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NUMERICAL MODEL FOR SATURATED-UNSATURATED FLOW IN 

DEFORMABLE POROUS MEDIA, PART I: THEORY 

T. N. Narasimhan and P. A. Witherspoon 
Lawrence Berkeley Laboratory and Department of Civil Engineering 

University of California, Berkeley, California 94720 

ABSTRACT 

A theory is presented for numerically simulating the mass transfer 

of water in variably saturated, deformable porous media. The theoreti-

cal model considers a general three-dimensional field of flow in conjunction 

with a one dimensional, vertical deformation field. The governing 

equation expresses the co~servation of fluid mass in an elemental volume 

that has a constant volume of solids. The deformation of the porous 

medium may be nonelastic. The permeability and the compressibility 

coefficients may be nonlinearly related to effective stress. The 

relation between permeability and saturation with pore water pressure 

in the unsaturated zone may be characterized by hysteresis. The 

relation between pore pressure change and effective stress change may 

be a function of saturation. It is believed that this model will be of 

practical interest in studying saturated-unsaturated systems undergoing 

simultaneous desaturation and deformation. 
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INTRODUCTION 

This work is concerned with the development of a numerical 

model for simulating groundwater motion in variably saturated, 

deformable, heterogeneous porous media~ The model considers 

a general three-dimensional field of-fluid flow in conjunction 

with one-dimensional vertical deformation of the porous.mediurn. 

. ' ' 

It is believed that this model will have general applicability, 

not oniy in studying the movement of water in shallow'ground-

water systems in which the role of the unsaturated zone may 

be of considerable importance, but also in studying a variety 

of civil engineering and geological engineering problems 

related to ground settlement. 

The foundation for the unified treatment of water flow 

in variably saturated isothermal porous media was first given 

by Buckingham (1907) who proposed the concept of a capillary 

potential, ~' and showed its functional relation to the 

moisture content, e, in partially saturated soiis. Richards 

(1931) combined capillary potential with gravitational 

potential and showed that Darcy's law, which was originally 

proposed for saturated porous media, was equally valid in 

the partially saturated zone. ·While Buckingham and Richards 

were mainly concerned with flow in partially saturated soils; 
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Terzaghi (1925) was concerned with the engineering properties of soils. He 

proposed the concept of effective stress in defining the deformation of the 

soil skeleton. By definition, effective stress is related to capillary 

potential through the total stress. Thus, the concepts of capillary potential, 

gravitational potential, and effective stress together provide a conceptual 

basis for developing a mathematical mqdel for the transient motion of 

groundwater in variably saturated, deformable porous media. 

Although the theoretical basis has existed for some time, no serious 

attempt was made to develop a unified treatment for saturated-unsaturated 

flow in groundwater systems until recently (Cooley, 1971; Freeze, 1971; 

Narasimhan, 1975; .·Neuman 1973; Vauclin et al., 1974). The models of Cooley 

(1971), Freeze (1971), Neuman (1973), and Vauclin et al. (1974) include flow 

in both the saturated and the unsaturated domains, but these workers do not 

treat in detail the fundamental stress-strain relationships of the porous 

medium in response to changes in pore water pressure. Nor do they consider 

the variation in the permeability .of the porous medium in response to changes 

in effective stress. Other numerical models take into account the stress

strain relationships of the porous medium (e.g. Sandhu and Wilson, 1969; 

Schiffman and Gibson, 1964; Gambolati, 1973; Helm, 1975), but these models 

are restricted to purely saturated flow. Studies related to the behavior of 

compacted clays (e.g. Barden, 1965; Bishop and Blight, 1963; Bishop and 

Donald, 1961; McMurdie and Day, 1960) indicate that the relationship 

between effective stress and pore water pressure in partly saturated fine

grained materials may be quite complex and needs special attention. 

