBCT and the updated valu@nase
In this way, we can rigorously update the origiRB-3DCBCT with phase information
in the sections that contain motion-induced dateomsistency while keeping the
consistent regions with values from the original-BIBCBCT. Then, by taking the
difference between FB-3DCBCT amtbnase, SUb-motion-error vector can be calculated
representing motion-errors corresponding to ea@ds@hFinally, when sub-motion-error

vector has been calculated for all phases, we edsulate a normalized motion-map

matrixU = diag{ &, &, ..., au} defined as:

N N
ai = Z‘uphase(i)‘/mia){ Z‘uphasé I) ‘} (68)
phase-1 phase-1
whereN = total number of phase bins that are sorted.rEige3 illustrates the process of
obtainingU in the MCIR algorithm. It can be seen that a Igogetion ofU exhibits very

low values (closer to 0) except the regions thataio motion.
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upkase

Fig. 6-3. lllustration of generating a motion-mé&p,First, Xrg_3pcectiS reconstructed using a conventional
algorithm (e.g., FDK). Second, sub-motion-errorteedor each phaseifn.sq is calculated by taking the
difference between updated FB-3DCBCT with FB-3DCBEihally, motion-map matrix is calculated
by normalizing absolute sum of sub-motion-errorteeay.seat all phases. As can be seen, imdge
exhibits very low values (dark ~0), except neardfaphragm and lung (white ~1).

Solving Equation (6.7) for all phases could be ttoasuming. It turns out that
approximately solving the problems with only a faterations provides enough
information for generating the desired motion-mAp.a result, the motion-map can be
generated with much less computations comparedhéo computation required for
reconstructing the phase-specific images, indigatihat the overall overhead for

generating the motion-map is small.

6.5 Practical implementation of MCIR

After the motion-mapJ is generated, Equation (6.5) has all of the necgata

to iteratively search for the best solution, focledDCBCT phase, with the original FB-
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3DCBCT as the starting volume. The MCIR algorithsepdo code is shown in Figure 6-
4. The process is as follows. First, FB-3DCBCTeesanstructed with the FDK algorithm
using all X-ray projections that were obtained. @el; FB-3DCBCT is updated with
phase-wise sorted projections such that regiongasong the motion induced data
inconsistency are updated with the phase informatubile enforcing consistency on
motion-free regions with the original values frone FB-3DCBCT. The updated volume
is subtracted with the original FB-3DCBCT to generaub-motion-error vectoy, at
each phase. Third, the absolute values of the satimerror matrices are element-wise
added and normalized to the maximum values to obtla¢ motion-map matrixJ.
Finally, for all phases, the MCIR is performed Ioytializing all voxels as the original

FB-3DCBCT and updating the values according to Equd6.5), at each iterative step.

Step 1: Input Projection data by s
Step 2: Process FDK with b ;; pjas. and set x3p = Xppg
Step 3: For each phase calculate sub-motion-error matrix #,;,
Step 3-1: Set X000 = X3p and select by,
Step 3-2: Iterate xn_jphase: xnphase—i_a[zATphase(Aphasexnphase' phase)-l—??s‘fg”(xiD'xnphase)]
Step 3-3: Calculate #ppq,= X ppase-X3p
Step 4: Set U according to Equation (6.7)
Step 5: For each phase process MCIR
Step 5-1: Set X%y, = X3p and select by,
Step 5-2: Tterate X" 5= X700 H QU 2AT pc(AppaseX onase Bppase) PRV TV (X s ) |

Fig. 6-4. The flow of MCIR algorithm for ADCBCT reustruction at each phase. Note here that the decon
term of the equation in step 3-2 is first-orderdieat of Equation (6.7).

As can be noticed, the MCIR algorithm is an itemtiprocess, which is
computationally heavy, taking hours of CPU timer&ach the solution. Efficiently
solving this would require (1) parallel programmimgth proper hardware, and (2)

deriving a mathematical formulation to achieve fs@ution-convergence. To handle the
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former issue, we have parallelized our code with ghaphics processing unit (GPU) in
the CUDA C/C++ programming environment. In this wayajor computational tasks
such as (1) forward projection, (2) back projectiamd (3) vector as well as filter
operations can be efficiently parallelized [32, 1162]. For the latter issue, we have used
our recently published gradient projection algarithased on the Barziliai-Borwein (GP-
BB) formulation that can handle compressed senging of CBCT reconstruction based

on total variation formulation in extremely efficiemanner. [118, 159]

6.6 Numerical simulations and patient data

To evaluate the performance of our proposed MCHerghm, we have tested on
both numerical phantom and lung cancer patient) thie X-ray projections obtained
from the TrueBeal! system (Varian Medical Systems, Palo Alto, CA)eFasults were
then compared with the (1) clinical FD-3DCBCT restucted from the OBY (FDK),
(2) 4ADCBCT reconstructed with FDK, and (3) 4DCBG3canstructed using PICCS, a
best known 4DCBCT algorithm to date. For the nuoarphantom study, we have used
a dynamic chest phantom similar to those usedearipus 4DCBCT related studies.[152,
163] It is a numerical phantom that emulates respiy motion with two circular objects
deforming expand-shrink and moving left-right. (SEmure 6-5) We first set the
breathing period to 5 seconds with a cosine functmd acquired 600 simulated
projections over one minute of full gantry rotatiole then divided and sorted the
projections into even 40 phases. This means, omageel5 projections were used to

reconstruct each phase.
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Fig. 6-5. Physical moving phantom at peak inhaleadf exhale 50% used in our numerical simulation.
Two circular objects located left and right pants set to deform expand-shrink and move left-right.

For the clinical lung cancer patient case, a tot&d74 projections were acquired
over one minute gantry rotation, in a half-fan sgtag geometry, representing a typical
FB-3DCBCT clinical scan. The imager has 1024 x pb&ls with 0.388 x 0.388 mim
resolution. This was down-sampled to 512 x 384 Ipixéth 0.776 x 0.776 mfrfor the
reconstructions. During the acquisition, each mtipe data was tagged with the phase
information from the RPM" system. Using this information, we divided andtstrthe
projections into 20 phases. On average, about @égirons were assigned to each phase.
The 4DCBCT volumes were reconstructed with 512 & §170 voxels at the resolution

level of 0.97 x 0.97 x 2.0 min

6.7 Results
Figure 6-6 shows a numerical 4D phantom simulatiesults including the
ground truth images at two phases 0 and 50%, 4DCB&®onstructed using FDK,
ADCBCT reconstructed using CS, 4DCBCT reconstructgidg PICCS, and 4DCBCT

reconstructed using our MCIR algorithm. In orderewosure that the images for all
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iterative algorithms (CS, PICCS, and MCIR) to reashclose to its convergence, we
have run 1000 iterations for all with the same @P-8ep-size approach. [118, 164]
Since the MCIR algorithm starts with a FB-3DCBCTaasinitial input, we have kept all
initial input as FB-3DCBCT for the CS and PICCSaalthms as well. As is expected,
severe streaking artifacts appear in the 4ADCBConstitucted using the FDK algorithm
(Fig.6-6 (b), (g9)). Visually, many of the structari& the medial aspect of the phantom are
nearly indistinguishable. 4ADCBCT using the CS atyon (Fig.6-6 (c), (h)) significantly
mitigates such artifact, as expected. Howeves #till evident that anatomical structures
are blurred due to some patching artifact (i.erkdpay streaks). As for PICCS and
MCIR, there are noticeable improvements in imagaligufrom the CS (Fig.6-6 (d), (i)
(e.g, reduced patching artifact). Visually, the gmaeguality seems nearly equivalent to
each other. By taking a closer look, however, we that the boundary of the moving
balls in either side of the phantom is slightly rgiea in the MCIR algorithm. Figure 6-7
show measured line profiles across the left batha phantom, for a 50% phase image.
The line profile of the MCIR algorithm follows clest to the ground truth (see expanded
view in the subset). In digging deeper, we haveuwated the root mean square error
(RMSE) for all 40 phase images, which is illustdate Figure 6-8. Here, the RMSE is

defined as the root of mean-squared percent ewor the ground truth pixel values:

