
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Method and architecture design for motion compensated frame interpolation in high-
definition video processing

Permalink
https://escholarship.org/uc/item/3xz7x1jf

Author
Lee, Yen-Lin

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xz7x1jf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Method and Architecture Design for Motion Compensated Frame

Interpolation in High-Definition Video Processing

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Electronic Circuits and Systems)

by

Yen-Lin Lee

Committee in charge:

Professor Truong Nguyen, Chair
Professor Yoav Freund
Professor Rajesh Gupta
Professor William Hodgkiss
Professor Nuno Vasconcelos

2009

Copyright

Yen-Lin Lee, 2009

All rights reserved.

The dissertation of Yen-Lin Lee is approved, and

it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

To my family

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xii

Acknowledgements . xiii

Vita and Publications . xvi

Abstract of the Dissertation . xvi

1 Introduction . 1

2 Motion Compensated Frame Interpolation 5
2.1 Introduction of Motion Compensated Frame Interpolation 5
2.2 Acknowledgement . 9

3 The Proposed MCFI Method . 10
3.1 Proposed Processing Flow . 10
3.2 Proposed True Motion Search . 12

3.2.1 Bidirectional Search . 12
3.2.2 Multi-Directional Enlarged Matching Algorithm 14
3.2.3 One-pass Motion Selection with Multi-grids Classification . . 18
3.2.4 Temporal and Spatial Object Information 20
3.2.5 Sub-block Motion Assignment and Motion Refinement . . . 22

3.3 Frame Interpolation . 24
3.3.1 Frame Motion Skip . 24
3.3.2 Interpolation . 25
3.3.3 Deblocking Filter with Block Difference 26

3.4 Acknowledgement . 27

4 The Proposed MCFI Architecture . 28
4.1 System Architecture . 28
4.2 True Motion Engine . 30
4.3 Acknowledgement . 36

v

5 MCFI Implementation and Experimental Results 37
5.1 Implementation . 37
5.2 Performance Result . 39
5.3 Acknowledgement . 44

6 MCFI System Analysis . 50
6.1 Analysis of the Proposed MCFI System 50
6.2 Acknowledgement . 52

7 High Frame Rate Up Conversion Processing 53
7.1 High Frame Rate Technology . 53
7.2 Proposed High Frame Rate Processing 58
7.3 Proposed Architecture Design for High Frame Rate Processing . . . 63
7.4 Experimental Results . 65
7.5 Acknowledgement . 66

8 Conclusions . 73

A Analysis and Efficient Architecture Design for VC-1 Overlap Smoothing
and In-loop Deblocking Filter . 74
A.1 Introduction . 74
A.2 Deblocking Filters in VC-1 . 76

A.2.1 Overlap Smoothing . 76
A.2.2 In-loop Deblocking Filter . 77

A.3 Proposed Deblocking Processing Method in VC-1 78
A.3.1 Integrated Modified Processing Order 78
A.3.2 Pipeline Processing by Moving Macroblock Position 81
A.3.3 Single and Multiple Macroblock Processing Order 83
A.3.4 Modified Chrominance Processing Order 87

A.4 Proposed Deblocking Filter Architecture and Implementation in
VC-1 . 89

A.5 Experimental Results and Analysis for the Proposed VC-1 Deblock-
ing Filter . 94
A.5.1 Implementation and Performance 94
A.5.2 Resources Analysis . 96

A.6 Conclusions . 98

Bibliography . 100

vi

LIST OF FIGURES

Figure 1.1: Motion Compensated Frame Interpolation with block-based
motion search. 2

Figure 2.1: The difference between the eye tracking trajectory and the
actual displayed data with zero response time. (a) Original
frame rate. (b) Twice the original frame rate. 6

Figure 2.2: Two MCFI approaches. (a) Motion re-estimation method. (b)
Motion vector processing method. 6

Figure 3.1: Processing flow of the proposed method. 11
Figure 3.2: MCFI motion estimation method. (a) Unidirectional search.

(b) Proposed bidirectional search. 13
Figure 3.3: Nine-directional enlarged matching method. 15
Figure 3.4: Nine-directional enlarged matching method with type 4. 16
Figure 3.5: Direct multi-directional enlarged matching method (a) Match-

ing window and interpolated block in a previous frame t. (b)
Matching window and interpolated block in a successive frame
t+1. 17

Figure 3.6: Effective neighboring blocks for spatial information. 19
Figure 3.7: Multi-grids Classification in a searching window. 20
Figure 3.8: Multi-directional enlarged bidirectional search algorithm with

temporal information. 21
Figure 3.9: Motions on the previous frame and the current block motion

are employed on sub-block assignment. 24
Figure 3.10: Motion vector refining window 25
Figure 3.11: Two edges of the current interpolated block C are filtered. . . . 26

Figure 4.1: System block diagram of the proposed architecture. 29
Figure 4.2: Three levels of memory access for the proposed architecture. . 30
Figure 4.3: Block diagram of the proposed true motion engine. 31
Figure 4.4: Processing flow of the proposed true motion engine. 32
Figure 4.5: HD downsampling - drop all odd pixels in two dimensions. . . 32
Figure 4.6: Multi-level Successive Elimination Algorithm (MSEA). 33
Figure 4.7: MSEA searches four true motion candidates for each area. . . . 34
Figure 4.8: Architecture of the proposed MSEA engine. 34
Figure 4.9: (a) Searching order on an area for a previous frame t. (b)

Searching order on an area for a successive frame t+1. (c) Added
and eliminated areas when shifting a MSEA vector position. . . 35

Figure 4.10: Pipeline scheduling for the proposed architecture. 36

Figure 5.1: PSNR comparison 1 - CREW 1280×720 60fps 40

vii

Figure 5.2: PSNR comparison 2 - CITY 1280×720 60fps 40
Figure 5.3: Interpolated frame 185 in CREW (a) original frame, (b) bilinear

interpolation (21.2462 dB), (c) 3D Recursive Search (21.3463
dB), (d) Phase Plane Correlation (21.2293 dB dB), (e) proposed
method (21.3307 dB). 42

Figure 5.4: Zoom in for interpolated frame 185 in CREW (a) original frame,
(b) bilinear interpolation, (c) 3D Recursive Search, (d) Phase
Plane Correlation, (e) proposed method. 43

Figure 5.5: Interpolated frame 117 in CREW (a) original frame, (b) bilin-
ear interpolation, (34.287 dB) (c) 3D Recursive Search (37.756
dB), (d) Phase Plane Correlation (33.418 dB), (e) proposed
method (38.237 dB), (f) proposed method with sub mv assign-
ment (38.301 dB). 46

Figure 5.6: Zoom in for interpolated frame 117 in CREW (a) original frame,
(b) bilinear interpolation, (c) 3D Recursive Search, (d) Phase
Plane Correlation, (e) proposed method, (f) proposed method
with sub mv assignment. 46

Figure 5.7: Interpolated frame 2 in CITY (a) original frame, (b) bilinear
interpolation (27.1726 dB), (c) 3D Recursive Search (29.0897
dB), (d) Phase Plane Correlation (27.2179 dB), (e) proposed
method (35.9651 dB). 47

Figure 5.8: Zoom in for interpolated frame 2 in CITY (a) original frame,
(b) bilinear interpolation, (c) 3D Recursive Search, (d) Phase
Plane Correlation, (e) proposed method. 47

Figure 5.9: Interpolated frame 267 in PRODUCERS (a) bilinear interpo-
lation, (b) 3D Recursive Search, (c) Phase Plane Correlation,
(d) proposed method. 48

Figure 5.10: Zoom in for interpolated frame 267 in PRODUCERS (a) bi-
linear interpolation, (b) 3D Recursive Search, (c) Phase Plane
Correlation, (d) proposed method. 48

Figure 5.11: Interpolated frame 353 in FLIGHT (a) bilinear interpolation,
(b) 3D Recursive Search, (c) Phase Plane Correlation, (d) pro-
posed method. 49

Figure 5.12: Zoom in for interpolated frame 353 in FLIGHT (a) bilinear
interpolation, (b) 3D Recursive Search, (c) Phase Plane Corre-
lation, (d) proposed method. 49

Figure 7.1: An example of 4x Frame Rate Up Conversion. 54
Figure 7.2: Two methods to achieve 4x Frame Rate Up Conversion. (a)

Pure MEMC method. (b) MEMC method with backlight scan-
ning. 55

viii

Figure 7.3: MEMC method with motion trajectory to achieve 4x Frame
Rate Up Conversion. 56

Figure 7.4: MEMC method with motion trajectory to achieve 4x Frame
Rate Up Conversion. 57

Figure 7.5: Processing flow of the proposed method on 4x Frame Rate Up
Conversion. 59

Figure 7.6: Proposed MEMC method with motion refinement to achieve
4x Frame Rate Up Conversion. 60

Figure 7.7: Proposed MEMC method with motion refinement to achieve
4x frame rate up conversion. 61

Figure 7.8: (a) Normal true motion vector search. (b) Relative true motion
vector search. 63

Figure 7.9: System block diagram of the proposed 4x MCFI architecture. . 64
Figure 7.10: Block diagram of the proposed 4x true motion engine. 65
Figure 7.11: The proposed 4x MCFI Processing in FLIGHT (a) original

frame 924, (b) 4x interpolated frame 925, (c) 2x interpolated
frame 926, (d) 4x interpolated frame 927, (e) original frame 928. 68

Figure 7.12: Zoom in on the proposed 4x MCFI Processing in FLIGHT (a)
original frame 924, (b) 4x interpolated frame 925, (c) 2x inter-
polated frame 926, (d) 4x interpolated frame 927, (e) original
frame 928. 68

Figure 7.13: The proposed 4x MCFI Processing in PRODUCERS (a) origi-
nal frame 400, (b) 4x interpolated frame 401, (c) 2x interpolated
frame 402, (d) 4x interpolated frame 403, (e) original frame 404. 69

Figure 7.14: Zoom in on the proposed 4x MCFI Processing in PRODUC-
ERS (a) original frame 400, (b) 4x interpolated frame 401, (c)
2x interpolated frame 402, (d) 4x interpolated frame 403, (e)
original frame 404. 69

Figure 7.15: The proposed 4x MCFI Processing in CAMCUT (a) original
frame 132, (b) 4x interpolated frame 133, (c) 2x interpolated
frame 134, (d) 4x interpolated frame 135, (e) original frame 136. 70

Figure 7.16: Zoom in on the proposed 4x MCFI Processing in CAMCUT
(a) original frame 132, (b) 4x interpolated frame 133, (c) 2x in-
terpolated frame 134, (d) 4x interpolated frame 135, (e) original
frame 136. 70

Figure 7.17: The proposed 4x MCFI Processing in STATE (a) original frame
1580, (b) 4x interpolated frame 1581, (c) 2x interpolated frame
1582, (d) 4x interpolated frame 1583, (e) original frame 1584. . 71

Figure 7.18: Zoom in the proposed 4x MCFI Processing in STATE (a) orig-
inal frame 1580, (b) 4x interpolated frame 1581, (c) 2x interpo-
lated frame 1582, (d) 4x interpolated frame 1583, (e) original
frame 1584. 71

ix

Figure 7.19: 4x MCFI comparisons with incorrect motions and image aver-
aging in STATE (a) 4x interpolated frame 1581 with incorrect
motions, (b) 2x interpolated frame 1582 with incorrect motions,
(c) 4x interpolated frame 1583 with incorrect motions, (d) 4x in-
terpolated frame 1581 with averaging, (e) 2x interpolated frame
1582 with averaging, (f) 4x interpolated frame 1583 with aver-
aging. 72

Figure 7.20: Zoom in on the 4x MCFI comparisons in STATE (a) 4x inter-
polated frame 1581 with incorrect motions, (b) 2x interpolated
frame 1582 with incorrect motions, (c) 4x interpolated frame
1583 with incorrect motions, (d) 4x interpolated frame 1581
with averaging, (e) 2x interpolated frame 1582 with averaging,
(f) 4x interpolated frame 1583 with averaging. 72

Figure A.1: Encoding loop of VC-1 codec. 75
Figure A.2: All filtered edges relative to the luma data of a macroblock. . . 78
Figure A.3: A 12×12 overlapped block. The bold square defines an 8×8

block (luma or color-difference block) within a macroblock. . . . 79
Figure A.4: Fundamental processing order. (a) Overlap smooth process-

ing order applied to an overlapped block. (b) Deblocking filter
processing order applied to an overlapped block. 80

Figure A.5: Simple processing flow of an overlapped block. 80
Figure A.6: 8×8 edges within a reconstructed macroblock. For overlap

smoothing, edges a, b, c, and d should be filtered prior to edge
f. For in-loop filtering, edges e, f, g, and h should be filtered
prior to edge b. 81

Figure A.7: (a) A current reconstructed macroblock. (b) A moving filtered
macroblock with the current macroblock. (c) All 4×4 input
blocks for a moving filtered macroblock. (d) Four separated
overlapped blocks from the filtered macroblock. 82

Figure A.8: (a) Data processing flow of a frame or slice. (b) Pipeline time
schedule of a reconstructed macroblock and a filtering macroblock. 84

Figure A.9: (a) Single macroblock processing order. (b) Dual macroblock
processing order. 86

Figure A.10:Data processing for a reconstructed macroblock and a filtered
macroblock. 86

Figure A.11: Separated data processing flow for a picture or slice. 87
Figure A.12:Y-analogous data procedure for chroma data. 89
Figure A.13:Block diagram of the proposed integrated architecture. 90
Figure A.14:Three hierarchical levels of memory access. 91

x

Figure A.15: (a) Nine 4×4 blocks within an overlapped block. Every filtered
edge is the boundary between a gray 4×4 block and a white
4×4 block. (b) Two groups of memory structure. Filtering of
an edge must obtain 4-pixels or 2-pixels data from each group.
(c) Normal pixel mapping within a 4×4 block. (d) Rotated
pixel mapping within a 4×4 block. (e) Proposed memory struc-
ture for an overlapped block including four 20×11bits and four
16×11bits memory structures. 92

Figure A.16:Data flow of the Proposed Integrated Filter. 93
Figure A.17:Comparison about the requirement of memory bandwidth to

the external memory. 98
Figure A.18:Comparison about the SRAM requirement (Temporal Data

Buffer). 99

xi

LIST OF TABLES

Table 5.1: Front-end Hardware Cost of the Proposed True Motion Engine
with TSMC 90-nm Technology 38

Table 5.2: On-chip Memory Buffer Size of the Proposed Architecture for a
1080p video . 38

Table 5.3: Processing Time of the Proposed Architecture 38
Table 5.4: External Memory Bandwidth Requirement for the Proposed Ar-

chitecture . 39
Table 5.5: Performance Comparison - PSNR 39
Table 5.6: Results of the perceptual experiment 45

Table 6.1: System Computation . 50
Table 6.2: Search Strategy Comparison . 51
Table 6.3: Module Performance Comparison 52

Table A.1: Front-end hardware cost of the proposed VC-1 filter architecture
with TSMC 90-nm multi-Vt technology 94

Table A.2: Processing time of the proposed VC-1 filter architecture 95
Table A.3: Comparison with Different H.264/AVC Deblocking Architectures

(The gate count excludes the local memory.) 96
Table A.4: Analysis of external memory bandwidth for a worst-case 1080p

4:2:0 P-frame (without Overlap Smoothing) 97
Table A.5: Analysis of external memory bandwidth for a worst-case 1080p

4:2:0 I-frame (Overlap Smoothing and In-loop Filtering) 97

xii

ACKNOWLEDGEMENTS

The pursuit of a PhD education has been my memorable and challenging

stage in my life. Without so much help, advice, and support from many people, I

can hardly complete my PhD degree. I would like to acknowledge these important

persons in my life.

First and foremost, I offer my sincerest gratitude to my advisor, Prof.

Truong Nguyen, for his carefully considered advice, patience and inspirational

enthusiasm for this research. I consider myself very fortunate to have studied at

the Video Processing Laboratory and work with many brilliant people. I have

a great deal of thanks to Prof. Truong Nguyen and his continuing support and

encouragement to help me get through my most difficult times in research.

I would also like to thank my committee members, Prof. William Hodgkiss,

Prof. Yoav Freund, Prof. Nuno Vasconcelos, and Prof. Rajesh Gupta, for provid-

ing me with valuable advice and comments to accomplish this work.

I wish to extend my appreciation to my nice and helpful labmates at the

University of California, San Diego, for their companionship during these days

spent at the lab, and for contributing to a friendly and motivational working

environment. I would like to especially thank Natan Jacobson, Meng-Ping Kao,

Wei-Hsin Chang, Shay Har-noy, Dung Vo, Carson Pun, Ai-Mei Huang, Jack Tzeng,

Stanely Chan, and Nickolaus Mueller.

I owe a great deal of thanks to my parents, Chien-Erh Lee and Yueh-Chao

Lee Hsu, my sisters, Patty Li and Yihsuan Lee, and my brother, Yen-Chi Lee,

for encouraging me to set higher career goals and for showing endless love and

support. I would also like to take this opportunity to acknowledge all my friends

who always give me enormous support and encouragement.

Portions of Chapter 2 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009. The dissertation author was the pri-

mary author of these publications, and the listed co-author directed and supervised

the research that forms the basis for this chapter.

xiii

Portions of Chapter 3 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

Portions of Chapter 3 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

Portions of Chapter 4 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

Portions of Chapter 5 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

xiv

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009; “Novel Method and Architecture Design for Motion

Compensated Frame Interpolation in High-Definition Video Processing,” Yen-Lin

Lee and Truong Nguyen, revised to IEEE Trans. on Circuits and Systems for

Video Technology, 2009. The dissertation author was the primary author of these

publications, and the listed co-author directed and supervised the research that

forms the basis for this chapter.

Portions of Chapter 6 appear in “Novel Method and Architecture Design for

Motion Compensated Frame Interpolation in High-Definition Video Processing,”

Yen-Lin Lee and Truong Nguyen, revised to IEEE Trans. on Circuits and Systems

for Video Technology, 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

Portions of Chapter 7 appear in “High Frame Rate Motion Compensated

Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and Truong

Nguyen, submitted to IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), March 2010. The dissertation author was the primary

author of these publications, and the listed co-author directed and supervised the

research that forms the basis for this chapter.

xv

VITA

1999 B. S., Electrical and Control Engineering, National
Chiao Tung University, Hsinchu, Taiwan

2001 M. S., Electrical and Control Engineering, National
Chiao Tung University, Hsinchu, Taiwan

2009 Ph. D, Electrical and Computer Engineering, Univer-
sity of California, San Diego

PUBLICATIONS

Yen-Lin Lee and T. Nguyen, “High Frame Rate Motion Compensated Frame Inter-
polation in High-Definition Video Processing,” submitted to IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2010.

Yen-Lin Lee and T. Nguyen, “Fast One-pass Motion Compensated Frame Inter-
polation in High-Definition Video Processing,” accepted in IEEE International
Conference on Image Processing (ICIP), Nov. 2009.

Yen-Lin Lee and T. Nguyen, “Method and Architecture Design for Motion Com-
pensated Frame Interpolation in High-Definition Video Processing,” IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pp. 1633-1636, May 2009.

Yen-Lin Lee and T. Nguyen, “Novel Method and Architecture Design for Motion
Compensated Frame Interpolation in High-Definition Video Processing,” revised
to IEEE Trans. on Circuits and Systems for Video Technology.

Yen-Lin Lee and T. Nguyen, “Analysis and Efficient Architecture Design for VC-1
Overlap Smoothing and In-loop Deblocking Filter,” IEEE Trans. on Circuits and
Systems for Video Technology, Vol. 18, pp. 1786-1796, Dec. 2008.

Yen-Lin Lee and T. Nguyen, “Analysis and Integrated Architecture Design for
Overlap Smooth and In-loop Deblocking Filter in VC-1,” IEEE International Con-
ference on Image Processing (ICIP), pp. V161-V172, Sept. 2007.

xvi

ABSTRACT OF THE DISSERTATION

Method and Architecture Design for Motion Compensated Frame

Interpolation in High-Definition Video Processing

by

Yen-Lin Lee

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems)

University of California San Diego, 2009

Professor Truong Nguyen, Chair

Digital displays such as Liquid Crystal Display (LCD) and plasma display

televisions have become prevalent in recent years. Sports broadcasting and movies

are two prime factors responsible for this popularity. However, motion blur and

judder appear as objects move rapidly or color dramatically changes on a wide

range of LCD devices because of slow response time and sample-and-hold drive

nature. Frame Rate Up Conversion (FRUC) is a well-studied method that is used

to minimize these detrimental effects.

A novel, fast, and efficient method with a well-designed architecture is pro-

posed for Motion Compensated Frame Interpolation (MCFI) or Frame Rate Up

Conversion. Unlike previous works involving high complexity, time-consuming it-

erations, and higher complex architecture, the proposed method adopts a one-pass,

low-complexity approach without any iteration and is capable of dealing with High

Definition (HD) video processing. Rather than a conventional motion estimation

in MCFI, our method employs a unique true motion engine that explores at most

nine motion candidates with different motion directions and then determines one

true motion by referring to neighboring spatial and temporal information.

