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Abstract

The role of histone modifications in transcription remains incompletely understood. Here we 

examine the relationship between histone modifications and transcription using experimental 

perturbations combined with sensitive machine-learning tools. Transcription predicted the 

variation in active histone marks and complex chromatin states, like bivalent promoters, down 

to single-nucleosome resolution and at an accuracy that rivaled the correspondence between 

independent ChIP-seq experiments. Blocking transcription rapidly removed two punctate marks, 

H3K4me3 and H3K27ac, from chromatin indicating that transcription is required for active 

histone modifications. Transcription was also required for maintenance of H3K27me3 consistent 

with a role for RNA in recruiting PRC2. A subset of DNase-I hypersensitive sites were refractory 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Address correspondence to: Charles G. Danko, Ph.D., Baker Institute for Animal Health, Cornell University, Hungerford Hill Rd., 
Ithaca, NY 14853, USA., Phone: (607) 256-5620, dankoc@gmail.com.
*Denotes equal contribution and interchangeable ordering.
Author Contributions Statement
Z.W., A.G.C. and C.G.D. designed the study. Z.W., T.C., and C.G.D. developed the support-vector regression method. A.G.C., E.J.R., 
and L.A.C. performed experimental research. A.G.C., Z.W., S.P.C., J.T.L., and C.G.D. analyzed and interpreted sequencing data. 
A.G.C. performed and analyzed Trp experiments. D.C.M., N.B.K., J.L.P., C.J.F., R.R.B., D.F.A., E.J.R., and Z.W. prepared and 
analyzed data from FAANG horse liver tissue. Z.W., A.G.C., J.T.L., and C.G.D. wrote the manuscript. All authors have been involved 
in revisions and approved the final manuscript.

Competing Interests Statement
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2022 September 10.

Published in final edited form as:
Nat Genet. 2022 March ; 54(3): 295–305. doi:10.1038/s41588-022-01026-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


to prediction, precluding models where transcription initiates pervasively at any open chromatin. 

Our results, in combination with past literature, support a model in which active histone 

modifications serve a supportive, rather than an essential regulatory, role in transcription.

Introduction

The discovery that core histones are post-transcriptionally modified fueled nearly six 

decades of speculation about the role that histone modifications play in transcriptional 

regulation by RNA polymerase II (Pol II)1. Many of the best-studied histone modifications 

are deeply conserved within eukaryotes, indicating important functional roles2–4. Indeed, 

numerous examples illustrate how the disruption of histone modifications, or their associated 

writer and eraser enzymes, lead to defects in transcription and cellular phenotypes5–8. 

Histone modifications are found in highly stereotyped patterns across functional elements, 

including promoters, enhancers, and over the body of transcribed genes and non-coding 

RNAs9,10. The stereotyped pattern of histone modifications makes them useful in the 

annotation of functional elements in eukaryotic genomes, providing insight into phenotype-

associated genetic variation11,12 and molecular changes associated with disease13.

Despite their apparent correlation with active transcription, whether histone modifications 

have a direct role in transcriptional regulation or an indirect role as “cogs” in 

the transcription machinery, remains debated14,15. Certain combinations of histone 

modifications, most notably the bivalent chromatin signature consisting of H3K4me3 and 

H3K27me3, are speculated to mark specific genes for transcriptional activation in later 

developmental stages16. In another example, the balance between H3K4me1 and H3K4me3, 

which has long been known to correlate with enhancer and promoter activity17, has been 

proposed to establish these two regulatory roles18. Another question that remains heavily 

debated is the extent to which distinct histone modifications mark DNA sequence elements 

that otherwise have similar functional activities. H3K27ac, H3K64ac, and H3K122ac are 

all reported to denote distinct sets of enhancers19. Finally, to what extent do histone 

modifications cause transcription? The nature of the quantitative relationship between 

transcription and histone modification lies at the crux of this open question. Under one 

model, histone marks have a direct role in specifying cell-type transcriptional regulatory 

states of genes. Alternatively, if histone modifications serve as “cogs” that have a 

critical role in transcription, but do not themselves have a regulatory role independent of 

transcription factors, we might expect that they are completely correlated with on-going 

transcription.

Here we trained sensitive machine-learning models that decompose maps of primary 

transcription into ChIP-seq profiles representing nine distinct histone modifications. We 

show that transcription measured using precision run-on and sequencing (PRO-seq)20–22 

can recover the patterns of active histone modifications at nucleosome resolution and 

with an accuracy that rivals the correlation between independent ChIP-seq experiments in 

holdout cell types. Furthermore, the correct pattern of two histone modifications, H3K4me3 

and H3K27ac, was dependent on continued transcription by Pol II. These results support 
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models in which histone modifications associated with active chromatin are “cogs” with a 

supportive role, rather than a direct regulatory role, in transcription.

Results

Imputation of histone marks using nascent transcription

To better understand the nature of the relationship between transcription and histone 

modifications, we trained an algorithm called discriminative histone imputation using 

transcription (dHIT). dHIT uses the distribution of RNA polymerase, measured using any 

of the related run-on and sequencing methodologies – PRO-seq, GRO-seq, or ChRO-seq 

(henceforth referred to simply as PRO-seq) – to impute the level of histone modifications 

genome-wide. Run-on assays provide a readout of the position and density of RNA 

polymerase, which dHIT passes to a support vector regression (SVR) trained to impute, or 

“guess”, the genome-wide distribution of chromatin structure and marks. During a training 

phase, the SVR optimized a function that mapped PRO-seq signal to the quantity of ChIP-

seq signal at each position of the genome (Fig. 1a; see Methods). Once a dHIT model was 

trained using existing ChIP-seq data, it can impute steady state histone modifications in any 

cell type, provided that the relationship between histone modification and transcription is 

preserved. We trained dHIT to impute the levels of 10 different histone modifications that 

are widely deployed to analyze chromatin state (Fig. 1a)10,23–25. To avoid overfitting to 

batch-specific features in a single run-on and sequencing dataset25, training was performed 

using seven datasets in K562 cells that exemplify the range of variation commonly observed 

between data in library quality, sequencing depth, run-on strategy (PRO-seq or GRO-seq), 

and pausing index (Supplementary Tables 1 and 3).

We evaluated the accuracy of each dHIT imputation model on a holdout chromosome in 

one of the training datasets (chr22; Fig. 1b–c; Extended Data Figs. 1 and 2). Histone 

modification signal intensity imputed using dHIT was highly correlated with experimental 

data for a variety of marks with different genomic distributions. The most notable 

differences between imputed and experimental signals tended to be small differences 

in background regions with low intensity in both experimental and imputed signal, but 

which added up over large windows, reflecting technical sources of variation in ChIP-seq 

background signal that were not reflected in PRO-seq signal (Extended Data Fig. 1; 

Supplementary Note 1). We did not observe major differences in accuracy at different types 

of functional elements, including regions of high signal intensity in either experimental 

or imputed data, near gene promoters26,27, at distal enhancer elements, and at stable and 

unstable transcription start sites (TSS)11 (Extended Data Fig. 2). In addition to well-studied 

and commonly used histone marks, we also obtained a high degree of correspondence 

for less widely studied histone modifications such as histone H3 lysine 122 acetylation 

(H3K122ac). Nevertheless, dHIT models trained to impute H3K122ac had a high correlation 

on the holdout chromosome (Fig. 1b). Of the marks for which we attempted to train models, 

only the repressive mark H3K9me3 did not perform well against either ENCODE data, or 

against higher-quality CUT&RUN data28 (Extended Data Fig. 2m).

In many cases, imputation captured the fine-scale distribution of histone mark signals near 

the TSS of annotated genes or enhancers (Fig. 1c; Extended Data Fig. 2c–l; Extended 
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Data Fig 2n). To explore the limit of the resolution for histone mark imputation using 

transcription, we obtained new ChIP-seq data for four active marks whose distribution 

correlates with enhancers and promoters (H3K4me1, H3K4me2, H3K4me3, and H3K27ac) 

at nucleosome resolution by using MNase to fragment DNA. We trained new SVR models 

in K562 cells that take advantage of the higher-resolution MNase ChIP-seq data, excluding 

chromosome 22 as a holdout to confirm a high correlation (Extended Data Fig. 3a–b). 

Examination of genome-browser traces near the TSS of genes on the holdout chromosome 

confirmed that dHIT could impute active marks with high resolution (Extended Data Fig. 

3c).