GroundTruthy 2
2 (Xi,j,k - Xi,j,k )

RMSE (%) i'j’kZ(X x100 (69)

GroundTruth)Z
i,jk

i, j Kk

where,x;jx correspond to the voxel values in the reconstcigtdumex andx®oundmm

refers to the ground truth values of the numeratest phantom that we used in this
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study. It is clear from the figure that the levélagreement to the ground truth is in the
order of MCIR > PICCS > CS > FDK, for all phasebeTFDK algorithm had the largest
RMSE of 42.6+6.5% ranging from 33.7%-61.2%. The &gorithm performed much
better than FDK, which had RMSE of 0.87+0.13% raggfrom 0.65%-1.14%. The
RMSE for PICCS varied from 0.47%-0.78% with an ager of 0.58%+0.08%. Finally,
the MCIR algorithm showed the best performance Wi#4% + 0.04% ranged from
0.37%-0.52%. This finding holds true at all levelsiterations as well, as shown in
Figure 6-9, where RMSE was calculated at eachtieratep. As can be seen from the
figure, the MCIR algorithm needs less than 100atiens to achieve RMSE < 1% from
the ground truth, whereas the CS or PICCS need mmeanmg iterations to reach that level.
This is mainly due to the fact that, unlike othégosithms, the update energy is mainly
focused on themobile voxels in our MCIR algorithm. This suggests thia¢ tMCIR

algorithm outperforms the CS and PICCS, in termsnage quality but, the speed of

algorithm to reach the optimum solution is alsadas

Fig. 6-6. A numerical 4D phantom simulation resul#,(f) ground truth phantom image at two phdses
and 50%. (b),(g) 4DCBCT reconstructed using FDK(l¢ 4DCBCT reconstructed using CS. (d),(i)
ADCBCT reconstructed using PICCS. (e),(j) 4DCBCdorsstructed using our MCIR algorithm.
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Fig. 6-7. Measured line profile of moving objectpdfantom at 50% phase. Position of measured line is
illustrated by yellow dotted line inside the phantomage.
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Fig. 6-8. Comparison of root mean square error (EM&tween 4DCBCT reconstructed using FDK, CS,
PICCS and our MCIR across all phases.
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Fig. 6-10. Coronal slice of FB-3DCBCT reconstructesihg clinical lung cancer patient data
(a) and its corresponding motion-map using propaosetion-map reconstruction approach (b). The
motion-map intensity is highest across diaphragthashighest (blue) which is true when patient is
breathing.

Figure 6-10 shows a coronal slice of FB-3DCBCT retructed using a clinical
lung cancer patient data and its correspondinganetiap generated using the proposed

motion-map reconstruction approach (in color séam 0 to 1). As we expect from our
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clinical experience regarding thoracic anatomy, rti@ion-map intensity should be and
is the highest around the diaphragms. It is alddes¥ that the motion-map inside the
lungs has varying degrees of intensity as well,cwhg also expected. One undesirable
result, though, is that there is also some intgnsithe soft tissue on the left side of the
patient. This is due to the fact that the fieldvadw (FOV) in our CBCT scanner is not
enough to cover all of the patient's anatomy amerdfore, a truncation error would
accumulate when the motion-map is generated. Hoyévs is not an issue of concern
as long as the motion-map captures all of the egleyart of the anatomy that are
moving, which we absolutely need to visualize for KGRT applications. That is, since
the motion-map is a weighting vector that updakesinitial FB-3DCBCT with phase-
wise sorted projections that have already been wseeconstruct the FB-3DCBCT,
updating the non-mobile regions with the phase-wmted projections would be really

minimal, so there won’t be much change in thataegnyway.

Fig. 6-11. Coronal and Sagittal slice of cliniaahdy cancer patient of FB-3DCBCT (a),(f), and our
proposed MCIR algorithm at 0% phase (b), (g), 2%%se (c),(h), 50% phase (d),(i) and 75% phasg)(e),(
The image qualities of MCIR at all phases are atragsivalent to image quality of FB-3DCBCT and well

represent the respiratory motion (See diaphragm).
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Figure 6-11 shows coronal and sagittal slices eflting cancer patient with the
FB-3DCBCT, and the MCIR algorithm at 0%-peak-exh@&%-mid-inhale, 50%-peak-
inhale, and 75%-mid-exhale. It is clear that the W€ image quality, at all phases, are
almost equivalent to that of FB-3DCBCT, in terms loWv contrast and noise, but
moreover, the diaphragm positions are clearly mhisitte. This confirms that although
only 34 projections were used to reconstruct edshs@, our MCIR algorithm can
reconstruct all 20 phases of the breathing cuntbout the agitating streak artifacts that

are caused by insufficient projections.

FB-CBCT . PICCS

REEY

Fig. 6-12. A lung cancer patient results of FB-30EIB 4D-FDK, MCIR and PICCS algorithm.

Finally, Figure 6-12 displays the lung cancer puate 4ADCBCT (50% phase)
reconstructed with the FB-3DCBCT (using FDK), 4D#DMCIR, and PICCS
algorithms. As expected, severe streaking artgaddts in the 4D-FDK. In contrast, both
the MCIR and PICCS algorithms significantly outpenh that of the 4D-FDK. In closer
visual inspection, it is also observed that theadting artifact is relatively further reduced
in the MCIR as compared to the PICCS result. Aexample, the diaphragm boundary

show reduced streaks.
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6.8 Discussion

A. Algorithm performance

In the evolution of lung cancer IGRT, transitionifigpm FB-3DCBCT to
ADCBCT is essential due to the fact that the ext@ntumor motion is the key
information in maximizing target localization acaay. [24, 145, 165-167] With the use
of conventional FDK reconstruction algorithm, th@dyoway to achieve this is to increase
the scanning time to acquire more projections, twhievitably increases the radiation
exposure to patients.

In this study, we proposed a novel 4ADCBCT recomsivan approach called the
MCIR, and have successfully shown that at leasiou@0 high quality phase images can
be reconstructed using the same input datasetsatsgke clinical CBCT scan, without
increasing the imaging dose.

The main innovation comes from recognizing that mviaethoracic anatomy is
subjected to respiratory motion, not all parts le¢ anatomy are significantly moving.
Therefore, if we could somehow distinguish betwé®an regions that are moving more
and less, we could reconstruct a high quality 4DTB&y updating the voxels with
significant motion using the corresponding phaseesloprojections while keeping the
voxels that don’'t move from the FB-3DCBCT data.

The results both in numerical simulation as welbgsatient data showed that the
MCIR algorithm outperforms many other popular-amdanced algorithms such as the
CS and PICCS. It should be noted though, howewat, the implementation of the CS
and PICCS may not have been exactly reproducetieasrtes originally proposed and

implemented, as all of these algorithms were imgtgal and written in-house. We
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attempted to make the fairest comparison by impiging the codes as close to the
publications as possible, however, it cannot berguaed that the same exact
performance was observed. As a result, we fullynaekedge that our evaluation of these
algorithms may not represent their best possibtéopaance, although similarities such
as the well-known patching artifact in CS [108, 1&89] was also readily observed in
our implementation. It would be quite valuable tonpare head-to-head with the original
implementations if the chance ever came up withctireesponding investigators, which
could be a near-future study.

