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Abstract
Deterministic and stochastic fluid-structure interaction
by
Jeffrey Kuan
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Suncica Cani¢, Chair

This thesis will study fluid-structure interaction (FSI), which describes the coupled multi-
physical dynamical interaction between fluids and deformable structures. From modeling the
flow of blood in compliant elastic arteries to modeling biomedical prostheses and large-scale
structures such as wings, bridges, and dams, FSI is prevalent in science, making the rigorous
analysis of such coupled fluid-structure systems important for continued technological devel-
opment and progress in engineering. While prototypical models of FSI involving incompress-
ible, viscous, Newtonian fluids interacting with elastic structures have been well-studied in
the literature, the types of FSI models found in present-day real-life applications have unique
and interesting features that require new mathematical methods for their analysis. The goal
of this thesis will be to develop new tools for studying new complex FSI models of practi-
cal importance that extend past work on prototypical models of FSI. Motivated by real-life
applications, we will study stochastic FSI systems involving coupled FSI dynamics under
the additional influence of random noise in time, and fluid-poroelastic structure interaction
(FPSI) which describes FSI systems in which the structure is poroelastic and hence admits
fluid flow through its pores. In the study of stochastic FSI, we establish well-posedness for
two models: (1) a reduced model where the full stochastic fluid-structure dynamics can be
reduced to a single stochastic equation known as the stochastic viscous wave equation and (2)
a fully coupled stochastic FSI system involving linear coupling between a Stokes flow through
a channel and the stochastically forced elastic walls of the channel, where the full system is
described by a stochastic system of PDEs. Next, we study deterministic nonlinearly coupled
FPSI and consider a model in which a multilayered poroelastic structure consisting of a thin
plate and a thick poroelastic medium, modeled by the Biot equations, interacts with an
incompressible fluid modeled by the Navier-Stokes equation. We study well-posedness and
consistency of this nonlinearly coupled FPSI model, which is especially challenging since the
fluid and poroelastic structure domains are time-dependent and a priori unknown. To the
best of our knowledge, the results in this thesis represent the first well-posedness results for
stochastic fluid-structure systems and nonlinearly coupled FPSI with moving domains.
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Chapter 1

Introduction and background

1.1 Fluid-structure interaction and its applications

Fluid-structure interaction (FSI) describes multiphysical systems consisting of fluids and
deformable solids interacting dynamically with each other. These coupled fluid-structure
systems are multiphysical systems in the sense that models of FSI involve partial differential
equations (PDEs) describing fluid dynamics which are coupled to partial differential equa-
tions describing the elastodynamics of a elastic structure, where the coupling is a two-way
coupling in which the fluid and structure dynamics mutually influence each other. Because
of the two-way coupling between the fluid and structure, rigorously analyzing FSI systems is
mathematically challenging, since FSI problems are described by systems of coupled PDEs,
which are often of mixed hyperbolic-parabolic type. Furthermore, since the structure in such
problems is often deformable, F'SI problems can be moving boundary problems with addi-
tional geometric nonlinearities arising from the time-dependent fluid domain, which depends
on the structure displacement and is hence not known beforehand.

Despite all of these mathematical difficulties associated with the study of FSI, under-
standing F'SI dynamics is essential for advancing science and technology. In particular, FSI is
widespread in applications to engineering since the interaction between fluids and structures
is a commonplace phenomena in the natural world. Advancements in the mathematical the-
ory and the development of stable and efficient numerical methods for FSI have contributed
to significant accomplishments in a variety of applications to engineering. This includes
advancements in the accurate simulation of real-life FSI systems in civil and mechanical
engineering, and the development of new biomedical technologies that significantly improve
standards of patient care. Hence, in addition to being of inherent mathematical interest, FSI
is fundamentally relevant to science and engineering, which makes the development of new
mathematical methods for analyzing FSI especially crucial for continued progress in science
and engineering.

