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Abstract     In many underground nuclear 
waste repository systems, such as at Yucca 
Mountain, water flow rate and amount of 
water seepage into the waste emplacement 
drifts are mainly determined by hydrological 
properties of fracture network in the 
surrounding rock mass. Natural fracture 
network system is not easy to describe, 
especially with respect to its connectivity 
which is critically important for simulating 
the water flow field. In this paper, we 
introduced a new method for fracture 
network description and prediction, termed 
multi-point-statistics (MPS). The process of 
the MPS method is to record multiple-point 
statistics concerning the connectivity patterns 
of a fracture network from a known fracture 
map, and to reproduce multiple-scale training 
fracture patterns in a stochastic manner, 
implicitly and directly. It is applied to 
fracture data to study flow field behavior at 
the Yucca Mountain waste repository system. 
First, the MPS method is used to create a 
fracture network with an original fracture 
training image from Yucca Mountain dataset. 
After we adopt a harmonic and arithmetic 
average method to upscale the permeability 
to a coarse grid, THM simulation is carried 
out to study near-field water flow in the 
surrounding waste emplacement drifts. Our 
study shows that connectivity or patterns of 
fracture networks can be grasped and 
reconstructed by MPS methods. In theory, it 
will lead to better prediction of fracture 
system characteristics and flow behavior. 
Meanwhile, we can obtain variance from 
flow field, which gives us a way to quantify 
model uncertainty even in complicated 

coupled THM simulations. It indicates that 
MPS can potentially characterize and 
reconstruct natural fracture networks in a 
fractured rock mass with advantages of 
quantifying connectivity of fracture system 
and its simulation uncertainty 
simultaneously. 
 
Keywords: multiple-point-statistics, fracture 
network, seepage, nuclear waste repository, 
Yucca Mountain 
 
Introduction 
 
Water flow rate and amount of water seepage 
into waste emplacement drifts is crucial for 
the performance of any underground nuclear 
waste repository, since this controls the 
mobilization rate of radionuclide and 
corrosion rates of waste packages. In many 
cases of underground nuclear waste 
repository, such as Yucca Mountain project, 
it is mainly determined by hydrological 
properties of fracture network in surrounding 
rock mass. Fracture-induced heterogeneity of 
water flow is the most important factor in 
determining whether and where seepage will 
occur for the variable saturation conditions at 
Yucca Mountain (Birkholzer et al. 1999). 
The spatial pattern of seepage into 
underground opening is a function of degree 
of permeability heterogeneity. This paper 
presents preliminary results of multi-point-
statistical (MPS) prediction on fracture 
system and relevant flow behavior at Yucca 
Mountain, carried out under the framework 
of DECOVALEX-THMC project (Barr and 
Birkholzer 2005). 



Natural fracture network system is hard to describe

fully, especially with respect to its connectivity which is

critically important for simulating the water flow field.

The characters of fracture system are not purely random

though they are not regular. Therefore purely random-

based prediction methods cannot fully characterize natural

fracture system. Mathematical morphology provides a

mean of fully characterizing a fracture network (Serra

1982). In general, there are three main kinds of survey:

borehole survey, scanline survey, and areal survey. Areal

survey can make it possible to retain more information

than line-style survey though the traces always extend

beyond ‘survey rectangle’ (Chilès and Marsily 1993).

This type of survey is recommended for drift, tunnel

walls, or outcrops. It is the exact equivalence of the

spatial law for random functions. When probability dis-

tributions of trace length, density, fracture size, and

orientation are determined basing on field survey of

fracture system, one can reconstruct fracture network via

stochastic simulation, such as conventional Monte Carlo

sampling on known probability distributions. However,

fracture information from filed survey is not fully utilized.

