
UC San Diego
Recent Work

Title
Equilibrium and Media of Exchange in a Convex Trading Post Economy With Transaction 
Costs

Permalink
https://escholarship.org/uc/item/3wx6s4z8

Author
Starr, Ross M.

Publication Date
2007-07-05

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wx6s4z8
https://escholarship.org
http://www.cdlib.org/


2005-07R3 
 
 
 
 
 

UNIVERSITY OF CALIFORNIA, SAN DIEGO
 

DEPARTMENT OF ECONOMICS 
 
 
 
 
 

Equilibrium and Media Exchange in a Convex Trading Post Economy with 
Transaction Costs 

 
 
 

BY 
 

 
Ross M. Starr 

University of California, San Diego 
 

 
 
 
 
 
 
 
 
 
 

DISCUSSION PAPER 2005-07R3 
July 2007 



Equilibrium and Media of Exchange in a Convex

Trading Post Economy with Transaction Costs

Ross M. Starr∗

June 9, 2006 and February 4, 2007, revised July 5, 2007;
University of California, San Diego

PRELIMINARY: NOT FOR QUOTATION

”[An] important and difficult question...[is] not answered by the approach taken

here: the integration of money in the theory of value...”
—— Gerard Debreu, Theory of Value (1959)

Abstract

General equilibrium is investigated with N commodities traded at N(N−1)
2

commodity-pairwise trading posts. Trade is a resource-using activity re-
covering transaction costs through the spread between bid (wholesale) and
ask (retail) prices (quoted as commodity rates of exchange). Budget con-

straints are enforced at each trading post separately implying demand for
a carrier of value between trading posts, commodity money. Existence of
general equilibrium is established under conventional convexity and con-
tinuity conditions while structuring the price space to account for distinct

bid and ask prices. Trade in media of exchange (commodity money) is
the difference between gross and net inter-post trades.

JEL Classification: C62, E40
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1 Introduction

It is well-known that the Arrow-Debreu model of Walrasian general equilibrium can-
not account for money. Professor Hahn (1982) writes

”The most serious challenge that the existence of money poses to the theorist
is this: the best developed model of the economy cannot find room for it. The
best developed model is, of course, the Arrow-Debreu version of a Walrasian gen-
eral equilibrium. A first, and...difficult...task is to find an alternative construction

without...sacrificing the clarity and logical coherence ... of Arrow-Debreu.”
This paper pursues development of foundations for a theory of money based on

elaborating the detail structure of an Arrow-Debreu model. The elementary first step
is to create a general equilibrium where there is a well defined demand for a medium

of exchange — a carrier of value between transactions. This is arranged by replac-
ing the single budget constraint of the Arrow-Debreu model with the requirement
that the typical household or firm pays for its purchases directly at each of many
separate transactions. Transactions take place at commodity-pairwise trading posts.

Then a well-defined demand for media of exchange (commodity monies, not neces-
sarily unique) arises endogenously as an outcome of the market equilibrium. The
use of media of exchange is particularly evident when the structure of demands is

characterized by an absence of double coincidence of wants, Jevons (1875). Media of
exchange are characterized as the carrier of value between transactions (not fulfilling
final demands or input requirements themselves), the difference between gross and
net trades 1.

1.1 Transaction Costs, Essential and Inessential Sequence

Economies

The issues of general equilibrium with transaction cost, efficiency of allocation and

the implications for the role of money appear in Foley (1970), Hahn (1971, 1973),
and Starrett (1973). Foley (1970) considers a static equilibrium with (consistent with
the Arrow-Debreu treatment) a single market meeting. All of the formal structure
of the Arrow-Debreu economy is maintained while the transaction process is treated

as a production activity. Each of N goods has a bid and ask (wholesale and retail)

1 The present model proposes a foundation for a theory of (commodity) money as a medium of
exchange, alternative to the fiat money models of overlapping generations, Wallace (1980), and of
search, Kiyotaki and Wright (1989). There is a separate and independent family of issues regarding
how to accommodate — in the Arrow-Debreu setting — an intrinsically worthless fiat money trading
at a positive value and used as a common medium of exchange. The rationale is that taxes payable in
fiat money provide for a positive value, and low transaction cost ensures use as medium of exchange,
Goldberg (2005), Starr (2003A, 2003B).
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price with the resulting dimensionality of the price space at 2N. As in Debreu (1959)

the count N includes futures markets for all of the relevant goods. Foley (1970)’s
distinctive powerful insight is that this structure is mathematically equivalent to the
Arrow-Debreu model. Assuming the usual continuity and convexity assumptions,
a competitive equilibrium exists in the convex transaction cost economy, and the

resulting allocation is Pareto efficient. The notion of Pareto efficiency here needs to
take account of transaction costs: moving ownership from one firm or household to
another is a resource using activity. Efficiency consists of efficient allocation net of

the necessary resource cost of reassigning ownership.
Hahn (1973) treats the reopening of markets over time in a sequence economy, dis-

tinguishing between essential and inessential sequence economies. The issue treated
is whether two otherwise identical economies have significantly different equilibrium

prices and resource allocation depending on the character of the budget constraint:
a single Arrow-Debreu budget for each household versus a time-dated sequence of
budget constraints in a sequence economy. In this comparison it is necessary to take
account of transaction costs, so the reference point is not the conventional Arrow-

Debreu equilibrium without transaction costs, Debreu (1959). Rather, it is the allo-
cation in an Arrow-Debreu economy with transaction costs, Foley (1970).

This paper adopts the same usage. A trading post equilibrium is ’inessential’ if the
resulting allocation is Walrasian, the same as in an Arrow-Debreu (Foley) economy

with transaction costs. The equilibrium is inessential if the multi-faceted structure of
the trading post budget constraint has no effect in itself on the resulting allocation of
resources. Conversely, the trading post equilibrium will be described as ’essential’ if

the equilibrium resource allocation is non-Walrasian, differing because of the structure
of budget constraints.

1.2 Structure of the Trading Post Model

In the trading post model, transactions take place at commodity pairwise trading

posts (Cournot (1838), Shapley and Shubik (1977), Walras (1874)) with budget con-
straints (you pay for what you get in commodity terms) enforced at each post. Prices
— bid (wholesale) and ask (retail) — are quoted as commodity rates of exchange.
Trade is arranged by firms, typically buying at bid prices and selling at ask prices,

incurring costs (resources used up in the transaction process) and recouping them
through the bid/ask spread. Market equilibrium occurs when bid and ask prices at
each trading post have adjusted so that all trading posts clear.
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1.3 Structure of the Proof

The structure of the proof of existence of general equilibrium follows the approach of
Arrow and Debreu (1954), Debreu (1959), and Starr (1997). The usual assumptions
of continuity, convexity (traditional but by no means innocuous in this context),

and no free lunch/irreversibility are used. The price space at a trading post for
exchange of one good at bid price for another at ask price is the unit 1-simplex,
allowing any possible nonnegative relative price ratio. The price space for the economy
as a whole then is a Cartesian product of unit 1-simplices. The attainable set of

trading post transactions is compact. As in Arrow and Debreu (1954), the model
considers transaction plans of firms and households artificially bounded in a compact
set including the attainable set as a proper subset. Price adjustment to a fixed point

with market clearing leads to equilibrium of the artificially bounded economy. But
the artificial bounds are not a binding constraint in equilibrium. The equilibrium of
the artificially bounded economy is as well an equilibrium of the original economy.

