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ABSTRACT OF THE DISSERTATION

Ihara zeta functions of irregular graphs

by

Matthew D. Horton

Doctor of Philosophy in Mathematics

University of California San Diego, 2006

Professor Audrey Terras, Chair

We explore three seemingly disparate but related avenues of inquiry: expanding

what is known about the properties of the poles of the Ihara zeta function, deter-

mining what information about a graph is recoverable from its Ihara zeta function,

and strengthening the ties between the Ihara zeta functions of graphs which are

related to each other through common operations on graphs.

Using the singular value decomposition of directed edge matrices, we give an

alternate proof of the bounds on the poles of Ihara zeta functions. We then give

an explicit formula for the inverse of directed edge matrices and use the inverse to

demonstrate that the sum of the poles of an Ihara zeta function is zero.

Next we discuss the information about a graph recoverable from its Ihara zeta

function and prove that the girth of a graph as well as the number of cycles whose

length is the girth can be read directly off of the reciprocal of the Ihara zeta

function. We demonstrate that a graph’s chromatic polynomial cannot in general

be recovered from its Ihara zeta function and describe a method for constructing

families of graphs which have the same chromatic polynomial but different Ihara

zeta functions. We also show that a graph’s Ihara zeta function cannot in general

be recovered from its chromatic polynomial.

Then we make the deletion of an edge from a graph less jarring (from the

xi



perspective of Ihara zeta functions) by viewing it as the limit as k goes to infinity

of the operation of replacing the edge in the original graph we wish to delete with

a walk of length k. We are able to prove that the limit of the Ihara zeta functions

of the resulting graphs is in fact the Ihara zeta function of the original with the

edge deleted.

We also improve upon the bounds on the poles of the Ihara zeta function by

considering digraphs whose adjacency matrices are directed edge matrices.

xii
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Introduction

1.1 Preliminaries

We pause here before defining the Ihara zeta function to fix some basic (and

thus, crucial) graph theory terminology:

A graph G is an ordered pair (V,E) where V is a set and E is a set of unordered

pairs whose elements are taken from V . An element of the set V is called a vertex

and is represented by a dot. An element of the set E is called an edge and is

represented by a line (not necessarily straight) connecting the two vertices of the

pair. An edge in which connects a vertex to itself is called a loop. Two edges

are called parallel if they are drawn as distinct edges but actually correspond to

the same unordered pair. A graph is simple if it contains no loops and no parallel

edges. A simple graph in which there is an edge between every pair of its n vertices

is called the complete graph on n vertices and denoted Kn. A bipartite graph is a

graph for which there is a partition {V1, V2} of V such that for any u1, v1 in V1 and

any u2, v2 in V2, {u1, v1}, {u2, v2} 6∈ E. Where necessary to avoid confusion, we

will use V (G), E(G) to refer to the vertices and edges respectively of G. We will

use |E|, |V | to represent the number of edges and vertices respectively. A finite

graph is a graph in which |E|, |V | < ∞.

1



2

An edge e is incident to a vertex v if v is one of the elements of the pair e. The

degree of a vertex v, written deg(v), is the number of edges (loops being counted

twice) incident to v. A graph in which every vertex has the same degree is called

regular . An n-regular graph is a regular graph whose vertices all have degree n.

An irregular graph, rather unsurprisingly, is a graph which is not regular. A bi-

regular bipartite graph is a graph G for which there is a partition {V1, V2} of V (G)

and integers d1, d2 such that for any v1, v2 in V1, V2 respectively, {v1, v2} 6∈ E(G),

deg(v1) = d1, deg(v2) = d2.

A deletion of an edge e from a graph G, denoted G− e, is the graph such that

V (G−e) = V (G) and E(G−e) = E(G)−{e}. A contraction of an edge e = {u, v}
in a graph G, denoted G/e, is the graph formed by treating the vertices u and v

as being the same vertex in the graph G− e.

A walk is an alternating sequence of vertices and edges starting and ending with

a vertex such if vertex v is appears next to edge e in the sequence then e is incident

to v. If W1 = {v0, e1, v1, . . . , en, vn} and W2 = {vn, en+1, vn+1, . . . , en+m, vn+m}
are walks, then we define the product W1W2 = {v0, e1, v1, e2, v2, . . . , en+m, vn+m}.
Also, we define W−1

1 = {vn, en, vn−1, . . . , v1, e1, v0}. It is common to leave out the

vertices in describing a walk in a graph without loops since the intended vertices

can be inferred from the listed edges. The length of a walk is the number of

edges it contains. The distance d(u, v) between two vertices u, v is the length of

a shortest walk from u to v if such a walk exists (otherwise, d(u, v) = ∞). A

graph is connected if there is a walk between any two vertices of the graph. A

walk {v0, e1, v1, e2, v2, . . . , en, vn} is called closed if v0 = vn. A cycle is a closed

walk {v0, e1, v1, e2, v2, . . . , en, vn} such that {v1, v2, . . . , vn} are distinct. The girth

of a graph is the length of the shortest cycle contained within the graph. A tree

is a connected graph which contains no cycles. A spanning tree of a (connected)

graph G is a tree S such that V (S) = V (G) and E(S) ⊆ E(G). A cycle graph is

a graph whose vertices and edges are contained within a single cycle.

A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆
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E(G). A connected component of a (not necessarily connected) graph G is a

connected subgraph of G which is not contained in any other connected subgraph

of G. An edge is a bridge in G if G with the edge removed has more connected

components than G. Another characterization of a bridge is an edge e in G such

that any walk from one vertex of e to the other contains e itself.

If G is a graph with vertex set V = v1, v2, . . . , v|V |, then the matrix A = (aij)

defined by

aij =

{
the number of edges of the form vi, vj if i 6= j

twice the number of loops at vi if i = j.

is an adjacency matrix of G.

A directed graph (or digraph for short) is a graph as defined above except that

the edge set Ed is a set of ordered pairs called directed edges . The first vertex in

an ordered pair e in Ed is the start vertex and will be denoted s(e). The second

vertex is the terminal vertex and will be denoted t(e). The indegree id(v) of a

vertex v is the number of edges whose terminal vertex is v. The outdegree od(v)

of a vertex v is the number of edges whose start vertex is v. A directed edge

is represented by an arrow drawn from the start vertex to the terminal vertex.

A directed edge whose start vertex is the same as its terminal vertex is called a

(directed) loop. Two directed edges are called parallel if they are drawn as distinct

edges but actually correspond to the same ordered pair. A directed graph is simple

if it contains no loops and no parallel edges. If e = (u, v) is a directed edge, then

we define e−1 = (v, u). A bidirected edge of a directed graph G is an edge e ∈ Ed

such that e−1 ∈ Ed.

A (directed) walk in a directed graph is as defined above except that we insist

that ei feeds into ei+1 (and for a walk to be closed, we also require en to feed

into e0). It is common to leave the vertices out when describing a directed walk

since the vertices are implied by the directed edges. Also, for a directed walk

W0 = {e1, e2, . . . , en}, we define W−1
0 = {e−1

n , e−1
n−1, . . . , e

−1
2 , e−1

1 }.
If G is a directed graph with vertex set V = v1, v2, . . . , v|V |, then the matrix
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A = (aij) defined by

aij = the number of edges of the form (vi, vj)

is an adjacency matrix of G.

Occasionally, it is useful to think of an undirected graph as a directed graph

by replacing each of its undirected edges with a bidirected edge. (We will use E

to denote the set of undirected edges and Ed to denote the set of directed edges.)

Note that if we think of an undirected graph in this way, then our two definitions

of an adjacency matrix are equivalent. We may also orient an undirected edge

by forcing an order on its unordered pair (or we can orient a bidirected edge by

throwing the unwanted ordering of the ordered pairs out of the directed edge set).

Conversely, we may occasionally want to make a directed graph undirected by

making its ordered pairs unordered (and throwing out duplicates due to bidirected

edges). When we do this, we call the resulting undirected graph the underlying

graph of the original directed graph.

We say that two graphs G, H are isomorphic if there exists a one-to-one function

f from V (G) onto V (H) such that g defined by g((x, y)) = (f(x), f(y)) for all

(x, y) ∈ Ed(G) is a one-to-one function from Ed(G) onto Ed(H). Such a function

f is a graph isomorphism.

1.2 Ihara zeta function of a graph

We begin by defining what we mean by a prime [C] of G. Let C be a closed

walk {v0, e1, v1, e2, v2, . . . , en, vn = v0} in G such that C2 (that is, the product

CC) contains no backtracks and C is not Cj
0 for any closed walk C0 and inte-

ger j ≥ 2. (A backtrack is a subsequence ei, vi, ei+1, vi+1 contained in the walk

v0, e1, v1, e2, v2, . . . , en, vn such that ei = ei+1.) Then the prime [C] is the equiva-

lence class {{vn, e1, v1, e2, v2, . . . , en, vn}, {v1, e2, v2, e3, v3, . . . , en, vn, e1, v1}, {v2, e3,

v3, . . . , en, vn, e1, v1, e2, v2}, . . . , {vn−1, en, vn, e1, v1, . . . , en−2, vn−2, en−1, vn−1}}.
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We will now give a preliminary definition of the Ihara zeta function:

Definition 1.1. The Ihara zeta function of a graph G is defined (for sufficiently

small values of the complex number u) to be

ζG(u) =
∏

[C]

(1− uν(C))−1

where the product is over the primes [C] of G and ν(C) is the length of C.

Note that the product in the definition of the Ihara zeta function is a finite

one if and only if the graph G is a cycle graph. (Note also that, for example,

there are two equivalence classes of primes in a cycle graph, one for each direction

the cycle may be traversed.) Since the product is infinite except for the set of

cycle graphs, we must of course be concerned about convergence issues, which is

the reason for the requirement of a sufficiently small u in the definition. However,

since “sufficiently small” for very large graphs may be very small indeed, we extend

our definition of the Ihara zeta function of a graph to its analytic continuation with

the following theorem (whose author is debatable due to the Ihara zeta function’s

origins in p-adic groups):

Theorem 1.2. (Bass [1]) Let G be an undirected graph with vertex set V =

{v1, v2, . . . , v|V |} and adjacency matrix A = (aij). Let Q be the diagonal matrix

whose ith diagonal entry is one less than the degree of the vertex vi. Let r be the

rank of the fundamental group of G. Then

ζG(u)−1 = (1− u2)r−1det(I − Au + Qu2).

The fundamental group π1(G, v) of a connected graph G is the free group con-

sisting of all closed walks starting and ending at the vertex v together with the

operation which concatenates walks. The rank r of the fundamental group π1(G, v)

of a connected graph G is the number of elements in a minimal generating set of

p1(G, v) which is also the number of edges left out of a spanning tree of G. Thus,
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r = |E| − |V | + 1. The theorem still holds for graphs which are not connected if

we simply take this as our definition of r.

Note that, by Theorem 1.2, the Ihara zeta function of a graph is the reciprocal

of a degree 2|E| polynomial with integer coefficients. Since the reciprocal of this

polynomial agrees with our original definition of the Ihara zeta function within

a small circle about zero in the complex plane and is analytic everywhere but at

the isolated zeros of the polynomial, we take this analytic continuation as our new

definition of the Ihara zeta function of a graph.

If the graph G is (q + 1)-regular, then we have the simplification ζG(u)−1 =

(1− u2)r−1det(I −Au + qIu2) = (1− u2)r−1
∏

λ∈spec(A)

(1− λu + qu2) where spec(A)

is the spectrum of A. A great deal of the difficulty in working with the Ihara

zeta functions of irregular graphs is due to the lack of this simplification. Also,

extending results from the regular to the irregular case is complicated by the many

ways of characterizing the value q in the regular case which are not equivalent in

the irregular case.

Now we will present an alternate formulation of the Ihara zeta function which

requires us to define a directed edge matrix of a graph G:

Definition 1.3. Arbitrarily orient the edges e1, e2, . . . , e|E| of a graph G and let

e|E|+i = e−1
i for all i, 1 ≤ i ≤ |E|. The 2|E| × 2|E| matrix M given by

(M)ij =

{
1 if t(ei) = s(ej) and s(ei) 6= t(ej),

0 otherwise.

is defined to be a directed edge matrix of G.

A directed edge matrix M of a graph G is related to the Ihara zeta function of

G by the following theorem:

Theorem 1.4. (Bass [1]) If M is a directed edge matrix of the graph G, then

ζG(u)−1 = det(I −Mu).
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Which formulation of the Ihara zeta function to use depends on the context.

The Theorem 1.2 formulation offers the benefits of symmetric matrices (which allow

for the simplification described above for the regular case) while the Theorem 1.4

formulation allows us to identify the poles of the Ihara zeta function with the

reciprocals of the eigenvalues of the matrix M .

Remark 1.5. Note M has the structure M =

(
A B

C D

)
where A,B, C are |E|×|E|

matrices with the following properties:

(i) B = BT , and C = CT ,

(ii) D = AT ,

(iii) the diagonal entries of B,C are zeros,

(iv) the diagonal entries of A,D are zeros if the graph contains no loops,

(v) MT = JMJ where J =

(
0 I|E|

I|E| 0

)
,

(vi) A + B + C + AT is an adjacency matrix of the line graph of G. (The line

graph of G is the graph whose vertices are the edges of G and whose edges

are such that two vertices are adjacent if and only if they are incident to each

other as edges in G.)

Properties (i)-(iii) are contained in Lemma 4 of Stark and Terras [12]. Property

(v) is a consequence of (i) and (ii). Properties (iv) and (vi) follow easily from the

definition of M . The special properties of directed edge matrices are explored

further in Chapter 2.

Armed with an expanded and reformulated definition of the Ihara zeta function,

we will be prepared to tackle some results after a short pause (which supplants

many short pauses later on) to discuss our simplifying assumptions.
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1.3 Simplifying assumptions

In all that follows, except where noted, we will assume that our graphs are finite,

simple, connected, and without vertices of degree one. Since these assumptions

may seem a bit presumptuous, we will briefly defend each.

The Ihara zeta function of a graph G is the same as the Ihara zeta function of

G with a tree attached by a single edge, so it is reasonable to expect our graphs

to come pre-pruned by insisting that G contains no vertices of degree one. In

most cases, results for pre-pruned graphs will be easily extended to their leafier

counterparts.

Since the Ihara zeta function of a disconnected graph is just the product of the

Ihara zeta functions of each of its components, we also lose little that we cannot

reconstitute later by insisting on our graphs being connected.

We can create a simple graph H from any non-simple graph G by dividing each

edge {u, v} in G into three edges {u,w}, {w, x}, {x, v} where w, x are new vertices

of degree two. Then it can be shown that the Ihara zeta function of H will be

ζG(u3) where ζG(u) is the Ihara zeta function of G. So, any intelligent statement

we can make about the Ihara zeta function of a simple graph can be transformed

into at least a semi-intelligent statement about the Ihara zeta function of a non-

simple graph. Figure 1.1 demonstrates the process of overcoming our simplifying

assumptions given a graph which is not simple, not connected, and has vertices of

degree one.

We justify our assumption that our graphs are finite only by saying that such

an assumption is fairly standard and that the subject is meaty enough without

dropping finiteness.
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Table 1.1 Overcoming our simplifying assumptions given a graph which fails all
but finiteness

Graph Description

G1

Original graph which

does not satisfy our

simplifying assumptions

G2

Vertices of degree

one removed;

ζG2(u) = ζG1(u)

G3

Two vertices added

to each edge;

ζG3(u) = ζG2(u
3)

G4 G5

Connected components

considered as

separate graphs;

ζG4(u)ζG5(u) = ζG3(u)



2

Poles of the Ihara zeta function

Much of the interest in the Ihara zeta function is its similarity in feel to the

Riemann zeta function,

ζ(s) =
∑
n≥1

n−s =
∏

p prime

(1− p−s)−1

where primes here are integers greater than one which are divisible only by them-

selves and one. However, whereas the zeros of the Riemann zeta function have

been of primary interest, it is the poles of the Ihara zeta function (which are the

just the zeros of the reciprocal of the Ihara zeta function, assuming of course that

we patch up singularities in a reasonable way) which call out for attention.

