Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title
THE IMAGING PERFORMANCE OF A MULTIWIRE PROPORTIONAL CHAMBER POSITRON CAMERA

Permalink

https://escholarship.org/uc/item/3z35r19d

Author

Perez-Mendez, V.

Publication Date

1982-08-01

13 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Physics, Computer Science \& Mathematics Division

To be presented at the First IEEE Computer Society International Symposium on Medical Imaging and Image Interpretation, Berlin, W.Germany, October 26-28, 1982 ; and to be published in the Proceedings
THE IMAGING PERFORMANCE OF A MULTIWIRE PFOPORTIONALCHAMBER POSITRON CAMERA

Victor Perez-Mendez, Alberto Del Guerra,
Walter R. Nelson, and Kwok C. Tam
August 1982

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Covernment. Neither the limited States Coversment nor any agency therof, nor any of their employees, makes any warranty, express or implied or dsanmes any lequal liability or rempunsibility for the uceuracy, eompleteness, or usefulness of any information, apparatus. product, or proncess disclosed, or repre rets that its use would not infringe privalely owned rights. Reference herein to any specific commercial product. process. or service by trade name, trademark, mamifactures, or othervise, does mot necessarily constitute or intuly its enharkement, rexommendition, on favoring by the l'nited Statex Covernment or any agency thereof. It he views and opinions of authors espressed herein do not meedswarily state or reflect those of the L'nited States Cowemment or any atency thereof.

the imaging perforhance op a hultivire proportional-chamber positron canera ${ }^{(+)}$

(1) Laurence Berkeley Laboratory, Berkeley, CA. 94720; (2) Departwenc of Radiology, UCSF, San Francisco, CA. 94143; (3) Stanford Linear Accelerator Center, Stanford, CA. 94305; (4) General Electric Co., Schenectady, NY 12345.

ABSTRACT

A new deaign - fully three dimensional Positron Camera 13 presented, ande of aix MultiNire Proporcional Chamber aodules
 hexagonal prisu. A crue colacidence race of $56000 \mathrm{c} / \mathrm{s}$ is expected with an equal accidental rate for a 400 uci activity uniformly diatributed in a $\sim 3 R$ water phantom. A detalled Monte Carlo progran has been used to investigate the dependence of the apatial resolution on the geonetrical and physical parameters. A spacial resolution of 4.8 mm FHMM has been obtalned for a 18 F point-like source in a 10 cm radius vater phantow. The main properties of the limited angle reconscruction algorithma are described in relation to the propobed detector geometry.

1. Introduction

The techaique of comographical fagiag with x-rays (2,2) has now become an essential tool of any major medical center. Although tomographical imaging originated in practice in early nuclear gedicine laboratories $(3,4)$, its application lagged behind, due to technological difficulties. In fact, only after CT-scanners came into operation has reasarch in this field becore appreciable and have the firat pooitron tomography caperas been developed in USA ${ }^{(5-9)}$ and European ${ }^{(10)}$ laborarories. A number of position comographs tisve been constructed and are gou woed for medical reaearch. Koat of thebe are biagle ring beingillator detectars, uaing either sodium fodide $(11,12)$ or bismuth gentanate crystals $(13,14)$. More recently cealum $£$ luoride cryatals have been used $(15-17)$ because of their fast time reaponse. It is usually necesaary to measure more than one alice of the object; thia can be done elther by a beries of parallel otrip tmagen taken sequentially, or by making large area detectara or multi-ring detectors (uhich axe auch more expensive to build than aingle section tomugraphs).
(*) On leave of aboence fran: Istituto di Fibica dell' Univeraita', Piga, Italy.
(+) This work was Bupported by the Director, office of Energy Research, Office of High Energy and Nuclear Phybica, Diviaion of algh Eoergy Phyaica of the U.S. Department of Eacrgy under Contract 1 DE-ACO3-765F00098.

In this paper we propose a ned dealgo for a large area poaitron camera and discusa its expected imaging performance, which has been evaluated both by experimental neeasurements and by Monte Carlo simulation. The proposed large area concentric detector ia conseived to measure a gensitive volume of $\boldsymbol{3}$ liters. The decector Is based on a MWPC with lead glass drift apace converters.

In the next section a description of the camera 1a given and a brief oumary of the experimental resulta ia reported. Section 3 deals with the Honte Cario simulation of the detector and the resules are presented 10 section 4. Limited angle reconstruction algoritha uill be used to prodice tomographical lwaging of the real data. The tratn featurea of such algorithms, as applied to :his detector, are described in section 5 . Finaliy, some concluding remarks are given in the last section.