The purpose of this work is to develop a numerical model to simulate 

saturated-unsaturated groundwater flow in which the deformation of the soil 

skeleton is handled according to Terzaghi's one-dimensional consolidation 

theory. The soil deformation may be nonelastic, and the compressibility as 
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well as the permeability characteristics of the saturated soil may be nonlinear 

functions of effective stress. In addition, the permeability as well as the 

moisture characteristics of the unsaturated soil may exhibit hysteresis. We 

will assume that the air phase in the zone 6f partial saturation is continuous 

and iSl everywhere at atmospheric pressure·. ·The numerical model that is developed 

will be capable of handling a three-dimensional flow region 

that is composed of heterogeneous, isotropic materials and·has a complex geometry. 

Part I of this work discusses the physics of the mathematical model. 

Part II is a detailed account of the numerical algorithm. Part III 

demonstrates the validity of the numerical model by applying it to 

realistic problems with known experimental or mathematical solutions. 

EQUATION OF MASS CONSERVATION 

The fundamental equation of transient groundwater motion is an equation 

of mass conservation, which can be expressed in an integral form as 

( 1} 

If the volume element is appropriately small so that p and 8 can be treated 
w 

as average values over V, then (1) becomes 

a . 
;:\ (p 8V} 
ot W 

(2} 

We now seek to write (2) with ~ as the dependent variable and introduce 

Darcy's law for the equation of motion in the form 
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-+ 
q = 

kp g 
w 

-- 'il(z+lJJ) 
11 

(3) 

Note that z+lJJ = ¢, which is the Hubbert (1940) potential or hydraulic hec::~.d. 

If we can assume that az;at =~which implies that z is fixed during 

the time interval, and if pw' V, n, and S are functions only of ljJ, which is 

justified from empirical considerations, then since 9 = nS, substitution of 

(3) into (2) leads to 

f kp g 
p _w_ 'il ( z+lJJ> 
w 11 

r 

-+ 
en ( 4) 

Since we are concerned with a deformable porous medium, we will so choose 

the volume element V that it contains a constant solid volume V and a 
s 

variable void volume V • We will also assume that the compressibility of 
v 

the soil grains can be conveniently neglected in relation to that of the 

voids and water. A consequenceof this choice is that spatial relationships 

in the surface integral in (4) ·are all functions of time. 

FLUID MASS CAPACITY 

We shall now introduce a term for fluid mass capacity M 
c 

defined by 

M 
c 

(5) 

M represents the mass of fluid which the volume element V can absorb due to 
c 

a unit change in the average value of 1JJ over V. Using the chain rule of 

differentiatio~ we obtain 

M = 
c 

The three terms on the right side of (6) denote three distinct physical 

(6) 
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phenomena. The first term expresses the ability of water to expand due to 

changes in hydrostatic pressure, the second represents the deformability of 

the soil skeleton, and the last represents the desaturation of the pores. 

We will consider each of these phenomena separately. 

Equation of State 

The dependence of p on hydrostatic pressure p is given by w 

(7) 

5. 

in which the reference pressure p is usually taken as atmospheric and set to 
0 . 

zero. Since water is only slightly compressible, we can let p = p gVJ without wo 

loss of accuracy and obtain 

( 8) 

Differentiating (8), we immediately obtain, for the first term on the right 

hand side of (6) 

Deformation of Soil Skeleton 

dp 
w 

VnS d''' = VnSp p Sg 
'I' w wo 

(9) 

In the second term of (6) , we note that Vn = V and e = V /V , and hence 
v v s 

d(Vn) 
dVJ 

(10) 

since v = V/(l+e). The dependence of eon 1jJ is not direct. According to the 
s 

Terzaghi one dimensional consolidation theory, e is a function of effective 

stress cr', and cr' in turn is a function of VJ. 

By definition, effective stress is the net stress which acts on the soil 

skeleton. In one dimensional consolidation theory, effective stress at a 

point is defined by the relation, (Lambe and Whitman, 1969) 

cr• = cr - Y Vl w 
(11) 
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We now make an assumption that is reasonable under most field conditions that 

the total stress cr at any point in the system does not change with time. Then, 

the changes in effective stress and pore water pressure are related by 

!J.cr'. = ..,.y !J.\j.l 
w 

(12) 

Equation 12 suggests that any change in \j.J is fully converted to an equivalent 

change in cr'. Experience in the field of soil mechanics seems to indicate 

that in the case of fully saturated soils a complete equivalence exists 

between a change in pore water pressure and a change in mechanical stress. 

