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Fitting and Comparison of Models for Multivariate

Ordinal Outcomes

Ivan Jeliazkov∗ Jennifer Graves Mark Kutzbach

August 2008

Abstract

In this paper we consider the analysis of models for univariate and multivariate ordinal outcomes
in the context of the latent variable inferential framework of Albert and Chib (1993). We review
several alternative modeling and identification schemes and evaluate how each aids or hampers
estimation by Markov chain Monte Carlo simulation methods. For each identification scheme
we also discuss the question of model comparison by marginal likelihoods and Bayes factors.
In addition, we develop a simulation-based framework for analyzing covariate effects that can
provide interpretability of the results despite the non-linearities in the model and the different
identification restrictions that can be implemented. The methods are employed to analyze
problems in labor economics (educational attainment), political economy (voter opinions), and
health economics (consumers’ reliance on alternative sources of medical information).

Keywords: Accept-reject Metropolis-Hastings sampling; data augmentation; discrete data; edu-
cational attainment; Gibbs sampling; health information; latent data; limited dependent variable
models; marginal likelihood; Markov chain Monte Carlo; survey data; voter opinions.

1 Introduction

This article considers three main inferential problems, namely those of identification, estimation,

and model comparison, in the context of models for ordinal outcomes. We exploit the inferential

framework of Albert and Chib (1993), which capitalizes on the latent variable representation of

binary and categorical response models to simplify the analysis of such problems. In our setting

this framework lends itself to efficient fitting by Markov chain Monte Carlo (MCMC) methods—in

some instances it allows for direct sampling from known full-conditional distributions, and in others

it facilitates the application of versatile simulation techniques such as the Metropolis-Hastings (MH)
∗Department of Economics, University of California, Irvine, 3151 Social Science Plaza, Irvine CA 92697-5100.

E-mail addresses: ivan@uci.edu, jgraves@uci.edu, and kutzbach@uci.edu. We are much indebted to Siddhartha Chib,
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and accept-reject Metropolis-Hastings (ARMH) algorithms (Gelfand and Smith 1990; Metropolis

et al. 1953; Hastings 1970; Tierney 1994; Chib and Greenberg 1995). In the ordinal context,

we review alternative sets of identification constraints and evaluate how each aids or hampers

estimation by MCMC methods. We then consider the issue of model comparison by showing how

marginal likelihoods and Bayes factors can be computed in the ordinal data setting using the

method presented in Chib (1995) and its extensions developed in Chib and Jeliazkov (2001, 2005).

This, for instance, allows for the formal comparison of models with different correlation structures,

covariates, or link functions. In addition, we describe a simulation-based approach for calculating

the effect of covariates on the outcome, which provides interpretability of the estimates despite

the non-linearity of the model and the different identification schemes that can be used to identify

the parameters. We apply our methods to three problems in economics involving educational

attainment, reliance on health care information sources, and exit poll data on voter opinions about

the economy, the war in Iraq, and President George W. Bush’s performance in office.

To illustrate the setting, consider a simple univariate case where yi is a scalar response variable

that takes one of the J ordered values, j = 1, ..., J , and the index i (i = 1, ..., n) refers to units in

the sample (e.g. individuals, families, firms, etc.). The defining feature of ordinal data is that the

outcomes are arranged and measured on a monotone scale – e.g. in quantifying survey responses, 1

could be assigned to “very unhappy”, 2 to “not too happy”, 3 to “happy”, and 4 to “very happy”;

however, the scale is not assumed to be cardinal, so that differences between categories are not

directly comparable. In other words, while the scale tells us that 4 implies more happiness than 2,

this does not mean that 4 implies twice as much happiness as 2, or that the difference in happiness

between 1 and 3 is the same as that between 2 and 4. Models for ordinal data address these features

of the data by postulating a data generating process in which the outcomes can be thought of as

arising from an underlying latent variable threshold-crossing framework. In particular, the problem

can be motivated by assuming that a continuous latent random variable zi depends on a k-vector
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of covariates xi through the model

zi = x′iβ + εi, i = 1, ..., n, (1)

and that the outcome yi arises according to

yi = j if γj−1 < zi ≤ γj , (2)

where E(εi|xi) = 0 and −∞ = γ0 < γ1 < ... < γJ−1 < γJ = ∞ are cutpoint parameters that

determine the discretization of the data into the J ordered categories. Given this representation

and a cumulative distribution function (cdf) for εi, F (εi), the probability of observing yi = j, con-

ditional on β and γ = (γ1, ..., γJ−1)
′, is given by Pr (yi = j|β,γ) = Pr ({γj−1 < zi}

⋂ {zi ≤ γj}) =

Pr ({γj−1 < x′iβ + εi}
⋂ {x′iβ + εi ≤ γj}). Letting A = {γj−1 < x′iβ + εi} and B = {x′iβ + εi ≤ γj},

from set theory we know that Pr (A
⋂

B) = Pr (A) + Pr (B) − Pr (A
⋃

B). Therefore, since

Pr (A) = 1− F (γj−1 − x′iβ), Pr (B) = F (γj − x′iβ), and Pr (A
⋃

B) = 1, we obtain that

Pr (yi = j|β, γ) = F
(
γj − x′iβ

)− F
(
γj−1 − x′iβ

)
. (3)

Given y = (y1, . . . , yn)′, the likelihood function for the model can be written as

f (y|β, γ) =
n∏

i=1

J∏

j=1

[
F

(
γj − x′iβ

)− F
(
γj−1 − x′iβ

)]1{yi=j}
, (4)

where 1 {yi = j} is the indicator function of the event yi = j, which takes the value 1 if the event is

true and 0 otherwise. Various choices for the cdf F (·) are possible (specific ones will be mentioned

below), but practical applications most commonly rely on the Gaussian cdf. For the purposes of

illustration, Figure 1 depicts the probabilities of yi falling in category j as determined by (3) for a

four-category setting.

However, both location and scale restrictions are necessary to uniquely identify the parameters

of the model. To see this, consider the probabilities in (3) and let γ∗j = γj + c and x′iβ
∗ = x′iβ + c

for some constant c (note that the latter is always possible since xi is assumed to contain a constant

term). Then, because γ∗j − x′iβ
∗ = γj + c − x′iβ − c = γj − x′iβ, it is straightforward to verify
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Figure 1: Outcome probabilities for the four-category case given the mean x′iβ and the cutpoints
γ1, γ2, and γ3.

that Pr (yi = j|β, γ) = Pr (yi = j|β∗, γ∗). This identification problem is usually easily corrected

by fixing a cutpoint (in addition to γ0 = −∞ and γJ = ∞) — in particular, letting γ1 = 0

removes the possibility for shifting the distribution without changing the probability of observing

yi. While in principle it is possible to achieve identification by dropping the intercept instead of

fixing a cutpoint, the choice of letting γ1 = 0 has the practical benefit of facilitating posterior

sampling (since simulating β is generally easier than simulating γ) and also makes the ordinal

probit model theoretically consistent with the binary data probit model when there are only two

outcome categories (in the binary probit model yi = 1 if zi > 0 and yi = 0 otherwise). For a survey

on Bayesian models for ordered categorical data see Liu and Agresti (2005).

The first panel of Figure 2 shows the above considerations regarding location restrictions; the

second panel of that figure, however, shows that even if one sets γ1 = 0, a second restriction is

necessary in order to fix the scale of the latent data that is implied by F (·). Specifically, the second

panel of Figure 2 shows that in the absence of additional constraints, one can change the scale of

F (·) and simultaneously rescale the mean and the remaining free cutpoints without affecting the

probabilities for yi, implying lack of likelihood identification. This is due to the fact that so far we

have only required F (·) to be the cdf of a mean zero distribution, but F ∗ (γj − x′iβ) ≡ F
(

γj−x′iβ
c

)

is another cdf in the same class that, given mean and cutpoint parameters that are appropriately
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Figure 2: Location and scale constraints are required to identify the outcome probabilities. In
the first panel the same probabilities result when the mean and cutpoints are shifted by the same
constant. In the second panel, even though γ1 = 0, the remaining cutpoints and the mean can be
rescaled by a multiplicative constant to produce the same probabilities.

rescaled by a positive constant c, can produce the same probabilities as F (·). The usual approach

to achieving identification in this case is to fix the variance of ε. For example, when ε is assumed

to be Gaussian, the restriction var (ε) = 1 is usually imposed, leading to an ordered probit model

whose link function F (·) is assumed to be the standard normal cdf Φ(·). Other choices for the

link function F (·) include the logistic cdf (1 + e−ε)−1 where the variance of ε is given by π2/3, the

extreme value cdf e−eε
, that implies var (ε) = π2/6, or the t-link model where F (·) is taken to be

the standard Student-t cdf with ν degrees of freedom implying var (ε) = ν/ (ν − 2). However, in

addition to fixing the variance of ε, there are other possible ways to identify the scale of the model.

The presence of these alternatives makes it possible to explore various approaches to estimation.

5



We examine these methods and report on the implementation and performance of the different

MCMC estimation algorithms that they determine.

The remainder of this paper is organized as follows. Section 2 discusses a number of identifi-

cation restrictions together with their corresponding estimation methods in the univariate setting.

Section 3 presents the MCMC fitting method for multivariate settings. Section 4 is concerned with

model comparison. In Section 5, we show how to compute the effects of covariates on the outcome

probability and discuss several extensions of the methods presented in this paper. Section 6 is

devoted to the analysis of data on educational attainment, voter opinions, and health information,

while brief concluding remarks are presented in Section 7.

2 Ordinal Data Models for Univariate Outcomes

2.1 Estimation Under Traditional Identification Assumptions

Albert and Chib (1993) showed how the latent variable representation of ordinal data models can be

exploited for estimating models for ordered data such as the ordinal probit and student-t models.

Their idea was to focus not on the posterior distribution of the parameters conditioned on the

data but rather on the posterior distribution of the latent data z = (z1, ..., zn)′ and the parameters

conditioned on the data, which is simpler and more tractable to deal with in the context of MCMC

methods. In particular, under the probit model assumption that εi ∼ N (0, 1), and given the priors

β ∼ N (β0,B0) and π (γ) ∝ 1, the posterior distribution for the latent data and the parameters is

given by

π (β,γ,z|y) ∝ f (y|β, γ, z) π (β, γ, z)

= f (y|β, γ, z) π (z|β) π (β)π (γ)

=

{
n∏

i=1

f (yi|zi, γ)

}
π (z|β) π (β) π (γ) , (5)

where the second line used the decomposition π (β, z, γ) = π (z|β) π (β) π (γ) that is afforded by

prior independence, and the third line used the fact that given the latent zi and γ, the observed
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yi is independent of β because (2) determines yi given zi and γ with probability one and that

relationship does not involve β. Specifically, the probability of yi = j given zi and γ equals 1 when

γj−1 < zi ≤ γj and 0 otherwise, so that f (yi|zi, γ) = 1 {γj−1 < zi ≤ γj}. Also note that π (z|β)

can be obtained from (1) and is given by π (z|β) =
n∏

i=1
N (zi|x′iβ, 1). With these considerations,

the “complete data posterior” in (5) involving the latent data and the parameters is given by

π (β, γ, z|y) ∝
{

n∏

i=1

1 {γj−1 < zi ≤ γj}N
(
zi|x′iβ, 1

)
}

N (β|β0, B0) .