Genome-wide, several aspects of chromatin organization were correlated with the precise 

location of TSSs and Pol II pause sites. These features are readily apparent when sorting by 

the distance between the strongest TSS on the plus and minus strand29–31 (Fig. 1d). First, 

when the distance between the maximal sense and divergent TSS was larger than ~300 bp, 

we observed a nucleosome between the divergent start sites that was marked predominantly 

with H3K4me3 and H3K27ac but depleted for H3K4me1. Second, H3K4me3 and H3K27ac 

signals were highest on the +1 nucleosome, as well as the nucleosome found inside of 

the initiation domain. Third, H3K4me2 was highest on the −1 nucleosome. Fourth, the 

gene body mark, H3K36me3, was depleted at the promoter, and enriched in the body of 

transcribed genes (Extended Data Fig. 3d). Each of these correlations between TSSs and 

chromatin marks were also observed to varying degrees in genome-wide imputation in K562 

cells (Fig. 1d), in imputation data in a complete holdout cell type, GM12878 (Extended Data 

Fig. 3e). Thus, dHIT recovered the placement of nucleosomes constrained to ordered arrays 

whose position correlated with transcription initiation.

Imputation accuracy across cell types and species

We asked whether the relationship between transcription and histone modifications is a 

general feature shared across mammalian cell types. We computed the correlation between 

imputed and experimental histone marks in five holdout datasets without retraining the 

model. Active marks were recovered with a similar fidelity in holdout cell types as observed 

for K562 (Pearson’s R = 0.38–0.84 [median R = 0.73]; Fig 1e, Extended Data Fig. 4a–c), 

substantially higher than duplicating values from the training dataset (Extended Data Fig. 

4d). Lower correlations were generally observed when the experimental ChIP-seq data 

(certain CD4+ T-cell datasets) or the PRO-seq data (e.g., HeLa) had fewer sequenced reads 

or lower values in other data quality metrics (Supplementary Table 3). Cell-type-specific 

signal differences were predicted with reasonably high accuracy (Pearson’s R = 0.44–0.70 

for active marks; Extended Data Fig. 4f), providing additional confidence that dHIT was 

not simply learning the average signal intensity of histone modification32. Thus, dHIT 

accurately recovered the distribution of active histone marks in a way that generalized to all 

new cell types examined here.

To more intuitively interpret the accuracy of dHIT, we compared correlations between 

imputed and ChIP-seq data to those observed between different experimental datasets 

in K562 and GM12878. For active marks, and for H3K27me3, correlations between 

dHIT imputation and experimental data were often within the range observed between 
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experimental datasets (Extended Data Fig. 5). In addition to signal intensity, imputation 

could also recover the location of ENCODE peak calls in GM12878 with an accuracy 

rivaling ChIP-seq experiments (Extended Data Fig. 2m). These data indicate that imputation 

achieved performance similar to ChIP-seq experimental replication for most marks.

We examined specific loci in which imputed histone marks differed substantially from 

experimental data. Differences could reflect either cases in which histone modifications 

deviate from transcription for a specific mechanistic reason, or biological differences 

between cell stocks, growth conditions, handling, or other confounding factors. To 

distinguish between these possibilities, we repeated ChIP-seq for H3K27ac in K562 

cells that were closely matched with those used to prepare PRO-seq libraries. In 

nearly all cases, our own ChIP-seq data resolved major discrepancies between imputed 

and ENCODE datasets (Extended Data Fig. 6a–b). We therefore concluded that major 

discrepancies between imputed and experimental marks predominantly reflect intrinsic 

biological or technical differences, rather than divergence between transcription and histone 

modifications.

Two patterns of H3K27me3 reflect separate cellular states

We identified one important exception on the extent to which histone imputation generalized 

between cell types. The repressive mark H3K27me3 had a reasonable correlation with 

experimental data in K562, GM12878, and horse liver (median Pearson’s R = 0.31), 

consistent with the correlation expected from biological replication in K562. In these cell 

types, H3K27me3 was distributed across broad genomic intervals, which were identified 

with reasonable fidelity by dHIT imputation (Fig. 2a, top). However, we observed 

a much weaker correlation in mouse embryonic stem cells (mESCs, Pearson’s R = 

0.06). Examination of signal tracks showed that the distribution of H3K27me3 differed 

dramatically from the K562 cell dataset. In mESCs, H3K27me3 was predominantly 

positioned in punctate peaks near weakly transcribed promoters (Fig. 2a, bottom). Although 

a handful of loci with critical developmental importance, notably all four Hox gene clusters, 

had a broad distribution in the mESC data, these did not show the pattern expected in the 

mark based on transcription (Extended Data Fig. 6c). Analysis of H3K27me3 in 86 high-

quality samples showed that stem, germ, and certain progenitor cells usually had a punctate 

pattern, whereas most somatic cell types had the broadly distributed pattern (Extended Data 

Fig. 6d–f). Thus, although we cannot completely discount the possibility that technical 

factors contribute to this difference in H3K27me3 distribution33–35, both punctate and broad 

H3K27me3 distributions appear even when libraries were prepared by the same laboratory36 

or consortium23,24. These observations suggest that H3K27me3 can occur in at least two 

distinct profiles, and that transcription is able to predict the broadly distributed profile found 

in somatic cell types with reasonable accuracy.

Imputation of bivalent promoters and other chromatin states

We next asked whether dHIT could impute complex chromatin states consisting of multiple 

histone marks. The bivalent chromatin state, best described in ESCs and germ cells, is a 

perfect example where nucleosomes near gene promoters are marked with both H3K4me3 

and H3K27me3. We used dHIT models trained on ENCODE ChIP-seq data in K562 cells 
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to impute H3K4me3 and H3K27me3 based on a GRO-seq dataset in mESCs37. Despite cell-

type-specific differences in the relationship between transcription and H3K27me3 between 

K562 and mESCs, we observed a strong tendency for bivalent promoters in mESCs to 

fall inside broad domains predicted to have high H3K27me3. For example, the K562 

model predicts that Prox1 resides inside of a broad H3K27me3 domain (Fig. 2a). Despite 

being far from highly transcribed genes, the Prox1 promoter is weakly transcribed, and the 

imputation correctly places a H3K4me3 peak. Nearly 80% of bivalent gene promoters could 

be separated from promoters associated with either mark alone, or neither mark, with a 

precision of 80%, using a random forest on holdout data (Fig. 2b). Notably, promoters that 

carry the H3K27me3 mark in mESCs were distinguished accurately from those carrying no 

mark, indicating that promoters carrying the H3K27me3 are generally not transcriptionally 

silent. Taken together, these results demonstrate that bivalent genes can be identified based 

on the distribution of active transcription alone.

To generalize our observations on bivalent genes to other chromatin states, we asked 

whether chromatin marks imputed using transcription can infer chromatin states defined 

by chromHMM38. We used a previously reported chromHMM model that defined 18 distinct 

chromatin states using ChIP-seq data from six marks for which we trained imputation 

models (H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K9me3, and H3K27me3)24,39. 

Examination on the genome browser revealed that chromatin states were highly similar, 

regardless of whether they were defined using ENCODE data or dHIT imputation (Fig. 

2c–d, Extended Data Fig. 7a). To determine the concordance expected between chromatin 

states defined using independent collections of experimental data, we applied chromHMM 

to a distinct collection of ChIP-seq data in the same cell type (Supplementary Table 1). The 

Jaccard similarity index between imputed and experimental data were highly correlated with 

those observed between other ChIP-seq datasets (Pearson’s R = 0.92; Fig. 2e, Extended Data 

Fig. 7b–c). Taken together, these results suggest that transcription alone is sufficient to infer 

complex chromatin states, especially active chromatin states.

Genome annotation using a single functional assay

Histone modifications are widely used to annotate mammalian genomes. We hypothesized 

that since dHIT can accurately predict chromatin marks, it provides a strategy for genome 

annotation in limited samples or new mammalian species using a single molecular tool. 

We analyzed chromatin states in 20 primary glioblastomas (GBMs) for which we recently 

published ChRO-seq data22. ChromHMM analysis revealed both broad similarities and 

putative differences in chromatin states between different GBMs (Fig. 3a). Analysis of 

histone modifications using ChIP-seq of this same set of samples would require 120 

experiments (Fig. 3b) and deeper sequencing to match ENCODE guidelines. Thus, ChRO-

seq and dHIT can resolve intricate patterns of chromatin organization using a single 

molecular assay.

Another critical application is to efficiently annotate functional elements in diverse tissues 

from understudied species. We obtained ChRO-seq data from the liver of two horses that 

serve as the focus of the Functional Annotation of Animal Genomes (FAANG) project40–42. 