The performance of our MCIR algorithm is heavilypdadent upon the quality of
the FB-3DCBCT and the projection data. It was olseéthat when the initial quality of
FB-3DCBCT is poor, that propagated through the sgbent processing with the MCIR.
This is, of course, quite obvious since the MCIRoathm updates phase-specific
information from the FB-3DCBCT as its base. Therefdo maximize the performance
of MCIR, it is important to acquire high qualitygpection data, which will translate to
high quality FB-3DCBCT. This characteristic is appble to PICCS as well, since that
algorithm also uses the FB-3DCBCT as a prior kndgte

The MCIR algorithm involves two independent iteratsteps, including 1) sub-
motion-error vector, and 2) 4DCBCT calculations.tlhe clinical patient case, it was
shown that<6 iterations were generally sufficient to calculdbe sub-motion-error
vector, ands80 iterations to generate the 4DCBCT. As a resit,overall overhead for

computing the motion-map matrix is quite manageable
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B. Motion-map estimation

Precise motion-map estimation is also an imporfantor that influences the
performance of the MCIR algorithm. In this studyg wroposed an effective method to
obtain the motion-map directly from the X-ray piijen data. Results showed that in
both the numerical simulations and patient cassféctively distinguished the regions
that are stationary and moving. One limitation tlvas observed in a clinical patient case
was the accuracy of the motion-map can be degrddedto a parameter that may be
outside our control, which is the physical FOV sifmading to truncation errors that
would accumulate during the motion-map calculatidtewever, as discussed, this is not
a critical issue as long as the motion-map captteak mobile regions of the thoracic
anatomy, which is mostly within the lungs. Sincetimo-map is a weighting vector
designed to update FB-3DCBCT using phase-wise ¢qgmejections that have already
been reconstructed into the initial FB-3DCBCT, upuathe non-moving regions with
phase-wise sorted projections would have minimédcefin that region. Nevertheless,
how such errors would affect the image quality seedbe rigorously validated, which
will be part of our future study, as the currentdst mainly focused on introducing the
MCIR algorithm and its concepts. In addition tosthwe’ll follow-up with additional
methods of calculating the motion-map.

C. Regularization parameters

In the MCIR algorithm, there are two different wietiqg parameters that need to
be assigned. That is 1) the TV regularization pa&ten. [Eqg.(6.3)] and 2) the 1-norm
regularization parameter[Eq.(6.7)]. The former parameter is one of the nioluential

parameters affecting the image quality of 4ADCBCHhatflis, wher is high, the blurrier
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and smoother the images, and the smaller it issliagper and noisier the images. This is
due to the fact that is a weighing factor of TV regularization termtive energy function
of Equation (6.3). Thus, i is high, more emphasis is given to minimize TV and
therefore the blurrier but smoother the look. Iipagite, ifA is low, then more emphasis
will be given to the fidelity term (first term indoation (6.3)) and therefore preserving
the noise and high frequency information.

The latter parametey, is the parameter that determines the sparserfet® o
motion map. The higher this value, more sparseartbegon-map matrix (i.e., more zeros),
which will emphasize the regions that has rigormation, while smaller this value, the
motion-map matrix has less sparseness, giving eonm-zalues to regions that show
relatively little movement. Therefore, when tlsparse motion-map matrix,U, is
uploaded in MCIR, the result would be an image thgbrously emphasize only the
voxels that has large data inconsistency due taomoivhile other regions are left as that
of FB-3DCBCT. Vise versa is true ftass sparsenotion-map matrices.

Although some investigators have proposed ways gomize the weighing
parameters (e.ga, #) in iterative optimization problems [26, 125], tbes really no
global standard in deterministically calculatingitih Therefore, the selection ofandy
were subjectively picked through numerous repeaatkitions. In this study, we have set
A = 0.001 and; = 0.5 for the lung cancer patient case. It is obvithad further research
is needed to find a class of optinlahnd# values for various clinical sites and patient
sizes, but we emphasize again that the curreniljysiainly focused on introducing the

MCIR concept.
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6.9 Conclusion
In this paper, we propose a novel 4ADCBCT reconstmalgorithm utilizing a
motion-map constraint as part of the framework. td@20 phases of clinically viable
ADCBCT images could be reconstructed while reggimm more projection data and
imaging dose than a typical clinical CBCT scan. sTmakes our MCIR algorithm

potentially useful in an on-line IGRT environment.

6.10 Acknowledgements

The text of Chapter 6, in part or in full, is a rep of the material as it appears in

the following publication:

Park JC, Kim JS, Park SH, Liu Z, Song B, Song Whation-Map Constrained
Image Reconstruction (MCIR): Application to Fourrensional Cone-Beam Computed

Tomography, Submitted.

The dissertation author was the primary researahdrthe co-authors listed in
this publication directed and supervised the reseavhich forms the basis for this

chapter.



Chapter 7 Liver motion analysis using CBCT imager

7.1 Introduction

Stereotactic body radiation therapy (SBRT) of liveancer is technically
challenging. [170] Similar to lung cancer, thera’significant inter- and intra-fractional
organ motion induced by respiration [171-174] ahdt tradiation tolerance of normal
liver is very low. [175-177] The former necessitat use of larger margin, while the
latter discourages it. To make the matter worse, tttmor itself is typically not very
distinguishable against the normal liver in in-rommne beam computed tomography
(CBCT) imaging, leading to uncertainties in imaggistration and setup. [178-181]

Since dose-response relationship exists in botmay and metastatic liver
cancer, with higher dose resulting in improved oaote [182, 183], the narrowest
possible safety margin is prerequisite in maxingzine therapeutic ratio. Consequently,
the most accurate and precise target localizagohrtique(s), which minimizes margin
size, is essential in liver SBRT. To this end, tise of stereotactic body frame (SBF) and
abdominal compression (AC) plate have been popuardjmiting most diaphragm
motion to <10 mm. [184-189] Even with reduced motibowever, the problem with
image registration uncertainty still remains. Areefive solution to this lack of soft
tissue contrast is the use of percutaneously eddrucial markers as a surrogate. [190-
198] This approach is quite effective because tle¢ahmarkers are radio-opaque and
hence are readily visible in X-ray projections. fidfere, using markers to characterize
the daily liver motion and subsequently adjusting treatment setup is an effective

strategy in increasing the treatment accuracy.

113
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Having said that, a relatively little is known albdbe motion variations in the
liver, especially within different regions in theégan. In our previous report, we have
presented an effective, template-based techniquitomatically extracting 2D marker
positions from the X-ray projections. [194] In tlegidy, we have used this technique to
analyze the motion characteristics of liver. Usi2i) positional information at each
angular projection as input, we employed a robudtn3otion estimation algorithm to
construct the motion traces. From such, we analyagt- and intra-fractional motion
correlation, correlation with that of the motiomgaged during 4DCT simulation, marker
to marker motion variations within the liver, anariations in the gating window between
fractions. With the massive motion information gatd, we systematically deduced
useful information that could potentially aid ircreasing the overall treatment accuracy

of liver SBRT.

7.2 Patient data for liver motion analysis

The Varian Trilogy linear accelerator (Varian MaiSystems, Palo Alto, CA)
with the On-Board Imager (OB1) was used to acquire CBCT X-ray projections of 20
patients undergoing 2-8 fractions per course. Imagere acquired using thHalf-fan
scan mode, where ~650 projections were acquired thve 360 gantry rotation using
either thepelvismode (125kVp, 80mA, 13ms/frame) or tloev-dose thoraxnode (110
kVp, 20 mA, 20ms/frame). Thealf-fan mode is designed to obtain a larger field of view
(FOV) especially when the size of detector canmtec FOV of patient body. In this
mode, the detector is shifted laterally to takeydmhlf of the projection of the scanned

patient for each acquirement angle. This acquisitimmde reconstructs FOV of about 45
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cm in diameter and 15 cm in axial length. Eachegpathad 3 fiducial markers X8-mm
gold) implanted around the tumor for image guidatedotal, 85 fractions with >55,000

X-ray projections were acquired.

Table.7-1. Patient characteristics data.