On the other hand, in studying the deformation characteristics of oil 

reservoir rocks, petroleum engineers often infer that only part of the 

pore water pressure may be convertible to effective stress (Robinson and 

Holland, 1970). Dry to extremely dry soils may develop negative pore 

pressures (moisture suction or moisture tension) in the tens or even hundreds 

of atmosphers. These capillary stresses are of a thermodynamic nature and 

have little to do with mechanical stre·sses. 

Between the saturated soils in which capillary and mechanical stresses 

may be fully equivalent, and the extremely dry soils in which capillary 

and mechanical stresses have no equivalence, lie the partially saturated 

soils of moderate to high saturation in which moisture suction is only 

partly convertible to mechanical stress. To accommodate this situation, 

a modified form of (11) has been proposed by Bishop (1960) and by McMurdie 

and Day (1960). 

cr' =cr-xYl/J, 
w 

__ o S x S 1 ( 13) 

While the petroleum engineers refer to X as boundary porosity, soil engineers 

sometimes refer to it as Bishop's parameter. X has been empirically de-

termined for some compacted soils and has a strong nonlinear relation 
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to saturation. Thus, X = X(S). The functional dependence of X and S for 

a compacted soil is given in Figure 1. The relation between cr• and ~ in (13) 

is schematically represented in Figure 2. 

If we assume cr to be constant, (13) yields 

in which X' = [X + ~ ~] 
d~ 

cicr• 
d~ = - yw X'' 

In the light of (14), equation 10 becomes 

d(Vn) 
d~ 

vy X' w de 
l+e dcr' 

(14) 

(15) 

In soil mechanics literature it is customary to express stress-strain 

relationships of soils by plotting e versus cr•. A very common boundary 

condition for field loading is one in which the strains are negligible in 

the intermediate and minor principal stress directions and all possible 

strains occur only in the vertical (major principal stress) direction. This 

type of boundary condition is closely simulated by the uniaxial loading 

experiments conducted in the laboratory. 

Figure 3A is an example of·the relation of e to a' for a soft clay as 

determined by uniaxial testing. In this figure, point B represents the state 

of the soil in situ, at the time of sampling. Due to the sampling, transporta-

tion and preparation processes before testing, the soil experiences a reduction 

in effective stress. Therefore, at the commencement of the one-dimensional 

compression test, the state of stress in the soil is represented by point A. 

As the vertical stress is increased, the sample follows the reloading curve 

AB. In this region the soil is in a state of "overconsolidation". Point B, 

which represents the maximum effective stress ever experienced by the soil, 

is the "preconsolidation" stress of the sample. Once the laboratory loading 

\ 
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Figure 1. Relationship between X and saturation 
·for two compacted soils. 

(after Bishop and Blight, 1963) 

-------- .... .... , 

Partially Saturated 

Zone 

<cr'>w 

' ', 

_ _, 
0 

Pressure head 

Saturated 
Zone 

Figure 2. Schematic representation of effective stress in 
saturated and unsaturated domains. 
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A. 

Virgin compression curve 

Swelling curve·· 

B. 
(cr)w, meters of ~ 
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o2 ·--0 
D ... 

~ 

. • 
·~ ~-

Slope, Cs=O.I3 

9. 

Figure 3. Variation· of void ratio ·in relation to effective stnj1ss 
(a) cartesian plot~- (b) semi-log plot ·. 

(data from W. N. Houston, University of California, Berkeley). 
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exceeds the stress level at B, the soil experiences a magnitude of loading 

never before experienced by it, and the void ratio decreases along the curve 

BC which is usually called the "virgin compression" curve. A soil undergoing 

such loading is "normally consolidated". 