Using dHIT and models trained in K562 cells, we imputed patterns of H3K27ac, H3K4me3, 
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H3K4me1, and H3K27me3 that were highly correlated with experimental data from the 

same tissues (Fig. 1e; Extended Data Fig. 7d). In addition to those histone marks measured 

by FAANG, dHIT also imputed patterns for five additional histone marks, providing new 

information about chromatin state that was not obtained by the FAANG consortium. Next, 

we prepared ChRO-seq libraries in eight murine tissues (Extended Data Fig. 7e; Extended 

Data Fig. 8a–b). After accounting for biological replication in this experiment43 (7 replicates 

× 8 tissues × 9 histone marks), it would have taken 504 ChIP-seq assays to prepare this same 

dataset. Thus, using dHIT to interpret ChRO-seq data provides individual laboratories access 

to consortium-scale functional annotation tools.

We then asked whether PRO-seq more accurately predicted unobserved histone 

modifications than SVR models trained using a small number of observed histone 

modifications. PRO-seq achieved a higher accuracy than any other individual chromatin 

mark or combination of chromatin marks (Fig. 3c, black; Supplementary Note 2). Thus, 

we conclude that PRO-seq improved the accuracy of histone mark imputation by encoding 

signals from multiple functional regions and by improving spatial resolution compared with 

ChIP-seq data.

Promoter histone modifications depend on transcription

The strong correlation observed between Pol II and histone modifications implies a causal 

relationship between the histone marks and transcription. However, correlations do not 

provide insight into which direction causality might run. To assess whether Pol II activity 

is necessary for the establishment of histone modification patterns, we rapidly blocked 

transcription initiation using the small molecule Trp and observed the immediate effects on 

both transcription (using PRO-seq) and histone modifications (using MNase-ChIP-seq) (Fig. 

4a)44,45. After spike-in normalization, PRO-seq revealed the expected pattern of changes in 

Pol II throughout the time-course37 (Fig. 4c; Extended Data Fig. 8; Supplementary Note 

3). We performed MNase-ChIP-seq for four active histone marks: H3K4me1, H3K4me3, 

H3K27ac, H3K36me3, and one repressive mark: H3K27me3. To normalize libraries for 

systematic variation in MNase cutting and immunoprecipitation efficiency, we added 

Dryas iulia butterfly cells to each immunoprecipitation as a spike-in control, resulting in 

experiments that were highly correlated with public data (Extended Data Fig. 8g–i, j).

Analysis of MNase-ChIP-seq data revealed that histone modifications have a broad range 

of dependence on Pol II. Trp had no effect on either H3K36me3 or H3K4me1 (Fig. 4d–e; 

Extended Data Fig. 9a–b). Although H3K36me3 is deposited co-transcriptionally46–48, it 

has a long half-life on chromatin49, which the 4 h time point used in our study is not 

likely to have captured. Surprisingly, two punctate marks, H3K27ac and H3K4me3, were 

rapidly lost 1 h after Trp treatment and remained low after 4 h (Fig. 4f–i, top). We note 

the presence of a small number (~5%) of peaks that retained the histone modification 

independently of transcription (Fig. 4k–l; Supplementary Note 4). Western blotting for 

chromatin bound modified histones confirmed the global loss in H3K27ac and H3K4me3 

ChIP-seq signal, as well as the muted effects on H3K36me3 and H3K4me1 (Fig. 4j, 

bottom; Extended Data Fig. 9g–h). Blocking transcription also decreased the H3K27me3 

repressive mark near focal binding sites of EZH2, a component of the PRC2 complex, but 
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not H3K27me3 accumulation over broad regions away from PRC2 binding (Extended Data 

Fig. 9c, Supplementary Note 5). These findings are consistent with a requirement for RNA 

in recruiting PRC2 and depositing H3K27me350. Taken together, these results indicate a 

surprising and rapid dependence of histone marks on on-going transcriptional activity.

The loss of active histone modifications from chromatin may be caused by either rapid 

enzymatic deacetylation or demethylation of histone tails or increased nucleosome turnover 

at TSSs. To differentiate between these hypotheses, we focused on H3K27ac. We performed 

additional Western blots in cells treated with a combination of Trp and the pan-deacetylase 

inhibitor Trichostatin A (TSA). In the presence of Trp and TSA, H3K27ac was retained on 

chromatin (Extended Data Fig. 9i–j). Moreover, Trp and TSA did not have a major impact 

on cell viability at the time points used in our present study, indicating that effects on 

chromatin were unlikely to be explained by an impact on cell viability (Extended Data Fig. 

10a). Collectively our results suggest that rapid deacetylation of H3K27 is responsible for 

the loss observed after blocking transcription.

Chromatin accessibility is insufficient for Pol II initiation

In some classical models, gene regulation in eukaryotes primarily involves removing 

nucleosomes from the promoter of active genes, at which point Pol II initiates in 

an indiscriminate manner51. More recent studies support such accessibility models by 

observations that Pol II initiates at nearly all DNase-I hypersensitive chromatin52,53. 

However, these recent studies are controversial, and at odds with other literature showing 

only a subset of DNase-I hypersensitivity sites have evidence of active transcription54–57. 

To more rigorously detect transcription at DNase-I accessible regions, we trained an SVR 

to impute smoothed DNase-I-seq data using PRO-seq in the same manner as we used for 

histone modifications. The best model predicted a holdout chromosome (chr22) with an 

accuracy of 0.61 or 0.77 (R2) at resolutions of 100 and 1,000 bp (Fig. 5a–c), consistent 

with a strong correlation between chromatin accessibility and transcription initiation31,52. 

Nevertheless, a substantial number of DNase-I hypersensitive sites had predicted values 

near zero, indicating a subset of sites that were refractory to prediction based on PRO-seq 

transcription data (Fig. 5a, red arrow). Intersecting experimental and imputed DNase-I-seq 

intensities with ChIP-seq data revealed that poorly performing windows were enriched 

for binding of CTCF (Fig. 5c), or to a lesser extent for transcriptional repressors and 

co-repressors such as REST, RFX5, or HDAC2 (Extended Data Fig. 10c–h). In contrast 

H3K27ac peaks were depleted for poor matches between experimental and imputed DNase-

I-seq data (Fig. 5b).

To confirm the absence of transcription, we divided 100-bp windows into those in which 

DNase-I-seq was predicted well by PRO-seq, and those for which it was predicted poorly 

(Fig. 5b–c, red boxes). Windows in which DNase-I-seq was predicted well by dHIT had 

a high signal for transcription initiation in GRO-cap data, which measures transcription 

initiation, and active histone modifications (H3K27ac, H3K4me3, and H3K4me1) (Fig. 

5d–e). Windows in which DNase-I-seq was predicted poorly had a high CTCF signal, 

but virtually no evidence of transcription initiation based on GRO-cap, and weak signal 

for active histone modifications (Fig. 5f). Yet, despite substantial differences in histone 
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marks, the quantity of DNase-I-seq signal was similar in these regions (Fig. 5d–g, i). 

Thus, a substantial portion of DNase-I accessible regions show no evidence of transcription 

initiation. Our analysis supports a model in which both chromatin accessibility and other 

aspects of the local chromatin environment, including transcription factors, pre-initiation 

complex machinery, chromatin remodelers, and other transcription-related proteins, are all 

necessary to facilitate transcription initiation by Pol II.

Chromatin accessibility does not depend on transcription

Paused Pol II is necessary for proper nucleosome positioning58, although it may not be 

required to establish sufficient levels of chromatin accessibility for other biological functions 

to take place, such as transcription factor recognition. To test the hypothesis that chromatin 

accessibility requires paused Pol II, we treated K562 cells with Trp to prevent transcription 

initiation. Unexpectedly, a time-course of Trp treatment resulted in a small but significant 

increase in Tn5 accessibility, measured using ATAC-seq (Figs. 5h, 6a). To more precisely 

examine the position of nucleosomes, we performed CUT&RUN for histone H359. We 

observed a loss in H3 signal inside of the nucleosome depleted region and adjacent +1/ −1 

nucleosomes (Fig. 6b). Changes in ATAC-seq and CUT&RUN were specific to DNase-I 

hypersensitive sites that had robust evidence of transcription initiation (Fig. 5h–i). Notably, 

changes in both H3 and ATAC-seq signals were observed exclusively in transcription 

initiation regions, and did not appear in CTCF-bound and untranscribed control regions 

(Fig. 5h–i). We attribute the loss of histone H3 and slightly increased ATAC-seq signal to 

increased retention of the Pol II preinitiation complex near the transcription start site in Trp 

treated cells (Supplementary Note 6). Thus, we conclude that events prior to transcription 

initiation are primarily responsible for nuclease accessibility.

Discussion

Our incomplete knowledge about the role that histone modifications play in transcription 

results in part from a lack of information about the precise strength of correspondence 

between histone modifications and transcription. Here we demonstrate that the correlation 

between histone modifications and transcription is nearly as strong as the correlation 

between biological replicates of experimental histone modification ChIP-seq data. 

