
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Distributed optimal estimation from relative measurements for
localization and time synchronization

Permalink
https://escholarship.org/uc/item/3zf3q1z9

Journal
DISTRIBUTED COMPUTING IN SENSOR SYSTEMS, PROCEEDINGS, 4026

ISSN
0302-9743

Authors
Barooah, P
da Silva, N M
Hespanha, Joao P

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zf3q1z9
https://escholarship.org
http://www.cdlib.org/

Distributed Optimal Estimation from Relative
Measurements for Localization

and Time Synchronization

Prabir Barooah1, Neimar Machado da Silva2, and João P. Hespanha1

1 University of California, Santa Barbara, CA 93106, USA
{pbarooah, hespanha}@ece.ucsb.edu

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
neimarms@gmail.com

Abstract. We consider the problem of estimating vector-valued vari-
ables from noisy “relative” measurements. The measurement model can
be expressed in terms of a graph, whose nodes correspond to the vari-
ables being estimated and the edges to noisy measurements of the dif-
ference between the two variables. This type of measurement model ap-
pears in several sensor network problems, such as sensor localization and
time synchronization. We consider the optimal estimate for the unknown
variables obtained by applying the classical Best Linear Unbiased Esti-
mator, which achieves the minimum variance among all linear unbiased
estimators.

We propose a new algorithm to compute the optimal estimate in an
iterative manner, the Overlapping Subgraph Estimator algorithm. The
algorithm is distributed, asynchronous, robust to temporary communi-
cation failures, and is guaranteed to converges to the optimal estimate
even with temporary communication failures. Simulations for a realistic
example show that the algorithm can reduce energy consumption by a
factor of two compared to previous algorithms, while achieving the same
accuracy.

1 Introduction

We consider an estimation problem that is relevant to a large number of sensor
networks applications, such as localization and time synchronization. Consider
n vector-valued variables x1, x2, . . . , xn ∈ R

k, called node variables, one or more
of which are known, and the rest are unknown. A number of noisy measurements
of the difference between certain pairs of these variables are available. We can
associate the variables with the nodes V = {1, 2, . . . , n} of a directed graph
G = (V,E) and the measurements with the edges E of it, consisting of ordered
pairs (u, v) such that a noisy “relative” measurement between xu and xv is
available:

ζuv = xu − xv + εuv, (1)

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 266–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Optimal Estimation from Relative Measurements 267

where the εuv’s are uncorrelated zero-mean noise vectors with known covariance
matrices. That is, for every edge e ∈ E, Pe = E[εeε

T
e] is known, and E[εeε

T
ē] = 0

if e �= ē. The problem is to estimate all the unknown node variables from the
measurements. We call G a measurement graph and xu the u-th node variable.
The node variables that are known are called the reference variables and the
corresponding nodes are called the reference nodes. The relationship of this es-
timation problem with sensor network applications is discussed in section 1.1.

Our objective is to construct an optimal estimate x̂∗
u of xu for every node

u ∈ V for which xu is unknown. The optimal estimate refers to the esti-
mate produced by the classical Best Linear Unbiased Estimator (BLUE), which
achieves the minimum variance among all linear unbiased estimators [1]. To
compute the optimal estimate directly one would need all the measurements
and the topology of the graph (cf. section 2). Thus, if a central processor has
to compute the x̂∗

us, all this information has to be transmitted to it. In a large
ad-hoc network, this burdens nodes close to the central processor more than
others. Moreover, centralized processing is less robust to dynamic changes in
network topology resulting from link and node failures. Therefore a distributed
algorithm that can compute the optimal estimate while using only local com-
munication will be advantageous in terms of scalability, robustness and net-
work life.

In this paper we propose a new distributed algorithm, which we call the Over-
lapping Subgraph Estimator (OSE) algorithm, to compute the optimal estimates
of the node variables in an iterative manner. The algorithm is distributed in the
sense that each node computes its own estimate and the information required
to perform this computation is obtained from communication with its one-hop
neighbors. We show that the proposed algorithm is correct (i.e., the estimates
converge to the optimal estimates) even in the presence of faulty communica-
tion links, as long as certain mild conditions are satisfied. The OSE algorithm
asymptotically obtains the optimal estimate while simultaneously being scalable,
asynchronous, distributed and robust to communication failures.

1.1 Motivation and Related Work

Optimal Estimation. The estimation problem considered in this paper is mo-
tivated by sensornet applications such as time synchronization and location es-
timation. We now briefly discuss these applications.

In a network of sensors with local clocks that progress at the same rate but
have unknown offsets between them, it is desirable to estimate these offsets. Two
nodes u and v can obtain a measurement of the difference between their local
times by exchanging time stamped messages. The resulting measurement of clock
offsets can be modeled by (1)(see [2] for details). The problem of estimating the
offset of every clock with respect to a single reference clock is then a special case
of the problem considered in this paper. Karp et. al. [3] have also investigated
this particular problem. The measurement model used in [3] can be seen as an
alternative form of (1). In this application, the node variable xu is the offset of
u’s local time with respect to a “reference” clock, and is a scalar variable.