At c, further loading is stopped and a gradual unloading of the soil is 

commenced. The stress level at C now becomes the new preconsolidation pressure 

and the sample, instead of moving along the curve CB, moves along the solid 

line CD, which is called the "swelling" or "rebound" curve. If the sample 

were to be reloaded at D, it would follow the dotted line connecting D and 

C, showing a slight hysteresis. For practical purposes, however, this hysteresis 

can be neglected. The difference between the paths of the virgin and swelling 

curves shows that the phenomenon of soil deformation is not elastic and that 

part of the deformation is non-recoverable. Such nonelastic behavior is 

exhibited by clays as well as sands. This nonelastiC: deformation is the 

prime cause of land subsidence as well as the permanent loss of valuable 

groundwater storage space in some areas of heavy groundwater withdrawal. 

The slope of the curve in Figure 3A at any point of interest 

is called the coefficient of compressibility, av' defined by 

a v 
de 
dcr' (16) 

in which the negative sign accounts for the fact that e decreases with increasing 

a•. Moreover, because of the nonlinear relationship between e and cr•, a itself 
v 

is a function of cr'. 

Closely related to a is the empirical parameter, volumetric compressibility 
v 

' 

m 
v 

£ 
v 

= - 110' 

where £ is the volumetric strain given by ~V /V • v v 0 

( 17) 
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The quantities a and m are related by 
v v 

a = m (l+e ) 
v v 0 

11. 

(18) 

Analysis of a large number of uniaxial test data indicates that a plot 

of e versus log a• is approximately a straight line (Figure 3B). The slope 

of the best-fitting straight line is called the "compression index" (C ) in 
·, ,,; .c ' 

the case of the virgin curve and "swelling index" (C ) in the case of the 
' s ' 

rebound curve. C usually exceeds C by an order of magnitude or more. An 
c s 

advantage of using C or C to describe stress-strain relationships is that 
c s ' ' . ' 

they are dimensionless coefficients, independent of the units of measurement. 

or 

Using the chain rule of differentiation, we find that 

c = c 
de de da' 

= - da' d (~ncr' ) 
-:-:--d-'-(~~n_a_• :,...> :- - 2. 303 a' 
d(log

10
a•) 

c 
c 

·a = 
v 2.303. a• 

a 
v 

(19) 

(19a) 

We are considering e as a function of a' only. In other words, e changes 

instantaneously as a' changes. The experimental data which we use are in 

fact steady-state data in which the soil is allowed to attain equilibrium 

with each new load before the physical parameters are measured. For many 

soils, the time to attain equilibrium may be relatively small, in which 

case, the assumption of an instantaneous reaction of e to a• is essentially 

valid. .However, when the soil reacts slowly to changes in loading, accurate 

simulation would require that e be treated as a function of a' and t. In 

the present model however, we shall ignore the time effects and treat e as 

a function of a• only. 

We can now evaluate the second term on the right-hand side of (6). 

Combining (15) and (16), we get 
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P 5 d(Vn) = 
w d1)i 

Or, making use of (19a), we have 

P 
S d(Vn) = 

w d1)i 

Desaturation of Pores 

Vp Sy X'a 
w w v 

l+e 
(20) 

vp s y X' c w w c 
l+e 2.303 a• (20a) 

The third and last phenomenon that enables a soil to absorb or release 

water from storage is the change in water saturation, represented by the last 

term on the right hand side of (6). Change of water saturation in soils is a 

thermodynamic process. In extremely dry soils, a variation in water saturation 

may in fact be accompanied by temperature changes. However, in soils of 

moderate to high water content, the temperature does not vary as S changes 

with 1)1. In our model we will neglect temperature effects and assume that S 

varies only with 1)1. 

It is well known from laboratory studies that at less than 100 percent 

saturation, 1)Jtakes on negative values. In soil physics literature, it is 

customary to refer to such values of 1)i as moisture suction or moisture tension. 

The dependence of S on 1)i for 1)i < 0 is not unique but is characterized by a 

multiple-valued hysteresis relationship as shown in Figure 4. 