Moreover, we likely underestimate the actual correlation between transcription and histone 

modifications, due to technical factors including imperfections in the model fit, low-

resolution experimental procedures, and biological differences between cells cultured in 

different laboratories.

We observe a strong correspondence between histone modification and transcription that 

addresses several open questions about the biological role of histone marks. A strong 

correspondence is not compatible with models where histone modifications routinely 

“bookmark” future transcription events. Rather, our work indicates that histone marks 

reflect the transcription patterns active in the current cell state. Our results also suggest 

that different histone modifications do not interchangeably produce similar transcriptional 

outcomes in distinct parts of the genome (e.g., H3K122ac and H3K27ac), but serve as 
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critical pieces of a uniform molecular machinery (i.e., cogs or gears), which are highly 

interconnected with Pol II and play a supportive role in transcription.

A cog model implies that the genomic distribution of histone modifications and Pol II are 

highly interdependent. In support of this, blocking transcription initiation for short durations 

(1–4 h) had rapid and large-scale effects on the genomic distribution of three histone 

modifications: H3K4me3, H3K27ac, and H3K27me3. Surprisingly, the loss in punctate 

marks, H3K4me3 and H3K27ac, was strongly correlated with loss in active transcription 

and coincided with a rapid loss in histone H3 at regulatory regions. This indicates that 

nucleosome turnover may also be involved in punctate mark depletion from promoters after 

Trp. However, several lines of evidence indicate that, at least for H3K27ac, mark removal 

by deacetylases plays a role as well. First, the loss in histone H3 does not appear large 

enough near the +1 or −1 nucleosome to explain the substantial depletion in punctate histone 

marks. Second, depletion of H3K27ac after blocking transcription was prevented by HDAC 

inhibitors, indicating that active transcription affects the intricate balance between the 

addition and removal of histone acetylation. For lysine acetylation, this result mirrors elegant 

complementary experiments focused on histone acetylation in yeast60. Collectively, our 

work supports a model in which active histone marks and Pol II are highly interconnected in 

the molecular machinery honed to transcribe mRNA.

Methods

Data Availability

Publicly available data used in this study can be found in the Supplementary Tables 

1 and 2. Tables in csv format can be downloaded from: https://github.com/alexachivu/

dHITpaper_2021 Data generated in this study can be found in Gene Expression Omnibus at 

GSE163043.

Code Availability

dHIT software and scripts can be found on github under: https://github.com/Danko-Lab/

histone-mark-imputation.

Custom code for analyzing sequencing data can be found on github under: https://

github.com/alexachivu/dHITpaper_2021/blob/main/Git.code_dHIT.upload

Experimental methods

Cell culture: K562 cells (ATCC, CCL-243) were cultured at 37°C, 5% CO2 at a density 

between 0.3–1 × 106cells/ml in RPMI medium (VWR 45000–396) topped up with 10% 

Fetal Bovine Serum (Genesee Scientific, cat: #25–514). Cells were split at a consistent 

interval of 3 days, when the cells reached 106 cells/ml.

Cell culture for Triptolide and Trichostatin A time course: 24h prior to drug 

treatments, K562 cells were resuspended in fresh (RPMI) medium at a density of 0.6 × 

106 cells/ml. On the day of the experiment, cells were recounted, aliquoted in equal cell 

numbers to T-25 or T-100 ThermoFisher Tissue Culture Flasks (each flask corresponding to 
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one time point) and treated with Triptolide (Sigma-Aldrich, T3652–1MG) or Trichostatin A 

(Sigma-Aldrich, T8552–1MG). Final concentrations used in our experiments were: 500 nM 

Triptolide, and 250nM Trichostatin A. All drug treatments were performed for 0 min, 1h, 

and respectively 4h.

Cell crosslinking for ChIP: After Triptolide treatment, K562 cells were crosslinked 

in 1% CH2O freshly prepared in 1× PBS on the day of the experiment to reach the 

final concentration of 0.1% CH2O in the media. Following a 5 min incubation at room 

temperature on a rocking platform, the crosslinker was quenched with 1 M Glycine to reach 

a final concentration of 0.135 M Glycine. Lastly, cells were washed twice in 1× PBS, then 

harvested and snap-frozen on dry ice.

MNase ChIP-seq - chromatin extraction: We prepared MNase ChIP-seq data for six 

histone marks in K562 cells, including H3K4me1 (ab8895, lot: GR3206285–1), H3K4me2 

(ab7766, lot: GR102810–4), H3K4me3 (ab8580, lot: GR3197347–1), H3K27ac (ab4729, 

lot: GR3231937–1), H3K36me3 (ab9050, lot: GR3257952–2), and H3K27me3 (ab6002, lot: 

GR3228496–2). All buffers and solutions used were provided by Cell Signaling Technology 

(91820S Simple ChIP kit). Crosslinked K562 cells were thawed on ice and resuspended in 

1 ml cold Buffer A, mixed well, and centrifuged at 2,000× g for 5 min at 4°C. The pellet 

was then mixed in 0.5 ml cold Buffer B, centrifuged at 2,000× g for 5 min at 4°C and 

resuspended again in Buffer B. While still in Buffer B, chromatin was digested with 0.5 μl 

MNase for 13 min at 37°C. Tubes were inverted every 2 min during the incubation time. 

Finally, the reaction was stopped by the addition of 40 μl 0.5 M EDTA, and the tubes were 

moved to 4°C. The cell suspension got topped up with 1.5 ml cold ChIP Buffer, transferred 

to a 7 ml glass dounce homogenizer, and dounced ~30 times with a tight pestle to release the 

chromatin. The chromatin was further diluted with 1 ml cold ChIP Buffer and aliquoted to 

1.5 ml Eppendorf tubes to be centrifuged at 12,000× g for 10 min at 4°C. The supernatant 

was collected and total chromatin quantified before each immunoprecipitation.

MNase ChIP-seq - Immunoprecipitation: Total digested chromatin was diluted to 

a total volume of 1 ml in cold ChIP Buffer. ChIP samples were incubated with 3 μg 

anti-histone antibody at 4°C overnight rotating, then incubated for an extra 2 h at 4°C with 

20 μg magnetic beads (50% protein A, 50% protein G). After incubation, samples were 

placed on a magnetic rack and washed three times with 1 ml Low Salt Wash Buffer for 5 

min at 4°C, and three times with High Salt Wash Buffer for 5 min at 4°C. Lastly, the beads 

were resuspended in 150 μl Elution Buffer and incubated on a shaking Thermomixer for 1.5 

h at 65°C. The eluted fractions were saved, treated with 2 μl 5 M NaCl and 10 μl Proteinase 

K, and incubated overnight at 65°C to reverse the crosslinker. Samples were cleaned up, 

the DNA quantified with Qubit, and library prep was performed using the NEBNext Ultra 

II DNA Library Prep Kit for Illumina (E7645S). The barcodes used were purchased from 

NEB:NEBNext Multiplex Oligos for Illumina (E6440S). Before Bioanalyzer and Illumina 

sequencing, all libraries were size-selected by being run on a 6% Native PAGE. The 

fragments corresponding to 200–700 bp were cut out of the gel and the DNA extracted 

from the polyacrylamide using 3 volumes of a DNA extraction buffer (10 mM Tris pH 8, 

300 mM NaAc, 20 mM MgCl2, 1 mM EDTA, 0.1% SDS) per gram gel slice. The tubes were 
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closed, covered with parafilm, and incubated overnight at 50°C shaking, on a Thermomixer. 

The following day, Spin-X columns (CLS8160, Millipore Sigma) were used to remove gel 

bits from the eluate, which got Phenol/Chloroform precipitated. The precipitated DNA was 

resuspended in a 15 μl nuclease-free H2O and the library quantified using Qubit.

Measuring chromatin-associated proteins by Western blotting: For the Triptolide 

experiment, we used matched cells with the ones in the ChIP-seq experiments. The 

Trichostatin A Western blots were performed on cells of a different passage number. 

For each reaction, 500,000 K562 Triptolide-treated cells were thawed on ice, spun down 

at room temperature in a swing bucket centrifuge for 5 min, then washed twice in 5 

ml Permeabilization buffer (10 mM Tris-HCl pH 7.5, 10 mM KCl, 250 mM Sucrose, 

5 mM MgCl2, 1mM EGTA, 0.05% Tween-20, 0.5 mM DTT, 40 units/10 mM AM2694 

SUPERaseIn (Thermo Scientific), 0.2% NP-40, A32963 EDTA-free (PIERCE Protease 

Inhibitors). During each wash cells were incubated on ice with Permeabilization Buffer 

for 5 min. Isolated nuclei were verified by Trypan Blue staining. Chromatin-bound proteins 

were isolated by centrifugation at 12,500×g for 30 min, at 4°C. After centrifugation each 

cell pellet was dissolved in 2× SDS loading dye and syndicated on high setting for 5 

min (30 s ON: 30 s OFF). Samples were boiled at 95°C for 5 min and loaded on a 15% 

SDS-PAGE gel. The same antibodies used for ChIP-seq were used for western blotting. Cell 

Signaling Technology 9715 anti-histone H3 antibody and abcam 8WG16 anti-Pol II were 

also used. The molecular markers used were NEB#P7717 for Supplementary Figures 9g,i 

and NEB#7719 for Supplementary Figure 9h. All cropped western blots depicted in Figure 

4j are presented in full in Supplementary Figure 9.