1.4 Conclusion: The medium(a) of exchange

The general equilibrium specifies each household and firm’s trading plan. At the
conclusion of trade, each has achieved a net trade. Gross trades include trading
activity that goes to paying for acquisitions and accepting payment for sales rather
than directly implementing desired net trades. It’s easy to calculate gross trades and

net trades at equilibrium. For households, the difference — gross trades minus net
trades — represents trading activity in carriers of value between trades, media of
exchange (perhaps including some arbitrage). Since firms perform a market-making
function within trading posts, identification of media of exchange used by firms is

not so straightforward. After netting out intra-post trades, the remaining difference
between inter-post gross and net trades represents the firms’ trade flows of media of
exchange. In some examples (see Starr (2003A, 2003B))the medium of exchange may

be a single specialized commodity (the common medium of exchange). The approach
of the present model is intended to provide a Walrasian general equilibrium theory
of (commodity) money as a medium of exchange. It is sufficiently general to include
both a single common medium of exchange and many goods simultaneously acting as

media of exchange.
When will media of exchange actually be used in the trading post economy? Two

conditions seem to be sufficient: desirability of trade, net of transaction costs; absence
of double coincidence of wants. The logic is simple. If trade is desirable at prevailing

equilibrium prices (net of transaction costs including the transaction cost of media
of exchange) and there is no double coincidence of wants, then in order for trade
to proceed fulfilling the budget constraint at each trading post separately, media of
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exchange will be used as carriers of value between trading posts. However, the absence

of double coincidence of wants depends on prevailing prices as well as endowments
and technology.

Conversely, there are two cases where trading post equilibria will have no use of
media of exchange: full double coincidence of wants (subject to direct trade experi-

encing no higher transaction costs than indirect trade); and a no-trade equilibrium.
Again, necessary and sufficient conditions, a priori, to fulfill these characteristics are
not immediately evident.

It is problematic to characterize necessary and sufficient initial conditions so that
absence of double coincidence is fulfilled. Hence the reliance on simple illustrative
examples below.

2 Trading Posts

There are N tradeable goods denoted 1, 2, ..., N. They are traded for one another

pairwise at trading posts. {i, j} (or equivalently {j,i}) denotes the trading post where
goods i and j are traded for one another. There are N(N−1)

2
distinct trading posts.

3 Prices

Goods are traded directly for one another without distinguishing any single good as
’money’. Prices are then quoted as rates of exchange between goods. We distinguish

between bid (selling or wholesale) prices and ask (buying or retail) prices. Thus the
ask price of a hamburger might be 5.0 chocolate bars and the bid price 3.0 chocolate
bars. Note that the ask price of a chocolate bar then is the inverse of bid price of a

hamburger. That is, the ask price of a chocolate bar is 0.333 hamburger and the bid
price of a chocolate bar is 0.2 hamburger.

Let ∆ represent the unit 1-simplex. At trading post {i, j}, the (relative) ask price

of good i and (relative) bid price of good j are represented as p{i,j} ≡ (a
{i,j}
i , b

{i,j}
j ) ∈ ∆.

In a (minor) abuse of notation, the ordering of i and j in the superscript on p will

matter. p{j,i} ≡ (a
{i,j}
j , b

{i,j}
i ) ∈ ∆. Thus there are two operative price 1-simplices at

each trading post. The full price space then is ∆N (N−1), the N(N−1)-fold Cartesian

product of ∆ with itself; its typical element is p ∈ ∆N (N−1).
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4 Budget Constraints and Trading Opportunities

The budget constraint is simply that at each pairwise trading post, at prevailing
prices, in each transaction, payment is given for goods received. That is, at trading

post {i, j}, an ask/bid price pair is quoted p{i,j} ≡ (a
{i,j}
i , b

{i,j}
j ) ∈ ∆ expressing the

ask price of i in terms of j and a bid price of j in terms of i. A firm or household’s
trading plan (y, x) ∈ R2N(N−1) specifies the following transactions at trading post

{i,j}: y
{i,j}
i (at ask prices — retail) in i, y

{i,j}
j (at ask prices — retail) in j, x

{i,j}
i (at

bid prices — wholesale) in i, x
{i,j}
j (at bid prices — wholesale) in j. Positive values of

these transactions are purchases. Negative values are sales. At each trading post (of
two goods) there are four quantities to specify in a trading plan. Then the budget
constraint facing firms and households at each trading post is that value delivered

must equal value received. That is

0 = (a
{i,j}
i , b

{i,j}
j ) · (y{i,j}

i , x
{i,j}
j ) , 0 = (a

{i,j}
j , b

{i,j}
i ) · (y{i,j}

j , x
{i,j}
i ) (B)

(B) says that purchases of i at the bid price are repaid by sales of j at the ask price,
purchases of i at the ask price are repaid by sales of j at the bid price.

Given a price vector p ∈ ∆N (N−1) the array of trades fulfilling (B) is the set of
trades fulfilling the N(N − 1) local budget constraints at the trading posts. Denote
this set

M(p) ≡ {(y, x) ∈ R2N(N−1)|(y, x) fulfills (B) at p for all i, j = 1, ..., N, i 6= j}

5 Firms

The heavy lifting in this model is done by firms. They perform the market-making
function, incurring transaction costs. The population of firms is a finite set denoted

F , with typical element f ∈ F . Thus, firm f ’s technology set may specify that f ’s
purchase of labor (retail) in exchange for i on the {i, labor} market and purchase of
i and j wholesale on the {i,j} market allows f to sell i and j (retail) on the {i, j}
market. That’s how f can become a market maker. If there is a sufficient difference

between bid and ask prices so that f can cover the cost of its inputs with a surplus
left over, that surplus becomes f ’s profits, to be rebated to f ’s shareholders.

5.1 Transaction and Production Technology

Firm f ’s technology set is Y f . We assume
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P.0 Y f ⊂ R2N(N−1)

The typical element of Y f is (yf , xf ), a pair of N(N −1)-dimensional vectors. The
N(N − 1)-dimensional vector yf represents f’s transactions at ask (retail) prices; the
N(N − 1)-dimensional vector xf represents f’s transactions at bid (wholesale) prices.
The 2-dimensional vector yf{i,j} represents f’s transactions at ask (retail) prices at

trading post {i,j}; the 2-dimensional vector xf{i,j} represents f’s transactions at bid

(wholesale) prices at trading post {i,j}. The typical co-ordinates y
f{i,j}
i , x

f{i,j}
i are

f’s action with respect to good i at the {i,j} trading post. Since f may act as a
wholesaler/retailer/market maker, entries anywhere in (yf{i,j}, xf{i,j}) may be positive

or negative — subject of course to constraints of technology Y f and prices M(p). This
distinguishes the firm from the typical household. The typical household can only
sell at bid prices and buy at ask prices.

The entry y
f{i,j}
i , represents f’s actions at ask prices with regard to good i at

trading post {i,j}. y
f{i,j}
i > 0 represents a purchase of i at the {i,j} trading post (at

the ask price). y
f{i,j}
i < 0 represents a sale of i at the ask price.