In this chapter, we investigate some of the properties of the poles of the Ihara

zeta function by taking advantage of the special properties of the singular value

decomposition and the inverse of the directed edge matrix.

2.1 Bounds on the poles

We will use the singular value decomposition of the directed edge matrix of a

graph to find bounds on the poles of the Ihara zeta function of the graph where

the singular value decomposition of a square matrix with real entries is defined as

follows:

10
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Definition 2.1. The singular values of a real n × n matrix A are σ1, σ2, . . . , σn

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 and UT AV = diag(σ1, σ2, . . . , σn) for some or-

thogonal U, V (which exist by the Singular Value Decomposition Theorem – see

Golub and Van Loan [3]). U · diag(σ1, σ2, . . . , σn) · V T then is a singular value

decomposition (SVD) of A.

Non-square matrices also have singular value decompositions, but the definition

above suffices for our purposes.

The singular values of the directed edge matrix of a graph turn out to be

surprisingly nice. Not only are they integers, but they are integers which carry

familiar information about the graph itself as revealed by the following theorem:

Theorem 2.2. Suppose G is a connected graph with no loops, multi-edges, or

vertices of degree one. Then the singular values of a directed edge matrix M of

G are

{q1, q2, ..., qn, 1, ..., 1︸ ︷︷ ︸
2m−n times

}

where q1 + 1, q2 + 1, ..., qn + 1 are the degrees of the n vertices of G (counting

multiplicities) and m is the number of edges in G.

Proof. Let G be a connected graph on n vertices with no loops, multi-edges, or

vertices of degree one. Let {e1, e2, . . . , e2m} where m is the number of edges in G

be the set of directed edges such the each ei (without its direction) is an edge of

G. Choose the indexing of the ei such that edges ending at the same vertex are

listed together. That is, if t(ei) = t(ej) for some i < j then t(ek) = t(ei) for all k,

i < k < j. Let M̃ be the 2m× 2m matrix defined by

(M̃)ij =

{
1 if t(ei) = s(ej) and s(ei) 6= t(ej),

0 otherwise.

Then for each i and j, (M̃M̃T )ij is a count of the number of edges in {e1, e2, . . . , e2m}−



12

{e−1
i , e−1

j } whose start vertex is the end vertex of both ei and ej. So,

(
M̃M̃T

)
ij

=





0 if t(ei) 6= t(ej),

deg(t(ei))− 2 if t(ei) = t(ej) and i 6= j,

deg(t(ei))− 1 if i = j.

Now choose {α1, α2, . . . , αn} such that 1 ≤ α1 < α2 < · · · < αn ≤ 2m and

{tα1 , tα2 , . . . , tαn} is the vertex set of G. Define qi = deg(vαi
) − 1 and note

M̃M̃T = diag(A1, A2, . . . , An) where Ai is a (qi + 1) × (qi + 1) matrix with qi on

the diagonal and qi − 1 everywhere else. For each i, define (qi + 1) × (qi + 1)

matrixes Bi =




1 1 · · · 1

1 −qi
. . .

...
...

. . . . . . 1

1 · · · 1 −qi




, which is nonsingular (by row reduction),

and Ci = diag(q2
i , 1, ..., 1). Then

AiBi =




qi qi − 1 qi − 1 · · · qi − 1

qi − 1 qi qi − 1 · · · qi − 1

qi − 1 qi − 1 qi
. . .

...
...

...
. . . . . . qi − 1

qi − 1 qi − 1 · · · qi − 1 qi







1 1 1 · · · 1

1 −qi 1 · · · 1

1 1 −qi
. . .

...
...

...
. . . . . . 1

1 1 · · · 1 −qi




=




q2
i 1 1 · · · 1

q2
i −qi 1 · · · 1

q2
i 1 −qi

. . .
...

...
...

. . . . . . 1

q2
i 1 · · · 1 −qi




= BiCi.

Now define X = diag(B1, B2, . . . , Bn). Note X is nonsingular and (M̃M̃T )X

= diag(A1, A2, . . . , An) · diag(B1, B2, . . . , Bn) = diag(B1, B2, . . . , Bn) · diag(C1,

C2, . . . , Cn) = X · diag(C1, C2, . . . , Cn). Thus, the columns of X are eigenvectors

of M̃M̃T with corresponding eigenvalues appearing on the diagonal of the matrix
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diag(C1, C2, . . . , Cn). Let U · diag(σ1, σ2, . . . , σ2m) · V T be an SVD of M̃ . Then

(M̃M̃T )U = U · diag(σ1, σ2, . . . , σ2m)2 which implies the eigenvectors of M̃M̃T are

the columns of U and the eigenvalues of M̃M̃T are the squares of the singular

values of M̃ . So, the singular values of M̃ are {q1, q2, . . . , qn, 1, ..., 1︸ ︷︷ ︸
2m−n times

}. Note

that for any directed edge matrix M of G, M̃ = P T MP for some permutation

matrix P . Therefore, the singular values for any directed edge matrix of G are

also {q1, q2, . . . , qn, 1, ..., 1︸ ︷︷ ︸
2m−n times

} since M = (PU) · diag(σ1, σ2, . . . , σ2m) · (PV )T is an

SVD of M .

This theorem, besides being an interesting curiosity in and of itself, allows us to

bound the poles of the Ihara zeta function of a graph as illustrated by the following

corollary:

Corollary 2.3. Suppose G is a connected graph with no loops, multi-edges, or

vertices of degree one. Then the poles of the Ihara zeta function of G are contained

within {u : 1
q
≤ |u| ≤ 1} where q + 1 is the largest vertex degree. (See Theorem 1.3

in Kotani and Sunada [6] for an alternate proof of this result.)

Proof. Let M be a directed edge matrix of the graph G. By the theorem, the

smallest singular value of M , σmin(M), is 1 and the largest singular value of M ,

σmax(M), is q where q + 1 is the largest vertex degree. Since

σmin(M) ≤ min{|λ| : λ ∈ λ(M)} ≤ max{|λ| : λ ∈ λ(M)} ≤ σmax(M),

where λ(M) is the spectrum of M (see Golub and Van Loan [3]), the poles of the

Ihara zeta function of G (which are the reciprocals of the eigenvalues of M) are

contained within {u : 1
q
≤ |u| ≤ 1}.

2.2 Relations among the poles

The poles of the Ihara zeta function have many other interesting and infor-

mative properties due to the structure forced upon them by their corresponding
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graphs as illustrated by the following theorem:

Theorem 2.4. (Hashimoto [4]) Let G be a graph and let U be the set of poles

of ζG(u) including multiplicities. Define Nk to be the number of backtrackless,

tailless closed walks in G of length k. Then
∏

u∈U

u−1 = (−1)|V |
∏

v∈V

(deg(v)− 1) and
∏

u∈U

u−k = Nk for any positive integer k.

In particular, this theorem implies that in simple graphs (which by definition

have no closed walks of length less than three), both the sum of the reciprocals of

the poles of the Ihara zeta function and the sum of the squares of the reciprocals of

the poles are zero. Oddly enough, it turns out also to be true that the sum of the

poles (without taking reciprocals) is zero by a corollary to the following theorem:

Theorem 2.5. Suppose G is a graph (which satisfies our simplifying assumptions)

and let M be the directed edge matrix of G. Define J =

(
0 Im

Im 0

)
and Q =

diag(M [1 · · · 1]T ). Then

M−1 = J(Q−1MJ + Q−1 − I).

Proof. Note that

(
MMT

)
ij

=





deg(ti)− 1 if ti = tj and i = j,

deg(ti)− 2 if ti = tj and i 6= j,

0 if ti 6= tj.

since the ij entry of MMT is just the number of edges into which both ei and ej

feed. So,

(
MMT + MJ

)
ij

=

{
deg(ti)− 1 if ti = tj.

0 if ti 6= tj,

since

(MJ)ij =

{
1 if ti = tj and i 6= j,

0 otherwise.
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Thus, (Q−1
(
MMT + MJ

)
)ij =

{
1 if ti = tj.

0 if ti 6= tj,

So, (Q−1
(
MMT + MJ

)−MJ)ij = I2m.

Now we will use this fact to show that M−1 = J(Q−1MJ+Q−1−I). Recall from

Remark 1.5 that MT = JMJ and note J(Q−1MJ + Q−1− I)M = J(Q−1MJM +

Q−1M−M) = J(Q−1MJMJ+Q−1MJ−MJ)J = J(Q−1MMT +Q−1MJ−MJ)J

= J(Q−1(MMT + MJ) −MJ)J = JI2mJ = I. Therefore, M−1 = J(Q−1MJ +

Q−1 − I) as desired.

For regular graphs, we have the following simplification:

Corollary 2.6. Suppose G is a q+1-regular graph (which satisfies our simplifying

assumptions). Let M, J be as in the theorem. Then

M−1 = q−1MT + (q−1 − 1)J.

Proof. By the theorem, M−1 = J(Q−1MJ +Q−1− I) = J(q−1MJ +(q−1− 1)I) =

q−1JMJ + (q−1 − 1)J = q−1MT + (q−1 − 1)J .

For both regular and irregular graphs, the explicit formula given in Theorem

2.5 for the inverse of a directed edge matrix implies the following relation among

the poles of the Ihara zeta function:

Corollary 2.7. Let u0, u1, . . . , u2m−1 be the poles (including multiplicities) of the

Ihara zeta function of a graph. Then
∑2m−1

k=0 uk = 0.

Proof. The poles of the Ihara zeta function of a graph G are the reciprocals of

the eigenvalues of a directed edge matrix M of G. Also, the reciprocals of the

eigenvalues of M are the eigenvalues of M−1. Using the structure of M from

Remark 1.5 and the preceding theorem, we find that the diagonal elements of M−1

are all zeros. So, the trace of M−1 is zero. Therefore,
∑2m−1

k=0 uk = 0.

The previous corollary also holds if we exclude the poles on the unit circle:
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Corollary 2.8. Let u0, u1, . . . , u2m−1 be the poles (including multiplicities) of the

Ihara zeta function of a graph. Then
∑

uk = 0 where the sum is just over those

poles whose magnitude is not one.

Proof. Define U1 = {k : |uk| = 1} where the uk are as defined above. Note

that since the complex poles occur in conjugate pairs and u−1
k = uk for all k ∈

U1,
∑

k∈U1
uk =

∑
k∈U1

u−1
k . Since

∑2m−1
k=0 uk = 0 =

∑2m−1
k=0 u−1

k , this implies
∑

k 6∈U1
uk =

∑
k 6∈U1

u−1
k .
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Recovering information

3.1 The hope

For information about a graph to be recoverable, the Ihara zeta function must

at the very least be able to distinguish between graphs for which the information

differs. However, we generally also would like some systematic way of recovering

the information. For instance, fingerprints may be able to distinguish between

any two people, but there is no way (besides using some sort of database) of

attaching a name to a print. In a fit of optimism, we might expect that a great

deal of information about a graph is recoverable from its Ihara zeta function. Our

optimism should be tempered somewhat however by the fact that the Ihara zeta

function is not always able to distinguish between two non-isomorphic graphs, as

illustrated in Figure 3.2.

Since the information about the graph used to create the Ihara zeta function

concerns the lengths of closed walks in the graph, it is perhaps unsurprising that

the greatest successes in extracting information from the Ihara zeta function also

concerns information about the lengths of closed walks in the graph. What may be

surprising is that the counts of closed walks we are able to extract using Theorem

2.4 have dropped the condition that the walks be prime. That is, a closed walk

17
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C is still counted even if it is Cj
0 for some closed walk C0. This, however, only

prompts us to ask how much other information we have unintentionally collected

while forming the Ihara zeta function. Table 3.1 reveals some notable successes as

well as a couple sad truths concerning recoverable information. (The Ihara zeta

functions of coverings hinted at in the table will be explored further in Section

4.3.)

3.2 Recovering Girth

By Theorem 2.4, we can calculate the girth of a graph given only its Ihara

zeta function by finding the smallest integer k such that
∑
u∈U

u−k > 0. However, as

the next theorem demonstrates, there is a much easier method of extracting this

information from the Ihara zeta function.

Theorem 3.1. Let G be a simple connected graph. Define ci ∈ Z, 1 ≤ i ≤ 2|E|,
such that ζG(u)−1 = 1 + c1u + c2u

2 + · · · + c2|E|u2|E|. Then the girth of G is

min{ i | ci 6= 0, 1 ≤ i ≤ 2|E|}.

Proof. For the sake of the readability of what follows, define ζ = ζG(u).

Let Nm be the number of closed walks of length m without backtracking or

tails where closed walks of the same equivalence class which have different start

vertices are counted as different.

Let k = min{ i | ci 6= 0, 1 ≤ i ≤ 2|E|} and g be the girth of G. Then u(logζ)′ =
∑∞

m=1 Nmum =
∑∞

m=g Nmum (see page 137 of [12] for a derivation of u(logζ)′ =
∑∞

m=1 Nmum).

Note also that lim
u→0

u(logζ)′ = 0, lim
u→0

ζ = 1, and lim
u→0

uζ ′ = 0. Thus,

g =
gNg

Ng

=
lim
u→0

∑∞
m=g mNmum−g

lim
u→0

∑∞
m=g Nmum−g

= lim
u→0

∑∞
m=g mNmum−g

∑∞
m=g Nmum−g

=

(
lim
u→0

ug

ug

) (
lim
u→0

∑∞
m=g mNmum−g

∑∞
m=g Nmum−g

)
= lim

u→0

ug
∑∞

m=g mNmum−g

ug
∑∞

m=g Nmum−g
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= lim
u→0

∑∞
m=g mNmum

∑∞
m=g Nmum

= lim
u→0

u
(∑∞

m=g Nmum
)′

∑∞
m=g Nmum

= lim
u→0

u(u(logζ)′)′

u(logζ)′
= lim

u→0

(u(logζ)′)′

(logζ)′
= lim

u→0

(logζ)′ + u(logζ)′′

(logζ)′

= 1 + lim
u→0

u(logζ)′′

(logζ)′
= 1 + lim

u→0

u(ζ ′ζ−1)′

(logζ)′
= 1 + lim

u→0

u(ζ ′′ζ−1 − (ζ ′ζ−1)2)

(logζ)′

= 1 + lim
u→0

uζ ′′ζ−1 − u(ζ ′ζ−1)2

(logζ)′
= 1 + lim

u→0

uζ ′′ζ−1 − u(ζ ′ζ−1)2

ζ ′ζ−1

= 1 + lim
u→0

(
uζ ′′

ζ ′
− uζ ′

ζ

)
= 1 + lim

u→0

uζ ′′

ζ ′
− lim

u→0

uζ ′

ζ

= 1 + lim
u→0

uζ ′′

ζ ′
− lim

u→0
u(logζ)′ = 1 + lim

u→0

uζ ′′

ζ ′
L′H
= 1 + lim

u→0

uζ ′ − ζ + 1

ζ − 1

= 1 + lim
u→0

(
uζ ′

ζ − 1
− ζ − 1

ζ − 1

)
= 1 + lim

u→0

uζ ′

ζ − 1
− lim

u→0

ζ − 1

ζ − 1

= 1 + lim
u→0

uζ ′

ζ − 1
− 1 = lim

u→0

uζ ′

ζ − 1
=

(
lim
u→0

uζ ′

ζ − 1

)(
lim
u→0

1

ζ

)

= lim
u→0

uζ ′

(ζ − 1)ζ
= lim

u→0

uζ ′(−ζ−2)

ζ−1 − 1
= lim

u→0

u(ζ−1)′

ζ−1 − 1

= lim
u→0

u(1 + c1u + c2u
2 + · · ·+ c2|E|u2|E|)′

c1u + c2u2 + · · ·+ c2|E|u2|E|

= lim
u→0

u(c1 + 2c2u + · · ·+ 2|E|c2|E|u2|E|−1)

c1u + c2u2 + · · ·+ c2|E|u2|E|

= lim
u→0

c1u + 2c2u
2 + · · ·+ 2|E|c2|E|u2|E|

c1u + c2u2 + · · ·+ c2|E|u2|E|

= lim
u→0

kcku + (k + 1)ck+1u
2 + · · ·+ 2|E|c2|E|u2|E|

cku + ck+1u2 + · · ·+ c2|E|u2|E| = k

and so g = k as desired.