For the purpose of motion estimation, the proposed method introduces an

adaptive overlapped block matching algorithm known as the Multi-Directional En-

larged Matching Algorithm (MDEMA), and considers different overlapped types

xvii

based on the direction of the current motion vector in order to enhance searching

accuracy and visual quality. For practical issues and real-time HD requirements,

the proposed architecture employs a modified Multi-level Successive Eliminate Al-

gorithm (MSEA), which is a Fast Full-Search Block Matching Algorithm (FFS-

BMA) and has the ability to reduce the heavy computation of full search while

maintaining similar quality. According to analyzed temporal information, our

method explores true motion candidates and refines the accuracy of true motions

for blocks or sub-blocks. Experimental results show that the proposed algorithm

provides better video quality than conventional methods and demonstrates excel-

lent performance for 30fps HD1080p video (1920×1080 resolution) at 180MHz or

30fps 720p video (1280×720) at 83MHz.

xviii

1 Introduction

Digital displays, such as LCD and plasma, have become widely prevalent

in recent years. Sports and movies have been prime factors in the popularity of

large screen displays. Unfortunately, artifacts such as motion blur and judder

appear due to rapid object motion or dramatic change in color on a wide range

of LCD devices. These issues result from slow response time and sample-and-

hold drive nature. Frame Rate Up Conversion (FRUC) is a well-studied method

that is used to eliminate or reduce a device’s physical disadvantages by inserting

interpolated frames between any two successive original frames. Another practical

application of FRUC is to enhance the reconstructed quality of a low bit rate

decoded video as channel bandwidth is limited. Some conventional FRUC methods

with low complexity, such as frame repetition and linear frame interpolation [1],

yield blurred objects because these methods do not take motion information into

account.

Motion Compensated Frame Interpolation (MCFI) [2][3][4] has been widely

studied to enhance the quality of reconstructed video. This method explores block

motions of the interpolated frames by processing using motion re-estimation or

the received motion vectors from an encoded bitstream. MCFI can effectively

reduce motion blur and improve visual quality by increasing the frame rate when it

acquires true motion information. However, MCFI which directly processes motion

vectors from a video encoder may suffer from blocking and ghost artifacts. This

is because the encoder seeks to minimize prediction error rather than determining

true motion. For this reason, many researchers have started to work on methods

to accurately estimate true motion by considering spatial and temporal correlation

1

2

and searching with a Block Matching Algorithm (BMA) [5]. Fig. 1.1 shows an

example for block-based MCFI.

Frame t Frame t+1Frame t+1/2

mv

Figure 1.1: Motion Compensated Frame Interpolation with block-based motion
search.

In the past ten years, numerous methods have been proposed to deter-

mine true motion. However, these methods involve complex computation, com-

plicated time-consuming iterations, and are difficult to implement for real-time

High-Definition (HD) videos. Considering these drawbacks, the proposed method

and architecture adopts a one-pass, low-complexity design without any repeated

iteration and is developed with consideration for fast hardware implementation for

HD video processing. In addition, the proposed approach has no restriction on

video compression format due to a low complexity motion re-estimation. The pro-

posed method is composed of bidirectional estimation, Multi-Directional Enlarge

Matching Algorithm, one-pass motion vector selection with multi-grids classifi-

cation, temporal/spatial object information and localized global motion vectors,

Motion Compensated Frame Interpolation, and deblock filtering.

For practical issues and the real-time HD requirement, the proposed archi-

tecture is designed with a true motion engine that employs a modified Multi-level

Successive Eliminate Algorithm (MSEA) [9], Probable Sum of Absolute Differ-

ence (PSAD), true motion selection, and a refinement of motion vector processing.

MSEA is a Fast Full-Search Block Matching Algorithm (FFSBMA) [10] for mo-

3

tion estimation following a Successive Elimination Algorithm (SEA) [11], which has

gained popularity for the ability to reduce the heavy computation of Full-Search

Block Matching Algorithm (FSBMA) [12] while maintaining similar quality. Al-

though MSEA has initially been developed for video compression, the proposed

architecture introduces and modifies this technique to enhance the accuracy of

true motion search and reach a balance between complexity and performance.

In order to have a better understanding of Motion Compensated Frame

Interpolation and the platform it operates on, we start the dissertation with an

introduction to MCFI in Chapter 2. MCFI is a popular approach to generate

interpolated frames which considers motion information in an attempt to reduce

motion judder and blur effects. Conventional MCFI methods are also discussed

in this chapter with illustrations on the techniques that improve visual quality for

Frame Rate Up Conversion.

In Chapter 3, a dedicated processing method is proposed, which adopts

one-pass and low-complexity design without need for iteration. The proposed

techniques are developed based on a motion re-estimation in order to obtain ac-

curate true motion, which has no restriction on specific video compression format.

The methods and techniques adopted in our proposed MCFI are presented in this

chapter.

In order to reduce the computational complexity, the proposed architecture

first introduces a fast full search method, Multi-level Successive Elimination Algo-

rithm (MSEA) in Chapter 4. In this chapter, a practical architecture is proposed

to implement all methods proposed in Chapter 3. The proposed architecture has

the capability to deal with Frame Rate Up Conversion for a 1080p sequence up to

60fps.

In Chapter 5, the performance of our proposed method and architectural

design are examined. To verify the accuracy and the efficiency for the proposed

method and architecture, the architecture is designed in VHDL (VHSIC (Very High

Speed Integrated Circuits) Hardware Description Language) and implemented with

TSMC (Taiwan Semiconductor Manufacturing Company Limited) 90-nm technol-

ogy. The implemented architecture operates with our VHDL and MATLAB im-

4

plementation, and the result has been verified with our prototype in MATLAB.

In addition to architecture implementation, PSNR tests are used to compare the

performance of different MCFI methods including the proposed methods and con-

ventional methods. We test visual quality by conducting subjective tests with

human observers. The results demonstrate that the proposed method has better

visual quality than conventional methods.

In Chapter 6, each technique of the aforementioned methods will be sepa-

rately discussed via system analysis and profiling. In this chapter, we will examine

each component’s contribution and process loading in the proposed MCFI design.

Due to the widespread popularity of digital displays, more and more high quality

LCD devices with high frame rate have emerged in the market. However, cur-

rent video sources, media storage, and decoding power are limited to 30- or 60-fps

and make it impossible to transmit a 120- or 240-fps High Definition (HD) com-

pressed video bitstream. Hence, the method for high Frame Rate Conversion will

be proposed in Chapter 7. Finally, the conclusions will be summarized in Chapter

8.

2 Motion Compensated Frame

Interpolation

2.1 Introduction of Motion Compensated Frame

Interpolation

Motion blur occurs because of a disparity between Human eye tracking and

the actual displayed data [13]. Fig. 2.1(a) depicts the case of an object moving in

a horizontal direction at a constant velocity on an LCD with zero response time.

Variable x denotes position and t shows frame time. Eye tracking causes Human

observers to form a target trajectory for the object. However, due to the sample-

and-hold characteristics of the LCD, the output at each pixel is held constant for

the entire frame period. The difference between the eye tracking trajectory and

the actual displayed data corresponds to the motion blur perceived by the human

observer. Fig. 2.1(b) shows the case of reducing motion blur if data sample rate

increases.

In contrast to conventional methods that linearly average [1] or temporally

filter two or more successive frames, Motion Compensated Frame Interpolation

(MCFI) is a popular approach to generate interpolated frames for a Frame Rate

Up Conversion (FRUC) with higher quality and accuracy. MCFI considers motion

information to reduce motion judder and blur effects. Although MCFI can enhance

visual quality, it may still suffer from blockiness and ghost effects due to a failure

of finding true motions. Contemporary proposals and methods in MCFI can be

classified into two categories: motion re-estimation method and motion vector

5

6

x

t

Motion Blur

Object moving at a

constant velocity

x

t

Object moving at a

constant velocity

Smaller Motion Blur

(a) (b)

Figure 2.1: The difference between the eye tracking trajectory and the actual
displayed data with zero response time. (a) Original frame rate. (b) Twice the
original frame rate.

processing method. Fig. 2.2 shows block diagrams for these two approaches.

Motion Vector

Assignment

Motion Vector

Re-estimation

Decoded Frames Interpolated Frames

DecoderBitstream + Up-converted Video

Motion

Compensated

Interpolation

Decoded Frames

(a)

Motion Vector

Assignment

Decoded Frames Interpolated Frames

DecoderBitstream + Up-converted Video

Motion

Compensated

Interpolation

Decoded Frames

(b)

Figure 2.2: Two MCFI approaches. (a) Motion re-estimation method. (b) Motion
vector processing method.

The motion re-estimation method in Fig. 2.2(a) is typically used for appli-

cations which demand high quality or multi-standard support. It is because it takes

decoded frames from the decoder, and it is independent of the codec used. The

disadvantage is the need to implement a motion estimator, which greatly increases

computational complexity and memory bandwidth. In addition, lossy compressed

7

frames also increase the difficulty of true motion search. The concept of the motion

vector processing method in Fig. 2.2(b) is to extract the motion vectors from the

decoder and process this Motion Vector Field (MVF) so as to assign a true motion

for each block. Although this method has lower complexity, the quality strongly

depends on performance of an encoder’s searching algorithm because block-based

motion estimation at the encoder minimizes prediction errors rather than finding

true motions. In other words, an unfavorable encoding may ruin the true motion

vector field and create challenges in motion vector processing method. Here, we

briefly review previous works.

In 1989, Soryani et al. proposed an approach [6] to coding of moving se-

quences that combines image segmentation with adaptive thresholding based on

a priori knowledge about the scene and motion-adaptive frame interpolation tech-

niques. 3-D Recursive Search (3DRS) [5] enhances video information evaluates

candidate vectors of enhancement algorithms utilizing an error function biased

towards spatio-temporal consistency with a penalty function. Another tempo-

ral frame interpolation technique is presented in [7], based on an object-based

algorithm for 3-D motion estimation. This algorithm uses a joint estimation-

segmentation scheme to minimize the displaced frame difference between a frame

and its motion compensated prediction from the previous frame. The main nov-

elty of the proposed method in [8] is the motion compensation algorithm which

has been designed with low computational complexity as an important criterion.

In [14], Chen proposed an adaptive temporal interpolation method with both for-

ward and backward estimation conducted with a correction constraint. In [15],

the method based on a pyramid structure and the motion compensation process is

performed independently at each resolution level. A technique similar to Control

Grid Interpolation (CGI) is employed to process hole regions generated at the top

level of the pyramid.

Subsequently, a novel method that adopts Overlapped Block-based Motion

Estimation (OBME) was proposed by Ha et al. in [16] to obtain higher accuracy

motion trajectory. From the approach in [17], the motion vector from Phase Plane

Correlarion (PPC) method is used that assigns multiple motion vectors to a block

8

thus achieving the result of object based approaches with much fewer operation

counts. A method that examines the motion vectors by bi-directional motion esti-

mation was proposed in [18] to remove and correct unreliable motion vectors from

the bitstream. Kuo et al. proposed two add-on schemes to enhance a Fast Block-

based Motion-Compensated Frame Interpolation (FMCI) [19] in their research.

These are the Adaptive Frame Skip (AFS) scheme applied at the H.263 [20] en-

coder and the Hybrid Frame Interpolation (HFI) scheme which incorporates both

frame repetition and FMCI at the decoder. Fujiwara et al. presented a technique

[21] based on different block sizes in order to realize the clear interpolation of mov-

ing objects regardless of the object’s size. Perspective transforms were introduced

in [22] to reduce blocking artifacts in boundary blocks. A motion vector processing

method was proposed by Dane et al. in [23] when an optimal temporal filter was

obtained by minimizing the prediction error variance between original frame and

interpolated frame. In [24], Choi et al. partitioned a frame into several object

regions by clustering motion vectors and applied the Variable-Size Block Motion

Compensation (VS-BMC) and Adaptive Overlapped Block Motion Compensation

(AOBMC) to remove the limitations of conventional OBMC.

Yang et al. developed new criteria and coding scheme and adopted adap-

tive frame skip to guarantee the quality of interpolation [25]. A low complexity

Motion Compensated Frame Interpolation method using compressed-domain in-

formation based on an H.264 decoder is presented in [26]. In this proposed method,

the motion vectors are estimated using the constant acceleration motion model,

and the interpolation algorithm is applied based on the macroblock coded types.

Huang et al. proposed a motion vector processing algorithm that considers the

reliability of motion vectors by analyzing the distribution of residual energies and

merging blocks [27]. Yang et al. proposed to select the parameters and thresholds

by analysing the statistical characterization of motion vectors and residual en-

ergy, thus thresholds can be changed adaptively during the decoding process [28].

The selected moving objects on each decoded frames, are meshed from quadri-

lateral blocks which are then deformed using specific warping functions in [29].

The meshed objects are reconstructed to the predicted nodes and integrated in

9

the H.264/AVC video coding standard. [31] addresses the problems of unreliable

motion vectors that cause visual artifacts but cannot be detected by high residual

energy or bidirectional prediction difference in motion-compensated frame inter-

polation. Song et al. use three frames to provide an algorithm in [30] to detect

the occlusion area and differentiate the covering/uncovering area for Motion Com-

pensated Frame Interpolation. This method aims at reducing artifact in occlusion

areas. A correlation-based motion vector processing method is proposed in [31] to

detect and correct those unreliable motion vectors by explicitly considering mo-

tion vector correlation in the motion vector reliability classification, motion vector

correction, and frame interpolation stages.

Although there are many well-developed proposals on MCFI and FRUC,

computational complexity is still a serious problem for a real-time processing to

cope with the HD requirements due to multi-stage processing and complex search-

ing procedures. Hence, we propose a novel, fast, and hardware-friendly method and

its architecture design. The techniques of the proposed method will be discussed

in the following chapters.

2.2 Acknowledgement

Portions of Chapter 2 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009. The dissertation author was the pri-

mary author of these publications, and the listed co-author directed and supervised

the research that forms the basis for this chapter.

3 The Proposed MCFI Method

As mentioned in Chapter 2, although many methods have been proposed

to deal with the processing for temporal frame interpolation, they involve complex

computation, time-consuming iterations, and are difficult to implement for real-

time high definition systems. In this chapter, one dedicated processing method

is proposed, which adopts one-pass and low-complexity design without repeated

iteration. The proposed techniques are developed based on motion re-estimation

in order to obtain accurate true motion with no restriction to specific video com-

pression format.

3.1 Proposed Processing Flow

The proposed scheme adopts a motion-compensated approach to insert one

or several interpolated frames between any two contiguous original frames. Ac-

cordingly, determining a true motion is the primary and most essential step to

generate interpolated frames. Fig. 3.1 shows the entire processing flow of the

proposed method including a true motion engine.

The entire processing procedure is composed of three major parts: a true

motion engine, a block-based interpolator, and a deblocking filter. The true mo-

tion engine takes charge of motion estimation and true motion decision, and it

also outputs true motion vectors to the block-based interpolator. The block-based

interpolator obtains motion information and performs a motion compensated pro-

cedure with weighted values. At last, a deblocking filter smoothes the blocking

artifacts where a neighboring or current interpolated block with a large Sum of

10

11

Downsampling

(For HD)

(For Non-HD)

Bidirectional

MV Searching

Multi-directional

Enlarged

Matching

Border MV

Searching
Motion Vector

Field Collecting
Multi-grid MV

Classifying

True Motion Selecting

Motion Vector Refining and

Sub-block MVs Assigning

Block-based Interpolating

Deblock Filtering

(For Non-HD)

Temporal

Information

Generating

Spatial

Information

Generating

Original

Frames

True Motion Engine

Interpolated

Frames

Frame Skipping

Figure 3.1: Processing flow of the proposed method.

Absolute Difference (SAD) shows up.

The purpose of the true motion engine is to assign a true motion vector for

each individual block or sub-block, and this engine searches the motion with differ-

ent processing steps. In our proposed method, a simple down-sampling procedure

is performed to reduce computation when input images are of HD resolution, such

as HD1080p or HD720p. If this down-sampling procedure is activated, a refinement

is executed to increase accuracy for true motion vectors. Other functions include:

bidirectional motion vector searching, multi-directional enlarged matching, bor-

der motion vector searching, and multi-grids motion vector classification. Most of

these techniques refer to spatial and temporal information to acquire motion can-

didates for the purpose of true motion selection. The true motion selector chooses

the best motion vector for compensation according to pre-defined conditions and

neighboring and global motion information. After the true motion engine deter-

mines the true motions, a block-based interpolator generates each block image for

an entire interpolated frame, and then a deblocking filter reduces blocking artifacts

with a simple filtering operation before outputting the upconverted frames. Simi-

lar to the method in [25], the proposed method also introduces a skipping method

to skip some difficult situations when the proposed method cannot generate good

quality interpolated frames, especially for large moving motions, scene changes,

and dramatic color changes.

12

3.2 Proposed True Motion Search

In this section, a dedicated true motion processing method is proposed,

which adopts one-pass and low-complexity design without any repeated iteration.

The proposed techniques are developed based on motion re-estimation in order to

obtain accurate true motions, which has no restriction on specific video compres-

sion formats.

3.2.1 Bidirectional Search

For acquiring an accurate true motion, we employ motion re-estimation

with bidirectional search on reconstructed frames from a decoder rather than pro-

cessing and correcting a motion vector field extracted from a compressed bitstream.

Naturally, a method without motion re-estimation should have lower complexity,

but it is difficult to find true motions when the motion vector field is inaccurate

and irregular. Furthermore, repeated iterations increase computation on high-

definition video with high frame rate, such as 30fps or more. Fig. 3.2(a) shows

a unidirectional searching method that is based on a block at the same location

on the previous or subsequent frame and moves the motion vector along the tra-

jectory. This is simple and compatible to any conventional encoder, but it might

result in an inaccuracy as motions are inconsistent. Fig. 3.2(b) shows the proposed

method using a bidirectional search. The proposed bi-directional search directly

seeks two similar blocks from a zero distance of the interpolated block. mv f and

mv b represent a forward motion and a backward motion respectively. For up-

conversion ratios other than 2, mv f and mv b can be different distances to allow

for interpolation of an arbitrary frame rate.

Two adjacent frames are denoted by f(x,t) and f(x,t+1), where x and t are

spatial and time domain indices. In the case that the up-conversion rate equals

two, a motion vector,
−→
V , of an N×N interpolated block is formulated by

−→
V = arg min

−→v ∈S

∑

x∈B

|f(x −−→v , t) − f(x + −→v , t + 1)| (3.1)

13

Original

Frame t

Interpolated

Frame t+1/2

Original

Frame t+1

mv

- ½ mv

½ mv

N

N

N

N

N

N

(a)

Original

Frame t

Interpolated

Frame t+1/2

Original

Frame t+1

mv_f

mv_b

M

M

M

M

N

N

(b)

Figure 3.2: MCFI motion estimation method. (a) Unidirectional search. (b)
Proposed bidirectional search.

where B denotes a matching M×M block of the current interpolated position; S

is a set of motion vectors in our search range; −→v is the motion vector examined

for the best matching. The interpolated block size of N×N is different than the

matching block size of M×M for searching more accurate true motion where M is

equal or larger than N. The concept of the proposed method is based on searching

for the minimum SAD value using a Block Matching Algorithm. The proposed ar-

chitecture also applies in adaptive overlapped block motion estimation algorithm,

Multi-Directional Enlarged Matching Algorithm (MDEMA), to enhance the accu-

racy of true motion search and lower the presence of visual blurred artifacts. From

our experiments, the engine using bidirectional search achieves better performance

and botains a more precise motion vector field than unidirectional search.

14

3.2.2 Multi-Directional Enlarged Matching Algorithm

For searching motion candidates and true motion, the proposed method de-

fines different block sizes for the interpolated block and the matching block. The

current interpolated block size is defined by N×N pixels, and the matching block

size is defined as M×M pixels. Compared to the conventional block matching

method, larger matching block size improves the accuracy of true motion search

because a larger part of a particular object is considered. However, it might lose

some details surrounding the moving object. Based on our experiments, the results

reveal that using smaller matching size is worse and often obtains the wrong mo-

tion with a smaller pixel difference instead of a true motion, especially for blocks

with little texture. Therefore, how to take advantage of a larger block matching

size to search a true motion for an interpolated block is a required topic. Al-

though previous works employ an overlapped block searching method as well, the

proposed method introduces a novel enlarged matching method, MDEMA. There

are two searching modes for the MDEMA: (1) nine-directional enlarged matching

and (2) direct multi-directional enlarged matching. The former is used with the

MSEA engine to roughly search motion candidates. The MSEA is a fast full-search

method, which will be further explained in the next chapter. The latter is used

with the PSAD engine to exactly determine a motion vector for each divided search

window from the proposed multi-grids classification, which defines nine different

partitioned windows for motion candidates. The PSAD will also be explained in

the next chapter. Here, we describe the operation of MDEMA.

In accordance with different motion directions, nine types of enlarged match-

ing directions are defined and shown in Fig. 3.3. Small squares in the figure depict

N×N block size, and this area will be used for interpolation as we find the most

suitable true motion vector by matching with a block size of M×M. The proposed

method determines the type by referring to the current motion vector and the

distance from the position with zero motion. For example, consider the case with

slow motion. When the current searching motion is small and near the zero mo-

tion, the approach chooses type 1 to enlarge the matching block. If the current

searching motion goes to the top left side, the proposed approach chooses type

15

Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Type 7 Type 8 Type 9

Interpolated

Block

(NxN)

Matching Block (MxM) Matching Block (MxM)Matching Block (MxM)

Matching Block (MxM) Matching Block (MxM)Matching Block (MxM)

Matching Block (MxM) Matching Block (MxM)Matching Block (MxM)

Interpolated

Block

(NxN)

Interpolated

Block

(NxN)

Interpolated

Block

(NxN)
Interpolated

Block

(NxN)

Interpolated

Block

(NxN)

Interpolated

Block

(NxN)

Interpolated

Block

(NxN)

Interpolated

Block

(NxN)

Figure 3.3: Nine-directional enlarged matching method.