2. The MWPC Position Camera

A achematic draving of the proposed camera is shown in Fig. 1. Six modules (each
$50 \times 50 \mathrm{~cm}^{2}$) are arranged to form the lareral surface of s hexagonal prisi. Follouing the annlhilation of the positron uichia the carget, two r-rays are produced, each uith an eaergy of 511 keV and oppoalte to the other vithin a feu mrad. A good eveat resulta when both gamas are detected "in coincidence" in opposite madules. Each module conaiste of a standard MWPC (45 = $45 \mathrm{~cm}^{2}$ active erea), U1th a 2 cm chlck lead glass tube converter on each side (Fig. 1).
2.1 Frincsple of Operacion of a Denge Drift Space MWPC

The detection of 511 keV r-rays with a MNPC requites the use of a high deastiy, high z converter with large aurface to wolume ratio. We have deseloped a converter made of glasa caplllariza (0.9 inner diameter, 0.096 mim wall thickiegs) of high lead content (BO Pbo by weight, glase denity of $\left.6 . \mathrm{a}^{2} \mathrm{~g} / \mathrm{cm}^{3}\right)$, fused 50 form honeycomb aarrices ${ }^{(18)}$. The lead glasa tatices are treaced in a H_{2} reduction process to form a uniform resistive layer on the inner walle of each tube. The Compton- or photo-electron produced by the photon iateracting within the converter has a finite range dependent upon its energy. If it reaches the gas region within the tube, a number of primary lonization electrons are froduced. 6 voltage difference applied betweer the ends of the tubes then drifts these primary electrona along the electric field linea ulthin the rube towards the cathoie planea and int:o the avalanche region of che chamber.

Pig. 1 - Proposed Position Canara ande of alx modules aryanged to form a hersgonal prisin: plan viev of the canera (TOP), croas view of a aingle module (BOTTOH).

2.2 Experimental Resulti
 We have builit two $50 \times 50 \mathrm{~cm}^{2}$ moduleo and

 some experimental measurementa have been taken. For coavenience wa have extenalvely tented a analler module ($15 \times 15 \mathrm{ca}^{2}$ active area) equipped with oae 1 cm thick converter. The chazer itself is a atandard gan filled MWPC Chazer itself is a standard gas filled miPC in order to have both I and y localication. Position readout is schieved by means of fast delay linee ($8 \mathrm{am} / \mathrm{ca}$) coupled to the cathodeplanes (19). The exper (tanereal decaila have elrady been raported $(20-22)$. Table 1 briefly eu carizes the resulte obtaiped with a otanderd argon-methane $(70-30)$ gat aixture at 2 ate for 511 kov y-rays incident perpendicular onto the module plape. In order to extrapolate these reault to converter of different thickness ve asamat that the efficiency is proportional to the Y interaction probabilizy, whereas the time reaolution ia detezined by the transft time of the electrone within the converter tubes. For the ane electron drift velority in the gas (1.t. the eane value of the reduced electric field), the tranait tiae is then proportional to converter thicknent. The expected performance. of the Poaitron Camera module in also preaented in Table 1. The gas pressure vill be kept at 2 ate in order to cake advantage of the aclf quachins atreaser ragine $(23,24)$.
2.3 Count Baten of the Tonograph

1t in well known that given a pure position emiteing source and two opposite y-ray detectora, both the aingle rate and the true coincidence rate are proportional to the nource strength. If the nolid angle fraction (f_{Ω}) mubteaded at the aource in the ane for both decectors and if che efficiency (ε) for 511 key r-raya is the wase and conscant within the solid angle, one ger:

$$
\begin{array}{ll}
N_{1}=N_{2}=(2 S) f_{\Omega} E \\
I & =S \\
A & \left(2 f_{\Omega}\right) \varepsilon_{2} \\
(2 \tau) & \text { (la) }
\end{array}
$$

where H_{1} and N_{2} are the aingle rate of the detectors, S ia the mource atrength, T and A on the true and accidental coincidence rates respectively, and t in the remolving time of colacidence.

It is conventional to express the figure-ofmerit parageter of poitron camera by giving the ratio $\varepsilon^{2} / \mathrm{T}$. Oae obtains the following relation, which appliea to a module pair:

$$
\begin{equation*}
T^{2} / A=E^{2} / 2 T \tag{2}
\end{equation*}
$$

For a given et of defector paranetera t / A is
iaversely proportional to the source atrength;
$\frac{T}{A}=\frac{1}{S I_{n}^{T}}$
For algual to noise ratio
$\frac{T}{A}=1$

Table 1
Specification and Perforanace of the Tear Module and of the Poaitron Canera Module

MUPC active area (cn^{2})
Converter thickneat (cm)
Gas preasure (aza)
Efficiency (z)
Tine resolution (na)
Spatial resolution FHHM
-along the coordinate parallel
to the anode wires (min)
-mlong the othor coordinate (m)

Test Module

15×15	45×45
1	$2+2$
2.0	2.0
4.5	15.0
130	$200(*)$

Pogitron Canera Module
1.3
2.0
the value of the source Etrength is given by

$$
\begin{equation*}
\left.s\right|_{\mathbf{K} / A-1}=\frac{1}{4 F_{\Omega}{ }^{\top}} \tag{ङ}
\end{equation*}
$$

For our detector, one geta a value of $-400 \mu \mathrm{Cl}$, which represents the waximu source acreagih we can use for a eistal to oolse retid ≥ 1. Jaing condition (4), equation (2) becomen

$$
\begin{equation*}
\mathrm{T} / \mathrm{I} / \mathrm{A}=1=c^{2 / 2 \pi} \tag{6}
\end{equation*}
$$

which given the sarimum true coincidence rate per aodule pair compatible with condieton (4). The expected count raten in alt and uith a 10 ea radiue water phanton arm liated in Table 2. The effect of the absorbing medium is equivalent co decreaniag the efficiency of eneh detector (as deteralaed by using the Honce Carlo program described in section 3). Beace, the net reault of the aboorption and scatcering in the phantom ia to decrease che statiacics, while keapias the ante aignal to noise ratio.