To emphasize the fundamental importance of FSI and the prevalence of coupled fluid-
structure systems in science and engineering, we highlight some of the numerous applications
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of FSI to a broad variety of scientific disciplines below:

Biomedical engineering. Many physiological processes in the human body can be mod-
eled using coupled fluid-structure systems. Fluids, such as blood and air, interact with a
variety of tissues which can be modeled as elastic shells or solids. Numerical simulations
of FSI have been used to investigate the effects of medical pathologies, such as aneurysms
[17,/130] and plaque in arteries [106], on the human body via computational simulations. In
recent years, there has also been substantial progress in engineering new biomedical tech-
nologies that substantially improve quality of life for patients. The development of robust
numerical methods for FSI has played a crucial role in these technologies, as engineers can
use simulations to study the effects of biomedical interventions. This allows for the compu-
tational study of prostheses in the cardiovascular system, such as prosthetic heart valves [16],
92] and vascular stents [33, 28|, and new technologies such as a bioartificial pancreas [26],
which is a revolutionary biomedical technology that would eliminate the need for long-term
immunosuppressant therapy after organ transplantation.

Mechanical engineering and aeroelasticity. The operation of many mechanical systems
involve the interaction between fluids and structures, and hence fluid-structure interaction
is important in many mechanical engineering applications. The study of the interaction
between solids and fluids has been applied to the simulation of various components of rockets,
such as rocket engine nozzles [77], rocket engines [110], and rocket motors [179]. Another
major application of fluid-structure interaction is the study of aeroelasticity, which studies
the deformations of elastic solid structures in surrounding air flows. Numerical studies of
aeroelasticity have included studies of wings, such as the AGARD 445.6 [104] and the ARW-
2 wing [71]. Computational studies of insect flight [145] are also another application of
aeroelasticity, and more generally, studies of flight involving both rigid and flexible wings
have contributed to the study of micro air vehicles [47]. Another significant application of
aeroelasticity found in the literature is the study of parachutes, which form a fluid-structure
interaction system in which the shape of the parachute derforms under the influence of the
surrounding air [76, (127, |168|, 169, [176].

Civil engineering. Fluid-structure interaction is also particularly important in civil en-
gineering, where it is important for engineering large-scale structures, such as bridges and
dams, which are able to withstand external loading due to environmental factors, such as
wind and water, which can be modeled using the equations of fluid dynamics. In these sim-
ulations, it is important to take into account the elastic and vibrational properties of these
large-scale structures, in order to accurately assess their durability in response to external
environmental loading. The study of fluid-structure interaction in the context of bridges
interacting with surrounding airflow such as wind has been carried out mathematically in
small-scale experiments such as wind tunnel experiments [78] and also numerically in large-
scale simulations of bridges [133, [170]. Simulations of the robustness of bridges in response
to external loading due to water waves, as a result of natural disasters such as tsunamis [96]
and hurricanes [5], have also been conducted in the civil engineering literature. In addition,
there has been a lot of work on the interaction between dams and water, for example in
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surrounding reservoirs, which has been carried out in works such as |2, 4, 46, [59, 122, |147,

178).

Because of the widespread application of FSI to science, developing a robust mathemati-
cal theory for quantitatively analyzing fluid-structure interaction systems is of fundamental
importance for supporting continued progress in engineering. The mathematical study of
FSI is multifaceted, integrating a broad set of mathematical approaches. This includes
the mathematical modeling of FSI systems, which involves deriving equations describing
the dynamics of fluid-structure systems from physical principles and asymptotic analysis.
Upon obtaining such models, one can then study the rigorous mathematical analysis of the
systems of fully coupled PDEs that describe these physical systems, by examining mathe-
matical issues such as well-posedness (existence and uniqueness of weak or strong solutions)
and long-time behavior of these systems. Upon obtaining models of fully coupled fluid-
structure systems that are well-posed, one can then work on developing robust, stable, and
accurate numerical schemes for numerically solving for the solutions to FSI dynamics.
These numerical schemes are particularly valuable for practical applications, as they can be
used to simulate real-life technologies involving FSI. In this thesis, the emphasis will be on
the mathematical analysis of FSI systems, in terms of showing well-posedness for complex
FSI systems that are inspired by real-life applications to engineering.