Then, upon letting X = (x1, ...,xn)′, and under the “traditional” identification constraints γ0 =

−∞, γ1 = 0, γJ = ∞, and var (ε) = 1, the posterior distribution of the latent data and the

parameters can be sampled by MCMC methods as follows:

Algorithm 1 (Albert & Chib 1993) Sampling in the univariate ordered probit model

1. For j = 2, ..., J − 1, sample γj |z ∼ U (max {zi : yi = j} , min {zi : yi = j + 1}), i.e., sample γj

from a uniform distribution bounded between the maximum zi in category j and the minimum

zi in category j + 1;

2. For i = 1, ..., n, sample zi|y, β, γ ∼ TN(γj−1,γj) (x′iβ, 1), where the support for this truncated

normal distribution is determined by the cutpoints γj−1 and γj associated with yi = j;

3. Sample β|z ∼ N
(
β̂, B̂

)
, where B̂ = (B0 + X ′X)−1 and β̂ = B̂

(
B−1

0 β0 + X ′z
)
, where

given z, the full-conditional distribution of β does not depend on y or γ.

This algorithm forms a basis for the fitting of a wide variety of univariate ordinal models

because once the probit case can be worked out, a number of other link functions F (·) can be

represented either as mixtures or scale-mixtures of normals, including the Student-t and the logistic

link functions (Albert and Chib 1993; Wood and Kohn 1998; Chen and Dey 2000). While sampling

from the distributions in Algorithm 1 is convenient because they are of known form (i.e. uniform,

truncated normal, and normal), one remaining question concerns the sampling of the cut-points
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in Step 1 conditioned on the latent data. Cowles (1996) noted the possibility that in some cases,

the sampling of the cutpoints conditioned on the latent data can lead to small changes in the

cutpoints between successive iterations, especially as more data become available. The resulting

high autocorrelation in the MCMC sample for the cutpoints could then also affect the convergence

of β. To deal with this problem, Cowles (1996) suggested that it helps to sample the latent data

z and the cutpoints γ jointly by sampling γ ∼ π (γ|y, β) marginalized over the latent data and

subsequently sampling z ∼ π (z|y, β, γ), i.e. given γ and the remaining parameters and data.

Although the resulting distribution of the cutpoints is not of standard form, Cowles employed a

sequence of Metropolis-Hastings steps to sample each γj conditioned on (y, β, γj−1, γj+1). Nandram

and Chen (1996) improved upon Cowles (1996) by noting that the cutpoints should be sampled

jointly, not one-at-a-time, and that the particular MH proposal density suggested in Cowles (1996)

may be difficult to tune. They suggested a reparameterization of the model and presented a sampler

that allows for joint sampling of the reparameterized cutpoints in a single block and also marginally

of the latent data using a Dirichlet proposal density that depends on the previous cutpoints, but

does not depend on the other parameters or the latent data. However, Chen and Dey (2000) point

out that the Dirichlet density will generally work well when the cell counts are balanced, but may

fail to serve as a good proposal density when the category counts are unbalanced.

Subsequent work (e.g. Chen and Dey 2000; Albert and Chib 2001) built upon these ideas and

showed that the cutpoints γ can easily be sampled jointly in a single block by well-tailored inde-

pendence chains, marginally of z, to improve the efficiency of the MCMC algorithm. Maintaining

the identification restriction that var (ε) = 1, Albert and Chib (2001) simplified the sampling of

the cutpoints γ by transforming them so as to remove the ordering constraint by the one-to-one

map

δj = ln(γj − γj−1), 2 ≤ j ≤ J − 1. (6)

Other transformations have been considered (e.g. in Chen and Dey 2000), but details of those

transformations will be delayed until Section 2.2 below as they will be related to an alternative
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identification of the scale of model. In either case, however, the advantage of working with the

transformed quantities δ = (δ2, ..., δJ−1)
′, instead of γ = (γ2, ..., γJ−1)

′, is that the parameters of

the tailored proposal density in the MH step for δ can be obtained by unconstrained optimization

and the prior π(δ) can be unrestricted, e.g. multivariate normal N (δ0, D0). The algorithm is

defined as follows.

Algorithm 2 (Albert & Chib 2001) Sampling in the univariate ordered probit model

(identification through variance restriction)

1. Sample δ, z|y, β in one block as follows:

(a) Sample δ|y, β marginally of z by drawing δ′ ∼ q (δ|y, β) from a Student-t proposal

density q (δ|y, β) = fT

(
δ|δ̂, D̂, ν

)
, where δ̂ = arg max f (y|β, δ) π (δ), D̂ is the inverse

of the negative Hessian of ln {f (y|β, δ) π (δ)} evaluated at δ̂, and ν is a degrees of

freedom parameter. Given the current value of δ and the proposed draw δ′, return δ′

with probability αMH

(
δ, δ′

)
= min

{
1,

f(y|β,δ′)π(β,δ′)
f(y|β,δ)π(β,δ)

fT (δ|δ̂,D̂,ν)
fT (δ′|δ̂,D̂,ν)

}
; otherwise repeat the

old value δ.

(b) Sample z|y, β, γ by drawing zi|y, β, γ ∼ TN(γj−1,γj) (x′iβ, 1) for i = 1, ..., n, where γ is

obtained by the one-to-one mapping used to relate γ and δ.

2. Sample β|z ∼ N
(
β̂, B̂

)
, where B̂ = (B0 + X ′X)−1 and β̂ = B̂

(
B−1

0 β0 + X ′z
)
.

In Step 1 of the above algorithm, the degrees of freedom parameter ν is taken to be a low number

such as 5 or 10 to ensure that the proposal density has sufficiently heavy tails. By grouping the

sampling of δ and z into a single step, the above two-block algorithm produces a well-mixing

Markov chain, whose performance will be illustrated in Section 6. We next consider the issue of

using alternative identification restrictions in order to fix the scale of the model. Doing so results

in a different blocking of the parameters that, except for cases where there are J = 3 categories,

will produce a three-block algorithm, as opposed to the two-block sampler given in Algorithm 2.
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For this reason, in the univariate setting one can easily estimate ordinal probit models without

having to consider these alternatives (except when J = 3), but the restrictions we discuss below are

quite useful in multivariate settings. We emphasize that the choice of blocking is not unique and

is something that should be determined by the researcher given the specific context of the model

and data under consideration. In practice it is useful to (i) group parameters that are correlated

into one block and sample them jointly, and (ii) group parameters in a way that allows for easy

construction of suitable MCMC samplers.

2.2 Estimation Under Alternative Identification Restrictions

As discussed in the introduction, there are a number of ways to identify the scale of the model. To

gain further insight into the identification problem, consider the ordinal probit likelihood

f (y|β, γ) =
n∏

i=1

J∏

j=1

[
Φ

(
γj − x′iβ

σ

)
− Φ

(
γj−1 − x′iβ

σ

)]1{yi=j}
(7)

The standard identification restriction commonly used in discrete data models, i.e. var (εi) = σ2 =

1 (so that εi ∼ N (0, 1)), was used in Section 2.1 to preclude the possibility for arbitrary rescaling

of the parameters by some constant c such that Φ
(

c(γj−x′iβ)
cσ

)
= Φ

(
γj−x′iβ

σ

)
. However, it is

possible to identify the scale of the model differently. In particular, we can leave var (εi) = σ2 as

an unrestricted parameter to be estimated, but instead fix another cutpoint in addition to having

γ0 = −∞, γ1 = 0, and γJ = ∞ in order to determine the scale of the latent data. For instance, one

possibility is to let γ2 = 1. This restriction precludes the simultaneous rescaling of the numerator

and denominator in Φ
(

γj−x′iβ
σ

)
because it would violate γ2 = 1. In this case, using (6), one can

work with δ = (δ3, ..., δJ−1)
′. Of course, any other cutpoint can be fixed instead of γ2, and the fixing

can be at any positive constant, not just 1 (e.g. Webb and Forster 2008) even though 1 is perhaps

the most natural metric to use. For example, the reparameterization considered by Nandram and

Chen (1996) and Chen and Dey (2000) corresponds to a particular identification scheme where

γJ−1 = 1, thus fixing the last free cutpoint instead of the second one. Under this identification

restriction, the ordering constraints on the interior cutpoints can be removed by any one of a number
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of transformations. Chen and Dey (2000) consider the mapping γj =
(
γj−1 + eδj

)
/

(
1 + eδj

)
which

implies that

δj = ln
{

(γj − γj−1)
(1− γj)

}
, 2 ≤ j ≤ J − 2, (8)

so that now δ = (δ2, ..., δJ−2)
′. Other transformations of γ to an unrestricted and real-valued δ are

conceivable and could include log-ratios of category bin-widths or trigonometric functions such as

arctan and arcsin, but generally any monotone transformation from a compact set to the real line

would work. Because these alternative identification schemes are isomorphic, the parameters under

each identification scheme can easily be related to those under another in a one-to-one mapping.

For instance, Nandram and Chen (1996) and Chen and Dey (2000) discuss how the parameters

under their identification scheme relate to those under traditional identification using unit variance

restrictions.

Of course, when there are only three categories (J = 3) and therefore only two cutpoints that

separate them, these two cutpoints need not be sampled (since γ1 = 0 and γ2 = 1) and the different

parameterizations that use fixing of a second cutpoint become identical. When J > 3, however,

the choice of which cutpoint to fix and what mapping to apply can influence the performance of

the MCMC sampler. We provide some evidence on this in Section 6. One should also note that

when J = 2, identification can not be achieved by fixing an additional cutpoint and the model does

not automatically become identical to the binary data probit model. This is because with only two

outcome categories there is no γ2 that can be fixed in order to determine the scale of the model,

and without restrictions on σ2 the model becomes unidentified. In those cases one will have to

resort to the traditional identification restrictions discussed in Section 2 and Algorithm 2.