The coefficient of the ug term is also informative as revealed by the following

corollary:

Corollary 3.2. Let g be the girth of a simple connected graph G. Define ci ∈ Z,

g ≤ i ≤ 2|E|, such that ζG(u)−1 = 1 + cgu
g + cg+1u

g+1 + · · ·+ c2|E|u2|E|. For each
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positive integer m, let Nm be as defined in the proof above and π(m) be the number

of primes [P ] of length m in G. Then cg = −Ng/g = −π(g).

Proof. Note that

Ng

cg

= lim
u→0

∑∞
m=g Nmum

ζ−1 − 1
= lim

u→0

uζ ′

ζ(ζ−1 − 1)
= −lim

u→0

uζ ′

ζ − 1
= −g

implies cg = −Ng/g. Since g is the length of the smallest cycle in G, Ng = gπ(g).

Therefore, cg = −Ng/g = −π(g).

3.3 Chromatic polynomials and Ihara zeta func-

tions

Besides demonstrating that the Ihara zeta function is not always able to distin-

guish between two non-isomorphic graphs, the graphs in Figure 3.2 also happen to

have different chromatic polynomials (as can be demonstrated by calculating the

number of three-colorings for each) where the chromatic polynomial of a graph is

defined as follows:

Definition 3.3. The chromatic polynomial χG(u) of a graph G is the degree |V |
polynomial such that for each integer n, 1 ≤ n ≤ |V |, χG(n) is the number of

different ways the vertices of G can be colored using exactly n colors including

permutations of the n colors such that no two adjacent vertices are the same color.

(A bipartite graph then is a graph G such that χG(2) > 0.)

Since the Ihara zeta function of a graph does not in general contain enough

information to recover the graph’s chromatic polynomial, it seems reasonable to

ask whether the chromatic polynomial contains enough information to recover a

graph’s Ihara zeta function. As demonstrated by the graphs in Figure 3.1, the

answer in general is no. In fact, it is relatively easy to construct a family of graphs

having the same chromatic polynomials but different Ihara zeta functions as we

will now illustrate.
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G H

ζG(u)−1 = (−1 + u)3(1 + u)2(1 + u2)2(1 + u + 3u2)(−1 + 2u2 + 3u3)

ζH(u)−1 = (−1 + u)3(1 + u)2(1 + u + 2u2)(−1 + u + 3u3)(1 + u + 2u2 + u3 + 2u4)

χG(u) = χH(u) = (−2 + u)3(−1 + u)u

Figure 3.1 Two graphs with the same chromatic polynomial but different Ihara
zeta functions

The deletion-contraction method (see Biggs [2]) makes repeated use of the

relation

χG(u) = χG−e(u)− χG/e(u) (3.1)

to reduce the problem of calculating the chromatic polynomial of a graph to calcu-

lating the chromatic polynomials of many graphs which are less complicated (that

is, have fewer edges) than the original. We will use (3.1) in reverse to construct a

family FG from a graph G. For each edge e ∈ E(G), define Ge to be the graph such

that V (Ge) = V (G)∪{x} and E(Ge) = E(G)∪{{v1, x}, {x, v2}} where {v1, v2} = e

and x is a new vertex not in V (G). Now define F = {Ge : e ∈ E(G)}. Note that

for each Ge ∈ F , if we define f1, f2 to be the edges added to G to form Ge, then

χGe(u) = χGe−f1(u)− χGe/f1(u)

=
(
χ(Ge−f1)−f2(u)− χ(Ge−f1)/f2(u)

)− χGe/f1(u)

= (uχG(u)− χG(u))− χG(u)

= uχG(u)− 2χG(u)

which is independent of our choice of e. Thus, every graph in F has the same

chromatic polynomial. So, we need only judiciously choose our base graph G such
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that ζGe(u) is not the same function as ζGf
(u) for e, f ∈ E(G), e 6= f . This means

of course that we want to choose G such that the only isomorphism from G to

itself is the identity.
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Table 3.1 Information about G recoverable from ζG

Information

about G

How the information can be

recovered from ζG:
Justification

# of edges,

|E| = deg(ζG(u)−1)
2

Theorem 1.2

# of vertices,

|V |

= deg(ζG(u)−1)
2

− orderu=1(ζG(u)) + 1

unless ζG(u)−1 = (1− un)2 for some n

in which case |V | = n

follows from

theorem

in [4]

rank r of the

fundamental

group of G

= orderu=1(ζG(u)) see [4]

G is bipartite ⇔ orderu=1(ζG(u)) = orderu=−1(ζG(u))

follows from

theorem

in [4]

complexity, κ
= (−1)r+1

2r(r−1)r! (ζG(u)−1)(r)|
u=1

where r = orderu=1(ζG(u))
see [4]

girth, g = lim
u→0

uζG′(u)
ζG(u)−1

= lim
u→0

u(ζG(u)−1)′(u)
ζG(u)−1−1 Theorem 3.1

G is a

covering of H
⇒ ζH(u)−1 | ζG(u)−1 see [12]

chromatic

polynomial

cannot, in general, be determined

from ζG(u) alone
Figure 3.2

G is

isomorphic

to H

cannot, in general, be determined

from ζG(u), ζH(u) alone
Figure 3.2
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Figure 3.2 Non-isomorphic graphs with the same Ihara zeta function (redrawn from
Stark and Terras [13]) which also happen to have different chromatic polynomials



4

Relations among Ihara zeta

functions

4.1 The problem

One of the more challenging aspects of attempting to investigate the relation-

ship between a graph and its Ihara zeta function is the fact that small changes in

the graph generally render the Ihara zeta function of the resulting graph unrecog-

nizable as having any relation to the Ihara zeta function of the original. Deleting a

single edge from a graph, for example, removes an infinite number of factors from

its Ihara zeta function product. In the next section, we make this deletion less

jarring by viewing it as the limit of an operation on the original graph.

4.2 Limits of Ihara zeta functions

For small values of u, it is evident from Definition 1.1 that, loosely speaking,

one very long closed walk in a graph has less of an effect on the graph’s Ihara zeta

function overall than one very short closed walk since the factor corresponding to

the long walk is much closer to being one. So, if we replaced a single edge e with
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a walk of length k, we would expect that those closed walks through e (which are

now some multiple of k−1 longer) would have less effect on the Ihara zeta function

than they originally had. Even though there are an infinite number of closed walks

through e, we may still hope that if k runs off to infinity, the Ihara zeta function

of the graph would run toward the Ihara zeta function of the graph with the edge

e deleted. In fact, that is essentially the content of the following theorem:

Theorem 4.1. Let G be a graph with edge set E. Let F ⊆ E and for each non-

negative integer k define G(F, k) to be the graph G but with every edge contained

in F divided into k +1 edges. Then for each u such that |u| < 1
qmax

where qmax +1

is the largest vertex degree in G,

lim
k→∞

ζG(F,k)(u) = ζ(G−F )(u).

Proof. Let qmax + 1 be the largest vertex degree in G and note that the largest

vertex degree in G(F, k) for each k ≥ 0 is exactly qmax + 1. For any graph X,

define P (X) to be the set of all primes [C] in X. Then for each k ≥ 0 and any

u with magnitude less than 1
qmax

, the product
∏

[C]∈P (G(F,k))

(1 − uν(C))−1 converges

to ζG(F,k)(u) by Kotani and Sunada. Moreover, since the largest vertex degree

in (G − F ) is at most qmax + 1, the product
∏

[C]∈P (G−F )

(1 − uν(C))−1 converges to

ζ(G−F )(u) for any u such that |u| < 1
qmax

.

For any walk C in G, define η(C) to be the number of edges of C (counting

multiplicities) which are also in F . Define the set S = P (G)−P (G−F ). Now fix

a u such that |u| < 1
qmax

. Then for each k ≥ 0,

ζG(F,k)(u) =
∏

[C]∈P (G(F,k))

(1− uν(C))−1 =
∏

[C]∈P (G)

(1− uν(C)+kη(C))−1

=


 ∏

[C]∈P (G−F )

(1− uν(C))−1





 ∏

[C]∈S

(1− uν(C)+kη(C))−1




= ζ(G−F )(u)
∏

[C]∈S

(1− uν(C)+kη(C))−1.
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So, we want to show that lim
k→∞

∏
[C]∈S

(1− uν(C)+kη(C))−1 = 1 or equivalently that

lim
k→∞

∑
[C]∈S

log(1− uν(C)+kη(C)) = 0. Note that

∣∣∣∣∣∣
∑

[C]∈S

log(1− uν(C)+kη(C))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

[C]∈S

∑
n≥1

un(ν(C)+kη(C))

n

∣∣∣∣∣∣

≤
∑

[C]∈S

∑
n≥1

|u|nν(C)|u|nkη(C)

n

≤
∑

[C]∈S

∑
n≥1

|u|nν(C)|u|k
n

≤ |u|k
∑

[C]∈S

∑
n≥1

|u|nν(C)

n

= |u|k
∑

[C]∈S

log(1− |u|ν(C))

= |u|k log


 ∏

[C]∈S

(1− |u|ν(C))




= |u|k log

(
ζ(G−F )(|u|)

ζG(|u|)
)
→ 0 as k →∞.

Thus, lim
k→∞

∑
[C]∈S

log(1 − uν(C)+kη(C)) = 0. Therefore, lim
k→∞

ζG(F,k)(u) = ζ(G−F )(u) as

desired.

While this theorem does lend credence to our intuition, the region on which

the limit seems to hold is too restrictive. In fact, it excludes the very region on

which the result would be most interesting, namely the region in which the poles

of the Ihara zeta function are located. As we shall see in Section 6.3, this result

extends to everything within distance one of the origin, which is a gloriously large

region for the study of the poles of the Ihara zeta function.
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4.3 Ihara zeta functions of coverings

As previously mentioned, the Ihara zeta function of a disconnected graph is just

product of the Ihara zeta functions of its components. Much more interestingly,

if a graph H is a covering of a graph G, then ζG(u)−1 divides ζH(u)−1 (see Stark

and Terras [12]). A covering of a graph G is a graph which is an n-covering of G

for some n. An n-covering Gn of a graph G is a graph (which we will also refer to

as Gn) together with a function f from the vertices of Gn onto the vertices of G

such that if u, v are adjacent vertices in Gn then f(u), f(v) are adjacent vertices

in G and for every vertex v in G, |f−1(v)| = n. Also, for every vertex v in Gn,

deg(v) = deg(f(v)).

The following theorem gives us a method of constructing a bipartite two-

covering of a graph so that the quotient of the Ihara zeta function of the covering

and the Ihara zeta function of the original graph is easily recognizable.

Theorem 4.2. Let G be a simple connected graph with adjacency matrix A. Define

G2 to be the graph with adjacency matrix A2 =

(
0 A

A 0

)
. Then G2 is a bipartite

two-covering of G such that ζG(u)ζG(−u) = ζG2(u) where ζG(u), ζG2(u) are the

Ihara zeta functions of G,G2 respectively.

Proof. Let M be the directed edge matrix of G. Let e1, . . . , em and v1, . . . , vn be

the edges and vertices of G respectively such that the ei, vj are indexed as in the

definitions of M, A. Define a graph H with edges fi, 1 ≤ i ≤ 2m, and vertices uj,

1 ≤ j ≤ 2n, such that ei = (vj, vk) implies fi = (uj, un+k) and fn+i = (un+j, uk).

Then H has adjacency matrix

(
0 A

A 0

)
and directed edge matrix

(
0 MJ

JM 0

)

where J =

(
0 I

I 0

)
. So, we can take the directed edge matrix of G2 (from the

theorem) to be M2 =

(
0 MJ

JM 0

)
.
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Now define M̃2 =

(
M M

0 −M

)
and S =

(
I 0

J J

)
. Then

M2S =

(
0 MJ

JM 0

)(
I 0

J J

)
=

(
M M

JM 0

)

=

(
I 0

J J

)(
M M

0 −M

)
= SM̃2.

So, M2 is similar to M̃2 which implies ζG2(u)−1 = det(I − M2u) = det(I −
M̃2u) = det(I −Mu)det(I + Mu) = ζG(u)−1ζG(−u)−1.

Remark 4.3. Note that the theorem is trivially true if G itself is bipartite since G2

would then just be two copies of G and so ζG2(u) = (ζG(u))2.

In the next theorem, we will show how the radius of convergence of Ihara

zeta functions relates to coverings. First however, we will define a directed edge

operator which will free us from some painful indices:

Definition 4.4. For a graph G, we define the directed edge operator M on all

functions f : Ed(G) → C by

Mf(e0) =
∑

e∈Ed(G)

e0 feeds into e 6=e0

f(e) for each e0 ∈ Ed(G). (4.1)

An eigenfunction of M (with corresponding to eigenvalue α) is a function f :

Ed(G) → C which is not identically zero such that Mf(e) = αf(e) for all e ∈
Ed(G).

Note that the directed edge operator is just a coordinate-free interpretation of

a directed edge matrix. So, the directed edge operator M of a graph G has the

following properties:

1. There exists an eigenfunction f of M with corresponding eigenvalue u−1
0 if

and only if u0 is a pole of ζG(u).
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2. Assuming G satisfies our simplifying assumptions and is not a cycle, there

exists a positive eigenfunction f of M with corresponding eigenvalue u−1
0 if

and only if u0 is the pole of smallest magnitude of ζG(u) (that is, if u0 is the

radius of convergence of ζG(u)).

The first property follows from Theorem 1.4. The second follows from Theorem

1.4 and Perron-Frobenius (see for instance Horn and Johnson [5]).

Theorem 4.5. If G is a covering of a graph H, then ζG(u), ζH(u) have the same

radius of convergence.

Proof. Let a graph G with covering function f be a covering of a graph H. Let

MG, MH be the directed edge operators corresponding to G,H respectively. Define

u−1
0 to be the radius of convergence of H. Then by Property 2 above, there exists

an eigenfunction gH > 0 such that MHgH(e) = u−1
0 gH(e) for all e ∈ Ed(H). Now

define function gG : Ed(G) → C such that gG(e) = gH(f(e)) for all e ∈ Ed(G).

Note that gG > 0 and for all e0 ∈ Ed(G),

MGgG(e0) = MGgH(f(e0)) =
∑

e∈Ed(G)

e0 feeds into e 6=e0

gH(f(e))

=
∑

e∈Ed(H)

f(e0) feeds into e6=e0

gH(e) = MHgH(f(e0))

= u−1
0 gH(f(e0)) = u−1

0 gG(e0).

So, by Property 2, u−1
0 is the radius of convergence of G

Corollary 4.6. If G,H are coverings of a graph K, then ζG(u), ζH(u) have the

same radius of convergence.

Proof. The corollary follows immediately from the theorem.

It should be noted that the pole of smallest magnitude greater than the radius

of convergence of a covering of a graph G may be smaller in magnitude than the
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pole of smallest magnitude greater than the radius of convergence of G itself as

illustrated by Figure 4.1. This is unfortunate since this pole, loosely speaking,

informs us of how easy it is to get lost on a backtrackless walk in the graph.

Figure 4.1 A 5-covering of K4 with poles in {u : u0 < |u| < |u1|} where u0 = 1
2

is the radius of convergence of ζK4(u) and u1 = 1√
2

is a pole of ζK4(u) of smallest

magnitude greater than u0

4.4 Covering trees

A covering tree of a graph G is an infinite tree which satisfies the conditions

for being a covering of G except that now |f−1(v)| = ∞. So, for instance, Figure

4.2 shows part of the covering tree for K4 − e.

By Corollary 4.6, every graph covered by the covering tree in Figure 4.2 has

the same radius of convergence R since each of these graphs is a covering for

K4 − e. This of course begs the question of what significance the value R has to

the covering tree itself. Theorem 4.14 below answers this question. First, however,

we need some additional terminology, a couple borrowed theorems, and a lemma:

Definition 4.7. An irreducible matrix M is primitive if Mk > 0 for some postive

integer k.
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Figure 4.2 The covering tree of K4 − e

Definition 4.8. A digraph G is strong if there is a directed walk between every

pair of vertices in G.