Before discussing the types of more complex FSI models that we will consider in this the-
sis, we will start by describing a prototypical model of FSI, consisting of an incompressible,
viscous fluid interacting with an elastic plate or membrane. While this model has been ex-
tended to more complex settings, this prototypical model is a particularly useful benchmark
problem for FSI and this prototypical model was where much of the work on the mathemat-
ical analysis of F'SI began. In this prototypical model of FSI, the coupling between the fluid
and structure can be of two types. First, the fluid and structure can be linearly coupled,
which is a linearization of the full moving-boundary FSI problem with a time-dependent
fluid domain around the state of zero structure displacement, where the fluid equations are
evaluated on a fixed, reference fluid domain and the coupling between the fluid and structure
occurs on the fixed, rather than time-dependent, fluid-structure interface. Second, the fluid
and structure can be nonlinearly coupled, which gives rise to moving-boundary problems
involving time-dependent fluid domains that are not known beforehand and must be solved
for as part of the FSI problem. In particular, in the real-life dynamics of such a prototypical
FSI system, the structure displacement at any given time determines the time-dependent
fluid domain, and since the structure displacement is a priori unknown, the moving (time-
dependent) fluid domain is not known a priori either. Hence, the equations for the dynamics
of the fluid in nonlinearly coupled models of FSI are posed on a moving time-dependent fluid
domain that is also an unknown of the problem, and the coupling conditions between the
fluid and structure are evaluated on the time-dependent interface between the fluid and the
structure. This gives rise to additional nonlinearities originating from the changing (time-
dependent) geometry, which makes these nonlinearly coupled moving boundary problems
particularly challenging.
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While there have been many techniques developed for solving FSI problems both in
the linearly coupled and nonlinearly coupled cases, one particular method for solving these
fully coupled problems that has been particularly robust in handling both the prototypical
model and its numerous extensions is the idea of Lie operator splitting. This involves semi-
discretizing the problem in time, and splitting the fully coupled problem into a structure and
a fluid subproblem on each time step, in order to construct approximate solutions. However,
not every such splitting into a structure and fluid subproblem would necessarily work, and
one must be careful to precisely split the problem in an appropriate way so as to respect
the energy of the problem, in order to produce a stable scheme. In this sense, developing a
proper splitting scheme is often the main challenge in this approach. However, this splitting
scheme approach remains particularly useful because it explicitly constructs weak solutions
to the FSI problem. This thesis will discuss extensions of this splitting scheme approach to
complex FSI problems involving stochasticity and more complex structures, such as poroelastic
structures. Hence, as a starting point, in the remainder of this section, we will first describe
the prototypical benchmark FSI model in both the linearly coupled and nonlinearly coupled
case, discuss the literature that has been done for these models, and finally outline the
method of constructive existence for these models via Lie operator splitting.

1.2 A linearly coupled prototypical FSI model

As a preliminary step in the analysis of fluid-structure interaction, linearly coupled models
of FSI were first analyzed, where the fluid domain is assumed to be fixed in time, so that the
fluid equations are posed on a fixed reference fluid domain €2, even though the structure is
assumed to displace. Therefore, the fluid equations are formulated on a fixed domain that
is not time-dependent, with the fluid-structure coupling occurring on a fixed fluid-structure
interface, rather than a moving interface. Although these linearly coupled models are not
moving-boundary problems, the analysis of these linearly coupled FSI models is still chal-
lenging due to the two-way coupling between the fluid and structure and the multiphysical
nature of these problems. In this section, we begin by reviewing the important results in
the study of linearly coupled models of FSI. We will then describe a prototypical model of
linearly coupled FSI and describe a Lie operator splitting approach to analyzing this lin-
early coupled model. Though the Lie operator splitting approach was only later used in
fluid-structure interaction in the context of moving boundary nonlinearly coupled models,
see for example 30} [140], we summarize the application of the splitting scheme approach to
the prototypical linearly coupled FSI model, since these splitting schemes will be important
in analyzing linearly coupled models presented later in this thesis.

Literature review

The first mathematically rigorous works on linearly coupled fluid-structure interaction in-
volve fluids and structures interacting with each other, where the fluids and structure are
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in domains of these same dimension. We will summarize the fundamental developments in
linearly coupled models of FSI of this type, but note that the prototypical model that we will
consider in the remainder of this section is of a slightly different type, where the structure
is a lower-dimensional membrane that is on the boundary of the fluid domain.