3. Monte Car1o Technique and Problem Madel

3.1 The EGS Code: General Considerationa

To study the patial reciolution properties of the tamograph, a general electromagnetic radiation tranaport code called EGS
(Electron-Gaman-Shower) (25) vas implemented for the problem at haid. iss is eurrently being used to aolve a variety of probleman in accelerator, high-energy, and medical phyaice (26). In particular, EGS is capable of treating electrona, poititrons and photons sith kinctic eqergy an low an 10 keV (electrons and ponitrous) and 1 keq (photons). The traneport can rake place in any of one hundred different sleatents or in any inixture or compound of these efeneats. It is left to the uere to conetruct his own geonetry and to acore a particular anawer.

Por the problen at hand, the hexagonal 3-dimenaional geometry of the poaitron comera was simulated. In what follows, we vill linit ouralives to the resulta obtained for a pofnt-like source the center of 410 cm radius uater phantom. The oimulation may be subdivided into three minin modea of operation:

- generation, tramport, and anifilation of the positran.
- tranaport (including interaction) of lise annibilation quanta uithin the phanton and the detector,
- acoring of coincidence eventa and production of epatial rasolution hiatogran.
Al many an 200 positrons per aecosd are generated and "followed" up to the scorias puint on the IBH-3081 (1.e. 5 me/ponitron).
3.2 The Ponitron Mode

We have unted fort for the theoreticel beta spectru given by Konopinaki and Roas ${ }^{(27)}$.
The energy spectra of the radioimotopes were generated using the Ferni functions tabulation of Fano(28), corrected for the ecrening effect. The apectra were introduced into bGS in the form of lookrup Tablet.

Once the poistrion het been gwaersted both in ponition and in direction and ite energy has been ampled accordias to the above schene, it is Followed within the phantom until it reaches a lover kinetic energy cut-off (10 kev in our case), when it if forced to anihilate ac rest. In addicion to thabha acatering, aultiple acatcering and continuous energy iosa, ers almo considers anminilation in filght as diacrete Monte Carlo process. Depeading on the mourcte, between 1 and 5 per cent of the ponitrons have been found to maihilate in flight, conalateat with theory (29). Because of the thermel motion of the orhital electrone two pboton anihilation at reat is not perfectly collinear in the laboratory. This noomeolinaearity is sccounted for in the preseat Monte Carlo study by uifiog a fic to che daca by Colonbino et al (33), who measured an angular diatribution of 8.5×10^{-3} rad (FWHM) in water at $22^{\circ} \mathrm{C}$. The in flight angle of the anifilation quanta, on the other hand, ie accounted for in EGS by anana of kinematice. The poaltion, energy and direction Information for the anaibilation quanta are uned as input to the subsequent two-game inulation phase. Other particies (e.g., bremstrahluag, and delta rays) are diacarded in the phanton lamediately upon production.
3.3 The Tro-Ganat Hode

Duriag the tranerort of the anithilation quanta within the phantom, all charged particlea that are generated are inaediately diacarded. If the photon energes from the phantom with an energy greater than the sut-off energy (100 keV), it is further tranoported through the hexagon detector geometry. Following an interaction in the lead converter, the Compton- or
photo-electron is asuused to be derected by the MHPC provided ite kinetic energy is greater than

Table 2
Count Rates for the Propoaed Tonagraph for a Point-like Source of 400 uCi (T/A - 1)

```
Single rate per module (c/a)
True coincidence rate per module pair (c/a)
True \(=01\) ncidence rate for the ayten (c/a)
Total coincidense rate for the rymen: \(T+A(c / b)\)
```

$\begin{aligned} & 10 \text { em radius water phantoos(} \# \text {) } \\ & 250=10^{3} \\ & 18.5 \times 10^{3} \\ & 56 10^{3} \\ & 112=10^{3}\end{aligned}$
(*) As calculated by the Monte Carlo deacribed in eection 3.

200 keV . Thia value hal bean arbitrarily chosen ? according to the ranga energy Enbiee (31), for the vall chickness of the slane tube. If more than one such alactron is produced then the one clonent to the wire plane is selected.

