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ABSTRACT OF THE DISSERTATION 

 

Detection of Differential Item Functioning 

in the Generalized Full-Information Item Bifactor 

Analysis Model 

 

by 

Jason Taro Somerville 

Doctor of Philosophy in Statistics 

University of California, Los Angeles, 2012 

Professor Jan de Leeuw, Chair 

 

In the field of psychometrics, there has been an increase in interest concerning the evaluation of 

fairness in standardized tests for all groups of participants.  One possible feature of standardized 

tests is a group of testlets that may or may not contain differential item functioning (DIF) 

favorable to one group of participants over another.  A testlet is a cluster of items that share a 

common stimulus.  In this dissertation, a DIF detection method useful for testlet based data was 

developed and tested for accuracy and efficiency.  The proposed model is an extension of the 

generalized full-information item bifactor analysis model.  Unlike other IRT-based DIF detection 

models, the proposed model is capable of evaluating locally dependent test items and their 

potential impact on the DIF estimates.  This assures the new capability of the bifactor DIF 

detection method that was not evident in previous methods.  Item parameters were estimated 

using a maximum likelihood estimation (MLE) method producing expected a posteriori (EAP) 
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scores.  Using the restrictions of a bifactor model, the dimensionality of integration can be 

analytically reduced and the efficiency can be increased.  Following prior research regarding DIF 

on a PISA dataset, the proposed DIF model was applied to mathematics items of the Program for 

International Student Assessment (PISA) 2009 dataset to confirm the utility of the model.  After 

the meaning of results to the PISA research community is conveyed, a simulation study was 

conducted to provide concrete evidence of the model’s utility.  Finally, limitations of this study 

from computational and practical standpoints were discussed, as well as directions for further 

research. 
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CHAPTER 1 

 

Introduction 

  

Over the past few decades, there has been increased curiosity concerning how test scores are 

affected by the differences in the participants’ abilities.  In the field of psychometrics, as 

researchers fit complicated models to item response data, they attempt to meticulously evaluate 

the test items’ consistency among the subgroups into which the participants could be partitioned.  

Detecting a test’s bias, or lack thereof, can be valuable information for test developers who strive 

to design examinations capable of reliably measuring the academic ability of all students, 

regardless of the students’ background.  The purpose of this study is to develop and evaluate a 

new DIF detection model for test scores measured by the generalized full-information item 

bifactor analysis model. 

 This dissertation is a marriage of the bifactor model and the detection of differential item 

functioning (DIF).  The former is a recently developed item response theory (IRT) model which 

assumes local dependence among items with provisions for additional random effects; the latter 

is an observation of a phenomenon occurring in some questionnaires or tests showing 

inconsistency.  Despite the evidences of the bifactor model providing better fit to data than 

conventional models, there is still necessity of searching sources of variation in responses among 

subgroups.  Hence, the combination of the latest model and bias detection can make helpful 

statements regarding the overall quality of tests in the field of education. 
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 In the first part of this chapter, common concepts and key terms regarding DIF used in 

this study are introduced.  Then, in the second part, the characteristics and benefits of the two-

tier model are described in detail.  Finally, the purpose and significance of this study with 

regards to real life situations are declared. 

1.1 Differential Item Functioning 

The fairness of the test items is an important aspect of the test to measure in order to evaluate its 

consistency.  One of the most common approaches of doing so is an analysis of DIF, a natural 

phenomenon that can occasionally be observed when dealing with item response data.  DIF 

shows an indication of diverse behavior by an item, showing evidence that people from different 

groups (such as genders and ethnicities) with the same latent trait have a different probability of 

answering the item correctly.  The focal group is the group of participants on which the research 

is focused, while the reference group is a group to which the focal group is compared.  If the 

items do not show significant DIF, they are invariant across groups of participants, which is an 

ideal situation since a test with no sign of bias is desirable in the field of psychometrics.  Every 

student with the same ability should have an equal opportunity to choose the correct response to 

each item on a test. 

The competence of one group of participants can be misrepresented by DIF present in an 

item.  Here is one concept that explains the definition of DIF: “An item is unbiased if, for all 

individuals having the same score on a homogeneous subtest containing the item, the proportion 

of individuals getting the item correct is the same for each population group being considered” 

(Scheuneman, 1975).  Another explanation is the following: “If each test item in a test had 

exactly the same item response function in every group, then people of the same ability or skill 



 3
  

would have exactly the same chance of getting the item right, regardless of their group 

membership.  Such a test would be completely unbiased” (Lord, 1980).  The goal is to confirm 

that the meaning which items attribute to the test is the same for all groups (Shepard, 1982). 

DIF indicates that performance is different among subgroups; it is a slightly different 

concept from impact and bias.  From the IRT point of view, DIF is present when different item 

characteristic curves (ICCs) can be identified from the different subgroups (Narayanan and 

Swaminathan, 1996).  On the other hand, impact measures the difference in performance on an 

item between two groups, which comes from the difference in average ability of the groups 

(Dorans and Holland, 1993).  Therefore, the impact measures how the difference in performance 

is affected by difference in ability; whereas DIF measures how the difference in performance 

emerges despite the lack of difference in ability.  Also, item bias is different from DIF.  If an 

item shows DIF, experts can implement an evaluation to see, in the social or content aspect, if 

the item favors one group over the other (Angoff, 1993).  DIF is a condition that needs to be 

present for a biased item; however, the converse is not true.     

The two major types of DIF are uniform DIF and non-uniform DIF.  Uniform DIF occurs 

when one group performs uniformly better than the other group regardless of the ability level, 

which means there is no interaction between the ability level and the groups (Narayanan and 

Swaminathan, 1996).  One the other hand, non-uniform DIF occurs when the magnitude and 

direction of the differential performance between two groups varies across the spectrum of the 

ability level.  This phenomenon can be observed if the two ICCs intersect at some ability level.  

Some DIF detection methods are only capable of detecting uniform DIF, while other methods 

can find both uniform DIF and non-uniform DIF. 
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In order to execute the DIF evaluation smoothly, a “matching criterion” is essential for 

controlling the difference in ability between a focal group and a reference group.  Matching 

criteria can be total scores on a test (as utilized in classical test theory), or they can be ability 

estimates (as utilized in IRT).  Items exhibiting DIF would not be beneficial for the process of 

creating a medium for fair evaluation; therefore it is desirable to determine a matching criterion 

by using only DIF free items.  An ideal matching criterion would be one that uses only DIF free 

items with help from a purification procedure (Dorans and Holland, 1993) that involves two 

steps.  In the first step, known as the criterion refinement or purification step, items on the 

matching variable are analyzed for DIF, and any items that exhibit sizeable DIF are removed 

regardless of the DIF having a positive or negative sign.  In the second step, the refined criterion 

is used for another DIF analysis of the same items and any other items excluded in the criterion 

refinement step.     

1.2 Generalized Full-Information Item Bifactor Analysis Model 

The generalized full-information item bifactor analysis model is a confirmatory item factor 

model which has features that are useful in psychometric research (Cai, Yang, and Hansen, 

2011).  One of the features is the flexibility while handling residual dependence of item 

responses without using copula functions (Braeken, Tuerlinckx, and De Boeck, 2007).  Another 

feature is the maximum likelihood estimation, with proven accuracy and efficiency from 

demonstrations using data.  Dimension reduction, yet another feature, can reduce the 

dimensionality of the latent variable, which gives the model a computational advantage over 

other models. 
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First, one must examine how the bifactor model makes the assumption allowing local 

dependence to be present among items.  Let us consider a bifactor pattern for six items: 

(

 
 
 
 

   

   

    
    

 
 

   

   

    

    

 
 

   

   

  
  

   

   )

 
 
 
 

 

in which the a’s represent non-zero item slopes for the latent variable θ.  The first column of item 

slopes is slope parameters for the primary dimension   .  All items load on the primary factor 

because it is constrained by the bifactor model.  This constraint is effective for datasets in which 

items are intended to measure the same construct for all participants.  The next three columns of 

item slopes are slope parameters for the specific dimensions   ,   , and   .  The bifactor model 

permits items to load on at most one of the specific dimensions, and thus deep analysis can be 

completed by examining the primary dimension and the specific dimension. 

 The remaining two features – maximum likelihood estimation and dimension reduction - 

work well when used together.  Its accomplishment is to estimate the item parameters accurately.  

The first step in doing so is to find the marginal distribution of the item responses.  We first 

multiply the conditional probability of observed response y given the latent variables θ with the 

distribution of θ to obtain the joint distribution.  Next, we integrate θ out of the joint distribution, 

and the end result is the marginal of y.  As shown by Cai, Yang, and Hansen (2011), the 

marginal distribution of the item responses is expressed as follows: 

fa(y) = ∫ ∫ ∫ ∫   ( |           ) (           )            
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where the subscript a is added to emphasize the fact that the unknown parameters depend on the 

conditional and marginal distributions on the unknown parameters. 