2 to enlarge the matching block. If the current searching motion goes to upper

side, the proposed approach chooses type 3 to enlarge the matching block, and so

on. The reason for using different enlarged directions is to keep the completeness

of the front edge of the moving object. From our observation, viewers are more

sensitive to the artifacts and fractures of the moving object’s front edge. Due to

the visual quality, we aim to keep the front edge of the moving object intact by

utilizing these enlarged matching types.

When generating and inserting a new frame between original frame t and

t+1, the proposed method processes the frame in raster scan order based on an in-

terpolated block size, N×N. For each N×N interpolated block, motion candidates

16

are found by using bidirectional search mentioned above. These motion candidates

will be immediately examined with motion information of neighboring blocks with-

out iterations, which is called one-pass processing in the proposed method. In most

situations, we choose a motion vector with surrounding consistent motion as true

motion rather than with the minimal MSEA or PSAD (these techniques will be

discussed in a later chapter). Take type 4 for example, as shown in Fig. 3.4. When

processing the N×N interpolated block C, the M×M matching block O1 of frame

t and the M×M matching block O2 are our best matching pair. The interpolated

block would be a weighted average of these two blocks.

Original

Frame t

Original

Frame t+1

Best Match

Interpolation

M

M N

N N

N

M

M N

N

Current Interpolated Frame

C

O1

O2

O1 O2

Figure 3.4: Nine-directional enlarged matching method with type 4.

The other multi-directional mode is the direct multi-directional enlarged

matching method. Nine-directional enlarged matching method is derived from

direct multi-directional enlarged matching method for fast computation and im-

plementation during processing. Direct multi-directional enlarged method, shown

in Fig. 3.5, adopts a more precise enlarged range and considers exact direction

and magnitude of motion candidates. Because the MSEA engine already performs

17

a full search and then obtains several motion candidates for the PSAD, direct en-

larged matching method is not applied on every motion vector within the entire

searching window. There are four motion candidates for each divided searching

window and thirty-six motion candidates for an entire searching window in the

proposed implementation.

M

M

P_c(t) = (cur_x, cur_y)

P_ilu(t) = (cur_x+mv_x, cur_y+mv_y)

P_mlu(t)

N

N

P_mru(t)

P_mld(t) P_mrd(t)

mv_f = (mv_x, mv_y)

P_c(t+1) = (cur_x, cur_y)

mv_b = (-mv_x, -mv_y)

P_ilu(t+1) = (cur_x-mv_x, cur_y-mv_y)

M

N

N

M

P_mlu(t+1) P_mru(t+1)

P_mld(t+1) P_mrd(t+1)

(a) (b)

Figure 3.5: Direct multi-directional enlarged matching method (a) Matching win-
dow and interpolated block in a previous frame t. (b) Matching window and
interpolated block in a successive frame t+1.

The proposed PSAD method with direct enlarged matching method defines

M×M matching blocks on previous frame t and successive frame t+1 when search-

ing for a best matching pair. The PSAD is very similar to the SAD in that it finds

the minimum sum of the pixel difference, but it only examines motion candidates

from the MSEA. The corners of these two blocks in Fig. 3.5 are defined by

18

Corner positions(t) =



























P mlu(t) = (mlu x(t),mlu y(t))

P mru(t) = (mlu x(t) + M,mlu y(t))

P mld(t) = (mlu x(t),mlu y(t) + M)

P mrd(t) = (mlu x(t) + M,mlu y(t) + M)

where






mlu x(t) = cur x + mv x +
(

max mv x−|mv x|
max mv x

)

× sign(mv x) × M
4
− M

4

mlu y(t) = cur y + mv y +
(

max mv y−|mv y|
max mv y

)

× sign(mv y) × M
4
− M

4

(3.2)

Corner positions(t + 1) =



























P mlu(t + 1) = (mlu x(t + 1),mlu y(t + 1))

P mru(t + 1) = (mlu x(t + 1) + M,mlu y(t + 1))

P mld(t + 1) = (mlu x(t + 1),mlu y(t + 1) + M)

P mrd(t + 1) = (mlu x(t + 1) + M,mlu y(t + 1) + M)

where






mlu x(t + 1) = cur x − mv x +
(

max mv x−|mv x|
max mv x

)

× sign(mv x) × M
4
− M

4

mlu y(t + 1) = cur y − mv y +
(

max mv y−|mv y|
max mv y

)

× sign(mv y) × M
4
− M

4

(3.3)

3.2.3 One-pass Motion Selection with Multi-grids Classifi-

cation

The proposed approach adopts a one-pass processing method, which means

that no iteration is needed when determining a true motion vector field. This allows

faster processing time and reduces memory requirements. From this viewpoint, it

does not rely on information of blocks subsequent to the current interpolated block

(except searching result for the next block). In other words, this method only

counts on information of motion vectors from previous processed blocks, which is

similar to advanced techniques in video compression standards, such as H.264 [32]

and VC-1 [33].

Effective neighboring blocks are shown in Fig. 3.6 and grouped under two

levels: N1, N2, N3, N4 and N5 belong to the first level, and N6, N7, N8, and N9

belong to the second level. Blocks in the second level are used to determine how

reliable block information is in the first level. C represents the current interpolated

block and will be assigned a true motion after the process. The effect of the

19

neighboring blocks in the first level is more significant than those in the second

level, and two levels are considered together: N1 and N6 are regarded as a group;

N2 and N7 are regarded as a group; N3 and N8 are regarded as a group; N4 and

N9 are regarded as a group. The information of these neighboring blocks or groups

is used when determining a true motion.

Block N5 is processed in a unique way during this procedure. As men-

tioned above, the spatial information comes from the blocks processed prior to the

current block. However, N5 does not belong to the processed blocks. According

to the experiment, a decision considering motion from N5 greatly increases the

correctness when choosing a true motion from nine motion candidates. Hence, the

true motion selection for C should be done subsequent to motion search of N5.

This searching procedure does not include the decision of the final true motion

but obtain true motion candidates for reference. It is acceptable to search one

more block in raster scan order because N5 is the subsequent block in this order.

Necessary pixels are stored in local memory so as to process the true motion se-

lection and interpolation. However, although the proposed method benefits from

one-pass processing and less external memory access by ignoring information from

following neighboring blocks, it also loses some advantage from missing informa-

tion and cannot realize motions from the right or below. To compensate for this

shortcoming, the proposed method utilizes temporal information, temporal object

information and global motion vectors to enhance the search quality.

CN4

N1 N2 N3

N5

N7

N9

N6 N8

Figure 3.6: Effective neighboring blocks for spatial information.

After defining which neighboring block would influence the searching strat-

20

egy, the proposed method introduces a multi-grids classification to simplify pro-

cessing and reduce the storage requirement for the motion vector field. It divides

a search window into multiple areas shown in Fig. 3.7 (9 grids), and each area

has one motion candidate after processing the MSEA and the PSAD. After a mo-

tion vector is determined with pre-defined conditions, this motion vector is refined

and used for generating an interpolated block of the inserted frame. Then, the

procedure will classify this true motion into one of these nine classes and record

the classification instead of the motion vector value. This approach simplifies our

processing procedure and also lowers memory access bandwidth.

1 2 3

4 5 6

7 8 9

v1

v5

v2 v3

v4
v6

v7
v8 v9

Figure 3.7: Multi-grids Classification in a searching window.

3.2.4 Temporal and Spatial Object Information

Although one-pass processing does not provide complete neighboring infor-

mation, such as motion types from the right of or below neighboring blocks relative

to the current interpolated frame, it can acquire temporal information from the

previous processing result to realize object motion. Here, we assume that an ob-

ject at a location in the previous frame has high probability of appearing near this

location in most cases. Since all motion information is known for previous frames,

true motion fields from previous results help us search for current true motion. Fig.

3.8 shows an example for multi-directional enlarged bidirectional search algorithm

with temporal information.

21

M

Localized Global Motion (gmv) Field

Original

Frame t-1
Frame t-1/2

Original

Frame t
Frame t+1/2

Original

Frame t+1

Bilateral Search

M

M

M

N

N C

Figure 3.8: Multi-directional enlarged bidirectional search algorithm with temporal
information.

Temporal information is a method to get an object’s motion which has a

constant speed, especially for panning scenes. When the camera pans slowly across

a scene, most interpolated blocks move consistently except foreground objects.

However, not all information from previously interpolated blocks is considered for

global motion in our proposed method. Only interpolated blocks with a large

pixel variance are considered, which means that the large part of an object will be

examined. This method removes inaccurate motion vectors from being taken into

account. However, a simple and uniform pattern easily matches a similar block

with a false true motion, such as the pattern on a white board, and will provide

inaccurate, irregular, and unreliable motion information. These inaccurate motion

vectors lower the accuracy of global motion, and therefore are not considered. The

Sum of Absolute Variance (SAV), is formulated by

SAV (B) =
N−1
∑

k=1

N−1
∑

l=1

(|p(k, l) − p(k, l + 1)| + |p(k, l) − p(k + 1, l)|) (3.4)

where the block size of an interpolated block B is N×N. A pixel value within this

interpolated block is denoted by p(x,y), where x and y are spatial indices relative

to the pixel’s position at the top-left corner of a block.

When the SAV of an interpolated block is larger than a threshold, the

motion vector of this interpolated block is considered as a global motion vector

for the next interpolated frame. In our approach, the global motion, −−−−→mvglobal is

processed and we also consider about the localized global motion vector, −−−−→mvlocal,

22

because every current interpolated block has its own localized global motion vector.

These localized global motion vectors are useful for deciding which motion vectors

are accurate, and are therefore considered with higher probability for true motion.

Spatial information from the processed blocks is also considered when searching,

and motion vectors from neighboring blocks have higher probability of being the

true motion. The proposed method combined with the PSAD is formulated by

PSAD(−→v) =



























∑

x∈B

|f(x −−→v , t) − f(x + −→v , t + 1)| − Tglobal when −→v = −−−−−→mvglobal

∑

x∈B

|f(x −−→v , t) − f(x + −→v , t + 1)| − Tlocal when −→v = −−−−→mvlocal

∑

x∈B

|f(x −−→v , t) − f(x + −→v , t + 1)| otherwise

(3.5)

The proposed method adopts an SAD-like method, PSAD, to address the

complexity issue. The PSAD of −−−−→mvglobal or −−−−→mvlocal is subtracted by the threshold

value, Tglobal or Tlocal, and compared with the PSAD values of other motion vectors.

The advantage of this proposed method is prevention of the bidirectional searching

method from falling into a background trap. Background trap indicates a situation

where an incorrect motion vector is determined from two very similar background

blocks. Although unidirectional searching may also find an incorrect motion vector

from two similar blocks, the problem in the bidirectional search is more serious.

The proposed method introduces these two reference vectors, −−−−→mvglobal and −−−−→mvlocal,

and two threshold values, Tglobal and Tlocal, to efficiently prevent this trap.

3.2.5 Sub-block Motion Assignment and Motion Refine-

ment

According to analyzed temporal information, our method explores true mo-

tion candidates and then refines the accuracy of true motions for blocks or sub-

blocks. Not only does this temporal information determine which motion candidate

has higher probability, but it also provides criteria to assign true motion for sub-

blocks in order to enhance visual quality and reduce occlusion problems and halo

artifacts.

To reduce computation, our proposed method adopts block-based motion

23

assignment and HD downsampling. Block motion assignment will be used for

a 2N×2N block (by default N=8) after upsampling recovery. However, when a

moving objects is smaller than one block or an object boundary crosses a block,

occlusion problems and halo artifacts obviously appear. To enhance motion preci-

sion and reduce computation, each block is assigned up to four different motions

to deal with object boundary issues. Fig. 3.9 shows that the proposed sub-block

assignment method examines motions from the surrounding motions of the previ-

ous interpolated frame. At first, all sub-block motions,
−−−−−→
C SMVi when i = 0..3,

are assigned the same motion as the original block motion,
−−−−→
C MV , for the default

motions. These default motions,
−−−−→
P MVi when i equals 0 to 8, are checked with the

SAD function by N×N matching blocks. If the SAD of preceding motion is smaller

than the SAD of the current assigned motion, a new motion will be assigned to

this sub-block as the new true motion. The sub-block motion assignment method

is formulated by

−−−−−→
C SMVi = arg min

−→v ∈S′

∑

x∈B

|f(x −−→v , t) − f(x + −→v , t + 1)| (3.6)

where B denotes a matching N×N block of the current interpolated position; S’

is a set of motion candidates, including
−−−−→
C MV and

−−−−→
P MVi when i equals 0 to

8;
−−−−−→
C SMVi is the sub-block motion vector examined for the best matching. Two

adjacent frames are denoted by f(x,t) and f(x,t+1), where x and t are spatial and

time domain indices.

After determining the true motion, the proposed method performs the final

refinement procedure. This procedure works on the original frames. The refining

window is [-1, +1] shown in Fig. 3.10. After refining, this motion vector will be

used for the interpolation.

24

P_MV0 P_MV1 P_MV2

P_MV5P_MV4P_MV3

P_MV8P_MV7P_MV6

MV Field on Frame t-1/2

C_MV

(Px, Py)(Px, Py)

(Px, Py)

MV Field on Frame t+1/2

C_SMV0

2N

2N

2N

2N

C_SMV1

C_SMV2 C_SMV3

N

N

Figure 3.9: Motions on the previous frame and the current block motion are em-
ployed on sub-block assignment.

3.3 Frame Interpolation

3.3.1 Frame Motion Skip

Motion Compensated Frame Interpolation is an efficient method to improve

the visual quality of video by increasing the frame rate. However, the performance

of true motion estimation varies with the image quality, the size of moving objects,

and motion velocity. When the true motion engine cannot correctly find the true

motion, irregular motions can cause blocking artifacts and provide incorrect spa-

tial and temporal information for the following frame. If the frame interpolator

generates an interpolated frame based on these incorrect motions, visual quality

might be much worse than the case where MCFI is not applied.

Similar to [25], the proposed method employs an algorithm for the adaptive

frame motion skipper. The proposed skipping method considers the level of block

matching difference and motion consistency. The frame skip ratio (Skip Ratio) is

25

Down-sampled pixels for searching

Original pixels for refining

C_SMVi

Refining window

Figure 3.10: Motion vector refining window

formulated by

Skip Ratio(t) =

BH
∑

i=1

BW
∑

j=1

Skip Factor(i, j)

BH × BW
(3.7)

where the skip ratio of the current frame t is denoted by Skip Ratio(t). BH and BW

denote the total block number on the height and the width of the current frame

t. If Skip Ratio(t) is larger than a threshold value, Tskip, all motion information

will be discarded, and the interpolator will repeat the previous frame t or average

frame t and frame t+1. The skip factor of each block (Skip Factor) is formulated

by

Skip Factor(i, j) =















1 if SAD(i, j) < SADskip

1 if
−−−→
MVi,j 6= any

−−−−−−−−−→
MVneighboring

0 otherwise

(3.8)

3.3.2 Interpolation

After determining the true motion vector for a current interpolated block,

interpolation should be performed if frame skipping is disabled. Two adjacent

frames are denoted by f(x,t) and f(x,t+1), where x and t are spatial and time

domain indices respectively. The motion vector field of a frame is denoted by
−→
V . A motion vector is denoted by −→v for an N×N interpolated block. Motion-

compensated averaging including boundary cases can be used as follows:

26



























f(x, t + 1

2
) = 1

2
[f(x − v, t) + f(x + v, t + 1)] if (x − v) ∈ V and (x + v) ∈ V

f(x, t + 1

2
) = 1

2
[f(x, t) + f(x, t + 1)] if (x − v) /∈ V and (x + v) /∈ V

f(x, t + 1

2
) = f(x − v, t) if (x − v) /∈ V and (x + v) ∈ V

f(x, t + 1

2
) = f(x + v, t + 1) otherwise

(3.9)

P0

P1

Q0

Q1

P1 P0 Q0 Q1

C
(SAD > Th)

B1

B2

Figure 3.11: Two edges of the current interpolated block C are filtered.

3.3.3 Deblocking Filter with Block Difference

A deblocking filter is used subsequent to interpolation. Whether an edge

should be filtered depends on the SAD of the current interpolated block and the top

or left neighboring interpolated block. If the difference is larger than a threshold,

the edges of this block should be filtered. In the proposed method, a simple filter is

applied, which only considers one pixel on each side of a filtered edge, as shown Fig.

3.11. The SAD of the current interpolated block C is larger than a predetermined

threshold, Th, so there are two edges of this block which should be filtered with

a deblocking operation. If a pixel needs to be filtered twice, a vertical filtering

procedure should be performed and a horizontal filtering procedure follows. This

operation is performed as follows:

27

P0′ = (P1 + 2P0 + Q0) >> 2

Q0′ = (Q1 + 2Q0 + P0) >> 2

P1′ = P1

Q1′ = Q

(3.10)

3.4 Acknowledgement

Portions of Chapter 3 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

4 The Proposed MCFI

Architecture

For real-time Frame Rate Up Conversion with motion re-estimation, search-

ing the proper motion candidates and determining one true motion is a demanding

task. In order to lower the computational complexity, the proposed architecture

introduces a fast full search method, Multi-level Successive Elimination Algorithm

(MSEA). This method is neither a conventional full search nor a fast search with

lower matching accuracy. MCFI is more sensitive to motion accuracy than is mo-

tion estimation for video compression. In this section, a practical architecture is

proposed to implement all proposed methods mentioned in previous sections. The

proposed architecture can process Frame Rate Up Conversion for a 1080p sequence

from 30fps to 60fps.

4.1 System Architecture

The proposed system architecture contains several modules, shown in Fig.

4.1. This architecture implements and simplifies the proposed processing flow

shown in Fig. 3.1. In this figure, there are two kinds of elements: the white

blocks are functional elements, including motion estimator, motion compensator,

spatial parameter generator, temporal parameter generator, deblocking filter, and

system memory controller. The gray blocks are storage elements, including system

parameters, reference buffer, temporal parameter buffer, motion vector field buffer,

and filtering buffer.

28

29

Reference

Buffer

Motion

Compensator

Deblocking

Filter

Motion Vector

Field Buffer

Spatial

Parameter

Generator

Temporal

Parameter

Generator

Temporal

Parameter

Buffer

Filtering

Buffer

System Memory Controller

External Memory

System Parameters

True Motion Engine

Figure 4.1: System block diagram of the proposed architecture.

Considering the memory usage, there are three levels of memory access

strategy: system memory access, on-chip memory access, and local memory access

in Fig. 4.2. The System Memory Controller pre-fetches data from the external

memory for MCFI processing procedures. This data contains: system parameters,

reference data, temporal information parameters, and filtering pixels. System pa-

rameters include the settings for the current input sequence, conditional threshold

values, starting addresses of reference data, and the MCFI processing parameters.

The reference buffer temporarily stores the reference pixels for the true motion

engine, which searches true motion vectors for the current interpolated frame, and

the motion compensator, which constructs interpolated images. The temporal pa-

rameter buffer stores information for global motion vector and localized motion

vectors from the previous interpolated frame. Global motion vectors are generated

by the Temporal Parameter Generator and are delivered to the temporal param-

eter buffer when an interpolated frame is finished. Each localized global motion

vector for an interpolated block is generated by the Temporal Parameter Gener-

ator when sufficient motion information is available. These localized vectors are

stored in external memory and are read back when the true motion engine searches

for the next interpolated frame. The filtering buffer stores the neighboring pixels

to the left of and above the current block. The line buffer for pixels above the

30

current block can be designed with on-chip memory so as to reduce external mem-

ory loading, thereby enhancing performance. Otherwise, the neighboring pixels

will be pre-fetched from the external memory for the filtering procedure. The mo-

tion vector field buffer stores motion vector information in the spatial domain. In

the proposed architecture, the motion vectors for two rows of blocks are stored in

this buffer in order to keep the information for immediately determining the true

motion.

Other

System

Engines

System

Memory

On-chip Memory

(System Parameter, Reference Data, Temporal Parameter

Data, Filtering Data)

Local Memory

(Motion Vector Field Data)

Motion

Compensator

Deblocking

Filter

Level 1:

System

Memory

Access

Level 2:

On-chip

Memory

Access

True Motion

Engine

System

Memory

Controller

Level 3:

Local

Memory

Access

Figure 4.2: Three levels of memory access for the proposed architecture.

4.2 True Motion Engine

The true motion engine is the core of the MCFI algorithm. It searches for

a true motion for motion compensation based on two reference frames and motion

information in the temporal and spatial domains. Temporal information is used

to access information from more than two successive reference frames. Fig. 4.3

31

shows a block diagram of the proposed true motion engine.

MSEA

PE0

MSEA

PE4

MSEA

PE1

MSEA

PE5

MSEA

PE2

MSEA

PE6

MSEA

PE3

MSEA

PE7

MSEA

Cal

MSEA

Cpr

Motion Estimator FSM

Reference Data

True

Motion Engine

MSEA Engine PSAD Engine

PSAD

Cal

PSAD

Cpr

PSAD

Anyzr

MV

Selector

MSEA

FSM

PSAD

FSM

Temporal

Parameters
Motion Vector DataSystem Parameters Spatial Parameters

Motion

Compensator

SUBR Engine

SUBR

Cal

SUBR

Cpr

SUBR

FSM

PREF Engine

PREF

Cal

PREF

Cpr

PREF

FSM

Figure 4.3: Block diagram of the proposed true motion engine.