Eacb evant can be displayed on a eraphic device and the history of the two phatona can be visurlized. An example ie preiented in Figure 2, shoving tuo ortbogonal vievs of the tomograph. The phozong are moon as aolid and dotrad innes. The acattering information related to each of the two photons are priated in the two correaponding bozes, where the varioug
interaction are indicated. For each internction (f) variou quantities are provided (S, D, I, GE1, EKE, GE2, and TD). S in the eector where the interaction took place ($1-6$); it asause cha value of 0 if the interaction took place in the phantom itself. D indicatem the converter (first or eecond); T identifies the type of interaction (C for Compton, P for photoelectric). GE1 and GE2 are the photon energiea before and after the interaction; ERE
io the kinetic enargy of the electron. TD is the diacance of the inectartion point from thm and of the tube. In the erample proseated in Figure 2, the firat photon (aolid line and wolid box) interacte twice in eector 3: the firat one produces a Compton electron of 307 keV and and the aecond phataelectron of 116 kav . This photan ia ansumed to but detected at the point whert the firat interaction occurred, because tit in the caly one over the presetablishard detection threahold. The eecond photon (dotted line and dotted box) also makes two interactions: the firft ore producen a Compton electron of 209 kpV in the first converter of sactor 6; the second produces : photoelectron of 215 kel in the gecond detector of the same aectot. In thile case the two electrons ere both above the threshold of 200 kev, but onjy the nearest interaction point to the wire plane (the second one) in retained an detection posieion.

Subaequently the intrinaic apatial
resolution of the MRPC module in introduced into the overall ainulation. The real detector is

\# S D T	GE:1 EkS Gr:2	$7{ }^{1} 10$
316	51130720	0.038
231p	204116	0.10

Pigure 2 - Tvoical Graphic display of a simulated event.
sble to distinguish in which converter the interaction took place ${ }^{(32)}$, but it in not able to tell where along the glana tube it occurred, generatios a parallax error. This is accounted for in our simulation, by translating the actual detection point to the middle of the converter. Then the two coordinaten on the wire plane are sampled according to gaumian distribution, whote Finim has been experimentally deterainad (see table 1). Pitally the apatial cuts, which take into account the assing angle between two adjacent modulea, are applied. (Only the events inaide the active area of the datector are kept.) 3.4 Spatial Reaolution Riatograng

To acudy the apatial resolution of the Poaition Camera a point-like posityon source wat eimulated on the $x-x$ plane (see Pigure 2) at the origin. A coincidence event is defined then both photone are decected in opposite codules. Per each coincidence avent the line which connects the two detection poincs is computed. The intersection of chis line with the $x-z$ plane 1s calculated and its distance from the source position ia accumulated in a cro-diaenaional histogram. Finally, a profile along any direction on the plane across the origin given the spatial resolution diatribution of the Positron Canera.

4. Monte Carlc Reaulta

4.1 Contributions to the Spatial Remolution

Several factors concribute to the epatial resolution of the systen: positron range, tuo-gama non-collinearity, Compton acatfering in the phantom and intrinaic detector resolution. With our Monte Carlo ifinlation it has been possible to study the absolute contribution of each to the overall apatial resolution; the results, which have obtained for a 10 cm radiu: vater phatos, are now diszunced in turn.
Positron Range - The radioisocopes atiodied are listed in Table 3 together with theit wain paraneters and the asximum path length(33). The range diseributions are non-gaussian in shape and have a very long tall, especially for the high energy ponitron enitterm. The effect of the poiltron range ia beat detaribed by giving both the PWH and the FW(0.1)hi of the aparial diacriburions obrained in the simulacion. Aloo included in Table 3 are the radil of the apheres which contain 502 (r_{50}) and 95% (595) of the sanihilation points. These numbers have been found to be in
good agreement with experimental
magurements (34). In general rgs is found to be $-1 / 2$ of the maximum path lengeh. Tro-game nonecolinearity - To a firut approximation, an anguler apread at the detector plane ($\Delta \delta$) will cause a poitional deviation at the inage plane of $-R_{\Delta \delta / 2}$, where R in the diatance batween the two planea. From the Monte Carlo resulta ve have found a FinH of 2.2 mand a FH(0.1)M of 7.1 . The contribution from anaihilation in flight, which is isotope dependent, is oegingible (c it for ${ }^{11}$ c). Compton acattering in the phanton-Contrary to a crystal-type detector, the efficiency of a dense drift apace milc dininishes जith decreaning energy of the incident photon $\left(35^{\circ}, 36\right)$. For thia reason, Compton acattering is much lema impoztant here than for ecintillaticn cameran. For a 10 ea radius vater phanton both afagie and coincidence rates are reduced by a factor 1.5 and 3 , respectively (see Table 2). Furthernore, approxiaately one third of the coincidence evenca are uniforaly discributed uithin the phantom, whereas the suearing of the apatial resolution is negligible (< 0.1 ni FIHM).
Detector response - To a firat approximacion parailax erzor has a triangular discribtuion ac the detector plane with a FWif of $t \sqrt{A / R}$, where t is the converter thickneas, A is the area of the module and B 1s the diatance from the source. The poaitional deviation at the image plane wilt then be $-1.5 \mathrm{~m}(\mathrm{t}-2 \mathrm{~cm}, \mathrm{~A}$ $\left.45 \times 45 \mathrm{~cm}^{2}, \mathrm{R}=50 \sqrt{3 / 2} \mathrm{~cm}\right)$. From the Honte Carlo simulation we obtain a FWH of 2.4 mim and a Fw(0.1)h of 4.8 ma . The intrinaic apatial remolution of the MHPC for both x - and y consilinatea ($\Delta x=\Delta y-2.0 \mathrm{~mm}$ FWH, nee Table 12 introduces ${ }^{a n}$ additional contribution of $-1 / \sqrt{2}$