Referring to the example illustrated with six items, all items depend on   .  However, the first 

two items are the only ones that depend on   , the third item and the fourth item are the only 

ones that depend on   , and the last two items are the only ones that depend on   .  For the 6 × 1 

vector of item responses y = (       )
t
, conditional independence implies 

  ( |           )    (     |     )  (     |     )  (     |     ). 

Hence, while finding the marginal distribution of y, one can integrate the two specific 

dimensions out of the joint distribution first, and then integrate    out so that marginal 

distribution of y is expressed as the following iterated integral: 

fa(y)=∫ [∫   (     |     ) (  )   
  

  
]   [∫   (     |     ) (  )   

  

  
]  

  

  

[∫   (     |     ) (  )   
  

  
]  (  )     

As a result of integration over the specific factors, the terms in the square brackets only depend 

on   , which is integrated out in the final step.  The marginal distribution can be approximated 

using quadrature approximation as 

  ( )  ∑ [∑   (     |   
    

)   

 
    ]     

    [∑   (     |   
    

)   

 
    ]  

[∑   (     |   
    

)   

 
    ]   

, 

where the integrand is evaluated at a set of Q discrete quadrature nodes (the   ’s) for each latent 

factor, with weights at each node equal to   .  In this dissertation, rectangular quadrature is used, 

in which Q = 20 quadrature points equally spaced between -5 and 5 are necessary.  The weights 
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are ordinates of normal densities evaluated at the corresponding quadrature nodes in the 

rectangular quadrature. 

 Rijmen, Vansteelandt, and De Boeck (2008) demonstrated that dimension reduction is 

efficient due to the conditional independence relations of the model being exploited during the E-

step.  These stem from a graphical model theory which can be described using a junction tree 

from the acyclic graph.  In this theory, the structure of a transformed graph provides a 

factorization of the joint probability function of the manifest and latent variables, which are 

represented by nodes of the junction tree with compact clique state spaces.  The goal of assessing 

the test fairness is achieved with fewer obstacles. 

In the subsequent sections, some IRT models using the constraints of the bifactor model 

will be introduced.  The models are a classical model for dichotomous response, a model for 

graded response, and a general partial credit model.  In this dissertation, the IRT models being 

used are the first two models because the PISA 2009 data has binary items (correct/incorrect) 

which can be modeled by the first model and polytomous items (3 different answer choices) 

which can be modeled by the second model.  Partial credit is not assumed is this data analysis. 

 While explaining the notation, the i subscript (for person i) and the j subscript (for item j) 

are dropped temporarily to avoid notational clutter.  A generic item j is assumed to be scored in 

K categories.  It is also assumed that each item loads on specific factor s in addition to the 

primary dimensions.         
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1.2.1 Classical Model for Dichotomous Response 

This model is an extension of the 3-parameter logistic model (Reckase, 2009).  The general 

dimension    and specific dimension    determine the likelihood of the response being correct.  

Let the conditional probability of a correct response in this framework be 

 (   |     )    
   

     { [           ]}
 

where c represents the guessing probability, d the intercept of the particular item,    the slope 

with respect to the primary dimension, and    the slope with respect to specific dimension s.  

Due to the property of the items with dichotomous response, conditional probability of an 

incorrect response is the complement of the conditional probability of a correct response, such 

that the sum of probabilities equals 1.  In this dissertation’s data analysis, the guessing 

probability is set equal to zero since PISA is an educational assessment that does not involve 

high stakes, and therefore the phenomenon of guessing is not considered.  If the item does not 

load on any specific dimension, then the term      disappears because the conditional 

probability solely depends on the primary dimension, as demonstrated in the following model 

modified for items loading solely on the primary dimension: 

 (   |  )    
   

     { [      ]}
. 
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1.2.2 A Model for Graded Response 

The graded response model (Samejima, 1969) can be extended to cover the bifactor case.  This 

model is similar to the model described by Muraki and Carlson (1995).  Let K represent the 

number of graded categories in which responses are categorized and let y ∈ {0, 1, …, K - 1} 

represent the item response that belongs in one of the graded categories.  Let the cumulative 

category response probabilities be  

 (   |     )  
 

      { [            ]}
  

  

 (     |     )  
 

      { [              ]}
  

where d1, …, dK-1 are a intercepts corresponding to each category,    is the item slope on the 

primary dimension, and    is the item slope on the specific dimension s.  The category response 

probability for category k is simply calculated by finding the difference between two neighboring 

cumulative probabilities 

 (   |     )   (   |     )   (     |     )  

where the probability of the response belonging to the lowest category is defined by 

 (   |     )    -  (   |     ) and the probability of the response belonging to the 

highest category is defined by  (     |     )   (     |     )  

The graded response model utilizes a latent variable in a regression model that has the same 

structure as the proportional odds model.  The proportional odds model is a regression model 
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used for ordinal data.  It is an extension of the logistic regression model for dichotomous 

variables, allowing for more than two response categories.  The proportional odds model, 

estimated using the maximum likelihood estimation method, applies to data meeting the 

proportional odds assumption which assumes any two pairs of outcome groups have the same 

relationship.  The latent variable is treated as the unobserved random variable in a logistic 

regression model.  An alternative nomenclature of the proportional odds assumption is the 

parallel regression assumption.  Since any pair of outcome groups has the same relationship, only 

one set of coefficients is required, which explains the origin of the nomenclature.  The 

proportional odds model uses the following logit function as described in Moustaki (2000): 

  [
  ( )

    ( )
]   (     ) 

where s is the index of the category, and    is the probability of a response in category s or lower.  

As documented in Mignani et al. (2005), the graded response model and the proportional odds 

model are similar to each other.  In both of those models, the higher the value of the latent 

variable, the higher the probability of the corresponding response belonging in the highest 

category.  The graded response model will be applied to the polytomous items in this 

dissertation’s data analysis. 
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1.2.3 A General Partial Credit Model 

The unidimensional generalized partial credit model (Muraki, 1992) can be extended to cover the 

bifactor case as well.  Let K represent the number of ordinal categories in which responses are 

categorized and let y ∈ {0, 1, …, K – 1} represent the item response that belongs in one of the 

ordinal categories.  Adapting the notation in Thissen, Cai, and Bock (2010), let the conditional 

response probability for ordinal category k = 0, …, K – 1 be 

 (   |     )  
    {  [         ]    }

∑    {  [         ]    }
   
   

 

where Tk  is the scoring function unique to its ordinal category k and dk is the category intercept 

unique to its ordinal category k.  The definitions of    and    are identical to those in the 

previous models; the former is defined as the item slope of the general dimension and the latter is 

defined as the item slope of the specific dimension s.  If the category intercepts are to be 

estimated from defining a multinomial logit, an identification restriction such that one of the dk 

values equals zero is necessary.  However, in this dissertation’s data analysis, partial credit is not 

assumed to exist.     

1.3 Purpose and Significance of Study 

The objective of this study is to propose and examine a new statistical model to detect DIF for 

items fit to a bifactor model.  Such DIF detection would be necessary since the bifactor model is 

accurate, efficient, and broadly applicable.  Previous DIF detection extended to less flexible IRT 

models does not take the local dependencies of items into account, which causes item parameters 

and DIF magnitude to be estimated with bias.  A biased estimate of DIF magnitude will be 
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misleading because of “artificial DIF,” a by-product of inaccurate parameter estimates due to use 

of inappropriate IRT models (Angoff, 1993).  Therefore, appropriate IRT models are essential 

for estimating item parameters and DIF more accurately.  For this reason, this study proposes a 

new DIF detection model based on the bifactor model that has reliable accuracy, high efficiency, 

and a broad range of applicability. 

 In this study, marginal maximum likelihood estimation will be utilized to estimate 

parameters.  Using the two-tier model restrictions, the dimensionality of integration can be 

reduced from the number of total dimensions to two. 

A DIF detection model using the bifactor model needs to be developed since the bifactor 

model is versatile.  The bifactor model can unify the dichotomous response model, the graded 

response model, and the general partial credit model in a single modeling framework (Cai, Yang, 

and Hansen, 2011).  In addition to its versatility, the bifactor model has flexibility of allowing 

local item dependence (LID).  Compared to a DIF detection model requiring items to be 

conditionally independent, the proposed DIF detection model is anticipated to estimate DIF 

magnitude more accurately and provide precise information about DIF magnitudes for studied 

items.  Moreover, the maximum marginal likelihood estimation for this model only requires a 

two-dimensional integral.  Therefore, there is no harm done in fitting the test items to a bifactor 

model. 