268 P. Barooah, N.M. da Silva, and J.P. Hespanha

Optimal Estimation from relative measurements with vector-valued variables
was investigated in [4, 5]. Localization from range and bearing measurements is
an important sensor network application that can be formulated as a special case
of the estimation problem considered in this paper. Imagine a sensor network
where the nodes are equipped with range and bearing measurement capability.
When the sensors are equipped with compasses, relative range and bearing mea-
surement between two nodes can be converted to a measurement of their relative
position vector in a global Cartesian reference frame. The measurements are now
in the form (1), and the optimal location estimates for the nodes can now be
computed from these measurements (described in section 2). In this application
the node variables are vectors.

Several localization algorithms have been designed assuming only relative
range information, and a few, assuming only relative angle measurement. In re-
cent times combining both range and bearing information has received some
attention [6]. However, to the best of our knowledge, no one has looked at
the localization problem in terms of the noisy measurement model (1). The
advantage of this formulation is that the effect of measurement noise can be
explicitly accounted for and filtered out to the maximum extent possible by
employing the classical Best Linear Unbiased Estimator(BLUE). This estima-
tor produces the minimum variance estimate, and hence is the most accurate
on average. Location estimation techniques using only range measurement can
be highly sensitive to measurement noises, which may introduce significant er-
rors into the location estimate due to flip ambiguities [7]. The advantage of
posing the localization problem as an estimation problem in Cartesian coor-
dinates using the measurement model (1) is that the optimal (minimum vari-
ance) estimates all node positions in a connected network can be unambigu-
ously determined when only one node that knows its position. A large num-
ber of well placed beacon nodes that know their position and broadcast that
to the network – a usual requirement for many localization schemes – are not
required.

Distributed Computation. Karp et. al. [3] considered the optimal estimation
problem for time synchronization with measurements of pairwise clock offsets,
and alluded to a possible distributed computation of the estimate, but stopped
short of investigating it. In [5], we have proposed a distributed algorithm for
computing the optimal estimates of the node variables that was based on the
Jacobi iterative method of solving a system of linear equations. This Jacobi al-
gorithm is briefly discussed in section 2. Although simple, robust and scalable,
the Jacobi algorithm proposed in [5] suffered from a slow convergence rate. The
OSE algorithm presented in this paper has a much faster convergence rate than
the Jacobi algorithm. Delouille et. al. [8] considered the minimum mean squared
error estimate of a different problem, in which absolute measurements of random
node variables (such as temperature) were available, but the node variables were
correlated. They proposed an Embedded Polygon Algorithm (EPA) for comput-
ing the minimum mean squared error estimate of node variables in a distributed
manner, which was essentially a block-Jacobi iterative method for solving a set

Distributed Optimal Estimation from Relative Measurements 269

of linear equations. Although the problem in [8] was quite different from the
problem investigated in this paper, their EPA algorithm could be adapted to
apply to our problem. We will call it the modified EPA. Simulations show that
the OSE algorithm converges faster than the modified EPA.

Energy Savings. Since OSE converges faster, it requires fewer iterations for
the same estimation error, which leads to less communication and hence saves
energy in ad-hoc wireless networks. Here estimation error refers to the differ-
ence between the optimal estimate and the estimate produced by the algorithm.
It is critical to keep energy consumption at every node at a minimum, since
battery life of nodes usually determines useful life of the network. The im-
proved performance of OSE comes from the nodes sending and processing larger
amounts of data compared to Jacobi and modified EPA. However, the energy
cost of sending additional data can be negligible due to the complex dependence
of energy consumption in wireless communication on radio hardware, under-
lying PHY and MAC layer protocols, network topology and a host of other
factors.

Investigation into energy consumption of wireless sensor nodes has been rather
limited. Still, we can get an idea of which parameters are important for energy
consumption from the studies reported in [9, 10, 11]. It is reported in [9] that
for very short packets (in the order of 100 bits), transceiver startup dominates
the power consumption; so sending a very short message offers no advantage in
terms of energy consumption over sending a somewhat longer message. In fact,
in a recent study of dense network of IEEE 802.15.4 wireless sensor nodes, it is
reported in transmitted energy per bit in a packet decreases monotonically upto
the maximum payload [10]. One of the main findings in [11] was that in highly
contentious networks, “transmitting large payloads is more energy efficient”. On
the other hand, receive and idle mode operation of the radio is seen to consume
as much energy as the transmit mode, if not more [12]. Thus, the number of
packets (sent and received) appear to be a better measure to predict energy
consumption than the number of bits.

In light of the above discussion, we used the number of packets transmitted
and received as a coarse measure of the energy consumed by a node during
communication. With number of packets as the energy consumption metric,
simulations indicate that the OSE algorithm can cut down the average energy
consumption for a given estimation accuracy as much by a factor of two or more
(compared to Jacobi and modified EPA).

1.2 Organization

The paper is organized as follows. In section 2, the optimal estimator for the
problem at hand is described. In section 3, we describe three algorithms to
compute the optimal estimate iteratively - Jacobi, modified EPA and the Over-
lapping Subgraph Estimator (OSE) and discuss correctness and performance.
Simulation studies are presented in section 4. The paper concludes with a sum-
mary in section 5.