Definition 4.9. The index of imprimitivity d(G) of a digraph G is gcd(S) where

S = {l : G contains a directed cycle of length l}.

Theorem 4.10. Let G be a digraph with adjacency matrix A. Then A is primitive

if and only if G is strong and d(G) = 1.

Proof. This is a specialization of Theorem 3.2.3 in [7].

Theorem 4.11. Let T be a primitive matrix. Define λ0 to be the largest positive

eigenvalue of T with positive right and left eigenvectors x, yT chosen so that yT x=1.
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Define λ1 to be an eigenvalue of T of largest magnitude less than λ0 such that no

eigenvalue of equal magnitude has greater multiplicity. Then as k → ∞, T k =

λk
0xyT + O(km2−1|λ1|k) elementwise where m2 is the multiplicity of λ1.

Remark 4.12. The existence of λ0 and its corresponding positive eigenvectors in

the theorem above is guaranteed by Perron-Frobenius.

Proof. This is essentially Theorem 1.2 in [11].

Lemma 4.13. Let G be a graph (which satisfies our simplifying assumptions).

Further, assume gcd({ν(C) : [C] is a prime of G}) = 1. Let M be an edge matrix

of G. Define u0 be the radius of convergence of ζG(u) and u1 to be pole of ζG(u)

of smallest magnitude greater than u0 such that no pole of equal magnitude has

greater multiplicity. Then as k →∞, Mk = u−k
0 ghT +O(km2−1|u1|−k) elementwise

where m2 is the multiplicity of u1 and g, hT are positive right and left eigenvectors

corresponding to the eigenvalue u−1
0 of M chosen such that hT g = 1.

Proof. By Theorem 4.11, we need only show that T is primitive. Define H to be

the digraph with adjacency matrix M . By Theorem 4.10, W is primitive if and

only if H is strong and d(H) = 1.

First we will show that H is strong. This is equivalent to showing that for any

two directed edges e, f in G, there is a directed walk which begins with e and ends

with f . Note that since gcd({length(C) : [C] is a prime of G}) = 1, G is not a

cycle. Since G is a connected graph which is not a cycle and G has no vertices of

degree one, there is a directed walk beginning with e and ending with f for any two

directed edges e, f in G. (This is due to the fact that these properties guarantee

that we have room in the graph to turn around and come back to an edge going

in the opposite direction without backtracking.) Thus, H is strong.

Now we will show that d(H) = 1. This is equivalent to showing that g = 1

where g is defined to be gcd({ν(C) : C is a closed backtrackless, tailless directed

walk in G with no repeated directed edges}). We shall prove this by contradiction,
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so suppose g > 1. Since gcd({ν(C) : [C] is a prime of G} = 1, there exists

some prime [C0] in G whose length is not divisible by g. Note [C0] must have

some repeated directed edge e0. Let [C2], [C3] be the closed backtrackless, tailless

directed walks such that [C2C3] = [C0] and C3 is the walk from the first appearance

of e0 in C0 to the second appearance of e0 in C0. Both [C2] and [C3] contain fewer

repeated directed edges than [C0]. Repeat this process until we have a set of

closed backtrackless, tailless directed walks B0, . . . , Bt such that [B0 · · ·Bt] = [C0]

and none of the Bi contain repeated directed edges. Each ν(Bi) is divisible by g

which implies ν(C0) is divisible by g, a contradiction. Thus, d(H) = 1.

Since H is strong and d(H) = 1, the result holds.

Theorem 4.14. Let T be a covering tree for some finite graph G (which satisfies

our simplifying assumptions). Further, assume gcd({ν(C) : [C] is a prime of

G}) = 1. Define R to be the radius of convergence of ζG(u). Fix a vertex x ∈ V (T ).

Then

R−1 = lim
d→∞

d−1
√
|{y ∈ V (T ) : d(x, y) = d}|

where d(x, y) is the distance in T between the vertices x and y.

Proof. Let T, G, R be as in the theorem. Define f to be the covering function.

Also, define M to be the directed edge matrix of G respectively. Since G satisfies

our simplifying assumptions, there are vectors g, h > 0 such that Mg = R−1g and

hT M = R−1hT . Assume hT g = 1.

Fix a vertex x ∈ V (T ). For any vertex y adjacent to x in T , define

V (x, y, d) = {v ∈ V (T ) : d = d(v, x) = d(v, y) + 1}.

So, V (x, y, d) is the set of all vertices distance d from x in the direction of y (that

is, every backtrackless walk from x to a vertex of V (x, y, d) starts with the directed

edge (x, y) and is of length d).

For any each directed edge (x, y), define ixy to be the index of the row cor-

responding to (x, y) according to the labeling used to form M . Define fxy to be
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a vector of zeros which has a 1 in the ixyth position. Note then that for any y

adjacent to x,

|V (x, y, d)| = fT
xyM

d−1−→1

where
−→
1 is the constant vector of ones. By the previous lemma, Md−1 → R−dghT

elementwise as d →∞. So, as d →∞,

|V (x, y, d)| = fT
xyM

d−1−→1 ∼ fT
xyR

1−dghT−→1 = R1−dgixy |h| = cxyR
1−d

where cxy is defined to be the positive constant gixy |h|. Thus,

|{y ∈ V (T ) : d(x, y) = d}| =
∑

y adjacent to x

|V (x, y, d)| ∼
∑

y adjacent to x

cxyR
1−d = cR1−d

where c is defined to be the positive constant
∑

y adjacent to x

cxy. So,

lim
d→∞

|{y ∈ V (T ) : d(x, y) = d + 1}|
|{y ∈ V (T ) : d(x, y) = d}| = R−1

which (by Theorem 3.37 in Rudin [10]) implies

R−1 = lim
d→∞

d−1
√
|{y ∈ V (T ) : d(x, y) = d}|

since
d−1
√

c−1 → 1 as d →∞.

Remark 4.15. Another interpretation of the value

|{y ∈ V (T ) : d(x, y) = d}|

is the number of backtrackless walks of length d in G (the graph covered by T )

starting at the vertex f(x) where f is the covering function.

This result can be easily generalized further as demonstrated by the following

corollary:
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Corollary 4.16. Let T be a covering tree for some graph G (which satisfies our

simplifying assumptions). Further, assume gcd({ν(C) : [C] is a prime of G}) = 1.

Define R to be the radius of convergence of ζG(u). Let X ⊆ Ed(T ) such that

|X| < ∞. Then

R−1 = lim
d→∞

d−1
√
|{v : d = d(v, x) = d(v, y) + 1 and (x, y) ∈ X}|.

Proof. Take g, h to be right and left eigenvectors as in the proof of the theorem.

Also, define V (x, y, d) and cxy as before except that here we are not fixing x. Note

that

{v : d = d(v, x) = d(v, y) + 1 and (x, y) ∈ X} =
⊔

(x,y)∈X

V (x, y, d).

So,

|{v : d = d(v, x) = d(v, y) + 1 and (x, y) ∈ X}| =
∑

(x,y)∈X

|V (x, y, d)|

=
∑

(x,y)∈X

fT
xyM

d−1−→1 ∼
∑

(x,y)∈X

fT
xyR

1−dghT−→1

=
∑

(x,y)∈X

R1−dgixy |h| =
∑

(x,y)∈X

cxyR
1−d = cR1−d

where of course we define c to be the positive constant
∑

(x,y)∈X

cxy. Therefore,

R−1 = lim
d→∞

d−1
√
|{v : d = d(v, x) = d(v, y) + 1 and (x, y) ∈ X}|.
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Eigenfunctions of directed edge

operators

We saw in Chapter 2 that information about a graph is encoded in the poles

of its Ihara zeta function, which are just the reciprocals of the eigenvalues of the

directed edge operator. In this chapter, we consider how a graph’s structure is

reflected in the corresponding eigenfunctions.

5.1 Eigenfunctions corresponding to λ 6= 1

For any function f : Ed(G) → C and any walk W in G, we will define

f(W) =
∑

e∈Ed(G)

e in W

f(e)

where the sum includes any repetition of directed edges in W .

Theorem 5.1. Let G be a graph with directed edge operator M . Let (λ, f), λ 6= 1,

be an eigenvalue and eigenfunction pair of M . Then for any closed backtrackless

walk C in G, f(C)=f(C−1).

37
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Proof. Fix an eigen-pair (λ, f) of M . Then

λf(e0) =
∑

e 6=e−1
0

t(e0)=s(e)

f(e)

for each e0 ∈ Ed(G). So,

λf(e0) + f(e−1
0 ) = f(e−1

0 ) +
∑

e 6=e−1
0

t(e0)=s(e)

f(e)

=
∑

t(e0)=s(e)

f(e).

Thus, for any two edges a, b such that t(a) = s(b) and a 6= b−1,

λf(a) + f(a−1) = λf(b−1) + f(b).

Let C = {e1, e2, · · · , en} be a closed backtrackless walk in G where the ei are

oriented edges. Then

n∑
i=1

(
λf(ei) + f(e−1

i )
)

=
n∑

i=1

(
λf(e−1

i ) + f(ei)
)

which implies

(λ− 1)f(C) = (λ− 1)f(C−1).

Since λ 6= 1, f(C)=f(C−1) as desired.

Remark 5.2. Note that it is not generally the case that f(W) = f(W−1) for an

arbitrary walk W in G. In particular, it is not necessarily true that f(e) = f(e−1)

for e ∈ Ed(G).

5.2 Eigenfunctions corresponding to λ = 1

Next we consider those eigenfunctions of the directed edge operator which were

excluded from Theorem 5.1. After a series of lemmas, we will make explicit the



39

relationship between π(G, v) (the fundamental group of the graph G) and the

eigenfunctions of the directed edge operator corresponding to λ = 1.

The following lemma defines a family of functions (a subset of which, we will

show in Lemma 5.4, are eigenfunctions of the directed edge operator) and reveals

some of their useful properties.

Lemma 5.3. For any walk W in a graph G, define fW : Ed(G) → C by fW(e) =

ηW(e) − ηW(e−1) where ηW(e) is the number of times e appears as an edge of W.

Then

(i) fW(e) = −fW(e−1),

(ii) fW = −fW−1,

(iii) fW1W2 = fW1 + fW2 for any walks W1,W2 for which the product W1W2 is

defined,

(iv) fWk = kfW for every integer k,

(v) fWk1
1 Wk2

2 ···Wkj
j

= k1fW1 + k2fW2 + . . . + kjfWj
for integers k1, k2, . . . , kj and

any walks W1,W2, . . . ,Wj for which the product W1W2 · · ·Wj is defined.

Proof. By definition,

fW(e) = ηW(e)− ηW(e−1) = − (
ηW(e−1)− ηW(e)

)
= −fW(e−1).

So, (i) holds.

Note also that

fW(e) = ηW(e)− ηW(e−1) = ηW−1(e−1)− ηW−1(e) = fW−1(e−1).

Combined with (i), this implies (ii).

Part (iii) follows from the fact that

ηfW1W2
(e) = ηfW1

(e) + ηfW1
(e).

Together, (i) and (iii) imply (iv). Part (v) follows from repeated application of

(iii) and (iv).
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Lemma 5.4. For any prime [C] in G, (1, fC) where fC is as in Lemma 5.3 is an

eigen-pair of the directed edge operator of G if fC(e) 6= fC(e−1) for some e ∈ Ed(G).

Proof. Let M be the directed edge operator of G. Let [C] be a prime in G. Let

e0 ∈ Ed(G). Then

−fC(e0) + MfC(e0) = −fC(e0) +
∑

e 6=e−1
0

t(e0)=s(e)

fC(e)

= fC(e−1
0 ) +

∑

e 6=e−1
0

t(e0)=s(e)

fC(e)

=
∑

t(e0)=s(e)

fC(e)

=
∑

t(e0)=s(e)

(
ηC(e)− ηC(e−1)

)

=


 ∑

t(e0)=s(e)

ηC(e)


−


 ∑

t(e0)=s(e)

ηC(e−1)




=


 ∑

t(e0)=s(e)

ηC(e)


−


 ∑

t(e0)=t(e)

ηC(e)




= 0

since
∑

t(e0)=s(e)

ηC(e) is the number of times C enters the vertex t(e0) and
∑

t(e0)=s(e)

ηC(e)

is the number of times C leaves the vertex t(e0) (and these two values must be

equal since C is closed). So, the result holds.

In the following lemma, we show that we can choose a linearly independent

basis for the space of eigenfunctions of the directed edge operator of a graph from

amongst the eigenfunctions which satisfy the conditions of Lemma 5.4. Moreover,

we relate our chosen basis to a particular generating set for the fundamental group

of the graph.
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Lemma 5.5. Let S be a spanning tree of a graph G. Let r = |E(G)| − |V (G)|+ 1

and {e1, . . . , er} = E(G)−E(S). Arbitrarily orient the undirected edges e1, . . . , er.

Fix a vertex v of G. For each i, 1 ≤ i ≤ r, define Ci to be the unique closed back-

trackless (but not necessarily tailless) walk which starts and ends with v and whose

directed edges are taken from Ed(S) ∪ {ei}. Then {C1, . . . , Cr} is a minimal gen-

erating set for π(G, v), the fundamental group of G, and {fC1 , . . . , fCr} (where fW

is as in Lemma 5.4) is a linearly independent basis for the space of eigenfunctions

of the directed edge operator of G corresponding to the eigenvalue 1.

Proof. Let M be the directed edge operator of G. Since fCi
(ei) = 1 for each

i, {fC1 , . . . , fCr} is a set of eigenfunctions of M by Lemma 5.4. Also, since

fCi(ej) = 0 if i 6= j, the eigenfunctions are linearly independent. By Hashimoto

[4], the dimension of the space of eigenfunctions of the directed edge matrix of G

corresponding to the eigenvalue 1 is r. By the argument in the discussion of multi-

path zeta functions in Stark and Terras [13], {C1, . . . , Cr} is a minimal generating

set for π(G, v). Thus, the result holds.

We will now extend Lemma by relaxing the restrictions on the minimal gener-

ating set for the fundamental group.

Theorem 5.6. Let v be a fixed vertex of a graph G and let {C1, . . . , Cr} be a

minimal generating set for π(G, v). Then {fC1 , . . . , fCr} is a linearly independent

basis for the space of eigenfunctions of the directed edge matrix of G corresponding

to the eigenvalue 1.

Proof. Let {B1, . . . , Br} be the minimal generating set for π(G, v) described in

Lemma 5.2. Then by Lemma 5.2, {fB1 , . . . , fBr} is a linearly independent basis for

the eigenfunctions of the directed edge matrix of G corresponding to the eigenvalue

1. Since {C1, . . . , Cr} is also a generating set for π(G, v),

B1 =

j∏
i=1

C
α

ki
i
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for some integers k1, . . . , kj and where 1 ≤ αi ≤ r. By Lemma 5.3 then,

fB1 =

j∑
i=1

kifCαi
=

r∑
i=1

∑
j

αj=i

kjfCαj
=

r∑
i=1


fCi

∑
j

αj=i

kj


 .

So, fB1 is a linear combination of fC1 , . . . , fCr . Since the indexing of B1, . . . , Br was

arbitrary, this implies that every element of {B1, . . . , Br} is a linear combination

of fC1 , . . . , fCr . Thus, {fC1 , . . . , fCr} too is a basis for the eigenfunctions of the

directed edge matrix of G corresponding to the eigenvalue 1. The eigenfunctions

fC1 , . . . , fCr must also be linearly independent since again the dimension of the

space of eigenfunctions corresponding to the eigenvalue 1 is r.

Due to the relationship described in the theorem, it is possible for properties

of the eigenfunctions of the directed edge operator to inform us of properties of a

minimal generating set for the fundamental group as illustrated by the following

corollary:

Corollary 5.7. If C is an element of a minimal generating set for π(G, v), then

C crosses some edge of G in one direction more often than in the other.

Proof. Suppose C is an element of a minimal generating set for π(G, v) yet does not

cross some edge of G in one direction more often than the other. Then fC(e) = 0

for all e ∈ Ed(G). This is a contradiction however since by Theorem 5.6, fC is an

element of a linearly independent basis for the eigenfunctions of the directed edge

operator of G corresponding to the eigenvalue 1. Therefore, the result holds.