 For not only the statistics community, but for all stakeholders, this study is interesting 

and significant.  This research is using one of the latest models developed in IRT, which has 

applications in the social sciences field.  The results will be important because the expert in IRT 

will regard this research as an efficient way to see how two groups of participants can have 
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varied response patterns.  Noticing the two groups’ different response patterns to a test will lead 

to creating tests that contain items that are comprehensible for participants of both groups.  All 

stakeholders are hoping to see fairness in test items.  
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CHAPTER 2 

 

Literature Review 

 

In this chapter, various DIF detection methods – some based on IRT – will be introduced.  

Advances in research and increase in knowledge can be observed while following the history of 

the procedures in which DIF can be detected.  The history starts with the non-IRT-based DIF 

detection methods to locate the origins of DIF, followed by the IRT-based DIF detection 

methods to see how IRT plays a role on finding DIF.  Lastly, the reasons regarding the choice of 

Wald test for the usage in this dissertation’s data analysis will be explained.       

2.1 Non-IRT Based DIF Detection Methods 

A recollection of the earliest methods that are utilized to detect DIF between two groups in a 

sample would reveal the fundamentals of DIF detection.  These methods are reliable, despite the 

fact that the latent variable is not utilized to estimate the probability of a correct response for 

either the focal group or the reference group.  
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2.1.1 Standardized P-Difference 

The standardized P-difference (STD P-DIF) is the weighted mean difference between the 

proportions correct for the focal group and those for the reference group.  It has been proposed as 

a DIF index by Dorans and Kulick (1986) and calculated using the following formula: 

STD P-DIF = ∑    (       ) /∑      

where n is the number of examinees in a category, p is the proportion of examinees getting an 

item correct, subscript k is the score level in the matching criterion, subscript R indicates the 

statistic is for the reference group, and subscript F indicates the statistic is for the focal group.  

This measure is only sufficient under the Rasch model.  Also, since STD P-DIF measures 

differences in difficulties between groups, it is only capable of measuring uniform DIF.    
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2.1.2 Mantel-Haenszel Method 

The Mantel-Haenszel (M-H) method considers the difference in odds of having the correct 

response to an item between the focal group and the reference group.  The statistic is 

    = 
∑            

 
   

∑            
 
   

 

in which s is the number of score levels, nk is the total number of people at score level k, n1rk and 

n0rk are the number of reference group people having a correct response and the number of 

reference group people having an incorrect response respectively, and n1fk and n0fk are the number 

of focal group people having a correct response and the number of focal group people having an 

incorrect response respectively.  If the statistic is greater than 1, the odds imply that the item 

favors the focal group.  A chi-square statistic can also be found: 

   
  = 

(∑     
 
    ∑      

 
   )

 

∑    (    ) 
   

 

where E    = 
      

  
 and Var(n1fk) = 

            

  
 (    )

 

As explained by Zwick (1990), this measure works well in case all items are Rasch items and the 

investigated item is the only biased item; hence, it has similar limitations as the STD P-DIF.  
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2.1.3 Logistic Regression Method 

The logistic regression method (Swaminathan and Rogers, 1990) has a clear advantage over the 

M-H method in terms of DIF detection because it is able to capture both uniform DIF and non-

uniform DIF.  It uses a matching criterion, a group indicator, and their interaction as predictors to 

estimate the logit of correct response.  Another advantage of the logistic regression method over 

the M-H method is the usage of the ability variable to accurately assess every participant’s 

ability to answer test items correctly.  The model is as follows: 

   (
   

     
) =                (    ) 

in which     is the probability of getting a correct answer on item i for participant j.     is an 

intercept,    is a regression coefficient for an ability of interest (  ),    is a coefficient for 

grouping variable (  ), and    is a coefficient for an interaction effect between the ability and the 

grouping variable.  The latent variable    is measured on the same scale for both participants in 

the reference group and participants in the focal group.  The grouping variable Gj is set to equal 0 

for the reference group and 1 for the focal group.  Comparing model fits between a model with 

and without the interaction coefficient will determine whether the item has non-uniform DIF or 

not.  If    is statistically significant, then we conclude that the item has non-uniform DIF.  If    

is not statistically significant but    is statistically significant, then we conclude that the item has 

non-uniform DIF.  Given the item has non-uniform DIF, comparing model fits between a model 

with and without the grouping coefficient will determine whether the item has uniform DIF or 

not.  If    is statistically significant, then we conclude that the item has uniform DIF.    
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2.2 IRT-Based DIF Detection Methods 

In this section we will discuss the DIF detection methods that utilize IRT in order to measure the 

performance difference between the reference group and the focal group, if the difference exists.  

The assumption made in these methods is that the probability of answering an item correctly can 

be predicted using a function of the latent variable.  

2.2.1 SIBTEST Method  

The Simultaneous Item Bias Test (SIBTEST) method (Shealy and Stout, 1993) is a non-

parametric approach to DIF detection.  SIBTEST is exclusive among other DIF detection 

methods since it is capable of detecting DIF in several items simultaneously as a unit.  Initially, 

SIBTEST distinguishes between items measuring the ability (valid subtest) from items 

designated as DIF items (studied subtest).  Then, it examines the difference in performance on an 

item in the studied subset, given the same level of ability determined by the valid subset.  The 

amount of uniform DIF estimated by SIBTEST is as follows: 

 ̂  = ∑   ( ̅  
   ̅  

 ) 
    

in which    is the proportion of the focal group with score k on the valid subset, N is the 

maximum score of the valid subtest,  ̅  
  is the adjusted mean score on the studied subtest for the 

reference group, and  ̅  
  is the same statistic for the focal group. 
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Similarly, the amount of non-uniform DIF is as follows: 

 ̂  = ∑   ( ̅  
   ̅  

 )   
   +∑   ( ̅  

   ̅  
 ) 

      

in which l is the valid subtest score at which tendency for a studied item or a studied subtest to 

favor one group switches toward the other group.  As for classification of the DIF amount, if the 

absolute value of either a uniform DIF or a non-uniform DIF is greater than 0.088 the DIF is 

large; if the absolute value of either a uniform DIF or a non-uniform DIF is less than 0.059 the 

DIF is negligible (Roussos and Stout, 1996). 
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2.2.2 MIMIC Method 

The Multiple Indicators Multiple Causes (MIMIC) confirmatory factor analysis model takes the 

following form:  

  
         

in which   
 = latent response variable i (when   

  >   , an observed variable,    = 1;   , the 

threshold parameter, is related to item difficulty), η = latent trait,    = factor loading for variable 

i, and    = random error. 

The factor analytic model for dichotomous item response data is equivalent to the normal ogive 

model which is described in detail by McDonald (1967) and Lord and Novick (1968).  Muthen et 

al. (1991) extended this work for the MIMIC model, showing that the discrimination parameter, 

a, can be obtained using the value of λ from the MIMIC CFA model: 

   
  

√(    
 )   

 

where     is the variance of the latent trait.  Using the values of λ and τ, the difficulty parameter, 

b, can be obtained as follows: 

    [(       )  
     ]   

    
 

where    is the group indicator with value 1 for focal group membership and value 0 for 

reference group membership,    is the measure of relationship between group and item response, 
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and    is the mean of the latent trait.  The relationship between the two models is further 

explained in Takane and de Leeuw (1987) and MacIntosh and Hashim (2003).  

Capable of utilizing the anchoring method, the Multiple Indicators MIMIC method is one 

of the cutting-edge techniques for detecting DIF.  Finch (2005) evaluated the MIMIC method 

and compared the performance with the Mantel-Haenszel method (Holland and Thayer, 1988), 

the Item Response Theory Likelihood Ratio Test (IRT-LRT) method (Wang and Yeh, 2003), and 

the Simultaneous Item Bias Test (SIBTEST) method (Shealy and Stout, 1993).    The 

comparison established that the MIMIC method had the smallest Type I error rate and the 

highest power of DIF detection.  Let us combine this method with anchoring to maximize the 

accuracy and minimize the error during item parameterization.   

The MIMIC method with a pure short anchor (Shih and Wang, 2009) is a form of 

confirmatory factor analysis that can be extended to IRT models – such as the two-tier model - 

with external variables.  Establishing a pure short anchor can eliminate the impact of DIF 

contamination because it is easier to locate one DIF-free item rather than many DIF-free items.  

In order to detect DIF effectively, a DIF-free-then-DIF Strategy (Wang, Shih, and Su 2007) is 

incorporated.  Here is the algorithm: 

1. Set Item 1 as the anchor and assess all other items for DIF.  Using the MIMIC method 

with a 1-item anchor, obtain a DIF index for each studied item. 

2. Set the next item as the anchor and assess all other items in test for DIF.  Using the 

MIMIC method with a 1-item anchor, obtain a DIF index for each studied item. 

3. Repeat Step 2 until the last item is set as the anchor. 
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4. Compute the mean absolute values of DIF indices for each item over all iterations and 

locate the desired number of items that have the smallest mean absolute values. 