Overall spatisl resolution of the syarea - The various contribucions and the overall opatial resolution of the gyatem are kiven in Table 4 for a ${ }^{11}{ }_{C}$ point-ifike source at a center of 10 c a radius vater phantom. The overall spatial resolution values, which are obcained by adding the FWH valuea in quadrature are swaller than the calculated Monte Carlo values, as expected for the following reasoaing: one canocr. siapiy add now-gausaian distributions in quadrature. The Monce carlo almulation, however, performa the convolution integration correcti;
Sinilarly, for the ocher radionotopes, the overall opatial reaolution rangen from 4.8 mm (FWHH) for ${ }^{18} \mathrm{~F}$ to 8.2 min (FWHM) for ${ }^{82} \mathrm{Rb}$.

Table 3
Positron Emmitterg Characteriatics, Range and Contribution to the Spatial Regolution

	18.	${ }^{11} \mathrm{C}$	150	$38_{\text {R }}$	$\mathrm{B2}_{\mathrm{Rb}}$
Mean life (m)	109.8	20.38	2.03	7.61	1.25
End-poinc of the ${ }^{\text {c }}$ spectrun (HeV)	0.635	0.961	1.723	2.630	3.335
Maximut path length in vater ${ }^{(33)}$ (an'):	2.40	4.09	8.14	12.93	16.57
Range concribution to the aparial resolution: FWHM (am)	0.3	0.4	0.7	1.2	2.0
FW(0.1) M (mi)	1.2	1.6	3.3	6.0	8.5
r 50 in Hacer (m)	0.91	0.60	1.47	2.76	3.91
r95 in water (mm)	0.98	1.72	3.75	6.50	8.86

Table 4
Contribution to the Poaitron Gamers Spatial Pemolution

Poultron range

FWHA
0.4
2.2
2.4
2.4
5.5

5. Radioisotpe Distribution Resconatruction: Intived Ang la Datie

The radioisotopa dietribution within the object that ve deteraint from the coincidence pair dintributiona mealured in the canta in obtained by Fourier Inveraion technique (37). Adiditionalls, in order to achieve the best reconstruceion with data subject to ncsciecical tluctuntions, use a amoothing algorith due co Phillips (38).

The Fouriar Inversion method al anch vould be atisfactory if the canera were cruly a six-mided box with no gapt in detection efficiency at the junctions of the detector sides. Eron a practical point of viev, for simplicity in conatruction ve allow an estimated gap of -5° at the vertices of the hexagonel detector slot: (Pigure 1) = amounting to total misaing angle of -30°.

It can be shown that the solid angle in front and back perpendicular to the axia of the hexagon contributes only to a lose of detection efficiency, ince anaihilation γ-raye goins in those directiona are not recorded. it doen nct contribute to any artificts in the reconetruction so long as the object is amaller than the length of the aenaitive area of the hexigon. On the other hand, if no proviaion it ade for adequate treataent of the 30° azimuthal argle misuing inforation, the quality of the reconatruction suffera and line arcifacta fll be craated.

He sumarize belou the lifited angle Pourier Inversion algorith that we have developed and will use in this canera.

Let $\phi_{o}(r)$ be the point response of the detector gotem. In that follow we enauce chat
$\varphi_{o}(r)$ is space Invarinnt -1.0 . that every point within the object has the case detection efficiancy - by restricting the cons of direction which we accept for the reconntruction.

Then we can write the following convolucion
((r) $\quad \int f^{\prime}\left(r^{\prime}\right) \phi_{o}\left(r-r^{\prime}\right) d^{3} r^{\prime}$ (7)
vbere (r) is the eeteured distribution of counte, and $\Phi\left(5^{\prime}\right)$ is the unknoun radioisotope distribution within the object. Fros the
Pourier Convolution theoren ve can rrite:

$$
\begin{equation*}
\phi(p)=\phi(p) \phi_{0}(p) ; \phi(p)=\phi(p) / \phi_{0}(p) \tag{8}
\end{equation*}
$$

$$
\phi(x)=\int \phi(p) e^{-2 \pi i p r} d^{3} p
$$

If the use the Philifps smoothing algorithn equation (8)becomea

$$
\begin{equation*}
\phi(p)-\frac{\phi(p)}{\phi_{0}(p)+\gamma(2 \pi)^{4} p^{4} / \Phi_{0}(p)} \tag{10}
\end{equation*}
$$

The parameter γ is an adjumishle paramerer that depeade on the statistical moise level.
Increasigg Y encen the solution anoother but eliaimaten fine details of the iange. In praccice ve constrain y to be coasistent with the epatial resolucion detemined by the desired pixel aize on the reconatruction.