270 P. Barooah, N.M. da Silva, and J.P. Hespanha

2 The Optimal Estimate

Consider a measurement graph G with n nodes and m edges. Recall that k is the
dimension of the node variables. Let X be a vector in R

nk obtained by stacking
together all the node variables, known and unknown, i.e., X := [xT

1 , xT
2 , . . . , xT

n]T .
Define z := [ζT

1 , ζT
2 ,, ζT

m]T ∈ R
km and ε := [εT

1 , εT
2 , ..., εT

m]T ∈ R
km. This

stacking together of variables allows us to rewrite (1) in the following form:

z = AT X + ε, (2)

where A is a matrix uniquely determined by the graph. To construct A, we start
by defining the incidence matrix A of the graph G, which is an n × m matrix
with one row per node and one column per edge defined by A := [aue], where
aue is nonzero if and only if the edge e ∈ E is incident on the node u ∈ V. When
nonzero, aue = −1 if the edge e is directed towards u and aue = 1 otherwise. The
matrix A that appears in (2) is an “expanded” version of the incidence matrix
A, defined by A := A ⊗ Ik, where Ik is the k × k identity matrix and ⊗ denotes
the Kronecker product.

4

35

6

2

1
e1

e2

e3
e4

e5

e6 ⎡
⎢⎣

ζ1
ζ2
ζ3
ζ4
ζ5
ζ6

⎤
⎥⎦=

⎡
⎢⎣

I 0 −I 0 0 0
0 0 I 0 −I 0
0 0 I −I 0 0
0 0 0 0 I −I
0 0 0 I 0 −I
0 −I 0 0 0 I

⎤
⎥⎦

⎡
⎣

x1
x2
x3
x4
x5
x6

⎤
⎦+

⎡
⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎦

Taking out the rows 1 : k, k+1 : 2k and 4k+1 : 5k (corresponding to the reference
nodes 1, 2, 5), we construct Ar; the remaining rows constitute Ab. For this example,
AT

r xr = [xT
1 , −xT

5 , 0, xT
5 , 0, −xT

2]T and so eq. (3) becomes
⎡
⎢⎣

ζ1−x1
ζ2+x5

ζ3
ζ4−x5

ζ5
ζ6+x2

⎤
⎥⎦

︸ ︷︷ ︸
z̄

=

⎡
⎣

−I 0 0
I 0 0
I −I 0
0 0 −I
0 I −I
0 0 I

⎤
⎦

︸ ︷︷ ︸
AT

b

[x3
x4
x6

]
︸ ︷︷ ︸

x

+

⎡
⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎦

︸ ︷︷ ︸
ε

.

In the case when every measurement covariance is equal to the identity matrix,
eq. (4) becomes [3I −I 0

−I 2I −I
0 −I 3I

] [
x̂∗
3

x̂∗
4

x̂∗
6

]
=

[
−ζ̄1+ζ̄2+ζ̄3

−ζ̄3+ζ̄5
−ζ̄4−ζ̄5+ζ̄6

]
,

whose solution gives the optimal estimates of the unknown node variables x3, x4

and x6.

Fig. 1. A measurement graph G with 6 nodes and 6 edges. Nodes 1, 2 and 5 are
reference nodes, which means that they know their own node variables.

Distributed Optimal Estimation from Relative Measurements 271

By partitioning X into a vector x containing all the unknown node variables
and another vector xr containing all the known reference node variables: XT =
[xT

r ,xT]T , we can re-write (2) as z = AT
r xr + AT

b x + ε, where Ar contains the
rows of A corresponding to the reference nodes and Ab contains the rows of
A corresponding to the unknown node variables. The equation above can be
further rewritten as:

z̄ = AT
b x + ε, (3)

where z̄ := z−AT
r xr is a known vector. The optimal estimate (BLUE) x̂∗ of the

vector of unknown node variables x for the measurement model 3 is the solution
to the following system of linear equations:

Lx̂∗ = b, (4)

where L := AbP−1AT
b , b := AbP−1z̄, and P := E[εεT] is the covariance

matrix of the measurement error vector [1]. Since the measurement errors on
two different edges are uncorrelated, P is a symmetric positive definite block
diagonal matrix with the measurement error covariances along the diagonal:
P = diag(P1, P2, . . . , Pm) ∈ R

km×km, where Pe = E[εeε
T
e] is the covariance of

the measurement error εe.
The matrix L is invertible if and only if every weakly connected component

of the graph G has at least one reference node [4]. A directed graph G is said to
be weakly connected if there is a path from every node to every other node, not
necessarily respecting the direction of the edges. In a weakly connected graph, the
optimal estimate x̂∗ for every node u is unique for a given set of measurements z.
The error covariance of the optimal estimate Σ := E[(x− x̂∗)(x− x̂∗)T] is equal
to L−1 and the k × k blocks on the diagonal of this matrix gives the estimation
error covariances of the node variables.

Figure 1 shows an example of a measurement graph and the relevant
equations.

3 Distributed Computation of the Optimal Estimate

In order to compute the optimal estimate x̂∗ by solving the equations (4) directly,
one needs all the measurements and their covariances (z, P), and the topology of
the graph (Ab, Ar). In this section we consider iterative distributed algorithms to
compute the optimal estimates for the measurement model (2). These algorithms
compute the optimal estimate through multiple iterations, with the constraint
that a node is allowed to communicate only with its neighbors. The concept
of “neighbor” is determined by the graph G, in the sense that two nodes are
neighbors if there is an edge in G between them (in either direction). This
implicitly assumes bidirectional communication. We describe three algorithms -
Jacobi, modified EPA, and OSE, the last being the novel contribution of this
paper. We will see that OSE algorithm converges even when communication
faults destroy the bidirectionality of communication.