Five processing steps are performed in the true motion engine. In the

implementation, nine-grids classification is used with a search window from -7 to

+7 pixels (15×15) for a down-sampled frame, 8×8 block size, 16×16 enlarged block

size, and four candidates for each MSEA sub-block (36 candidates for an entire

block are considered). The processing flow of the proposed true motion engine is

shown in Fig. 4.4. HD down-sampling is the first step, which drops all odd pixels in

two dimensions, as shown in Fig. 4.5. This is performed for high resolution video,

such as 720p and 1080p. There is no low-pass filter applied when downsampling

because there are several search stages in the proposed architecture, and it will

perform a refinement later on non-downsampled images. Hence, this is a simple

and fast method to select all even pixels for two dimensions when performing a

rough search. In the implementation phase, all pixels of the reference frames are

stored in the reference buffer, and MSEA reads all even pixels when searching.

Moreover, all reference pixels are used when performing refinement.

32

MSEA

Processing

PSAD

Processing

MV

Selecting

MV

Refining

Reference Frames

for Searching

36 Candidate MVs

(4 MVs for each area)

9 Candidate MVs

(1 MVs for each area)
1 Chosen MV

Search for 225 MVs

(MSEA 16x16 Matching)

Final MV

Search for 36 MVs

(SAD 16x16

Matching)

Classify with

Neighboring MVs

Search for 9 MVs

(SAD 16x16

Matching)

HD Down-

sampling

Original Frames

Select all even pixels

in two dimensions

Figure 4.4: Processing flow of the proposed true motion engine.

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O X O X O X O X

X X X X X X X X

O O O O

O O O O

O O O O

O O O O

8

8

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O OO O O O

Non-HD 8x8 Searched Block

HD down-sampled 8x8 Searched Block

Original

Frame t

Interpolated

Frame t+1/2

Original

Frame t+1

fmv
bmv

Figure 4.5: HD downsampling - drop all odd pixels in two dimensions.

The second step of the proposed architecture is the Multi-level Successive

Elimination Algorithm (MSEA), which is a fast full search method. Although

full search achieves the most accurate result, it is more computationally expen-

sive than a fast search. Fast search is an accepted implementation method for

video compression applications because it dramatically reduces the computational

complexity while slightly increasing the bitrate for approximate quality. However,

the goal of Motion Compensated Frame Interpolation is to find the true motion

distribution and not the best matching result with lowest bitrate. Based on our ex-

periments, fast search methods such as three-step search [34] and diamond search

[35] are all unsuitable for MCFI due to the local trap problem. MSEA is a com-

promise between the full search and the fast search. An MSEA example is shown

in Fig. 4.6, and the equations for two 16×16 matching blocks of SAD, MSEA, and

SEA are formulated by

33

SAD(m, n) =
15
∑

i=0

15
∑

j=0
|ft+1(i − m, j − n) − ft(i + m, j + m)|

≥
3

∑

i′=0

3
∑

j′=0

∣

∣

∣

∣

∣

3
∑

i=0

3
∑

j=0
ft+1(i + 4i′ − m, j + 4j′ − n) −

3
∑

i=0

3
∑

j=0
ft(i + 4i′ + m, j + 4j′ + m)

∣

∣

∣

∣

∣

≡
3

∑

i′=0

3
∑

j′=0

∣

∣SSBt+1(i′,j′)(−m,−n) − SSBt(i′,j′)(m, n)
∣

∣ ≡ MSEA(m, n)

≥

∣

∣

∣

∣

∣

15
∑

i=0

15
∑

j=0
ft+1(i − m, j − n) −

15
∑

i=0

15
∑

j=0
ft(i + m, j + m)

∣

∣

∣

∣

∣

≡ |SBt+1(−m,−n) − SBt(m, n)|

≡ SEA(m, n)

(4.1)

SSBt+1(0,0)

4

4 SSBt+1(0,1) SSBt+1(0,2) SSBt+1(0,3)

4 4 4

SSBt+1(1,0)4 SSBt+1(1,1) SSBt+1(1,2) SSBt+1(1,3)

SSBt+1(2,0)4 SSBt+1(2,1) SSBt+1(2,2) SSBt+1(2,3)

SSBt+1(3,0)4 SSBt+1(3,1) SSBt+1(3,2) SSBt+1(3,3)

SSBt(0,0)

4

4 SSBt(0,1) SSBt(0,2) SSBt(0,3)

4 4 4

SSBt(1,0)4 SSBt(1,1) SSBt(1,2) SSBt(1,3)

SSBt(2,0)4 SSBt(2,1) SSBt(2,2) SSBt(2,3)

SSBt(3,0)4 SSBt(3,1) SSBt(3,2) SSBt(3,3)

SSBt+1(i,j) : Sum of sub-block(i,j) in frame t+1

SSBt(i,j) : Sum of sub-block(i,j) in frame t

MSEA(m,n) = |SSBt+1(0,0) - SSBt(0,0)| + |SSBt+1(0,1)-SSBt(0,1)| + ….. + |SSBt+1(3,3)-SSBt(3,3)|

Figure 4.6: Multi-level Successive Elimination Algorithm (MSEA).

Due to nine-grids classification, the MSEA engine separately searches four

motion candidates with small MSEA values from the complete twenty-five (5×5)

vectors for each area, which is shown in Fig. 4.7. There are a total of thirty-

six motion candidates after a search by the MSEA engine, and each matching

block is divided into sixteen 4×4 sub-blocks for the MSEA calculations. A nine-

directional enlarged matching method, shown in Fig. 3.3, is used by the MSEA

34

engine. Fig. 4.8 demonstrates the architecture of the proposed MSEA engine,

which employs eight Processing Elements (PEs) to deal with the MSEA search in

an HD application. MSEA searching patterns for a previous frame t and successive

frame t+1 are shown in Fig. 4.9(a) and (b). Fig. 4.9(c) demonstrates how to add

and remove pixels to get a new Sum of Sub-Block (SSB) when the search engine

shifts vector positions. Based on this shifting technique, the proposed engine is

faster and less complex than a full search.

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

5X5

Searching

Area

4 MVs

MSEA

Searching

4 MVs 4 MVs

4 MVs 4 MVs 4 MVs

4 MVs 4 MVs 4 MVs

Figure 4.7: MSEA searches four true motion candidates for each area.

+++

MSEA PE

MSEA PE

MSEA PE

MSEA PE

MSEA PE

MSEA PE

MSEA PE

MSEA PE

+
-

+

+

+

+

-

-

-
++++

++++

++++
-

-

-

+

+
+

+

+ MSEA

Comparer

4X8

4X8

4X8

4X8

4X8

4X8

4X8

4X8

Frame

t

Frame

t+1

16
5

5

5

5

mv0_num

mv1_num

mv2_num

mv3_num

Figure 4.8: Architecture of the proposed MSEA engine.

35

S X X X X

X X X X X

X X X X X

X X X X X

X X X X E

E X X X X

X X X X X

X X X X X

X X X X X

X X X X S

SSB

41

4

Shift

AddedEliminated

(a) (b) (c)

Figure 4.9: (a) Searching order on an area for a previous frame t. (b) Searching
order on an area for a successive frame t+1. (c) Added and eliminated areas when
shifting a MSEA vector position.

The third step of the true motion engine is to search by the Probable Sum

of Absolute Difference (PSAD) mentioned in Eqn. (3.5). Since the MSEA engine

decides four highly probable candidates for each directional area, the PSAD en-

gine only needs to check the PSAD values for these four vectors as opposed to a

full search with the SAD. The direct multi-directional enlarged matching method,

shown in Fig. 3.5, is used by the PSAD engine. As a result of this technique,

each area produces a most probable true motion candidate for a search window.

That is, there are in total nine motion candidates with different directions, which

are shown in Fig. 3.7. The fourth step is a true motion selection from these nine

motion candidates. Effective neighboring blocks for spatial information are shown

in Fig. 3.6. The proposed method pre-defines conditions to determine a true mo-

tion vector for each block from all available information. At the last stage, the

proposed architecture performs a refining procedure by the Probable Refining En-

gine (PREF) if the input video sequence has high resolution and is down-sampled

before searching. The refining window is shown in Fig. 3.10. This refinement en-

hances the accuracy of motion vectors due to down-sampling the searching pixels.

A SAD method is used for the PREF.

The proposed pipeline scheduling is demonstrated in Fig. 4.10. The Fetch

command obtains necessary information from external memory at the first stage.

36

MSEA and PSAD operate at the same pipeline stage following the Fetch stage.

The motion selection (MV Sel) stage is postponed until the information from N6

(shown in Fig. 3.6) is available. A refining procedure by PREF is performed at

the same stage as true motion selection. The interpolating (Interpolation) and

deblocking filtering (Deblock) procedures are performed at the same stage after

the refinement. Finally, there is a write-back (Write Back) procedure to write

interpolated block and temporal information to the external memory for display

and successive interpolation procedures.

Fetch

MSEA

PSAD

MV_Sel

PREF

Interpolation

Deblock

B0 B1 B2 B3 B4

B0 B1 B2 B3 B4

B0 B1 B2 B3 B4

B0 B1 B2 B3 B4

B0 B1 B2 B3 B4

B0 B1 B2 B3 B4

B0 B1 B2 B3 B4

Write Back B0 B1 B2 B3 B4

N-1 N

N-1 N

N-1 N

N-1 N

N-1 N

N-1 N

N-1 N

N-1 N

…

…

…

…

…

…

…

…

B5

B5

B5

B5

B5

B5

B5

B5

Figure 4.10: Pipeline scheduling for the proposed architecture.

4.3 Acknowledgement

Portions of Chapter 4 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

5 MCFI Implementation and

Experimental Results

5.1 Implementation

The specification for the proposed architecture is capable of doubling the

frame rate for an HD1080p 30fps video at 180MHz or a 720p 30fps video at 83MHz.

To verify the accuracy and efficiency of the proposed method and architecture, the

architecture is designed in VHDL ((VHSIC (Very High Speed Integrated Circuits)

Hardware Description Language)) and implemented with TSMC (Taiwan Semicon-

ductor Manufacturing Company) 90-nm technology. The implemented architecture

operates with our VHDL and MATLAB-model, and the result has been verified

with our prototype in MATLAB-model. TABLE 5.1 shows logic gate count includ-

ing all functional blocks of the proposed architecture synthesized with the Cadence

RTL compiler at 180 MHz. The total logic gate count without on-chip memory

is about 28K. TABLE 5.2 summarizes the distribution of the on-chip memory re-

sources. The proposed architecture requires 22.67 KB of on-chip memory during

operation. The Reference Buffer occupies 62.88% of memory because there are

up to five overlapped searching window areas stored in this buffer from previous

frame t and successive frame t+1. The operation of this buffer is explained in

Fig. 4.10. When the Motion Compensator and Deblocking Filter process Block

0, the Memory Controller starts to fetch reference data and parameters for Block

4. Hence, reference data buffered for five consecutive blocks is necessary to reduce

the external memory bandwidth and the processing period. The Motion Vector

37

38

Field Buffer keeps two rows plus two blocks of motion information in a current

interpolated frame. This buffer has to store motion information for 3,842 blocks.

The effective neighboring block for spatial information is shown in Fig. 3.6.

Table 5.1: Front-end Hardware Cost of the Proposed True Motion Engine with
TSMC 90-nm Technology

Functional Block Gate Count
MSEA Engine 19,559
PSAD Engine 4,055
True Motion Selector 2,125
PREF Engine 1,466
Glue Logic 792
Total 27,997

Table 5.2: On-chip Memory Buffer Size of the Proposed Architecture for a 1080p
video

Buffer Size (KB)
Reference Buffer 14.256
Temporal Parameter Buffer 0.026
Motion Vector Field Buffer 7.684
Filtering Buffer 0.704
Total 22.670

Table 5.3: Processing Time of the Proposed Architecture

Type Cycles Frequency Time Require
(MHz) (ms) (ms)

1 16×16 Block 683 180/83 - -
1 Frames @ 1080p 5,581,795 180 30.69 33.33
30 Frames @ 1080p 167,453,850 180 921.99 1000
1 Frames @ 720p 2,462,755 83 29.55 33.33
30 Frames @ 720p 73,882,650 83 886.59 1000

Based on our implementation, we simulate this architecture with real video

sequences so as to calculate the cycle counts and verify the processing time that

meets timing requirement for HD1080p 30 fps. Since the processing cycle count is

fixed for the proposed design, the cycles in TABLE 5.3 can be analyzed for any

sequence with the same resolution. From TABLE 5.3, the proposed architecture

39

Table 5.4: External Memory Bandwidth Requirement for the Proposed
Architecture

Type Reference Parameter Data Total
Data Fetch Fetch Write-back (MB)

(MB) (KB) (MB)
1 Frames @ 1080p 17.19 16.37 3.13 20.34
30 Frames @ 1080p 515.89 491.10 94.00 610.38
1 Frames @ 720p 8.01 7.25 1.38 9.40
30 Frames @ 720p 240.16 217.50 41.472 281.85

Table 5.5: Performance Comparison - PSNR

Method CITY@720p CREW@720p
Bilinear 28.95 dB 28.64 dB
3DRS 29.44 dB 28.77 dB
PPC 29.55 dB 28.40 dB
Proposed 32.42 dB 28.95 dB
Proposed SubMV 32.50 dB 28.97 dB
Proposed FS 32.49 dB 28.97 dB
Proposed DS 29.22 dB 28.94 dB

demonstrates its capability for a 1080p 30fps video at 180 MHz or a 720p 30fps

video at 83 MHz. TABLE 5.4 shows the requirement of the external memory

bandwidth. The proposed architecture requires 610.38 MB/s for a 1080p video or

281.85 MB/s for a 720p video so as to double the frame rate from 30fps.

5.2 Performance Result

Here, we compare the performance of the proposed algorithm by test-

ing high-resolution test sequences with three other methods: bilinear interpola-

tion, 3-D Recursive Search (3DRS) [5], and Phase-Plane Correlation (PPC) [17]

with the same searching block size of 16×16. We also compare the proposed

methods with different search strategies including MSEA (Proposed), Full Search

(Proposed FS), and Diamond Fast Search (Proposed DS). For 60fps test sequences,

such as CREW@720p and CITY@720p, the test drops all even frames and gen-

erates these missing frames by four different methods. These interpolated frames

are compared with the original frames so as to calculate PSNR results. Exper-

40

imental results show that the proposed algorithm provides better video quality

in terms of PSNR than conventional methods. The results also show that the

PSNR of the proposed method with MSEA is similar to Full-Search and superior

to Diamond Fast-Search. In addition to PSNR comparisons, we also show visual

quality comparisons with HD sequences including PRODUCERS(1440×960) and

FLIGHT(1080p) at 24fps. We test visual quality by conducting subjective tests

with human observers. The results demonstrate that the proposed method has

better visual quality than other conventional methods.

Figure 5.1: PSNR comparison 1 - CREW 1280×720 60fps

Figure 5.2: PSNR comparison 2 - CITY 1280×720 60fps

The PSNR results are organized in TABLE 5.5 and also shown in Fig.

41

5.1 and 5.2. In TABLE 5.5, we compare PSNR results with three conventional

methods: bilinear, 3DRS, and PPC. The average PSNR of the proposed method

is superior to competing methods. Our proposed method has better visual quality

compared to other conventional methods even in frames with similar PSNR. In

TABLE 5.5, we compare the PSNR with our proposed algorithm with block mv

assignment (Proposed) or sub-block mv assignment (Proposed SubMV) using two

different search strategies including full search (Proposed FS) and diamond fast

search (Proposed DS). The PSNR results between Proposed and Proposed FS are

very close, with Proposed FS performing slightly better. However, although the

PSNR of Proposed DS is similar to the other two proposed method in CREW, it

is obviously worse in CITY. In our experiments, Proposed DS has more broken

objects and annoying artifacts because of searching two similar matching blocks

at an early stage and falling into a local trap.

A visual comparison example for CREW is shown in Fig. 5.3 and 5.4. Inter-

polated frame 185 is generated with different methods, and the PSNR results are

very close. They are 21.2462 dB (bilinear), 21.3463 dB (3DRS), 21.2293 dB (PPC),

and 21.3307 dB (PPC), respectively. The PSNR value dramatically decreases in

this interpolated frame due to the flashlight. Extreme color change increases the

difficulty of true motion search, so an accurate searching algorithm is very impor-

tant in order to keep visual quality with lower PSNR. We zoom in on the face of

one team member in Fig. 5.4 so as to clearly compare the difference. The bilinear

method results in a blurred face and ghost artifacts. 3DRS causes a broken face

due to large color change. PPC generates a blurred and broken face because it is

difficult to find the correlation between two temporally dissimilar blocks. In Fig.

5.4(e), the result of the proposed method keeps the face intact and clear although

there are still some artifacts surrounding the face. This is because the proposed

method adopts a block matching method to calculate motion vector and meets

an occlusion situation here. Our method attempts to keep the foreground intact

by using the multi-directional enlarged matching algorithm, but the quality of the

background suffers. From the experiments, viewers are more sensitive to a moving

object than a still background. Hence, the proposed method provides a better

42

visual quality.

(a) (b)

(c) (d)

(e)

Figure 5.3: Interpolated frame 185 in CREW (a) original frame, (b) bilinear in-
terpolation (21.2462 dB), (c) 3D Recursive Search (21.3463 dB), (d) Phase Plane
Correlation (21.2293 dB dB), (e) proposed method (21.3307 dB).

Another visual comparison example for CREW is shown in Fig. 5.5. In-

terpolated frame 117 is generated with different methods, yielding similar PSNR

results. They are 34.287 dB (bilinear), 37.756 dB (3DRS), 33.418 dB (PPC),

38.237 dB (proposed method without sub-block assignment), and 38.301 dB (pro-

posed method with sub-block assignment), respectively. We zoom in for frame 117

on the hand in Fig. 5.6 in order to clearly compare the difference.

Fig. 5.7 and 5.8 show another example for visual comparison. A tower

43

(a) (b) (c) (d) (e)

Figure 5.4: Zoom in for interpolated frame 185 in CREW (a) original frame, (b)
bilinear interpolation, (c) 3D Recursive Search, (d) Phase Plane Correlation, (e)
proposed method.

slowly rotates in the middle of the scene while the background quickly translates.

This causes several occlusions to occur. In Fig. 5.7, the proposed method yields

better results than the other methods, especially for the consistency of the back-

ground. In Fig. 5.7(c)-(d), some buildings are broken because similar background

regions create matching error. The proposed method introduces localized global

motions and assigns each block a global motion vector to promote motion consis-

tency and also different global motion in each area. We zoom in on a part of the

tower in Fig. 5.8 so as to clearly compare the difference. The bilinear method

generates a blurred image and ghost artifacts. 3DRS and PPC result in broken

structures for windows of a building near the main tower. Here, the proposed

method provides better visual quality as well as achieving higher PSNR.

We perform more visual tests on HD video sequences. PRODUCERS is a

clip which pans from left to right. The difficulty of this sequence is that it does not

have one global motion: objects near the camera move faster and objects farther

from the camera move more slowly. There are also significant occlusions in this

sequence. This sequence tests our localized global motion and motion accuracy.

FLIGHT is a clip that shows a scene going through a river like a flying bird. Two

sides of the river move in different directions, and some seabirds appear in the

scene. Fig. 5.9 and 5.10 show a visual comparison for PRODUCERS, and Fig.

5.11 and 5.12 show a visual comparison for FLIGHT. From our experiments, the

proposed method demonstrates superior performance to conventional methods.

For comparing our proposed method with other conventional algorithms

44

in visual quality, we conducted a perceptual test using human observers. This

subjective test was conducted in a double blind manner according to the single

stimulus non-categorical judgment method described in [36]. Each viewer watches

both the original version with original frame rate (24 fps or 30fps) and up-converted

version with double frame rate using different methods. Viewers are asked to rate

which one they preferred and select a score on a continuous scale between [-3, 3]

where positive responses indicate a preference for the up-converted clip. Twenty

observers viewed five tests each on a Samsung 2443BW LCD with 5 ms response

time. Each test includes four different up-converted clips with different methods

including bilinear, 3DRS, PPC, and the proposed method.

TABLE 5.6 shows the average scores and standard deviations for each test

and each method across all twenty viewers. The results suggest that there were

indeed perceptual improvements for the proposed method in NATIONAL TREA-

SURE (1440×960), FLIGHT, and PRODUCERS, all of which contained fast global

motions or fast large moving objects. For CREW and CITY, the results show that

there were only slight improvements because there are too many details in the

screen and reviewers were distracted by these complicated images. However, hu-

man observers are sensitive to obvious artifacts and broken objects. If artifacts

exist in a proposed clip, people prefer the original clips without processing. Con-

sequently, the results demonstrate that the proposed method has better visual

quality than other conventional methods in our subjective experiment.