Patient | Fractions | Observable Marker distance (mm) Target Imaging

no. treated marker(s) 1,2) 13 ] 23 Location protocol

1 5 3 1.9 30.0 29.1 S8 pelvis mode

2 2 3 2.08 22.9 21.8 S4 pelvis mode
3 7 3 47.7 29.7 19.0 S4, S7 pelvis mode
4 2 3 27.3 52.6] 26.0 S1 pelvis mode

5 4 3 23.1 31.8] 21.9 S8 pelvis mode

6 8 3 30.3 95.3 79.1 S2 low-dose thorax
7 3 2 43.1 - - S6, S2 low-dose thorax
8 3 2 251 - - S4 low-dose thorax
9 8 2 107.5 - - S3, S8 low-dose thorax
10 3 2 5.3 - - S6 low-dose thorax
11 4 3 19.3 27.3 15.7 S6, S7 low-dose thorax
12 3 1 - - - S8 low-dose thorax
13 4 1 - - - S1 low-dose thorax
14 4 3 24.0 39.6 36.9 S5 low-dose thorax
15 4 2 43.9 - - S4, S8 low-dose thorax
16 5 2 30.9 - - S4, S8 low-dose thorax
17 3 3 26.4 23.5 30.4 S4 low-dose thorax
18 6 3 51.9 33.0 47.9 S7 low-dose thorax
19 3 2 36.8 - - S4 low-dose thorax
20 4 3 74.8 90.6) 23.8 S4 low-dose thorax

Table 7-1 provides the technical details of thegpatdata. Two to eight fractions
were prescribed with three to four being the magiypar (accounting for 12/20 cases).
One to three markers were embedded in the liverppgent, with an average of 2.45

markers, with total of 49 markers. The mean mat&enarker distance was 36.2 mm
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(range: 1.9-107.5 mm). In terms of CBCT scans, Jaflents were imaged with the

high-dosepelvismode and 15/20 patients were imaged withidhedose thoraxmode.

7.3 Modified marker extraction algorithm

We recently proposed a novel template-based mapkeaction algorithm. [194]
The algorithm is robust against any shape, sizentation, and the number-of-seeds in
an X-ray projection image. Briefly, the algorithnonsists of: 1) sub-sample a small
region of interest (ROI) containing all of the mark in the projection image, 2) apply
edge enhancement filter using spatial derivativesighlight the marker features, 3)
calculate fast Fourier transform (FTT), enhance tiarker-related signals via
multiplication with FFT of an ideal marker imageydaapply inverse FFT, 4) apply
universal threshold to extract tlehadowof the marker, and finally, 5) calculate the
center-of-mass (COM) position of tshadow

For this study, we have modified our algorithm gigantly. In the original
implementation, we would choose a single ROI thatoenpasses all of the markers.
After that, the algorithm would extract all makerosfions inside the ROI,
simultaneously. This procedure was efficient whénmearkers are closely positioned
with each other such that the ROI dimension didexaeed about 26200 pixels (77.60
mm x 77.60 mm), and that patients are scanned witlyladualitypelvismode where the
markers are clearly distinguishable from the simjldigh-attenuating bones and the
couch structures, at all scan angles. However, abeuracy of the algorithm fell
significantly beyond the ROI dimension of 200x20ets, as well as when patients were

imaged with thdow-dose thoraxmode, where the image noise was higher. To ovezcom
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this, we have modified our algorithm/process intthestead of calculating multiple
marker positions simultaneously, each marker wakulzed separately through
assigning a multiple, and much smaller ROIs (30pi3@ls, 11.64 mnx 11.64 mm). The
overall workflow of the marker extraction and thebsequent respiratory signal
generation procedures are illustrated in Figure -5 a semi-automatic process where
we start by manually assigning the initial positmneach marker at the first and the last
projections. Then, the marker extraction is perfednsimultaneously in two opposing
directions until either they meet at the last cwgping projection or terminate when the
markers are absent. The reason for this approadhats for thehalf-fan scanning
geometry, there are usually a range of scan atigéésio not contain the markers due to
the off-center position of the detector. This amagubnge varies from patient to patient
and from fraction to fraction, as well as from nearko marker. Therefore, it is efficient
to analyze the forward and reverse directions gamnelusly and is relatively easy to
terminate the process when the markers disappesar the projections. Now, right after
manually assigning the marker positions in the fursd last projections, an ROl mask of
size 30x30 pixels is centered on each marker. Theralgorithm determines the COM
positions for each image. As the COM positions @deeermined, the ROI mask is re-
centered on the new position and the search foméx@ COM position begins on the
subsequent image. This process assumes that themfismm one projection to the next
would only move within the ROI area defined. Witte ttypical OBI frame rate of 11-12
frames/sec (0.08 sec/frame), we anticipated thatatsafe assumption to make even with

abrupt change in patient motion.
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Fig. 7-1. (a) The overall workflow of the markertction process. The extraction is performed
simultaneously in the two opposing directions uegitiher they meet at the last overlapping projectiothe
markers are absent in the image. (b) The heightaadith positions extracted as a function of thejgetion

angle.

7.4 3D position estimation algorithm

After identifying the 2D marker positions on all5;B00 X-ray projection images,
each marker was back projected, in the room coatdisystem, and the corresponding
3D position was estimated. The main idea behind i#ithe prior knowledge that the

positions are confined within a respiratory/ostdfg motion. Assuming that patient is
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immobilized while acquiring CBCT, there would bel@ast two or more projections at
different angles imaged at same 3D position dunmudtiple breathing cycles. Therefore,
gathering marker center positions at all differamgles would generate 3D distribution of
marker centers which they coincide. Since motionssillatory, we have assumed that
finding a closest point of marker center at givagla to central axis of 3D distribution
would give close estimation of marker position iB.3Such implicit assumption is
valuable only if 1) breathing motion is oscillatpi3) oscillatory motion is confined to
fixed axis and 3) patient is immobilized while asqg CBCT scan. Basically, we
project each marker ontpriori calculated 3D axial, respiratory motion trajectdiye.
And, the 3D axial line is initially calculated bigting a line that intersects two points that
correspond to the average positions of the markéra inhalation and exhalation phases.
This approach is similar to that proposed by Be&hal [199] where they estimate the
3D position by: 1) sorting the marker positionsoirgeveral phases, 2) each phase is
grouped and back projected, 3) an average 3D miditlhe most-likely intersection is
calculated for each phase, and 4) each markerigosst then re-projected and the final
3D position is calculated by determining an orthomal point that is closest to the
average 3D position of that phase. Using this aggrpthe mean root mean square error
was <0.4 mm on a phantom study. Once the two aeepaints representing the two
phases are calculated, a line vector intersectimgy tévo points are obtained by the

following equation (See Figure 7-2):
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Fig. 7-2. lllustration of the process in which a @d3piratory motion trajectory line is obtainedeTh
projections are sorted into either a high- or lawgtitude signals. Then a line is drawn to intersbkettwo
average points.

f axial (/’laxial): Pexhal(x' Y, Z)+:uaxial (Pinhal (x,¥,2)- P(xy, Z)) (7.1)
where variablex, Y, z, faxia, Pexhas Pinha, @nd uaxial refer to the anterior-posterior (AP)
plane, left-right (LR) plane, cranial-caudal (CClame, axial line function, average
exhalation and inhalation positions, and a scalkighting variable, respectively. Once
the faxia IS derived, the next step is to project each nradgain to calculate the
corresponding 3D coordinate position. Projectiontled 2D marker position on the
detector plane to a 3D position in the room coatiinspace can be first derived by
drawing a line vector between the 2D marker pas#tido the X-ray point source.