In order to evaluate the accuracy of the iterative MIMIC process (M-IT), the accuracy rate is 

compared with the chance level (probability of selecting the right items by chance).  Usually, a 

high accuracy rate is required.  After seeing the results, M-IT turns out to be successful in 

locating a set of up to four DIF-free items, since the accuracy rates are higher than the chance 

levels, even for small sample sizes.  Overall, M-IT using a pure anchor yields a perfect rate of 

accuracy under most conditions while controlling the rate of Type 1 error well even with 40% 

DIF items.  The efficiency of the method is also proven, since it can finish everything in a 

feasible computational time of 15 minutes, using the estimator of robust weighted least squares.  

However, it is desirable to use a different method using a full-information estimator for more 

accurate results.   

 

 

 

 

 

 

 



 23
  

2.2.3 IRT-LRDIF Method 

The Item Response Theory Likelihood Ratio Test (IRT-LRT) is developed by Thissen, Steinberg, 

and Gerrard (1986) and further expanded by Thissen, Steinberg, and Wainer (1988).  It allows 

for the comparison of model fit between the compact model and the augmented model, testing 

the null hypothesis that a vector of parameters equals zero.  Although the item difficulty 

parameters are allowed to be different across the groups, the parameter estimates for a set of 

anchor items are constrained to be equal for both groups.  The likelihood ratio statistic equals 

LR = -2ln
  

  
 

in which L0 is the likelihood for a model (M0) in which item parameters for both groups are 

constrained equal and L1 is the likelihood of a model (M1) in which parameters take on different 

values in the two groups.  Under the null hypothesis in which different groups have equal item 

difficulty parameters, LR is approximately χ
2
 distributed with degrees of freedom equal to the 

number of parameters taking different values when comparing M0 with M1.  If the χ
2
 is 

statistically significant, then the model M1 fits statistically better, indicating an item containing 

uniform DIF.  Similarly, after allowing the item discrimination parameter to be different instead 

of the item difficulty parameter, existence of non-uniform DIF can be identified if the χ
2
 in this 

scenario is statistically significant.  In order to establish consistency of measurement among the 

focal group and reference group, parameter estimates need to be placed on the same scale.  This 

common scale can be established by linking with anchor items (Millsap and Everson, 1993).  

Identifying a set of DIF-free anchor items is an important task with some challenges.    

  



 24
  

2.2.4 Wald Test 

The Wald Test is a statistical test developed by Abraham Wald, which enables testing of the true 

value of the parameter based on the sample estimate.  The value of the sample’s parameter is 

compared to the hypothesized value.  The null hypothesis is that there is no difference in 

parameters.  If the Wald test is used to detect DIF, the parameter is the inter-group difference in 

item parameters.  The Wald Statistic, which can use a full-information estimator, equals   

    
    

in which p is the vector of parameters and    is the covariance matrix (the variance and 

covariance of the aforementioned parameters).  In this dissertation, the parameters are the 

difference in primary slope between groups and the difference in intercept between groups.  

Therefore, the corresponding Wald statistic equals 

(            ) [
   (       )    (             )

   (             )    (     )
]

  

(            ) 

in which     is the primary slope of the focal group,     is the primary slope of the reference 

group,    is the intercept of the focal group, and    is the intercept of the reference group.  This 

statistic is compared to a chi-squared value corresponding to the dimensionality of parameters 

(Harrell, 2001).  This is not restricted to two-group comparisons.  Such a comparison is also seen 

in the likelihood-ratio statistic, which is evidence that these two tests are interchangeable.  In fact, 

it is proven that the Wald test and the likelihood-ratio test are asymptotically equivalent (Engle, 

1984).   
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CHAPTER 3 

 

Statistical Algorithms 

 

This chapter introduces the statistical algorithms that are utilized in the analysis of the PISA 

2009 data.  The main purpose of these algorithms is to calculate the necessary measures with 

accuracy and efficiency, which leads to stating a valid conclusion while saving computation time. 

3.1 Factor Analysis 

Factor analysis is a statistical method that is employed to describe variability among observed 

variables in terms of factors also known as latent variables.  The use of factor analysis in 

psychometrics was pioneered by Charles Spearman, an English psychologist who proposed the 

existence of a “general intelligence” (Spearman, 1904).  In psychometrics, factor analysis is 

effective in providing mathematical models for the explanation of psychological theories of 

human ability and behavior.  It is often associated with intelligence research discovering factors 

underlying human cognitive performance. 

Thurstone (1947) introduced the common factor model, a linear model which was developed 

based on a statistical theory of abilities.  Since then, statisticians analyzed linear covariance 

structures of the common factor model.  One of the most significant foundations for factor 
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analysis is the normal theory maximum likelihood (Lawley and Maxwell, 1963), which is 

reexamined and improved by Jöreskog (1969).  The “difficulty” factors are used to explain the 

varying endorsement probabilities among dichotomous test items.  Factor analysis is conducted 

on item-level data, using nonlinear statistical methods.  In the past decade, factor analysis has 

been a member of a large family of latent variable models that use hierarchical models formed 

using Bayesian statistics. 

3.1.1 Traditional Factor Analysis Model 

In the analysis of the PISA 2009 data, the traditional factor analysis model is used in order to 

maximally reproduce the correlations among variables.  The items’ true values and constructs are 

compared with the assumed values and constructs according to the researchers’ understanding of 

the PISA 2009 data.  In this case, the understanding is that the number of factors is far less than 

the number of variables.  For n observed variables, the model is simply: 

                                                                           (         ) 

where z is the standard deviate of variable j, which can be described in terms of m common 

factors and a unique factor according to Harman (1976).  The factors’ coefficients are referred to 

as factor loadings, and have a value between -1 and 1.  A coefficient close to 1 in absolute value 

indicates the importance of the factor. 

3.1.2 EFA vs. CFA 

The main purpose of the Exploratory Factor Analysis (EFA) is to discover the key factors in 

order to have a clear interpretation of factor patterns across samples.  While conducting EFA, the 
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primary assumption is that any variable may have an association with any item.  After the 

analysis is complete, the resulting factor loadings dictate the factor structure of the data. 

When it comes to EFA, two issues of importance are the selection of the number of common 

factors and the rotation of the factors.  For the first issue, it is common to set the number of 

eigenvalues that exceed 1.0 for the sample correlation matrix as the number of common factors.  

The scree test is an alternative method that identifies the last major discontinuity in the sequence 

from the plot of eigenvalues.  Significance testing and model fit indices are reviewed in Bentler 

and Bonett (1980).  The good-enough principle (Serlin and Lapsley, 1985) is useful when 

choosing the number of factors such that the model fit does not significantly improve with an 

addition of another factor.  For the second issue, despite the fact that the oblique rotation is 

superior to the orthogonal rotation, both rotations should be attempted to guarantee the accuracy 

of the resulting factor model.  If there is prior knowledge about the nature of factors, use of a 

target rotation is recommended according to Browne (2001).  Ultimately, the interpretation by 

the researcher is essential in order to achieve satisfactory factor rotation results.   

 On the other hand, the main purpose of the Confirmatory Factor Analysis (CFA) is to 

determine if the number of factors and the factor loadings are consistent with what is being 

expected according to previous research.  The expectations are regarding which items are being 

associated with which subset of variables.  Factor structure obtained from the CFA is evaluated 

to see if the structure resembles the factor structure assumed from prior findings.  An EFA model 

can solely be identified by setting the scale of the latent variables and not many other constraints, 

whereas a CFA model had additional constraints such as range restrictions and complex 

nonlinear dependence.  A researcher specifies a large number of a priori zeros in the factor 
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loadings matrix while conducting CFA.  However, the deficiency of such zeros in EFA would 

result in errors which must be fixed using oblique or orthogonal rotation.  The convenience of 

CFA lies in the ability of simultaneously estimating models of different populations.  In addition 

to this, user-defined restrictions can be imposed, which aids in studying factorial invariance.  

CFA is used in social research with applications in developing a test, such as an intelligence test, 

personality test, or a survey (Kline, 2010). 

 In this dissertation, the CFA is used since we already know that the items in the PISA 

2009 data loads on one dimension measuring mathematics literacy.  Because of this assumption, 

we will estimate the primary slope for each item without any constraints. 

3.2 Benjamini-Hochberg Procedure     

When conducting multiple significance tests, using single-inference procedures would result in 

an overly increased false positive (significance) rate.  As noted in Williams et al. (1999), it has 

been found that the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) is useful to 

correct for this kind of multiplicity (selection) effect.  In fact, it has been proven that it has 

greater power than two procedures: the Bonferroni technique and the Hochberg procedure 

(Hochberg, 1988).  The Benjamini-Hochberg procedure is derived after forming a new point of 

view on the problem of multiplicity, which is taking into account the proportion of errors among 

the rejected hypotheses.  Such a proportion is called the false discovery rate (FDR), since Soriç 

(1989) identified a rejected hypothesis with a “statistical discovery.” 