5.3 Acknowledgement

Portions of Chapter 5 appear in “Method and Architecture Design for Mo-

tion Compensated Frame Interpolation in High-Definition Video Processing,” Yen-

Lin Lee and Truong Nguyen, in Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), May 2009; “Fast One-pass Motion Compen-

sated Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and

Truong Nguyen, in Proceedings of the IEEE International Conference on Image

Processing (ICIP), Nov. 2009; “Novel Method and Architecture Design for Motion

45

Table 5.6: Results of the perceptual experiment

Test 1 - CITY Average Score Standard Deviation
Original 60fps 1.81 0.65
Bilinear -0.20 0.95
3DRS -1.29 1.20
PPC -1.23 1.11
Proposed 0.75 1.16
Test 2 - CREW Average Score Standard Deviation
Original 60fps 1.18 0.79
Bilinear -0.43 0.82
3DRS -1.02 0.82
PPC -1.21 0.85
Proposed 0.74 0.88
Test 3 - NATIONAL TREASURE Average Score Standard Deviation
Bilinear -0.45 1.02
3DRS 0.87 0.88
PPC -1.58 0.96
Proposed 2.00 0.73
Test 4 - FLIGHT Average Score Standard Deviation
Bilinear 0.28 1.06
3DRS -0.63 1.48
PPC -0.40 1.00
Proposed 1.52 0.79
Test 5 - PRODUCERS Average Score Standard Deviation
Bilinear -0.49 0.97
3DRS -0.08 1.50
PPC -1.68 1.12
Proposed 2.13 0.63

Compensated Frame Interpolation in High-Definition Video Processing,” Yen-Lin

Lee and Truong Nguyen, revised to IEEE Trans. on Circuits and Systems for

Video Technology, 2009. The dissertation author was the primary author of these

publications, and the listed co-author directed and supervised the research that

forms the basis for this chapter.

46

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Interpolated frame 117 in CREW (a) original frame, (b) bilinear in-
terpolation, (34.287 dB) (c) 3D Recursive Search (37.756 dB), (d) Phase Plane
Correlation (33.418 dB), (e) proposed method (38.237 dB), (f) proposed method
with sub mv assignment (38.301 dB).

(a) (b) (c) (d) (e) (f)

Figure 5.6: Zoom in for interpolated frame 117 in CREW (a) original frame, (b)
bilinear interpolation, (c) 3D Recursive Search, (d) Phase Plane Correlation, (e)
proposed method, (f) proposed method with sub mv assignment.

47

(a) (b)

(c) (d)

(e)

Figure 5.7: Interpolated frame 2 in CITY (a) original frame, (b) bilinear inter-
polation (27.1726 dB), (c) 3D Recursive Search (29.0897 dB), (d) Phase Plane
Correlation (27.2179 dB), (e) proposed method (35.9651 dB).

(a) (b) (c) (d) (e)

Figure 5.8: Zoom in for interpolated frame 2 in CITY (a) original frame, (b)
bilinear interpolation, (c) 3D Recursive Search, (d) Phase Plane Correlation, (e)
proposed method.

48

(a) (b)

(c) (d)

Figure 5.9: Interpolated frame 267 in PRODUCERS (a) bilinear interpolation, (b)
3D Recursive Search, (c) Phase Plane Correlation, (d) proposed method.

(a) (b) (c) (d)

Figure 5.10: Zoom in for interpolated frame 267 in PRODUCERS (a) bilinear
interpolation, (b) 3D Recursive Search, (c) Phase Plane Correlation, (d) proposed
method.

49

(a) (b)

(c) (d)

Figure 5.11: Interpolated frame 353 in FLIGHT (a) bilinear interpolation, (b) 3D
Recursive Search, (c) Phase Plane Correlation, (d) proposed method.

(a) (b) (c) (d)

Figure 5.12: Zoom in for interpolated frame 353 in FLIGHT (a) bilinear interpola-
tion, (b) 3D Recursive Search, (c) Phase Plane Correlation, (d) proposed method.

6 MCFI System Analysis

6.1 Analysis of the Proposed MCFI System

In this chapter, a detailed system loading analysis is discussed for each

processing module. To profile the system loading time and analyze the architec-

tural performance, the proposed method is implemented with a C implementation

and profiled under Microsoft Visual Studio 2008. All analysis results are averaged

over four test sequences, PRODUCERS (1440×960), NATIONAL TREASURE

(1440×960), LIVING SEA (1440×1080), and FLIGHT (1440×1080). The pro-

posed method operates on every other frame and compares the MCFI frames with

the original frames to calculate the PSNR values.

Table 6.1: System Computation

Module Sub-Module Sub-Loading Loading
HD Downsampling - - 0.12%

MSEA Search 43.01%
MV Search PSAD Search 42.77% 85.89%

MV Selection 0.11%
MV Refining - - 7.77%
Frame Skipping - - 0.01%
Interpolating - - 3.98%
Deblocking - - 0.02%
Temp Generating - - 1.79%
Others - - 0.42%
Total - - 100%

TABLE 6.1 shows computational expense for each processing module under

our software C implementation, and the percentage in this table represents what

50

51

percentage these individual modules take of the entire system loading time. There

is little complexity for HD downsampling (0.12%) because we drop every other pixel

without applying a real downsampling filter. To obtain more accurate true motion,

the proposed method employs motion re-estimation without acquiring the motion

vector field from the bitstream. Hence, true motion search (MV Search) takes most

of our processing time, with 85.89% of the overall processing time. In MV Search,

MSEA Search takes 43.01% and PSAD Search takes 42.77% of the overall pro-

cessing time. Compared with the architecture design of the MSEA and the PSAD

module in TABLE 5.1, we need more hardware resources than other modules to

implement our search engine in real time. After MV Search, MV Refining is the

second most expensive module in our system. It takes 7.77% of the overall pro-

cessing time. The purpose of this module is to refine the true motion accuracy

which become lower due to HD downsampling while also reducing ghost artifacts.

Interpolation takes 3.98% of the overall processing time after we find true motions

for each block. Deblocking helps us to eliminate the blocking artifacts because

of dissimilarity of the motion field. In the proposed method, it is only applied

to obvious blocking artifacts. Compared to the expensive deblocking method in

the H.264/AVC codec (requiring up to 33% of processing power), the debocking

process takes less than 1% of computing power. Finally, Temp Generating pro-

duces temporal information for future processing, and it takes 1.79% of the overall

processing time.

Table 6.2: Search Strategy Comparison

Search Strategy Loading PSNR (dB) PSNR (%)
Proposed Fast-Full Search 100% 33.74 -
Conventional Full Search 254% 33.79 +0.15%
Conventional Fast Search 140% 31.89 -5.48%

In the second part, we compare the proposed method with conventional

full search and fast search methods. We determine performance by replacing the

proposed search with other methods. TABLE 6.2 shows the comparison of the

system loading and the PSNR error. The proposed method only takes 39% of the

computing power of the conventional full search, but the average PSNR can ap-

52

proach 99.85% of the performance of the conventional full search. When compared

with conventioanl fast search (three-step search), the proposed method spends less

processing time and produces a better results.

Table 6.3: Module Performance Comparison

Disable Options PSNR (dB) PSNR (%)
No MV Selection 33.59 -0.44%
No MV Refining 33.68 -0.18%
No Deblocking 33.71 -0.09%

Finally, we disable specific options and observe the effect on PSNR. In

TABLE 6.3, PSNR values change slightly. This is because these options primarily

process the edge of moving objects and improve the visual quality of broken objects.

However, when calculating the PSNR value on an entire frames, the PSNR values

are improved only slightly.

6.2 Acknowledgement

Portions of Chapter 6 appear in “Novel Method and Architecture Design for

Motion Compensated Frame Interpolation in High-Definition Video Processing,”

Yen-Lin Lee and Truong Nguyen, revised to IEEE Trans. on Circuits and Systems

for Video Technology, 2009. The dissertation author was the primary author of

these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

7 High Frame Rate Up

Conversion Processing

Frame Rate Up Conversion (FRUC) or Motion Compensated Frame In-

terpolation (MCFI) is an effective method to reduce judder for digital displays,

especially for low response time devices, such as LCD HDTVs. New frames are

interpolated and inserted between original or decoded frames to smooth motion

blur and enhance the visual quality. Due to the widespread popularity of digi-

tal displays, more and more high quality LCD devices with high frame rate have

emerged in the market. However, current video sources in the market are usually

limited to 30- or 60-fps. In addition, the bandwidth of current broadcast channels

or home theater media devices make it impossible to transmit a 120- or 240-fps

high definition compressed video bitstream. Media storage and decoding power

are also a problem for this system. Hence, high Frame Rate Up Conversion, such

as 240-Hz or higher, has become an indispensable research topic stemming from

current double frame rate technology. Fig. 7.1 shows an example of inserting three

interpolated frames in order to generate a 4x frame rate video.

7.1 High Frame Rate Technology

To reduce blurring, most 120Hz LCD displays use a system called MEMC

(Motion Estimation and Motion Compensation) or MCFI to insert in a new frame

between each of the original frames and employ pull-down technology for display.

The end result is one extra frame for every true frame. Although MEMC is the most

53

54

Frame t Frame t+1Frame t+3/4Frame t+1/2Frame t+1/4

Figure 7.1: An example of 4x Frame Rate Up Conversion.

popular approach to increase the original frame rate, there are several different

methods to achieve higher frame rate up conversion after performing MEMC.

The first method is the pure MEMC method shown in Fig. 7.2(a). This is an

easily modified method based on existing MEMC or MCFI modules. This process

adopts the MEMC method to generate the 2x frame rate interpolated frame t+1/2

between any two original frames, frame t and t+1, and then it reapplies the MEMC

method to generate 4x frame rate interpolated frame t+1/4 and frame t+3/4. This

method can easily apply to the existing 2x Frame Rate Up Conversion system, but

the complexity dramatically increases. Not only will the computational complexity

of one 4x pure MEMC method be three times higher than that of a 2x MEMC

approach, but memory requirement increases three times. This method is used for

small resolution video or lower frame rate video for practical reasons.

The second method is MEMC with backlight scanning as shown in Fig.

7.2(b). This process adopts MEMC to generate the 2x frame rate interpolated

frame t+1/2 between any two original frames, frame t and t+1, and then it repeats

every 2x frames with backlight scanning. This technique that synchronizes the

display’s pixel updates to a cycling pattern of illumination generated by fluorescent

tube or LED array backlight modules [37]. Developing an effective method to

insert black data between image frames is one of the most viable ways to shorten

the spatio-temporal integration time. In the case in Fig. 7.2(b), 50% of the data

55

frame is blanked by black data, and this 50% luminance loss will dim the visual

display. In order to reduce luminance loss, a sharpened or alternate gamma frames

should be driven in order to maintain the luminance. Although this method can

provide much lower complexity than pure MEMC, visual quality is lower than pure

MEMC, especially on lower frame rate videos.

Frame t Frame t+1Frame t+3/4Frame t+1/2Frame t+1/4

MEMC

MEMC MEMC

(a)

Frame t Frame t+1Frame t+3/4Frame t+1/2Frame t+1/4

MEMC

Repeat Repeat

(b)

Figure 7.2: Two methods to achieve 4x Frame Rate Up Conversion. (a) Pure
MEMC method. (b) MEMC method with backlight scanning.

The third method is MEMC with motion trajectory, shown in Fig. 7.3,

to achieve 4x frame rate up conversion. Motion trajectory method is a common

method for MCFI in a low complexity system, especially for a MCFI system which

56

-mv1

mv2

-mv1/2
mv1/2

mv2/2
-mv2/2

Frame t Frame t+1Frame t+3/4Frame t+1/2Frame t+1/4

Figure 7.3: MEMC method with motion trajectory to achieve 4x Frame Rate Up
Conversion.

extracts the motion vectors from the decoder and post-processes the Motion Vector

Field (MVF). This process adopts MEMC to generate the 2x frame rate interpo-

lated frame t+1/2 between any two original frames, frame t and t+1, and then

it takes one half of the motion vector field from 2x video processing and projects

to the same location of 4x images, such as frame t+1/4 and frame t+3/4. The

benefit of this method is that there is no need to repeatedly perform motion esti-

mation while still utilizing the advantage of the motion compensated interpolation.

However, the quality suffers from faster moving objects because motion trajectory

results in less precision. Fig. 7.4 demonstrates an example of the trajectory method

damaging the shape of the moving object if 2x motion vector cannot perfectly map

to 4x motion motion vectors.

In Fig. 7.4, the first step is to search true motions (1) for 2x frame rate

images via MEMC. Based on the Motion Vector Field (MVF) generated by the

57

0.50.5

Frame t Frame t+1

Frame t Frame t+1Frame t+1/2Frame t+1/4 Frame t+3/4

(1)

Search motion

(4)

Interpolate

(4)

Interpolate

(2)(2)

(3)

Interpolate

Figure 7.4: MEMC method with motion trajectory to achieve 4x Frame Rate Up
Conversion.

first step, these motion vectors move along the trajectory and assign new motion

vectors for 4x frame rate images (2) without motion re-estimation. In the second

step, MVF for 4x frame rate image will be half of motion vectors from 2x frame

rate images. The third step is to interpolate 2x frame rate images with 2x true

MVF (3) based on two original images before generating 4x frame rate images.

The final step is to interpolate 4x frame rate images with 4x projected true motion

field (4) based on one original image and one 2x frame rate interpolated frame.

Fig. 7.4 shows that the video will be flickering and broken because the imprecise 4x

MVF result in obvious artifacts and produces incomplete objects on frame t+1/4

and frame t+3/4.

The following sections will discuss the proposed high Frame Rate Up Con-

version. One low complexity MEMC method and its architecture will be proposed.

58

This proposed method is derived from the third approach shown in Fig. 7.3, but it

can provide highly precise true MVF as the pure MEMC method does. The pro-

posed method generates a better visual quality video than pure MEMC at much

lower complexity.

7.2 Proposed High Frame Rate Processing

There are several different approaches to achieve high Frame Rate Up Con-

version, as the previous section mentioned. Here, we will modify our previously

proposed MCFI scheme, slightly increase complexity, and achieve 4x Frame Rate

Up Conversion. The proposed scheme in Chapter 3, shown in Fig. 3.1, adopts

a motion-compensated approach to double the frame rate by inserting one inter-

polated frames between any two contiguous original frames. A new processing

scheme is proposed and shown in Fig. 7.5, and the blocks enclosed by the red box

are additional functional blocks to process 4x Frame Rate Up Conversion. Motion

Vector Refinement for 4x in Fig. 7.5 is the major processing procedure to assign

proper motion vectors for two additional interpolated frames. This module also

belongs to the proposed true motion engine. Frame Skipping and Block-based In-

terpolating for 4x MEMC processing are similar to those in the previous proposed

2x MCFI scheme. Based on this proposed scheme, one interpolated frame is gen-

erated by 2x MCFI processing flow and two interpolated frames generated by 4x

MCFI or MEMC processing flow.

The module of Motion Vector Refinement for 4x employs a similar method

to sub-block motion assignment in Chapter 3. Because we can obtain the true MVF

after motion vector refinement or sub-block motion assignment from 2x MCFI

processing flow, the assigned motion vectors at the same position of current block

and eight neighboring blocks from the 2x interpolated frame will be considered as

motion candidates for 4x MCFI processing flow. By succeeding the MVF from

the prior 2x process, it can reduce the computational complexity in true motion

searching. Based on the experiments, if 2x MCFI processing cannot find true

motion vectors for 2x interpolated frames, it is impossible to search true motions

59

Downsampling

(For HD)

(For Non-HD)

RME Bilateral

MV Searching

Multi-directional

Enlarged

Matching

Border MV

Searching
Motion Vector

Field Collecting
Multi-grid MV

Classifying

True Motion Selecting

Motion Vector Refining and

Sub-block MVs Assigning

Block-based

Interpolating

Deblock Filtering

(For Non-HD)

Temporal

Information

Generating

Spatial

Information

Generating

Original

Frames

True Motion Engine

2X

Interpolated

Frames

Frame Skipping

Motion Vector Refining for 4X

4X

Interpolated

Frames

Frame Skipping

Block-based

Interpolating

4x MEMC Processing

Figure 7.5: Processing flow of the proposed method on 4x Frame Rate Up
Conversion.

for 4x interpolated frames from the incorrect 2x interpolated frames. In this case,

the system needs to skip MCFI so as not to generate incorrect interpolated frames

because of the inaccurate MVF. Hence, making use of the 2x true MVF as motion

candidates is an effective method to improve the accuracy of 4x true motion vectors

and also take the computational complexity into consideration.

In the proposed 4x MCFI scheme, true motion vector assignment from 2x

motion candidates will be used for an N×N block (by default N=8 in the proposed

architecture). Fig. 7.6 shows that the proposed block assignment method examines

motions from the surrounding motions of the current 2x interpolated frame. True

motions,
−−→
MVi when i equals 0 to 8, are checked with the SAD function from one

original frame (frame t or frame t+1) and one 2x interpolated frame (frame t+1/2).

This 4x motion assignment is formulated by

−−−−−−−→
CMV 4X0 = arg min

−→v ∈S′

∑

x∈B

∣

∣f(x − 1
2
−→v , t) − f(x + 1

2
−→v , t + 1

2
)
∣

∣

−−−−−−−→
CMV 4X1 = arg min

−→v ∈S′

∑

x∈B

∣

∣f(x − 1
2
−→v , t + 1

2
) − f(x + 1

2
−→v , t + 1)

∣

∣

(7.1)

60

where B denotes a matching N×N block of the current interpolated position; S’

is a set of motion candidates, including
−−→
MVi when i equals 0 to 8;

−−−−−−−→
CMV 4Xi is

the assigned motion vector for 4x images examined for the best matching when i

= 0 for the first 4x interpolated frame and i = 1 for the second 4x interpolated

frame. Two adjacent frames are denoted by f(x,t) and f(x,t+1), where x and t are

spatial and time domain indices. The current 2x interpolated frame is denoted by

f(x,t+1
2
).

MV0 MV1 MV2

MV5MVC4MV3

MV8MV7MV6

(Px, Py)

MV0/2 MV1/2 MV2/2

MV5/2MV4/2MV3/2

MV8/2MV7/2MV6/2

(Px, Py)

x 0.5

4x refinement by examining SAD value on 9 MVs

CMV_4Xi

(Px, Py)

MV Field on Frame t+1/2

MV Field on Frame t+1/4 or Frame t+3/4

Figure 7.6: Proposed MEMC method with motion refinement to achieve 4x Frame
Rate Up Conversion.

Fig. 7.7 demonstrates an example of how 4x true motion refinement can

reduce artifacts from the broken object in Fig. 7.4. The first step is to search true

motions (1) for 2x frame rate images by MEMC method. Secondly, the MVF for

4x frame rate images (frame t+1/4 and frame t+3/4) take half of motion vectors

from 2x frame rate images (2). The third step is to interpolate the 2x frame rate

images with 2x true MVF (3) based on the original images before generating 4x

frame rate images. The fourth step is to refine 4x true MVF with Eqn. (7.1) and

assign a motion vector for each block (4). The final step is to interpolate 4x frame

61

rate images with 4x assigned true motion field (5) based on one original image and

one 2x frame rate interpolated image. Comparing Fig. 7.7 with 7.4, MEMC with

the proposed 4x refinement can approach a more accurate 4x MVF and generate

more precise 4x interpolated images because the proposed refinement method takes

more neighboring motion vector candidates into account and thereby improving

the visual quality when compared with the motion trajectory method.

0.50.5

Frame t Frame t+1

Frame t Frame t+1Frame t+1/2Frame t+1/4 Frame t+3/4

(4)

Refine

motion

(4)

Refine

motion

(1)

Search motion

(5)

Interpolate

(5)

Interpolate

(2)

(3)

Interpolate

(2)

Figure 7.7: Proposed MEMC method with motion refinement to achieve 4x frame
rate up conversion.

There is another technique, Relative Motion Estimation (RME), included

in the 4x proposed method. The problem is shown in Fig. 7.8(a) when the true

motion vector is out of the searching window w(t). There are several methods

that can solve this problem. The first one is to increase the search range, but the

computational complexity also become dramatically higher. Additionally, a larger

searching window reduces the accuracy of true motion search. The second method

62

is to repeat or average the block when the true motion search engine cannot find a

reliable motion vector. It avoids broken images or objects when the selected motion

vector is incorrect, but the visual quality will still be blurred. The third method

or our proposed searching method, Relative Motion Estimation (RME), is shown

in Fig. 7.8(b). We assume that any object should have a smaller acceleration than

its velocity, and RME is a good method to track the motion if the acceleration is

smaller than the RME search range, especially for a rapidly panning scene. Fig.

7.8(b) shows how a larger motion vector can be found by using RME. RME will

check the PSAD value when searching, and the motion vector will revert to zero

motion (average the block) if the PSAD value is larger than the error threshold

value, T RME Error. RME algorithm for updating motion vector can be stated

by

do

{

t = 0;

if PSAD(t) < T RME Error

−→mv(t) =
−−→
mv′(t) + −→mv(t − 1);

else

−→mv(t) = (0, 0);

t + +

}

while(t! = last)

The proposed RME method searches true motion vectors based on previous

motion at the same block position from the previous 2x interpolated frame process-

ing. Hence, if the new motion vector of the current interpolated block is the same

as that of the previous block, the current motion vector,
−−→
mv′(t), will be set as (0,0),

and −→mv(t) will be
−−→
mv′(t)+−→mv(t-1)=−→mv(t-1). If the RME engine finds a reliable

−−→
mv′(t) within the searching window, the current −→mv(t) will be

−−→
mv′(t)+−→mv(t-1). If

the RME engine cannot find any reliable motion vector within the searching range,

63

the current −→mv(t) will be set (0,0).

w (t)

True Motion

(a)

mv (t-1) = (0,0)

w (t)

mv' (t) =

(mv_x0,mv_y0)

w (t+1)

mv' (t+1) =

(mv_x1,mv_y1)

w (t+2)

mv' (t+2) =

(mv_x2,mv_y2)

w (t+3)

mv' (t+3) =

(mv_x3,mv_y3)

mv (t+3) =

(mv_x3+mv_x2+mv_x1+mv_x0,

mv_y3+mv_y2+mv_y1+mv_y0)

(b)

Figure 7.8: (a) Normal true motion vector search. (b) Relative true motion vector
search.