Note that in equation (10) $\phi(p)$ is not defined for Fourise components in the mieaing agies, i.e. the directions in the Fourier apace corresponding to those in which the camera has gaps. Ueing the Fhillip: Igorithe, Eq. (10), leade to the regult ther $\phi(p)=0$ for the aisaing angles in the Fourier plane. This permits the integral in (9) to be calculated unambiguously; however, the reault ia poor approxination to the real distribution and creates a oumber of ifne artifacts for each point in the object ${ }^{(39)}$.

The eethod for approximating the miseing Pourier components outlined belou depends on the fact that the object pource diatributiva in in a finite volume and han a finite maximus. From antheratical priaciples it is vell knoun that, for such disteibutions, knouledge of the Pourier componente in alited region deteraine their values over all apace, aince the Fourier dietribution in this came ie a complete function. The computative algorithif is based on a Inilar algorith due to Gercbberg ${ }^{(40)}$ and

Known Faurler components of the object Inside the allowed rone; missing-cone components set to zero inftially.

Figure 3 - The computer itarstion meheme.
XBL 828-11171
applied to electrical oignale by Papoulis (41). Figure (3) shous the computer iteration chew uned for this purpone. on a ceet object aimularion in our ceanta, for a circular phantion of 20 cm diameter reconstructed in $6 \times 6 \times 10^{3} \mathrm{~m}^{3}$ voxels, and uaing a count of 400 councs/voxed ve obtained an appreciable reduction in the arror of the reconatruction coapared with the tent object ainulation.

6. Concluding Renarks

The tomograph ve propose has an intrinsie quitislice capability: fielde of wiew of $20-30$ cn can be eapily accomodated. Furthernore, the solld angle coverage (-507) and the poraibillty of dececting off-plane photon pairs allows for leas activity, thus reducing the dose delivered to che patient. In 3 ain al many es 1×10^{6} true coincidence events any be collected per slice, if a source of $400 \mu \mathrm{Cl}$ it uniforely diatributed in typical head phanton (Table 5), and as many as 10 aimeltaneous alices may be obtained for a total of 10×10^{6} coincidence events. Approxiastely the same number of evente are collected in the save tiae with the three-plane neurocat Tomograph ${ }^{(42)}$ yith a higher activity source. The signal to noise ratio for the MHPC solution is vorse than for neUROCAT, bur a becter apatial resolution (5-6 mom FNHM) Ray be clained, and ayatema with resolution better than 7 min Fhis are now requited for boch brain and heart imging (43).

Table 5
True Coincidence Rates for an Activity of $0.1 \mu \mathrm{Ci} / \mathrm{mI}$ of $11 \mathrm{C}(\mathrm{T}=\mathrm{A})$ 10 A 10 cm Radiun, 10 cm Long Hater Phantou

Total True coincidence rate
$56000 \mathrm{c} / \mathrm{s}$ Humber of sivultancous slices (1 cm thick)

$$
10
$$

True coincidence rate per ellee Spatial regolution (FWH) $5600 \mathrm{c} / \mathrm{a}$
5.5 =

Number of voxels per alice

$$
\left(0.6 \times 0.6 \times 1 \mathrm{ca}^{3}\right)
$$

-870

True colncidence rate per voxel

$$
400 \mathrm{c} / \mathrm{n}
$$

Compton fistributed noise
$-1 / 3$

References

(1) G.N. Hounsfield, "Computerized Tzansverae axial scanning (Tomography): Part I.
Deacription of Syatem, Brit. J. Radiol., Vol. 46, PP. 1016-1022, 1973.
(2) A.M. Coraack, "Beconstruction of Deasities from their Projections, with Applicationa in Radiological Phyaica". Phys. Med. Biol., Vol 18, pp. 195-207, 1973.
(3) D.E. Kuhl and R.Q. Edvards, "Inage
meparation radioisotope scannlag," Radiology, Vol. 80, Pp. 653-661, 1963.
(4) D.E. Ruhl and R.Q. Edvarda, "The Mark IV syatem for quanticacive reconstruction of brain radioactivicy," J, Nucl. Med., Vol. 16, Abetract, p. 543, 1975.
(5) C.A. Burnhan and G.L. Browne11, \boldsymbol{T}^{A} aulticryatal poaitron camera, " IEEE Trane. Nuc1. Sci., Vol. NS-19, No. 3, 201-205, 1972.
(5) H.M. Ter-Pugousian, M. Phelpe, and E.J. Hoffean, "A poaticton efision trantaxial tomograph for nuclear ienging (PETT),"
Radiology, V.2. 114, Pp. 89-98, 1975.
(7) C.J. Tompari, Y.L. Yamanoto, and E. Meyer, "A position latging ayatem for the memareacat of regional crepebral blood flou," in proc. Soc. Photo-Opt. Inetrun. Eas., Zol. 96. pp. 263-268, 1976.
(8) 3.B. Cho, J.K. Chan, and L. Eriknnon, "Circular riag tranaverse axial positron camera for 3-dimensional reconstruction of
radio-nuclide distributione," IEEE Trans. Nucl. Sct., Wol. NS-̇3, Pp. 613-622, 1976.
(9) S.E. Dereazo, T-F. Mudinger, J.L. Cahoon, E.H. Huesean, and H.C. Jeckson, "Bigh resolution computed toogography of pocition eaittera," I2EE
Travir. Pucl. Sci., Vol. NS-24, pp. 544-558, 1977. (10) C. Bohm, L. Erikeeon, M. Bergsxrom. J. Litron, R. Sundman, and M. Singh, "A Computer awainced ring detector poaitron camera syaten for reconatruction comography of the brain," IEEE Trans. Nucl. Sci., Yol. NS-25, Pp. 624-637, 1978.
(11) N.A. Mullani, M.M. Ter-Pogossian, C.S. Higginge, J.T. Hood, and D.C. Ficke,
"Engineering anpecta of PETT V^{*}, IEER Trana.
Muci. Sci.. Vol. NS-26, pp. 2703-2706, 1979.
(12) L. Eriknson, Chr. Boha, 4. Bergerrom, K. Ericson, T. Greiti, J. Litton, and L. Widen, One year experience with a high resolution ring