272 P. Barooah, N.M. da Silva, and J.P. Hespanha

3.1 The Jacobi Algorithm

Consider a node u with unknown node variable xu and imagine for a moment
that the node variables for all neighbors of u are exactly known and available
to u. In this case, u could compute its optimal estimate by simply using the
measurements between itself and its 1-hop neighbors. This estimation problem
is fundamentally no different than the original problem, except that it is de-
fined over the much smaller graph Gu(1) = (Vu(1),Eu(1)), whose node set
Vu(1) include u and its 1-hops neighbors and the edge set Eu(1) consists of
only the edges between u and its 1-hops neighbors. We call Gu(1) the 1-hop
subgraph of G centered at u. Since we are assuming that the node variables of
all neighbors of u are exactly known, all these nodes should be understood as
references.

In the Jacobi algorithm, at every iteration, a node gathers the estimates of
its neighbors from them by exchanging messages and updates it own estimate
by solving the optimal estimation problem in the 1-hop subgraph Gu(1) by
taking the estimates of its neighbors as the true values (reference variables). It
turns out that this algorithm corresponds exactly to the Jacobi algorithm for
the iterative solution to the linear equation (4) and is guaranteed to converge to
the true solution of (4) when the iteration is done in a synchronous manner [5].
When done asynchronously, or in the presence of communication failures, it is
guaranteed to converge under additional mild assumptions [5]. The algorithm
can be terminated at a node when the change in its recent estimate is seen to be
lower than a certain pre-specified threshold value, or when a certain maximum
number of iterations are completed. The details of the Jacobi algorithm can be
found in [2, 5].

Note that to compute the update x̂
(i+1)
u , node u also needs the measure-

ments and associated covariances ζe, Pe on the edges e ∈ Eu(1) of its 1-hop
subgraph. We assume that after deployment of the network, nodes detect their
neighbors and exchange their relative measurements as well as the associated
covariances. Each node uses this information obtained initially for all future
computation.

3.2 Modified EPA

The Embedded Polygon Algorithm (EPA) proposed in [8] can be used for it-
eratively solving (4); since it is essentially a block – Jacobi method of solving
a system of linear equations, where the blocks correspond to non-overlapping
polygons. The special case when the polygons are triangles has been extensively
studied in [8]. We will not include here the details of the algorithm, including
triangle formation in the initial phase, the intermediate computation, commu-
nication and update. The interested reader is referred to [8]. It is not difficult
to adapt the algorithm in [8] to the problem considered in this paper. We have
implemented the modified EPA algorithm (with triangles as the embedded poly-
gons) and compared it with both Jacobi and OSE. Results are presented in
section 4.

Distributed Optimal Estimation from Relative Measurements 273

3.3 The Overlapping Subgraph Estimator Algorithm

The Overlapping Subgraph Estimator (OSE) algorithm achieves faster conver-
gence than Jacobi and modified EPA, while retaining their scalability and ro-
bustness properties. The OSE algorithm is inspired by the multisplitting and
Weighted Additive Schwarz method of solving linear equations [13].

The OSE algorithm can be thought of as an extension of the Jacobi algorithm,
in which individual nodes utilize larger subgraphs to improve their estimates.
To understand how this can be done, suppose that each node broadcasts to its
neighbors not only is current estimate, but also all the latest estimates that it
received from his neighbors. In practice, we have a simple two-hop communica-
tion scheme and, in the absence of drops, at the ith iteration step, each node will
have the estimates x̂

(i)
v for its 1-hop neighbors and the (older) estimates x̂

(i−1)
v

for its 2-hop neighbors (i.e., the nodes at a graphical distance of two).
Under this information exchange scheme, at the ith iteration, each node u has

estimates of all node variables in the set Vu(2) consisting of itself and all its 1-
hop and 2-hop neighbors. In the OSE algorithm, each node updates its estimate
using the 2-hop subgraph centered at u Gu(2) = (Vu(2),Eu(2)), with edge set
Eu(2) consisting all the edges of the original graph G that connect element of
Vu(2). For this estimation problem, node u takes as references the variables of
the nodes at the “boundary” of its 2-hop subgraph: Vu(2) \Vu(1). These nodes
are at a graphical distance of 2 from u. We assume that the nodes use the first
few rounds of communication to determine and communicate to one another the
measurements and associated covariances of their 2-hop subgraphs. The OSE
algorithm can be summarized as follows:

1. Each node u ∈ V picks arbitrary initial estimates x̂
(−1)
v , v ∈ Vu(2) \ Vu(1)

for the node variables of all its 2-hop neighbors. These estimates do not
necessarily have to be consistent across the different nodes.

2. At the ith iteration, each node u ∈ V assumes that the estimates x̂
(i−2)
v , v ∈

Vu(2) \ Vu(1) (that it received through its 1-hop neighbors) are correct and
solves the corresponding optimal estimation problem associated with the 2-
hop subgraph Gu(2). In particular, it solves the following linear equations:
Lu,2yu = bu, where yu is a vector of node variables that correspond to the
nodes in its 1-hop subgraph Gu(1), and Lu,2,bu are defined for the subgraph
Gu(2) as L,b were for G in eq. (4). After this computation, node u updates its
estimate as x̂

(i+1)
u ← λyu + (1 − λ)x̂(i)

u , where 0 < λ ≤ 1 is a pre-specified
design parameter and yu is the variable in yu that corresponds to xu. The new
estimate x̂

(i+1)
u as well as the estimates x̂

(i)
v , v ∈ Vu(1) previously received

from its 1-hop neighbors are then broadcasted by u to all its 1-hop neighbors.
3. Each node then listens for the broadcasts from its neighbors, and uses them

to update its estimates for the node variables of all its 1-hop and 2-hop
neighbors Vu(2). Once all updates are received a new iteration can start.