According to Benjamini and Hochberg (1995), the FDR can be calculated in a scenario in which 

m null hypotheses, of which m0 are true, are tested simultaneously.  Let R be an observable 

random variable representing the number of hypotheses rejected.  Random variables S, T, U, and  
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Table 3-1: Number of errors committed when testing m null hypotheses 

Hypothesis Declared Insignificant Declared Significant Total 

    

True null hypothesis U V m0 

    

False null hypothesis T S m – m0 

    

Total m – R R M 

 

 

V are unobservable.  If each individual null hypothesis is tested separately at level α, then R = 

R(α) is an increasing function of α.  These random variables are depicted on Table 3-1.  

The proportion of errors committed by falsely rejecting null hypotheses can be represented by 

the random variable Q = V / (V + S).  We define the FDR Qe as the expectation of Q: 

    ( )   (
 

   
)   (

 

 
) 

 

Consider testing m null hypotheses: H1, H2, … Hm and obtaining p-values P1, P2, …, Pm as a 

result.  Let us re-arrange the p-values from smallest to largest to ensure P(1) ≤ P(2) ≤ … ≤ P(m) 

with the null hypothesis H(i) corresponding to P(i).  Let k be the largest i for which 

 ( )   
 

 
   

where q* is a critical value of the proportion of errors represented by Q.  The critical value is set 

equal to α (probability of making a Type I error).  Then reject all H(i) for i = 1, 2, …, k. 

 When m0 < m, the FDR is smaller than or equal to the family-wise error rate (FWER), 

which is defined as P(V ≥ 1).  As a result, any procedure that controls the family-wise error rate 

controls the FDR.  If a procedure controls the FDR only, it can be less stringent and therefore 

having potential to gain power.  The larger the number of the non-true null hypothesis is, the 

larger S tends to be.  This large value of S causes the difference between FDR and FWER to be 
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large.  Hence, the potential for increase in power is larger when more of the hypotheses are non-

true.   

A large simulation study in Benjamini and Hochberg (1995) compares the performances 

of the Benjamini-Hochberg procedure with some other Bonferroni-type procedures.  The results 

of this simulation study show the power of the Bonferroni-type procedures decreasing when the 

number of hypotheses tested increases – the cost of multiplicity control.  In addition to this, the 

results show the power of the Benjamini-Hochberg procedure is uniformly larger than that of 

other methods.  Furthermore, the advantage increases as the number of non-true null hypotheses 

increases; the advantage also increases as m increases.  Since the Benjamini-Hochberg procedure 

has a relative small loss of power as m increases, it is the most preferred method for 

simultaneously testing many null hypotheses while controlling the multiplicity effect. 

The Benjamini-Hochberg procedure has been used in research applications such as 

reporting results from the National Assessment of Educational Progress (NAEP) as documented 

in Braswell et al (2001).  When applied to research, this procedure can be easily implemented 

using spreadsheet software, as shown in Thissen et al (2002).  The initial steps with regards to 

calculating p-values of the implementation in Thissen et al (2002) are skipped since the p-values 

are calculated after the Wald test.  After the p-values of every item are calculated, the items are 

sorted using the p-value as the index in descending order.  Then, an index number is given to 

each item, with 1 given to the item with the largest p-value, 2 given to the item with the second-

largest p-value, and so on. 

 

 



 31
  

The index number is used to calculate the Benjamini-Hochberg critical value, which has the 

following formula: 

(     )      

   
 

in which n is the number of items, 0.05 is the value of α, and i is the index number.  If the p-

value of an item is less than the Benjamini-Hochberg critical value, the direction of the 

difference is confidentially interpreted at the 0.025 level.  Such an item is identified as 

containing a significant amount of DIF.   
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CHAPTER 4 

 

Previous Applications of DIF in PISA 

 

 

The PISA is a worldwide evaluation of 15-year-old students’ achievement in mathematics 

literacy, reading literacy, and science literacy.  Testing was first performed in 2000 and repeated 

every three years.  Each test is divided into three sections of items according to the type of 

literacy being measured.  There are more than 40 national versions written in official languages 

used in participating countries.  PISA items are developed while attempting to maintain 

consistency among all national versions.   

Research has already been conducted regarding DIF in PISA items.  In this chapter, three 

research papers regarding DIF in PISA are introduced: Grisay et al. (2007), Xie and Wilson 

(2008), and Le (2009).  Grisay et al. (2007) discusses a data analysis in which various national 

versions of PISA 2006 are verified for linguistic and cultural equivalence.  In Xie and Wilson 

(2008) a linear logistic test model (LLTM) is applied to the mathematics items from PISA 2003 

in order to explain the DIF more substantively.  Le (2009) investigates the gender DIF across 

countries and test languages for science items in PISA 2009, providing a valuable contribution to 

the development of tests for international use.  This collection of prior research has been 

inspiration for proposing a different method of evaluating DIF in a PISA dataset. 
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4.1 Translation Equivalence across PISA Countries 

Due to the continuous increase in the number of countries participating in PISA, ensuring 

linguistic and cultural equivalence across the various national versions of the items in the 

assessment has become increasingly important.  In Grisay et al. (2007), all national versions of 

the PISA 2006 are verified for equivalence against the English and French source versions 

developed by the PISA syndicate.  This verification process and the empirical data analysis 

provide the information used in order to conclude whether the level of linguistic equivalence 

reached a globally acceptable standard in each of the participating countries.  Grisay et al. (2007) 

focuses on methods of ensuring high levels of translation accuracy using appropriate criteria.  In 

this dissertation, the data analysis investigates whether the level of fairness reached an acceptable 

standard in mathematics items in the PISA 2009 data. 

4.2 Investigating DIF using a Linear Logistic Test Model 

Xie and Wilson (2008) discusses a method of generalizing DIF by grouping of items sharing a 

common feature using the LLTM.  This type of grouping is called a facet, and hence the 

particular version of LLTM used in Xie and Wilson (2008) is called the differential facet 

functioning (DFF) model.  The DFF model helps to explain the DIF more substantively because 

the interaction effect is modeled at the facet level to yield a sound explanation of difference in 

performance between subgroups of participants. 

 Fischer (1973) developed the LLTM to estimate the effects of item properties instead of 

the items themselves.  This model is often applied to test hypotheses regarding cognitive 
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operations utilized during solving mathematical problems.  The logit expression of the LLTM is 

defined as follows: 

         ∑      

 

   

  

where    is the proficiency of person n,    is the difficulty parameter for item property k, K is 

the total number of item properties, and     is the indicator weight of item i on item property k.  

If item i belongs to item property k,     takes the value of 1, and 0 otherwise. 

 In order to investigate for DIF, a DFF term can be added to the logit expression of the 

LLTM as follows: 

         ∑      

 

   

   ∑      

 

   

  

where    is an indicator of person n’s group membership and    is the DFF parameter for item 

property k.  Let us use contrast coding for the indicator variable   .  If person n belongs to the 

reference group,    takes the value of -1; otherwise,    takes the value of 1.   

The data under investigation in Xie and Wilson (2008) is the mathematics items from the 

PISA 2003 database.  These items are developed along three domains: content, process, and 

situation.  Under each domain, which is treated as a facet in the DFF model, there are multiple 

categories.  The content domain has four categories: space and shape, change and relationship, 

quantity, and uncertainty.  Reproduction, connections, and reflection are the three categories in 

the process domain.  Lastly, the situation domain contains four categories: personal, educational 

or occupational, public, and scientific.  This structure with two levels is a motivation for 
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applying the two-tier model, which contains primary dimensions and specific dimensions, to 

detect DIF in this dissertation which analyzes mathematics items from PISA 2009. 

In Xie and Wilson (2008), data from countries that have a slight difference in mean 

performances on the mathematics scale are analyzed to minimize any overall country effect that 

may contribute to the difference in performance.  For example, the performance of students in 

Japan is compared to the performance of students in Canada since the mean scores for the former 

group is slightly higher than those for the latter group.  Results of this analysis indicate the 

Japanese students perform better than Canadian students overall.  These results serve as an 

inspiration to investigate the PISA 2009 data in this dissertation for evidence of DIF between 

students in Malaysia and students in Singapore. 

4.3 Investigating Gender DIF across Countries and Test Languages 

Le (2009) investigates the effects of countries and test languages on gender DIF in science items 

from PISA 2006.  The data is collected from 60 test language groups by 50 participating 

countries.  An IRT method employing the partial credit model is used to detect the gender 

uniform DIF of each of the language groups and the whole international sample.  When the 

closed response items are analyzed, the direction of DIF indicates that the items favor the males.  