Measuring cytotoxicity of Triptolide and Trichostatin A: Cells were grown in a 

96-well plate following the “Cell culture for Triptolide and Trichostatin A time course” 
protocol. On the day of the experiment, cells were treated with either Triptolide alone or 

a Triptolide + Trichostatin A dual treatment, then incubated with almarBlue (BIORAD, 

BUF012A) following the BIORAD protocol. Absorbance of cells incubated with almarBlue 

was measured at 590 nm. The experiment was performed in two biological replicates and 

compared with a DMSO kill curve as positive control, and cells untreated with any drugs as 

positive controls.

CUT&RUN: We measured histone H3 (Cell Signaling Technology 9715) and TBP (ab818) 

levels on chromatin following a time-course of Trp treatment using the High Ca2+ / Low Salt 

CUT&RUN protocol (https://dx.doi.org/10.17504/protocols.io.zcpf2vn). Each experiment 

was performed with 250,000 K562 cells.

ATAC-seq: K562 cells were treated with Triptolide and a total of 500,000 cells per 

condition were used for ATAC-seq. After Triptolide treatment, cells were washed in 1× 

PBS, then lysed in 1 ml cold Lysis Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 5 mM 

MgCl2, 0.2% NP-40) while incubating for 3 min on ice. The lysis buffer was removed by 10 

min centrifugation at 600×g, 4°C, and cell pellets were resuspended in 48.5 μl Transposition 

Buffer (10 mM Tris-HCl pH 7.4, 10% DMF, 5 mM MgCl2). 1.5 μl in-house purified Tn5 

(stock concentration 3.5 μg/μl) was used per reaction. The transposition took place for 30 
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min at 37°C while shaking. Phenol/Chloroform was used to extract transposed DNA which 

was further PCR amplified to add NExtera sequencing adapters.

PRO-seq library prep: New PRO-seq or ChRO-seq libraries were prepared from cultured 

K562 cells, and from equine liver tissue samples. We prepared PRO-seq libraries in K562 

cells, matched to the MNase ChIP-seq. Drosophila melanogaster, S2 cells, were used as 

heterogeneous spike-ins and added to each sample before the run-on in a ratio of 1:10,000 = 

S2:K562 chromatin.

Data processing for newly collected MNase ChIP-seq, CUT&RUN, ATAC-seq, and PRO-seq

We used hg19 as the primary genome assembly in our data analyses to facilitate 

comparisons with ENCODE data (which primarily used the hg19 assembly at the time these 

analyses were conducted). Data from each experiment were aligned to genome assemblies as 

following:

• MNase ChIP-seq reads were aligned to hg19 merged to D. iulia assembly61,62. 

All positions with sequence similarity between the two genomes were masked 

using bedtools maskfasta;

• ChRO-seq reads were aligned to hg19 merged to the D. melanogaster dm3 

genome assembly. All positions with sequence similarity between the two 

genomes were masked using bedtools maskfasta;

• CUT&RUN reads were aligned to hg19 merged to Saccharomyces cerevisiae 
SacCer1;

• ATAC-seq reads were only aligned to hg19.

Masking hg19 was performed with BedTools maskfasta63. All sequencing data were aligned 

using bowtie2 version 2.3.5.164 with parameters: --no-discordant --no-dovetail --no-unal 

--no-mixed. Reads mapping multiple times were removed with samtools view65, parameter: 

-F 256. The remaining reads were converted to paired-end BigWig files using BedTools and 

visualized in the WashU genome browser version 46.266,67.

ChIP-seq normalization strategy (for MNase-seq triptolide time course): In our 

experiments, both the human and spike-in samples were mixed and treated with MNase 

together, before the antibody incubation. To correct IP signals for biases in MNase cutting 

efficiency, handling, and other errors, we used the spike adjusted procedure (SAP) method68. 

Briefly, we assume that ChIP-seq data reflect a linear combination of three factors: signal 

from the mark of interest, background that may be partially correlated with the mark, and 

random noise. SAP assumes that the background signals should be the same in treated and 

untreated samples and enforces this assumption by subtracting the expected background 

read count observed in the input. Because the data are noisy and we cannot assume input 

samples are sequenced deeply enough to estimate the background directly, SAP subtracts 

the expected background estimated using a linear regression fit in background regions. The 

details of this full procedure are described in Supplementary Note 7.
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CUT&RUN normalization strategy: A total of 2.5 pg/ml final concentration of S. 
cerevisiae MNase-fragmented DNA was added as spike-in control to each CUT&RUN 

experiment. After aligning all reads to a merged human and yeast genome, we determined 

the total number of yeast reads in each sample. For normalization purposes, we divided the 

human tags by the total number of yeast tags in each particular sample.

ATAC-seq normalization strategy: To account for changes during handling and 

sequencing of ATAC-seq libraries, we consider a constant background level between 

conditions. The background was estimated as the total number of tags mapping to gene-

desserts, PRO-seq untranscribed, and Tn5-inaccessible coordinates in the human genome. To 

normalize, we divided the tags in a given sample by its respective background tags.

PRO-seq normalization strategy: Chromatin from D. melanogaster S2 cells was used 

as a spike-in internal control in a 1:10,000 [ng:ng] human:fly ratio. As normalization, we 

divided the human tags in each sample by the total number of tags aligning to the fly 

genome from that particular sample.

Maximum transcription start sites, as defined in Tome, Tippens and Lis, 201829, were used 

to draw meta profiles of ChIP-seq, PRO-seq, CUT&RUN, and ATAC-seq signals.

Training dHIT SVRs to predict histone marks using PRO-seq, GRO-seq or ChRO-seq data

Overview: The primary goal of dHIT is to map the signal intensity and “shape” in a 

run-on and sequencing dataset (PRO-seq, GRO-seq or ChROseq; henceforth referred to 

simply as PRO-seq) to the specific quantity of a histone modification at each position in 

the reference genome. The dHIT algorithm passes standardized read count data to a support 

vector regression (SVR) classifier. During a training phase, the SVR model optimized an 

objective function which mapped PRO-seq signal to the quantity of ChIP-seq signal at each 

position of the genome. Once a dHIT model is trained using existing ChIP-seq data, it can 

impute steady state histone modifications in any cell type, provided that the relationship 

between histone modification and transcription is preserved. The dHIT software package is 

provided at https://github.com/Danko-Lab/histone-mark-imputation.

Training dataset: All data used for training were evaluated for quality content using 

PEPPRO69. We trained each model using five different run-on and sequencing datasets 

that were generated by different laboratories, thereby reducing the potential for overfitting 

to batch-specific features of a single dataset (see Supplementary Table 2)25. Training data 

were distributed between PRO-seq and GRO-seq data. Sequencing depth of the training data 

ranged from 18 to 374 million uniquely mapped reads, and all five training datasets were 

highly correlated when comparing RPKM normalized read counts in gene bodies25.

We trained SVR models for ten different histone modifications in K562 cells, primarily 

using data from the ENCODE project23, all of which passed the ENCODE 2 data quality 

standards70. Data for H3K122ac ChIP-seq in K562 cells were obtained from a recent 

paper19. Lastly, we trained models to recognize high-resolution ChIP-seq data using an 

MNase ChIP-seq protocol for H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K36me3. 

For validation in holdout cell types, we obtained ChIP-seq data from six additional cell 
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types from a variety of sources. All training and validation analyses used sequencing depth 

normalized read counts, where possible using bigWig or bedGraph files provided by the 

original authors as input. All ChIP-seq data used in training or for validation are listed in 

Supplementary Tables 1 and 2.