The termination criteria will vary depending on the application, as discussed for
the Jacobi algorithm. As in the case of Jacobi, we assume that nodes exchange

274 P. Barooah, N.M. da Silva, and J.P. Hespanha

measurement and covariance information with their neighbors in the beginning,
and once obtained, uses those measurements for all future time.

As an illustrative example of how the OSE algorithm proceeds in practice,
consider the measurement graph shown in figure 2(a) with node 1 as the sin-
gle reference. Figure 2(b) shows the 2-hop subgraph centered at node 4, G4(2),
which consists of the following nodes and edges: V4(2) = {1, 3, 5, 4, 6, 2} and
E4(2) = {1, 2, 3, 4, 5, 6}. Its 2-hop neighbors are V4(2) \ V4(1) = {1, 2, 5}. After
the first round of inter node communication, node 4 has the estimates of its
neighbors 3 and 6: x

(0)
3 , x

(0)
6 (as well as the measurements ζ3, ζ5 and covariances

P3, P5). After the second round of communication, node 4 has the node esti-
mates x1, x̂

(1)
3 , x̂

(0)
5 , x̂

(1)
6 , x̂

(0)
2 (and the measurements ζ1, . . . , ζ6 and covariances

P1, . . . , P6). Assuming no communication failures, at every iteration i, node 4
uses x1, x̂

(i−2)
3 and x̂

(i−2)
5 as the reference variables and computes “temporary”

estimates y3, y4, y6 (of x3, x4 and x6) by solving the optimal estimation problem
in its 2-hop subgraph. It updates its estimate as : x̂

(i+1)
4 ← λy4 + (1 − λ)x̂(i)

4 ,
and discards the other variables computed.

Note that all the data required for the computation at a node is obtained by
communicating with its 1-hop neighbors. Convergence to the optimal estimate
will be discussed in section 3.5.

Remark 1 (h-hop OSE algorithm). One could also design a h-hop OSE algorithm
by letting every node utilize a h-hop subgraph centered at itself, where h is
some (not very large) integer. This would be a straightforward extension of
the 2-hop OSE just described, except that at every iteration, individual nodes
would have to transmit larger amounts of data than in 2-hop OSE, potentially
requiring multiple packet transmissions at each iteration. In practice, this added
communication cost will limit the allowable value of h. �

The Jacobi, EPA and OSE algorithms are all iterative methods to compute the
solution of a system of linear equations. The Jacobi and EPA are similar in na-
ture, EPA essentially being a block-Jacobi method. The OSE is built upon the
Filtered Schwarz method [2], which is a refinement of the Schwarz method [13].
The OSE algorithm’s gain in convergence speed with respect to the Jacobi and
modified EPA algorithms comes from the fact that the 2-hop subgraphs Gu(2)
contain more edges than the 1-hop subgraphs Gu(1), and the subgraphs of differ-
ent nodes are overlapping. It has been observed that a certain degree of overlap
may lead to a speeding up of the Schwarz method [13].

Improving Performance Through Flagged Initialization. One can fur-
ther improve the performance of OSE (and also of Jacobi and modified EPA) by
providing a better initial condition to it, which does not require more commu-
nication or computation. After deployment of the network, the reference nodes
initialize their variables to their known values and every other node initializes its
estimate to ∞, which serves as a flag to declare that it has no estimate. In the
subsequent updates of a node’s variables, the node only includes in its 1- or 2-hop
subgraph those nodes that have finite estimates. If none of the neighbors have a

Distributed Optimal Estimation from Relative Measurements 275

finite estimate, then a node keeps its estimate at ∞. In the beginning, only the
references have finite estimates. In the first iteration, only the neighbors of the
references compute finite estimates by looking at their 1-hop subgraphs. In the
next iteration, their neighbors do the same by looking at their 2 hop subgraphs
and so on until all nodes in the graph have finite estimates. In general, the time
it takes for all nodes to have finite estimates will depend on the radius of the
network (the minimum graphical distance between any node and the nearest
reference node). Since the flagged initialization only affects the initial stage of
the algorithms, it does not affect their convergence properties.

3.4 Asynchronous Updates and Link Failures

In the previous description of the OSE algorithm, we assumed that communica-
tion was essentially synchronous and that all nodes always received broadcasts
from all their neighbors. However, the OSE algorithm also works with link fail-
ures and lack of synchronization among nodes. To achieve this a node broadcasts
its most recent estimate and waits for a certain time-out period to receive data
from its neighbors. It proceeds with the estimate update after that period, even
if it does not receive data from all of its neighbors, by using the most recent
estimates that it received from its neighbors. A node may also receive multi-
ple estimates of another node’s variable. In that case, it uses the most recent
estimate, which can be deduced by the time stamps on the messages. The Ja-
cobi and the modified EPA algorithms can similarly be made robust to link
failures [5, 8].

In practice nodes and communication links may fail temporarily or perma-
nently. A node may simply remove from its subgraph those nodes and edges
that have failed permanently (assuming it can be detected) and carry on the
estimation updates on the new subgraph. However, if a node or link fails per-
manently, the measurement graph changes permanently, requiring redefinition
of the optimal estimator. To avoid this technical difficulty, in this paper we
only consider temporary link failures, which encompasses temporary node
failures.