The entry x
f{i,j}
i , represents f’s actions at bid prices with regard to good i at

trading post {i,j}. x
f{i,j}
i > 0 represents a purchase of i at the trading post (at the

bid price). x
f{i,j}
i < 0 represents a sale of i at the bid price.

A firm that is an active market-maker at {i,j} will typically buy at the bid price
and sell at the ask price. A firm that is not a market-maker may have to pay retail

— like the rest of us — selling at the bid price and buying at the ask price.
In addition to indicating the transaction possibilities, Y f includes the usual pro-

duction possibilities. The usual assumptions on production technology apply. For
each f ∈ F , assume

P.I Y f is convex.
P.II 0 ∈ Y f , where 0 indicates the zero vector in R2N(N−1).
P.III Y f is closed.
The aggregate technology set is the sum of individual firm technology sets. Y ≡∑

f∈F Y f . It fulfills the familiar no free lunch and irreversibility conditions.

P.IV [(a)] if (y, x) ∈ Y and (y, x) 6= 0, then y
{i,j}
i + x

{i,j}
i > 0 for some i, j.

[(b)] if (y, x) ∈ Y and (y, x) 6= 0, then −(y, x) 6∈ Y .

Denote the initial resource endowment of the economy as r ∈ RN
+ . Then we define

the attainable production plans of the economy as

Ŷ ≡ {(y, x) ∈ Y |ri ≥
∑

j(y
{i,j}
i + x

{i,j}
i ) all i = 1, 2, ..., N}

Attainable production plans for firm f can then be described as

Ŷ f ≡ {(yf , xf ) ∈ Y f | there is (yk, xk) ∈ Y k for each k ∈ F, k 6= f , so that

[
∑

k∈F,k 6=f

(yk, xk) + (yf , xf )] ∈ Ŷ }.
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Lemma 5.1: Assume P.0 - P.IV. Then Ŷ and Ŷ f are closed, convex, and bounded.

Proof: Starr (1997), Theorem 8.1, 8.2.

5.2 Firm Maximand and Transactions Function

The firm formulates a production plan and a trading plan. The firm’s opportunity set
for net yields after transactions fulfilling budget is Ef(p) ≡ [M(p)−Y f ]∩R

2N(N−1)
+ .

That is, consider the firm’s production, purchase, and sale possibilities, net after
paying for them, and what’s left is the net yield. Using the sign conventions we’ve
adopted — purchases are positive co-ordinates, sales are negative co-ordinates — the
net yield is then the negative co-ordinates (supplies) in a trading plan that are not

absorbed by payments due and the net purchases not required as inputs to the firm.
The supplies are subtracted out, so the surpluses enter Ef (p) as positive co-ordinates.

A typical element of these surplus supplies is denoted (y′, x′) ∈ Ef (p) . In this
notation y′ and x′ are dummies, not actual marketed supplies and demands.

Now consider (y′, x′) ∈ Ef (p) . In each good i, the net surplus available in good i

is wf
i ≡ ∑N

j=1(y
′{i,j}
i +x

′{i,j}
i ) and firm f’s surplus is the vector wf of these co-ordinates.

To give this notion a functional notation, let W (y′, x′) ≡ wf described here.
There are N-1 trading posts where each good i is traded, at N-1 rates of exchange.

The notion of ’profit’ is not well defined. In the absence of a single family of well-
defined prices, it is difficult to characterize optimizing behavior for the firm. Fautes
de mieux we’ll give the firm a scalar maximand with argument p, y′, x′. Firm f is
assumed to have a real-valued, continuous maximand vf(p; y′, x′). We take vf to be

monotone and concave in (y′, x′).
The firm’s optimizing choice then is
Gf (p) ≡ {argmax vf(p; y′, x′) ∈ Ef (p)}.
This results in the firm’s market behavior (without any constraint requiring actions

to stay in a bounded range) described by
Hf (p) ≡ {(y, x) ∈ M(p)|[(y, x) + (y′, x′)] ∈ Y f , (y′, x′) ∈ Gf (p)}. This marketed

plan then results in the market and dividend plan
Sf (p) ≡ {(y, x;w)|(y, x) ∈ Hf (p), [(y, x) + (y′, x′)] ∈ Y f , (y′, x′) ∈ Gf (p);w =

W (y′, x′)}

The logic of this definition is that (y′, x′) ≥ 0 is the surplus left over after the firm
f has performed according to its technology and subject to prevailing prices.

It is possible that Sf(p) is not well defined, since the opportunity set may be

unbounded. In the light of Lemma 5.1, there is a constant c > 0 sufficiently large
so that for all f ∈ F , Ŷ f is strictly contained in a closed ball, denoted Bc of radius
c centered at the origin of R2N(N−1). Following the technique of Arrow and Debreu
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(1954), constrained market behavior for the firm will consist of limiting its production

choices to Y f ∩ Bc. This leads to the constrained surplus
Ẽf (p) ≡ [[M(p) ∩ Bc] − [Y f ∩ Bc]] ∩ R

2N(N−1)
+ .

G̃f (p) ≡ {argmax vf(p; y′, x′) ∈ Ẽf (p)}.
H̃f (p) ≡ {(y, x) ∈ M(p)|[(y, x) + (y′, x′)] ∈ Y f ∩ Bc, (y

′, x′) ∈ G̃f (p)}.
The firm’s constrained (to Bc) market behavior then is defined as
S̃f (p) ≡ {(y, x;w)|(y, x) ∈ H̃f (p), [(y, x)+ (y′, x′)] ∈ Y f ∩Bc, (y

′, x′) ∈ G̃f (p);w =
W (y′, x′)}.

Lemma 5.2: Assume P.0 - P.IV. Then Ẽf (p) is convex-valued, nonempty, upper
and lower hemicontinuous.

Proof: Upper hemicontinuity and convexity follow from closedness and convex-
ity of the underlying sets. 0 ∈ Ẽf (p) always, so nonemptiness is fulfilled. Lower

hemicontinuity requires some work.
Let pν → po, (yo, xo) ∈ Ẽf (po). We seek (yν, xν) ∈ Ẽf(pν) so that (yν, xν) →

(yo, xo). If (yo, xo) = 0, lower hemicontinuity is trivially satisfied. Suppose instead
(yo, xo) ≥ 0 (the inequality applies co-ordinatewise). Then in an ε-neighborhood of

(yo, xo), for ν sufficiently large, there is (yν, xν) ∈ Ẽ(pν). (yν, xν) is the required
sequence.

Lemma 5.3: Assume P.0 - P.IV. Then G̃f (p), H̃f (p), S̃f (p) are well defined, non-

empty, upper hemicontinuous, and convex-valued for all p ∈ ∆N (N−1).
Proof: Note compactness of Bc. Apply Theorem of the Maximum, continuity and

concavity of vf .

Lemma 5.4: Assume P.0 - P.IV. Let [G̃f (p) + H̃f (p)] ∩ Ŷ f 6= ∅. Then [G̃f(p) +
H̃f (p)] ⊆ [Gf (p) + Hf(p)].