7.3 Proposed Architecture Design for High Frame

Rate Processing

Several modules are included in the proposed 4x system architecture which

is shown in Fig. 7.9. This architecture implements and simplifies the proposed

processing flow shown in Fig. 7.5. The additional module in the system archi-

64

tecture is 4X Motion Compensator, which generate each interpolated block for

4x inserted frames and write back to the external memory through the system

memory controller. Due to 4x MCFI processing, the size of some internal buffers,

including Reference Buffer, Temporal Parameter Buffer, and Motion Vector Field

Buffer, should be enlarged for appropriate operations. The Filtering Buffer has no

need to be enlarged because it does not change in the proposed 4x MCFI process.

Reference

Buffer

2X Motion

Compensator

Deblocking

Filter

Motion Vector

Field Buffer

Spatial

Parameter

Generator

Temporal

Parameter

Generator

Temporal

Parameter

Buffer

Filtering

Buffer

System Memory Controller

External Memory

System Parameters

True Motion Engine

4X Motion

Compensator

Figure 7.9: System block diagram of the proposed 4x MCFI architecture.

The true motion engine, shown in Fig. 7.10, is the core of the proposed

MCFI algorithm. It searches for true motions for motion compensation based on

two original reference frames and motion information from the temporal and spatial

domains. After determining true motion for current 2x interpolated frames, the

4X Refine Engine takes these selected motion vectors and refines them as motion

vectors for 4x interpolated frames. Because there are two 4x interpolated frames

required for processing, two pairs of 4XR Cal (4x Refining Calculator) and 4XR

Cpr (4x Refining Comparer) are designed in the proposed architecture in Fig.

7.10. 4XR FSM (4x Refining Finite State Machine) controls the pipeline flow

and fetches the data for processing. The blocks enclosed by the red border are

additional functional blocks to process 4x Frame Rate Up Conversion.

65

MSEA

PE0

MSEA

PE4

MSEA

PE1

MSEA

PE5

MSEA

PE2

MSEA

PE6

MSEA

PE3

MSEA

PE7

MSEA

Cal

MSEA

Cpr

Motion Estimator FSM

Reference Data

True Motion Engine

MSEA Engine PSAD Engine

PSAD

Cal

PSAD

Cpr

PSAD

Anyzr

MV

Selector

MSEA

FSM

PSAD

FSM

Temporal

Parameters
Motion Vector DataSystem Parameters Spatial Paramters

4X Motion

Compensator

4X Refine Engine

4XR

Cal

4XR

Cal

4XR

Cpr

4XR FSM

2X Motion

Compensator

4XR

Cpr

SUBR Engine

SUBR

Cal

SUBR

Cpr

SUBR

FSM

PREF Engine

PREF

Cal

PREF

Cpr

PREF

FSM

4x MEMC Processing

Figure 7.10: Block diagram of the proposed 4x true motion engine.

7.4 Experimental Results

In this section, several test sequences, FLIGHT (1080p), PRODUCERS

(1440×960), CAMCUT (VGA), and STATE (1080p), are processed with the pro-

posed 4x MCFI method. Visual quality of these test sequences will be shown with

two successive original frames, one 2x interpolated frame, and two 4x interpolated

frames. We will zoom in on a specific area of each visual quality result so as to

clearly observe the change over time. We also compare the proposed RME 4x

methods with the original processing method when the motion vectors are larger

than the search range from (0,0). By comparing with the results of normal search-

ing strategy without skipping or skipping with averaging the images, the proposed

method using RME can provide better visual quality when RME method can track

the acceleration change within the RME search window.

Fig. 7.11 shows an example of the proposed 4x MCFI processing on FLIGHT

(1080p). Fig. 7.11(a) and (e) are two original and successive frames from the test

66

sequence, and Fig. 7.12(a) and (e) zoom in on the specific area of a seabird in

order to observe the shape change. From these images, both wings spread and

move from 7.12(a) to (e). Fig. 7.11(c) and 7.12(c) show the result of the 2x in-

terpolated frame, and Fig. 7.11(b)(d) and 7.12(b)(d) show the results of the 4x

interpolated frames. These demonstrate that the proposed 2x and 4x MCFI meth-

ods can successfully track the motion and generate the intermediate stages from

Fig. 7.11(a) to (e). Fig. 7.13-7.18 show the processed results of the proposed 4x

MCFI processing on PRODUCERS (1440×960),CAMCUT (VGA), and STATE

(1080p).

Fig. 7.19 and 7.20 show the artifacts when processing on the same original

frames in Fig. 7.17 if the proposed method does not perform Relative Motion

Estimation (RME). Fig. 7.19(b) and 7.20(b) present the results of the normal

motion search window without RME on the 2x interpolated frame. Because the

motions from Fig. 7.17(a) to (e) are larger than our predefined searching window

[-30,+30] based on zero motion [0,0], it is impossible to find true motions in this

case. Hence, Fig. 7.19(b) shows a lot of broken blocks and artifacts with incorrect

motions, and the same situation occurs on Fig. 7.19(a) and (c). When the pro-

posed method fails to find reliable true motion vectors, it may either repeat the

previous images or average from two original successive frames for 2x interpolated

frames and then average from one original frame and one averaged 2x interpolated

frame to generate 4x interpolated frames. The latter results are demonstrated in

Fig. 7.19(d)(e)(f). No matter which interpolation method the proposed method

adopts for these incorrect motions, it cannot recover a clear interpolated frame.

Therefore, this example demonstrates that RME can find the true motion when

its acceleration is smaller than the RME searching window, which allows it to

generate unblurred images.

7.5 Acknowledgement

Portions of Chapter 7 appear in “High Frame Rate Motion Compensated

Frame Interpolation in High-Definition Video Processing,” Yen-Lin Lee and Truong

67

Nguyen, submitted to IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), March 2010. The dissertation author was the primary

author of these publications, and the listed co-author directed and supervised the

research that forms the basis for this chapter.

68

(a) (b)

(c) (d)

(e)

Figure 7.11: The proposed 4x MCFI Processing in FLIGHT (a) original frame 924,
(b) 4x interpolated frame 925, (c) 2x interpolated frame 926, (d) 4x interpolated
frame 927, (e) original frame 928.

(a) (b) (c) (d) (e)

Figure 7.12: Zoom in on the proposed 4x MCFI Processing in FLIGHT (a) original
frame 924, (b) 4x interpolated frame 925, (c) 2x interpolated frame 926, (d) 4x
interpolated frame 927, (e) original frame 928.

69

(a) (b)

(c) (d)

(e)

Figure 7.13: The proposed 4x MCFI Processing in PRODUCERS (a) original
frame 400, (b) 4x interpolated frame 401, (c) 2x interpolated frame 402, (d) 4x
interpolated frame 403, (e) original frame 404.

(a) (b) (c) (d) (e)

Figure 7.14: Zoom in on the proposed 4x MCFI Processing in PRODUCERS (a)
original frame 400, (b) 4x interpolated frame 401, (c) 2x interpolated frame 402,
(d) 4x interpolated frame 403, (e) original frame 404.

70

(a) (b)

(c) (d)

(e)

Figure 7.15: The proposed 4x MCFI Processing in CAMCUT (a) original frame
132, (b) 4x interpolated frame 133, (c) 2x interpolated frame 134, (d) 4x interpo-
lated frame 135, (e) original frame 136.

(a) (b) (c) (d) (e)

Figure 7.16: Zoom in on the proposed 4x MCFI Processing in CAMCUT (a)
original frame 132, (b) 4x interpolated frame 133, (c) 2x interpolated frame 134,
(d) 4x interpolated frame 135, (e) original frame 136.

71

(a) (b)

(c) (d)

(e)

Figure 7.17: The proposed 4x MCFI Processing in STATE (a) original frame 1580,
(b) 4x interpolated frame 1581, (c) 2x interpolated frame 1582, (d) 4x interpolated
frame 1583, (e) original frame 1584.

(a) (b) (c) (d) (e)

Figure 7.18: Zoom in the proposed 4x MCFI Processing in STATE (a) original
frame 1580, (b) 4x interpolated frame 1581, (c) 2x interpolated frame 1582, (d) 4x
interpolated frame 1583, (e) original frame 1584.

72

(a) (b)

(c) (d)

(e) (f)

Figure 7.19: 4x MCFI comparisons with incorrect motions and image averaging in
STATE (a) 4x interpolated frame 1581 with incorrect motions, (b) 2x interpolated
frame 1582 with incorrect motions, (c) 4x interpolated frame 1583 with incorrect
motions, (d) 4x interpolated frame 1581 with averaging, (e) 2x interpolated frame
1582 with averaging, (f) 4x interpolated frame 1583 with averaging.

(a) (b) (c) (d) (e) (f)

Figure 7.20: Zoom in on the 4x MCFI comparisons in STATE (a) 4x interpolated
frame 1581 with incorrect motions, (b) 2x interpolated frame 1582 with incorrect
motions, (c) 4x interpolated frame 1583 with incorrect motions, (d) 4x interpolated
frame 1581 with averaging, (e) 2x interpolated frame 1582 with averaging, (f) 4x
interpolated frame 1583 with averaging.

8 Conclusions

In this dissertation, a novel, fast, and efficient method with a well-designed

architecture is proposed for Motion Compensated Frame Interpolation (MCFI).

Our method employs a unique true motion engine with an adaptive Overlapped

Block Matching Algorithm (OBMA), Multi-Directional Enlarged Matching Algo-

rithm (MDEMA), and one-pass processing. The proposed architecture employs a

modified Multi-level Successive Eliminate Algorithm (MSEA), which greatly re-

duces computational expense.

Each technique of the proposed methods is separately discussed via system

analysis and profiling. We examine each component’s contribution and process

loading in the proposed MCFI design. In addition to normal double Frame Rate

Up Conversion, one high Frame Rate up Conversion method is proposed. Exper-

imental results show that the proposed algorithm provides better video quality

than conventional methods and shows satisfying performance to cope with 30fps

HD1080p video at 180 MHz or 30fps 720p video at 83MHz.

73

A Analysis and Efficient

Architecture Design for VC-1

Overlap Smoothing and In-loop

Deblocking Filter

A.1 Introduction

VC-1 [33] is a video codec specification that has been standardized by the

Society of Motion Picture and Television Engineers (SMPTE) and adopted in

next-generation optical media formats, such as HD-DVD and Blu-ray. Although

the basic functionality of VC-1 adopts a block-based motion compensation and

spatial transform method similar to that used in other video compression tech-

niques, VC-1 introduces several techniques and optimization that make it distinct

in coding efficiency, frame quality, and computational complexity from the ba-

sic compression scheme. Comparing to H.264/AVC [32], the design approach of

VC-1 lowers computational complexity without significant performance loss since

H.264/AVC uses many complex techniques to improve visual quality. Lower com-

plexity leads to practical architecture, lower cost, and less power consumption and

heat dissipation. Although VC-1 operates at lower complexity, it still approaches

a compression ratio similar to H.264/AVC [38]. Fig. A.1 shows the encoding loop

of a VC-1 codec.

An in-loop deblocking filter is frequently used to increase coding efficiency

74

75

Frame N

(current)

Motion

Estimation Motion

Compensation

Transform Quantize
Zig-zag

Scan

Entropy

Coding

Frame N-1
(reconstructed)

Inverse

Transform

Inverse

Quantize

Overlap

Smooth
(intra coding)

In-loop

Deblocking

Filter

Intra

Coefficient

Prediction

Motion

Vector

Prediction

intra coding

intra coding
inter coding

+

+

+

+

-

+

+

-

+

+

Figure A.1: Encoding loop of VC-1 codec.

and remove blocking artifacts [39]. Besides an in-loop filter, VC-1 also includes an

overlap smoothing filter for smoothing real blocking artifacts [40]. However, the

procedures of these two filters in VC-1 are both arranged in frame-based orders,

which means that all horizontal edges (for in-loop filtering) or vertical edges (for

overlap smoothing) should be performed first and followed by the vertical edges

(for in-loop filtering) or horizontal edges (for overlap smoothing). Although there

are many well-designed methods and architecture designs that specifically deal

with loop filtering in a macroblock-based order [41][42][43][44][45], none of them

is appropriate for VC-1 frame-based filtering. The reason is that these methods

fail to filter all edges within the current macroblock due to the problem of data

dependency in VC-1. According to VC-1 filtering procedure, in-loop filtering, for

example, should be performed on horizontal edges prior to vertical edges. That

is, it is difficult to filter all internal edges while relying on previous methods.

In addition, the procedure of overlap smoothing, filtering vertical edges prior to

horizontal edges, is also different from in-loop deblock filtering, in which the order

is reversed. If these previous methods are applied directly to a VC-1 deblocking

filter, they could cause many unnecessary processing cycles and inefficient memory

access.

According to our analysis of VC-1 filters, including overlap smoothing and

loop filtering, we propose a method and process them in a proposed block-based

order different than the original frame-based order in the VC-1 standard for bet-

76

ter data access and processing efficiency. To efficiently perform VC-1 filtering, we

define a 12×12 overlapped block and process both overlap smoothing and loop

filtering within it. This method works with the proposed architecture to perform

VC-1 deblocking filtering in a block-based order but not in a frame-based order

so as to pipeline with the block reconstructing step. It also combines two VC-1

filters in order to improve the performance and reduce the cost by sharing circuits

and resources. However, this technique requires additional memory access and

increases on-chip memory size as compared to normal macroblock-based in-loop

filters, such as H.264/AVC deblocking filter. For this reason, we propose two other

processing methods, multiple macroblock processing order and modified chromi-

nance processing order, to reduce the overhead of these system resources. These

two proposed methods lower the requirement of system resources by changing the

entire processing order for the block reconstruction and filtering steps.

A.2 Deblocking Filters in VC-1

A.2.1 Overlap Smoothing

Overlap smoothing is a technique used to reduce blocking artifacts in intra

data by means of a lapped transform [40]. This operation should conditionally be

performed across the edge of two neighboring intra blocks, for both the luma and

chroma data. Unlike normal in-loop filters that may blur real edges or lose some

details because these filters receive the data after inverse quantization, inverse

transform, and reconstructing blocks; overlap transform performs a pre-processing

step in the spatial domain during the encoding procedure and a post-processing

step following inverse transform during the decoding procedure.

Overlap smoothing is performed on vertical edges first and then horizontal

edges in a specific order within a frame or slice. This post-processing overlapped

filter acts on four pixels straddling either the vertical or horizontal edge of a block.

This operation will be carried out on the unclamped 10-bit reconstructed pixels. In

other words, the input to the overlap smoothing process is the inverse transformed

77

spatial block of pixels whose dynamic range is 10 bits. This is necessary because the

forward process associated with overlap smoothing can result in range expansion

beyond the permissible 8 bit range for pixel values. For pixels performed in both

vertical and horizontal filtering procedures, the intermediate result after vertical

edge filtering is retained at the full precision of 11 bits. This data width is for 10

bits input data plus one bit worst case range expansion. Subsequent to filtering,

the constant value of 128 will be added to each pixels of the block, which will then

be clamped to the 8-bit range to produce the reconstructed output.

A.2.2 In-loop Deblocking Filter

An in-loop deblocking filter is also used for removing block-boundary dis-

continuities introduced by quantization errors in interpolated frames. This filtering

operation should conditionally be performed on each reconstructed frame or slice.

It is performed prior to using the reconstructed frame as a reference for motion

predictive coding. Because this filtering acts to smooth out the discontinuities at

block boundaries, the process operates on the pixels that border two neighboring

blocks. For I or B picture, filtering boundaries occur at every 8th, 16th, 24th, etc.

pixel row and column. For P picture, the filtering boundaries may occur at every

4th, 8th, 12th, etc. pixel row or column depending on whether an 8×8, 8×4, 4×8,

or 4×4 inverse DCT transform is used. Moreover, all blocks or subblocks that

have a boundary along the 8th, 16th, 24th, etc. horizontal lines should be filtered

first. All subblocks that have a horizontal boundary along the 4th, 12th, 20th, etc

horizontal lines should be filtered later. I, B, and P interlace frame deblocking

orders are different from the progressive deblocking orders and are defined in the

VC-1 standard [33].

Fig. A.2 shows an example for all filtered edges relative to the luma data of

a macroblock. For an I or B progressive frame, the loop filtering procedure would

be H0, H1, H2, V 0, V 1, and V 2. For a P progressive frame, the loop filtering

procedure would be H0, H1, H2, h0, h1, V 0, V 1, V 2, v0, and v1. Comparatively,

the overlap smoothing procedure would be V 0, V 1, V 2, H0, H1, and H2. These

78

V0 V1 V2v0 v1

H0

H1

H2

h0

h1

4

4

Figure A.2: All filtered edges relative to the luma data of a macroblock.

two filters have different processing order.

A.3 Proposed Deblocking Processing Method in

VC-1

The VC-1 filtering procedure is very time-consuming and requires signifi-

cant memory access loading for the entire system. It is also difficult to pipeline

filters with block reconstruction because the specified order of VC-1 cannot ap-

ply the filtering procedure one block/macroblock at a time. In this section, we

propose several efficient methods to improve the filtering procedure, reduce the

processing time, pipeline filtering operations, and greatly reduce memory access.

In our methods, overlap smoothing operations are closely followed by loop filtering

operations within an overlapped block for sharing common circuitry and reducing

unnecessary memory access.

A.3.1 Integrated Modified Processing Order

Our block-based procedure adopts a 12×12 overlapped block as our basic

filtered block size. Fig. A.3 shows a 12×12 overlapped block, including a filtering

area and an overlapped area. The filtering area is the region within the bold

square, which is an 8×8 block within a macroblock, and the rest is the overlapped

79

area, which may be partially filtered for the current overlapped block. Other

overlapped blocks will complete all filtering operations for this area afterward.

This proposed overlapped block is employed as a common processing field for both

overlap smoothing and loop filtering.

4

4

Figure A.3: A 12×12 overlapped block. The bold square defines an 8×8 block
(luma or color-difference block) within a macroblock.

Two modified processing orders for overlap smoothing and loop filtering

are proposed in Fig. A.4. Fig. A.4(a) shows an overlap smooth processing order

applied to an overlapped block. Any edge with a predefined index in the figure

could be a filtered edge during processing. A filtered edge with a smaller index

should be performed prior to that with a larger index. That is, the filtered edge

with index 1 should be filtered first, and the edge with index 2 will be filtered

successively, and so on. However, not every predefined edge should be filtered.

Edge 1 of an overlapped block could be edge 3 of the top neighboring block, and

edge 4 also could be edge 6 of the left neighboring block. If these edges are filtered

by a previous overlapped block, they cannot be filtered again. When pixels of the

block are completely filtered by overlap smoothing operations, the constant value

of 128 should be added to each pixel and then be clamped to the 8-bit range for

producing the reconstructed output before loop filtering. VC-1 only supports 4:2:0

chromatic format, so each 16×16 macroblock is composed of six 8×8 blocks, four

luma (Y) blocks and two chroma (Cb and Cr) blocks.

Fig. A.4(b) shows a loop filtering processing order applied to an overlapped

block. The edge of loop filtering could be any boundary of the 4×4 block because of

different transform types (8×8, 8×4, 4×8, or 4×4) within a macroblock. Similarly,

80

a filtered edge with a smaller index should be performed earlier than that with a

larger index. Edge 1 and edge 4 are edge 3 and edge 6 of the left neighboring block,

and the current loop filtering operation should not be processed redundantly.

1

2

3

4 5 6

4

4

1 2 3

4 5 6

7

8

9

10

4

4

(a) (b)

Figure A.4: Fundamental processing order. (a) Overlap smooth processing order
applied to an overlapped block. (b) Deblocking filter processing order applied to
an overlapped block.

Based on these two basic modified processing orders for an overlapped block,

the proposed method employs the common pixels that technically accomplish the

integration of two different filtering operations of VC-1. Every pixel after perform-

ing the first modified processing order should already be overlap-smoothed and

clamped to an 8-bit value. The other processing order of loop filtering could be

followed without any additional memory access. Fig. A.5 shows a processing flow

of an overlapped block. First, unfiltered pixels are read from external memory

or on-chip memory buffer, and all information and parameters are prepared. Sec-

ond, a modified processing order for overlap smoothing is performed. Third, pixels

of intra blocks are added with the constant value of 128 and clamped to 8 bits.

Fourth, the other modified processing order for loop filtering is executed. Lastly,

filtered pixels are output to external memory or the on-chip memory buffer.

Read

Processing

Pixels

Perform

Overlap

Smoothing

Filter

Add 128

and Clamp

Data for

Intra Block

Perform

Loop

Deblocking

Filter

Write Out

Processed

Pixels

Figure A.5: Simple processing flow of an overlapped block.

81

A.3.2 Pipeline Processing by Moving Macroblock Position

One important reason that the proposed method attempts to modify the

original processing order to a block-based procedure is to pipeline the filtering step

with the reconstruction step. Nevertheless, it fails to filter all edges within the

current macroblock because some filtering edges should not be performed prior to

particular edges on the boundary between the current macroblock and neighboring

unreconstructed macroblock. Fig. A.6 demonstrates an example to show the data

dependency problem within a reconstructed macroblock. Edges a, b, c, and d

should be processed prior to edge f when performing overlap smoothing. However,

edges c and d cannot be filtered due to the unavailable pixels right of the current

macroblock while the current macroblock is being reconstructed. Similarly, edges

e, f, g, and h should be processed prior to edge b when performing loop filtering.