If we consider a saturated soil with 1)1= 0 and apply suction, the soil does 

not physically desaturate until the applied suction exceeds a critical, "air-

entry" value, 1)JA. The air-entry value is a function of the pore diameter of 

the soil and for fine-grained sediments and clays it may be of the order of 

several meters of water or more. In the range, 1)JA < 1)i < 0, the soil remains 

saturated but has a negative pore pressure. The capillary fringe in natural 

soils coincides with this range in the values of 1)1. 

Once the threshold air-entry value is reached, the S versus 1)i relation 

follows the drying curve. If at any point in the drying curve the process is 

!: 

:·. 

!' 
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reversed, a hysteresis effect as shown by the scanning curve in Figure 4 

results. The drying and the wetting curves form the boundaries of the hystere-

sis loop, within which the position of the scanning curve depends on the 

saturation history. 

The slope of the drying, wetting or scanning curve at any point of interest 

may be called the "specific saturation capacity" and is a measure of the ability 

of the soil to absorb or release water from storage due to saturation changes. 

If porosity is constant~ then 

n dS = d(nS) 
dljJ dljJ 

d8 
= dljJ = c (21) 

l;: 

It is obvious from Figure 4 that dS/dljJ and p8/dl)J are strong multiple-valued 

functions of ljJ. Substituting (21) into the last term on the right hand side 

of (6) we see that 

provided that n is a constant. 

Final expression for M 
c 

(22) 

We obtain a final expression forM by'substituting (9) and (20) into (6) 
c 

Or using (20a) we can use C instead of a and write,, 
c v 

M 
c 

(23a) 

(23b) 

Note that in (23a) and (23b) the quantities p , n, S and e are all functions 
w 

of ljJ and change continuously' with time •. Also, since V is constant, it follows 
s 

that V = V (l+e) is also a function of time. Finally, the parameter X' 
s 

is also a function of ljJ since S is related to ljJ. 

X' (S) 
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Figure 4. Variation of saturation with 
pressure head for Del Monte sand 

(after Liakopoulos, 1965). 

c: 
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The Meaning of Specific Storage 

In hydrogeology literature, the coefficient of specific storage S is 
s 

commonly used for saturated soils. S is defined as the volume of water 
s 

released from a unit bulk volume of the soil per unit change in ~- Since 

S involves a unit volume element in the saturated zone, we divide (23a) 
s 

by v and disregarding the density term and noting that x' = l for full 

saturation, we obtain in a straight forward manner 

s 
s 

(24) 

In groundwater hydrology, S is invariably treated as constant and 
s 

independent of ~, which implies that a is effectively a constant. We have 
·v 

already seen from Figures 3A and· 3Bthat in fine-grained sediments a could 
v 

in fact be a significant function of effective stress. Therefore, one 

should treat a (and hence, s ) as a constant only for small changes in the v s 

15. 

value of effective stress. In young sedimentary basins where land subsidence 

is known to occur, the assumption of constant a may not however be appropriate. 
' v 

Most land subsidence takes place due to nonrecoverable compaction and loss 

in storage due to stress changes along the virgin compression curve (Helm, 

1975). With increased consolidation, a decreases significantly, reflecting 
v 

not only the decreased rate at which water can be withdrawn from storage 

but also the permanent loss in groundwater storage. If we recognize this 

fact, then the storage space available underground may itself be treated 

as a valuable resource. It is obvious that for long-range predictions of 

land subsidence and groundwater management we would have to consider the 

variation of a (and hence, S ) with time. Such a treatment is not possible 
v s 

in the conventional equation used in hydrogeology in which the stress field 

is completely ignored. 
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PERMEABILITY 

The permeability term in (4) is in general a symmetric second order 

tensor. However, in the present work we will restrict outselves to isotropic 

materials in which k is a scalar. In the zone of partial saturation k is 

directly related t~. ~ and this relationship may be characterized by hysteresis, 

as shown in Figure 5. 