Proof: Recall that Bc strictly includes Ŷ f . Then the result follows from con-
vexity of Y f and Ŷ f and concavity of vf(p; y′, x′) . The proof follows the model
of Starr (1997) Theorem 8.3. Let (y∗′, x∗′) ∈ G̃f (p), (y∗, x∗) ∈ H̃f (p), [(y∗′, x∗′) +
(y∗, x∗)] ∈ Ŷ f ⊂ Bc. Use a proof by contradiction. Suppose not. Then there is

(y, x) ∈ Y f so that (y, x) − (yo, xo) = (y′, x′), where vf(p; y′, x′) > vf(p; y∗′, x∗′) ,
(y′, x′) ∈ Ef (p), and (yo, xo) ∈ M(p). But convexity of Y f and concavity of vf imply
that on the chord between (y∗, x∗) and (y, x) there is [α(y∗, x∗) + (1 − α)(y, x)] ∈ Bc

for 1 ≥ α > 0 where vf(p; [α(y∗′, x∗′) + (1 − α)(y′, x′)]) > vf(p; y∗′, x∗′). This is a

contradiction.

5.3 Inclusion of constrained supply in unconstrained supply

(y, x;w) ∈ S̃f (p) implies (y, x) ∈ Bc, a bounded set. w ∈ RN
+ is f ’s profits. By

construction there is K > 0 so that w is contained in the nonnegative quadrant of a

ball of radius K centered at the origin, denoted BK ⊂ RN
+ .
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Lemma 5.5: Let p ∈ ∆N (N−1) such that S̃f (p) ∩ [Ŷ f × BK] 6= ∅. Then Sf(p) is

well defined and nonempty. Further S̃f (p) ⊆ Sf (p) .
Proof: Lemma 5.4.

6 Households

There is a finite set of households, H, with typical element h.

6.1 Endowment and Consumption Set

h ∈ H has a possible consumption set, taken for simplicity to be the nonnegative
quadrant of RN , RN

+ . h ∈ H is endowed with rh >> 0 assumed to be strictly

positive to avoid boundary problems. h ∈ H has a share αhf ≥ 0 of firm f , so that∑
h∈H αhf = 1.

6.2 Trades and Payment Constraint

h ∈ H chooses (yh, xh) ∈ R2N(N−1) subject to the following restrictions. A household
always balances its budget, sells wholesale and buys retail:

(i) 0 ≥ x
h{i,j}
i for all i, j.

(ii) y
h{i,j}
i ≥ 0 for all i, j.

(iii) (yh, xh) ∈ M(p)

6.3 Maximand and Demand

Household h’s share of profits from firm f is part of h’s endowment and enters directly
into consumption. When the profits of all firms f ∈ F , wf in (yf , xf ;wf ), are well

defined, f distributes to shareholders wf , and h’s consumption of good i is
(iv) ch

i ≡ rh
i + [

∑
f∈F αhf wf ]i +

∑N
j=1 x

h{i,j}
i +

∑N
j=1 y

h{i,j}
i

However, prices p may be such that Sf (p) is not well defined for some f . Then we

may wish to discuss the constrained version of (iv), where w̃f comes from (yf , xf ; w̃f ) ∈
S̃f (p). (iv′) ch

i ≡ rh
i + [

∑
f∈F αhf w̃f ]i +

∑N
j=1 x

h{i,j}
i +

∑N
j=1 y

h{i,j}
i

In addition, h’s consumption must be nonnegative.
(v) ch ≥ 0. The inequality applies co-ordinatewise.
C.I For all h ∈ H, h’s maximand is the continuous, quasi-concave, real-valued,

strictly monotone, utility function uh(ch).
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h’s planned transactions function is defined as Dh:∆N (N−1) ×RN#F → R2N(N−1).

Let w denote (w1, w2, w3, ..., wf , ..., w#F ).
Dh(p,w) ≡ {(yh, xh) ∈ R2N(N−1)|(yh, xh) maximizes uh(ch), subject to (i), (ii),

(iii), (iv) and (v) } . However, Dh(p,w) may not be well defined when opportunity
sets are unbounded (when ask prices of some goods are zero) and w may not be well

defined for p such that Sf (p) is not well defined for some f . To treat this issue, let

B#F
K be the #F -fold Cartesian product of BK, and define D̃h:∆N (N−1) ×B#F

K → Bc.
D̃h(p,w) ≡ {(yh, xh)|(yh, xh) maximizes uh(ch), subject to (i), (ii), (iii), (iv′),

(v), and (yh, xh) ∈ Bc}. The restriction to Bc in this definition assures that D̃h(p)
represents the result of optimization on a bounded set, and is well-defined.

Lemma 6.1: Assume P.0 - P.IV, C.I. Then D̃h(p,w) is nonempty, upper hemi-

continuous and convex-valued, for all p ∈∆N (N−1), w ∈ B#F
K . The range of D̃h(p,w)

is compact. For (p,w) such that |(yh, xh)| < c for (some) (yh, xh) ∈ D̃h(p,w) , it
follows that D̃h(p,w) ⊆ Dh(p,w) .

Proof: (Note to the reader: This proof includes an unfortunate confusion of nota-

tion. c without superscript denotes a large real number indicating the radius of Bc, a
ball strictly containing all attainable transactions of the typical firm. ch and c∗ (with
superscript) denote consumption vectors.) Apply Theorem of the Maximum, noting

continuity and quasi-concavity of uh, convexity of constraint sets defined by (i)-(v) or
by (i),(ii),(iii), (iv′), (v). Inclusion of D̃h(p,w) in Dh(p,w) follows the pattern of Starr
(1997) Theorem 9.1(b). Proof by contradiction. Suppose not. Then there is (y∗, x∗) ∈
Dh(p,w) with associated c∗ so that uh(c∗) > uh(ch) . But recall |(yh, xh)| < c. On the

chord between (yh, xh) and (y∗, x∗) there is [α(y∗, x∗) + (1 − α)(yh, xh)], 1 > α > 0,
fulfilling (i), (ii), (iii), (iv′), (v), and |[α(y∗, x∗) + (1 − α)(yh, xh)]| = c so that
u(αc∗ + (1 − α)ch) > u(ch). This is a contradiction.

7 Excess Demand

Let (p,w′) ∈ ∆N (N−1) × B#F
K . Constrained excess demand and dividends at (p,w′)

is defined as
Z̃ : ∆N (N−1) × B#F

K → R2N(N−1) × B#F
K .

Z̃(p,w′) ≡ {(
∑

f∈F

(yf , xf)+
∑

h∈H

D̃h(p,w′), w1, w2, ..., wf, ..., w#F )|(yf , xf , wf ) ∈ S̃f (p)}.

Lemma 7.1: Assume P.0 - P.IV, and C.I. The range of Z̃ is bounded. Z̃ is upper

hemi-continuous and convex-valued for all (p,w′) ∈ ∆N (N−1) × B#F
K .
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Lemma 7.2 (Walras’ Law): Let (p,w′) ∈∆N (N−1)×B#F
K . Let (y, x,w) ∈ Z̃(p,w′).