Mathematically, this can be derived by the follogvequation:

f g (lufid ): P (X(9)1 IDD (), Z)

+ Ug (Psrc(o(e)s SlD(Q),Z)- Py (X(e),lDD(G),z)) (7.2)
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where fig, Prig, Psre, IDD, SID, and g refer to the projected line vector, the marker
position in the detector plane, the X-ray sourcesitmm, the isocenter-to-detector
distance, the X-ray source-to-isocenter distanag] a scalar weighting variable,
respectively. Note here that y, z coordinates are transformed, with respect to the
projection angled, since the gantry rotates during the image adiuisiFinally, using
the two line vectors obtained in Equations 7.1 & the ultimate 3D marker position is
estimated by calculating an orthonormal point tieg along the Equation 2 line and is
closes to the Equation 1 line (See Figure 7-3).ndaatically, this can be solved using

the following equation:

Faia (/uaxial )_ F s (,U fid l‘z (7.3)

f1p pos(X, ¥, 2) = argmin
wherefsp podX,Y,z) refers to the estimated 3D marker positleguation 7.3 can be solved
by calculating the derivative with respect tgya, setting the equation to zero, and

solving for the iy that satisfies the equality. This calculation weesformed on all

markers extracted from the >55,000 projection insage

f axial (‘um'im’ )

Fig. 7-3. An illustration of how a 3D marker posiiiis estimated. An orthonormal point along thecfiom
fiq IS calculated that lies closest to theg, line.
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7.5 Data analysis

To analyze accuracy of our modified marker trackatgorithm quantitatively,
numerical simulation was performed. We have asstmaecylindrically shaped marker
located at beam iso-center is moving periodicalighwcosine wave function of 1)
constant and 2) randomly varying amplitude in APR Land CC directions
simultaneously. Knowing that total time spent tay@ce CBCT with single gantry
rotation is one minute, total 674 projections dfidilly reconstructed radiograph (DRR)
were generated to process marker extraction asasetiarker tracking algorithm half-
fan geometry. Amplitude of motion was assumed to Benim, 1.0 mm and 3.0 mm in
AP, LR and CC directions when it was constant a6d~01.2 mm for AP, LR and 2.4
mm ~ 3.4 mm for CC when it was random. The breatipieriod of marker motion was
set to be fixed at 4 seconds.

Then, based on the 3D positions estimated, we agdlg number of liver motion
characteristics. First, we evaluated the relativetiom tendencies between the three
primary directions: LR, AP, and CC. Second, therage and standard deviation of the
breathing periods during 4DCT simulation and CBCars were calculated. Third, the
peak-to-peak motion amplitudes in the LR, AP, a@idrections were calculated. These
amplitudes were compared with that of those detszthifrom the maximum intensity
projection (MIP) CT images derived from the 4DCTampting dataset. Fourth, the
appropriate gating window was retrospectively dateed for each fraction. Since the
marker motion is generally the greatest in the @€ctlon, a histogram of the marker
positions in the CC direction is calculated, focleaCBCT scan. Then, the (relative)

gating window was defined using the following edomt
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CumulHist (50%) - Min.CC. y

GatingWindow(%) = Max.CC.— Min.CC
xCC.-Min.CC.

100 (7.4)

whereMin.CC, Max.CC.,and Cumul.Hist(50%), refer to the most caudal location, the
most cranial location, and a median CC (z) cooteipasition where 50% of the marker
positions are below and above. Thus, we defingyétimg window to be a fraction of the
length between the maximum inhalation to the maxmmaxhalation position that
contains half of the marker postions. The algorghemd analysis were implemented on

MATLAB (The MathWorks Inc., Natick, MA).

7.6 Results

A. Accuracy of marker extraction algorithm
Figure 7-4 shows the result of marker tracking atbm where series of DRR
with moving marker are extracted and tracked insp@ce. It is evident that the result of
marker tracking algorithm is closely related to thetion that has been simulated for all
cases. To provide the accuracy of algorithm nura#lyicwe have calculated average

relative error of motion at each LR, AP and CC clien as follows:
_t)2
RelativeError(%):%zmt—zt')xloo (7.5)

Where, N,i, pi andt; refer to number of simulated DRRs, projection index
number, position of estimated marker position awgditmn of true marker position
respectively. It was found that relative error d?,LAP and CC directions were 0.68%,
0.68% and 1.69 x 1@ when amplitude was fixed and 3.35%, 1.44% and%.When
amplitude was randomly varying. The maximum disphaent error for each direction

was measured 0.07 mm (LR), 0.07 mm (AP) and 0.000i3(CC) when amplitude was
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fixed and 0.18 mm (LR), 0.13 mm (AP) and 0.00013 f@¢€) when amplitude was

varying.
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Fig. 7-4. Comparison of simulated marker trackieguft with ground truth value on AP (a), LR (b), @Q¢
direction with fixed amplitude breathing and AP,(dR (e), and CC (f) direction with random amplieud
breathing. Note that CC motion on both cases éppear to be single due to almost perfect matdm wit
each other.

B. Liver motion types

Fig. 7-5. Trajectories of all 49 markers recongtedgduring their 1 fraction CBCT scans, viewed from the
(a) anterior, (b) posterior, (c) left, and (d) rigleam’s eye view.
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Fig. 7-6. An example patient showing the three $ypELR motion with the corresponding three markers
implanted.

Figure 7-5 shows the orthogonal projection viewsabf49 marker trajectories,
overlaid on a representative liver contour. As exp@, the most dominant motion is in
the CC direction. But more interestingly, thereaisnon-negligible motion in the AP
direction as well, irrespective of their locationthe liver. Also, the motion in the AP and
CC directions are highly correlated. That is, whigs markers move cranially, they tend
to move posteriorly, and vice versa. The LR motiad a more variable relationship with
the AP/CC motions, and appeared random with redpdtie location. That is, when the
markers moved towards cranial-posterior directi®®% of the markers moved to the
patient-right (Type | motion), 22% of the markersovad to the patient-left (Type II
motion), and 20% of the markers had minimal/non¢iona(Type Il motion). Table 7-2
list the classified motion types for each markeheTmotion types were location
dependent. Among the 20 patients, only 6/20 patikatl all the markers show same type
of motion, while 2/20 patients had all markers shiifferent type of motion. The rest of

12/20 patients had markers that were distributedranthe three motion classifications.
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Figure 7-6 shows the LR motion trajectory of theethmarkers for a patient (#14 in
Table Il) illustrating all three different motions.

Table.7-2. Three types of motion relationships tidienl along the LR and the AP/CC directions, tisat
when the marker moves towards the cranial-postéiiection, it also moves to the: (Type |) patieght,
(Type 1l) patient-left, and (Type Ill) minimal/nomaotion.

Patient no. No. of markers in motion
Type | Type Il Type Il

1 3 - -
2 3 - -
3 1 - 2
4 1 2 -
5 3 - -
6 - 1 2
7 - 1 1
8 2

9 - 1 1
10 2 - -
11 3 - -
12 - - 1
13 1 - -
14 1 1 1
15 1 - 1
16 1 - 1
17 3 - -
18 1 1 1
19 2 - -
20 - 3 -

C. Liver motion variability
Table 7-3 lists the comprehensive peak-to-peak iamgl, across the three
dimensions, and the breathing period observed guttve 4DCT simulation and the
CBCT scans. Breathing period during the 4DCT soaase recorded by the RPN
system (Varian Medical Systems, Palo Alto, CA).observed, the CC and LR directions
were generally the most and least dominant moti@spectively, except one patient (#9,
marker 1) where the LR motion was significantlygkrthan the AP motion. The range of

motion for the twenty patients were 3.00 £ 2.04 nan®8 + 3.12 mm and 17.93 + 5.11
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mm in the planning 4DCT, and 2.77 £ 1.6 mm, 5.22. %) mm and 16.46 =+ 5.69 mm in
the treatment CBCT, for LR, AP, and CC directiomsspectively. The range of

respiratory period was 3.94 + 0.65 and 4.18 + @&&onds during the 4DCT simulation
and the CBCT scans, respectively. Some patientsahamhsiderable disparity in motion

characteristics between the simulation and treatme&ne absolute difference in the
motion magnitude ranged from 0.03-8.60 mm, 0.01-68n, and 0.15-9.25 mm across
LR, AP, and CC directions, respectively. Correspoglg, the absolute mean difference
was 0.93 £ 1.33 mm, 0.98 = 1.12 mm and 3.37 + Znb% respectively. It was observed
that 4/20 patients had absolute motion differemcéhe CC direction of at least >5 mm
for all markers embedded. 8/20 (40%) patients hadnean motion smaller during the
CBCT scans than the 4DCT simulation, while 3/20%) %atients had the mean motion
greater by at least 2 mm or larger. Change in bregtpattern from during the 4DCT

simulation to the CBCT scans ranged from -1.992®2 seconds, with an average of -

0.16 £ 0.75 seconds.

Table.7-3. The comprehensive list of peak-to-peakldude, across the three dimensions, and the
breathing period observed during the 4DCT simutatind the CBCT scans. The two cases with the most
significant inter-marker motion variations are urited.