In saturated systems the relation between ~ and k is not as direct as 

in unsaturated systems. In the saturated case, permeability is a function of 

effective stress which in turn depends on ~- Experimental studies (Lambe 

and Whitman, 1969) have shown that in fine-grained materials such as clay, 

k is a pronounced function of e. As shown in Figure 6, experimental data 

also show a linear relationship between e and log k. We can therefore 

represent k as an exponential function of e as 

k [

2.303(e-e
0
)] 

k exp 
0 . c 

k 
(25) 

where Ck is the best-fitting straight line for the relationship of e versus 

log k (Figure 6). Equation 25 is only one way of representing the depen-

dence of permeability on effective stress. As far as numerical modelling 

is concerned, one could equally well use any other convenient experimental 

relationship or simply tabulate k as a function of effective stress. 

INITIAL AND BOUNDARY CONDITIONS 

The transient movement of groundwater given by (4) is subject to initial 

and boundary conditions. The initial condition may either be simply hydrostatic 

or may be represented by a known arbitrary distribution of fluid potential, ¢. 
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Figure 5. Variation of hy,draulic conductivity 
with pressure head for Del Monte sand 

(after Liakopoulos, 1965). 

I. Silt - Boston 
2. Silt- Boston 
3. Calcium kaolinite 
4. Silt- North Carolina 
5. Sandy day 
6. Sand from dike 
7. Sand- Union Foils 

K, hydraulic conductivity, em/sec 

Figure 6. Variation of hydraulic conductivity 
with void ratio for some saturated soils 

(after Lambe and Whitman, 1969) . 

17. 
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The boundary conditions may be prescribed potential, prescribed flux, 

or of mixed type. In the case of the prescribed potential (Dirichlet) 

or prescribed flux (Neuman) boundary conditions, the potential or flux may be 

prescribed to vary either as a function of time or as a function of the unknown 

pressure head ~. 

The phenomenon of a seepage face which is peculiar to saturated-unsaturated 

flow gives rise to an important mixed boundary condition. On the seepage face, 

the fluid potential is equal to the elevation head and ~ = 0. In addition, 

fluid flux may only leave (but not enter) the porous medium across such a 

boundary. In a system with an unsaturated zone, the seepage face may grow or 

shrink with time, and hence, the actual dimension of the seepage boundary is 

not known a priori. The seepage face is thus a prescribed potential boundary 

on which the flux direction is specified. 

The phenomena of evaporation and evapotranspiration give rise to another 

boundary condition peculiar to saturated-unsaturated groundwater systems. A 

method of handling this condition has been devised by Neuman et al. (1975). 

The amount of moisture which the atmosphere can take in from the soil is equal 

to the sum of potential evaporation and potential evapotranspiration and can 

be determined from micrometeorological data. In addition, there also exist 

lower limits for the pressure heads that can develop either at the dry soil 

surface or at plant roots (the wilting pressure of plants). The soil

atmosphere boundary is therefore neither a prescribed potential nor a 

prescribed flux boundary, but is one on which an upper bound for flux and 

a lower bound for potential are prescribed. 

An infiltration boundary constitutes another type of boundary condition 

similar to evaporation. If the rate of infiltration at the soil surface 

exceeds the ability of the soil to transmit water, as determined by its 
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saturated vertical permeability, then part of the surface addition must be lost 

as run off. Thus, an infiltration boundary has an upper limit for the surface 

flux. In the n~erical model developed in the present work, evaporation, evapo-

transpiration and infiltration boundaries have not been included. However, 

there is no conceptual difficulty in incorporating these boundaries in the model. 

THE GOVER.~ING EQUATION 

We can now include a source term, G, and write the complete governing 

equation for mass transfer of water in a deformable porous medium as 

kp g w . -+ 
-- 'iJ (z+ljl)endr + G = 

].1 
(26) 

in which M is given by (23). Strictly speaking (26) is a non-linear equation 
c 

in which, the coefficients p , k, V, S, n, X' and e are all functions of the 
w 

dependent variable, ljl. For purposes of numerical solution we could quasi-

linearize this non linear equation by treating these ljl-dependent coefficients 

as step functions i~ time. We also recall that the volume element V which is 

bounded by the surface r has a constant ·solid volume V • Therefore, to be 
s 

consistent, the spatial relationships in (26) should be treated as step functions 

in time. It appears from the work thus far that one may neglect this geometric 

variation without loss of accuracy. 