As shown in Fig. 1, vertical water flows through two

similar areas will be different even if two fracture net-

work systems have same probability distribution of

fracture density, orientation, and trace length. In other

words, pattern of connected fractures or connectivity of

fracture network is a very important character for water

flow simulation in fractured rock, especially in sparsely

fractured one. It indicates that some key information is

lost in traditional characterization of fracture network,

which controls the water flow. Discrete fracture network

(DFN) model is validated not for its internal consistency,

but for its usefulness in predicting fracture geometry and

flow behavior in the rock mass. Large-scale observations

in drifts and tunnels have also shown the clear effects of

channeling flow, which refers to the phenomenon that

liquid flow through a geologic system with its heteroge-

neous structure is focused along a few preferred pathways

(Tsang and Neretnieks 1998; Tsang and Doughty 2003). It

may reflect the nature of fracture intersection under spe-

cial pattern of fracture network. Furthermore, these

characteristic parameters of fracture network may vary

locally, and then yield strong heterogeneity. Traditionally,

each geometric parameter set characterizing the fracture

networks (spacing, orientation, trace length) is described

by a probability distribution law which type (e.g. uniform,

Gaussian) is assumed to be constant over the volume of

interest(Macè et al. 2004). The random parameter set is

usually assumed to be stationary, even when considering

the parameters of aperture distribution (Kim et al. 2004).

Conventional method could only provide global stationary

prediction of fracture network. It is necessary to develop a

new method to take fracture network-specific heteroge-

neity into account, in spite of the great progress made

during the past decades in characterizing and describing

water flow in fracture rock mass. In this paper, a state-of-

art geostatistical method for curvilinear geometries

description in oil reservoirs simulation is introduced,

instead of conventional geometric parameter set charac-

terization and Monte Carlo sampling method, to describe

fracture network in fractured rock mass.

In the following, we will first present MPS approach,

and its application to fracture data from field observation to

study flow field behavior at Yucca Mountain will be

presented.

Multiple-point-statistical method

Geostatistics is a set of powerful methods for maps and

mapmaking in the petroleum industry and mining. A map

Fig. 1 Schematic of

connectivity of fracture network

(Red dash represents water flow

through fractured rock mass,

blue lines represent fractures)
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is a numerical model of an attribute’s (e.g., porosity, per-

meability, thickness, structure) spatial distribution.

Attribute mapping with high degree of confidence helps to

make better flow prediction about the reservoir or reserve

estimation of mine. Traditional geostatistics, including

kriging, and more generally all regression-type maps are

locally accurate in the minimum error variance sense, but

because of smoothing, provide inaccurate representations

of the spatial variability of the actual phenomena with

various artifacts. It is the limitation of conventional simu-

lation approaches based on two-point statistics (Deutsch

and Journel 1998; Journel 1997; Srivastava 1995). There-

fore, the use of smoothed maps is particularly inappropriate

in cases where continuity/connectivity of extremes is

important such as in the modeling of fluid flow in porous

media (Schafmeister and Marsily 1993; Caers 2000).

Curvilinear geometries cannot be modeled using only

conventional 2-point geostatistics such as a variogram.

Reproduction of such random geometric needs parameter-

ization of specific shapes or the consideration of the joint

categorical variability at three or more points at a time

(Zhang et al. 2006). Therefore, specific geometries are

poorly reproduced by conventional pixel-based algorithms,

such as indicator or Gaussian truncated simulation

techniques.

A new field, termed Multiple-Point Geostatistics or

MPS, is rapidly rising. It does not rely on variogram

models. Instead, it allows capturing inner structure from

so-called ‘training images’, which are essentially a data-

base of geological patterns. Multiple-point statistics

borrows multiple-point patterns from the training image,

and then anchors them to reconstructed simulation results

(Caers 2000; Strebelle 2002; Zhang et al. 2006). Such

method would account for correlations between three or

more locations at a time. Hence, in theory, it would be

able to reproduce the connectivity of many locations and

thus reproduce complex, curvilinear geological structures.

In current practice of curvilinear geometrical simulation,

such as sinuous channels in a fluvial reservoir or incised

valleys over topography, training images can be almost

generated using unconditional object-based (Holden et al.

1998; Viseur 1999) or process-based (Wen et al. 1998)

simulations.

Our approach on fracture prediction relies on a concept

where fracture network is regarded as connected curvilin-

ear geological structures. Geological structures, such as

sand body in special shape and meandering channels in

fluvial reservoir, may be products of multiphase tectonics

and sedimentation in geologic history. Similarly, fracture

system is caused by the initial stage of formation of rock

mass and the successive tectonic motion processes.