These results of this data analysis provide the idea to use the Benjamini-Hochberg procedure 

described in Section 4.3 to evaluate the direction of DIF in PISA 2009 items in this dissertation.                                 
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CHAPTER 5 

 

Proposed DIF Detection Method 

 

In this chapter, the proposed DIF detection method which is used in the data analysis of this 

dissertation is explained.  The constraints involved in fitting the bifactor model in the detection 

method are essential because they serve as a key component in computing between-group 

differences involved in the specific dimensions.  In this data analysis, the specific dimensions are 

testlets, which are clusters of items that share a common stimulus.  The proposed method 

involves 5 steps: 

1. Fit the bifactor model to the set of items. 

2. Do a sweep analysis. 

3. Establish the anchor set of items containing DIF. 

4. Test the items for DIF using the anchor set of items. 

5. Identify the items containing DIF. 

After those 5 steps are completed, the set of items can be divided into two categories: items that 

contain DIF and items that do not contain DIF. 
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5.1 Step 1: Fit the Bifactor Model 

Step 1 involves fitting the bifactor model to the data that contains the items of interest.  In this 

data analysis, the items of interest are the math items contained in the PISA 2009.  21 rectangular 

quadrature points between -5 and 5 are used and the convergence criterion is set to 0.001.  While 

fitting the model, the following item parameters are constrained equal between groups: the 

discrimination parameter on the primary dimension (math literacy), the discrimination parameter 

on the item’s corresponding specific dimension (testlet), and the item intercept(s).  The mean 

vector and the covariance matrix of the latent variable for the focal group are freely estimated, 

while assuming that the counterparts for the reference group are the mean vector and covariance 

matrix corresponding to the standard normal distribution. 

 

5.2 Step 2: Do a Sweep DIF Analysis 

Step 2 will complete a sweep DIF analysis on the data fitted by the bifactor model.  Conditional 

on the means and variances of the focal group estimated in Step 1, the item parameters 

(discrimination parameters and intercept parameters) and the corresponding covariance matrix 

will be estimated within each group.  21 rectangular quadrature points between -5 and 5 are used 

for estimation, and the convergence criterion is set to 0.001.  Subsequently, the parameters and 

the covariance matrix will be used to conduct the Wald test for the difference between the 

parameter sets for each item across groups.  
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5.3 Step 3: Establish the Anchor Set 

Step 3 will apply the Benjamini-Hochberg procedure to the results from Step 2 in order to 

establish the anchor set of items that do not contain DIF.  All items contained in the anchor set 

have a p-value that is larger than the Benjamini-Hochberg critical value.  This anchor set will be 

used in the subsequent test that detects DIF in the items excluded from the anchor set. 

 

5.4 Step 4: Test the Items for DIF Using the Anchor Set 

Step 4 will use the anchor set from Step 3 to test each of the candidate items (items excluded 

from the anchor set) for DIF.  The Wald test for the difference between the parameter sets across 

groups will be conducted.  

 

5.5 Step 5: Identify the Items Containing DIF 

Step 5 will apply the Benjamini-Hochberg procedure to the results from Step 4 in order to 

identify the items that contain DIF.  The completion of Step 5 will produce the final results of the 

proposed DIF detection method. 
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CHAPTER 6 

 

Analysis of PISA 2009 Mathematics Items 

 

In this chapter we discuss the analysis of the mathematics items of the PISA 2009 data motivated 

by prior research regarding DIF on a PISA dataset.  The PISA 2009 data, available to the public 

via the Organization for Economic Cooperation and Development (OECD) website, contains the 

students’ responses to a 2-hour paper-and-pencil assessment which was administered between 

September and November 2009.  There are 35 mathematics items: 32 items have a binary 

response and 3 items have a polytomous response (categories 0, 1, and 2). 

In this data analysis, cross-country DIF was examined between the two countries: 

Australia and New Zealand.  These two countries have an education index of 0.993, which is 

among the highest in the world (United Nations Human Development Reports, 2008).  Since the 

education indices for  both countries are similar, we expect the overall achievement to be similar 

as well.  The dataset contains responses from 14251 students in Australia and 4643 students in 

New Zealand.  DIF analysis is suitable for comparing the item responses of students from 

Australia to item responses of students from New Zealand, followed by detecting each item of 

the test for any evidence of favoring one group over another. 
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6.1 DIF Analysis Using the Proposed DIF Detection Method 

While glancing at the items, one can notice the existence of several testlets.  Items belonging to 

the same testlet are asking a question related to the same data or same figure.  This relationship is 

displayed in Figure 6-1.  One can infer that the probability of correctly answering one of the 

items in a testlet has a high association with the probability of correctly answering the remaining 

items in the testlet.  Therefore, one can take the testlets into account and apply the proposed DIF 

detection method to conduct a DIF analysis of the items. 

6.1.1 Bifactor IRT Analysis 

In the preliminary stage of data analysis, we are fitting the bifactor model to the math items 

contained in PISA 2009.  For the 32 items with binary response, we fit the classical model for 

dichotomous response.  For the 3 items with polytomous response, we fit the model for graded 

response.  With the primary slope, specific slope, and intercept constrained equal between groups, 

the mean matrix and covariance matrix of the latent variable for the focal group are calculated 

relative to the counterparts for the reference group corresponding to the standard normal 

distribution.  The means and the variances of the latent variable for the focal group along with 

the counterparts for the reference group are displayed in Table 6-1.  The mean of the math 

literacy dimension is higher for the students of New Zealand (0.15) compared to the students of 

Australia (0.00), indicating higher achievement for the former group of students.  The standard 

errors, which are entries of item parameter error variance-covariance matrices, are computed 

using the Supplemented EM algorithm (Cai, 2008).     

Conditional on the means and variances of the latent variable displayed in Table 6-1, the 

item parameters (primary slope, specific slope, and intercept) for each item and the 

corresponding covariance matrix will be estimated within each group.  However, the constraint is 
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placed such that the specific slopes for the focal group are equal to the specific slopes for the 

reference group.  Table 6-2 displays the primary slopes and specific slopes of the 32 mathematics 

items with binary response, while Table 6-3 displays the intercepts.  Table 6-4 displays the 

primary slopes and specific slopes of the 3 mathematics items with polytomous response, while 

Table 6-5 displays the intercepts.  Between-group differences of primary slopes and intercepts 

are evident in the majority of items.  The standard error of each item parameter is calculated 

using the Supplemented EM algorithm.  Looking at item parameters of all 35 items, most of the 

standard errors of parameters are 0.20 or below. 

   

.         
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Figure 6-1: Bifactor Model for the PISA 2009 Math Items 
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Table 6-1: PISA 2009 Factor Means and Variances (Standard Error) 

 Math Population 

Pyramids 

Running 

Tracks 

Diving Thermometer 

Cricket 

Cash 

Withdrawal 

Chair Lift Number 

Check 

Carbon 

Dioxide 

Means          

Australia .00 (--) .00 (--) .00 (--) .00 (--) .00 (--) .00 (--) .00 (--) .00 (--) .00 (--) 

New Zealand .15 (.03) -.04 (.08)  -.13 (.07) .18 (.22) -.04 (.10) -.02 (.06) -.08 (.10) -.02 (.10) -.07 (.05) 

 

Variances   

     

 

    

Australia  1.00 (--) 1.00 (--) 1.00 (--) 1.00 (--) 1.00 (--) 1.00 (--) 1.00 (--) 1.00 (--) 1.00 (--) 

New Zealand 1.01 (.04) .81 (.28) .86 (.15) .98 (2.02) 1.45 (.55) .87 (.18) .80 (.55) 1.21 (.62) .62 (.15) 

 

Note: Fixed parameters do not have standard errors  
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Table 6-2: Between-Group Comparison of Primary Slopes and Specific Slopes (Standard Error) 

of PISA 2009 Math Items with Binary Response 

Item  Australia 

a0 

New Zealand 

a0 

Australia 

as 

New Zealand 

as 

M033Q01 .88 (.05) .77 (.09) 0.00 (--) 0.00 (--) 

M034Q01T 1.20 (.06) 1.14 (.09) 0.00 (--) 0.00 (--) 

M155Q01 1.46 (.07) 1.65 (.13) .99 (.15) .99 (.15) 

M155Q04T 1.01 (.05) .77 (.08) .40 (.09) .40 (.09) 

M192Q01T 1.53 (.07) 1.36 (.11) 0.00 (--) 0.00 (--) 

M273Q01T .94 (.05) 1.06 (.09) 0.00 (--) 0.00 (--) 

M406Q01 3.75 (.16) 3.59 (.27) 2.70 (.27) 2.70 (.27) 

M406Q02  4.64 (.20) 4.15 (.34) 2.70 (.27) 2.70 (.27) 

M408Q01T 1.09 (.05) 1.00 (.08) 0.00 (--) 0.00 (--) 

M411Q01 1.74 (.07) 1.84 (.14) .29 (.15) .29 (.15) 

M411Q02 1.14 (.05) 1.28 (.10) .29 (.15) .29 (.15) 