Then, for cases where J ≥ 3 and under a semi-conjugate inverse gamma prior on σ2, that is

σ2 ∼ IG (v0/2, d0/2), the resulting complete data posterior is given by

π
(
β, δ, z, σ2|y) ∝

{
n∏

i=1

1 {γj−1 < zi ≤ γj}N
(
zi|x′iβ, σ2

)
}

×N (β|β0, B0) N (δ|δ0,D0) IG
(
σ2|v0/2, d0/2

)
,

11



which results in the following three-block sampling algorithm.

Algorithm 3 (Chen & Dey 2000) Sampling in the univariate ordered probit model

(identification through cutpoint restrictions)

1. Sample δ, z|y, β in one block as follows:

(a) Sample δ|y, β marginally of z by drawing δ′ ∼ q (δ|y, β), with q (δ|y, β) = fT

(
δ|δ̂, D̂, ν

)

where δ̂ = arg max f
(
y|β, δ,σ2

)
π (δ) and D̂ is the inverse of the negative Hessian of

ln
{
f

(
y|β, δ, σ2

)
π (δ)

}
evaluated at δ̂. Given the current value of δ and the proposed

draw δ′, return δ′ with probability αMH

(
δ, δ′

)
= min

{
1,

f(y|β,δ′)π(β,δ′)
f(y|β,δ)π(β,δ)

fT (δ|δ̂,D̂,ν)
fT (δ′|δ̂,D̂,ν)

}
;

otherwise repeat the old value δ.

(b) Sample z|y, β by drawing zi|y, β, δ ∼ TN(γj−1,γj)

(
x′iβ, σ2

)
for i = 1, ..., n, where γ is

obtained by the one-to-one mapping used to relate γ and δ.

2. Sample β|z ∼ N
(
β̂, B̂

)
, where B̂ =

(
B0 + X ′X/σ2

)−1 and β̂ = B̂
(
B−1

0 β0 + X ′z/σ2
)
.

3. Sample σ2 ∼ IG
(

v0+n
2 , d0+(z−Xβ)′(z−Xβ)

2

)
.

The above algorithm has been applied in Chen and Dey (2000), and its performance is further

illustrated in Section 6. We note, however, that this is a three-block algorithm using the grouping
({δ, z} , β, σ2

)
, so that generally the fitting of univariate models can be done more efficiently using

the two-block sampler in Algorithm 2 that was developed under standard identification restrictions

and used the blocking ({δ, z} , β). (We note that even when J = 3 and δ need not be sampled,

Algorithm 3 is still a three-block algorithm involving
(
z,β, σ2

)
, but it does not involve an MH step

for δ.) Algorithm 2 is also more useful when it comes to model comparison as it allows for an easier

computation of the marginal likelihood, which will be discussed in Section 4. Nonetheless, the ideas

behind Algorithm 3 can be quite useful when applied to the multivariate setting as discussed in

Section 3 below.
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In closing, we mention that another approach can be used to identify the scale of the model.

We mention this approach only for the sake of completeness and not because we endorse it, as it

imposes additional restrictions not required by the other identification approaches discussed so far.

In particular, in (7) we first identified the model by fixing σ2 = 1, leading to the standard version

of the ordered probit model. We subsequently noted that arbitrary rescaling can be prevented by

fixing an additional cutpoint and suggested that fixing γ2 = 1 or γJ−1 = 1, in addition to the

usual γ1 = 0, could be implemented. But by considering (7), one can easily see that the potential

for arbitrary rescaling can be removed by fixing one of the elements of β, say βh = 1. While this

formally identifies the likelihood without the need for restricting γ2, ..., γJ−1 or σ2, this identification

restriction imposes both a scale restriction and a sign restriction because in reality even if βh 6= 0,

we might mistakenly assign a positive effect on βh by fixing it at 1, when its effect could be negative,

so that βh = −1 would have been appropriate). Moreover, this restriction complicates the analysis

when one is interested in performing model comparison tests whereby xh may be removed from the

set of covariates (so that βh is no longer part of the model), requiring that normalization be based

on a different covariate effect.

3 Multivariate Ordinal Outcomes

We now extend the preceding discussion to the case of multivariate ordinal outcomes. The frame-

work for this analysis follows closely that of Chib and Greenberg (1998) and Chen and Dey (2000),

who dealt with multivariate binary and ordinal outcomes, respectively. To introduce the setting, we

write the multivariate version of the ordinal probit model using a threshold-crossing representation

for the latent variables

zi = Xiβ + εi,

where the q-dimensional vector of latent variables zi = (zi1, ..., ziq)
′ implies a vector of observed

responses yi according to the discretization imposed by the variable-specific cutpoints, namely

yik = j if γk,j−1 < zik ≤ γkj , for i = 1, ..., n, k = 1, ..., q. (9)
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In the multivariate version of the ordered probit model, the matrix of covariates

Xi =




(
xi11 · · · xi1k1

)
(

xi21 · · · xi2k2

)
. . . (

xiq1 · · · xiqkq

)




is in the form used in seemingly unrelated regression models, β is a k-dimensional vector of cor-

responding regression parameters (with k =
∑q

j=1 kj), and εi is a q-dimensional vector of dis-

turbances where εi ∼ N (0,Ω) with Ω being a symmetric positive definite covariance matrix. It

should be noted that in the model, each element of yi can have a different number of categories

J = (J1, ..., Jq)
′ and its own set of cutpoints γk = (γ1, ..., γJk

)′ for k = 1, ..., q, that can be collected

in γ =
(
γ ′1, ...,γ

′
q

)′. Also, because Ω is not required to be diagonal, the model can account for

the presence of unobserved factors that can correlate the latent variables in the vector zi. Despite

these correlations, however, sampling of the multivariate model can be done as a straightforward

extension of the univariate algorithms by using the fact that the conditional distributions of the

multivariate Gaussian distribution are also Gaussian with well-known moments. Moreover, the

probit model allows for further modeling extensions – e.g. Chen and Dey (2000) extend the basic

setup to other link functions such as the class of scale mixtures of multivariate normal densities that

is of interest in itself or can be used to approximate other link functions such as the multivariate

t-link and logit models (see also O’Brien and Dunson 2004, who develop a multivariate logit model

for ordinal outcomes). For this reason, the multivariate probit model appears to be a desirable

model that strikes a balance between flexibility and conceptual simplicity.

To identify the model, we use parallel restrictions to those discussed in Section 2, imposed on

each of the marginal distributions for the individual zik, k = 1, ..., q. In particular, following the

layout of Section 2, we first present an algorithm in which the scale of the individual (marginal)

latent processes is fixed by imposing a unit error variance, leading to a matrix Ω that is in cor-

relation form as in the multivariate probit model for binary data in Chib and Greenberg (1998).

Subsequently, we discuss an alternative algorithm, where each of the marginal distributions is scaled
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by fixing two cutpoints (e.g. either γk1 = 0 and γk2 = 1, or γk1 = 0 and γk,J−1 = 1, k = 1, ..., q), so

that the covariance matrix Ω is free and can be sampled from a known full-conditional distribution.

When Ω in correlation form, the sampling of the correlations is non-standard and we approach

this task by relying on the versatility of the ARMH algorithm. To introduce that algorithm, let θ be

a parameter vector whose density, π (θ), is the target density of interest, but is possibly known only

up to a normalizing constant and is not easy to simulate. Let h(θ) denote a source (or proposal)

density for the ARMH algorithm and let the constant c define the region of domination

D = {θ : π(θ) ≤ ch(θ)}

which is a subset of the support Θ of the target density (because the domination condition need

not be satisfied for all θ ∈ Θ, the source density h (θ) is often called a pseudo-dominating density).

Commonly, the choice of a pseudo-dominating density is determined by tailoring. For instance,

h (θ) can be given by a multivariate-t density h (θ) = fT (θ|µ, τV , ν) with ν degrees of freedom,

mean µ given by the maximum of the target density π(θ), and scale matrix τV , where V is the

inverse of the negative Hessian of lnπ(θ) evaluated at µ, and τ is a parameter allowing for the

possibility of additional tuning. Let Dc be the complement of D, and suppose that the current

state of the chain is θ. Then the ARMH algorithm proceeds as follows.

Algorithm 4 The accept-reject Metropolis-Hastings (ARMH) algorithm

1. A-R step: Generate a draw θ′ ∼ h(θ); accept θ′ with probability αAR(θ′) = min
{

1, π(θ′)
ch(θ′|y)

}
.

Continue the process until a draw θ′ has been accepted.

2. M-H step: Given the current value θ and the proposed value θ′:

(a) if θ ∈ D, set αMH(θ, θ′) = 1;

(b) if θ ∈ Dc and θ′ ∈ D, set αMH(θ, θ′) = ch(θ)
π(θ) ;

(c) if θ ∈ Dc and θ′ ∈ Dc, set αMH(θ, θ′) = min
{

1, π(θ′)h(θ)
π(θ)h(θ′)

}
.
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Return θ′ with probability αMH(θ, θ′); otherwise return θ.

The ARMH algorithm is an MCMC sampling procedure which nests both the accept-reject and

MH algorithms when Dc and D become empty sets, respectively. But in the intermediate case

when both D and Dc are non-empty, ARMH has several attractive features that make it a useful

choice for our setting. First, the algorithm is well suited to problems that do not require conjugacy

and result in non-standard full-conditional densities, which is the case for the elements of Ω when

it is in correlation form. Second, ARMH can be less demanding and works quite well even if the

proposal density h (θ) is only a rough approximation of the target density (e.g. Chib and Jeliazkov

2005). This is particularly useful in our setting because previous research suggests that standard

asymptotic approximating densities can be only rough approximations when sample sizes are small

(e.g. Zellner and Rossi 1984). Third, ARMH can produce draws that are closer to iid than those

from a similarly constructed MH simulator, but without requiring global domination that is needed

for the simple accept-reject algorithm. Fourth, in sampling covariance or correlation matrices, only

draws that satisfy positive definiteness pass through the A-R step of the algorithm, thus improving

the performance of the MH step. Finally, the building blocks of the ARMH algorithm provide a

straightforward way to estimate the marginal likelihood (e.g. Chib and Jeliazkov 2005), which will

be discussed in Section 4.