Therefore, there are intrinsic patterns in them which can be

characterized in local survey area and reconstructed to

a reasonably larger area via MPS means. The process

of fracture description can be briefly summarized as

following:

Grid-based discretization of fracture network

as training image

Figure 2 shows how binary (fracture/matrix) grid is defined

to describe fractured rock mass. Then vector fractures are

transferred into grids with permeability defined as kf

(fracture-embedded grid) and km (matrix grid). The indi-

cator notation is used for ti(u):

tiðuÞ ¼ 1 if at u ti contains fracture

0 if at u ti contains matrix

�
ð1Þ

tiT(u) is value of the training image ti where u 2 Gti, Gti is

the regular Cartesian grid discretizing the training image. It

indicates a specific multiple-point vector of ti(u) value

within a template T centered at grid node u.

Fig. 2 Schematic of grid-based

discretization of fracture

network (binary-value

(fracture/matrix) permeability

representation of fracture

(grey line))
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Scanning of the training image to extract its constituent

fracture patterns

The training image ti is scanned using template T (3 9 3

nodes in this study, shown in Fig. 3b) and storing the

corresponding multiple-point tiT(u) vectors in a database.

Each such tiT(u) vector is called a ‘‘pattern’’ of the training

image and the database is called the ‘‘pattern database’’

which is denoted by pat_dbT. Once the patterns are stored

in the pattern database pat_dbT, they are considered to be

location independent, i.e. the database does not store the

location u [ Gti of a pattern; only the content of the pattern

is stored (Arpat 2005).

Sequential simulation with patterns

Once the pattern database pat_dbT is constructed, the

algorithm proceeds with the simulation of these patterns on

a realization re. Sequential simulation methods were

developed, following the generic flowchart:

(1) Define a random path visiting all uninformed nodes.

(2) For each node ua, draw the simulated value sampled

from conditional distribution Function.

(3) Continue until all nodes on simulation grid have been

simulated

A realization of grid-based fracture network is then

reconstructed containing pattern information extracted

from ‘training image’ of known fracture network maps.

Reconstruction of fracture network at Yucca Mountain

Based on MPS method described earlier, we created grid-

based discrete fracture network as training image. Input

data for the training image creation are statistical distri-

butions of geologically observed fracture spacing, and

orientation trace lengths taken from Yucca Mountain

datasets assembled by Hardin and Westermann (2000),

shown in Fig. 4.

2D fractures system prediction

When the fracture ‘training image’ is ready, fracture pat-

terns will be then extracted into a database by scanning of

the training image. The goal of pattern recognition on

fracture network is to classify observed fracture patterns

into groups or classes. After pattern database pat_dbT is

constructed, many realizations of fracture network are

reconstructed by sequentially sampling on these patterns

(described above). Spatial binary-value grids represent

Fig. 3 Schematic of training

image and pattern database in

multiple-point statistics. (a)

binary-value (fracture/matrix)

grid representation of fracture

network (blue lines); (b) scan on

training image with specific

template (multi-grid in red)

to create pattern database)
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rock blocks containing fracture and rock matrix. As shown

in Fig. 6, realizations of grid-based fracture networks are

simulated over the near field area around Yucca Mountain

waste repository drift (80 m 9 80 m). More fine grids

(0.5 m 9 0.5 m) are used in 10 m 9 10 m area near drift.

We can find that these realizations of fracture networks

seem to have similar pattern for the human eye while they

are obviously not in the same distribution of fracture. The

recognition and reconstruction of fracture pattern or con-

nectivity are realized statistically by MPS method, while

they do not exist definitely in conventional means for

fracture prediction.

Upscaling of permeability

Once a fracture network has been reconstructed, the

equivalent permeability of the fracture network can be

assessed. In order to do more efficient numerical simula-

tion, large-scale continuum analyses using hydraulic

equivalent properties should be adopted (Baghbanan and

Jing 2007). In crystalline rocks with nearly negligible

permeability of the rock matrix, the fracture system dom-

inates the flow and permeability of the rock masses. Rock

mass around Yucca Mountain repository drift can be

described as a well-connected fracture network behaving

Fig. 4 Fracture observations

and artificial training image (in

(a), fracture measurement data

from Hardin and Westermann

(2000)
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similarly to a continuous and heterogeneous medium with

considerable variation in permeability (Birkholzer and

Tsang 1997). Determination of the equivalent hydraulic

properties is very important for understanding the

hydraulic behavior of fractured rock masses. In this study,

we use a spatial average model (Pickup et al. 1995; Odling

et al. 2004) to evaluate the permeability distribution of the

fractured crystalline rocks. For flow along a grid element

parallel to a fracture, the arithmetic average of permeability

is used, and for flow along a grid element perpendicular to

a fracture the harmonic average is used, as shown in Fig. 5.