The study of linearly coupled fluid-structure interaction was initiated in the work [66],
where the linear Stokes equations posed on a fluid domain interact with the equations of
linear elasticity on a solid domain, where the fluid and solid domain are in contact with each
other along a common interface, and are both of the same dimension, either 2D or 3D. At
the interface, there is a kinematic coupling condition prescribing matching of the fluid and
structure velocity, and there is a dynamic coupling condition that prescribes continuity of
normal stresses. This work proves well-posedness from the perspective of weak solutions, by
using a Galerkin method and passing to the limit, and it shows that given initial structure
displacement, structure velocity, and fluid velocity in H'(Qg), H* (), and H'(Qy) respec-
tively, there exists a solution where the structure displacement, structure velocity, and fluid
velocity are bounded in H*(Qs), L*(Qs), and L*(Q;) for all time, while the fluid velocity
is also in L?(0,T; H*(Qy)). It is shown that with more regular initial data, one can obtain
improved regularity for the solution, in addition to being able to recover the fluid pressure,
which vanishes in the weak formulation when using divergence-free test functions.

After this initial work by [66], there was a growth in interest in linearly coupled models,
where the solid and fluid have the same spatial dimension, specifically models in which an
elastic solid is immersed in a fluid. For concreteness, in these models, we will refer to the
structure displacement by m on the reference structure domain €2, we will refer to the fluid
velocity by w on the reference fluid domain €2, and we will denote the reference configuration
of the fluid-structure interface by I'. In the work |10], a solid modeled by the linear damped
wave equation 1,, — An + n = 0 on () is immersed in a fluid modeled by the linear Stokes
equations, where the solid and fluid are both 2D or are both 3D. The kinematic coupling
condition is a no-slip condition

u =1, on I,

and the dynamic coupling condition is

g—,l: — g—Z =pv, onl, (1.1)
where v is the normal vector along I'. As described in [10], this work improves upon the
past results in [66], where an initial structure displacement, structure velocity, and fluid
velocity in H'(€,), H' (), and L*(Qy) give rise to a solution that is bounded in time in the
weaker spaces H'(Qy), L*(Qs), and L*(Qs). In contrast, this work [10] does not have this
decrease in regularity from the initial data to the solutions. The main result of this work
is that the linearly coupled problem has an associated evolution that is given by a strongly
continuous Cjy semigroup, so that initial data in a finite energy space H give rise to solutions
that are continuous in H. In addition, the semigroup is strongly stable on H quotiented out
by a one-dimensional space of stationary solutions, meaning that on this factor space, the
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operator norm of the semigroup converges to zero as t — oo, which implies some long-time
decay of solutions. These results were obtained by reformulating the initial fluid-structure
interaction problem as an abstract evolution equation, where the fluid pressure is eliminated
from the equations by rewriting it using operators applied to the fluid velocity and structure
displacement. The study of well-posedness of this system was continued in a later work [7],
where it is shown that the solution possesses additional regularity if one assumes that the
initial data is in the domain of the generator A of the associated semigroup and the initial
structure displacement is in H?(€),), so that the initial data is more regular.

These asymptotic stability results about immersed structures in fluids were later improved
in [11], where the same model as in |10] is considered, but instead of a no-slip condition u = n,
on I', there is a boundary dissipation condition,

u=mn,+ ag—z on I (1.2)
where a = 1 for concreteness. For this problem with boundary dissipation, the previous
work [10] shows that the associated semigroup is strongly stable, so that the operator norm
of the semigroup maps goes to zero as t goes to infinity. The work in [11] improves this
result by showing uniform stability of the semigroup, which means that the operator norm
of the semigroup maps more specifically decays exponentially as t goes to infinity.