We are now ready to proceed with estimation of the multivariate ordered probit under traditional

identification restrictions, where the scale is fixed by requiring Ω to be in correlation form. We

begin by considering the complete data posterior π (β, δ, ρ, z|y), where ρ is the vector of unique

correlations in Ω. Assuming the prior ρ ∼ N (ρ0,R0) 1 {ρ ∈ S}, where S is the set of correlations

that produce a positive definite matrix Ω with ones on the main diagonal, we have

π (β, δ, ρ, z|y) ∝
{

n∏

i=1

[
q∏

k=1

1 {γk,j−1 < zik ≤ γkj}
]

N (zi|Xiβ,Ω)

}

×N (β|β0, B0) N (δ|δ0, D0) N (ρ|r0, R0) 1 {ρ ∈ S} ,

where the index j in the indicator functions above is determined by the value of yik according
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to (9). The above posterior distribution gives rise to the following MCMC estimation algorithm,

where as a matter of notation, we will use “\k” to represent all elements in a set except the kth one

(e.g. if θk is the kth block in the vector θ =
(
θ′1, ...,θ

′
p

)′, then θ\k =
(
θ′1, . . . , θ

′
k−1,θ

′
k+1, . . . ,θp

)′).

Algorithm 5 Sampling in the multivariate ordered probit model (Ω is in correlation

form)

1. For k = 1, ..., q, sample δk, zk|y, β, ρ, z\k in one block as follows:

(a) Sample δk|y, β,ρ,z\k marginally of zk by drawing a value δ′k ∼ q
(
δk|y, β, ρ, z\k

)
, where

q
(
δk|y,β, ρ, z\k

)
= fT

(
δk|δ̂k, D̂k, ν

)
with δ̂k = arg max f

(
yk|β,ρ, δ,z\k

)
π

(
δk|δ\k

)

and D̂k is the inverse of the negative Hessian of ln
{
f

(
yk|β,ρ, δ, z\k

)
π

(
δk|δ\k

)}
eval-

uated at δ̂k. Given the current value of δ and the proposed draw δ′, return δ′ with

probability

αMH

(
δk, δ

′
k

)
= min

{
1,

f
(
yk|β, ρ, δ′k, z\k

)
π

(
β,ρ, δ′k|δ\k

)

f
(
yk|β, ρ, δ, z\k

)
π

(
β,ρ, δk|δ\k

) fT (δk|δ̂k, D̂, ν)
fT (δ′k|δ̂k, D̂, ν)

}
,

and otherwise repeat the old value δ.

(b) Sample zk|y, β,ρ, δk, z\k by drawing zik|y, β,ρ,γ,z\k ∼ TN(γj−1,γj)

(
µk|\k, σ2

k|\k
)

for

i = 1, ..., n, where µk|\k and σ2
k|\k are the usual conditional mean and variance for a

Gaussian distribution.

2. Sample β|z ∼ N
(
β̂, B̂

)
, where β̂ and B̂ are given by β̂ = B̂

(
B−1

0 β0 +
∑n

i=1 X ′
iΩ

−1zi

)

and B̂ =
(
B−1

0 +
∑n

i=1 X ′
iΩ

−1Xi

)−1.

3. Sample ρ|z, β by ARMH (Algorithm 4) with proposal density h (ρ|z,β) = fT

(
ρ|ρ̂, τR̂, ν

)
,

where ρ̂ and R̂ are approximations to the maximizer and inverse of the negative Hessian of

ln {f (z|β, ρ) π (ρ)} = ln {∏n
i=1 N (zi|Xiβ,Ω) N (ρ|ρ0, R0) 1 {ρ ∈ S}}, respectively, and τ is

a tuning constant:
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(a) as a first step, try ρ̂ = R̂
(
R−1

0 ρ0 + C−1c
)

and R̂ =
(
R−1

0 + C−1
)−1 where c is the vec-

tor of unique elements of corr (zi −Xiβ) and C is the BHHH outer product of gradients

estimate of the modal dispersion matrix evaluated at c;

(b) if the gradient at ρ̂ above is far from zero (so that ρ̂ is not a good approximation),

fine-tune ρ̂ by further optimization and proceed with the ARMH algorithm.

Computing the quantities in Step 3a of Algorithm 5 is particularly easy and does not require

optimization; moreover, it is very fast because the sampling is conditional on z so that the com-

putations are comparable to those in a continuous data model. Importantly, when fine-tuning is

required, it can generally be accomplished in a few steps by quasi-Newton methods. Alternatively,

the proposal density in the ARMH step can be initialized with ρ̂ being the correlations from the

last draw of Ω and R̂ being the BHHH estimate of modal dispersion matrix at ρ̂.

Because of the standard way of identifying the parameters, the multivariate ordinal probit

model simplifies to the multivariate probit model for binary data that was analyzed in Chib and

Greenberg (1998) when there are only two choice categories. Moreover, with this algorithm it is

possible to fit models with restricted covariance matrices that may involve off-diagonal zeros or

various Toeplitz structures in Ω. The performance of this algorithm is demonstrated in Section 6.

We now turn attention to the second identification scheme that relies on fixing two cutpoints for

each outcome such as γk1 = 0 and either γk2 = 1 or γk,J−1 = 1 for k = 1, ..., q. As discussed in the

univariate case, doing so frees up the variances of the latent variables, thus removing the requirement

that the diagonal elements of Ω must be ones. The benefit of doing so is that when Ω is unrestricted,

we can use the usual semi-conjugate inverse Wishart prior on Ω, that is Ω ∼ IW (v0,W 0), which

produces the a complete data posterior that is given by

π (β, γ,Ω,z|y) ∝
{

n∏

i=1

[
q∏

k=1

1 {γk,j−1 < zik ≤ γkj}
]

N (zi|Xiβ,Ω)

}

×N (β|β0,B0) N (δ|δ0, D0) IW (Ω|v0, W 0) .

This posterior distribution gives rise to the following MCMC estimation algorithm (note that
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because a second cutpoint is fixed for each response variable, the vectors δk for k = 1, ..., q, have

one less element than the corresponding vectors in Algorithm 5).

Algorithm 6 (Chen & Dey 2000) Sampling in the multivariate ordered probit model

(identification through cutpoint restrictions)

1. For k = 1, ..., q, sample δk, zk|y, β, z\k in one block as follows

(a) Sample δk|y, β,Ω, z\k marginally of zk by drawing δ′k ∼ q
(
δk|y, β,Ω,z\k

)
, where

q
(
δk|y,β,Ω, z\k

)
= fT

(
δk|δ̂k, D̂k, ν

)
with δ̂k = arg max f

(
yk|β,Ω, δ,z\k

)
π

(
δk|δ\k

)

and D̂k is the inverse of the negative Hessian of ln
{
f

(
yk|β,Ω, δ, z\k

)
π

(
δk|δ\k

)}
evalu-

ated at δ̂k. Given the current value δ and the proposed draw δ′, return δ′ with probability

αMH

(
δk, δ

′
k

)
= min

{
1,

f
(
yk|β,Ω, δ′k, z\k

)
π

(
β,Ω, δ′k|δ\k

)

f
(
yk|β,Ω, δ, z\k

)
π

(
β,Ω, δk|δ\k

) fT (δk|δ̂k, D̂, ν)
fT (δ′k|δ̂k, D̂, ν)

}
,

and otherwise repeat the old value δ.

(b) Sample zk|y, β,Ω, δk, z\k by drawing zik|y,β,Ω, γ, z\k ∼ TN(γj−1,γj)

(
µk|\k, σ2

k|\k
)

for

i = 1, ..., n, where µk|\k and σ2
k|\k are the usual conditional mean and variance for a

Gaussian distribution.

2. Sample β|z ∼ N
(
β̂, B̂

)
, where β̂ and B̂ are given by β̂ = B̂

(
B−1

0 β0 +
∑n

i=1 X ′
iΩ

−1zi

)

and B̂ =
(
B−1

0 +
∑n

i=1 X ′
iΩ

−1Xi

)−1.

3. Sample Ω ∼ IW
(
v0 + n,W 0 + (z −Xβ)′ (z −Xβ)

)
.

The above algorithm makes the conditional sampling of Ω particularly attractive since the

draws are obtained from a well-known full-conditional distribution, so that sampling is fast and

easy to implement. Another benefit of this algorithm is that no cutpoints need to be sampled for

any response variable that has three categories. Unfortunately, the identification restriction can

not be applied (a) when one or more elements in yi are binary and there is only one cutpoint
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between the two categories so that unit variance is required for identification, (b) when Ω must

be restricted in any other way (e.g. when a block of off-diagonal elements is restricted to zero),

(c) when different subsets of elements of Ω are updated by different subsamples of data (e.g. in

the case of missing or incidentally truncated outcomes), or (d) when non-conjugate priors are used

to model the elements of the matrix Ω. In these cases, estimation can proceed under traditional

identification assumptions with Ω being a correlation matrix.

4 Model Comparison

A central issue in the analysis of statistical data is model formulation, since the appropriate speci-

fication is rarely known and is subject to uncertainty. Among other considerations, the uncertainty

may be due to the problem of variable selection (i.e. the specific covariates to be included in the

model) or perhaps due to the functional specification through which the covariates affect the prob-

ability of the outcome. In general, given the data y, interest centers upon a collection of models

{M1, ...,ML} representing competing hypotheses about y. Each model Ml is characterized by

a model-specific parameter vector θl and sampling density f(y|Ml,θl). Bayesian model selection

proceeds by comparison of the models in {Ml} through their posterior odds ratio, which for any

two models Mi and Mj is written as

Pr(Mi|y)
Pr(Mj |y)

=
Pr(Mi)
Pr(Mj)

× m(y|Mi)
m(y|Mj)

, (10)

where m(y|Ml) =
∫

f(y|Ml,θl)πl(θl|Ml)dθl is the marginal likelihood of Ml. The first fraction

on the right hand side of (10) is known as the prior odds and the second as the Bayes factor. We

show that the question of calculating the marginal likelihood for ordinal data models under each

of the identification schemes discussed above can be managed through straightforward application

of methods that are built upon the structure of the sampling algorithms.

Chib (1995) provides a method based on the recognition that the marginal likelihood can be
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re-expressed as

m(y|Ml) =
f(y|Ml,θl)π(θl|Ml)

π(θl|y,Ml)
, (11)

which holds for any point θl, so that calculation of the marginal likelihood is reduced to finding an

estimate of the posterior ordinate π(θ∗l |y,Ml) at a single point θ∗l , given that usually f(y|Ml,θ
∗
l )

and π(θ∗l |Ml) for the numerator of (11) are either available directly or by an alternative calculation.

In practice, the point θ∗l is often taken as the posterior mean or mode, which tends to minimize the

estimation variability. In the following, we suppress the model index for notational convenience.

In the context of ordinal probit models, the parameter vector θ will consist of the regression

coefficients β, the cutpoint transformations δ, and possibly σ2 or Ω (depending on the identifica-

tion scheme and the dimensionality of yi). To keep the discussion general, let θ be split into B

components or blocks that emerge in constructing the MCMC sampler under the chosen identifica-

tion scheme, so that θ = (θ1, ...,θB). Let ψ∗
i = (θ∗1, ...,θ

∗
i ) denote the blocks up to i, fixed at their

values in θ∗, and let ψi+1 = (θi+1, ...,θB) denote the blocks beyond i. Then, by the law of total

probability we have

π (θ∗1, ...,θ
∗
B|y) =

B∏

i=1

π
(
θ∗i |y, θ∗1, ..., θ

∗
i−1

)
=

B∏

i=1

π
(
θ∗i |y, ψ∗

i−1

)
.