- detector position camera aysten: present
statue and future plans", IEEE Trana. Nucl. Sci., Vol. NS-27, pp. 435-444, 1980.
(13) S.E. Derenzo, T.F. Budlager, R.H. Huesman, J.L. Cahoon and I. Vuletich, "Inaging propertiee of a Positron Toaograph vith 280 BGO crystale", IEEE Tans. thucl. Sci., Vol. NS-28, pp. 81-89, 1981.
(14) E. Hoffugn, M, Thelpr, S. Euang, D. Plumer and D. Kuhl, Equaluatiog the Performance of Hultiplane Poaltion Tonographs deaigned for Brain Inaging", Iees Trane. Nucl. Sci., Dol. NS-29, pp. 469-473, 1982.
(15) R. Allealand, C. Greanet, and J. Vacher, "Potential advantages of Ceaium Pluoride Scintillator for a time-of-flight positron ramera", J. Nucl. Hed., Vol. 21, pp. 153-155, 1980.
(16) D. Ficke, D. Beecher, G. Hoffman, J. Hood, J. Markhan, N. Mullani, and M. Ter-Pogoseian, "Engineering Aspects of PETT VI", ILEE Trans. Nucl. Sci., Vol. Ns-29, pp. 474-478, 1982.
(17) M. Yamenoto, D.C. Plcke, M. Ter-Pogobsian, "Performance atudy of PETT VI, a Poaitron computed Tonograph with 288 Cesium Fluoride Detectors", IEEE Trans, Nucl. Sc1., Vol. NS-29, pp. 529-533, 1982.
(18) G.K. Lun, M.I. Green, V. Perez-Mendez and
X.C. Tan, Tead Oxide Glass Tublig Convercera for Gann Detection in MrPC", IEEE Trana. Nucl. Sci., Vol. NS-27, pp. 157-165, 1980.
(19) P. Leconte, V. Perez-Hendez and G. Stoker, Electromagnetic Delay Linea in Spark,
Proportional and Drift Chamber Applications", Fhel. Inatr. and Meth., Vol. 153, pp. 543-551, 1978.
(20) G.K. Lun, V. Perez-Hendez, and B.

Sleaford, "Gama-Ray Detection with PbO Glass

Converters in MiPC: Electron Convernion Effificiency and Time Retolution*, IEEE Trans. Nuc1. Sci.. Vol. NS-28, Pp. 821-824, 1981. (21) A. Del Gueriz, C.B. LiE, G.K. Lum, D. Orceadahl, and ∇. Perez-Meadex, "Medical position imaging with a dense drift apace HultiHire Proportional thanber", Lavrence Herkeley Liboratory, LBL-14043 (Harch 1982), nod IEEE Trane. Med. ieag., Vol. THI-1. 1982, in press. (22) A. Del Guerrs, V. Perez-Hendez, G. Schartz, and B. Sleaford, Laurence Berkeley Lahorstory, LPL-14044 (March 1982), and . roceedings of the "Int. Conf. on Applications of Phyaics to Hedicine and Biolog; ${ }^{-}$. Trieste (Italy), 30 March - 3 April 1982, Ed. by: G. Alberi, 2. Bafter, and P. Baxa, Horld icieatific Publishing Co., Slagapore, 1982, in prame. (23) T.A. Aulers, and V. Perex-Hendez, "Observarion of large Sazurazed Pulaes in Wire Chambers with Argon-Carion Dioxide Mixtulea", Laureace Berkeley Laboratory, LBL-14003, (1982). and to be published in Mucl. Inter. and Metinci, 1982.
(24) T.A. Mulera, A. Del Guerra, V.