Then for each i, j = 1, ..., N, i 6= j, we have

0 = (a
{i,j}
i , b

{i,j}
j ) · (y{i,j}

i , x
{i,j}
j ) , 0 = (a

{i,j}
j , b

{i,j}
i ) · (y{i,j}

j , x
{i,j}
i ) (W).

Proof : The element (y, x) of (y, x,w) ∈ Z̃(p,w′) is the sum of elements (yf , xf) of

S̃f (p) and (yh, xh) of D̃h(p,w′) each of which is subject to (B).

8 Equilibrium

Let Ξ denote a compact convex subset of R2N(N−1) so that Ξ × B#F
K includes the

range of Z̃. Let z ∈ Ξ, z ≡ ((y
{1,2}
1 , x

{1,2}
2 ), ..., (y

{i,j}
i , x

{i,j}
j ), ..., (y

{N−1,N}
N−1 , x

{N−1,N}
N )).

Define ρ : Ξ → ∆N (N−1)

ρ(z) ≡ {po ∈ ∆N (N−1)| For each i, j = 1, 2, ..., N , i 6= j , po{i,j} ∈ ∆ maximizes

p{i,j} · (y{i,j}
i , x

{i,j}
j ) subject to p{i,j} ∈ ∆}.

Lemma 8.1: ρ is upper hemi-continuous and convex-valued for all z ∈ Ξ.

Define Γ : ∆N (N−1) × Ξ× B#F
K → ∆N (N−1) × Ξ× B#F

K .
Γ(p, z, w′) ≡ ρ(z) × Z̃(p,w′) .

Lemma 8.2: Assume P.0 - P.IV, and C.I. Then Γ is upper hemi-continuous and

convex-valued on ∆N (N−1) ×Ξ×B#F
K . Γ has a fixed point (p∗, z∗, w∗) and 0 = z∗ .

Proof: Upper hemicontinuity and convexity are established in lemmas 7.1 and

8.1. Existence of the fixed point (p∗, z∗) then follows from the Kakutani fixed point
theorem. To demonstrate that z∗ = 0 , note lemma 7.2 and strict monotonicity of uh.

Definition: (p∗, w∗) ∈ ∆N (N−1) × B#F
K is said to be an equilibrium if

(0, w∗) ∈ {(
∑

f∈F

(yf , xf )+
∑

h∈H

Dh(p∗, w∗), w1, w2, ..., wf , ..., w#F )|(yf , xf , wf ) ∈ Sf(p∗)}

where 0 is the origin in R2N(N−1).
Theorem 8.1: Assume P.0 - P.IV, C.I . Then there is an equilibrium (p∗, w∗) ∈

∆N (N−1) × B#F
K .

Proof: Apply Lemmas 5.5, 6.1, 8.2. Lemma 8.2 provides (p∗, z∗, w∗) ∈ ∆N (N−1)×
Ξ ×B#F

K so that 0 = z∗, where
(z∗, w∗) ∈ {(∑f∈F (yf , xf)+

∑
h∈H D̃h(p∗, w∗), w1, w2, ..., wf , ..., w#F )|(yf , xf , wf ) ∈

S̃f (p∗)}. Then S̃f(p∗) ∩ [Ŷ f × BK ] 6= ∅, so by Lemma 5.5, S̃f (p∗) ⊆ Sf(p∗). 0 = z∗,

implies that |(y∗h, x∗h)| < c, so by lemma 6.1, D̃h(p∗, w∗) ⊆ Dh(p∗, w∗). But then
(0, w∗) ∈ {(∑f∈F (yf , xf) +

∑
h∈H Dh(p∗, w∗), w1, w2, ..., wf, ..., w#F )|(yf , xf , wf ) ∈

Sf (p∗)}. Then (p∗, w∗) is an equilibrium.
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9 Media of Exchange

Let (yh, xh) ∈ Dh(p,w′) be household h’s 2N(N − 1)-dimensional transaction vector.
The x co-ordinates are typically sales (negative sign) at bid prices; the y co-ordinates

are typically purchases (positive sign) at ask prices. Then we can characterize h’s
gross transactions in good i as∑

j y
h{i,j}
i − ∑

j x
h{i,j}
i ≡ γh

i .
Further, the absolute value of h’s net transactions in good i, is

|∑j y
h{i,j}
i +

∑
j x

h{i,j}
i | ≡ νh

i .
The N -dimensional vector γh with typical element γh

i is h’s gross trade. The
N -dimensional vector νh with typical element νh

i is h’s net trade vector (in absolute
value). µh ≡ γh − νh is h’s flow of goods as media of exchange, gross trades minus

net trades.
Since firms perform a market-making function, buying and selling the same good

at a single trading post, a more complex view of their transactions is needed to sort
out trading flows used as media of exchange. In particular, for firms, we should net

out offsetting transactions within a single trading post. Thus for f ∈ F , f ’s gross
transactions in i, netting out intra-post transactions is∑

j |[y
f{i,j}
i + x

f{i,j}
i ]| ≡ γf

i .

The corresponding net transaction is
|∑j[y

f{i,j}
i + x

f{i,j}
i ]| ≡ νf

i .

The N -dimensional vector γf with typical element γf
i is f’s gross inter-post trade.

The N -dimensional vector νf with typical element νf
i is h’s net inter-post trade vector

(in absolute value). µf ≡ γf − νf is f’s flow of goods as media of exchange, gross
(inter-post) trades minus net trades.

The total (N-dimensional vector) flow of media of exchange among households
and firms is then

∑
h∈H µh +

∑
f∈F µf .

Thus the trading post equilibrium establishes a well-defined demand for media of
exchange as an outcome of the market equilibrium. Media of exchange (commodity

monies) are characterized as goods flows acting as the carrier of value between trans-
actions (not fulfilling final demands or input requirements themselves), the difference
between gross and net trades.
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10 Walrasian Equilibrium, Trading Post Equilib-

rium, and Demand for Media of Exchange

Recall from section 1.1 the applicable Pareto efficiency concept: efficiency subject to
technically necessary transaction costs. A trading post economy will be said to be
inessential when the multi-faceted structure of budget constraints has no effect on
the equilibrium allocation of resources, compared to the single budget constraint of

an Arrow-Debreu model. Then the resulting allocation is a Walrasian equilibrium
allocation and it is Pareto efficient by the First Fundamental Theorem of Welfare
Economics. Conversely, a trading post economy is essential when the multi - faceted

structure of budget constraints renders the equilibrium allocation of resources differ-
ent from an Arrow-Debreu equilibrium (taking full account of the effect of transaction
costs, with a complete array of futures markets). Then the equilibrium allocation will
not be a Walrasian equilibrium and may be Pareto inefficient. The inefficiency arises

in either of two ways: additional resources may be expended in fulfillment the multi-
plicity of budget constraints, or the allocation may be shifted (relative to Walrasian
equilibrium) to fulfill the additional constraints. Since these circumstances represent
real resource allocations to fulfill a purely administrative constraint, the reallocation

is regarded as Pareto inefficient. This treatment is similar to Hahn (1973)’s treatment
of sequence economies. A full development of efficiency conditions and detailed char-
acterization of (in)essentiality is a significant topic, beyond the scope of this paper.