When the full-conditional densities are known, each ordinate π(θ∗i |y, ψ∗
i−1) can be estimated

by Rao-Blackwellization as π
(
θ∗i |y,ψ∗

i−1

) ≈ J−1
∑J

j=1 π
(
θ∗i |y, ψ∗

i−1,ψ
i+1,(j)

)
, where ψi,(j) ∼

π
(
ψi|y, ψ∗

i−1

)
, j = 1, ..., J , come from a reduced run, where sampling is only over ψi, with the

blocks ψ∗
i−1 being held fixed. The ordinate π (θ∗1|y) for the first block of parameters θ1 is estimated

with draws θ ∼ π (θ|y) from the main MCMC run, while the ordinate π
(
θ∗B|y,ψ∗

B−1

)
is available

directly.

When one or more of the full conditional densities are not of a standard form and sampling

requires the MH algorithm, Chib and Jeliazkov (2001) use the local reversibility of the MH chain

to show that

π(θ∗i |y, ψ∗
i−1) =

E1

{
αMH

(
θi,θ

∗
i |y, ψ∗

i−1, ψ
i+1

)
q
(
θi,θ

∗
i |y, ψ∗

i−1, ψ
i+1

)}

E2

{
αMH

(
θ∗i , θi|y,ψ∗

i−1,ψ
i+1

)} , (12)
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where E1 is the expectation with respect to conditional posterior π(ψi|y,ψ∗
i−1) and E2 that with

respect to π(ψi+1|y, ψ∗
i )q(θ

∗
i , θi|y, ψ∗

i−1, ψ
i+1). In the preceding, q(θ, θ′|y) denotes the candidate

generating density of the MH chain for moving from the current value θ to a proposed value θ′,

and αMH(θi, θ
′
i|y,ψ∗

i−1,ψ
i+1) denotes the MH probability of move from θ to θ′. For blocks that

are sampled using the multi-block version of the ARMH algorithm, Chib and Jeliazkov (2005) show

that

π(θ∗i |y,ψ∗
i−1) =

E1

{
αMH

(
θi, θ

∗
i |y, ψ∗

i−1, ψ
i+1

)
αAR

(
θ∗i |y,ψ∗

i−1, ψ
i+1

)
h

(
θ∗i |y,ψ∗

i−1,ψ
i+1

)}

E2

{
αMH

(
θ∗i , θi|y,ψ∗

i−1,ψ
i+1

)
αAR

(
θi|y,ψ∗

i−1,ψ
i+1

)} ,

(13)

where, similarly to above, E1 is the expectation with respect to π(ψi|y, ψ∗
i−1) and E2 that with

respect to π(ψi+1|y, ψ∗
i )h( θi|y, ψ∗

i−1, ψ
i+1) with h (·) being the proposal density in the AR step of

the ARMH algorithm. Each of these expectations can be computed from the output of appropriately

chosen reduced runs, where ψ∗
i−1 is kept fixed. Methods for evaluating the variability of the ordinate

estimates in each of the above cases are presented in Chib (1995) and Chib and Jeliazkov (2001,

2005).

Estimation of the marginal likelihoods for univariate ordinal data models is quite straightfor-

ward, regardless of which identification scheme is used. In particular, when the model is identified

by assuming var (ε) = 1, then the marginal likelihood can be estimated by using the posterior

decomposition

π (β∗, δ∗|y) = π (β∗|y) π (δ∗|y, β∗) ,

where π (β∗|y) ≈ G−1
∑G

g=1 π
(
β∗|y, z(g)

)
, with π

(
β∗|y, z(g)

)
being the full-conditional density

for sampling β in Step 2 of Algorithm 2 and z(g) are draws from the main MCMC run, so estima-

tion of that ordinate uses random draws that are already available. The ordinate π (δ∗|y, β∗) is

estimated by

π(δ∗|y, β∗) ≈
G−1

∑G
g=1 αMH

(
δ(g), δ∗|y, β∗

)
q (δ∗|y, β∗)

G−1
∑G

h=1 αMH

(
δ∗, δ(h)|y,β∗

) ,

where the numerator draws δ(g), g = 1, ..., G, come from π (δ|y, β∗) and the denominator draws
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δ(h), h = 1, ..., G, are draws from q (δ|y, β∗). We note that the latter ordinate is particularly easy

to obtain, because β is already fixed at β∗ and z is not involved in the sampling step for δ, so that

maximization to determine the moments of q (δ|y,β∗) need only be performed once. Moreover,

because the sampling of δ uses an independence proposal density q (δ|y, β∗) that does not depend

on the current value of δ, the draws δ(h) in the denominator quantity determine the numerator

draws δ(g) once they go through the MH step of the ARMH algorithm and are either accepted or

rejected. Therefore, estimation of π(δ∗|y, β∗) is done with draws that are obtained concurrently in

the same MCMC reduced run.

When univariate models are identified by fixing a second cutpoint but allowing var (ε) = σ2

to be a free parameter to be estimated, the marginal likelihood can be estimated by using the

decomposition

π
(
β∗, σ2∗, δ∗|y)

= π (β∗|y) π
(
σ2∗|y, β∗

)
π

(
δ∗|y, σ2∗, β∗

)
,

where the first and last ordinates are obtained similarly to the preceding discussion, and the second

ordinate π
(
σ2∗|y, β∗

)
is estimated as an average π

(
σ2∗|y, β∗

) ≈ G−1
∑G

g=1 π
(
σ2∗|y, β∗, z(g)

)
with

draws z(g) taken from sampling the distribution π (z, δ|y, β∗) in a reduced run given β∗. For this

reason, estimation of the marginal likelihood under the alternative identification restrictions will

be more cumbersome except, of course, in cases when there are only J = 3 categories so that no

cutpoints need to be sampled and this identification scheme may be easy to implement.

Turning attention to multivariate models, we note that estimation of the marginal likelihood

follows by straightforward extension of the above methods. Specifically, estimation of the posterior

ordinate can be done using the decomposition

π (β∗, Ω∗, δ∗|y) = π (β∗|y) π (Ω∗|y, β∗) π (δ∗|y, Ω∗, β∗) .

Similarly to the previously mentioned cases, estimation of π (β∗|y) is done by averaging the full
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conditional density with draws
{

z(g),Ω(g)
}
∼ π (z,Ω|y) from the main MCMC run

π (β∗|y) ≈ G−1
G∑

g=1

π
(
β∗|y, z(g), Ω(g)

)
.

The next ordinate, π (Ω∗|y, β∗), can be estimated either by

π (Ω∗|y, β∗) ≈ G−1
G∑

g=1

π
(
Ω∗|y, β∗, z(g)

)

if identification is achieved by fixing two cutpoints for each latent series {zik}, k = 1, ..., q, so that the

full-conditional density of Ω is inverse Wishart. However, if one instead chooses to pursue estimation

under the traditional identification assumption that Ω is in correlation form with correlations given

by ρ, then estimation of that ordinate can be done by adapting (13), so that

π(Ω∗|y, β∗) = π(ρ∗|y, β∗) =
E1 {αMH (ρ, ρ∗|y, β∗, z) αAR (ρ∗|y, ρ, z) h (ρ∗|y, β∗, z)}

E2 {αMH (ρ∗, ρ|y, β∗, z) αAR (ρ|y, β∗, z)} .

The last ordinate π (δ∗|y, Ω∗, β∗) can be decomposed as
q∏

k=1

π (δ∗k|y, Ω∗, β∗, {δ∗i : i < k}), where

each term is estimated in a reduced run by (12) holding all preceding blocks fixed.

While in the univariate case the quantities in the numerator of (11) are available directly, imple-

mentation of these methods in the multivariate case requires the likelihood ordinate f (y|Ω∗,β∗, δ∗)

in (11), which we obtain by the Geweke, Hajivassiliou, and Keane (GHK) method (Geweke 1991;

Börsch-Supan and Hajivassiliou 1993; Keane 1994; Train 2003). In addition, when the normalizing

constant of any of the priors is needed for determining the prior ordinate in (11), as may be the

case with π (ρ) ∝ N (ρ|r0, R0) 1 {ρ ∈ S} when ρ is multivariate, that normalizing constant can

be evaluated by simulation, e.g. by drawing ρ ∼ N (ρ|r0, R0) and evaluating the frequency with

which ρ ∈ S is satisfied (e.g. Chib and Greenberg 1998).

5 Additional Considerations

5.1 Covariate Effects

In the preceding sections we have presented alternative algorithms for estimating univariate and

multivariate ordinal data models. However, interpretation of the resulting parameter estimates is
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complicated by the nonlinear and non-monotonic dependence of the response probability on the

covariates and the model parameters. To see the possibility for non-monotonicity, consider Figure 1

once again. In that figure, one can see that given the cutpoints, if one increases the mean x′iβ, the

probability of the first category, Pr (yi = 1), will decrease and that of the last category, Pr (yi = J),

will increase. However, those are the only two categories for which the effect of a change in x′iβ on

the probability of observing that response is monotonic. It is easy to see that for the case given in

Figure 1, decreasing x′iβ will actually initially increase Pr (yi = 2). That probability will reach a

maximum when x′iβ is decreased to the midpoint between γ1 and γ2, while any further decrease in

x′iβ will cause Pr (yi = 2) to fall.

Due to the non-linearity, non-monotonicity, and the alternative identification schemes that can

be applied in this setting, we now turn to the question of evaluating the effect of a given covariate xj

on the probability of observing yi. This is important for understanding the model, for determining

the impact of a change in one or more of the covariates, and also for evaluating the plausibility of

particular covariate values in setting priors for the model parameters. Because of the nonlinearity

of the model, the effect of a change in a covariate depends on all other covariates and model

parameters, as well as on the identification restrictions used in estimation. The impact can be

quite complex and can be calculated either marginalized over the remaining covariates and the

parameters or conditional on some of them, e.g. if we are interested in inference conditional on

a particular covariate such as gender, race, or geographical location. Given the specific context,

one may consider various scenarios of interest – examples of economic policy interventions may

include increasing or decreasing income or taxes by some percentage, requiring an additional year

of education, etc. These interventions will affect the probability of response for any one of the

ordered categories, but as argued above, that effect can be not only of unknown magnitude, but

also of unknown sign, for the intermediate categories.