SVR feature vector: We passed dHIT PRO-seq data from non-overlapping windows of 

multiple sizes that were centered on the position for which ChIP-seq signal intensity was 

being imputed. We have previously optimized the number of window sizes and the window 

sizes for optimal classification of TIRs using dREG25,54. Since the imputation of histone 

modifications uses signals in the PRO-seq data that are similar to dREG, we used the values 

that were optimal for dREG without modification. Like for dREG, we passed data from 

windows at multiple size scales, including 10, 25, 50, 500, and 5,000 bp windows (n = 10, 

10, 30, 20, and 20 windows, respectively), representing read data as far as 100 kb from the 

genomic region in question. PRO-seq data were standardized across each length scale in a 

similar fashion as we use for dREG54, using a logistic function, F(t), to transform raw read 

counts using two free parameters, α and β:

F(t) = 1/ 1 + e−α(t − β)

Where t denotes the read counts in each window. Tuning parameters α and β were defined 

in terms of two parameters, x and y. Intuitively, y gives the value of the logistic function 

at a read count of 0, and x represents the fraction of the maximal read count at which the 

logistic function approaches 1. Values of x and y are related to the parameters α and β by the 

following equations:

β = x max(t)

α = (1/β) log(1/y − 1)

We have previously found that x = 0.05 and y = 0.01 optimized the discovery of 

transcription initiation regions (TIRs)54, and these values were used throughout this study.

Selecting training positions: We trained models using 3 million training examples 

divided evenly among five K562 training datasets (n = 600 thousand positions in each 

dataset). In all cases, human chromosome 22 was excluded from training to use as a holdout.

We found it convenient to use heuristics that identify regions with a high PRO-seq signal 

intensity when choosing training samples. We defined regions of potential PRO-seq signal, 

which we call “informative positions” using the same heuristics we described previously 

for dREG54. Each window was defined as an “informative position” when the window had 

more than 3 reads within 100 bp on the single strand or at least one read within 1,000 bp on 

both the positive and negative strands. These heuristics were selected as a way to optimize 

the tradeoff between the number of positions analyzed and the fraction of real TIRs that 

were scored based on the overlap with GRO-cap peaks. Within the five training datasets, 
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informative positions accounted for 27.3% (855.9M), 6.7% (209.4M), 14.7% (460.0M), 

13.8% (433.9M), and 9.4% (294.0M) of 10-bp windows, respectively.

Training examples were selected at random, according to the following criteria: In order to 

increase the frequency of windows with a strong signal intensity in the training dataset, we 

selected 5% of the training data from positions in the informative positions pool (defined 

above) that also intersected a transcription start site (TSS), defined using GRO-cap55, and a 

DNase-I hypersensitive site23, 93% from the non-TSS informative sites, and the remaining 

2% from the non-informative position pool. This was done to enrich the frequency of 

GRO-cap TSSs (these were 0.78% of hg19), and to increase the frequency of regions with 

substantial PRO-seq signal intensity, in the training dataset.

Training computations were conducted using Rgtsvm, a fast, GPU-based SVR 

implementation71. We trained 3M samples with 360 features for each sample from 5 data 

sets with an average training time of 27.9 hours (18.0~37.8 hours) on an NVIDIA Tesla 

TITAN XP GPU. Training achieved an average Pearson correlation of 0.48 (0.109~0.725) on 

holdout positions that matched the training dataset at 10-bp resolution.

SVR imputation: We imputed histone modifications every 10 bp using the run-on 

and sequencing datasets outlined in Supplementary Table 2. We tested the accuracy of 

imputation on human chr22 (which was withheld during training) in four holdout cell lines 

HCT116, HeLa, and CD4+ T-cells72–74. Imputation was conducted using ChRO-seq data 

from 20 primary glioblastoma cases22. We also imputed data from two additional mammals: 

mouse embryonic stem cells (mESCs)37 and horse liver (new data). Computing imputed 

values on human chr22 (5.1M loci) took 3–5 hours on a Tesla TITAN XP GPU.

Training models that impute histone marks using other histone marks

We selected 1M samples from chromosome 1 to train SVR models in which histone marks 

were used to predict other histone marks. In order to make a fair comparison with models 

trained to predict histone marks using PRO-seq data, we also trained new models from 

PRO-seq (using the dataset G1) using 1M samples. To select training positions when 

training models using histone marks, we calculated the maximum read count in every 

50-bp windows on chr1 (4.99M regions), and selected 1/3 of the samples from regions 

that contain more read counts than median value in either the training or the experimental 

data (for instance, if using H3K4me1 to predict H3K4me3, we selected 33% of training 

positions that had higher read counts than the median H3K4me1 or H3K4me3 signal). We 

selected another 1/3 from regions, which contained read counts that were less than 20% 

of the median value in either the training or the experimental data. We selected the last 

1/3 of the training regions from remaining regions at random. To obtain training datasets 

when multiple histone marks were used to jointly predict a histone mark, we merged 

multiple experimental histone mark data together and sampled windows as described above. 

The feature vector and standardization for histone marks were identical to those used for 

PRO-seq data (see above). When generating the feature vectors for multiple histone marks, 

we concatenated the feature vectors extracted from multiple experimental histone marks 

together.
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We compared the difference between imputation and original experimental data using the L1 

norm, by median centering and scaling each dataset, as follows:

L1_norm = = = abs xi − median(x) /sd(x) − yi − median(y) /sd(y)

Where xi is the imputed signal, and yi is the experimental signal for a particular comparison, 

and i represents the set of all genomic positions on chr22. We use sd() to denote the standard 

deviation of the mark.

Computing performance metrics using dHIT SVRs

Imputed profiles for 10 histone modifications in seven cell lines were compared to a 

variety of publicly available and newly generated ChIP-seq data available from ENCODE, 

Epigenome Roadmap, and a variety of other sources, as outlined in Supplementary Table 

1. When measuring correlations, we subtracted the background (median) value from all 

positions, and applied a series of filters that were designed to remove artifacts of mappability 

or repeat content. Filters used to compute correlations include: 1) We masked all positions 

in which 30 bp, the size of many of the older ENCODE ChIP-seq datasets, cannot map 

uniquely to the reference genome; 2) We removed ENCODE blacklist regions annotated on 

hg1975; 3) We identified and masked “spikes” in the data, caused by putative experimental 

or mapping artifacts, that were not filtered by the above two criteria. Our filter identified 

blocks with a high signal intensity (top 2%) for which the sum of the absolute value of 

the two maximal derivatives was higher than the number of read counts in the region (i.e., 

[abs(d1) + abs(d2)] > h, where d1 and d2 are the maximal and second highest change in 

ChIP-seq signal intensity, and h is the total read density between the positions at which d1 

and d2 occur). When comparing performance metrics between two experimental datasets, 

this filter was applied to both ChIP-seq datasets.

After masking the types of regions indicated above, we divided the whole genome or 

the entire chromosome into four granularities: 10-bp, 100-bp, 1,000-bp, and 10,000-bp 

windows. After collecting the sum of the read counts from experimental data and imputed 

data in each window, we compared the relationship between two datasets using four 

statistics: Pearson correlation, Spearman correlation, MAD, and JSD. Windows with 0 

counts were removed from estimates of Pearson and Spearman correlation when using 10-kb 

windows, as large regions without any ChIP-seq signal were likely driven by mappability 

issues.

To evaluate the accuracy of dHIT, we computed alternative performance metrics including 

MSE quantification at different subsets of genomic sites, as well as ROC and PRC curves 

for the recovery of peak calls. We added precision recall curves (PRC) following the setup 

introduced by Nair et al. (see ref76), in which we divided the holdout chromosome into 

500-bp non-overlapping windows from which we exacted ground truth labels using cell 

type specific peak calls generated by ENCODE. We generated PRCs or ROC curves by 

thresholding the imputed histone modification signal intensity to divide the same windows 

into those predicted to be enriched/ not enriched for each histone mark. To provide 

additional context for the PRC or ROC curves, we also computed PRC/ ROC curves in 
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the same manner from experimental data. All analyses focus on the holdout chromosome 

(chr21) in the holdout cell type (GM12878).

We computed mean-squared errors (MSE) following performance metrics similar to those 

presented by Durham et al. and Schreiber et al. (see ref26,27). We computed MSE in different 

genomic regions, including the top 1% of imputed windows (MSEimp); and the top 1% of 

experimental windows (MSEobs), two independent definitions of promoter and enhancer, 

using either proximity to gene annotations (GENCODE) or the stability of the transcription 

unit produced by each annotation following the nomenclature detailed in ref55.

ChromHMM analysis

Chromatin state annotations were generated using ChromHMM38. We used the 18 state 

core model (model_18_core_K27ac) trained using ENCODE data10, because we had already 

imputed all of the histone modifications used in this model. To convert imputed histone 

modifications into data that met the requirements of ChromHMM, we fit the sum of 

imputed signal in 200-bp windows to a Poisson distribution, and identified windows 

with values higher than the 0.999th quantile. Chromatin segmentation was performed 

using the MakeSegmentation command, following the instructions from the authors39. 

We also made chromatin segmentations using an alternative source of experimental data 

for six histone marks, including H3K27ac, H3K27me3, H3K36me3, H3K4m1, H3K4me3, 

and H3K9me3 from ENCODE and other sources, as outlined in Supplementary Table 

1. Chromatin segmentations were compared between experimental datasets, and between 

imputed and experimental data, using the Jaccard distance between each pair of states77. 