Edges g and h cannot be filtered right away due to the lack of pixel information

below the current macroblock.

c

d

f

hg

a

b

e

8

8

Figure A.6: 8×8 edges within a reconstructed macroblock. For overlap smoothing,
edges a, b, c, and d should be filtered prior to edge f. For in-loop filtering, edges
e, f, g, and h should be filtered prior to edge b.

In our method, the position of a filtered macroblock is shifted to a new

position by 8 pixels in the x-axis (left) and 8 pixels in the y-axis (up) on a frame

or slice from the position of a current macroblock for both luma and chroma data.

Fig. A.7(a) demonstrates a current reconstructed macroblock within luma data,

and the position of the first pixel in this macroblock is located at (m , n). Hence,

the position of the first pixel in the filtered macroblock would be located at (m-8 ,

82

n-8) shown in Fig. A.7(b) when both the top macroblock and the left macroblock

exist. When the left neighboring macroblock does not exist, the first and third

blocks, i.e., two left blocks marked with 0 and 2, of a filtered macroblock do not

exist either. When the top neighboring macroblock does not exist, the second and

fourth blocks, i.e., two top blocks marked with 0 and 1, of a filtered macroblock

do not exist either. If the current macroblock is the first in a frame or slice, only

the fourth block, the bottom-right block marked with 3, of a filtered macroblock

exists. Fig. A.7(c) shows all 4×4 input blocks when filtering a filtered macroblock.

The proposed method separates a filtered macroblock into four basic overlapped

blocks shown in Fig. A.7(d), which can be performed by our proposed modified

processing orders for both overlap smoothing and loop filtering.

0 1

2 3

(m , n)

y-axis

x-axis
4

4

0 1

2 3

(m-8 , n-8)

y-axis

x-axis

4

4

(a) (b)

0 1

2 3

4

4

0 1

2 3

4

4

4

4

4

4

4

4

(c) (d)

Figure A.7: (a) A current reconstructed macroblock. (b) A moving filtered mac-
roblock with the current macroblock. (c) All 4×4 input blocks for a moving filtered
macroblock. (d) Four separated overlapped blocks from the filtered macroblock.

83

Fig. A.8(a) shows a processing flow for reconstruction and filtering within

a frame or slice. First, macroblock-layer parameters are previously provided by

software from the external memory buffer, which is usually implemented on DDR-

SDRAM or DDR2-SDRAM. Next, a macroblock is reconstructed, and then the

related moving macroblock is filtered. The precedure will repeat these steps until a

frame or slice is finished. Fig. A.8(b) shows the pipeline schedule during the period

of performing a reconstructed macroblock and a filtered macroblock. The first

filtered 8×8 overlapped block has to wait until the first 8×8 reconstructed block

completes. The basic schedule of a macroblock is combined with other macroblocks

to accomplish the entire schedule of a frame or slice.

A.3.3 Single and Multiple Macroblock Processing Order

After defining the processing order within a macroblock, we analyze and

modify the processing order within a frame or slice in this section. Fig. A.9(a)

shows a single processing order processing a macroblock following the most recent

macroblock in a normal raster order. Two chroma 8×8 blocks are followed with

four luma blocks when processing a 4:2:0 macroblock. In the proposed method, we

need the temporal data buffer to store partially filtered or unfiltered pixels. There

are two types of buffer: the temporal data buffer implemented by on-chip SRAM

that stores short-term pixels for the current macroblock and the next macroblock;

and the temporal data buffer allocated in external memory that stores long-term

pixels for the next macroblock row. Data processing operations for processing a

reconstructed macroblock and a filtering macroblock for luma data are shown in

Fig. A.10. The data of the top three 8×8 blocks in Fig. A.10 are temporal neigh-

boring read data, which are partially filtered by previously filtered macroblocks.

The data of the bottom three 8×8 blocks in Fig. A.10 are temporal neighboring

write data, which will partially be filtered by current macroblock and written back

into the temporal data buffers. If there is no more filtering required in this area,

the system will write this data into the decoded picture buffer of the external

memory as the future reference data or for displaying. The data of the top-left

84

Current

Macroblock

Reconstruction

Read Macroblock

Layer Parameters

Moving

Macroblock

Filtering

Start a Frame or

Slice

End a Frame or

Slice

Finish a

Frame of

Slice

Yes

No

(a)

D0 D1

D2
D3
R0 R1

R2

Y

D4 D5

R4 R5

Cb Cr

R3

R0 R1 R2 R3 R4 R5

D0 D1 D2 D3 D4 D5

T0 T1 T2 T3 T4 T5

-

-

T6Time

Reconstruction

Filtering

8

8
8

8

8

8

(b)

Figure A.8: (a) Data processing flow of a frame or slice. (b) Pipeline time schedule
of a reconstructed macroblock and a filtering macroblock.

four 8×8 blocks in Fig. A.10 will be filtered pixels and will be written into the

decoded picture buffer. The data of the bottom-right four 8×8 blocks in Fig. A.10

are the reconstructed pixels. The procedure for chroma data is similar to that

for luma data. In our method, we adopt an external buffer to store long-term

”Temporal Neighboring Data” instead of the local buffer although some papers

propose H.264/AVC deblocking filter design [46][47] adopt the local memory to

store huge temporal data in order to reduce memory access cycle. While it reduces

memory access cycles, it also requires a large amount of SRAM when processing a

85

high resolution frame because the buffer size depends on the width of the frame.

Consider 1080p (1920×1080) for example: the width of frame is 1920 pixels, and

the buffer size would be 15.36 KB (1920 x 2 x 32bits) for 8-bit pixel data. For

practical reasons, we remove this buffer and allocate a data buffer in the external

memory. This external memory buffer size could be the width of the picture mul-

tiplied by the data size of 8 pixels and then multiplied by 2 (for both luma and

chroma data): Data Buffer Size = Frame Width × Pixel Size × 8 × 2. Reference

[48] also adopts external memory to store temporal data.

According to the single processing order in Fig. A.9(a), the data (usually

the third (Y2), fourth (Y3), fifth (Cb), and sixth (Cr) blocks of a reconstructed

macroblock) will be written into temporal data buffers after reconstruction and

partial filtering. It means that this system has almost one-half of luma data and

all chroma data in a frame that should be written when processing the current

macroblocks and read back again when processing future macroblocks.

Generally speaking, several parts of the decoding process will be imple-

mented in hardware. They are Parser, Variable Length Decoder (VLD), Inverse

DCT (IDCT), Motion Compensation (MC), and Deblocking Filter (DF). For cal-

culation issues, the system loading of the last three parts is much larger than the

other two parts if we perform these tasks with a software implementation. Al-

though the loading of the first two parts is not large, many hardware resources are

required to implement them, especially for dealing with countless VLC tables and

registers of parsing syntax in H.264 or VC-1. It will be more efficient to perform

these two parts with a software solution. This is why many architecture designs

choose a combination of MC and DF or a combination of IDCT, MC, and DF

for hardware implementation if they plan to economically use hardware resource.

Before modifying the processing order within a frame or slice, we assume that the

software takes charge of syntax decoding and VLD, and we assume the relative pa-

rameters are decoded prior to reconstruction and filtering a current frame by the

hardware. While the hardware processes a current frame, the software is decoding

all parameters and information for the next frame. For example, when hardware

is processing frame n, software processes processed frame n+1 or successive frames

86

so as to pipeline the computation. The latency will be slightly increased as hard-

ware operation may be initialized only after software has already processed several

frames. Based on this approach, we propose the multiple macroblock processing

order as an alternative single macroblock processing order.

(a) (b)

Figure A.9: (a) Single macroblock processing order. (b) Dual macroblock process-
ing order.

0 1

2 3
Reconstructed Data

Temporal Neighboring Read Data

Filtered Data

Temporal Neighboring Write Data

4
4

Figure A.10: Data processing for a reconstructed macroblock and a filtered
macroblock.

Multiple processing order determines how many vertical macroblocks be-

long to an integrated unit and processes this unit in raster order. If the multiple

processing order adopts two vertical macroblocks (dual blocks) per integrated unit,

the dual macroblock processing order is shown in Fig. A.9(b). In this case, we

reduce memory access from one-half to one-fourth of luma data and from one to

87

one-half of chroma data for a frame. In addition, no penalty is incurred for external

memory size. Similarly, we can design our processing order in triple macroblock

processing order and then reduce memory access from one-half to one-sixth of

luma data and from one to one-third of chroma data. However, if we select more

macroblocks into an integrated unit, we then require a larger on-chip memory size

to implement. Regardless, it is still necessary to use more on-chip memory to mit-

igate memory loading issues when the bandwidth of system memory is limited for

the overall system.

A.3.4 Modified Chrominance Processing Order

Current

Macroblock

Reconstruction for

Luma (Y)

Read Macroblock

Layer Parameters

for Luma (Y)

Moving

Macroblock

Filtering for Luma

(Y)

Start a Frame or

Slice

End a Frame or

Slice

Finish a Frame

of Slice for luma

(Y)

Yes

No

Yes

No

Read Macroblock

Layer Parameters

for Chroma (Cb)

Finish a Frame

of Slice for

Chroma (Cb)

Yes

No

Read Macroblock

Layer Parameters

for Chroma (Cr)

Finish a Frame

of Slice for

Chroma (Cr)

Current

Macroblock

Reconstruction for

Chroma (Cb)

Moving

Macroblock

Filtering for

Chroma (Cb)

Current

Macroblock

Reconstrucchtion

for Chroma (Cr)

Moving

Macroblock

Filtering for

Chroma (Cr)

Figure A.11: Separated data processing flow for a picture or slice.

88

In order to go a step further in reducing external memory access cycles

and on-chip memory size, we propose another modified processing order. Since

a normal processing order alternately performs reconstructing steps and filtering

steps among Y, Cb, and Cr data, it requires larger local memory size to store

temporal data needed for the next macroblock in case it accesses external memory

repetitively. Moreover, due to only one Cb and one Cr 8×8 block being processed

within a macroblock, it also induces many additional memory cycles to perform

processing. For these reasons, we propose reconstructing and filtering luma data

of a frame or slice first, then processing chroma channel, Cb, and lastly processing

the other chroma channel, Cr. This proposed procedure is shown in Fig. A.11.

As we mentioned above, software should take charge of syntax decoding (Parsing)

and Variable-length Decoding (VLD), and the parameters should be decoded be-

fore we reconstruct and filter a current frame or slice. Although software needs to

access more external memory cycles for macroblock-layer parameters due to sepa-

rating information of the three channels, it significantly reduces external memory

cycles for temporal neighboring data. If a designer reorganizes the data format

of macroblock-layer parameters for efficiently reading from memory, the external

memory size may change very slightly for recording parameter information. Oth-

erwise, there is no penalty for external memory size. This new method decreases

local memory size because it only stores one kind of data for luma or chroma

temporal data, and the size of the temporal data buffer in the external memory is

reduced by half. Because of separating the processing procedure for Y, Cb, and Cr,

we share the same architecture to process chroma macroblocks as luma macroblock

and the same amount of local memory. The procedure for chroma data is shown

in Fig. A.12 and called Y-analogous data procedure. Our method simplifies the

decoding procedure and reduces the external memory requirement by one-half for

temporal neighboring chroma data.

89

Figure A.12: Y-analogous data procedure for chroma data.

A.4 Proposed Deblocking Filter Architecture and

Implementation in VC-1

In this section, we prepare an architecture that implements all above pro-

posed methods. Fig. A.13 demonstrates a block diagram of the proposed archi-

tecture performing both overlap smoothing and loop filtering based on an over-

lapped block. A Temporal Data Buffer stores unfiltered reconstructed data from

the Motion Compensation Engine (MCE), unfiltered or partially filtered tempo-

ral neighboring data from external memory, and filtered or partially filtered data

from our proposed integrated filter. MCE takes charge of reconstructing intra- or

inter-coded blocks. The External Memory Controller manages read/write cycles

from/to external memory, such as DDR2-SDRAM or DDR3-SDRAM. Both MCE

and our proposed integrated filter connect with System Controller which has a

HW/SW system interface, such as Memory-mapped I/O (MMIO), for communi-

cating with the application or the driver. The Filter Control Unit is the core of

the proposed integrated filter and includes two major finite state machines: one

controls the flow among different overlapped blocks within a filtered macroblock;

the other one is in charge of the schedule among different filtered edges within an

overlapped block.

Consequently, there are three levels of memory access strategy for the over-

all system. The first level is system memory access. Memory controller takes

unfiltered pixels from system memory (external memory) and saves this data into

on-chip memory. The memory controller also write reconstructed and filtered pixels

90

Temporal Data Buffer

(On-chip SRAM)

Motion Compensation

Engine

External Memory

Controller

Filtering Parameter

Registers

From/to external

memory (SDRAM)

Overlapped

Block

Memory

Structure

System Controller and System Interface

Overlap Smoothing

Filter and Clamp

In-loop

Deblocking Filter

Filtering Control Unit

System Controller and System Interface

Proposed Integrated Architecture for Filtering

Figure A.13: Block diagram of the proposed integrated architecture.

back to system memory for display or storage. The second level is on-chip memory

access. This dual-port on-chip memory (temporal data buffer) stores reconstructed

unfiltered pixels and filtered pixels. The memory controller, Motion Compensation

Engine, and proposed integrated architecture all access data through this on-chip

memory. The third level is local memory access. Two phases, Load and Store, of

processing an overlapped block will use synthesized dual-port local memory (Over-

lapped Block Memory Structure) to access the data of on-chip memory. With the

exception of these two phases, local memory will not access on-chip memory. The

data in local memory is used for performing filtering procedures for an overlapped

block. These three levels are shown in Fig. A.14.

Before filtering an overlapped block, this architecture receives the related

parameters previously stored by software in external memory and stores them

in the Filtering Parameter Registers. These parameters are used to determine

whether to perform overlap smoothing, clamping, or loop filtering an edge. The

Overlapped Block Memory Structure is a local buffer storing all pixels within an

overlapped block. The Filter Control Unit controls the Overlap Smoothing Filter

and Clamp and In-loop Deblocking Filter to access input data from the Overlapped

Block Memory Structure and proceed with filtering operations. In this implemen-

91

System

Memory

On-chip

Memory

Local

Memory

Motion

Compensation

Engine

Overlap

Smoothing

Filter

In-loop

Deblocking

Filter

Other

System

Engines

Level 1:

System

Memory

Access

Level 2:

On-chip

Memory

Access

Level 3:

Local

Memory

Access

Figure A.14: Three hierarchical levels of memory access.

tation, each filtering operation (overlap smoothing or loop filtering) uses three

cycles and outputs filtered data into the local memory at the fourth cycle. The

filtering operation of the third pixel pair should be performed first on every edge

of a 4-pixel segment because the result of this operation will determine whether

the other three pixel pairs in the segment are filtered. We attempt to pipeline all

filtering edges in order to reduce the processing time. However, switching differ-

ent vertical and horizontal filtering edges may result in a reduction of data access

speed. For solving this problem and getting input data at every cycle no matter

which horizontal or vertical edge is filtered, our proposed architecture adopts a

specific memory structure to implement the Overlapped Block Memory Structure.

Fig. A.15(a) shows nine 4×4 blocks within an overlapped block. We mark

every other 4×4 block with gray, and filtered edges are the boundaries between

any two different-color 4×4 blocks. Hence, we can separate all 4×4 blocks into

two groups (memory structures L and R) shown in Fig. A.15(b). When Overlap

Smoothing Filter or In-loop Deblocking Filter of Fig. A.13 filters an edge within

an overlapped block, it accesses two pixels (overlap smoothing) or four pixels (loop

filtering) from the L and R groups. Only one 4×4 block of the R or L group is

involved in a filtering operation. A standard memory structure with a width of

32 bits will have several memory lines. Each data line may include for data pixels

92

IHG

ED

BA

F

C

A B

C D

E F

G H

I

L R

(a) (b)

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

Memory Line 0

Memory Line 1

Memory Line 2

Memory Line 3

a0 a1 a2 a3

b0 b1 b2b3

c0 c1c2 c3

d0d1 d2 d3

A0 A1 A2 A3

(c) (d)

A0 A1 A2 A3 B0 B1 B2 B3

C0 C1 C2 C3 D0 D1 D2 D3

E0 E1 E2 E3 F0 F1 F2 F3

G0 G1 G2 G3 H0 H1 H2 H3

I0 I1 I2 I3

L0 L1 L2 L3 R0 R1 R2 R3

(e)

Figure A.15: (a) Nine 4×4 blocks within an overlapped block. Every filtered edge
is the boundary between a gray 4×4 block and a white 4×4 block. (b) Two groups
of memory structure. Filtering of an edge must obtain 4-pixels or 2-pixels data
from each group. (c) Normal pixel mapping within a 4×4 block. (d) Rotated pixel
mapping within a 4×4 block. (e) Proposed memory structure for an overlapped
block including four 20×11bits and four 16×11bits memory structures.

at 8 bits each. In this case, our filters cannot obtain all input pixels in one cycle

when a horizontal filtered edge is encountered. Fig. A.15(c) shows an example

for normal pixel mapping within a 4×4 block. When filtering a horizontal edge,

it accesses a0, b0, c0, and d0 for the input data, and it will spend more cycles

accesses these pixels stored in different memory lines within the same memory

structure. In our proposed architecture, we adopt an efficient method similar to

[49] and rotate the order shown in Fig. A.15(d). We right-rotate by one pixel for

the second row, two pixels for the third row, and three pixels for the last row.

These pixels are separated into four memory structures. For the 4×4 block A of

93

Fig. A.15(a), the data of this block will be allocated into four memory structures

(A0, A1, A2, and A3) shown in Fig. A.15(d). Because a0, b0, c0, and d0 are stored

in different memory structures, the filters can access these pixels simultaneously to

obtain all required input data regardless of whether a horizontal or vertical edge

is selected for filtering. The structure in Fig. A.15(d) applies to all 4×4 blocks of

an overlapped block, so we implement four 20×11bits (L0, L1, L2, and L3) and

four 16×11bits (R0, R1, R2, and R3) memory structures in the Overlapped Block

Memory Structure of Fig. A.13.

Pixel Position Switch for Read Data

L3L0 L1 L2 R0 R1 R2 R3

Left Buffer

Read

Pointers

Right Buffer

Read

Pointers

11 11 11 11 11 11 11 11

11 11 11 11

Current

Filtering

State

11 11 11 11 11 11 11 11

P1_in P2_in P3_in P4_in P5_in P6_in P7_in P8_in

FF

11 11 11 11 11 11 11 11

4x1

1

4x1

1
4x8 4x8

11 11

11 11 11 11

11 11

8 8 88 8 8 8 8

x0 x1 x2 x3

11 11 11 11

Overlapped

Transform

11 11 11

y0 y1 y2 y3

11 11 11

11

FF

11 11 11 11 11 11 11

Add 128 or not

Determination for

a1

P3 P4 P5 P6 P7 P8P1 P2

Determination for

a0

Determination for

a2

8 8 88 8 8 88

4x8 4x8
4x8

4x84x8

Determination for d and clip

4x84x8

a1 a2 a0

Determination for a3

a3

9

9

99

999

11

FF

Clamp to the Range [0 255] or not

11 11 11 11 11 11 1111

11 11 11 11 11 11 1111 d

8

Deblock Smoothing
8 8

8

8

d

8

8 88

8

8 8

11 11 11 11 11 11 1111

Pixel Selection and Position Switch for Write Data

Current

Filtering

State

11 11 11 11

Overlap

Smothing Filter

and Clamp

In-loop Deblocking

Filter

Intra Info

Parameters

Intra Info

Parameters

P4

8

P5

8

clip

8

clip

8

11 11 11 11

L3L0 L1 L2 R0 R1 R2 R3

Left Buffer

Write

Pointers

Right Buffer

Write

Pointers

11 11 11 11

Picture Quantization

Parameter

(PQUANT)

Figure A.16: Data flow of the Proposed Integrated Filter.

Fig. A.16 demonstrates the data flow of our proposed integrated architec-

ture. This data flow begins with the L (L0, L1, L2, and L3) and R (R0, R1,

94

Table A.1: Front-end hardware cost of the proposed VC-1 filter architecture with
TSMC 90-nm multi-Vt technology

Functional Block Gate Counts
Overlap Smooth and Clamp 2956 (12.07%)
In-loop Deblocking Filter 2718 (11.10%)
Filtering Control Unit and Others 5568 (22.74%)
Overlap Block Memory Structure 13248 (54.10%)
Total 24490

R2, and R3) memory structures mentioned above and ends back to themselves

after each filtering operation for overlap smoothing or loop filtering. The Filtering

Control Unit has eight buffer read pointers to operate these memory structures,

and the values of these pointers depend on the current state and which edge is

being filtered. After reading data from the buffer, there are several multiplexers

which rearrange the position of the data for the overlap smoothing filter or in-loop

deblocking filter because the data has been rotated prior to storage in a memory

structure. Four of these eight pixels (P3, P4, P5, and P6) are the input data (x0,

x1, x2, and x3) of overlapped transform. When the pixels complete both horizon-

tal and vertical filtering (or they belong to an intra-coded block without overlap

smoothing), the constant value of 128 is added. The pixels are then clamped to

8 bits for the reconstructed output. All eight pixels from the memory structures

are used for our in-loop deblocking filter. Finally, the output data from the over-

lap smoothing filter or in-loop deblocking filter are rearranged and stored into the

memory buffer. This data flow is repeated until all filtered edge are complete for

a frame or slice.