To illustrate the main ideas, consider the univariate ordinal model

zi = x′iβ + εi, and yi = j if γj−1 < zi ≤ γj ,
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where we are interested in the effect of a particular x, say x1, on the Pr (yi = j) for some 1 ≤ j ≤ J .

Splitting x′it and β accordingly, we can re-write the above model as

zi = x1iβ1 + x′2iβ2 + εi.

The covariate effect can then be analyzed from a predictive perspective, similarly to thinking about

inferences for a hypothetical new individual i. For specificity, suppose that one is interested in

the average difference in the implied probabilities between the case when x1i is set to the value

x†1i and the case when x1i is set to the value x‡1i. Given the values of the other covariates and

those of the model parameters θ (which, in addition to β and γ, can also include σ2 depend-

ing on the identification restrictions), one can obtain the probabilities Pr
(
yi = j|x†1i, x2i, θ

)
and

Pr
(
yi = j|x‡1i, x2i, θ

)
, which are available analytically. If one is interested in the distribution of

the difference
{

Pr
(
yi = j|x†1i

)
− Pr

(
yi = j|x‡1i

)}
marginalized over {x2i} and θ given the data

y = (y1, ..., yn)′, a practical procedure is to marginalize out the covariates using their empirical

distribution, while the parameters are integrated out with respect to their posterior distribution.

Formally, the goal is to obtain a sample of draws from the distribution

{
Pr

(
yi = j|x†1i

)
− Pr

(
yi = j|x‡1i

)}
=

∫ {
Pr

(
yi = j|x†1i, x2i, θ

)
− Pr

(
yi = j|x‡1i, x2i, θ

)}

π (x2i) π (θ|y) dx2idθ.

A sample from the above predictive distribution can be obtained by the method of composition

applied in the following way. Randomly draw an individual and extract the covariate values. Sample

a value for θ from the posterior and evaluate
{

Pr
(
yi = j|x†1i, x2i,θ

)
− Pr

(
yi = j|x‡1i,x2i, θ

)}
.

Repeat this for other individuals and other draws from the posterior distribution to obtain draws

from the predictive distribution. The mean of that distribution gives the expected difference in the

computed pointwise probabilities as x†1i is changed to x‡1i, but other quantities such as quantiles

and dispersion measures are also easy to obtain given the draws from the predictive distribution.

The above approach can similarly be applied conditionally upon, instead of marginally of, certain

variables (such as gender or race) that might determine a particular subsample of interest, in which

26



case the above procedures are applied only to observations in the subsample. Importantly, the

procedures can be applied to multivariate data as well because one only has to consider the marginal

distribution for the response of interest. Finally, we note that these techniques can be useful in

setting priors on the parameters, where one can calibrate the parameters in the prior distributions

by performing the above simulations with draws from the prior (instead of the posterior) in order

to see whether specific settings for the hyperparameters produce plausible outcome probabilities

and covariate effects.

5.2 Extensions

We now briefly turn attention to some straightforward extensions of the techniques discussed in this

paper to other settings. One such extension concerns the analysis of count data because in many

cases count data that take a limited number of values can also be viewed and analyzed similarly to

ordinal data. For example, in studying a conflict one may be interested in the number of days in

a week that are characterized by social unrest or violence, while in transportation economics one

may have an interest in the number of vehicles a household owns and uses (Goldberg 1998; West

2002). Fang (2008) uses data from the National Household Transportation Survey to estimate

a Bayesian multivariate response system with both discrete (number of vehicles) and censored

(miles driven) responses. In labor economics one may be interested in the number of children in

a family – e.g. Borg (1989) uses data from the Korean Institute for Family Planning to study

the income-fertility relationship using an ordered probit model. In these cases, in order to adapt

the ordinal structure to the analysis of count data, there has to be a category that exhausts

the set of possible outcomes and is the complement of the categories listed. For this reason,

there is usually a response category such as “J or more outcomes” – for example a family can

own 1, 2 or “3 or more” cars. When the inclusion of such a remainder category is sensible,

ordinal data models can be quite useful in the analysis of count data. This is because they can

produce more flexible outcome probabilities over the chosen range of outcomes than those given by
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Poisson models since ordinal models are not restricted by the equidispersion property of the Poisson

distribution. In multivariate settings, ordinal models can also produce both positive and negative

correlation between the responses, whereas the multivariate Poisson model can only accommodate

positive correlations; in addition, ordinal models can accommodate both over- and under-dispersion,

whereas mixed models such as the Poisson-lognormal model, while capable of capturing negative

correlations, can only accommodate overdispersion.

Several other extensions are possible. For instance, the techniques discussed here can be ap-

plied in the analysis of longitudinal (panel) data by merging the algorithms provided above with

those in Chib and Carlin (1999) for sampling the individual-specific effects. A similar sampler in

the context of binary panel outcomes is presented in Chib and Jeliazkov (2006), who consider a

semiparametric model with an unknown covariate function. For panel data settings, Algorithm 5

provides an approach for dealing with correlated errors which can also accommodate, in a fairly

straightforward fashion, commonly used intertemporal correlation structures, such as exponentially

correlated errors, where Ω [t, s] = exp {−α|t− s|r} for scalars α and r (e.g., Diggle and Hutchinson

1989) or various other Toeplitz-type correlation matrices. Yet other extensions can be pursued in

the latent variable step; for example, as mentioned earlier, the methods can be adapted to models

with mixture of normals or scale mixture of normals link functions (Albert and Chib 1993; Wood

and Kohn 1998; Chen and Dey 2000). A non-parametric Bayesian model based on Dirichlet process

priors is presented in Kottas, Müller, and Quintana (2005).

6 Applications

Ordinal data outcomes arise frequently in survey data, where respondents may be asked to evaluate

a particular issue on an ordinal scale (such as whether they disagree, agree, or strongly agree), as

is common in the subjective well-being literature (Duch et al. 2000; McBride 2001; Di Tella et

al. 2003; Luechinger et al. 2006). Ordinal outcomes also result when the dependent variable is

naturally classified into meaningful ordered categories (e.g. by thresholds in cost or income), such
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as working part-time, full-time, or overtime (Kahn and Lang 1996; Olson 1998). Bayesian models

involving an endogenous ordinal variable have recently been considered in Li and Tobias (2006)

and Herriges et al. (2007).

In this section we consider several problems that are of interest in economics and the broader

social sciences, and show how the techniques discussed in the preceding sections can be applied in

practice. For the univariate case, we consider the widely studied topic of educational attainment

using data from the National Longitudinal Study of Youth (NLSY79). Subsequently, we consider

two multivariate applications involving survey data on voter opinions and health information. In

each application, we estimate the models under the two identification approaches discussed previ-

ously – either by fixing two cutpoints or by imposing unit variances – and illustrate and compare

the performance of the alternative estimation algorithms by the inefficiency factors for the sampled

parameters. The inefficiency factors are calculated as

1 + 2
L∑

l=1

ρk(l)
(

L− l

L

)
,

where ρk(l) is the sample autocorrelation for the kth parameter at lag l, and L is chosen at values

where the autocorrelations taper off. The inefficiency factors approximate the ratio of the numerical

variance of the posterior mean from the MCMC chain relative to that from hypothetical iid draws.

The data sets used in our applications can be downloaded from http://www.econ.uci.edu/˜ivan/.

6.1 Educational Attainment

Educational attainment has been the subject of a large literature that is relevant to researchers

and policymakers alike. It is also well suited for empirical study involving ordinal models because

the dependent variable is naturally categorized by measurable thresholds of educational attainment

such as the completion of high school or college. In our first application the dependent variable,

level of education, is measured in four categories: (i) less than a high school education, (ii) high

school degree, (iii) some college or associate’s degree, and (iv) college or graduate degree. In order

to facilitate comparability of our results with other research, we estimate a model of educational
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attainment using the National Longitudinal Survey of Youth (NLSY79).

Previous research in the area has been abundant. For example, Ermisch and Francesconi (2001)

use the British Household Panel Study to estimate the influence of parental education on child ed-

ucational attainment, while Dearden et al. (2002) use the British National Child Development

Survey to measure the influence of school quality on educational attainment. Cameron and Heck-

man (2001) use a dynamic discrete data model and data from the National Longitudinal Survey of

Youth to measure the influence of parental income on children’s educational attainment. A large

literature attempts to estimate the returns to education using a number of methods ranging from

explicit proxies for ability, twins studies, fixed effects and arguably exogenous influences on educa-

tional attainment. Bayesian studies of the return to schooling include Li and Tobias (2006, 2007),

where the ordered probit analysis of the factors that influence educational attainment is embedded

into a larger model that studies the subsequent returns to such educational attainment.

A number of studies have analyzed the binary outcome of whether a student graduates from

high school (Astone and McLanahan 1991; Haveman, Wolfe and Spaulding 1991; Ribar 1994;

Wilson 2001). However, when one is interested in more than just those individuals on the verge

of graduating from high school, ordinal data models offer a natural generalization to a choice

that is truly among a number of distinct levels of education. As previously noted in Section 5,

covariate effects can be rather general in ordinal data models allowing for the theoretically likely

possibility that factors such as a student’s parental education or income can have varying impacts

on educational attainment across categories.

In 1979, the NLSY began annual interviews with over 12000 youths on a battery of demographic

questions. Using these data, we estimate the effect of family background, individual, and school

variables on educational attainment. The NLSY specifically asks whether the respondent has

obtained various education degrees but this information can also be inferred through the years of

schooling variable. For this application, we restrict our sample to those cohorts that were ages

14-17 in 1979 for whom a family income variable can be constructed. To create the family income
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variable, we average family income over age 16 and 17 when available. The income measure is given

in thousands of 1980 dollars. We also restrict our sample by availability of other relevant variables

in the data set. Additionally, we exclude disabled individuals and those who report more than

11 years of education at age 15. The resulting sample consists of 3923 individuals. The data set

includes variables on an individual’s family at the age of 14 including: the highest grade completed

by their father and mother, whether the mother worked, family income (stabilized by the square

root transformation), and whether the youth lived in an urban area or the South at the age of

14. We also include the individual’s gender and race. To control for age cohort affects, we include

dummy variables to indicate an individual’s age in 1979.

Parameter Covariate Mean SD
β Intercept -1.34 0.09

Family income (sq. rt.) 0.14 0.01
Mother’s education 0.05 0.01
Father’s education 0.07 0.01
Mother worked 0.03 0.04
Female 0.16 0.04
Black 0.15 0.04
Urban -0.05 0.04
South 0.05 0.04
Age cohort 2 -0.03 0.05
Age cohort 3 0.00 0.06
Age cohort 4 0.23 0.06

δ 0.08 0.02
-0.28 0.03

Table 1: Posterior means and standard deviations for the parameters in the educational attainment
application. Identification is achieved through variance restriction and estimation is performed by
Algorithm 2 using a sample of 10000 MCMC iterations following a burn-in of 1000 iterations.