Remark 5.8. Note that the condition given in Corollary 5.7 is necessary but not

sufficient for a closed walk through the vertex v to be an element of some minimal

generating set for π(G, v).

We include the following corollary for purposes of comparison to Theorem 5.1.

Corollary 5.9. Let G be a graph with directed edge operator M . Let f be an

eigenfunction of M with eigenvalue 1. Then f(e) = −f(e−1).
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Proof. Let {fC1 , . . . , fCr} be as in the statement of Theorem 5.6. By Lemma 5.3,

fCi
(e) = −fCi

(e−1) for each i, 1 ≤ i ≤ r and each e ∈ Ed(G). So, f(e) = −f(e−1)

since f is a linear combination of fC1 , . . . , fCr by Theorem 5.6.
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Specializations of the multiedge

zeta function

6.1 Multiedge zeta functions

In [13], Stark and Terras described an extremely versatile generalization of the

Ihara zeta function called the multiedge zeta function.

Definition 6.1. Arbitrarily orient the edges e1, e2, . . . , e|E| of an undirected graph

G and let e|E|+i = e−1
i for all i, 1 ≤ i ≤ |E|. Then the 2|E| × 2|E| matrix W

defined by

(W )ij =

{
wij if t(ei) = s(ej) and s(ei) 6= t(ej),

0 otherwise.

where the wij are complex variables is a multiedge zeta function matrix of G.

Definition 6.2. For a prime [C] where C = f1, f2, ..., fk and the fi are directed

edges, the multiedge norm of C is

NE(C) = w(fk, f1)
s−1∏
i=1

w(fi, fi+1).

44
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Definition 6.3. The multiedge zeta function of a graph G is

ζE(W,G) =
∏

[C]

(1− NE(C))−1.

As noted in Stark and Terras [13], in the special case where each of the variables

wij is u, the multiedge zeta function reduces to the Ihara zeta function. Also, when

each of the variables wij is 1, the multiedge zeta function is the directed edge matrix

of the graph G. In the next section, we will define the directed edge matrix of a

directed graph by making slightly different choices for our wij. Another useful

specialization of the multiedge zeta function will be used in the proof of Theorem

6.6.

6.2 Ihara zeta functions of digraphs

In [6], Kotani and Sunada define the Ihara zeta function of a digraph and then

define the Ihara zeta function of an undirected graph as the Ihara zeta function of

its oriented line graph (which is itself a digraph). The multiedge zeta function can

also be specialized (as in Mizuno and Sato [9]) to produce the Ihara zeta functions

of digraphs which are not necessarily the oriented line graphs of undirected graphs.

We begin by extending what we mean by a prime [C]. Let G be a directed graph

and let C be a closed walk {e1, e2, . . . , en} in G such that C2 (that is, the product

PP ) contains no backtracks and C is not Cj
0 for any closed walk C0 and integer j ≥

2. (A backtrack now is defined to be edges ei, ei+1 of the walk C such that ei = e−1
i+1.)

Then the prime [C] is the equivalence class {{e1, e2, . . . , en}, {e2, e3, . . . , en, e1}, {e3,

e4, . . . , en, e1, e2}, . . . , {en, e1, . . . , en−2, en−1}}.
Note that if we think of an undirected graph as a directed graph by replacing

each of its undirected edges with a bidirected edge, then the primes in this extended

definition correspond to primes of the same length under the original definition.

So, as our preliminary extended definition of the Ihara zeta function, we simply

use the product in Definition 1.1.
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Now we will extend our definition of a directed edge matrix:

Definition 6.4. Let G be a directed graph with underlying graph H. Let W be

the multiedge zeta function matrix of H. Then the directed edge matrix M of G

is the matrix W where we take

wij =

{
1 if ei feeds into ej 6= e−1

i and ei, ej ∈ Ed(G)

0 otherwise.

Note that all directed edge matrices under the original definition are still di-

rected edge matrices of their corresponding undirected graphs (when these graphs

are viewed as directed graphs). However, for directed graphs in general, we have

lost some of the symmetry of the sub-matrices in Remark 1.5. Also note that

for computational purposes, it may be more efficient to consider a modified di-

rected edge matrix (which is another step away from the special properties listed

in Remark 1.5)as discussed in Section 9.3.

We also need to revisit the simplifying assumption that our graphs contain

no vertices of degree one. Our new requirement (which agrees with the original

when restricted to undirected graphs) is that every directed edge in a digraph is

contained in some prime. This is equivalent to requiring that for each directed

edge e ∈ Ed(G), there is a directed walk from the the terminal vertex of e to the

start vertex of e which neither starts nor ends with e−1.

As with the Ihara zeta functions of undirected graphs, we would like something

other than the (usually poorly behaved and infinite) product in our preliminary

definition to work with.

Fortunately, by Stark and Terras (see comment on page 134 of [13] referring to

proof in [12]), Theorem 1.4 holds for both directed and undirected graphs with our

new definitions. We simply specialize the variables in the multiedge zeta function

matrix W so that W = Mu (where M , formed from W as indicated above, is a

directed edge matrix of a directed or undirected graph G with underlying graph
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H) and note, for any prime [C] in the underlying graph H,

NE(C) =

{
uν(C) if [C] is also a prime in G

0 otherwise.

That is, the norm selects for primes in the underlying graph H in which edges are

traversed in accordance with the directions of the directed edges of G. So,

∏

[C] in H

(1− NE(C))−1 =
∏

[C] in G

(1− NE(C))−1 =
∏

[C] in G

(1− uν(C))−1

Thus, the preliminary product definition of the Ihara zeta function of a directed

or undirected graph is equal to det(I −Mu)−1 for u sufficiently small. Therefore,

we will define the Ihara zeta function of a directed or undirected graph to be

det(I −Mu)−1.

Since u(logζ)′ =
∑∞

m=1 Nmum =
∑∞

m=g Nmum where Nm now is the number

of closed directed walks of length m without backtracking or tails (where closed

walks of the same equivalence class which have different start vertices are counted

as different) still holds for digraphs (see Kotani and Sunada [6]), so does Theorem

3.1 and its corollary (where girth in a digraph is defined to be the length of the

shortest directed cycle).

Unfortunately, for digraphs in general, we do not have anything like Theorem

1.2 (which holds for undirected graphs or, equivalently, directed graphs in which

every edge is bidirected). By Mizuno and Sato [8] however, in the special case in

which G is a directed graph with no bidirected edges, ζG(u)−1 = det(I−Au) where

A is the adjacency matrix of G. Here is an alternate proof of this result:

Proof. Let G be a directed graph with no bidirected edges. Let H be the graph un-

derlying G. Let vertices v1, v2, . . . , v|V | be the vertices of G and let e1, e2, . . . , e2|E(H)|

be the edges used in forming a directed edge matrix of H. Define |V (H)|× |E(H)|
matrices S, T such that

(S)ij =

{
1 vi is the start vertex of ej in G,

0 otherwise.
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and

(T )ij =

{
1 vi is the terminal vertex of ej in G,

0 otherwise.

Note then that if A,M are the adjacency matrix and directed edge matrix

respectively of G, then A = ST T and M = TST . (If we allowed G to contain

bidirected edges, then A would still be ST T , but M would not be TST .) Thus,

(
I 0

T T I

)(
I Su

0 I −Mu

)
=

(
I Su

T T I

)
=

(
I − Au Su

0 I

) (
I 0

T T I

)

which implies that det(I −Mu) =det(I − Au).

This gives us a means of bounding the degree of the reciprocal of the Ihara zeta

function in this special case:

Theorem 6.5. Let G be a directed graph with no bidirected edges. Then the g ≤
deg (ζG(u)−1) ≤ |V | where g is the girth of G.

Proof. Note that degree of the polynomial det(I −Au) is at most |V | (since A is a

|V | × |V | matrix). So, deg (ζG(u)−1) ≤ |V |. By Theorem 3.1 (which, as previously

mentioned, extends to digraphs), deg (ζG(u)−1) ≥ g where g is the girth of G.

Figure 6.1 shows that the bounds given in the theorem are achievable.

6.3 Revisiting Theorem 4.1

Recall that Theorem 4.1 states that if we replace an edge e of an undirected

graph X with a walk of length k, then as k → ∞, the limit of the Ihara zeta

functions of the resulting graphs is the Ihara zeta function of X − e within a

tragically small neighborhood of the origin. In this section, we not only extend

this result to include the promised gloriously large region of radius one, but also

consider directed graphs (which may contain bidirected edges) in which the edge

we wish to delete may or may not be bidirected.
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g = 3

|V | = 4

ζ(u)−1 = 1− 2u3

g = 3

|V | = 4

ζ(u)−1 = 1− u3 − u4

Figure 6.1 Examples illustrating that both the lower and upper bounds given in
Theorem 6.5 for the degree of the Ihara zeta function of a digraph are achievable

Theorem 6.6. Let Y be a directed graph possibly with bidirected edges (also, allow

Y to break all simplifying assumptions except that Y must be finite) and let e ∈
Ed(Y ). Define X to be the graph such that V (X) = V (Y ) and Ed(X) = Ed(Y )−
{e, e−1}. Define Xk to be the graph obtained by adding a walk W of length k+1 to

X from s(e) to t(e). If e−1 6∈ Ed(Y ) then take W to be a directed walk; otherwise,

take W to be an undirected walk (that is, a walk composed of bidirected edges).

Then

ζXk
(u)−1 = ζX(u)−1 − p1(u)uk + p2(u)u2k

where

p1(u) = 2ζ−1
X − ζ−1

Y−{e} − ζ−1
Y−{e−1}

and

p2(u) = ζ−1
X − ζ−1

Y−{e} − ζ−1
Y−{e−1} + ζ−1

Y .

Proof. Let X, Y , e, Xk be as in the theorem. Let Wk be the multiedge zeta

function of Y specialized such that

(Wk)ij =





u if ei feeds into ej 6= e−1
i , e 6= ei, and ei, ej ∈ Ed(G);

uk+1 if ei feeds into ej 6= e−1
i , ei ∈ {e, e−1}, and ej ∈ Ed(G);

0 otherwise.
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Note that ζXk
(u)−1 = det(I −Wk).

Define P to be a permutation matrix such that the penultimate column and

row of P T WkP correspond to the directed edge e and the last column and row

correspond to e−1. Note then that P T WkP − I has the form




Mu− I xu yu

aT uk+1 −1 0

bT uk+1 0 −1




where the zero-one vectors a, b, x, y and the matrix M are the same for every k.

In particular, M is a directed edge matrix for X and

P




M x y

aT 0 0

bT 0 0


 P T

is a directed edge matrix for Y .

Thus,

ζXk
(u)−1 = det (Wk − I)

= det
(
P T (Wk − I)P

)

= det
(
P T (Wk)P − I

)

= det




Mu− I xu yu

aT uk+1 −1 0

bT uk+1 0 −1




= det




Mu− I xu yu

aT uk+1 −1 0

bT uk+1 0 0


− det

(
Mu− I xu

aT uk+1 −1

)

= det




Mu− I xu yu

aT uk+1 0 0

bT uk+1 0 0


− det

(
Mu− I yu

bT uk+1 0

)
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− det

(
Mu− I xu

aT uk+1 0

)
+ det

(
Mu− I

)

= u2k det




Mu− I xu yu

aT u 0 0

bT u 0 0


− uk det

(
Mu− I yu

bT u 0

)

− uk det

(
Mu− I xu

aT u 0

)
+ det

(
Mu− I

)
.

We will now compute each of these determinants separately. The last determi-

nant is just ζX(u)−1 since M is the directed edge matrix of X. Next we compute

the uk determinants:

det

(
Mu− I xu

aT u 0

)
= det

(
Mu− I xu

aT u −1

)
+ det

(
Mu− I

)

=− det




Mu− I xu 0

aT u −1 0

0 0 −1


 + det

(
Mu− I

)

=− ζY−{e−1}(u)−1 + ζX(u)−1.

Similarly,

det

(
Mu− I yu

bT u 0

)
= −ζY−{e}(u)−1 + ζX(u)−1.
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Finally, we compute the u2k determinant:

det




Mu− I xu yu

aT u 0 0

bT u 0 0


 = det




Mu− I xu yu

aT uk+1 −1 0

bT uk+1 0 −1


 + det

(
Mu− I yu

bT uk+1 0

)

+ det

(
Mu− I xu

aT uk+1 0

)
− det

(
Mu− I

)

= ζY (u)−1 − ζY−{e−1}(u)−1 − ζX(u)−1

− ζY−{e}(u)−1 − ζX(u)−1 + ζX(u)−1

= ζY (u)−1 − ζY−{e−1}(u)−1 − ζY−{e}(u)−1 − ζX(u)−1.

So the result holds.

A few examples of the polynomials p1, p2 contained in this theorem are pre-

sented in Table 6.1.

Recognizing p1, p2 as linear combinations of Ihara zeta functions allows us to

find meaning in whether or not these polynomials are identically zero if Y is an

undirected graph, as will be demonstrated by the following corollary.
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Table 6.1 Some illustrative examples of ζX , p1, p2 from Theorem 6.6

The Graph X

(with f1 drawn as

a dashed edge)

Associated Polynomials

ζX(u)−1 = 1− 4u3 − 2u4 + 4u6 + 4u7 + u8 − 4u10

p1(u) = 4u3 + 4u4 − 8u6 − 12u7 + 4u8 + 8u9

p2(u) = 4u6 + 8u7 − 8u9 − 20u10 + 16u12

ζX(u)−1 = 1− 2u4 + u8

p1(u) = 4u3 − 4u7

p2(u) = 4u6 − 4u10

ζX(u)−1 = 1− 2u3 + u6

p1(u) = 2u3 + 2u4 − 2u6 − 2u7

p2(u) = u6 + 2u7 + u8 − 4u10

ζX(u)−1 = 1

p1(u) = 2u3

p2(u) = u6

ζX(u)−1 = 1− 4u3 + 6u6 − 4u9 + u12

p1(u) = 0

p2(u) = −4u8 + 8u11 − 4u14

ζX(u)−1 = 1− 2u3 + u6

p1(u) = 2u3 − 4u6 + 4u8 + 2u9 − 4u11

p2(u) = u6 − 2u9 + 4u11 + u12 − 4u14

ζX(u)−1 = 1− 2u3 + u6

p1(u) = 2u3 − 4u6 + 2u9

p2(u) = u6 − 2u9 + u12
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Corollary 6.7. Let Y,X, e, p1, p2 be as in Theorem 6.6. Additionally, suppose Y

is an undirected graph. Define ê to be the undirected version of the directed edge

e. Then

(i) the edge ê is a bridge in Y if and only if p1(u) is identically zero,

(ii) the edge ê is a bridge to a tree (that is, one of the connected components

formed by the removal of ê is a tree) in Y if and only if p2(u) is identically

zero.

Proof. We will first prove (i). So, suppose p1(u) is identically zero. Then by

Theorem 6.6, ζX(u)−1 = ζY (u)−1. But the primes counted in the product definition

of the Ihara zeta function for X are a subset of the primes counted in the product

definition of the Ihara zeta function for Y . So, for |u| small,

∏

[P ]

(1− uν(P ))−1 = 1

where the product is restricted to only those primes [P ] which are contained in

Y but not in X. This of course implies that there are no such primes [P ], which

means there are no primes in Y which pass through the edge e. So, there is no

walk from the terminal vertex of e to the start vertex of e. Thus, the only walk

in Y from one vertex of ê to the other contains ê itself. Therefore, ê is a bridge.

The other direction of the implication (i) is proved simply by following the proof

for this direction in reverse.