We note that these past results on elastic structures immersed in fluids |7} |10} [L1] involve
damped wave equations. These results were generalized to elastic structures modeled by
elasticity equations, specifically the Lamé equations of linear elasticity, interacting with
incompressible Stokes flows in later works [8,|9]. These models involve boundary dissipation
in the kinematic coupling condition so that

n,—¢om)-vip=u onl,

where ¢ > 0 is a sufficiently regular and nonnegative function, for example in C*(T"), and
o(n) is an elasticity stress tensor for the structure. The dynamic coupling condition, instead
of being the simpler condition , is now the full continuity of normal stress between the
fluid and structure:

2D(u) v =0(n) - v+ pv, on I,

1
where D(u) = é(V(u) + (Vu)") is the symmetrized gradient for the fluid velocity. We refer

the reader to 9] for the full details of the Stokes-Lamé model. In [9], it is shown that this
Stokes-Lamé system has an associated strongly continuous Cj semigroup, which establishes
well-posedness, and strong stability properties of the semigroup are established. As was
done for the model involving just the damped wave equation in [11], these strong stability
results for the Stokes-Lamé system in [9] were strengthened to results on uniform stability
of the semigroup in the work [§], in the sense of exponential decay of the operator norms of
the semigroup, when the boundary dissipation function ¢ is strictly positive. The boundary
dissipation function ¢ > 0 in this case is the analogue of the constant v = 1 in for the
related model involving a linear damped wave equation interacting with Stokes flow.
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Nonlinear variants of these models were also considered, in which the Navier-Stokes
equations with the nonlinear advection term are considered for the fluid interacting with
the immersed solid. We emphasize that these models are still linearly coupled because the
Navier-Stokes equations are posed on a fixed reference fluid domain and the fluid-structure
coupling takes place at a fixed reference fluid-structure interface. This model was considered
in [12], where the continuity of normal stresses is modified into a transmission boundary
condition in order to obtain energy balance, due to the effect of the nonlinear advection
term in the Navier-Stokes equations and the fact that the nonlinear Navier-Stokes equations
interacting with a deformable structure are being posed on a fixed reference fluid domain.
In this work, existence of weak solutions which are defined globally in time is established
in finite energy spaces by using semigroup methods and microlocal analysis of hyperbolic
equations. The proof considers an auxiliary related nonlinear problem where the nonlinearity
is of a suitably tractable form, and this auxiliary problem is solved using semigroup methods.
The initial problem can be solved by truncating the Navier-Stokes advection nonlinearity
to reduce the initial problem to this auxiliary problem, and then passing to the limit in
the truncation parameter. However, an additional difficulty here is that to show that the
solutions which are solutions in the semigroup (mild) formulation are also weak solutions
satisfying a variational formulation, we must be able to interpret appropriate terms in the
weak formulation, such as the trace of the normal stress of the structure on the boundary.
While the finite energy space does not have a structure displacement and velocity with
sufficient regularity to classically define a trace of the normal stress of the structure along
the fluid-structure interface T', the work in [12] shows that one can use microlocal analysis
to establish a “hidden regularity” result where if we are given initial structure displacement
in H'(Q,), initial structure velocity in L?(€,), and forcing in L?(0,T; H/?(€,)), then the
corresponding solution to the linear elasticity equation has a normal stress with a well-defined
trace on the boundary in L?(0,T; H~Y/2(T")). We remark that this “hidden regularity” result
has been fundamental to the development of methods for linearly coupled FSI, as it has
resulted in well-posedness results that do not require the addition of (potentilly artificial)
higher order terms in the structure equations that regularize the structure dynamics.

The consideration of this linearly coupled model consisting of the nonlinear Navier-Stokes
model interacting with an elastic immersed structure is continued in [13], where the existence
and uniqueness of strong solutions is considered in 2D and 3D. In terms of strong solutions,
there are global unique solutions in 2D, and in 3D, given an initial fluid velocity, structure
displacement, and structure velocity in H*(Q;), H?*(Qs), and H'(£2,) respectively, one can
obtain local existence of strong solutions. It is important to note also that because these
solutions are strong, an important component of the analysis in [13] involves obtaining
improved regularity estimates that will allow for the recovery of the fluid pressure function.
These results on local existence of strong solutions were later improved in subsequent works
[120], [118], and [119]. In [120], a variant of the model in [13] is considered with “slab”
domains containing flat boundaries, and in this context, the results from [13] are improved.
In [120], the regularity of the initial fluid velocity is reduced from H? to H' and later, in [118],
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the regularity of the initial structure displacement and velocity is reduced to H 3tk and Ha2tk
for sufficiently small £ > 0 by using “hidden regularity” and fractional estimates. Finally, in
[119], these well-posedness results for strong solutions are extended beyond the model with
“slab” domains with a flat fluid-structure interface that was previously found in [120, |118§]
to a more general geometry involving a potentially non-flat fluid-structure interface.