The array of economies subject to general equilibrium modeling includes essential

and inessential trading post economies with resultant Walrasian and non-Walrasian
allocations. Since the designation ’essential’ or ’inessential’ is based on the character
of endogenous equilibrium pricing, it seems problematic to distinguish essential from

inessential trading post economies a priori. The alternative is to review examples,
several of which are presented below.

10.1 Economies actively Using Media of Exchange

The examples of sections 10.2.1 and 10.3.1 below illustrate the notion of trading

post economies using media of exchange in equilibrium. They are characterized by
economies where trade is mutually advantageous but direct trade between suppliers
and final demanders at trading posts may be more costly in resources than indirect
trade through a lower transaction cost instrument. This typically reflects two elements

of the example: direct exchange is not fully mutually satisfactory because of absence
of double coincidence of wants; transaction costs in some commodity may be lower
than others, favoring its use as a carrier of value in exchange. It is difficult fully to
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characterize the attributes of an economy, a priori, that will lead to these conditions,

hence the reliance on examples.

10.2 Pareto Efficiency of Trading Post Equilibrium with Trans-

action Costless Media of Exchange

When there is a generally available zero-transaction cost medium of exchange, the
trading post equilibrium will be inessential and the resulting allocation of resources
Pareto efficient (taking into account transaction costs). The allocation will be a
Walrasian equilibrium. Supposing that the transaction costs of media of exchange

in advanced monetary economies are low (if not nil), the zero-cost case should be a
significant limiting case.

However important, the result is not deep. The presence of a costless medium of

exchange means that price ratios in a trading post economy will be the same as those
of the corresponding Arrow-Debreu economy. The example of section 10.2.1 below
illustrates the efficiency. The point of comparison is an economy with transaction
costs, complete markets, efficient allocation in general equilibrium, a single budget

constraint for each household and well-defined profit maximand for each firm, as in
Foley (1970). Then apply the First Fundamental Theorem of Welfare Economics.

10.2.1 Example: A Natural Money absent Double Coincidence of Wants;

Pareto Efficient Allocation in Trading Post Equilibrium

Let H ≡ {h = 1, 2, ..., N} where rh
h = 100 and where uh(ch) = 20ch

h+1 +
∑N

n 6=h+1,n=1 ch
n

for h = 1, ..., 99, and for h = N , uh(ch) = 20ch
1 +

∑N
n 6=1,n=2 ch

n. There are N households
named h = 1, 2, ...,N; each endowed with 100 units of good h and strongly preferring

good h+1 (mod N) to all others.
There are N(N−1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, ..., N . The transaction

technology of {i, j}, i 6= 1 is Y {i,j} ≡ {(y, x)|for k = i, j, 0 ≥ yk ≥ −0.8xk; for k 6=
i, j, yk = xk = 0}. For {i, j}, i = 1, Y {i,j} ≡ {(y, x)|for k = 1, y1 = −x1, for j 6= 1, 0 ≥
yj ≥ −0.8xj; for k 6= i, j, yk = xk = 0}. That is, for each pair of goods there is
a distinct trading post firm {i,j} and there is no arbitrage by firms between posts.
Trade in all goods except good 1 experiences a 20% loss in the trading process.

The resulting equilibrium prices, for i, j 6= 1 are (a
{i,j}
i , b

{i,j}
j ) = (5

8
, 3

8
). For i =

1, j 6= 2 we have, (a
{1,j}
1 , b

{1,j}
j ) = (1

2
, 1

2
), (a

{1,j}
j , b

{1,j}
1 ) = (5

9
, 4

9
). For {1, 2} we have

(a
{1,2}
1 , b

{1,2}
2 ) = (1

2
, 1

2
), (a

{1,2}
2 , b

{1,2}
1 ) = (5

9
, 4

9
).
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The trade flows for h = 2, 3, ..., N − 1, are (x
h{h,1}
h , y

h{h,1}
1 ) = (−1, 1),

(x
h{1,h+1}
1 , y

h{1,h+1}
h+1 ) = (−1, 0.8). For h = N, (x

N{1,N}
N , y

N{1,N}
1 ) = (−1, 0.8). For

h = 1, (x
1{1,2}
1 , y

1{1,2}
2 ) = (−1, 0.8). That is, direct trade of most goods i for j is

prohibitively expensive, losing 40% of the goods in the transaction process. Indirect
trade, through good 1, is more attractive since good 1 itself is transaction costless.
The typical pattern of trade then is that household h sells endowment, good h, for

good 1, then sells good 1 for the desired good, h+1. In the process, only 20% of
goods are lost to transaction costs. In this is example all trade goes through good 1,
and for N-1 of N traders good 1 is a medium of exchange. The allocation is Pareto
efficient.

Is the Trading Post equilibrium a Walrasian equilibrium? Individual agent trading
behavior in the trading post model differs from Walrasian behavior (e.g.in Foley
(1970)) since it includes active use of a medium of exchange, good 1. But those
trades are costless and net out to zero. The resulting resource allocation is fully

consistent with Walrasian equilibrium and in a Foley (1970) economy (Arrow-Debreu
with transaction costs) the allocation could be supported by Walrasian equilibrium
prices. The allocation is Pareto efficient. This trading post economy is inessential.

10.3 Pareto Inefficiency of Trading Post Equilibrium with

Costly Media of Exchange; An essential trading post

economy

As in Hahn (1973) and Starrett (1973)’s analysis of a sequence economy, when the
multi-faceted structure of the budget constraint in the trading post economy sig-
nificantly affects the real allocation of resources, the resulting allocation is Pareto

inefficient. This occurs because real resources spent or reallocated in fulfillment of
the administrative requirement of budget constraints represent a waste. The expen-
diture or reallocation is administratively required but technically unnecessary.

10.3.1 Example: An essential trading post economy; Pareto Inefficient

Allocation in Trading Post Equilibrium

The following example simply follows the format of the previous example, except
that there is no costless medium of exchange. The result is a non-Walrasian Pareto

inefficient allocation. The mechanism of inefficiency is transparent. Transactions
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will use the medium of exchange and incur the cost of doing so. The cost is a

wasted resource; it is administratively required but fulfills no technical function. Let
H ≡ {h = 1, 2, ..., N} where rh

h = 100 and where uh(ch) = 20ch
h+1 +

∑N
n 6=h+1,n=1 ch

n for
h = 1, ..., 99, and for h = N , uh(ch) = 20ch

1 +
∑N

n 6=1,n=2 ch
n. There are N households

named h = 1, 2, ...,N; each endowed with 100 units of good h and strongly preferring

good h+1 (mod N) to all others.
There are N(N−1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, ..., N . The transaction

technology of {i, j}, i 6= 1 is Y {i,j} ≡ {(y, x)|for k = i, j, 0 ≥ yk ≥ −0.8xk; for k 6=
i, j, yk = xk = 0}. For {i, j}, i = 1, Y {i,j} ≡ {(y, x)|for k = 1, y1 = −x1, for j 6= 1, 0 ≥
y1 + yj ≥ −0.9x1 − 0.8xj ; for k 6= i, j, yk = xk = 0}. That is, each pair of goods
there is a distinct trading post firm {i,j} and there is no arbitrage by firms between
posts. Trade in all goods except good 1 experiences a 20% loss of each good in the

trading process; trading two goods incurs two 20% losses, 20% of each. Trade in good
1 with any other good j experiences a 30% loss in good j (a 10% saving compared to
using any good other than 1 as medium of exchange, hence the desirability of trading
through good 1 if a medium of exchange is to be used).