Now will we prove (ii). So, suppose p2(u) is identically zero (and that we have

no foreknowledge concerning whether or not p1(u) is identically zero). Then by

Theorem 6.6, ζX2|E(X)|+1
(u)−1 = ζX(u)−1 − p1(u)u2|E(X)|+1 and ζX2|E(X)|+2

(u)−1 =

ζX(u)−1 − p1(u)u2|E(X)|+2 where Xi are defined as in Theorem 6.6. Suppose p1(u)

is not identically zero. Note then that

deg
(
p1(u)u2|E(X)|+1

)
> 2|E(X)| = deg

(
ζX(u)−1

)
.
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So, deg
(
ζX2|E(X)|+k

(u)−1
)

= deg
(
p1(u)u2|E(X)|+k

)
for k = 1, 2. This is a contradic-

tion however, since the deg
(
p1(u)u2|E(X)|+1

) 6= deg
(
p1(u)u2|E(X)|+2

)
. Thus, p1(u)

is also identically zero. Since both p1(u), p2(u) are identically zero, all the primes

in Y are also contained in X by Theorem 6.6. So, there are no primes which

contain ê. Thus, ê is a bridge to a tree. Note that this tree may in fact be trivial

(that is, a single vertex). For the other direction of the implication (ii), just note

that if ê is a bridge to a tree, then ζX(u) = ζXk
(u) and apply Theorem 6.6 for two

different values of k.

Corollary 6.7 (i) then provides as with a simplification of Theorem 6.6 in the

case in which the edge we wish to delete is a bridge:

Corollary 6.8. Let Y, X, Xk, e be as in Theorem 6.6. Additionally, suppose Y is

undirected and the undirected version of the directed edge e is a bridge. Then

ζ−1
Xk

= ζ−1
X +

(
ζ−1
Y − ζ−1

X

)
u2k.

Proof. By Corollary 6.7, p1(u) is identically 0 which implies that

−2ζ−1
X = −ζ−1

Y−{e} − ζ−1
Y−{e−1}.

Thus,

p2(u) = ζ−1
X − ζ−1

Y−{e} − ζ−1
Y−{e−1} + ζ−1

Y

= ζ−1
X − 2ζ−1

X + ζ−1
Y

= ζ−1
Y − ζ−1

X

and the corollary holds.

Using Corollary 6.8 as a guide, we constructed the graph in Figure 6.2 so that

the reciprocal of the radius of convergence of its Ihara zeta function is approxi-

mately π. Note that no Ihara zeta function has radius of convergence exactly π−1

since Ihara zeta functions are reciprocals of polynomials with integer coefficients
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and π (and thus, π−1) is transcendental. The program given in Section 9.9 at-

tempts to construct a graph such that the reciprocal of the radius of convergence

of its Ihara zeta function is within some ε of a target value greater than 1.

Figure 6.2 A graph whose Ihara zeta function has radius of convergence R where
R−1 ≈ 3.141593 ≈ π (that is, both R−1 and π are 3.141593 when rounded to six
places beyond the decimal)

We can also use the relations in Theorem 6.6 to create relations among X and

the Xk as illustrated by the following corollary.

Corollary 6.9. For X, Xk as in the theorem and |u| < 1,

ζX(u)−1 =
u3ζXk

(u)−1 − (u2 + u)ζXk+1(u)−1 + ζXk+2(u)−1

u3 − (u2 + u) + 1
.

for all integers k ≥ 0.

Proof. By the theorem, there exist finite polynomials p1(u) and p2(u) independent

of k such that ζXk
(u)−1 = ζX(u)−1 − p1(u)uk + p2(u)u2k for all integers k ≥ 0. So,

in particular, we have the following:

ζXk
(u)−1 = ζX(u)−1 − p1(u)uk + p2(u)u2k (6.1)
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ζXk+1
(u)−1 = ζX(u)−1 − p1(u)uk+1 + p2(u)u2k+2 (6.2)

Multiplying both sides of (6.1) by u and subtracting using (6.2), we find

uζXk
(u)−1 − ζXk+1

(u)−1 = (u− 1)ζX(u)−1 + p2(u)(u2k − u2k+2) (6.3)

which is true for all integers k ≥ 0. So, in particular, we have

uζXk+1
(u)−1 − ζXk+2

(u)−1 = (u− 1)ζX(u)−1 + p2(u)(u2k+2 − u2k+4) (6.4)

Multiplying both sides of (6.3) by u2 and subtracting using (6.4), we find

u3ζXk
(u)−1 − (u2 + u)ζXk+1(u)−1 + ζXk+2(u)−1 =

(
u3 − (u2 + u) + 1

)
ζ−1
x .

In the next corollary, we extend Theorem 6.6 by allowing for the addition of

vertices to more than one edge.

Corollary 6.10. Let Y be directed graph (possibly with bidirected edges) and let

F = {f1, . . . , f|F |} ⊆ Ed(Y ) such that fi 6= f−1
j for 1 ≤ i, j ≤ |F |. Define X to be

the graph such that V (X) = V (Y ) and Ed(X) = Ed(Y )−F−{e : e−1 ∈ F}. Define

X(k1, . . . , k|F |) to be the graph obtained by adding a walk Wi of length ki + 1 to X

from s(fi) to t(fi) where Wi is directed if f−1
i 6∈ Ed(Y ) and undirected otherwise.

Define Y (A,B, C) to be the graph such that V (Y (A,B, C)) = V (Y ) and

Ed(Y (A,B, C)) = Ed(Y )− (A ∪B ∪ {e ∈ Ed(Y ) : e−1 ∈ A ∪ C}).

Then

ζX(k1,...,k|F |)(u)−1 =
∑

A,B,C⊆F

A,B,C disjoint

ζY (A,B,C)(u)−1pA,B,C,F (u)

where

pA,B,C,F (u) =
∏

i
fi∈A

(
1− 2uki + u2ki

) ∏
i

fi∈B

(
uki − u2ki

) ∏
i

fi∈C

(
uki − u2ki

) ∏
i

fi∈F−(A∪B∪C)

(u2ki).
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Remark 6.11. The degree of pA,B,C,F (u) is 2
∑|F |

i=1 ki.

Proof. We induct on |F |. If |F | = 1, then the corollary follows immediate from

the theorem. So, suppose |F | ≥ 2 and the corollary holds in the case in which we

take F − {f1} to be the set of edges to be deleted. Then by the theorem,

ζ−1
X(k1,...,k|F |)

= ζ−1

X(0,k2,...,k|F |)−{f1,f−1
1 } −

(
2ζ−1

X(0,k2,...,k|F |)−{f1,f−1
1 }

−ζ−1
X(0,k2,...,k|F |)−{f1} − ζ−1

X(0,k2,...,k|F |)−{f−1
1 }

)
uk1

+
(
ζ−1

X(0,k2,...,k|F |)−{f1,f−1
1 } − ζ−1

X(0,k2,...,k|F |)−{f1}

−ζ−1

X(0,k2,...,k|F |)−{f−1
1 } + ζ−1

X(0,k2,...,k|F |)

)
u2k1

=
(
1− 2uk1 + u2k1

)
ζ−1

X(0,k2,...,k|F |)−{f1,f−1
1 }

+
(
uk1 − u2k1

)
ζ−1
X(0,k2,...,k|F |)−{f1}

+
(
uk1 − u2k1

)
ζ−1

X(0,k2,...,k|F |)−{f−1
1 }

+
(
u2k1

)
ζ−1
X(0,k2,...,k|F |)

(by the induction hypothesis)

=
(
1− 2uk1 + u2k1

)



∑

A,B,C⊆F−{f1}
A,B,C disjoint

ζ−1
Y (A∪{f1},B,C)pA,B,C,(F−{f1})(u)




+
(
uk1 − u2k1

)



∑

A,B,C⊆F−{f1}
A,B,C disjoint

ζ−1
Y (A,B∪{f1},C)pA,B,C,(F−{f1})(u)




+
(
uk1 − u2k1

)



∑

A,B,C⊆F−{f1}
A,B,C disjoint

ζ−1
Y (A,B,C∪{f1})pA,B,C,(F−{f1})(u)




+
(
u2k1

)



∑

A,B,C⊆F−{f1}
A,B,C disjoint

ζ−1
Y (A,B,C)pA,B,C,(F−{f1})(u)



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=




∑

f1∈A

A,B,C⊆F

A,B,C disjoint

ζ−1
Y (A,B,C)pA,B,C,F (u)




+




∑

f1∈B

A,B,C⊆F

A,B,C disjoint

ζ−1
Y (A,B,C)pA,B,C,F (u)




+




∑

f1∈C

A,B,C⊆F

A,B,C disjoint

ζ−1
Y (A,B,C)pA,B,C,F (u)




+




∑

f1∈F−(A∪B∪C)

A,B,C⊆F

A,B,C disjoint

ζ−1
Y (A,B,C)pA,B,C,F (u)




=
∑

A,B,C⊆F

A,B,C disjoint

ζ−1
Y (A,B,C)pA,B,C,F (u).

Therefore, the result holds.

An example illustrating the application of Corollary 6.10 is shown in Figure

6.3. If we add the same number of vertices to each edge in F (that is, if k1 = k2 =

· · · = k|F | in Corollary 6.10), then we obtain the following:

Corollary 6.12. If everything is as in the previous corollary, then

ζXk
(u)−1 =

∑
ζY (A,B,C)(u)−1(1− uk)2|A|+|B|+|C|(uk)2|F |−2|A|−|B|−|C|

where the sum is over disjoint subsets A,B, C of F and Xk = X(k, . . . , k︸ ︷︷ ︸
|F | times

).

Proof. From the previous corollary, ζXk
(u)−1 =

∑
ζY (A,B,C)(u)−1(1− 2uk + u2k)|A|(uk − u2k)|B|+|C|(u2k)|F |−|A|−|B|−|C|.

Note that

(1− 2uk + u2k)|A|(uk − u2k)|B|+|C|(u2k)|F |−|A|−|B|−|C|

= (1− uk)2|A|(1− uk)|B|+|C|(uk)|B|+|C|(uk)2|F |−2|A|−2|B|−2|C|

= (1− uk)2|A|+|B|+|C|(uk)2|F |−2|A|−|B|−|C|.

So, the result holds.
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Y

F = {f1, f2}
f1 = (a, b)

f2 = (a, c)

X(3, 5)

ζX(3,5)(u)−1 =
∑

A,B,C⊆F

A,B,C disjoint

ζY (A,B,C)(u)−1pA,B,C,F (u) =

1− 2u7 − u8 − u11 + u14 + u15 + u18

Figure 6.3 Example for Corollary 6.10 (Note: Table 6.2 explicitly lists all possible
ζY (A,B,C)(u)−1 for this example.)

Now, finally, we expand Theorem 4.1 to the entire open neighborhood of radius

one about the origin:

Corollary 6.13. Let G be an undirected graph. Let F0 ⊆ E and for each non-

negative integer k define G(F0, k) to be the graph G but with every edge contained

in F0 divided into k + 1 edges. Then for each u such that |u| < 1,

lim
k→∞

ζG(F0,k)(u) = ζ(G−F0)(u).

Proof. Take Y = G and F to be a set of directed edges formed by arbitrary

orienting the edges in F0. Then apply the previous corollary and note that each

term in the sum for which A 6= F contains uk as a factor. Thus, the only term

which does not go to zero as k goes to infinity is the term in which A = F and

B = C = ∅. This term is

ζY (F,∅,∅)(u)−1(1− 2uk + u2k)|F |
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which goes to ζY (F,∅,∅)(u)−1 as k → ∞. Since Y (F, ∅, ∅) = G − F0, the result

holds.
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Table 6.2 Explicit listing of ζY (A,B,C)(u)−1 corresponding to the choices of the graph
Y and the set of directed edges F = {f1, f2} given in Figure 6.3

A B C ζY (A,B,C)(u)−1

∅ ∅ ∅ 1− 2u3 − 2u4 + 2u7 + u8

{f1} ∅ ∅ 1− u3

∅ {f1} ∅ 1− 2u3 − u4 + u7

∅ ∅ {f1} 1− u3 − u4

{f2} ∅ ∅ 1− 2u4 + u8

{f1, f2} ∅ ∅ 1

{f2} {f1} ∅ 1− u4

{f2} ∅ {f1} 1− u4

∅ {f2} ∅ 1− 2u4 + u8

{f1} {f2} ∅ 1

∅ {f1, f2} ∅ 1− u4

∅ {f2} {f1} 1− u4

∅ ∅ {f2} 1− 2u3 − 2u4 + 2u7 + u8

{f1} ∅ {f2} 1− u3

∅ {f1} {f2} 1− 2u3 − u4 + u7

∅ ∅ {f1, f2} 1− u3 − u4
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Improving bounds on the poles

7.1 Pole bounds for digraphs

Next, we revisit Theorem 2.2 and its corollary which used the SVD of a directed

edge matrix to bound the poles of Ihara zeta functions of undirected graphs. Here

we apply the same approach to digraphs with no bidirected edges:

Theorem 7.1. Suppose G is a digraph which satisfies our simplifying assumptions

and also contains no bidirected edges. Then the singular values of a directed edge

matrix M of G are

{c1, c2, ..., cn, 0, ..., 0}
where ci =

√
id(vi)od(vi) (that is, the geometric mean of the indegree and outdegree

of vi) and v1, v2, . . . , vn are the n vertices of G.

Proof. Let G be as in the theorem. Let {e1, e2, . . . , e2m} be the directed edges of

H where H is the graph underlying G. Choose the indexing of the ei such that

edges ending at the same vertex are listed together. That is, if t(ei) = t(ej) for

some i < j then tk = t(ei) for all k, i < k < j. Let M be the 2m × 2m matrix

defined by

(M)ij =

{
1 if t(ei) = s(ej) and s(ei) 6= t(ej),

0 otherwise.

63
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Then for each i and j, (MMT )ij is a count of the number of edges in Ed(G) −
{e−1

i , e−1
j } whose start vertex is the end vertex of both ei and ej. So,

(
MMT

)
ij

=

{
0 if t(ei) 6= t(ej),

od(t(ei)) if t(ei) = t(ej).

Now choose {α1, α2, . . . , αn} such that 1 ≤ α1 < α2 < · · · < αn ≤ 2m and

tαi
= vi for each i, 1 ≤ i ≤ n. Define ci =

√
id(vi)od(vi) and note MMT =

diag(A1, A2, . . . , An) where Ai is a id(vi) × id(vi) matrix with c2
i in every entry.

For each i, define id(vi)× id(vi) matrixes Bi =




1 0 0 · · · 0

1 −1 0 · · · 0

1 0 −1
. . .

...
...

...
. . . −1 0

1 0 · · · 0 −1




, which

is nonsingular (since the product of its diagonal entries is nonzero), and Ci =

diag(c2
i , 0, ..., 0). Then AiBi = BiCi.

Now define X = diag(B1, B2, . . . , Bn). Note X is nonsingular and (MMT )X

= diag(A1, A2, . . . , An) · diag(B1, B2, . . . , Bn) = diag(B1, B2, . . . , Bn) · diag(C1,

C2, . . . , Cn) = X · diag(C1, C2, . . . , Cn). Thus, the columns of X are eigenvectors

of MMT with corresponding eigenvalues appearing on the diagonal of the matrix

diag(C1, C2, . . . , Cn). By the argument used in the proof of Theorem 2.2 then, the

singular values for any directed edge matrix of G are {c1, c2, . . . , cn, 0, ..., 0}.

As before, we will use these singular values to bound the poles of Ihara zeta

functions. However, since the smallest singular value is zero, the theorem only

provides us with a pole-free region about the origin:

Corollary 7.2. Suppose G is a digraph which satisfies our simplifying assumptions

and also contains no bidirected edges. Then no poles of the Ihara zeta function of

G are contained within {u : |u| < 1
c
} where c = max

v∈V (G)

√
id(v)od(v).
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Proof. Let M be a directed edge matrix of the graph G. By the theorem, the

largest singular value of M is c = max
v∈V (G)

√
id(v)od(v). So, by the argument used

in the proof of Corollary 2.3, the result holds.

In the following section, we will introduce directed edge matrix-induced graphs

which will allow us to improve upon this corollary both by extending the set of

graphs to which it applies and (in some cases) by expanding the pole-free region.

We will then be able to compare the bound given by this corollary to the bound

from Corollary 2.3.

7.2 Directed Edge Matrix-Induced Graphs

If G is a directed or undirected graph, then the directed edge matrix of G is

an adjacency matrix of a directed graph. We will call the graph created in this

way (less any isolated vertices) the directed edge matrix-induced graph of G and

denote this graph by L(G). Now define L0(G) = G and Lk+1(G) = L
(
Lk(G)

)
for

k ≥ 0. Figure 7.1 shows Lk(K4 − e) for k = 0, 1, 2. If G is a directed cycle, then

Lk(G) = G for all k. (In the special case where G is a directed graph with no

bidirected edges, L(G) is known as the line digraph G. In the special case where

G is an undirected graph, L(G) is known as the oriented line graph of G.)