A.5 Experimental Results and Analysis for the

Proposed VC-1 Deblocking Filter

A.5.1 Implementation and Performance

The specification of the proposed VC-1 filter is capable of HDTV1080p

(1920×1080) 30fps video and HDTV 2048×1536 24fps video at 200MHz. To verify

95

the accuracy and efficiency of the proposed architecture, the proposed integrated

architecture is designed in VHDL and implemented with TSMC 90-nm multi-

threshold voltage technology. The implemented architecture operates with our

VHDL- and C-model, and the result has been verified with the reference VC-1

decoder software. TABLE A.1 shows logic gate count including several functional

blocks and a synthesized memory buffer in the proposed VC-1 filter synthesized

with Cadence RTL complier at 200MHz. Total logic gate count including the syn-

thesized memory buffer is about 24.49 K, and total logic gate count excluding the

memory buffer is about 11.24 K. This synthesized memory buffer is an Overlapped

Block Memory Structure composed of four 20×11bits and four 16×11bits memory

structures with separated read/write ports, and it occupies 54.1% of the total area.

After back-end routing and optimization using Cadence SOCE, the core area of

proposed architecture without I/O Pads is 291µm × 264µm, and the die area is

311µm × 284µm. The core utilization rate is 0.894 based on 8-levels metal layout.

Table A.2: Processing time of the proposed VC-1 filter architecture

Type (Worst Case) Cycles Time Required Time

One Overlapped Block 100 500 ns -

One Filtered Macroblock 607 3035 ns -

1080p, 30fps I, B-frame 3829977 19.15 ms < 33.33 ms

1080p, 30fps P-frame 4771316 23.86 ms < 33.33 ms

2048×1536, 24fps I, B-frame 5767373 28.84 ms < 41.66 ms

2048×1536, 24fps P-frame 7184794 35.92 ms < 41.66 ms

Filtering Control Unit controls the procedure of filtering operations. This

block and the Overlap Block memory Structure share circuitry for two different

filtering blocks. Without an architecture for sharing circuitry, the memory struc-

ture and control unit need to be duplicated, thereby increasing the cost by more

than 70%.

For evaluating performance of the proposed architecture, we create several

worst-case test patterns for I, B or P-frames in the two highest resolutions of

VC-1, 1080p and 2048×1536. When performing these patterns, the filter will

96

Table A.3: Comparison with Different H.264/AVC Deblocking Architectures (The
gate count excludes the local memory.)

Function [43] [44] [47] [50] Proposed

Codec H.264 H.264 H.264 H.264 VC-1 OS + DF

Cycles per MB 240 342 250 96 607

Frequency (MHz) 100 100 100 100 200

Memory (bits) 160×32 140×32 160×32 160×32 4×36×11

Transpose Memory 32×8×2 32×8 32×16 No No

Gate Count 20.6K 11.8K 19.6K 13.9K 11.2K

Process (µm) .25 .18 .18 .18 .09

process every boundary of all 8×8 blocks or 4×4 blocks for two kinds of filters.

TABLE A.2 shows the processing cycles and processing time for different cases.

HDTV1080p 30fps video requires less than 33.33ms of processing time, and HDTV

2048×1536 24fps video requires less than 41.66ms of processing time. Our proposed

architecture meets the requirement even in the worst-case scenario.

Although there is no reference for the architecture of VC-1 filtering, we

compare our proposed architecture with several different architecture designs for

the H.264/AVC deblocking filter and show these comparisons in TABLE A.3. From

this table, our architecture requires more cycles for one macroblock than previous

architectures for H.264. This is because our architecture encounters more difficult

problems and processes two different VC-1 filtering operations at the same time. In

addition, our architecture operates at a higher clock frequency. However, our local

memory size (Overlapped Block Memory Structure) is smaller than is required by

other methods. The reason is that our method deals with the processing procedure

one block at a time while all previous H.264 architectures deal with the entire

macroblock at once.

A.5.2 Resources Analysis

Besides efficiently processing overlap smoothing and loop filtering, one im-

portant design approach of our proposed method and architecture is to reduce

97

Table A.4: Analysis of external memory bandwidth for a worst-case 1080p 4:2:0
P-frame (without Overlap Smoothing)

Software Method 1 Method 2 Method 3 Method 4
Required SRAM - 1.088 KB 0.448 KB 1.452 KB 0.576 KB
Multiple MB - Single Single Dual Dual
Modified CbCr - No Yes No Yes
Write After MC 3.13 MB 2.06 MB 1.53 MB 1.01 MB 0.75 MB
Read for DB 12.49 MB 2.06 MB 1.53 MB 1.01 MB 0.75 MB
Write After DB 3.12 MB 3.13 MB 3.13 MB 3.13 MB 3.13 MB
Total Access 18.74 MB 7.25 MB 6.21 MB 5.16 MB 3.28 MB

Table A.5: Analysis of external memory bandwidth for a worst-case 1080p 4:2:0
I-frame (Overlap Smoothing and In-loop Filtering)

Software Method 1 Method 2 Method 3 Method 4
Required SRAM - 2.176 KB 0.976 KB 2.688 KB 1.152 KB
Multiple MB - Single Single Dual Dual
Modified CbCr - No Yes No Yes
Write After MC 6.27 MB 4.12 MB 3.07 MB 2.03 MB 1.51 MB
Read for OS 6.22 MB 4.12 MB 3.07 MB 2.03 MB 1.51 MB
Write for OS 6.22 MB 0 MB 0 MB 0 MB 0 MB
Read for Clamp 6.27 MB 0 MB 0 MB 0 MB 0 MB
Write for Clamp 3.13 MB 0 MB 0 MB 0 MB 0 MB
Read for DB 6.22 MB 0 MB 0 MB 0 MB 0 MB
Write After DB 1.55 MB 3.13 MB 3.13 MB 3.13 MB 3.13 MB
Total Access 35.87 MB 11.37 MB 9.28 MB 7.19 MB 6.14 MB

the memory loading of system resources, external memory bandwidth and on-chip

SRAM size. As mentioned in Section A.3, we adopt multiple macroblock process-

ing order, separate luma and chroma processing order, and use the Y-analogous

data procedure for chroma data. In this section, we analyze the benefit of these

proposed methods on system resources. The proposed are implemented and sim-

ulated as four distinct methods: method 1 adopts single macroblock processing

order and does not introduce modified chrominance processing order; method 2

adopts single macroblock processing order and modified chroma processing order;

method 3 adopts dual macroblock processing order and does not introduce mod-

ified chrominance processing order; method 4 adopts dual macroblock processing

order and modified chrominance processing order. These proposed methods are

compared with the bandwidth of a software implementation.

98

0

5

10

15

20

25

30

35

40

Software Method 1 Method 2 Method 3 Method 4

Memory bandwidth for a worst-case P-frame
Memory bandwidth for a worst-case I-frame

(MBytes)

Figure A.17: Comparison about the requirement of memory bandwidth to the
external memory.

TABLE A.4 shows the analysis of external memory bandwidth for a worst-

case 1080p 4:2:0 P-frame without overlap smoothing. Compared with software,

method 1 reduces external memory cycles by 61.31%, method 2 by 66.86%, method

3 by 72.47%, and method 4 by 82.5%. TABLE A.5 shows the analysis of external

memory bandwidth for a worst-case 1080p 4:2:0 I-frame. Compared with software,

method 1 reduces 68.3% of external memory cycles, method 2 reduces 74.13%,

method 3 reduces 79.96%, and method 4 reduces 82.88%. Fig. A.17 shows the

comparison of external memory bandwidth among these four proposed methods,

and Fig. A.18 shows the comparison of required SRAM size (only for Temporal

Data Buffer) among these four proposed methods. From these two comparisons,

although using multiple macroblock processing order will increase the memory size,

utilizing modified chrominance processing order would greatly reduce the memory

size. Consequently, method 4 only requires 52.94% of method 1’s SRAM size and

reduces more than 82% of external memory cycles.

A.6 Conclusions

We present several processing methods and an efficient integrated architec-

ture for VC-1 filtering. These proposed methods are based on a 12×12 overlapped

99

0

0.5

1

1.5

2

2.5

3

Method 1 Method 2 Method 3 Method 4

Memory buffer requirement for a worst-case P-frame
Memory buffer requirement for a worst-case I-frame

(KBytes)

Figure A.18: Comparison about the SRAM requirement (Temporal Data Buffer).

block. In order to increase the performance and decrease the processing time,

we integrate overlap smoothing with in-loop filtering and pipeline the procedure

with block reconstructing even though the original filtering procedure is frame-

based in the VC-1 standard. For efficiently utilizing system resources, we also

propose two other methods: multiple processing order and modified chrominance

processing order. Moreover, an integrated architecture is designed, synthesized,

and implemented with TSMC 90-nm multi-Vt technology. The specification has

the capability to process HDTV1080p 30fps video and HDTV 2048×1536 24fps

video at 200MHz. In addition, we can apply these proposed methods to efficiently

implement various deblocking filters in post-processing applications which have

similar process order.

Bibliography

[1] A. N. Netravali and J. D. Robbins, ”Motion-adaptive interpolation of television
frames,” Proc. Picture Coding Symp., pp.115. Jun. 1981.

[2] J.K. Su and R.M. Mersereau, ”Motion-compensated interpolation of untrans-
mitted frames in compressed video,” Conference Record of the Thirtieth Asilo-
mar Conference on Signals, Systems and Computers, Vol 1, pp. 100-104, Nov.
1996.

[3] Soo-Chul Han and J.W. Woods, ”Frame-rate up-conversion using transmitted
motion and segmentation fields for very low bit-rate video coding,” Interna-
tional Conference on Image Processing (ICIP), Vol 1, pp. 747-750, Oct. 1997.

[4] Yen-Kuang Chen, A. Vetro, Huifang Sun, and S.Y. Kung, ”Frame-rate up-
conversion using transmitted true motion vectors,” IEEE Second Workshop on
Multimedia Signal Processing, pp. 622-627, Dec. 1998.

[5] G. de Haan, P.W.A.C. Biezen, H. Huijgen, and O. A. Ojo, ”True-motion es-
timation with 3-D recursive search block matching,” IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 3, Issue 5, pp. 368-379, 388,
Oct. 1993.

[6] M. Soryani and R.J. Clarke, ”Image segmentation and motion-adaptive frame
interpolation for coding moving sequences,” 1989 International Conference on
Acoustics, Speech, and Signal Processing, Vol. 3, pp. 1882-1885, May 1989.

[7] N. Grammalidis, D. Tzovarns, and M.G. Strintzis, ”Temporal frame interpola-
tion for stereoscopic sequences using object-based motion estimation and oc-
clusion detection,” International Conference on Image Processing, Vol. 2, pp.
382-379, 385, Oct. 1995.

[8] R. Castagno, P. Haavisto, and G. Ramponi, ”A method for motion adaptive
frame rate up-conversion,” IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 6, Issue 5, pp. 436-446, Oct. 1996.

100

101

[9] X. Q. Gao, C. J. Duanmu, and C. R. Zou, ”A multilevel successive elimination
algorithm for block matching motion estimation,” IEEE Transactions on Image
Processing, Vol. 9, Issue 3, pp. 501-504, March 2000.

[10] Y. Noguchi, J. Furukawa, and H. Kiya, ”A fast full search block matching
algorithm for MPEG-4 video,” Proceedings. 1999 International Conference on
mage Processing. ICIP 99., Vol. 1, pp. 61-65, 1999.

[11] W. Li and E. Salari, ”Successive elimination algorithm for motion estimation,”
IEEE Transactions on Image Processing, Vol. 4, Issue 1, pp. 105-107, Jan. 1995.

[12] L. De Vos and M. Stegherr, ”Parameterizable VLSI architecture for the full-
block matching algorithm,” IEEE Transactions on Circuits and Systems, Vol.
36, pp. 1309-1316, Oct. 1989.

[13] Shay Har-Noy and T.Q. Nguyen, ”LCD Motion Blur Reduction: A Signal
Processing Approach,” IEEE Transactions on Image Processing, Vol. 17, Issue
2, pp. 117-125, Feb. 2008.

[14] Tao Chen, ”Adaptive temporal interpolation using bidirectional motion es-
timation and compensation,” Proceedings. 2002 International Conference on
Image Processing. 2002., Vol. 2, pp. II313-II316, 2002.

[15] Bo-Won Jeon, Gun-Ill Lee, Sung-Hee Lee, and Rae-Hong Park, ”Coarse-to-
fine frame interpolation for frame rate up-conversion using pyramid structure,”
IEEE Transactions on Consumer Electronics, Vol. 49, Issue 3, pp. 499-508,
2003.

[16] Taehyeun Ha, Seongjoo Lee, and Jaeseok Kim, ”Motion compensated frame
interpolation by new block-based motion estimation algorithm,” IEEE Trans-
actions on Consumer Electronics, Vol. 50, Issue 2, pp. 752-759, May 2004.

[17] M. Biswas and T. Nguyen, ”A novel motion estimation algorithm using phase
plane correlation for frame rate conversion,” Conference Record of the Thirty-
Sixth Asilomar Conference on Signals, Systems and Computers, Vol. 1, , pp.
492-496, Nov. 2002.

[18] Jiefu Zhai, Keman Yu, Jiang Li, and Shipeng Li, ”A low complexity motion
compensated frame interpolation method,” IEEE International Symposium on
Circuits and Systems, 2005. ISCAS 2005., Vol. 50, pp. 4927-4930, May 2005.

[19] Tien-Ying Kuo, JongWon Kim, C.-C.J. Kuo, ”Motion-compensated frame
interpolation scheme for H.263 codec,” Proceedings of the 1999 IEEE Inter-
national Symposium on Circuits and Systems, Vol. 4, pp. 491-494, May 1999.

102

[20] ”Video Coding for Low Bit Rate Communication,” ITU-T Rec. H.263.

[21] Fujiwara, S. and Taguchi, A., ”Motion-compensated frame rate up-conversion
based on block matching algorithm with multi-size blocks,” Proceedings of 2005
International Symposium on Intelligent Signal Processing and Communication
Systems, 2005. ISPACS 2005., pp. 353-356, Dec. 2005.

[22] Byeong-Doo Choi, Jong-Woo Han, Chang-Su Kim, and Sung-Jea Ko, ”Frame
rate up-conversion using perspective transform,” IEEE Transactions on Con-
sumer Electronics, Vol. 52, Issue 3, pp. 975-982, Aug. 2006.

[23] Dane, G. and Nguyen, T.Q., ”Optimal temporal interpolation filter for
motion-compensated frame rate up conversion,” IEEE Transactions on Image
Processing, Vol. 15, Issue 4, pp. 978-991, April 2006.

[24] Choi, B.-D., Han, J.-W., Kim, C.-S., and Ko, S.-J., ”Motion-Compensated
Frame Interpolation Using Bilateral Motion Estimation and Adaptive Over-
lapped Block Motion Compensation,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, Vol. 17, Issue 4, pp. 407-416, April 2007.

[25] Ya-Ting Yang, Yi-Shin Tung, and Ja-Ling Wu, ”Quality Enhancement of
Frame Rate Up-Converted Video by Adaptive Frame Skip and Reliable Motion
Extraction,” IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 17, Issue 12, pp. 1700-1713, Dec. 2007.

[26] Z. Gan, L. Qi, and X. Zhu, ”Motion compensated frame interpolation based
on H.264 decoder,” Electronics Letters, Vol. 43, Issue 2, pp. 96-98, Jan. 2007.

[27] Ai-Mei Huang and T.Q. Nguyen, ”A Multistage Motion Vector Processing
Method for Motion-Compensated Frame Interpolation,” IEEE Transactions
on Image Processing, Vol. 17, Issue 5, pp. 694-708, May 2008.

[28] Chunbo Yang, Pin Tao, and Shiqiang Yang, ”An adaptive frame interpolation
algorithm using statistic analysis of motions and residual energy,” 2008 IEEE
10th Workshop on Multimedia Signal Processing, pp. 235-240, Oct. 2008.

[29] V. Munoz-Jimenez, A. Mokraoui-Zergainoh, and J.-P. Astruc, ”Bidirectional
Motion Estimation Approach Using Warping Mesh Combined to Frame Inter-
polation,” IEEE International Symposium on Signal Processing and Informa-
tion Technology, pp. 249-253, Dec. 2008.

[30] H. Song, A. Men, and Guangjian Shi, ”A method for halo artifact reduction
in MEMC,” Digest of Technical Papers International Conference on Consumer
Electronics, pp. 1-2, Jan. 2009.

103

[31] Ai-Mei Huang and T.Q. Nguyen, ”Correlation-Based Motion Vector Process-
ing With Adaptive Interpolation Scheme for Motion-Compensated Frame In-
terpolation,” IEEE Transactions on Image Processing, Vol. 18, Issue 4, pp.
740-752, April 2009.

[32] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec.
H.264/ISO/IEC 14496-10, Mar. 2005.

[33] VC-1 Compressed Video Bitstream Format and Decoding Process (SMPTE
421M-2006), SMPTE Standard, 2006.

[34] P. Lakamsani, ”An architecture for enhanced three step search generalized for
hierarchical motion estimation algorithms,” IEEE Transactions on Consumer
Electronics, Vol. 43, Issue 2, pp. 221-227, May 1997.

[35] H. So, J. Kim, W.-K. Cho, and Y.-S.Kim, ”Fast motion estimation using
modified diamond search patterns,” Electronics Letters, Vol. 41, Issue 2, pp.
62-63, Jan. 2005.

[36] ITU-R Recommendation BT.500-11. ”Methodology for the subjective assess-
ment of the quality of television pictures”, in Geneva, 2002.

[37] Sunkwang Hong, B. Berkeley, and Sang Soo Kim ”Motion image enhancement
of LCDs”, IEEE International Conference on Image Processing, 2005. ICIP
2005, Vol. 2, , pp. 17-10, Sept. 2005.

[38] S. Srinivasan, S. L. Regunathan, ”An overview of VC-1,” Visual Commu-
nications and Image Processing, Proc. of SPIE, Vol. 5950, pp.720-728, 2005.

[39] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, ”Adaptive
deblocking filter,” IEEE Trans. on Circuits and Sytems for Video Technology,
Vol.13, pp.614-619, 2003.

[40] T. D. Tran, J. Liang, and C. Tu, ”Lapped transform via time-domain pre- and
post-filtering”, IEEE Trans on Signal Processing, Vol.51, pp.1557-1571, 2003.

[41] C. C. Cheng, T. S. Chang, and K. B. Lee, ”An in-place architecture for
the deblocking filter in H.264/AVC,” IEEE Trans. on Circuits and Systems-:
Express Briefs, Vol.53, pp.530-534, 2006.

[42] T. C. Chen, S. Y. Chien, Y. W. Huang, C. H. Tsai, C. Y. Chen, and L.
G. Chen, ”Analysis and architecture design of an HDTV720p 30 frames/s
H.264/AVC encoder,” IEEE Trans. on Circuits and Systems for Video Tech-
nology, Vol.16, pp.673-688, 2006.

104

[43] Y.-W. Huang, T.-W. Chen, B.-Y. Hsieh, T.-C. Wang, T.-H. Chang, and L.-G.
Chen, ”Architecture design for deblocking filter in H.264/JVT/AVC,” Proceed-
ings. 2003 International Conference on Multimedia and Expo, 2003.

[44] S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, ”A platform based bus-
interleaved architecture for de-blocking filter in H.264/MPEG-4 AVC,” IEEE
Trans. on Consumer Electronics, Vol.51, pp.249-255, 2005.

[45] M. Sima, Y. Zhou, and W. Zhang, ”An efficient architecture for adaptive de-
blocking filter of H.264/AVC video coding,” IEEE Trans. on Consumer Elec-
tronics, Vol.50, pp.292-296, 2004.

[46] S.-Y. Shih, C.-R. Chang, and Y.-L. Lin, ”A near optimal deblocking filter
for H.264 advanced video coding,” Asia and South Pacific Design Automation
Conference, pp.170-175, 2006.

[47] T.-M. Liu, W.-P. Lee, T.-A. Lin, and C.-Y. Lee, ”A memory-efficient de-
blocking filter for H.264/AVC video coding,” IEEE International Symposium
on Circuits and Systems, Vol. 3, pp.2140-2143, 2005.

[48] T.-M. Liu, T.-A. Lin, S.-Z. Wang, W.-P. Lee, J.-Y. Yang, K.-C. Hou, and
C.-Y. Lee, ”A 125 µW Fully Scalable MPEG-2 and H.264/AVC Video Decoder
for Mobile Applications,” IEEE Journal of Solid-State Circuits, Vol. 42, pp.
161-169, 2007.

[49] Lingfeng Li, S. Goto, and T. Ikenaga, ”An efficient deblocking filter archi-
tecture with 2-dimensional parallel memory for H.264/AVC,” Asia and South
Pacific Design Automation Conference, Vol. 1, pp. 623-626, 2005.

[50] H.-Y. Lin, J.-J. Yang, B.-D. Liu, and J.-F. Yang, ”Efficient Deblocking Filter
Architecture for H.264 Video Coders,” Canadian Conference on Electrical and
Computer Engineering, pp. 2017-2020, 2006.

[51] T.-M. Liu, W.-P. Lee, and C.-Y. Lee, ”An In/Post-Loop Deblocking Filter
With Hybrid Filtering Schedule,” IEEE Trans. on Circuits and Systems for
Video Technology, vol.17, no.7, pp.937-943, July 2007.