Mean amplitude (mm i SD)

Breat_hing
Patie | Moda Period
nt lity Marker 1 Marker 2 Marker 3 (Seci SD)
LR AP CcC LR AP CcC LR AP CcC
MIP 5.38 8.96 27.5 4.41 9.94 27.% 2.77 8.07 2b 5.145]0
1 OBI 3.06 10.31 | 32.38 | 3.08 10.32 | 32.40 | 3.50 9.83 30.11 5.16 (0.41)
(0.52) | (1.54) | (3.25) | (0.59) | (1.58) | (3.18) | (0.71) | (1.33) | (3.55) | ™" '
MIP 2.85 2.77 10 2.03 3.74 10 1.76 3.4 1( 4.19 (0.89)
2 OBI 2.39 3.89 12.12 2.37 3.86 12.08 2.20 3.75 12.29 3.60 (0.45)
(0.72) | (0.61) | (1.17) | (0.68) | (0.64) | (1.21) | (0.38) | (0.51) | (1.07) | '
MIP 2.75 5.51 12.5 0.98 3.67 12.5 0.9 3.6[7 12|5 ED}
3
2.24 3.52 9.55 1.30 2.54 8.23 1.05 3.11 9.06
OBl | 051) | (0.60) | (1.38) | (059) | (0558) | (1.59) | (0.62) | (0.49) | 125) | 323(058)
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Mean amplitude (mm i SD)

|

Breathing
Patie | Moda Period
nt lity Marker 1 Marker 2 Marker 3 (Seci SD)
LR AP CcC LR AP CcC LR AP CcC
MIP 2.52 6.72 17.5 0.98 5.88 17.5 2.51 5.88 15 3.8%10.
4
OBI 1.11 6.39 16.84 1.8 6.98 16.43 | 3.65 7.10 1356 | oo, (0.36)
(0.38) | (0.83) | (1.44) | (0.38) | (1.13) | (1.25) | (0.74) | (1.51) | (2.06)
MIP 3.53 3.53 25 0.98 3.53 22.5 0.99 2.64 225 4.758J0.
5
1.54 2.37 15.83 | 1.09 2.33 14.82 | 1.06 2.89 15.63
OBl | 021) | (0.a1) | (0.99) | ©037) | ©74) | (1.03) | (0.33) | ©54) | 10y | 373044
MIP 0.98 5.87 17.5 0.98 3.91 17.5 2.94 3.91 17|5 IBB}
6
0.92 6.41 18.62 | 0.95 6.45 19.11 | 3.44 3.07 18.99
OBl | 027) | (0.66) | (1.20) | (028) | (0.62) | (1.26) | (0.68) | (057) | (r.a1) | 438(043)
MIP 2.36 4.72 25 0.98 4.72 22.5 0.9 5.7 2255 3.60}0.1
7
2.92 5.91 18.58 1.11 5.79 18.28
OBl | 031) | (0.43) | 125 | (084) | (0.36) | (0.89) N/A 8.90(0.33)
MIP 1.88 1.88 10 1.88 2.85 10 1.88 6.49 175 3.71§0.1
8
2.54 2.05 11.74 | 4.06 2.73 10.62
OBl | 020y | (0556) | (0.69) | (1.43) | 0.82) | (0.92) NIA 4.16 (0.23)
MIP 5.68 0.98 10 2.84 1.79 20 1.90 4.79 20 4.16 (0.27)
9
5.84 1.15 7.99 1.08 2.09 17.24
OBl | (10s) | (052) | ©0.78) | ©35) | (063) | (1.82) N/A 4.54(0.78)
MIP 8.82 13.25 225 7.07 16.7§ 25 6.1 15.89 25 4.60)0
10
5.97 12.56 | 20.96 | 7.01 16.28 | 23.58
OBl | 030) | (0.76) | (1.26) | (5:63) | (0.76) | (1.74) N/A 4.72(0.32)
MIP 3.84 3.84 20.00 4.73 3.78 17.5p 3.79 3.78 1750 3 @492)
11 OBI 4.05 4.16 20.56 | 3.89 3.72 17.35 | 3.72 3.55 16.82 |, ¢ (0.41)
(0.28) | (0.18) | (0.87) | (0.51) | (0.80) | (1.07) | (0.29) | (0.38) | (1.03) ' :
MIP 1.65 5.42 12.50 2.64 3.53 10.0p 5.30 3.53 1250 9 @A3)
12
1.15 5.43 10.62
OBI ©0.72) | (0.66) | (1.05) N/A N/A 4.24 (0.25)
MIP 3.15 5.16 20.00 8.60 4.30 22.50 6.87 5.15 1750 4 @41)
13
3.42 5.35 17.47
OBI ©0.47) | (070) | (1.48) N/A N/A 3.47 (0.25)
MIP 1.85 4.62 17.5 0.98 5.54 20.00 1.85 5.55 2260 @ae)
14 OBI 1.95 3.70 15.49 | 0.92 3.71 14.88 | 0.86 5.51 1516 | oo (0.32)
(0.37) | (0.52) | (1.24) | (0.39) | (0.80) | (1.16) | (0.32) | (1.68) | (1.23) ' :
MIP 2.67 0.98 15.00 0.98 2.67 12.5p 0.98 2.67 2500 9 @B3)
15
4.16 7.79 23.43 | 2.08 5.41 21.75
OBl | 0a2) | 078) | (1.32) | ©057) | ©34) | (1.41) N/A 6.02 (0.21)




129

Table.7-3. Continued

Mean amplitude (mm i SD) )
Breathing
Patie | Moda Period
nt lity Marker 1 Marker 2 Marker 3 (Seci SD)
LR AP CcC LR AP CcC LR AP CcC
MIP 2.67 6.23 15.00 1.88 9.80 17.50 0.98 8.02 17550 2 @&®3)
16
2.31 8.16 16.07 1.40 7.88 15.18
OBl | ©0a40) | (1.04) | 160) | (045) | (0.95) | (1.66) N/A 3.31(0.41)
MIP 4.28 3.42 15.00 4.28 3.42 15.00 6.26 3.42 1500 0 @DS8)
17
OBI 4.81 5.2 12.77 | 4.70 4.06 14.14 | 5.66 3.23 13.03 | ;9 (0.64)
(1.15) | (0.53) | (1.03) | (0.88) | (0.84) | (0.89) | (1.07) | (0.44) | (1.36) : :
MIP 0.98 2.49 17.50 4.98 3.32 22.50 0.98 2.49 1750 2 @P2)
18 OBI 1.93 2.53 1243 | 3.05 3.59 16.47 | 1.03 1.96 1179 | 5o (0.59)
(0.50) | (0.61) | (1.96) | (0.74) | (0.75) | (3.46) | (0.42) | (0.56) | (1.88) : :
MIP 4.48 4.48 17.50 3.59 4.49 17.50 3.58 5.38 1750 7 @u3)
19
2.91 3.17 11.32 2.25 3.84 10.20
OBl | 034) | (0.60) | (1.05) | (047) | (068) | (1.22) N/A 3.26(0.21)
MIP 171 3.41 15.00 | 4.26 6.81 25.00 | 5.11 8.52 27.50 | 4.50(0.32)
20
OBI 1.92 3.96 14.37 | 4.51 9.19 23.62 | 5.85 1053 | 2492 | , ., (0.39)
(0.48) | (0.61) | (0.94) | (0.44) | (0.58) | (1.31) | (0.53) | (0.74) | (1.62) : ’

Figure 7-7 illustrates inter- and intra-fractionatotion variability, in CC
direction, of four representative patients. As obsd, there are considerable variations in
the majority of patients (Figure 7-7a-c). Not ordythe peak-to-peak amplitude changing
between fractions, the intra-fractional breathiragtgrn also varies significantly (Figure
7-7c, Fraction 1). And, unless the image regisirabietween the 4DCT (MIP) and CBCT
iIs accurate, sometimes, the motion magnitude estent of the margin observed in the
planning MIP CT, for a significant proportion ofethime (Figure 7-7a, Fractions 2-5).
The most extreme case is observed in Figure 7+&ctibn 1, where up to 1 cm (sudden)
shift in the baseline is seen accompanied by areexegularity in the breathing pattern.
For this fraction, >7 mm deviation out of the MIPargin was observed, potentially

compromising the SBRT accuracy significantly.
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Fig. 7-7. Four representative patients illustratimg typical inter- and intra-fractional motion iaions: (a)
Patient #1, (b) Patient #14, (c) Patient #18, a)dPatient #12. Also shown is the “MIP Margin” rraoti
range determined by the planning MIP CT.