Theorem 7.3. Let G be a directed or undirected graph. Then ζG(u) = ζLk(G)(u)

for all non-negative integers k.

Remark 7.4. The case in which G is undirected and k = 1 is contained in Kotani

and Sunada [6].

Proof. Let G be a directed or undirected graph. Let P,PL be the set of primes in

G,L(G) respectively. We will prove the theorem by showing that we can define a

one-to-one mapping from P onto PL which preserves lengths of primes.

Label the vertices of L(G) with the directed edges of G they correspond to

according to the directed edge matrix of G. Note then that by the relationship
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G L(G) L2(G)

ζG(u) = ζL(G)(u) = ζL2(G)(u) =

−(−1 + u)2(1 + u)(1 + u2)(1 + u + 2u2)(−1 + u2 + 2u3)

Figure 7.1 Examples of directed edge matrix-induced graphs illustrating the oper-
ation L on K4 − e

between the directed edge matrix of G and the adjacency matrix of L(G), directed

edge e feeds into directed edge f in G if and only if the directed edge (e, f) is

contained in Ed(L(G)). Define a function φ from {C : [C] ∈ P} to {C : [C] ∈ PL}
such that φ(C0) = {(e1, e2), (e2, e3), . . . , (ej, e1)} where the ei are directed edges of

G such that C0 = {e1, e2, . . . , ej}.
We will show that φ is well defined. Since [C0] is a prime in G, ei feeds into

ei+1 for i, 1 ≤ i < j, and ej feeds into e1. Thus, the directed edges (ej, e1) and

(ei, ei+1) for i, 1 ≤ i < j, are contained in Ed(D(G)) and so φ(C0) is a closed

walk in L(G). Now we will show φ(C0) is backtrackless. Suppose φ(C0) contains a

backtrack and, without loss of generality, assume this backtrack is (e1, e2)(e2, e1).

Then e1 feeds into e2 and e2 feeds into e1 which implies e1 = e−1
2 . This is a con-

tradiction since C0 = {e1, e2, . . . , ej} and C0 is backtrackless. So, φ(C0) too is

backtrackless. A similar argument shows φ(C0) is also tailless. Now suppose there

exists some integer k ≥ 2 which divides j and {(e1, e2), (e2, e3), . . . , (ej, e1)} =

{(e1, e2), (e2, e3), . . . , (ej/k, e1)}k. Then C0 = {e1, e2, . . . , ej/k}k, again a contra-

diction since [C0] is a prime. Therefore, [φ(C0)] ∈ PL. The function φ pre-

serves lengths since ν(C0) = j = ν(φ(C0)). It is also invertible since for any
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{(f1, f2), (f2, f3), . . . , (fj, f1)} ∈ {C : [C] ∈ PL}, φ({f1, f2, f3, . . . , fj}) = {(f1, f2),

(f2, f3), . . . , (fj, f1)}.
We can show that {f1, f2, f3, . . . , fj} ∈ {C : [C] ∈ P} by simply reversing the

argument which demonstrated φ(C0) ∈ {C : [C] ∈ PL}. Note also that [φ(C0)]

does not depend on our choice of representative C0 for the prime [C0]. Thus, the

function ψ from P to PL defined by ψ([C]) = [φ(C)] is one-to-one, onto, and length

preserving. Therefore, for u sufficiently small,

∏

[C]∈P
(1− uν(C))−1 =

∏

[φ(C)]∈PL

(1− uν(φ(C)))−1 =
∏

[C]∈PL

(1− uν(C))−1

which implies ζG(u)−1 − ζL(G)(u)−1 = 0 in some neighborhood of the origin. Since

both ζG(u)−1, ζL(G)(u)−1 are finite polynomials, this implies ζG(u)−1 = ζL(G)(u)−1.

Since G was an arbitrary directed or undirected graph, the result holds by induc-

tion.

The following results tell us how large we can expect the graph Lk(G) to be.

Theorem 7.5. Let G be a directed or undirected graph with a directed edge matrix

M . Then |Ed(L
k(G))| = ∑

i,j

(Mk)ij for all positive integers k.

Proof. For each k, let φLk(G) be the one-to-one mapping from backtrackless directed

walks of length at least one in Lk(G) onto backtrackless directed walks (of length

greater than or equal to zero) in Lk+1(G) as defined in the lemma. Recall that

ν(C0) = ν(φLk(G)(C0)) + 1.

Now define ψk to be the one-to-one mapping from backtrackless directed walks

of length k + 1 in G onto the directed edges of Lk(G) (which are the walks of

length one in Lk(G)) by ψk(C0) = φLk−1(G) ◦φLk−2(G) ◦φLk−3(G) ◦ · · · ◦φL1(G) ◦φG for

k > 0. So, the number of edges of Lk(G) is exactly the number of backtrackless

directed walks of length k + 1 in G. Since the number of backtrackless directed

walks of length k + 1 in G is
∑
i,j

(Mk)ij where M is a directed edge matrix of G,

|Ed(L
k(G))| = ∑

i,j

(Mk)ij for all positive integers k
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Corollary 7.6. Let G be a directed or undirected graph with a directed edge matrix

M . Then |V (Lk+1(G))| = ∑
i,j

(Mk)ij for all positive integers k.

Proof. Note that |Ed(L
k(G))| = |V (Lk+1(G))| (since the adjacency matrix for

Lk(G) is formed from the directed edge matrix of Lk+1(G)) for all positive integers

k and apply the theorem.

Remark 7.7. If we allow our simplifying assumption that every directed edge be

contained in some prime to be violated, then the equality in the corollary must be

replaced by |V (Lk+1(G))| ≤ ∑
i,j

(Mk)ij. This is due to our elimination of isolated

vertices when forming Lk+1(G).

7.3 Indegree/outdegree bound on the poles

As promised, we will now reexamine Corollary 7.2 in light of what we have

learned about directed edge matrix-induced graphs to obtain the following result:

Corollary 7.8. Suppose G is a digraph which satisfies our simplifying assumptions

and also contains no bidirected edges. Then no poles of the Ihara zeta function of

G are contained within {u : |u| < 1
c
} where

c = min
k≥0

max
x,y∈V (G)

(x,y)∈Pk

√
id(x)od(y)

and Pk = {(x, y) : there exists a backtrackless directed walk from vertex x to vertex

y of length k in G}.

Proof. Let G be as described in the corollary. By Corollary 7.2 and Theorem 7.3,

no poles of the Ihara zeta function of G are contained within {u : |u| < 1
c
} where

c = min
k≥0

max
v∈V (Lk(G))

√
id(u)od(v).
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So, we need only show that for each k ≥ 0,

max
v∈V (Lk(G))

√
id(v)od(v) = max

u,v∈V (G)

(u,v)∈Pk

√
id(u)od(v).

For any directed walk W , define s(W), t(W) to be the start and terminal ver-

tices respectively of W . Note for any v ∈ V (Lk+1(G)), id(v) = id(s(v)) since

v ∈ Ed(L
k(G)) (that is, v is a directed walk of length one in Lk(G)) and the ver-

tices connected to v by a directed edge terminating at the vertex v in Lk+1(G)

are in one-to-one correspondence with the edges feeding into the edge v in Lk(G).

Thus, for any v ∈ V (Lk+1(G)), id(v) = id(s(v)) = id(s2(v)) = · · · = id(sk+1(v)).

Similarly, od(v) = od(tk+1(v)).

Now let ψk be the one-to-one mapping defined in the proof of Theorem 7.5 from

backtrackless directed walks of length k +1 in G onto V (Lk+1(G) (or equivalently,

Ed(L
k(G))) for k > 0. Also, define ψ0 to be the identity mapping on Ed(G)

which we will think of as a mapping from the set of backtrackless directed walks of

length one in G to V (L0(G)). So, ψ−1
k (V (Lk+1(G))) are the backtrackless directed

walks of length k + 1 in G. Also, s(ψ−1
k (v)) = sk+1(v) and t(ψ−1

k (v)) = tk+1(v).

This is just due to the fact that if for example ψ−1
3 (v) = {f1, f2, . . . , f4} where

the fi are directed edges of G then v = (((f1, f2), (f2, f3)), ((f2, f3), (f3, f4))) and

so s4(v) = s3(((f1, f2), (f2, f3))) = s2((f1, f2)) = s(f1) = s({f1, f2, . . . , f4}) =

s(ψ−1
3 (v)). Thus, for each k ≥ 0,

max
u,v∈V (G)

(u,v)∈Pk

√
id(u)od(v) = max

W∈ψ−1
k (V (Lk+1(G)))

√
id(s(W))od(t(W))

= max
v∈V (Lk+1(G))

√
id(s(ψ−1

k (v)))od(t(ψ−1
k (v)))

= max
v∈V (Lk(G))

√
id(sk+1(v))od(tk+1(v))

= max
v∈V (Lk(G))

√
id(v)od(v)

as desired.
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Note that Corollary 7.8 also holds if G contains bidirected edges (due to the

relation between the in/outdegrees of G and L(G) and the fact that L(G) is

a directed graph with no bidirected edges even if G itself contains bidirected

edges). Also note however that in the case where G is an undirected graph,

id(v) = id(s(v)) − 1 = deg(s(v)) − 1 for any v ∈ V (L(G)) where s is as in the

proof of Corollary 7.8. This fact combined with Corollary 7.8 give us the following

result:

Corollary 7.9. Suppose G is an undirected graph. Then no poles of the Ihara zeta

function of G are contained within {u : |u| < 1
c
} where

c = min
k≥0

max
x,y∈V (G)

(x,y)∈Pk

√
(deg(x)− 1)(deg(y)− 1)

and Pk = {(x, y) : there exists a backtrackless walk from vertex x to vertex y of

length k in G}.

At worst, Corollary 7.9 will just give us the lower bound on the poles guaranteed

by Theorem 2.2. The set of graphs for which this occurs is B = {X : for all k,

there exists a (not necessarily closed) backtrackless walk of length k in the graph

X which begins and ends with a vertex of degree max
v∈V (G)

(deg(v))}.
At best, Corollary 7.9 will give us a lower bound which is the square root of

the lower bound from Theorem 2.2. Call the set of graphs for which this occurs

G. A necessary but not sufficient condition for a graph X to be in G is that there

exists an integer k such that every backtrackless walk of length k in the graph X

which begins with a vertex of degree max
v∈V (X)

(deg(v)) ends with a vertex of degree

2.

The application of Corollary 7.9 to a small yet interesting and instructive set of

graphs is presented in Table 7.1. Note that the first graph is neither in G nor B, the

second is in G, and the third is in B. Also, note that the first graph demonstrates

that the necessary condition given above for a graph to be in G is not sufficient.



71

There are classes of graphs for which the pole-free neighborhood of the origin

given in Corollary 7.9 is the largest possible (that is, c−1 is the radius of convergence

of ζ). Regular graphs, for instance, have this property. More interestingly, so do

bi-regular bipartite graphs (since by Hashimoto [4] the radius of convergence of

the Ihara zeta function of a bi-regular bipartite graph G is
√

pq where p + 1, q + 1

are the two degrees of the vertices of G).



72

Table 7.1 Some interesting examples of applying Corollary 7.9 by using the values
of ck = max

x,y∈V (G)

(x,y)∈Pk

√
(deg(x)− 1)(deg(y)− 1) to find a lower bound on the poles of ζ

The Graph X

(with R, the radius of

convergence of ζX)

Values of ck and 1
c

R = 1√
3
≈ 0.577350

ck =





2 if k = 2,√
6 if k is odd,

3 otherwise.

So, 1
c

= 0.5.

R = the real root of 3u5 + u3 + u2 − 1

≈ 0.641217

ck =

{ √
3 if k = 1,

3 otherwise.

So, 1
c

= 1√
3
≈ 0.577350.

R = the real root of 2u3 + u2 − 1

≈ 1.521378

ck = 2 for all k ≥ 0.

So, 1
c

= 0.5.
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Multipath zeta functions

8.1 Specialization to Ihara zeta function

In [12] and [13], Stark and Terras introduce and develop the path zeta function:

Definition 8.1. Let r be the rank of the fundamental group of an undirected

graph G. Then the 2r × 2r matrix Z defined by

(Z)ij =

{
zij if |i− j| 6= r,

0 otherwise.

where the zij are complex variables is the multipath matrix of G.

Definition 8.2. Let {C1, . . . , Cr} be a minimal generating set for the fundamental

group of an undirected graph G. For i, 1 ≤ i ≤ r, let Cr+i = C−1
i . Let [C] be

a prime in G and choose integers α1, . . . , αk ∈ {1, . . . , r} such that
∏k

i=1 Cαi
is

equivalent to C after removing any tail or backtrackings. Then the multipath

norm of C is

NP (C) = zαkα1

k−1∏
i=1

zαiαi+1
.

Definition 8.3. The multipath zeta function of an undirected graph G is

ζP (Z,G) =
∏

[C]

(1− NP (C))−1.
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By Theorem 4 in [12], ζP (Z, G)−1 = det(I−Z). Also, if we define S, {e1, . . . , er},
and {C1, . . . , Cr} as in Lemma 5.2 and define ZIhara to be Z with variables spe-

cialized such that

zij =

{
dS(t(ei), s(ej)) + 1 if |i− j| 6= r,

0 otherwise,

where dS is the vertex distance measure in S, then by Theorem 5 in [12], ζP (ZIhara, G)

is the Ihara zeta function of G. The procedure given in Section 9.4 calculates this

specialized multipath matrix.

8.2 Specialization for digraphs

We will now extend the definitions of a multipath matrix, norm, and zeta

function to directed graphs (which may contain bidirected edges).

Definition 8.4. Let G be a directed graph with underlying graph H. Let ZH

be a multipath matrix of H. Define ZG to be ZH specialized such that zij = 0 if

{ei, ej} 6⊆ Ed(G). Then ZG is a multipath matrix of G.

Definition 8.5. Let G be a directed graph with underlying graph H. Let NH
P be

the multipath norm associated with H. Let [C] be a prime in G. Then NG
P (C),

the multipath norm associated with G of C is just NH
P (C).

The multipath zeta function of a directed graph G then is defined as in the

case of undirected graphs.

Note that ζP (ZG, G) = ζP (ZG, H) (that is, the multipath zeta function of G is

just the multipath zeta function of the underlying graph H with the specialization

of variables described in the definition of the multipath matrix of G) since the

specialization causes the norm to select for primes in H which are also primes in

G. So, by Theorem 4 in [12], ζP (ZG, G)−1 = det(I − ZG).

Now let S be the spanning tree of H used to create ZIhara
H , the specialization

of the multipath matrix of H used to obtain the Ihara zeta function of H. Define
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ZIhara
G to be ZIhara

H specialized such that zij = 0 if either {ei, ej} 6⊆ Ed(G) or the

walk from t(ei) to s(ej) in S is not contained in G. Then ζP (ZIhara
G , G) is the Ihara

zeta function of G. The procedure given in Section 9.5 calculates ZIhara
G .
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Mathematica programs

In this chapter, we include our Mathematica 5.1 programs which should be run

after including the Combinatorica package with the following command:

<< DiscreteMath ‘Combinatorica‘

Also, note that comment lines are bracketed by (* *).

9.1 Calculating ζ−1 using Theorem 1.2

The following code creates a procedure which returns the reciprocal of the

Ihara zeta function of an undirected simple graph G using the method suggested

by Theorem 1.2:

(* Procedure for calculating the reciprocal of the Ihara zeta function
of a graph G *)

Ihara[G ] := Module[{A, Q, r},
A = ToAdjacencyMatrix[G];

Q = DiagonalMatrix[Total[A]] - IdentityMatrix[V[G]];

r = M[G] - V[G] + 1;
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(1 - uˆ2)ˆ(r - 1)* Det[IdentityMatrix[V[G]]

- ToAdjacencyMatrix[G]*u + Q*uˆ2]

];

Figure 9.1 A graph with a loop which could be created in Mathematica with the
command G=FromUnorderedPairs[{{1,1},{1,2},{1,3},{2,3}}]

So, after executing this procedure, 1/Ihara[CompleteGraph[4]] for example

would be the Ihara zeta function of K4.