The appropriate permeability of blocks representing frac-

ture can then be simply calculated using the formulae for

adding permeability in series (2) and parallel (3).

k ¼ 1=

PN
i¼1 ti=kiPN

i¼1 ti

" #
ð2Þ

k ¼
PN

i¼1 ti � kiPN
i¼1 ti

" #
ð3Þ

where ti is the thickness of each of the N layers and ki is the

corresponding permeability.

We adopt this harmonic and arithmetic average method

with a line-by-line scan to upscale the permeability (kf and

km are set to values of fracture and matrix continuum, see

Table 1) to a coarse grid (5 m 9 5 m). Figure 7 shows

realizations of whole area permeability after up-scaling and

Yucca Mountain case simulation conditions. MPS simula-

tions are carried out under conditions that average

permeability is set to mean value of field measured per-

meability 7 9 10-17 [m2] and permeability at top of drift

surface is conditioned to measured value. Figure 8 shows

comparison between MPS simulated and survey of per-

meability along the circumferential repository drift surface.

It can be seen that there is good linear similarity between

them and the correlation coefficient is about 0.86 when

compared to pre-excavation permeability, which indicates

that MPS simulation can grasp and recreate some natural

patterns of fracture network near the repository. In fact,

knowledge of spatial distribution of permeability is more

important than its statistical distribution because the former

Fig. 5 Schematic of block permeability up-scaling (left for harmonic

average, right for arithmetic average of permeability. kf is perme-

ability in fracture and km is permeability in matrix.)

Fig. 6 Realizations of fracture

network in 2.5 m 9 2.5 m grid

by MPS reconstruction

(0.5 m 9 0.5 m fine grids in

10 m 9 10 m area near waste

repository drift; red square in

middle part represents

simulation area near waste

repository drift with variable

permeability K0; K0 is average

permeability of rock mass)
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dominates heterogeneity and one can simulate more real

water flow with it.

Analyses of fracture-distribution-induced

seepage into drift

Flow field is solved by Fluid-Rock Transport simulator,

coupled THM processes (FRT-THM) code being devel-

oped by the CAS team under DECOVALEX project. It is

based on MATLAB and C language codes, in which

FEMLABTM is used as partial differential equation solver

(Liu et al. 2006). Basic parameters used in Yucca

Mountain case simulation are listed in Tables 1 and 2,

and numerical grids and boundary conditions are shown

in Fig. 9. The top boundary, representing the ground

surface was free to move, with a fixed water influx

(6 mm/year), whereas the bottom boundary, representing

water table had a vertical zero-displacement restriction for

displacement, with a fixed pressure. The lateral bound-

aries (vertical sides of the model) are no-flux boundary

for fluid and heat, with a zero-displacement restriction for

the displacement normal to the boundary surfaces. The

spatial permeability distribution for one realization is

shown in Fig. 7, in which the mean value of permeability

is set to 7 9 10-17 [m2] for the purpose of comparison

with uniform permeability.

As a result, water saturation distribution simulated with

N fracture realizations are shown in Fig. 10. We can find

obviously different flow fields from the same statistical

Table 1 Properties of the rock

mass in a dual continuum model

used in Yucca Mountain case

simulation

Type Property Value

Hydraulic properties

of the fractured continuum

Permeability (m2) 3.3 9 10-13

Porosity (-) 0.0083

van Genuchten’s air-entry pressure (kPa) 9.615

van Genuchten’s exponent, m(-) 0.633

Residual saturation (-) 0.01

Hydraulic properties

of the matrix continuum

Permeability (m2) 1.77 9 10-19

Initial porosity (-) 0.13

van Genuchten’s air-entry pressure (kPa) 118.3

van Genuchten’s exponent m(-) 0.317

Residual saturation (-) 0.19
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Drift

Fig. 7 Realizations of up-

scaled permeability distribution

in near field of repository drift

(red square in middle part

represents simulation area near

waste repository drift with

variable permeability K0; K0 is

average permeability of rock

mass)
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distribution of the observed fracture system can be found.