3.5 Correctness

An iterative algorithm is said to be correct if the estimate produced by the
algorithm x(i) converges to the true solution x̂∗ as the number of iterations i
increase, i.e., ‖x(i) − x̂∗‖ → 0 as i → ∞. The assumption below is needed to
prove correctness of the OSE algorithm, which is stated in Theorem 1.

Assumption 1. At least one of the statements below holds:

1. All covariance matrices Pe, e ∈ E are diagonal.
2. All covariance matrices Pe, e ∈ E are equal. �

Theorem 1 (Correctness of OSE). When assumption 1 holds, the OSE al-
gorithm converges to the optimal estimate x̂∗ as long as there is a number �d

such that the number of consecutive failures of any link is less than �d. �

276 P. Barooah, N.M. da Silva, and J.P. Hespanha

We refer the interested reader to [2] for a proof of this result.

Remark 2. Assumption 1 is too restrictive in certain cases. In particular, the
simulations reported in Section 4 were done with covariance matrices that did
not satisfy this assumption, yet the algorithm was seen to converge in all the
simulations. The reason is that this assumption is needed so that sufficient con-
ditions for convergence are satisfied [2], and is not necessary in general.

3.6 Performance

Since minimizing energy consumption is critically important in sensor networks,
we choose as performance metric of the algorithms the total energy consumed
by a node before a given normalized error is achieved. The normalized error ε(i)

is defined as
ε(i) := ‖x̂(i) − x̂∗‖/‖x̂∗‖

and is a measure of how close the iterate x̂(i) is to the correct solution x̂∗ at the
end of iteration i. We assume that nodes use broadcast communication to send
data.

4

1

7

6
2

35

6

e1e2

e3e4

e5

e6 e7

e8

(a) G

4

2

35 1

6

(b) G4(2)
−0.5 0 0.5

−0.5

0

0.5

(c) A network of 200 sensor nodes.

Fig. 2. (a) A measurement graph G with node 1 as reference, and (b) a 2-hop subgraph
G4(2) centered at node 4. While running the OSE algorithm, node 4 treats 1, 5 and 2 as
reference nodes in the subgraph G4(2) and solves for the unknowns x3, x4 and x6. (c)
A sensor network with 200 nodes in a unit square area. The edges of the measurement
graph are shown as line segments connecting the true nodes positions, which are shown
as black circles. Two nodes with an edge between them have a noisy measurement of
their relative positions in the plane. The little squares are the positions estimated by
the (centralized) optimal estimator. A single reference node is placed at (0, 0).

As discussed in section 1.1, we take the number of packets transmitted and
received by a node as a measure of energy consumption. Let N

(i)
tx (u) be the

number of packets a node u transmits to its neighbors during the ith iteration.

Distributed Optimal Estimation from Relative Measurements 277

The energy E(i)(u) expended by u in sending and receiving data during the ith
iteration is computed by the following formula:

E(i)(u) = N
(i)
tx (u) +

3
4

∑
v∈Nu

N
(i)
tx (v), (5)

where Nu is the set of neighbors of u. The factor 3/4 is chosen to account for
the ratio between the power consumptions in the receive mode and the trans-
mit mode. Our choice is based on values reported in [10] and [14]. The average
energy consumption Ē(ε) is the average (over nodes) of the total of energy con-
sumed among all the nodes till the normalized error reduces to ε. For simplicity,
eq. (5) assumes synchronous updates and perfect communication (no retrans-
missions). When packet transmission is unsuccessful, multiple retransmissions
maybe result, making the resulting energy consumption a complex function of
the parameters involved [11, 10].

In one iteration of the Jacobi algorithm, a node needs to broadcast its own
estimate, which consists of k real numbers. Recall that k is the dimension of the
node variables. Assuming a 32 bit encoding, that amounts to 4k bytes of data. In
the OSE algorithm, a node with d neighbors has to broadcast data consisting of
4d bytes for its neighbors’ IP addresses, 4k(d+1) bytes for the previous estimates
of itself and its neighbors, and 3d bytes for time stamps of those estimates. This
leads to a total of (7 + 4k)d + 4k bytes of data, and consequently the number of
packets in a message becomes

Ntx(u) =
 (7 + 4k)d + 4k

max databytes pkt
�, (6)

where max databytes pkt is the maximum number of bytes of data allowed in
the payload per packet. In this paper we assume that the maximum data per
packet is 118 bytes, as per IEEE 802.15.4 specifications [15]. For comparison,
we note that the number of bytes in a packet transmitted by MICA motes can
vary from 29 bytes to 250 bytes depending on whether B-MAC or S-MAC is
used [16]. If the number of data bytes allowed is quite small, OSE may require
multiple packet transmission in every iterations, making it more expensive.

4 Simulations

For simulations reported in this section, we consider location estimation as an
application of the problem described in this paper. The node variable xu is node
u’s position in 2-d Euclidean space. We present a case study with a network
with 200 nodes that were randomly placed in an area approximately 1 × 1 area
(Figure 2(c)). Some pairs of nodes u, v that were within a range of less than
rmax = 0.11 were allowed to have measurements of each others’ relative distance
ruv and bearing θuv. Node 1, placed at (0, 0) was the only reference node. Details
of the noise corrupting the measurements and the resulting covariances can be
found in [2]. The locations estimated by the (centralized) optimal estimator are
shown in Figure 2(c) together with the true locations.