Note that the ToAdjacencyMatrix[ ] function differs slightly from our definition

of an adjacency matrix. According to our definition, each loop is to be counted

twice while ToAdjacencyMatrix[ ] counts each loop only once. So, for instance, if

G is the graph in Figure 9.1, then our adjacency matrix might be




2 1 1

1 0 1

1 1 0




while ToAdjacencyMatrix[G] (with the same ordering of vertices used to determine

our adjacency matrix) would be the matrix




1 1 1

1 0 1

1 1 0


 .

So, if we wanted to calculate the Ihara zeta function of a graph which may

contain loops in Mathematica using the method suggested by Theorem 1.2, we
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would want to include following line (which doubles the diagonal entries of the

matrix A) immediately after the A = ToAdjacencyMatrix[G] command:

A = A + DiagonalMatrix[Table[A[[i, i]], {i, 1, Length[A]}]];

9.2 Creating a directed edge matrix

The following code creates a procedure which returns a directed edge matrix

of G where G is a simple undirected graph or a directed graph (possibly with

bidirected edges) whose underlying graph is simple:

(* Procedure for calculating a directed edge matrix of a graph G *)

DEM[G ] := Module[{Ed,Elabels,A},
Ed = ToOrderedPairs[G];

(* Use the Union[ ] function to eliminate repeats in the labeling
scheme which may be introduced if for instance both (a,b) and (b,a)
are in the directed edge set of G. *)

Elabels = Union[ToUnorderedPairs[G]];

(* Use RotateLeft[ ] to create the reversed edges for the column/row
labeling. *)

Elabels = Join[Elabels, RotateLeft[Elabels, 0, 1]];

A = ToAdjacencyMatrix[G];

Table[ If[(Part[Elabels, i, 2] == Part[Elabels, j, 1]) &&

(2*Abs[i - j] != Length[Elabels]) &&

MemberQ[Ed, Elabels[[i]]] && MemberQ[Ed, Elabels[[j]]], 1, 0],

i, Length[Elabels], j, Length[Elabels]]

];
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So, after executing this procedure, we could find the reciprocal of the Ihara

zeta function of a graph G with the following commands:

MG=DEM[G];

Det[IdentityMatrix[Length[MG]]-MG*u]

9.3 Creating a modified directed edge matrix

Note that a great deal of the machinery in the procedure for creating a directed

edge matrix is to account the ordering of edges such that e|E|+i = e−1
i (which gives

the directed edge matrix the structure described in Remark 1.5). Here we describe

a modified directed edge matrix which has less structure but also requires less

machinery to construct.

Definition 9.1. Let Ed(G) = {e1, e2, . . . , e|Ed(G)|} where G is a (directed or undi-

rected) graph. The 2|Ed(G)| × 2|Ed(G)| matrix M̃ given by

(
M̃

)
ij

=

{
1 if t(ei) = s(ej) and s(ei) 6= t(ej),

0 otherwise.

is defined to be a modified directed edge matrix of G.

Note that if M and M̃ are a directed edge matrix and modified directed edge

matrix of a (possibly directed) graph G respectively, then for some permutation

matrix P ,

P T MP =

(
M̃ 0

0 0k

)

where 0k is a k × k matrix of zeros and k = 2|E| − |Ed|. Thus, Theorem 1.4 also

holds (for both directed and undirected graphs) if the directed edge matrix M is
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replaced by a modified directed edge matrix M̃ since

ζG(u)−1 = det(I −Mu)

= det(I − PM̃P T u)

= det(P (I − M̃u)P T )

= det(P ) det(I − M̃u) det(P T )

= det(I − M̃u) det(PP T )

= det(I − M̃u).

The following code creates a procedure which returns a modified directed edge

matrix of G where G is a simple undirected graph or a directed graph (possibly

with bidirected edges) whose underlying graph is simple:

(* Procedure for calculating a modified directed edge matrix of a graph
G *)

MDEM[G ] := Module[{Ed},
Ed=ToOrderedPairs[G];

Table[If[(Part[Ed,i,2]==Part[Ed,j,1]) &&

(Part[Ed,i,1]!=Part[Ed,j,2]),1,0],i,Length[Ed],j,Length[Ed]]

];

So, after executing this procedure, we could find the reciprocal of the Ihara

zeta function of a graph G with the following commands:

MG=MDEM[G];

Det[IdentityMatrix[Length[MG]]-MG*u]

Also, the directed edge matrix-induced graph L(G) of G can be produced using

MDEM[ ] with the following command:

LG=FromAdjacencyMatrix[MDEM[G], Type -> Directed];
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9.4 Creating a specialized multipath matrix for

undirected graphs

The following code creates a procedure which returns a specialized multipath

matrix of G (as discussed in Section 8.1) where G is a simple undirected graph:

(* Procedure for calculating a specialized multipath matrix of an undi-
rected graph G *)

Multipath[G ] := Module[{S, Egen, r},
S = MinimumSpanningTree[G];

Egen = Complement[ToUnorderedPairs[G], ToUnorderedPairs[S]];

r = Length[Egen];

Egen = Join[Egen, RotateLeft[Egen, {0, 1}]];
Table[If[Abs[i - j] == r, 0,

uˆLength[ShortestPath[S, Egen[[i, 2]], Egen[[j, 1]]]]],

{i, 1,2*r}, {j, 1, 2*r}]
];

So, after executing this procedure, we could find the reciprocal of the Ihara

zeta function of a graph G with the following commands:

Z=Multipath[G];

Det[IdentityMatrix[Length[Z]]-Z]

9.5 Creating a specialized multipath matrix for

(un)directed graphs

The following code creates a procedure which returns a specialized multipath

matrix of G (as discussed in Section 8.2) where G is a simple undirected graph or a

directed graph (possibly with bidirected edges) whose underlying graph is simple:
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(* Procedure for calculating a multipath zeta function matrix of a sim-
ple (un)directed graph G *)

DMultipath[G ] := Module[{H, Ed, S, Egen, r},
H = G;

Ed = ToOrderedPairs[H];

H = FromUnorderedPairs[Union[ToUnorderedPairs[H]]];

S = MinimumSpanningTree[H];

Egen = Complement[ToUnorderedPairs[H], ToUnorderedPairs[S]];

r = Length[Egen];

Egen = Join[Egen, RotateLeft[Egen, {0, 1}]];
Table[If[Abs[i - j] == r, 0,

If[Complement[Partition[

ShortestPath[S, Egen[[i, 2]], Egen[[j, 1]]], 2, 1], Ed] == {},
uˆLength[ShortestPath[S, Egen[[i, 2]], Egen[[j, 1]]]], 0]],

{i, 1,2*r}, {j, 1, 2*r}]
];

So, after executing this procedure, we could find the reciprocal of the Ihara

zeta function of a graph G with the following commands:

Z=DMultipath[G];

Det[IdentityMatrix[Length[Z]]-Z]

9.6 Calculating poles

Assuming that we have already included the procedure Ihara[ ], the following

commands store the poles of the Ihara zeta function of a simple undirected graph

G as a list in the variable AllPoles and then stores the real poles as a list in the

variable Realpoles:
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AllPoles=u /. Solve[Ihara[G]==0,u];

RealPoles=Select[AllPoles,Element[#,Reals]&]]];

The radius of convergence R of ζG(u) can then be found using the following

command:

R=Min[Abs[RealPoles]];

The following commands (which should be issued after including the proce-

dure DEM[ ]) find an approximation to R (stored in the variable ApproxR) using

Corollary 4.16 :

d=5000; (* d here is as in the corollary. *)

ApproxR=1/Total[MatrixPower[DEM[G],d][[1]]]ˆ(1/(d-1));

9.7 Adding vertices to edges as in Theorem 6.6

The following code creates a procedure which adds vertices to an edge of a

graph (that is, it replaces an edge with a walk of length k + 1) as in Theorem 6.6

or contracts the edge if k = −1.

(* Procedure which adds k vertices to edge e of a graph G or contracts
the edge e if k = -1*)

Stretch[G , e , k ] := Module[{H, f, i,EE},
H = G; f = e;

For[i = 1, i <= k, i++,

H = AddVertex[DeleteEdge[H, f]];

H = AddEdge[AddEdge[H, {f[[1]], V[H]}], {V[H], f[[2]]}];
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f[[2]] = V[H];

];

If[k == -1,

EE = ToUnorderedPairs[H];

H = DeleteVertex[DeleteEdge[FromUnorderedPairs[

Table[{If[EE[[i, 1]] == f[[2]], f[[1]], EE[[i, 1]]], If[EE[[i, 2]] == f[[2]],

f[[1]], EE[[i, 2]]]}, {i, 1,Length[EE]}]], {f[[1]], f[[1]]}], f[[2]]];

];

H

];

So, after executing this procedure, we could for example create a graph G which

is K5 with 5 vertices added to the edge from vertex 1 to vertex 2 with the following

command:

G = Stretch[CompleteGraph[5], {1, 2}, 5];

9.8 Calculating the polynomials pA,B,C,F from Corol-

lary 6.10

For every allowable A,B, C, the following program outputs the directed graph

Y (A,B,C), the reciprocal of it Ihara zeta functions, and the polynomial pA,B,C,F (u)

as in Corollary 6.10. It also stores the product ζY (A,B,C)(u)−1pA,B,C,F (u) in a list

called AllTogether and outputs the sum of this list before terminating. By the

corollary, this sum is of course the Ihara zeta function of X(k1, k2, . . . , k|F |).

(* EdY is the set of directed edges of the graph Y. *)

EdY={{1,2},{2,3},{3,4},{4,1},{2,4},{2,1},{1,4},{4,3},{3,2}};
(* F and k are as in the corollary. *)
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F={{1,2},{2,4}};
k={3,5};

pA[n ]:=1-2*uˆn+uˆ(2*n);

pB[n ]:=uˆn-uˆ(2*n);

pC[n ]:=uˆn-uˆ(2*n);

pF[n ]:=uˆ(2*n);

AllTogether={};
For[i=0,i<4ˆLength[F],

EdYABC=EdY;

p=1;

For[j=0,j<Length[F],

b=IntegerPart[Mod[i,4ˆ(j+1)]/(4ˆj)];

If[(b==0) | | (b==1),EdYABC=Complement[EdYABC,{F[[j+1]]}]];
If[(b==0) | | (b==2),

EdYABC=Complement[EdYABC,{Reverse[F[[j+1]]]}]];
If[(b==0),p=p*pA[k[[j+1]]]];

If[(b==1),p=p*pB[k[[j+1]]]];

If[(b==2),p=p*pC[k[[j+1]]]];

If[(b==3),p=p*pF[k[[j+1]]]];

j++];

W=Table[If[(Part[EdYABC,i,2]==Part[EdYABC,j,1]) &&

(Part[EdYABC,i,1]!=Part[EdYABC,j,2]),1,0],

{i,Length[EdYABC]},{j,Length[EdYABC]}];
Z=Det[IdentityMatrix[Length[W]]-W*u];

Print[” ”];

ShowLabeledGraph[FromOrderedPairs[EYABC,Type->Directed]];

AllTogether=Append[AllTogether,Z*p];

Print[”1/Z=”,Factor[Z],”=”,Expand[Z] ];

Print[”pABCF=”,p];
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i++];

Print[” ”];

Print[Expand[Total[AllTogether]]];

9.9 Targeting a specific radius of convergence

The following program attempts to create a graph G such that the reciprocal

of the radius of convergence of ζG(u) is within ε of a target value greater than 1.

Here we have chosen ε to be 0.0000001 and the target value to be the number e.

The procedures Stretch[ ] and Ihara[ ] are used and should be included prior to

executing this program.

The program also displays its progress by showing the graph it is constructing

after each addition along with the reciprocal of the radius of convergence of its

Ihara zeta function. It also provides a written description of the additions it has

made.

target = E;

epsilon = 0.0000001;

k = Floor[target] + 2;

d = -1;

H = CompleteGraph[k];

R = 1/(k - 2);

Print[”Starting with K ”, k, ”.”];

G = H;

While[(Abs[1/R - target] > epsilon),

H = Stretch[ AddEdge[GraphUnion[G, CompleteGraph[k]],

1, V[G] + 1], 1, V[G] + 1, d];

Z = Ihara[H];
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allzeros = u /. Solve[Z == 0, u];

R = Min[Abs[1/N[1/allzeros, 10]]];

If[(1/R > target) && ((1/R - target) > epsilon),

d = d + 1; If[(d > 1) && (k > 3), k = k - 1; d = -1],

Print[” ”];

Print[”Adding K ”, k, ” attached by walk of length ”, d + 1, ”:”];

GraphPlot[H, VertexStyleFunction -> Automatic];

Print[”target=”, N[target, 10], ”...”];

Print[” 1/R=”, N[1/R, 10], ”...”];

G = H

];

];
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covering tree, 31

cycle, 2

cycle graph, see graph, cycle
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deletion of an edge, see edge, deletion

deletion-contraction method, 21

digraph, 3

directed edge, 3

directed edge matrix

computation in Mathematica, 78
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directed edge matrix-induced graph,
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directed edge operator, 29

directed graph, 3

edge, 1
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deletion, 2

directed, 3
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loop, 1, 3

parallel, 1, 3

undirected, 1

eigenfunction, 29

Emilade, iv

finite graph, see graph, finite

fundamental group

of a graph, 5

rank, 5

Gabliam, iv

girth, 2

recovering, 18

graph, 1, see tree

bipartite, 1

bi-regular, 2, 71

complete, 1

connected, 2

covering, 28

cycle, 2

directed, 3

line, 65

directed edge matrix-induced, 65

computation in Mathematica, 80

finite, 1

irregular, 2

isomorphism, 4

oriented line, 65

regular, 2

simple, 1, 3

underlying, 4

undirected, 1

id(v), see indegree

Ihara zeta function

bi-regular bipartite graphs, 71

computation in Mathematica

using A and Q, 76

using M , 79

using M̃ , 80

using multipath (directed), 82

using multipath (undirected), 81

determinant form, 5

poles

computation in Mathematica, 82

product definition, 5

radius of convergence

computation in Mathematica, 83

incident, 2

indegree, 3

index of imprimitivity, 32

irregular, 2

isomorphic graphs, 4

isomorphism, see graph, isomorphism

Kn, see complete graph

length of a walk, 2

L(G), see graph, direced edge matrix-

induced
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line digraph, 65

loop, 1, 3

M , see directed edge matrix

M̃ , see directed edge matrix, modified

modified directed edge matrix, see di-

rected edge matrix, modified

multiedge norm, 44

multiedge zeta function, 45

matrix, 44

multipath matrix, 73, 74

specialization, 74, 75

multipath norm, 73, 74

multipath zeta function, 73, 74

NE(C), see multiedge norm

NP (C), see multipath norm

od(v), see outdegree

oriented line graph, 65

outdegree, 3

parallel edges, 3

π(G, v), see fundamental group, of a

graph

prime, 4

in a digraph, 45

primitive, 31

r, see fundamental group, rank

rank, see fundamental group, rank

regular, 2

s(e), see vertex, start

s(v), s(W), 69

simple, 1, 3

simplifying assumptions, 8

extended to digraphs, 46

singular value decompostions, 11

spanning, see tree, spanning

start vertex, see vertex, start

strong, 32

subgraph, 2

SVD, see singular value decomposi-

tion

t(e), see vertex, terminal

t(v), t(W), 69

terminal vertex, see vertex, terminal

tree, 2

spanning, 2, 5, 41

underlying graph, see graph, underly-

ing

vertex, 1

degree, 2

indegree, 3

outdegree, 3

start, 3

terminal, 3

W , see multiedge zeta function, ma-

trix
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walk, 2, 3

closed, 2

directed, 3

inverse, 2, 3

length, 2

product, 2

undirected, 2

Z, see multipath matrix

ZIhara, see multipath matrix, special-

ization

ζ, see Ihara zeta function

ζE, see multiedge zeta function

ζP , see multipath zeta function