The resulting equilibrium prices, for i, j 6= 1 are (a
{i,j}
i , b

{i,j}
j ) = (5

8
, 3

8
). For i =

1, j 6= 2 we have, (a
{1,j}
1 , b

{1,j}
j ) = (1

2
, 1

2
), (a

{1,j}
j , b

{1,j}
1 ) = (10

17
, 7

17
). For {1, 2} we have

(a
{1,2}
1 , b

{1,j}
2 ) = (1

2
, 1

2
) (a

{1,2}
2 , b

{1,j}
1 ) = (10

17
, 7

17
)

The trade flows for h = 2, 3, ..., N − 1, are (x
h{h,1}
h , y

h{h,1}
1 ) = (−1, 1),

(x
h{1,h+1}
1 , y

h{1,h+1}
h+1 ) = (−1, 0.7). For h = N, (x

N{1,N}
N , y

N{1,N}
1 ) = (−1, 0.7). For

h = 1, (x
1{1,2}
1 , y

1{1,2}
2 ) = (−1, 0.7). That is, direct trade of most goods i for j is pro-

hibitively expensive, losing 40% of the goods in the transaction process. This reflects
the absence of double coincidence of wants. A typical household directly trading
good h for good h+1 necessarily incurs transaction costs on both sides of the bar-

gain. Indirect trade, through good 1, is more attractive since good 1 itself carries
lower transaction costs. The typical pattern of trade then is that household h sells
endowment, good h, for good 1, then sells good 1 for the desired good, h+1. In the
process, only 30% of good h+1 is lost to transaction costs.

In this example all trade goes through good 1, and for N-1 out of N traders
good 1 is a medium of exchange. The allocation is not however Pareto efficient.
Some of the resources used in the transaction process, 20% of gross endowment, is
technically necessary to the reallocation. It is not wasted. But the transaction costs

associated merely with fulfilling the pairwise trading post budget constraint, 10% of
total endowment, is administratively necessary but not technically necessary. It’s a
waste. The equilibrium allocation represents the outcome in an essential trading post
economy. It is not Pareto efficient.

Is the Trading Post equilibrium a Walrasian equilibrium? Individual agent trad-
ing behavior in the trading post model differs from Walrasian behavior (e.g.in Foley
(1970)) since it includes active use of a medium of exchange, good 1. Those trades
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net out to a loss. The resulting resource allocation is inconsistent with Walrasian

equilibrium. In a Foley (1970) economy (Arrow-Debreu with transaction costs) the
allocation cannot be supported by Walrasian equilibrium prices and it is Pareto inef-
ficient. This trading post economy equilibrium is essential.

10.4 No-arbitrage condition in Trading Post Equilibrium

At trading post equilibrium profitable arbitrage by households should not be possible
at prevailing equilibrium prices. Otherwise, arbitrarily large trading profits would
seem possible to the household. For simplicity, consider arbitrage among only two

commodities, without loss of generality denoted 1 and 2. There is only one trading
post {1, 2 } under consideration so the superscript designating the trading post can
be omitted to simplify notation. The price vector is

((a1, b2), (a2, b1)) ∈ ∆ ×∆

where ∆ is the unit 1-simplex. Recall that households sell at bid prices, b1, b2 and

buy at ask prices a1, a2. Then from the household side the No Arbitrage Condition
can be stated as

b1

a2
≤ a1

b2
.

This is demonstrated in the following way. Consider a single household, omitting
the household superscript for simplicity. We have the following relations from the
structure of the model:

x1 ≤ 0, x2 ≤ 0, y1 ≥ 0, y2 ≥ 0

−b2x2 = a1y1, −b1x1 = a2y2, x2 = − a1

b2
y1, y2 = −b1

a2
x1, x1 = − a2

b1
y2, y1 = −b2

a1
x2 .

Consider household arbitrage in good 1, to accumulate large profits in good 2. Set
−x1 = y1 = ξ > 0. Then x2 = − a1

b2
ξ and y2 = −b1

a2
(−ξ) or y2 + x2 = ξ[b1

a2
− a1

b2
] =

arbitrage profit. Hence the sufficient condition for arbitrage profit to be nonpositive

is b1

a2
≤ a1

b2
.

Similarly consider household arbitrage in good 2 to accumulate large profits in
good 1. Set −x2 = y2 = ξ > 0. Then x1 = − a2

b1
ξ and y1 = −b2

a1
(−ξ) or y1 + x1 =

ξ[b2

a1
− a2

b1
] = arbitrage profit. Hence a sufficient condition for arbitrage profit to be

nonpositive is b2
a1

≤ a2
b1

or equivalently

b1

a2

≤ a1

b2

.
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10.5 Economies not Using Media of Exchange: Double Co-

incidence of Wants and Inactive Trade

Economies with full double coincidence of wants (without scale economies in transac-

tion costs) will not use media of exchange in trading post equilibrium. Supplies are
directly exchanged for demands.

Alternatively, the economy may not use media of exchange simply because trade
is unattractive. There are two obvious cases: a Pareto efficient endowment and

prohibitive transaction costs.

10.5.1 Full double coincidence of wants with linear transaction costs

Consider the following economy with full double coincidence of wants. Let N ≥ 2
be an even integer. Let H ≡ {h = 1, 2, ..., N} where rh

h = 100 and where for h odd

uh(ch) = 20ch
h+1 +

∑N
n 6=h+1,n=1 ch

n, and for h even , uh(ch) = 20ch
h−1 +

∑N
n 6=h−1,n=1 ch

n.
There are N households named h = 1, 2, ...,N; each endowed with 100 units of good h
and the odd numbered households strongly preferring good h+1, the even numbered
households strongly preferring good h-1. Direct trade with the neighbor is the obvious

policy. This will be true even if there is a low transaction cost instrument available, so
long as direct trade is no more costly than indirect trade through the low transaction
cost instrument.

There are N(N−1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, ..., N . The transaction
technology of {i, j}, i 6= 1 is Y {i,j} ≡ {(y, x)|for k = i, j, 0 ≥ yk ≥ −0.8xk; for k 6=
i, j, yk = xk = 0}. For {i, j}, i = 1, Y {i,j} ≡ {(y, x)|for k = 1, y1 = −x1, for j 6= 1, 0 ≥
y1 + yj ≥ −0.9x1 − 0.8xj; for k 6= i, j, yk = xk = 0}. That is, each pair of goods there

is a distinct trading post firm {i,j} and there is no arbitrage by firms between posts.
Trade in all goods except good 1 experiences a 20% loss of each good in the trading
process; trade in good 1 with any other good j experiences a 30% loss in good j (a
10% saving compared to using any good other than 1 as medium of exchange, hence

the desirability of trading through good 1 if a medium of exchange is to be used).