All computations were performed with bedtools63. When comparing enrichments of each 

state to those expected at random, we randomized the position of each state using bedtools 

random.

Predicting bivalent TSSs

Bivalent genes in mESCs were identified using data from ref.78 and converted into mm9 

coordinates using liftOver. Bivalent transcription start sites were predicted using a random 

forest. We used features representing H3K4me3 within 1,000 bp in 250-bp bins and 

H3K27me3 within 60,000 bp in 15,000-bp bins surrounding each promoter. All imputed 

histone modification data were based on models trained in K562 cells. We trained on a 

matched set of 100 bivalent and 100 non-bivalent promoters. The model was tested on a 

random set of 100 bivalent and 100 non-bivalent promoters that excluded promoters held out 

during training.

Classification of H3K27me3 distribution

We obtained data from 86 H3K27me3 datasets from the Roadmap Epigenome Project (Data 

sources listed in Supplementary Table 4). Data from each sample were classified using a 

systematic approach designed to represent the degree to which each sample appeared to 

fit either the broad or punctate distribution of H3K27me3. Briefly, data from chromosome 

21 were split into 10-kb non-overlapping bins. The amount of H3K27me3 signal was 

counted in each bin. Bins from each sample were placed in descending order based on 

the read counts in that bin. The top and bottom 0.5% of bins were removed from each 
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dataset and data were normalized to the total number of reads. Finally, we conducted a 

principal component analysis. We confirmed by manual inspection that principle component 

1, accounting for 95.56% of the variance in the data, corresponded to the degree to which 

each sample showed a “punctate” or “broad” pattern. The value of principal component 

1 in each sample was used in downstream analyses as a surrogate for the punctate and 

broad pattern. To compare the differences in patterns through differentiation, we manually 

categorized each of the 86 datasets as either pluripotent, multipotent, fetal, or adult/somatic 

primary cells. We compared values of principal component 1 across these groups using a 

two-sided Wilcoxon rank sum test in R.
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Extended Data

Extended Data Fig. 1. Imputation of histone marks using nascent transcription
Scatterplots show predicted (Y-axis) as a function of experimental ChIP-seq signal (X-axis) 

for ten different histone modifications in K562 and GM12878. Plots show correlations in a 

holdout chromosome (chr22) at three distinct length scales.
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Extended Data Fig. 2. Evaluating dHIT predictions
A.ROC and PRC plots describe the relationship between imputed and ENCODE ChIPseq 

data within ENCODE peaks on chr21, holdout during dHIT training.

B. Quantification of area under precision curves for both ROP and PRC plots in A.

(C-L) Heatmaps show the experimental and imputed abundance of active, punctate histone 

marks in K562 (C-G) or GM12878 (H-L). Heatmaps show all peaks calls based on 

experimental ChIP-seq data ordered by the highest total signal intensity.
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M. Scatter plots depict imputed H3K9me3 (Y-axis) as a function of CUT&TAG 

experimental (X-axis) for H3K9me3 in K562. Spearman correlations were computed on 

the holdout chromosome chr21 (A) and chr22 (B).

N. Mean-squared error (MSE) quantification at different subsets of genomic sites in 

GM12878.

Extended Data Fig. 3. Comparison between experimental and imputed MNase ChIP-seq
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(A-B).Heatmaps show the Pearson (A) and Spearman (B) correlations between predicted 

and experimental MNase ChIP-seq in 10kb windows on a holdout chromosome (chr22).

C. Genome-browser plots show the distribution of PRO-seq, DNase-I hypersensitivity 

signal, and the signal for H3K4me3, H3K4me2, and H3K4me1 derived from MNase ChIP-

seq and imputation near 9 transcribed regions in K562 cells.

D. Heatmaps show MNase ChIP-seq and imputed signal intensity for H3K36me3, a gene 

body mark, deposited in the body of annotated genes. Genes are sorted by gene length.

E. Heatmaps show the distribution of transcription (left) and histone modifications (right) 

predicted using transcription. Rows represent transcription initiation domains in GM12878 

cells defined using GRO-cap data by Core, Martins, et. al. (2014) Nat. Gen. Heatmaps 

were ordered by the distance between the most frequently used TSS in each transcription 

initiation domain on the plus and minus strand.
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Extended Data Fig. 4. Evaluation of cross-cell line imputation by different metrics.
(A-C) Heatmaps show Pearson’s correlation (A), Spearman’s rank correlation (B), Jensen-

Shannon and divergence.

(C) between predicted and ChIP-seq measurements of nine histone modifications. Values are 

computed in 10kb windows on the holdout chromosome (chr22) in humans, chr1 in horse, 

and chr1 in mice. Empty cells indicate that no experimental data is available for comparison 

in the cell type shown.
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(D) Heatmap shows Pearson’s correlation between the training dataset in K562 cells and 

experimental data collected in the indicated human cell line. Values are computed in 1kb 

windows on the holdout chromosome (chr22) in humans.

(E) Heatmap shows Pearson’s correlation between the ENCODE experimental data and 

either Imputed data or the average signal of the other human cell lines investigated. Values 

are computed in 1kb windows on the holdout chromosome (chr22) in GM12878.

Extended Data Fig. 5. Comparison between imputation and multiple ChIP-seq experiments
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Box and whiskers plot shows the Pearson correlation between different experimental 

datasets for six histone marks in K562 and GM12878.The correlation between data imputed 

in K562 and GM12878 and the ENCODE experimental data in the same cell line is shown 

respectively by red and blue squares. All values are computed on a holdout chromosome 

(chr22) not used during training and are presented as mean values +/- standard deviation.

Extended Data Fig. 6. Comparing between imputed and experimental Chip-seq.
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A. Broser shot shows the ENCODE, imputed, and experi-mental ChIP-seq signals at the 

CERK locus.

B. Meta plots compare the H3K27ac content of two different sets of H3K27ac annotated 

peaks: peak high in ENCODE signal and depleted in imputed ChIP (top) or vice-versa 

(bottom).

C. Genome-browser compares experimental and predicted H3K27me3 signals at all four 

Hox gene clusters in relation to PROseq signal.

D.Principal component analysis of 86 H3K27me3 ChIP-seq datasets from the Epigenome 

Roadmap project.

E.Genome browser shows the distribution of H3K27me3 in the 8 of the Epigenome 

Roadmap cell lines.

F.Quantification of PC1 H3K27me3 signal in 5 classes of cells. An unpaired Wilcox test was 

usedto compare the Primary/Adult to the Pluripotent classes.
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Extended Data Fig. 7. Supplementary Figure 7: Chromatin annotations with dHIT
A. Enrichment of 18 chromatin states near RefSeq annotated transcription start sites for 

histone abundance predicted by dHIT (thick solid line), ChIP-seq from Broad (thin solid 

line), or using an alternative source of ChIP-seq data (thin dashed line).(B-C). Confusion 

matrix shows the Jaccard distance between dHIT and ChIP-seq data in 18 chromatin states 

(B) or between two separate sources of ChIP-seq data (C). Color scales are shown beside the 

plot, and are identical between panels (B) and (C).
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D. Genome browser shows the distri-bution of transcription, H3K27ac, H3K4me3, 

H3K4me1 and H3K27me3 in equine liver.

E Genome browser shows the distri-bution of eight histone marks in mouse brain (top) and 

H3K27ac across nine murine tissues (buttom).

Extended Data Fig. 8. Data validation
A. PCA shows the first two princi-pal components of nine histone modifications in nine 

murine tissues (81 total datasets) in 100 bp bins on mm10 chr1.
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B. PCA of active, punctate marks (H3K4me3, H3K4me2, H3K9ac, and H3K27ac) shows 

that active punctate marks cluster by tissue.

C. Genome browser shows the distribution of H3K36me3, H3K4me3, and H3K4me1 

observed using ChIP-seq experiments or predicted using either PRO-seq or H3K4me2. Data 

is shown in two loci covering sever-al transcribed genes (top) and near the transcription start 

site of ZNF74 (bottom).

D. Correlations between PROseq 0h and H3K4me3 and H3K27ac at TSSs.

E. Heatmaps centered on transcription initiation domains show loss in transcription 

measured by PRO-seq after Trp treatment.

F. Genome-browser shows loss in transcription measured by PRO-seq after Trp treatment. 

Loss in PRO-seq signal at both enhancers and gene promoters.

G. Spearman correlations between ChIP-seq replicates (left), each ChIP-seq replicate and 

ENCODE data (middle) genome-wide at 10kb resolution, and at ENCODE peaks between 

merged Reps and ENCODE.