Figure 11 shows a comparative result of water saturation

between uniform and MPS simulated permeability. It can

be seen that seepage repository drift in most cases (20

realizations) is much larger than that in the uniform

permeability case. It indicates that fracture-induced heter-

ogeneities in hydrological properties can increase the

probability of seepage into opening, as they give rise to a

considerable variation of saturation and capillary pressure

in the unsaturated flow field. In this way, uncertainty

in flow field simulation, even in complicated coupled

THM simulation, can be evaluated statistically, like con-

ventional stochastic theory. Meanwhile, MPS method has

the advantage of reproducing the connectivity of known

fracture observations. It can yield more real preferential

pathway in water flow simulation.

Concluding remarks

In this study, a new method for fracture network descrip-

tion and prediction, termed multi-point-statistics (MPS)

was introduced, which can classify and reconstruct pattern

information from grid-based training image of discrete

fracture network and was applied to fracture data from field

observation to study flow field behavior in Yucca Mountain

waste repository system. Flow field simulations were

conducted considering two permeability distribution: uni-

form k, and MPS simulated k based on training image from

filed database. The study shows that

1. Connectivity of fracture network in rock mass can be

grasped and reconstructed by MPS method. In theory,

it will lead to better prediction of fracture system

characteristics and flow behavior prediction. It may

show us where the water seepage is more probable to

occur. Grid-based extrapolation is an important feather

of multi-point-statistics which makes simulation flex-

ible and less time-consuming when dealing with large-

scale 2D/3D hydraulic problem.

2. Uncertainty in flow field simulation can be evaluated

statistically by MPS method. It gives us a way to

quantify both fracture pattern-induced heterogeneity in

hydrological properties and uncertainty of stochastic
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Fig. 8 Permeability along circumferential waste repository drift

surface. (a) represents the upper middle borehole at Niche 3650,

Yucca Mountain, before and after excavation Wang et al. (1999). (b)

represents average permeability of N realizations of MPS simulated,

conditioned to mean value of average permeability at 1.4 9 10-12 m2

and permeability at top of drift surface

Table 2 Some basic THM rock properties used in Yucca Mountain

simulation

Parameter Yucca Mountaintype:

volcanic tuff

Bulk density (kg/m3) 2,370

Matrix porosity (-) 0.13

Young’s modulus (GPa) 15

Poisson’s ratio, (-) 0.21

Specific heat (J/kg�C) 985

Thermal conductivity (W/m�C) 2.29

Thermal expansion coefficient (�C-1) 1.0 9 10-5

Bulk permeability (m2) 3.3 9 10-13

5.5m Drift

Z= +250 m 

Z= -300 m 

Z = 0 m 

Ground Surface 

z-profile

x-profile

Ground Water Table

Fig. 9 Numerical grids and boundary conditions in simulation
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models simultaneously. This feature makes the MPS

method superior to conventional fracture description

methods. It is flexible when being used to evaluate

uncertainty of stochastic models even in complicated

coupled THM simulation.

This study indicates that multi-point statistical simula-

tion is a potential method to characterize and reconstruct

natural fracture network in a rock mass with capability of

quantifying uncertainty in simulation. This is a preliminary

study on fracture systems and their effect on flow fields.

   

80m

K0

K0

K’
Drift

Fig. 10 Realizations of water

saturation near repository drift

(squares represent simulation

area of near field around waste

repository drift, 80 m 9 80 m)

Drift

Fig. 11 Relative water seepage

into repository drift with

uniform and MPS simulated

permeability (20 realizations,

green triangle represents

seepage into repository in one

realization of simulated fracture

network, red line represents

seepage into repository in

simulation with uniform

permeability; squares at left

represent simulation area near

waste repository drift,

80 m 9 80 m)
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The quantitative comparative study with conventional

method is not considered here, but shall be carried out with

conditioned data to measured Yucca Mountain drift seep-

age in further work. Moreover, different sources such as

properly digitized outcrop or drift surface photographs or a

geologist’s sketch as training images should be used to

combine more information for natural fracture networks

and extend it to 3D case.
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