The variability in the inter-fractional motion iscely captured by the necessary
gating window needed for each fraction, as illustlan Figure 7-8. For some patients,
the fractional change in the gating window was esignificant (>20% for Patients #3,
#5, #13, #14, #15, and #18), with the largest avi8.5-56.4% range between fractions
(Patient #14). In all, the gating window rangednasesn 16.25-56.5%, for the population.

The marker-to-marker motion variability, within ifent locations in the liver,
was also significant in some cases. Two most sggmf cases are underlined in Table 7-
3 (Patients #9 and #20). As can be seen, the @ifterin the motion magnitude between
the markers is nearly 1 cm, in the CC directioguie 7-9 shows the Patient #20 motion
trajectory between the two markers. It is evidérat,tat all three directions, the motion

magnitude differences are great, with the Markerh@®ing a predominantly larger
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motion. Figure 7-10 illustrates a clear trend ie #bsolute difference in the motion
magnitude between the markers as the distanceasese(R=0.69, linear-fit). This

suggests that marker(s) in closest proximity tottrget should bear more weight when
performing image registration for patient setup,iclihalso suggests that the markers

should be implanted as close as possible to thesdumor.
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Fig. 7-8. The appropriate % gating window deterrdibased on the marker motion trajectory of each
fraction, for each patient.
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Fig. 7-10. Scatter plot showing the absolute imarker motion magnitude difference as a functiothef
marker-to-marker separation.

7.7 Discussion

A. 3D motion tracking

In liver SBRT, the fiducial markers are importaniedo the fact that 1) the tumor
contrast is very low in the CBCT images, and 2) mingtion induced by respiration is
significant. This is why liver motion characterimat studies have been largely performed
with the markers in the past, including with theRRITsystem in Japan. [191, 192, 195,
196, 198, 200, 201] For the RTRT system, usingrisoopic imaging with multiple X-
rays, the precise 3D marker positions can be extlagear real-time with sub-millimeter
accuracy. Another predominant feature is thatdtoke to track/verify such information at
all/most time during treatment. However, of coutbe, cost of employing such a design
is the added imaging dose.

In this study, we have demonstrated that CBCT Xgapjection images can also
be used to track and verify the 3D motion trajeéemras has some investigators in the
past. [199, 202, 203] However, to the best of mwovidedge, the use of the projections to

study the motion characteristics of the liver haw¢ been rigorously studied yet. The
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main advantages of utilizing the projection imageshat, first, it does not require

additional hardware (if you have a CBCT system ouaryinear accelerator), and second,
that the same projection data can be used to reachs 3D image volume for image-

guided radiotherapy (IGRT), thus avoiding extragmg dose to patients. Although the
projection images do not provide real-time motinformation during treatment, like as

in the RTRT or the CyberKnif# systems (AccuRay, Sunnyvale, CA), the motion data
does provide, prior to the treatment, is still vealuable in understanding and guiding
the patient set ufl99, 202, 203], for 4DCBCT reconstructions [194hd potentially

useful in various adaptive radiotherapy (ART) sgits.

Fig. 7-11. Typical projection images taken with {agpelvismode, and the (Bpw-dose thoraxnode. The
white dotted circles indicate where the markersukhbe located.

In this study, a sizable portion of the markersldawt be used for analysis (in
9/20 patients, only 1-2 markers were tracked, sd#el7-1), even though all patients had
3 markers implanted each. There were three masonsafor this. First, in thkalf-fan
scanning geometry, due to the off-centering ofdétctor panel, there occasionally exist

too large of scan angles with the markers beingidetof the field of view (FOV).
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Second, some markers were too cranially or caudiatigted from the isocenter and thus
did not appear in the projection images. And, finadince a large portion of the patients
were imaged with théow-dose thoraxmode (15/20 patients), some projection images
were just too noisy to allow visualization of thankers (see Figure 7-11).

On validating the accuracy of our modified mark®cking algorithm, we have
limited our investigation to cosine type breathpegtern at each direction (LR, AP and
CC). It was found that the relative error to truetion for all directions were << 1.0%
when amplitude was fixed and << 4% when amplituds vandomly varying. Moreover,
the result showed that relative motion error on di@ction (motion across projection
orientation) was significantly less than error athoLR and AP direction (motion along
projection orientation). This has also been theepladion of earlier work as well [199].

It is noted by the readers that our marker trackafgprithm is based on prior
knowledge of 3D marker position gathered from 2Drkma positions at all angles.
Therefore, it is obvious that more consistent agliar the breathing pattern is; tracking
process would more be accurate. Evaluating unogytaof tracking algorithm with
irregular breathing period or abrupt motion (e.gugh) was beyond scope of our work.
However, it is anticipated from our example stuldgttas motion irregularity gets severe,
uncertainty of tracking would also increase duethte fact that accuracy & priori
calculated 3D axial line (see section 7.4) is tmee@xtent, dependent upon regularity of
breathing. Nonetheless, it is entirely necessamviduate and improve our algorithm in
such severe conditions comprehensively, which isgto be our next step.

In this study, we have limited our investigatiorondiducial markers with single

sized cylindrical shaped £%8-mm gold). The main reason for this is that enpiatient
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that we analyzed had fixed shaped markers implamte¢dem. However, we anticipate
that our marker extraction as well as modifiedknag algorithm would work as accurate
as for different shaped or sized markers, as lafgature of marker is clearly visible and
extractable from CBCT projections.

B. Liver motion

Our results indicate that, in general, the livettiomis most dominant in the CC
direction, followed by the AP direction, and the Idection. In one exceptional case
(Patient #9, Marker #1), we found that the LR mtmagnitude was significantly larger
than the AP motion magnitude (5.84 vs 1.18 mmpddition, the motion in the AP and
CC directions were highly correlated, where, whieea markers moved cranially, they
moved posteriorly, and vice versa. The LR motioowéver, had a more variable
relationship with the AP/CC motions, and appeastiom with respect to the location.
Thus, since there are some correlations and sona®maness to the liver motion, this
suggests that a careful attention is needed inactexizing the tumor motion during the
planning and the treatment processes.

There were significant motion variability observiedtween the 4DCT and the
CBCT scans. The absolute difference in the moti@gmitude ranged from 0.03-8.60
mm, 0.01-6.81 mm, and 0.15-9.25 mm across LR, AB,GC directions, respectively. It
was observed that 4/20 patients had absolute mdtféarence in the CC direction of at
least >5 mm for all markers implanted. Changesr@athing period ranged from -1.99 to
+1.02 seconds, with an average of -0.16 + 0.75r&kcoThis suggests that, for some
patients, the planning 4DCT images do not accwratepresent the patient motion

characteristics throughout the treatments. In aadit recent study by Vergalasostaal
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[204] points out that a free-breathing 3DCBCT isyvanited in capturing the full range
of motion, and that the appearance of the motiomrddl ITV is heavily dependent on the
breathing pattern of the day. With this, and sikegure 7-7 has shown the range of
possible inter- and intra-fractional variabilityathcan be observed in the liver motion,
this strongly suggests that free-breathing 3ADCB€Ans may not be accurate enough in
guiding the liver SBRT treatments, even with therkees implanted. Perhaps the best
solution is to take 4DCBCT scans for all fractiofif4]

We also found that the motion pattern and magnitleleends strongly on the
location within the liver. As Figure 10 has showhe motion magnitude tends to be
different as the distance between the markers asex This finding is consistent with
the previous works [178, 180] where the accuracythaf tumor position prediction
decreases with the increasing distance betweernntplanted markers and the tumor.
From 20 patients of analysis, we found that diffiees of motion was significant, when
distance of separation exceeded > 7 cm. Thushiglisly recommended that markers be
implanted as closely to the gross tumor as poss¢iblecm in our study), while avoiding

implanting directly in the tumor to avoid possikleread of tumor cells.