H. H3 Cut&Run 10kb resolution Spearman correlation between replicates.

I. Genome-wide, 10kb resolution PCA of all ChIP-seq samples.
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Extended Data Fig. 9. Changes in histone marks during Triptolide time course.
A. Heatmaps compare the level of H3K36me3 ChIP-seq after Triptolide inhibition.

B. Meta plots show the H3K4me1 levels in a 4kb window centered on transcription start 

sites in K562 cells.

C. Meta plots show the level in H3K27me3 in a 40kb window centered in EZH2 binding 

sites.

D. Meta plots show transcription content of EZH2 binding sites during the Triptolide time 

course.
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E. Heatmaps shows H3K27me3 signal within gene bodies during the Triptolide treatment. 

Genes are sorted by gene length.

F. Schematics of western blot experimental design.

(G-H). Each western blot depicts the abundance of chromatin bound histone mark or Pol 

II during the indicat-ed Triptolide incubation time point. Each blot represents a different 

experiment. A dilution series of the untreated samples was used as standard curve to 

quantify changes in signal. Experiments were repeated at least twice and a minimum of 

2 replicates per histone mark are provided. MM defined the Molecular marker depicted in 

[kDa].

I. Each western blot depicts the abundance of chromatin bound H3K27ac or H3K27me3 

during the indicated incubation time point of Triptolide, or Triptolide and Trichostatin dual 

treatment. Each blot represents a different experiment. A dilution series of the untreated 

samples was used as standard curve to quantify changes in signal. Ponceau staining of 

membranes imaged are also depicted as total protein loading control.

J. Quantification of H3K27ac/H3K27me3 signals of the western blot in I. H3K27me3 was 

used as loading control. All values are depicted as mean values +/- SD.
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Extended Data Fig. 10. Studying transcription activators and repressors.
A. Bar plots display absorbance quantified at 590nm for AlmarBlue dye incubated with 

K562 cells during Triptolide, or Triptolide and Trichostatin A treatments. Two technical 

replicates were averaged for each time point. R1 and R2 define separate biological 

replication of the experiment.

B. Scatter plots display the loss in H3K4me3 (left) and H3K27ac (right) as a function of 

Pol II transcription (top) or change in transcription (bottom). Changes in histone marks and 
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transcription were calculated as log2 fold changes between 4h of Triptolide treatment and 

untreated cells. Plots show spearman rho correlations between conditions.

(C-H) Scatterplots show experimental DNase-I hypersensitivity (x-axis) as a function 

of predicted DNase-I hypersensitivity (yaxis) in 100 bp windows intersected with 

transcriptional repressors (C-E) or transcriptional activators (F-H).

(I-J) Meta (I) and Violin (J) plots display TBP CUT&RUN signal at gene promoters and 

enhancers in a short 30min

Triptolide time course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. dHIT imputes histone modifications using nascent transcription.
(a) Schematic of the dHIT algorithm. PRO-seq and ChIP-seq data in K562 cells were 

used to train a support vector regression (SVR) classifier to impute 10 different histone 

modifications.

(b) Genome browser comparison between experimental and predicted histone modifications 

on a holdout chromosome (chr22). PRO-seq data used to generate each imputation are 

shown on top.
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(c) Genome browser comparison between experimental and predicted histone marks near the 

promoter of EIF3D. PRO-seq data used to generate each imputation are shown on top.

(d) Heatmaps show the distribution of transcription (left) and histone modifications 

(right) measured using MNase ChIP-seq or predicted using transcription. Rows represent 

transcription initiation domains in K562 cells. Heatmaps were ordered by the distance 

between the most frequently used TSS in each transcription initiation domain on the plus 

and minus strands.

(e) Pearson's correlation between predicted and expected values for nine histone 

modifications. Values are computed on the holdout chromosome (chr22) in humans, chr1 

in horses, and chr1 in mice. Empty cells indicate that no experimental data are available for 

comparison in the cell type shown.
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Fig. 2. dHIT identifies bivalent H3K4me3-/H3K27me3-marked genes.
(a) Genome browser shows PRO-seq data and histone modification data measured by ChIP-

seq or predicted using PRO-seq in the Prox1 locus. Prox1 is marked by bivalent H3K4me3 

and H3K27me3 histone modifications in mESCs.

(b) Precision recall curve illustrates the accuracy of bivalent gene classification by a random 

forest classifier using ChIP-seq data (green) or dHIT imputation (black). The gray line 

denotes random classification. Classification was performed on a matched set of TSSs (50% 

bivalent, 50% not bivalent) that was held out during random forest training.

(c) Genome browser in K562 cells shows 18 state chromHMM model using either ChIP-seq 

data used to train the model (Broad), alternative ChIP-seq data in K562 (other), or based on 

imputation (dHIT predicted). PRO-seq data used during dHIT imputation are shown on top.
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(d) Enrichment in each of 18 chromatin states as a function of distance from RefSeq 

annotated TSSs.

(e) Jaccard distance between chromHMM states inferred using ChIP-seq from Broad and 

predicted data (y-axis) and states inferred using ChIP-seq from Broad and an alternative 

compilation of high-quality ChIP-seq data (x-axis).
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Fig. 3. Inference of chromatin states defined by chromHMM using transcription.
(a) ChromHMM states inferred using ChRO-seq data from 20 primary glioblastomas.

(b) The number of unique ChRO-seq or ChIP-seq libraries required to analyze chromatin 

states in 20 primary glioblastomas.

(c) The mean difference between predicted and experimental ChIP-seq data on a holdout 

chromosome (chr22) (y-axis). SVR models were trained using the indicated experimental 

mark (left) or the indicated combination of histone marks (right).
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Fig. 4. ChIP-seq measures changes in histone modifications following transcription inhibition by 
Trp.
(a) Model of Trp action on transcription preinitiation complex.

(b) Metaplots of PRO-seq signal after Trp treatment. Pol II density is depicted on a linear 

scale in a 300-bp window centered on maximum TSS (left), or on a natural log scale (right).

(c) Depiction of ChIP-seq experimental design where D. iulia chromatin was used as spike-

in normalization control. (d-i) Meta plots and quantification of H3K27ac (d-e), H3K4me3 

(f-g), and H3K4me1 (h-i) signals at enhancers and gene promoters. A paired, two-sided, 

Wilcoxon test was performed to estimate statistical significance in signal changes, where 
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(***) denote P value < 2.2 × 10−16 and (n.s.) P value = 1. The three horizontal lines denote 

the 25th, 50th, and 75th percentiles.

(j) Western blots show global changes in histone marks after Trp treatment. Each blot 

depicts chromatin associated histone marks and Pol II after the indicated Trp incubation 

time. See also Supplementary Figure 20.

(k) MA plots display the loss in H3K4me3 and H3K27ac between 0 h and 1 h of Trp 

treatment. Log2 fold-changes and mean normalized signals between time points were 

computed with DEseq2. A gray bar marks log2 fold-change at 0.

(l) Violin plots quantify the levels of H3K4me3 and H3K27ac as a function of GC-richness 

of promoter sequences. Statistical significance was computed using a two-sided paired 

Wilcox, where (***) denote P value < 2.2 × 10−16 and (n.s.) P value = 1. The three 

horizontal lines denote the 25th, 50th, and 75th percentiles.
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Fig. 5. Chromatin accessibility is not sufficient for transcription initiation.
(a-c) Scatterplots show experimental DNase-I hypersensitivity (x-axis) as a function of 

predicted DNase-I hypersensitivity (y-axis) in 100-bp windows intersected with DNase-I 

hypersensitive sites.

(a), H3K27ac (b), or CTCF peaks (c) on a holdout chromosome (chr22).

(d-g) Meta plots show GRO-cap, histone modifications, CTCF binding, and DNase-I 

hypersensitivity signal near H3K27ac peaks in which DNase-I hypersensitivity signal was 

accurately predicted by transcription (left column), near CTCF peaks in which DNase-I 
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hypersensitivity signal was accurately predicted by transcription (middle), and near CTCF 

peaks in which DNase-I hypersensitivity signal was not accurately predicted by transcription 

(right column).

(h-i) Meta plots show ATAC-seq (h) and CUT&RUN histone H3 signal (i) following Trp 

treatment at regions in d-g.
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Fig. 6. Transcription is required for chromatin landscaping.
(a-b) Meta plots display ATAC-seq (a) and histone H3 CUT&TAG (b) signal measured at 

gene promoters and enhancers.

(c-d) Violin plots quantify the change in ATAC-seq (c) and histone H3 CUT&TAG (d) 

signals at gene promoters and enhancers. Significance was calculated by performing a 

two-sided, paired Wilcoxon test, where (***) denotes P value < 2.2 × 10−16.

(e) Summary figure.
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