Perez-Mendez, and G. Schuartz, -Large Signal Production in Wize Chamber: Pilled with Noble Gas-Carbon Dloxide and Noble-Gas Eydrocarbon Mixtureg", Laurence Berkeley Laboratory, LSL-14412 (1982), and to be preaenced at the 1982 ILeE NS-Syaposiun, Washington, D-こ., October 20-22, 1982.
(25) R. L. Ford and W. R. Helson, The EGS Code syatem: Computer program for the Honte carlo Simulation of Electromagnetic Cascade Shouers (Verafon 3)", StapEord L inr Accelerator Center, SLAC-210, June 19.8.
(26) W.R. Nelsan, and T.H. Jenkins, editors, -Computer Techoiquea in Radiacion Tranaport agad Dosimecty", Pleaua Preas, Neu Yorik, 1980.
(27) E. J. Konopinski, and M.E. Rose, "The Theory of Nuclear B-decay", in Alpha-, Beta-, Gama-Ray Spectroscopy ${ }^{-}$, ed. R. Slegbahn, North-Holland Publ. Co., Ansterdam, 1965, pp. 1327-1364.
(28) U. Fano "TaMes for the Aalysta of Beca Spectra", Nat Iomal Bureau of Standards, Applied Machemarics Series, Vol- 13, 1952.
(29) S . Heicler, "The Quancua Theory of Radiationㄹ, Clarendon Press, Oxford, 1954, pp. 270-271.
(30) P. Colombino, B. Piacella, and L. Trosai, -Study of Pobitronium in Water and Ice from 22 to $-1.44^{\circ} \mathrm{C}$ by Annihilation Quants Measureaeata ${ }^{-}$, Nuovo Cfmeato, Vol. 38, PP. 707-723, 1965.
(31) L. Racz, and A.S. Peafold, "Range-theory Relations for Electrons and the Deceraination of Beta-Ray End-Point Energies by Absorption", Rev. Mod. Phyb., Yol 24, pp. 28-44, 2952.
(32) A. Dej Guerra, Y. Perez-Mendex, G. Schwarti, and W.R. Nelson, "Design
Considerations for a High Spatial Reaolution Poaitron Camera-, Lawrence Berkeley Laboratory Report, LBL-14414 (1982), and to be preaented at the 1982 IEEE NS-Symporiun, vashingtoin D.C., October 20-22, 1982.
(33) H.J. Berger and S.M. Seltrer, Table of Energy Loases and Rarges of Electrons and Posiffons", Nationgh Aeronautica and Space ddainistration Report, NASA - SP - 3012. 1964.
(34) S.E. Derpazo, -Frecielan Mesourenent of Anaihilation Point Spread Dsotributions for Medically Important Poaitron Ealtears ${ }^{-}$, in Proceediage on the " 5 th International Confereace or Posicron Annifilation", Sendal, Jspan, The Japan Insticute of Ketala, pp. 819-823, 1979. (35) A.P. Jeavone, G. Cbarpak, and R.J. Stubbs, "The 昭gh-Dentity Multitire Drift Chanber". Nuc 1. Iastr. aod reth., Vol. 124, pp. 491-503, 1975.
(36) D. Chu, X.C. Tam, V. Perez-Mendez, C.B. Lin, D. Lambert, and S.N. Koplan,
"High-Efficiency Collingtor - Converters for Neutial Particle Laging uith mupc-, IEEE Trang. Nucl. Sc1-, Vel. RS-23, , (p. 634-639, Pebruary 1976.
(37) X.C. Tan and V. Ferez-4fendez,

Tomographical Iating with Linited-Angle Input", J.Opt. Soc. Art. Vol. 71, pp. 582-592, 1981.
(38) D.L. Phillipa, "A Technique for Numetical Solution of Certain tategral Equations", J. Asanc. Conp. Kach. Vol. 9, pp. 84-97. 1962. (39) K.C. Tph and V. Perez-Hendez, "Limited Angle Three vimensional Reconstructiona laing Fourler fransform Iterations and Radon Transfurm Iterat1ons". Opt. Eag., Vol. 20, pp. 586-589, 1981.
(40) R.U. Gerchbe g , "Super Resolutions Through Energy Error Reduction", Opt. Acta, Vol. 2l, pp. 703-720, 1974.
(41) A. Papoulia, "The Fouriar Integral and Ita Applicationa", HeGrau-Hill, Neu York, 1962, p. 54.
(42) E.J. Hoffman, M.E. rivlps, and S.C. Huang, -performance Evaluation of a ? UBitron Tomograph Designed for Brain Tasging", Departant of Radiological Sciences, UCLA, School of Medicine, Repori, 1982.
(43) T.F. Budinger, S.E. Derenzo, R.R. Buesman, and J.L. Cahoon, Positiou Enisalon Tomography: Instrumentation Perepectives", in Proceedings of the "Int. Horkshop on Physics and Engineering in Hedical Phyaics", Harch 15-18, 1982, Paciflc Grove, Califormia, IEEE Compucer Society Preas, pp. 3-13, 1982.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report epresent solely those of the author(s) and not necerssaniy those of The Regents of the University of California, the Lawrence Berkeley Leboratory or the Department of Energy.

Reiereace to a company or product name does not imply approzal or recomrendation oî the product by the University of California u the U.S. Department of Energy to the exclusion of others that may be suitable.