Reduction to a Differential Equation 

Equation 25 is an integral form and relates to a finite volume element. 

If we consider a quasi-linear form of (26) in which V is replaced by V, where 

V is an appropriate mean volume of the elemental volume over a small interval 

of time, then, we could factor out V from both sides of the equation. Further, 

by letting the elemental volume become arbitrarily small and neglecting the 

source term, we may write 
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lim lf kpwg + . 3\jJ = p -. - V(z+\jJ)•ndf = m -v+o v w ]J . c 3t 
( 27) 

r 
where m M /V may be called the "specific fluid mass capacity" of the volume 

c c 

element. Note that the integral on the.,left hand .side of (27) is the negative 

of the divergence (Sokolnikoff and Redheffer, 1966) of the Darcy velocity defined 

by equation 3. Thus (27) reduces in form to the well known Richard's equation 

where 

m 
c 

= p [Snp Sg + 
w wo 

The 8-Based Equation 

sy X' w 

m 
c 

---a +n 
l+e v. 

dS 
d\jJ ] 

(28) 

A governing equation with \jJ as the dependent variable is generally very 

.advantageous in handling heterogeneous flow regions. In such cases, the 

moisture content may vary abruptly in space, but \jJ can still be treated as a 

continuous function. However, a disadvantage of the \jJ-based equation is that 

when k and M become strongly dependent on \jJ, the equation may become very 
c 

difficult to solve. This is the case with extremely dry soils. For such 

problems, it is much more convenient to use the volumetric moisture content, 

8, as the dependent variable (see Braester, et al., 1972) .. In differential 

form, the 8-based equation may be written as 

D. nel . ae V•p [KVz + v - p -w - w at (29) 

in which D = K d\j!e is the soil moisture diffusivity which is a function of 8. 
. d 

Rubin and Steinhardt (1963) used the 8-based equation to solve infiltration 

problems in an extremely dry Rehovot sand. The chief disadvantage of the 8-

based equation is that it is not suitable for handling heterogeneous media 

(Klute, 1972). 
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Soil Moisture Diffusivity and Coefficient of Consolidation 

In soil physics literature, it is customary to treat porosity as a 

constant in the unsaturated zone. While this assumption may be valid 

for unsaturated soils, there is a serious difficulty when ~ is in the 

range, ~AS~ S 0. This range of values of~ is characteristic of 

the capillary fringe. In this range, the soil remains fully saturated and hence 

dS/d~ = 0. 
dS d6 

If now we assume porosity to be constant, then n d~ = d~ = 0. Hence 

D becomes infinite. 

In unifying the flows in the unsaturated and saturated zones, we can avoid 

this difficulty by noting that in the capillary fringe porosity changes with 

while saturation remains unity. Therefore, for ~A<~ S 0, we have, e = nS = 

Hence 

D = K d~ ~ K 
d~ K (30) d6 - -= 

(dn/d~) dn 

If the deformation is very small so that the change in void volume is much 

smaller than the change in bulk volume, then 

/J.v ;v 
dn ~ v o 
d~ /J.ljl 

(31) 

~ 

n. 

Multiplying and dividing by (V /V ) and noting that (V /V ) 
0 s 0 s 

(l+e ) , we obtain 
0 

from (31) 
/J.v ;v 

dn ~ -~v-;;::.s_,... = 
d~ (l+e )/J.~ 

0 

In view of (32), we obtain from (30), 

D = 

1 de 
(l+e ) d~ 

o· 

(32) 

(33) 

Also, Lambe and Whitman (1969) define the coefficient of consolidation as 



22. 

c 
v 

K 
= --= 

. K{l+e. ) 
0 ----= 

·· K (l+e ) 
0 

y (-de/dcr') 
w 

Noting that for a saturated soil, lll/J = -llcr'/y , we have from (34) 
w 

K(l+e ) 
0 

c = 
v (de/dl/J) 

(34) 

(35) 

Since (35) is identical with (33), we conclude that in the capillary fringe 

diffusivity and the coefficient of consolidation are synonymous. Recognition 

of this equivalence is imperative if flow in the saturated and unsaturated 

domains is to be unified in a single phenomenological equation. 