M420Q01T 1.28 (.06) 1.20 (.10) 0.00 (--) 0.00 (--) 

M423Q01 .79 (.06) .85 (.11) 0.00 (--) 0.00 (--) 

M442Q02 1.86 (.08) 1.65 (.13) 0.00 (--) 0.00 (--) 

M446Q01 1.58 (.07) 1.88 (.14) 0.82 (.12) 0.82 (.12) 

M446Q02 2.12 (.13) 2.49 (.25) 0.82 (.12) 0.82 (.12) 

M447Q01 1.28 (.06) 1.58 (.13) 0.00 (--) 0.00 (--) 

M464Q01T 2.00 (.09) 2.01 (.17) 0.00 (--) 0.00 (--) 

M474Q01 .61 (.04) .78 (.09) 0.00 (--) 0.00 (--) 

M496Q01T 1.80 (.09) 1.65 (.14) 1.44 (.10) 1.44 (.10) 

M496Q02 1.43 (.07) 1.31 (.12) 1.44 (.10) 1.44 (.10) 

M559Q01 1.23 (.06) 1.27 (.10) 0.00 (--) 0.00 (--) 

M564Q01 .74 (.05) .75 (.08) .53 (.08) .53 (.08) 

M564Q02 .74 (.05) .77 (.08) .53 (.08) .53 (.08) 

M571Q01 1.65 (.07) 1.59 (.12) 0.00 (--) 0.00 (--) 

M603Q01T .94 (.05) .93 (.09) .61 (.10) .61 (.10) 

M603Q02T 1.82 (.09) 1.83 (.16) .61 (.10) .61 (.10) 

M800Q01 .58 (.05) .34 (.09) 0.00 (--) 0.00 (--) 

M803Q01T 2.09 (.09) 2.33 (.19) 0.00 (--) 0.00 (--) 

M828Q01 1.71 (.10) 1.61 (.13) .77 (.10) .77 (.10) 

M828Q02 1.65 (.11) 1.41 (.21) 2.19 (.68) 2.19 (.68) 

M828Q03 1.46 (.08) 1.31 (.11) .57 (.08) .57 (.08) 

Note: Fixed parameters do not have standard errors  

 

 

 



 45
  

Table 6-3: Between-Group Comparison of Intercepts (Standard Error) of PISA 2009 Math Items 

with Binary Response 

Item  Australia 

d 

New Zealand 

d 

M033Q01 1.49 (.05) 1.44 (.08) 

M034Q01T -.38 (.04) -.20 (.08) 

M155Q01 1.38 (.07) 1.40 (.11) 

M155Q04T .54 (.04) .54 (.07) 

M192Q01T -.30 (.04) -.05 (.08) 

M273Q01T .07 (.04) .21 (.07) 

M406Q01 -2.39 (.14) -2.87 (.21) 

M406Q02  -4.94 (.21) -4.58 (.30) 

M408Q01T .30 (.04) .10 (.07) 

M411Q01 -.03 (.04) .11 (.10) 

M411Q02 -.04 (.04) -.09 (.08) 

M420Q01T .78 (.04) .70 (.08) 

M423Q01 1.84 (.05) 1.85 (.09) 

M442Q02 -.57 (.05) -.89 (.10) 

M446Q01 1.62 (.06) 1.58 (.11) 

M446Q02 -3.99 (.14) -4.18 (.27) 

M447Q01 1.13 (.05) 1.45 (.10) 

M464Q01T -1.70 (.07) -1.77 (.15) 

M474Q01 1.10 (.04) 1.30 (.08) 

M496Q01T .46 (.06) .49 (.10) 

M496Q02 1.09 (.06) 1.02 (.10) 

M559Q01 .68 (.04) .78 (.08) 

M564Q01 -.24 (.04) -.24 (.07) 

M564Q02 -.18 (.04) -.27 (.07) 

M571Q01 -.01 (.04) -.14 (.09) 

M603Q01T -.42 (.04) -.37 (.08) 

M603Q02T -1.34 (.06) -1.43 (.13) 

M800Q01 1.87 (.05) 1.91 (.08) 

M803Q01T -1.33 (.06) -1.42 (.15) 

M828Q01 -.59 (.06) -.70 (.09) 

M828Q02 .59 (.14) .50 (.10) 

M828Q03 -1.38 (.06) -1.41 (.10) 
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Table 6-4: Between-Group Comparison of Primary Slopes and Specific Slopes (Standard Error) 

of PISA 2009 Math Items with Polytomous Response 

Item  Australia 

a0 

New Zealand 

a0 

Australia 

as 

New Zealand 

as  

M155Q02D 1.43 (.06) 1.58 (.12) .68 (.13) .68 (.13) 

M155Q03D 1.75 (.07) 2.02 (.16) .42 (.12) .42 (.12) 

M462Q01D 1.60 (.10) 1.83 (.21) 0.00 (--) 0.00 (--) 

Note: Fixed parameters do not have standard errors  
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Table 6-5: Between-Group Comparison of Intercepts (Standard Error) of PISA 2009 Math Items 

with Polytomous Response 

Item  Australia 

d1 

New Zealand 

d1  

Australia 

d2 

New Zealand 

d2 

M155Q02D 1.69 (.06) 1.68 (.12) .69 (.05) .65 (.10) 

M155Q03D -1.32 (.06) -1.49 (.14) -2.91 (.09) -3.40 (.20) 

M462Q01D -3.24 (.11) -3.46 (.27) -4.49 (.14) -4.55 (.33) 
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6.1.2 DIF Detection 

After determining that the math items loads on the bifactor model, it is feasible to complete a 

sweep DIF analysis.  The primary slopes, specific slopes, intercepts, means and variances of the 

latent variable, and their corresponding covariance matrix of parameter estimates will be used to 

conduct the Wald test for the difference between the parameter sets for each item across groups.  

In the Wald test, the following null hypothesis is being tested: 

   [     ]  [       ] 

where    and    represent the primary slope and intercept for the students from Australia 

respectively, and     and     represent the primary slope and intercept for the students from 

New Zealand.  Let  ̂ ,  ̂ ,  ̂  , and  ̂   be the maximum likelihood estimate of   ,   ,    , and 

   , respectively.  The test statistic used for the joint difference between the parameters for the 

two groups is as follows: 

          

where   is [ ̂   ̂    ̂   ̂  ],   is the variance-covariance matrix of the differences between 

item parameter estimates.  Table 6-6 shows the results of the Wald test.  Subsequently, the 

Benjamini-Hochberg procedure is applied to the results of the Wald test in order to establish the 

anchor set of items that do not contain significant DIF.  As seen in Table 6-7, all of the items 

except M442Q02 are included in the anchor set since their p-values are bigger than their 

Benjimini-Hochberg critical values.  The fifth column of Table 6-7 displays three asterisks (***) 

for items in which the p-value is smaller than the critical value; otherwise, the space is left blank 

for items that satisfy the aforementioned criteria to be included in the anchor set.  



 49
  

Table 6-6: Results of the Wald Test on PISA 2009 Math Items under the Bifactor Model 

Item χ
2
 p-value 

M033Q01 1.3 0.5281 

M034Q01T 4.3 0.1145 

M155Q01 1.7 0.6385 

M155Q02D 1.5 0.8182 

M155Q03D 6.7 0.1529 

M155Q04T 6.4 0.0940 

M192Q01T 8.0 0.0182 

M273Q01T 4.8 0.0912 

M406Q01 8.2 0.0414 

M406Q02  1.5 0.6750 

M408Q01T 7.7 0.0215 

M411Q01 2.4 0.5029 

M411Q02 1.8 0.6215 

M420Q01T 1.0 0.6068 

M423Q01 0.3 0.8768 

M442Q02 16.9 0.0002 

M446Q01 4.8 0.1909 

M446Q02 2.8 0.4239 

M447Q01 8.8 0.0122 

M462Q01D 3.2 0.3689 

M464Q01T 0.3 0.8551 

M474Q01 7.1 0.0293 

M496Q01T 1.0 0.7923 

M496Q02 1.1 0.7874 

M559Q01 1.1 0.5851 

M564Q01 0.0 0.9998 

M564Q02 1.2 0.7573 

M571Q01 2.1 0.3498 

M603Q01T 0.4 0.9447 

M603Q02T 0.6 0.8911 

M800Q01 5.5 0.0631 

M803Q01T 1.3 0.5272 

M828Q01 2.1 0.5431 

M828Q02 1.7 0.6390 

M828Q03 2.2 0.5235 
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Table 6-7: Results of the Benjamini-Hochberg Procedure on PISA 2009 Math Items under the 