The results of our analysis are presented in Table 1. The signs of the coefficients presented in

the table are consistent with what is often found in the literature. Parental education as well as

income have a positive effect on educational attainment. Labor force participation of the mother

has a positive effect on educational attainment. A mother’s work force participation could be seen

as detrimental due to lack of parental supervision or could be viewed as providing a positive role
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model for her children to follow; the sign of the coefficient indicates the latter case is a viable

possibility. Conditionally on the remaining covariates, we also see that blacks and individuals from

the South have higher educational attainment. To gauge the magnitudes of some of the more

interesting covariate effects in this example, one can use the framework presented in Section 5.1.

To illustrate these calculations, we computed the effect of an increase in family income of $1000

on educational outcomes. For the overall sample, the effect of such increase in family income is to

lower the probability of dropping out of high school by approximately 0.0050, lower the probability

of only obtaining a high school degree by 0.0006, but increase the probability of having some

college or associate’s degree by 0.0020 and increase the probability of getting a college or graduate

degree by 0.0036. For the subsample of females, the effects of an income increase on the four

outcome probabilities were comparable at approximately −0.0048, −0.0009, 0.0019, and 0.0038,

respectively. For the subsample of blacks, the effects of income change were somewhat stronger –

in that subsample, an increase of $1000 in family income changed the four educational outcome

probabilities by −0.0060, −0.0009, 0.0026, and 0.0043, respectively.

While Table 1 presents results estimated under a variance restriction (var (ε) = 1) by Algo-

rithm 2, we also estimated the model by Algorithm 3 using two types of cutpoint restrictions –

γ1 = 0 and γ2 = 1, and γ1 = 0 and γ3 = 1, respectively. In the latter two cases var (ε) = σ2 is a

free parameter. The point estimates for the parameters from that algorithm, when transformed by

1/σ produced estimates that were virtually identical to those in Table 1 and were therefore sup-

pressed. However, the inefficiency factors from the three MCMC runs differed, and are presented

in Figure 3. The first and second panel in that figure suggest that Algorithm 2 and Algorithm 3

(using transformation (8) due to Chen and Dey (2000)) perform well in this case. A comparison of

the second and third panels in Figure 3 shows that identifying the model by fixing the first and last

cutpoints is preferable to fixing the first and second cutpoints, indicating that restricting a larger

fraction of the latent data z to a fixed range tends to identify the scale better. Regardless of which

cutpoints are fixed, however, it is important to keep in mind that Algorithm 3 is a three-block
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Figure 3: Boxplots of inefficiency factors in the educational attainment application. In the first
panel, sampling is implemented under variance restrictions (σ2 = 1) and β is a 12× 1 vector and δ
is 2 × 1; In the second and third panels, sampling is implemented by Algorithm 3 under cutpoint
restrictions, using (γ1 = 0, γ3 = 1) and (γ1 = 0, γ2 = 1), respectively; in those panels, β is a 12× 1,
while δ and σ2 are scalars.

sampler and requires an additional reduced run when it comes to marginal likelihood estimation

relative to Algorithm 2. We note that in all three cases, the MH acceptance rates for δ were very

good and were in the range (0.90, 0.97).

6.2 Voter Opinions

Surrounding election day, political analysts often present descriptive statistics of voter opinions and

demographics from exit poll surveys. Such surveys are of particular interest to political economists

and politicians since they cast light on voter sentiment and help to predict future election outcomes

or guide policy. Recently, an ordered probit model using economic perceptions as the dependent

variable was used in Duch, Palmer, and Anderson (2000) to study the degree to which voter

perceptions are objective.

When a given survey respondent is asked to comment on multiple issues, his or her responses
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will generally be correlated; however, analysts and the media often present the results for various

questions independently or as tabulations by demographic groups. In contrast, we estimate the

effect of voter demographics on survey responses using a multivariate model that accounts for

correlations in a voter’s set of responses. We use the National Election Pool General Election

Exit Polls, 2006, (Interuniversity Consortium for Political and Social Research, 2007). Our sample

consists of 6,050 voters casting a ballot in the 2006 United States general election. Election day and

absentee voters were surveyed from October 27, 2006 to November 7, 2006, after leaving polling

places or through phone interviews.

The survey attempted to elicit voters opinions on current issues such as how President George

W. Bush is performing in office, approval of the war in Iraq, and status of the national economy.

Responses to these questions are coded as categorical variables with four ordered categories (higher

values imply more favorable opinions). The demographic variables we include are age, sex, race,

ethnicity, urban location, region, household income, marital status, and whether children lived

in the household. Other explanatory variables include religious affiliation, frequency of religious

attendance, and political philosophy. The survey is a stratified random sample that over-samples

minorities. The results of fitting this trivariate ordered probit model are presented in Table 2.

The parameter estimates in Table 2 show plausible signs and magnitudes that accord well

with intuition. Not surprisingly, relative to moderates, liberals have negative opinions on all three

topics, in contrast to conservatives. Respondents in higher income categories, who most likely also

have higher education (unavailable in this data set), have a more positive opinion of the national

economy, but share a lower opinion of the Iraq war and George W. Bush’s performance as President.

Those who subjectively consider themselves in a good financial situation have a positive opinion

on all three topics. Those in the youngest age category have opinions of smaller magnitude across

the board than those in the older age category. Females have a negative opinion of the economy

and the Iraq war relative to males, but relatively weak opinion of the President. Coefficients for

minorities are negative for all three topics, with larger magnitudes for blacks. Church attenders
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Economy Iraq War President
Parameter Covariate Mean SD Mean SD Mean SD

β Intercept -0.08 0.06 -0.72 0.06 -1.25 0.07
Liberal -0.34 0.04 -0.60 0.04 -0.70 0.04
Conservative 0.49 0.04 0.68 0.04 0.75 0.04
Income 30k-50k 0.06 0.05 -0.08 0.05 0.00 0.05
Income 50k-75k 0.08 0.05 -0.13 0.05 -0.04 0.05
Income 75k up 0.14 0.05 -0.22 0.05 -0.18 0.05
Financial situation 0.71 0.02 0.48 0.02 0.61 0.02
Age < 30 0.01 0.05 -0.05 0.05 -0.02 0.05
Age > 64 0.02 0.04 -0.19 0.04 -0.14 0.04
Married 0.00 0.03 0.05 0.04 0.05 0.04
Children -0.02 0.03 0.04 0.03 0.04 0.03
Female -0.21 0.03 -0.09 0.03 0.03 0.03
Black -0.44 0.05 -0.53 0.05 -0.67 0.05
Latino -0.12 0.06 -0.16 0.06 -0.08 0.06
Attends church 0.04 0.01 0.10 0.01 0.13 0.01
Born again -0.01 0.04 0.18 0.04 0.24 0.04

δ 0.39 0.02 -0.54 0.03 -0.53 0.03
0.52 0.02 -0.16 0.02 -0.07 0.02

Table 2: Posterior means and standard deviations for the parameters in the voter opinions ap-
plication. Identification is achieved through variance restrictions and estimates are obtained by
Algorithm 5 using a sample of 10000 MCMC iterations after a burn-in of 1000 draws.

(regardless of religion) as well as Born again Christians have a positive view of the Iraq war and

President George W. Bush, with Born again Christians having stronger positive opinions.

Because both liberals and conservatives appear strikingly different than moderates (the omitted

voter category), we quantify the effect of these two covariates by calculating the implied changes in

the response probabilities using the techniques of Section 5.1. To see in practical terms what the

effects of the two ideological opposites imply relative to being moderate, we take the subsample

of moderates and calculate the response probabilities with and without each dummy. The results

are presented in Table 3. We note that a similar exercise can be performed on the subsamples

of liberals or conservatives or any other subsample of interest, but one has to be aware that the

results need not be identical because the subsamples of respondents will differ in their covariates.

Overall, all entries indicate large effects of the liberal and conservative dummies; interstingly, the
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∆Pr(yi = 1) ∆ Pr(yi = 2) ∆Pr(yi = 3) ∆ Pr(yi = 4)
Economy

Moderate → Liberal 0.0734 0.0387 -0.0857 -0.0264
Moderate → Conservative -0.0699 -0.0963 0.0999 0.0663

Iraq War
Moderate → Liberal 0.2148 -0.1364 -0.0756 -0.0028
Moderate → Conservative -0.2178 0.0450 0.1573 0.0155

President
Moderate → Liberal 0.2351 -0.1521 -0.0796 -0.0034
Moderate → Conservative -0.2323 0.0522 0.1610 0.0191

Table 3: Examples of estimated covariate effects for the parameters of the liberal and conservative
dummies in the voter opinion application. The entries indicate the average change in the probability
of each outcome for a given covariate change.

magnitudes of these effects are somewhat more balanced for opinions on the national economy than

those on the Iraq war and the performance of the President.

Because of the joint modeling and estimation for a voter’s set of responses the model takes into

account the correlation between voter opinions. The correlation matrix, estimated by Algorithm 5

under unit variance restrictions, is given by

Ω =




1 0.40 0.50
0.40 1 0.79
0.50 0.79 1


 .

These estimates suggest that the three outcomes in this application are highly positively correlated,

which suggests the presence of common unobserved factors influencing all three responses.

In closing, we mention a few additional considerations. As can be expected, the estimates of

the parameters from Algorithms 5 and 6 agreed closely after accounting for the different scale iden-

tification in the model. However, the inefficiency factors differed very widely as shown in Figure 4,

where we see that traditional identification through variance restrictions produces improved mix-

ing of the Markov chain. Moreover, the inefficiency factors presented here are higher than those

in the univariate case from the educational attainment application. One reason is that while the

vectors of cutpoint differences δk are sampled marginally of the corresponding zk for k = 1, . . . , q,

i.e. δk ∼ δk|y, β, ρ, z\k, the sampling still depends on the latent data z\k for the other responses,
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Figure 4: Boxplots of inefficiency factors in the voter opinion application. In the first panel,
sampling is implemented under variance restrictions (Ω is in correlation form with correlations
given by ρ) by Algorithms 5 and β is 48 × 1, δ is 6 × 1, and ρ is 3 × 1; in the second and third
panels, sampling is implemented by Algorithm 6 under cutpoint restrictions, using (γj1 = 0, γj3 = 1)
and (γj1 = 0, γj2 = 1), respectively; in those panels, β is a 48×1, δ is 3×1, and the unique elements
of Ω form a 6× 1 vector.

so that when Ω exhibits high correlations as is the case in this example, the Markov chain will

mix more slowly. This intuition is confirmed in our next example, where the estimated covari-

ance matrix exhibits lower correlations that lead to improved mixing for the parameters. Finally,

in both algorithms, the MH steps performed quite well with MH acceptance for δ in the range

(0.90, 0.95) suggesting a close match between the proposal and target densities. Also, by setting

the AR constant c in the ARMH algorithm such that ch (ρ|z,β) /π(ρ|z,β) = 2 at the mode of

h (θ) and setting the ARMH tuning parameter τ = 1.5, in our context we were able to obtain

an AR acceptance rate of 0.4 and a corresponding MH acceptance rate of 1 indicating that these

settings of the tuning parameters produce an AR sampler for Ω.