Limitations of the Mathematical Model 

The mathematical model described above is based on a set of assumptions 

which imposes certain limitations on the model. The first of these assumptions 

is that the air phase is continuous in the unsaturated zone and remains at 

' atmospheric pressure. If the liquid contains dissolved gas at different 

pressures, then the present mathematical model becomes inapplicable. Secondly, 

the l/J-based equation may become very difficult to solve when the soil is 

extremely dry and k as well as S becomes a strong function of l/J. The governing 

equation 26 is therefore best sui·ted to soils of moderate to high !?aturation. 

A third limitation of the present model involves the method of handling 

soil deformation. The one dimensional consolidation theory is a simple concept 

that has been found to be of practical value under many field conditions. 

However, there may be situations where one will have to consider 

the complex relation between changes in pore pressure and the general 

effective-stress tensor. A fundamental consequence of this requirement is that 

we do not know a priori the quantity de/dl/J (which enters into computation of 

M ) until we have solved an independent equation relating changes in effective 
c 



stress to the consequent strains. In order to rigorously solve the problem, 

we need two equations: one for fluid flow as given by {26) and another for 

force equilibrium relating changes in effective stress to the deformation {strain) 

of the soil skeleton. To couple the two equations properly, one would not only 

need to know the manner in which changes in ~ affect the stress tensor but also 

the complex three-dimensional, stress-strain relationships of variably saturated 

soils under different boundary conditions. The problem is further complicated 

by the fact that in a water-saturated soil, the deformation is not only governed 

by changes in stress induced by changes in pore pressure but also by the seepage 

stresses and the drag forces imposed on individual grains by moving water. The 

one-dimensional consolidation theory used in this work does not take these complex 

factors into account. 
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NOTATION 

coefficient of compressibility 

coefficient of consolidation 

specific moisture capacity 

compression index; slope of the e versus 
log a' straight line in the normal 
consolidation region 

slope of the e versus log k straight line 

swelling index; slope ·of the e versus 
log a' straight line in therebound region 

soil moisture diffusivity 

void ratio 

void ratio at reference effective stress 
a' 

0 

. gravitational constant 

intensity of source of sink integrated 
over a finite subregion 

absolute permeability 

absolute permeability at reference void 
ratio e 

0 

hydraulic conductivity 

specific fluid mass capacity 

coefficient of volumetric compressibility 

fluid mass capacity of a finite subregion 

porosity 

unit outer normal 

pressure 

reference pressure 
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(J 

a' 

X 

') ~ 0 t.:d 4 0 :> 8 7 tJ 9 0 

specific flux or Darcy velocity 

saturation 

coefficient of specific storage 

time 

bulk volume of a finite subregion 

average bulk volume of a finite subregion 
during a time interval 

volume of solids 

volume of voids 

elevation head 

coefficient of compressibility of water 

specific weight of water 

surface bounding a finite subregion 

volumetric strain 

volumetric moisture content 

coefficient of viscosity 

mass density of water 

mass density of water at atmospheric 
pressure 

total stress 

effective stress 

Bishop's parameter or boundary porosity, 
relating effective stress and pore water 
pressure 

[L/T]·. 

[1] 

[1/L] 

[L] 

[LT
2 

/M] 

[M/L
2

T
2

] 

[L2] 

[1] 

[1] 

[M/LT] 

[M/L 
3

] 

[M/L
3

] 

[M/LT
2

] 

[M/LT
2

] 

[1] 

X' [X + \jJ ~l [1] 

¢ fluid potential or hydraulic head [L] 

\jJ pressure head; pore water pressure expressed [L] 
in equivalent height of water column 

\jJA pressure head at air entry value [L] 
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r---------LEGAL NOTICE-----------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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