278 P. Barooah, N.M. da Silva, and J.P. Hespanha

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

Iteration number, i

N
or

m
al

iz
ed

er
ro

r,
ε(

i)

Jacobi

EPA

OSE 2−hop

OSE 3−hop

OSE 2−hop, F.I.

(a) Normalized error vs. iteration num-
ber.

100 200 300 400 500

0.008
0.009
0.01

0.02

0.03

0.04

0.05

Average energy Ē(ε)

N
or

m
al

iz
ed

er
ro

r,
ε

Jacobi
modified EPA
2−hop OSE

(b) Normalized error vs. average energy
consumed.

Fig. 3. Performance comparison of the three algorithms. (a) shows the reduction in
normalized error with iteration number for the three algorithms, and also the drastic
reduction in the error with flagged initialization for the 2-hop OSE (the legend “F.I.”
refers to flagged initialization). The simulations without flagged initialization were
done with all initial node position estimates set to (0, 0). (b) shows the Normalized
error vs. average energy consumption of 2-hop OSE, modified EPA and Jacobi with
broadcast communication. Flagged initialization was used in all the three algorithms.
All simulations shown in (a) and (b) were done in Matlab.

Simulations were done both in Matlab and in the network simulator pack-
age GTNetS [17]. The Matlab simulations were done in a synchronous man-
ner. The purpose of the synchronous simulations was to compare the perfor-
mance of the three algorithms – Jacobi, modified EPA and OSE – under ex-
actly the same conditions. Synchronous Matlab simulations with link failure
were conducted to study the effect of communication faults (in isolation from
the effect of asynchronism). The GTNetS simulations were done to study OSE’s
performance in a more realistic setting, with asynchronous updates and faulty
communication. For all OSE simulations, λ was chosen (somewhat arbitrarily)
as 0.9.

Figure 3(a) compares the normalized error as a function of iteration number
for the three algorithms discussed in this paper - Jacobi, EPA and the OSE.
Two versions of OSE were tested, 2-hop and 3-hop. It is clear from this figure
that the OSE outperforms both Jacobi and modified EPA. As the figure shows,
drastic improvement was achieved with the flagged initialization scheme. With
it, the 2-hop OSE was able to estimate the node positions within 3% of the
optimal estimate after 9 iterations. For the flagged OSE, the normalized error
is not defined till iteration number 8, since some nodes had no estimate of their
positions till that time.

The Performanceof the three algorithms - Jacobi,modified EPAand 2-hop OSE
are compared in terms of the average energy consumption Ē inFigure 3(b). Flagged
initialization was used in all three algorithms.To compute the energy consumption

Distributed Optimal Estimation from Relative Measurements 279

10 20 30 40

0.008
0.009
0.01

0.02

0.03

0.04

0.05

Iteration number, i

N
or

m
al

iz
ed

er
ro

r,
ε

no link failure
p

f
 = 2%

p
f
 = 5%

(a) Synchronous simulation

10 20 30 40

0.008
0.009
0.01

0.02

0.03

0.04

0.05

Time (seconds)

N
or

m
al

iz
ed

er
ro

r,
ε

no link failure
p

f
 = 5%

(b) Async. GTNetS simulation

Fig. 4. (a)Normalized error as a function of iteration number in the presence of link
failures. Two different failure probabilities are compared with the case of no failure.
(b) Normalized error vs. Time (seconds) for asynchronous 2-hop OSE simulations con-
ducted in GTNetS, with and without link failure. As expected, performance in the
asynchronous case is slightly poorer than in the corresponding synchronous case.

for the 2-hop OSE, we apply (6) with k = 2 and max databytes pkt = 118 to
get Ntx(u) =
(15du + 8)/118�. The average node degree being 5, the number of
packets broadcasted per iteration in case of the OSE algorithm was 1 for almost all
the nodes. For Jacobi, the number of packets broadcasted at every iteration was 1
for every node. For the modified EPA algorithm, the number of packets in every
transmission was 1 but the total number of transmissions in every iteration were
larger (than Jacobi and OSE) due to the data exchange required in both the EPA
update and EPA solve steps (see [8] for details). The normalized error against the
average (among all the nodes) total energy consumed Ē is computed and plotted
in Figure 3(b). Comparing the plots one sees that for a normalized error of 1%, the
OSE consumes about 70% of the energy consumed by modified EPA and 60% of
that by Jacobi. For slightly lower error, the difference is more drastic: to achieve
a normalized error of 0.8%, OSE needs only 60% of the energy consumed by EPA
and about half of that by Jacobi.

Note that the energy consumption benefits of OSE become more pronounced
as one asks for higher accuracy, but less so for low accuracy. This is due to
flagged initialization, which accounts for almost all the error reduction in the
first few iterations.

To simulate faulty communication, we let every link fail independently with
a probability pf that is constant for all links during every iteration. Figure 4(a)
shows the normalized error as a function of iteration number (from three repre-
sentative runs) for two different failure-probabilities: pf = 0.025 and 0.05. In all
the cases, flagged initialization was used. The error trends show the algorithm
converging with link failures. As expected, though, higher failure rates resulted
in deteriorating performance.