The resulting equilibrium prices, for i, j 6= 1 are (a
{i,j}
i , b

{i,j}
j ) = (5

9
, 4

9
). For {1, 2}

we have (a
{1,2}
1 , b

{1,2}
2 ) = (10

17
, 7

17
) (a

{1,2}
2 , b

{1,2}
1 ) = (1

2
, 1

2
)

The trade flows for h odd, h 6= 1, 2 are (x
h{h,h+1}
h , y

h{h,h+1}
h+1 ) = (−1, .8),

(x
h{h,h+1}
h+1 , y

h{h,h+1}
h ) = (0, 0). For h=even (x

h{h,h−1}
h , y

h{h,h−1}
h−1 ) = (−1, .8),

(x
h{h,h−1}
h−1 , y

h{h,h−1}
h ) = (0, 0). For h = 1, 2, (x

1{1,2}
1 , y

1{1,2}
2 ) = (−1, 0.7), (x

1{1,2}
2 , y

1{1,2}
1 ) =

(0, 0), (x
2{1,2}
1 , y

2{1,2}
2 ) = (0, 0), (y

2{1,2}
1 , x

2{1,2}
2 ) = (1,−1).

All of the trade flows in this allocation are direct trade. There is no trade in media

of exchange. This reflects the endowment, demand, and transaction cost structure:
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there is a double coincidence of wants, so there is little incentive to trade indirectly,

and no transaction cost advantage to indirect trade. Thus, the example generates a
trading post equilibrium without use of a medium of exchange. The trading structure
and resulting allocation are Pareto efficient, and constitute a Walrasian equilibrium
(allowing for transaction costs). The trading post economy is inessential. That is,

the trade flows and resulting allocations would be the same — allowing for similar
transaction technology — in a unified (Arrow-Debreu (1954), Foley (1970)) trading
setting.

10.5.2 Inactive trade: Pareto efficient endowment

In an economy where there is no need for trade, there is no use for media of exchange.
Let H ≡ {h = 1, 2, ..., N} where rh

h = 100 and where uh(ch) = 20ch
h +

∑N
n 6=h,n=1 ch

n

for all h ∈ H. There are N households named h = 1, 2, ...,N; each endowed with 100

units of good h and strongly preferring that endowed good to all others.
There are N(N−1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, ..., N . The transaction

technology of {i, j}, i 6= 1 is Y {i,j} ≡ {(y, x)|for k = i, j, 0 ≥ yk ≥ −0.8xk; for k 6=
i, j, yk = xk = 0}. For {i, j}, i = 1, Y {i,j} ≡ {(y, x)|for k = 1, y1 = −x1, for j 6= 1, 0 ≥
yj ≥ −0.8xj ; for k 6= i, j, yk = xk = 0}. That is, each pair of goods there is a distinct
trading post firm {i,j} and there is no arbitrage by firms between posts. Trade in all
goods except good 1 experiences a 20% loss in the trading process.

The resulting equilibrium prices are not unique. A no-trade equilibrium is sus-

tained by (a
{i,j}
i , b

{i,j}
j ) = (1

2
, 1

2
), for all i, j. Trade flows and media of exchange flows

are nil. The endowment is an equilibrium allocation, a Walrasian equilibrium alloca-
tion, and is Pareto efficient.

10.5.3 Inactive Trade: Prohibitive transaction costs

A far more interesting reason for a nil demand for media of exchange is overwhelming
transaction costs. Costs high enough to discourage all trade will eliminate the demand
for media of exchange as well.

Let H ≡ {h = 1, 2, ..., N}where rh
h = 100 and where uh(ch) = 20ch

h+1+
∑N

n 6=h+1,n=1 ch
n

for h = 1, ..., 99, and for h = N , uh(ch) = 20ch
1 +

∑N
n 6=1,n=2 ch

n. There are N households
named h = 1, 2, ...,N; each endowed with 100 units of good h and strongly preferring
good h+1 (mod N) to all others.

There are N(N−1)/2 firms denoted {i, j}, j > i, i, j = 1, 2, ..., N . The transaction
technology of {i, j}, all i, j, is Y {i,j} ≡ {(y, x)|for k = i, j, 0 ≥ yk ≥ −0.1xk; for k 6=
i, j, yk = xk = 0}. That is, for each pair of goods there is a distinct trading post firm
{i,j} and there is no arbitrage by firms between posts. Trade in all goods experiences
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a 90% loss in the trading process. A pair of trades, using an intermediary good

compounds the loss: 99% loss in two successive trades.
The resulting equilibrium prices, for i, j are (a

{i,j}
i , b

{i,j}
j ) = ( 99

100
, 1

100
). The endow-

ment is the equilibrium allocation. No household wishes to trade at a discount of
99% — but this is just break-even for the firms considering the oppressive transac-

tion technology. The allocation is non-Walrasian and is far from Pareto efficient —
one-step rearrangements for each good would be a grand Pareto improvement, even
incurring 90% transaction costs. But that calculation ignores the 90% transaction

cost on payment of quid pro quo, necessarily incurred in a trading post equilibrium.
This calculation reflects the dual problems of transaction costs and absence of double
coincidence of wants — if there were a better match of suppliers with demanders even
90% transaction costs could be borne and mutually beneficial trades undertaken. But

the absence of double coincidence of wants means that each trade undertaken benefits
directly only one side. Two trades and two sets of transaction costs must be incurred
in the trading post economy, and transaction costs then swamp the gains from trade.

11 Conclusion

The goal in this study is to create a parsimonious model where a medium of exchange

(commodity money) can be an outcome of the (slightly augmented) formal Arrow-
Debreu general equilibrium, not an additional assumption. The trades of firms and
households in a trading post economy may be characterized by many separate trans-

actions, each fulfilling a separate budget constraint. In an economy of N commodities
there are N(N − 1)/2 trading posts, one for each pair of goods. The trading post
model reformulates the budget so that each of many separate transactions fulfills its
own budget constraint. This treatment generates a demand for carriers of value (me-

dia of exchange) moving among successive trades, Starr (2003A, 2003B). Virtually
the same axiomatic structure, Arrow and Debreu (1954), that ensures the existence
of general equilibrium in the model of a unified market without transaction costs
yields existence of equilibrium and a well-defined demand for media of exchange in

this disaggregated setting.
Trading post equilibria are Pareto efficient when they are simply the elaboration

of an underlying Walrasian equilibrium, an inessential trading post economy; see
also Hahn (1973). However, the multiplicity of separate budget constraints and the

additional transaction costs incurred or avoided may skew the allocation and pricing
(an essential trading post equilibrium). Then the equilibrium cannot be supported
by a Walrasian price structure and the allocation will be Pareto inefficient; see also

Starrett (1973).
The price system is informative not only about scarcity and desirability. It also
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prices liquidity. Transaction costs generate a spread between bid and ask prices

at each trading post. The bid-ask spread tells firms and households which goods are
liquid, easily traded without significant loss of value, and which are illiquid, unsuitable
as carriers of value between trades. The multiplicity of budget constraints creates the
demand for liquidity; the bid-ask spreads signal its supply. When liquidity is too

expensive (example 10.5.3), media of exchange will not be used. When liquidity is
inexpensive and helpful in achieving a Pareto improving allocation (example 10.2.1),
media of exchange will be actively traded in equilibrium. The trading post model

endogenously generates a designation and flow of commodity money(ies).
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