Bifactor Model 

Item p-value Index Critical value Indicator 

M564Q01 0.9998 1 0.0250  

M603Q01T 0.9447 2 0.0243  

M603Q02T 0.8911 3 0.0236  

M423Q01 0.8768 4 0.0229  

M464Q01T 0.8551 5 0.0221  

M155Q02D 0.8182 6 0.0214  

M496Q01T 0.7923 7 0.0207  

M496Q02 0.7874 8 0.0200  

M564Q02 0.7573 9 0.0193  

M406Q02  0.6750 10 0.0186  

M828Q02 0.6390 11 0.0179  

M155Q01 0.6385 12 0.0171  

M411Q02 0.6215 13 0.0164  

M420Q01T 0.6068 14 0.0157  

M559Q01 0.5851 15 0.0150  

M828Q01 0.5431 16 0.0143  

M033Q01 0.5281 17 0.0136  

M803Q01T 0.5272 18 0.0129  

M828Q03 0.5235 19 0.0121  

M411Q01 0.5029 20 0.0114  

M446Q02 0.4239 21 0.0107  

M462Q01D 0.3689 22 0.0100  

M571Q01 0.3498 23 0.0093  

M446Q01 0.1909 24 0.0086  

M155Q03D 0.1529 25 0.0079  

M034Q01T 0.1145 26 0.0071  

M155Q04T 0.0940 27 0.0064  

M273Q01T 0.0912 28 0.0057  

M800Q01 0.0631 29 0.0050  

M406Q01 0.0414 30 0.0043  

M474Q01 0.0293 31 0.0036  

M408Q01T 0.0215 32 0.0029  

M192Q01T 0.0182 33 0.0021  

M447Q01 0.0122 34 0.0014  

M442Q02 0.0002 35 0.0007 *** 
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Using the anchor set, the candidate item that is excluded from the anchor set is tested for DIF 

using the Wald test for the difference between the parameter sets across groups.  The null 

hypothesis is the same as the null hypothesis set for the previous Wald test: 

   [     ]  [       ] 

The Benjamini-Hochberg procedure is applied to the results in order to determine if the item 

contains significant DIF or not.  According to the results, there is detection of significant DIF in 

the candidate item.  The final conclusion regarding the DIF detection analysis of PISA 2009 

math items is that 1 out of 35 items shows significant DIF favoring the students of New Zealand 

over the students of Australia.  After some change in design for the math item M422Q02, the 

2009 PISA math items will be perfectly fair for two groups of students with similar education 

indices, such as the students of Australia and the students of New Zealand.    
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CHAPTER 7 

 

Simulation Study 

 

In order to provide concrete evidence of the model’s utility, a simulation study is conducted.  

Throughout the simulation study, two measurements being recorded are Type I error rate and 

power.  Type I error rate, alternatively noted as α, is the probability of mistakenly diagnosing an 

item as having DIF, while power is the probability of correctly diagnosing an item as having DIF.  

80% of the items are designed to have no DIF, and therefore can serve as a basis to measure 

Type I error rate.  The remaining 20% of the items are designed to have DIF, and thus is suitable 

as a medium in which power can be calculated.   

As seen in Table 7-1, the simulation study employed variation of four factors: sample 

size per group, test length, magnitude of a-DIF, and magnitude of d-DIF.  Each factor has two 

different values: 250 or 1000 participants, 10 or 40 items, 0.5 or 1.0 as the difference in the a 

parameter between groups, and 0.4 or 0.8 as the difference in the d parameter between groups.  

Despite the variation in factors, all items are dichotomous, the latent variable has a distribution 

N(-0.3,0.8) for the focal group compared to N(0, 1) for the reference group, and the sample sizes 

of both groups are equal.  Responses to these items are generated according to the values of the 

four factors, parameters are estimated separately for the focal group and the reference group, and 

the difference in parameters is evaluated using the proposed DIF detection method. 



 53
  

Table 7-1: Simulation Study Design 

 

  

Sample Size per Group 250, 1000 (x2) 

  

Test Length 10, 40 (x2) 

  

Magnitude of a-DIF 

 

Magnitude of d-DIF 

 

0.5, 1.0 (x2) 

 

0.4, 0.8 (x2) 

 

  Total Number of Cells        2 x 2 x 2 x 2 = 16 
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For each of the 16 cells, the simulation procedure utilizing the proposed DIF detection method is 

run for 100 replications.  In each cell, the Type I error rate and the power of the proposed DIF 

detection method is calculated.  After 100 replications, an accurately estimated value of each 

statistic is obtained by calculating the arithmetic mean of the 100 values.  There are some trends 

that could be observed while comparing values under varying conditions of the factors. 

The estimated values for Type I error rate for all 16 cells are displayed in Table 7-2.  As 

sample size increases, the Type I error rate increases since there are more responses with a 

chance of mistakenly diagnosing an item of having DIF.  The increase of test length has a 

stabilizing effect on the Type I error rate.  When the sample size is 250, the Type I error rate 

increases as the test length increases due to the lack of DIF detection from a relatively short test.  

On the other hand, when the sample size is 1000, the Type I error rate decreases as the test length 

increases since having more items will result in higher accuracy of DIF detection.   

The estimated values for power for all 16 cells are displayed in Table 7-3.  Sample size 

has the greatest influence on power.  The estimated power is large when the sample size is large 

because there is increased evidence of DIF with increased sample size.  Increasing the magnitude 

of a-DIF or d-DIF also induces an increase in power, since the DIF will be easily detected as the 

magnitude increases.           

 Overall, the results from Table 7-2 and Table 7-3 indicate that the results of the proposed 

DIF detection method are desirable as the sample size, test length, and DIF magnitude increases.  

The increase in these factors provide an opportunity for proper DIF detection for different 

reasons, and therefore the Type I error estimate is reduced to a reasonable value and the power 

estimate is increased to an ideal value of high standards. 
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Table 7-2: Estimated Type I Error Rates for Simulated Items 

 

N 

Test 

Length 

 

a-DIF 

 

d-DIF 

Type I 

Error Rate 

250 10 0.5 0.4 0.000 

     

250 10 0.5 0.8 0.000 

     

250 10 1.0 0.4 0.000 

     

250 10 1.0 0.8 0.025 

     

250 40 0.5 0.4 0.006 

     

250 40 0.5 0.8 0.012 

     

250 40 1.0 0.4 0.006 

     

250 40 1.0 0.8 0.019 

     

1000 10 0.5 0.4 0.150 

     

1000 10 0.5 0.8 0.125 

     

1000 10 1.0 0.4 0.125 

     

1000 10 1.0 0.8 0.073 

     

1000 40 0.5 0.4 0.006 

     

1000 40 0.5 0.8 0.032 

     

1000 40 1.0 0.4 0.013 

     

1000 40 1.0 0.8 0.047 

     

 

Note: Type I error rate is only calculated for items designated to not contain DIF. 

 

 



 56
  

Table 7-3: Estimated Power for Simulated Items 

 

N 

Test 

Length 

 

a-DIF 

 

d-DIF 

 

Power 

250 10 0.5 0.4 0.000 

     

250 10 0.5 0.8 0.200 

     

250 10 1.0 0.4 0.000 

     

250 10 1.0 0.8 0.400 

     

250 40 0.5 0.4 0.100 

     

250 40 0.5 0.8 0.650 

     

250 40 1.0 0.4 0.200 

     

250 40 1.0 0.8 0.675 

     

1000 10 0.5 0.4 1.000 

     

1000 10 0.5 0.8 1.000 

     

1000 10 1.0 0.4 1.000 

     

1000 10 1.0 0.8 1.000 

     

1000 40 0.5 0.4 0.075 

     

1000 40 0.5 0.8 1.000 

     

1000 40 1.0 0.4 0.225 

     

1000 40 1.0 0.8 1.000 

     

 

Note: Power is only calculated for item designed to contain DIF.  
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CHAPTER 8 

 

Discussion 

The main accomplishment was the development of a DIF detection method used with the 

generalized full-information item bifactor analysis model.  Traditional DIF detection methods 

rely on the items to be conditionally independent of each other conditional on the latent trait, 

which is an assumption relaxed in the bifactor model.  In this study the bifactor model assumes 

that there are closely related items in testlets, so DIF was detected accordingly.  

In future research, there are some areas concerning DIF that could use further 

investigation.  First, advancing from this study in which one primary dimension is examined, 

DIF detection methods can be applied to an IRT model with more than one primary dimension.  

An example of such a model is the two-tier full-information item factor analysis model (Cai, 

2010) which permits cross-loadings of items on the primary factors, making it more flexible than 

the bifactor model.  Second, since plenty has been accomplished in regards to showing the 

sensitivity of some DIF method to variations of parameter distributions, the use of DIF models to 

study change should be a topic of research.  A substitution of “before” and “after” for “focal” 

and “reference” can provide a measure of likelihood of change (Wainer, 2010).  There are many 

such opportunities in the future, since there is always a probability of observing a change in the 

educational system such as academic curriculum, testing, and assessments. 
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