7.8 Conclusion

This study analyzed the liver motion charactersstod 20 patients undergoing
SBRT. A large variation in motion was observedeinand intra-fractionally, and that as
the distance between the markers increased, tlieratite in the absolute range of
motion also increased. This suggests that markar(slpsest proximity to the target be

used.
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Chapter 8 Conclusions and future work

This dissertation presents on optimizing the useCBCT system used under
IGRT settings which includes 1) improving the peniance of CBCT imagers by
correcting the defective pixels inherent to itsgfrent usage and detector fabrication
process, 2) improving the quality of on-board CBi@iBges with respect to patient dose
and respiratory motion, 3) enhancing the speed Inichv corresponding volumetric
imaging modalities can be reconstructed and 4) gsig a way to understand the
variation of inter-and intra-fractional tumor mati@uring the image guided treatment
using CBCT system. These methodologies are antedp#o be useful to perform
sophisticated radiation therapy techniques in theré which include adaptive radiation
therapy, on-line re-planning, real-time dose ediioma and real-time patient monitoring.

The contribution of each chapter is addressed Hdew® In chapter 2, we
presented a method of identifying defective pixelthe X-ray imagers, particularly used
for CBCT imaging based on wavelet analysis. Theehatvtransform was applied to the
gain and offset X-ray images and the sub-imageesgmted by scaling coefficients was
truncation to suppress or remove the large-scaeakivariations. And then, inverse
wavelet transform was applied. The reconstructeabed filtered low-spatial-frequency
components, and singularities, such as spikes @&ubrdinuities which represent the
location of defective pixels were detected. Detecpixels were corrected with simple
median filter. Our approach demonstrates an apprdacperiodically monitor the
performance of X-ray imagers and compensate theadagon of its performance due to

frequent usage.

138
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In chapter 3, we demonstrated an ultra-fast recoctsdn technique for digital
tomosynthesis (DTS) imaging using general-purpasaplgcs processing unit (GPGPU)
programming interface. All the computation taskattheed to reconstruct DTS were
parallelized as thread in GPU to gain massive spped his resulted speed improvement
of up to 87 times compared with the CPU-based implgation with visually identical
images and small pixel-value discrepancies and @iffBrences. With this achievement,
we have shown that time allocation form DTS imageonstruction is virtually
eliminated that clinical implementation of this apgch has become quite appealing. In
addition, with the speed achievement, further imar@eessing and real-time applications
that was prohibited prior due to time restrictiaas be now tempered with.

In chapter 4, we presented a novel gradient projecalgorithm, based on
gradient projection Barzilai-Borwein (GP-BB), whi¢tandles the total variation (TV)-
norm regularization-based least square problemofwrdose CBCT reconstruction in a
highly efficient manner, with speed acceptable rfoutine use in the clinic. In our
implementation, CBCT was reconstructed by miningzan energy function consisting
of a data fidelity term and a TV-norm regularizatierm. Both terms are simultaneously
minimized by calculating the gradient projectiontloé energy function with the step size
determined using an approximated Hessian calculatib each iteration, based on
Barzilai-Borwein formulation. To speed up the pmsethe entire algorithm was
designed to run with a single GPU card. With tlmgplementation, a clinically viable
patient image could be obtained ~34-78 sec whileukaneously cutting the dose by
approximately 67%. This demonstrated conventionathe consuming, iterative, low-

dose CBCT reconstruction potentially useful in adioe IGRT setting.
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In chapter 5, we demonstrated the method to gemdmagath induced motion
signal of liver for reconstructing 4D DTS as wedl @BCT images based on both phase
wise and amplitude wise sorting of projection ddiae reconstruction process was done
in four steps which were 1) selecting region oérast (ROI) of fiducial marker position
from projection data, 2) generating of breath iretuenarker motion signal based on its
position and predict motion signal through sigrptdfiling” on the missing margin of
marker due to limited field of view (FOV) in “hafan” geometry, 3) process both
amplitude wise and phase wise sorting with marketion signal and 4) reconstruct both
4D CBCT and DTS images. With such implementatior, demonstrated that motion
tracking as well as 4D reconstruction of CBCT antSDof liver through tracking of
metal markers are possible and can be directedrdiswailizing the technique for on-line
image-guided adaptive radiotherapy.

In chapter 6, we proposed a novel 4ADCBCT reconstmu@lgorithm framework
called Motion-Map Constrained Image ReconstructigMCIR), that allows
reconstruction of high quality and high phase netsowh 4DCBCT images with no more
than the imaging dose as well as projections usedstandard Free Breathing 3DCBCT
(FB-3DCBCT) scan. In MCIR algorithm, the unknown@BCT volume at each phase
was mathematically modeled as combination of FB-BOT and phase-specific update
vector which has an associated motion-map mathe. motion-map matrix, which is the
key innovation of MCIR algorithm, was defined ag tmatrix that distinguishes voxels
that are moving from stationary ones. This 4DCBCddsi was then reconstructed with
compressed sensing (CS) reconstruction framewodh ghat the voxels with high

motion would be aggressively updated by the phase-worted projections and the
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voxels with less motion would be minimally updatex preserve the FB-3DCBCT.

Examination of the MCIR algorithm showed that higiase resolution 4DCBCT with

sets up to 20 phases using a typical patient's BBBCT scan could be reconstructed
without compromising the image quality. Moreoveottbin numerical as well as in real
patients’ data sets, the image quality of the M@IBorithm outperformed the other
algorithms. With this achievement, we have demanstk the potential for providing

high-quality 4ADCBCT information during on-line imaguided radiation therapy (IGRT)

and adaptive radiation therapy (ART) environmentheut sacrificing imaging dose.

In chapter 7, we have investigated motion chareties of liver based on fiducial
markers tracked with the X-ray projections of thBGT scans, taken immediately prior
to the treatments. The CBCT projections data fahdaaction, for each patient, were
analyzed and the 2D positions of the markers wetra@ed using an in-house algorithm.
From the 2D extracted positions, a 3D motion tragcof the markers was constructed,
from each CBCT scans, resulting in left-right (LRhterior-posterior (AP), and cranio-
caudal (CC) location information of the markers. YWen analyzed the inter- and intra-
fraction liver motion variability, within differenbcations in the organ, and as a function
of the breathing cycle. A large variation in motioras observed, inter- and intra-
fractionally, and that as the distance betweemithekers increased, the difference in the
absolute range of motion also increased. Our iigegsbn demonstrated that that
marker(s) in closest proximity to the target beduséhile patients are treated during
CBCT guided Stereotactic body radiation therapyR$Bof liver cancer.

Future work includes larger clinical trials to avatle the clinical utilities of

various methods that we have proposed in this degm. This includes investigations
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of our various volumetric reconstruction methodadsg(low-dose CBCT, DTS and 4D
CBCT) on 1) quantifying the improvement in patigmisitioning and tumor target
localization accuracy, 2) usefulness in adaptivBotherapy (ART) including on-line re-
planning.

Determining the optimal CBCT scanning protocolstfe use of low-dose CBCT,
DTS and 4D CBCT are also promising direction to itreestigated. Comprehensive
analysis on what minimal number of projections, m&sd scanning geometry can work
with such reconstruction modalities and still proelureasonable quality images for
clinical use needs to be done in the future studies

Finally, we anticipate that our method of analyzthg motion trajectory of liver
can be a promising tool to enable further soprastid image guidance techniques such as
real-time tumor tracking. To make such techniquealizable, optimizing the
computational speed and more rigorously validainguracy as well as uncertainty of
3D position estimation algorithm is another promgsidirection that needs to be

investigated.
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