280 P. Barooah, N.M. da Silva, and J.P. Hespanha

The OSE algorithm was also implemented in the GTNetS simulator [17], and
the results for the 200 node network are shown in Figure 4(b). Each node sleeps
until it receives the first packet from a neighbor, after which it updates its
estimate and sends data to its neighbors every second. Estimates are updated
in an asynchronous manner, without waiting to receive data from all neighbors.
Time history of the normalized error is shown in Figure 4(b). Both failure-free
and faulty communication (with pf = 0.05) cases were simulated. Even with
realistic asynchronous updates and link failures, the OSE algorithm converges
to the optimal estimate. Since the nodes updated their estimates every second,
the number of seconds (x-axis in Figure 4(b)) can be taken approximately as the
number of iterations. Comparing Figure 4(a) and (b), we see that the convergence
in the asynchronous case is slightly slower than in the synchronous case.

5 Conclusions

We have developed a distributed algorithm that iteratively computes the op-
timal estimate of vector valued node variables, when noisy difference of vari-
ables between certain pairs of nodes are available as measurements. This situ-
ation covers a range of problems relevant to sensor network applications, such
as localization and time synchronization. The optimal estimate produces the
minimum variance estimate of the node variables from the noisy measurements
among all linear unbiased estimates. The proposed Overlapping Subgraph Esti-
mator (OSE) algorithm computes the optimal estimate iteratively. The OSE
algorithm is distributed, asynchronous, robust to link failures and scalable.
The performance of the algorithm was compared to two other iterative al-
gorithms – Jacobi and modified EPA. The OSE outperformed both of these
algorithms, consuming much less energy for the same normalized error. Sim-
ulations with a simple energy model indicate that OSE can potentially cut
down energy consumption by a factor of two or more compared to Jacobi and
modified EPA.

There are many avenues of future research. Extending the algorithm to handle
correlated measurements and developing a distributed algorithm for computing
the covariance of the estimates are two challenging tasks that we leave for future
work.

[1] Mendel, J.M.: Lessons in Estimation Theory for Signal Processing, Communica-
tions and Control. Prentice Hall P T R (1995)

[2] Barooah, P., da Silva, N.M., Hespanha, J.P.: Distributed optimal estimation from
relative measurements: Applications to localizationa and time synchronization.
Technical report, Univ. of California, Santa Barbara (2006)

[3] Karp, R., Elson, J., Estrin, D., Shenker, S.: Optimal and global time synchro-
nization in sensornets. Technical report, Center for Embedded Networked Sens-
ing,Univ. of California, Los Angeles (2003)

Bibliography

Distributed Optimal Estimation from Relative Measurements 281

[4] Barooah, P., Hespanha, J.P.: Optimal estimation from relative measurements:
Electrical analogy and error bounds. Technical report, University of California,
Santa Barbara (2003)

[5] Barooah, P., Hespanha, J.P.: Distributed optimal estimation from relative mea-
surements. In: 3rd ICISIP, Bangalore, India (2005)

[6] Chintalapudi, K., Dhariwal, A., Govindan, R., Sukhatme, G.: Ad-hoc localization
using ranging and sectoring. In: IEEE Infocom. (2004)

[7] Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization
with noisy range measurements. In: Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems. (2004)

[8] Delouille, V., Neelamani, R., Baraniuk, R.: Robust distributed estimation in
sensor networks using the embedded polygon algorithms. In: IPSN. (2004)

[9] Min, R., Bhardwaj, M., Cho, S., Sinha, A., Shih, E., Sinha, A., Wang, A., Chan-
drakasan, A.: Low-power wireless sensor networks. In: Keynote Paper ESSCIRC,
Florence, Italy (2002)

[10] Bougard, B., Catthoor, F., Daly, D.C., Chandrakasan, A., Dehaene, W.: Energy
efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks:
Modeling and improvement perspectives. In: Design, Automation and Test in
Europe (DATE). (2005)

[11] Carvalho, M.M., Margi, C.B., Obraczka, K., Garcia-Luna-Aceves, J.: Modeling
energy consumption in single-hop IEEE 802.11 ad hoc networks. In: IEEE ICCCN.
(2004)

[12] Shih, E., Cho, S., Fred S. Lee, B.H.C., Chandrakasan, A.: Design considerations
for energy-efficient radios in wireless microsensor networks. Journal of VLSI Signal
Processing 37 (2004) 77–94

[13] Frommer, A., Schwandt, H., Szyld, D.B.: Asynchronous weighted additive Schwarz
methods. Electronic Transactions on Numerical Analysis 5 (1997) 48–61

[14] Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks. In: Proceedings of the IEEE Infocom. (2002)

[15] IEEE 802.15 TG4: IEEE 802.15.4 specifications (2003) http://
www.ieee802.org/15/pub/TG4.html .

[16] Ault, A., Zhong, X., Coyle, E.J.: K-nearest-neighbor analysis of received signal
strength distance estimation across environments. In: 1st workshop on Wireless
Network Measurements, Riva Del Garda, Italy (2005)

[17] Riley, G.F.: The Georgia Tech Network Simulator. In: Workshop on Models,
Methods and Tools for Reproducible Network Research (MoMeTools). (2003)

http://
www.ieee802.org/15/pub/TG4.html

	Introduction
	Motivation and Related Work
	Organization

	The Optimal Estimate
	Distributed Computation of the Optimal Estimate
	The Jacobi Algorithm
	Modified EPA
	The Overlapping Subgraph Estimator Algorithm
	Asynchronous Updates and Link Failures
	Correctness
	Performance

	Simulations
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