37



6.3 Sources of Medical Information

An essential goal in marketing research is the identification of the source, or sources, of information

that consumers use in making decisions to buy. The question is of particular interest when it comes

to identifying the sources of medical information, because of the significant investments in drug

advertising and the public health consequences of medical choices. Kravitz et. al. (1996) identifies

doctors, family and friends, and media advertisements, as the main sources of medical information

for most people. Ippolito and Mathios (1990) specifically study the influence of advertisements on

health information, while Hellerstein (1998) studies the influence of a physician on patients’ use

of generic versus brand-name prescription drugs. These methods of obtaining medical information

may be correlated. For example, an individual’s desire to research a wide array of sources could

result in positive correlation between the sources. Alternatively, someone who has a high frequency

of obtaining information from a doctor may not rely as often on other sources of information, such

as friends and family, or advertising. As a result, it is possible that medical advertising could either

substitute for advice from doctors or encourage patients to see a doctor about a concern they have.

In our study we use ordered categorical survey responses on the frequency of obtaining information

from various sources to address this question.

We use the Public Health Impact of Direct-to-Consumer Advertising of Prescription Drugs,

July 2001–January 2002, (ICPSR 2003). The sample consists of entries from 2879 respondents

on their self-reported sources of medical information. The sample was created to be nationally

representative using random digit dialing, subsequently stratified to over-sample minorities. For

our dependent variables we use responses to questions on how often respondents obtain medical

information from various sources, namely information obtained from friends and family, through

advertisements, and from a doctor. Responses to these questions are coded as categorical variables

with four ordered categories indicating frequency. We include additional covariates such as whether

the individual has a health condition, medical insurance, or a regular doctor. The demographic

variables we include are age, sex, race, ethnicity, education, employment status, student status,
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urban location (suburban is the omitted category), region, household income, marital status, and

family size.

Advertisements Friends & Family Doctor
Parameter Covariate Mean SD Mean SD Mean SD

β Intercept 0.82 0.13 0.71 0.13 1.44 0.13
Income 25k to 50k -0.10 0.05 0.05 0.05 0.06 0.06
Income 50k to 75k -0.09 0.07 0.09 0.07 0.07 0.07
Income 75k up -0.08 0.07 0.04 0.07 0.11 0.07
Insurance 0.06 0.07 -0.03 0.07 -0.15 0.07
Medical Condition 0.02 0.05 -0.03 0.05 -0.37 0.05
Regular Doctor 0.04 0.06 -0.07 0.06 -0.57 0.06
Employed -0.05 0.05 -0.03 0.05 0.15 0.05
Student 0.07 0.12 -0.13 0.12 -0.38 0.12
Less than HS 0.22 0.08 0.21 0.08 0.05 0.08
Some College 0.09 0.06 -0.14 0.06 -0.02 0.06
College 0.10 0.05 -0.20 0.05 -0.30 0.05
Age 0.00 0.00 0.01 0.00 0.00 0.00
Married -0.04 0.05 -0.08 0.05 -0.14 0.05
Family size 0.02 0.03 0.01 0.03 0.01 0.03
Female -0.15 0.04 -0.18 0.04 -0.18 0.04
Minority -0.17 0.05 -0.02 0.05 -0.06 0.05
Urban -0.06 0.05 -0.04 0.05 -0.05 0.05
Rural -0.06 0.05 0.01 0.05 0.05 0.06
South -0.05 0.04 -0.02 0.04 -0.04 0.04

δ -0.21 0.03 0.04 0.03 0.06 0.03
-0.40 0.04 -0.28 0.03 -0.16 0.04

Table 4: Posterior means and standard deviations for the parameters in the health information
application. Identification is achieved through variance restrictions and estimates are obtained by
Algorithm 5 using a sample of 10000 MCMC iterations after a burn-in of 1000 draws.

Parameter estimates obtained by Algorithm 5 are presented in Table 4. The table reveals that

relative to those in the lowest income bracket, individuals in higher income brackets are less likely

to turn to advertisements as a source of health information, and more likely to turn to friends and

family. Higher income brackets are incrementally more likely to obtain health information from a

doctor. Surprisingly, those with insurance, a medical condition, or a regular doctor are all less likely

to turn to a doctor for medical information. These effects are shown in Table 4, and the covariate

effects in Table 5 show the average effect of insurance on the probabilities of the outcome categories
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for each source of medical information. One factor that may contribute to some of the surprising

∆Pr(yi = 1) ∆ Pr(yi = 2) ∆ Pr(yi = 3) ∆Pr(yi = 4)
Advertisements

Insurance = 0 → Insurance = 1 -0.0202 -0.0035 0.0069 0.0168
Friends & Family

Insurance = 0 → Insurance = 1 0.0068 0.0031 -0.0014 -0.0085
Doctor

Insurance = 0 → Insurance = 1 0.0373 0.0153 -0.0061 -0.0465

Table 5: Estimated covariate effect of insurance. The entries indicate the changes in the probability
of each outcome based on the sample of uninsured.

results presented here, is that the variable for medical condition is comprised of a list of serious and

well-known medical conditions but does not include minor aches and pains or less serious illnesses.

For this reason, many aspects of health which may drive demand for medical information may not

be captured in the available data. Additionally, obtaining medical information from a doctor likely

requires a higher cost and, unlike with friends and family or advertisements, is more likely to be

associated with actually having some physical concern that may not entirely be captured in the

documented list of medical conditions. The absence of detailed health information is a limitation

of the data.

Because of the joint modeling of the responses, the model accounts for the correlation between

health information sources. The correlation matrix, estimated by Algorithm 5 under unit variance

restrictions, is given by

Ω =




1 0.21 0.03
0.21 1 0.24
0.03 0.24 1


 .

These estimates suggest that certain outcomes in this application are correlated, while others are

not. For example, the frequency of using friends and family to obtain medical information is cor-

related with both information from advertisements and from doctors (0.21 and 0.24, respectively),

while the correlation between information from advertisements and doctors is very low (0.03). It

may be the case that individuals use friends and family to filter information from the other two

sources; this may indicate that information from friends and family serves as a complement to
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Figure 5: Boxplots of inefficiency factors in the health information application. In the first panel,
sampling is implemented under variance restrictions (Ω is in correlation form with correlations given
by ρ) by Algorithms 5 and β is 60× 1, δ is 6× 1, and ρ is 3× 1; in the second and third panels,
sampling is implemented by Algorithm 6 under cutpoint restrictions, using (γj1 = 0, γj3 = 1) and
(γj1 = 0, γj2 = 1), respectively; in those panels, β is a 60× 1, δ is 3× 1, and the unique elements
of Ω form a 6× 1 vector.

other sources of medical information. Upon comparing this correlation matrix to the one the voter

opinion application, we see that overall the correlations here are much lower.

In Figure 5, we present the inefficiency factors that result from Algorithms 5 and 6 in this

application. These overall inefficiency factors appear to be lower when identification is achieved

through variance restrictions and estimation is done by Algorithm 5. Again, in both algorithms, the

MH steps performed quite well with MH acceptance for δ again in the range (0.90, 0.95) suggesting

a close match between the proposal and the target. As in our voter opinion application, setting

the AR constant c in the ARMH algorithm such that ch (ρ|z, β) /π(ρ|z, β) = 2 at the mode of

h (θ) and the ARMH tuning parameter τ = 1.5, we were able to obtain an AR acceptance rate of

0.41 and a corresponding MH acceptance rate of 1 indicating that the ARMH algorithm essentially

involved AR sampling for Ω.
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In closing, we return to an interesting difference between the inefficiency factors in this and the

previous application. Since sampling of the latent data zk and cutpoints γk is conditional on the

latent data for the other responses z\k for k = 1, ..., q, the magnitude of the correlations in Ω plays

an important role in determining the mixing of the chain. When those correlations are high (as in

the voter opinion example), the chain mixes more slowly than when correlations in Ω are low as in

the current example.

7 Conclusion

There are alternative ways in which ordinal models can be identified. In this paper we have dis-

cussed some possibilities and shown how they can be implemented in practice using well tailored

MH or ARMH algorithms. Our main points can be summarized as follows. First, in the univariate

setting, identification through variance restrictions appears to be preferable when the number of

categories J is greater than 3. This is because Algorithm 2 allows for more efficient blocking for

sampling and marginal likelihood estimation. However, when J = 3, a sampler built upon identi-

fication by fixing the two cutpoints can be useful as it will not involve any MH steps. Second, in

multivariate settings when ordinal models are identified through variance restrictions (leading to a

correlation matrix Ω), efficient sampling can be made possible through the ARMH algorithm. In

our examples, identification through variance restrictions and estimation through Algorithm 5 was

shown to lead to overall improved mixing of the Markov chain relative to identification by cutpoint

constraints and fitting by Algorithm 6. Algorithm 5 also allows greater flexibility when Ω involves

restrictions, e.g. when it is structured or involves off-diagonal zeros; however, the easier application

of Algorithm 6 can also be appealing when Ω is not restricted. When identification is achieved

by fixing cutpoints, our examples have revealed that fixing the first and last cutpoints (e.g. as in

Chen and Dey (2000)) appears to result in lower inefficiency factors than fixing the first and second

cutpoints. For these reasons, we recommend Algorithm 5 to more advanced statistical programmers

dealing with complex problems, whereas Algorithm 6 can be useful for tackling standard problems
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by more customary Markov chains. Third, we have shown that the estimation algorithms discussed

here allow for the straightforward calculation of marginal likelihoods and Bayes factors for com-

paring alternative ordinal models. Finally, the paper has discussed a simulation-based framework

for covariate effect evaluation that can be quite useful in eliciting the impact of covariates on the

probabilities of ordinal outcomes. The above issues have been illustrated in three important prob-

lems in labor economics, political science, and health economics. These studies have demonstrated

the applicability and usefulness of the inferential techniques in the context of ordinal data models.
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