Problem description

We start by describing a linearly coupled prototypical model, involving the interaction be-
tween a two-dimensional incompressible Newtonian fluid and a one-dimensional elastic struc-
ture. Define the two-dimensional reference domain for the fluid by

Qf = [O,L] X [O,R],

which represents half of a two-dimensional channel with elastic walls which contains the flow
of an incompressible fluid. We will represent points in the two-dimensional fluid domain €2
using the coordinates (z,7) € Q;. The elastic channel will be open at the ends, so that we
allow for inlet and outlet flow through

Iy = {0} x [0, R] and Cowe = {L} x [0, R]
respectively. The bottom boundary
Iy = [Oa L] X {0}7

represents the central axis of the channel, which will be a line of even symmetry, so that
the dynamics on €2y can be reflected across the line I'y to retrieve the full (symmetric)
dynamics in the full elastic channel. We represent the elastic walls of the channel using the
top boundary, defined by

I'=10,L] x {R},

which will be the reference configuration of an elastic structure representing the deformable
walls of the channel. Hence, I' is the reference configuration of the fluid-structure interface,
which represents the physical location of the fluid-structure interface when the displacement
of the elastic structure from its reference configuration is zero. See Figure [I.1]

Description of the fluid and structure dynamics

We now describe the subproblems for the fluid and structure, by explicitly specifying the
partial differential equations governing the dynamics of the fluid and structure separately.

Structure subproblem. We will describe the elastic walls of the channel, with reference
configuration I', by specifying the displacement of the structure from its reference config-
uration I'. While one can consider general vector-valued displacements from the reference
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A STRUCTURE SUBPROBLEM
| 8t2n - 008377 + 018;177 = —a(u,p)er : e'r|1‘
r

< NO SLIP CONDITION
u|r = Ome,
1-‘in -Qf l-‘out

FLUID SUBPROBLEM
— {

ut—V‘U(U,p):O, on Qf
V.-u=0.

Figure 1.1: The domain for the linearly coupled prototypical FSI problem in two dimensions,
describing the interaction between a fluid modeled by the linear Stokes equation and an elastic
structure. Though the structure displaces from its reference configuration, by the linear coupling,
we evaluate the interface conditions on the reference fluid-structure interface I' and pose the linear
Stokes equations for the fluid on the fized fluid reference domain §1y.

configuration such as n : I' — R?, we will consider a simplified case where the structure is
assumed to displace only in the radial direction. In this case, we can keep track of just the
scalar displacement of the structure in the radial direction from its reference configuration,
which we will denote by the scalar function n : I' — R. To describe the dynamics of the
elastic structure, we will use a partial differential equation describing a Koiter shell to specify
the evolution of the radial displacement of the elastic structure:

02n — Cod’n + C10tn = F on T, (1.3)

where Cy and C are positive (constant) elasticity coefficients and F is the source term
describing the external load on the structure, to be specified later in the coupling conditions.
We will assume that the ends of the elastic walls are clamped so that

n(0) = n(L) = .n(0) = d.n(L),

where z = 0 and z = L represent the left and right endpoints of I'. We remark that because
the structure equation is a fourth order equation in space, we need a total of four boundary
conditions, which is why we must specify that both n and 0,7 are equal to zero at the left
and right endpoints z = 0 and z = L of I'. For the structure subproblem, we are given initial
data for the initial displacement 1y € HZ(T') and the initial structure velocity vy € L*(T).
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Fluid subproblem. We model the fluid using the linear Stokes equations describing the
dynamics of an incompressible, viscous, Newtonian fluid with constant density in terms of
the fluid velocity w : Q; — R? and the fluid pressure p: Q; — R:

’U,t—V'O'(’UJ,p>:O,
V-u=0.

The first balance of momentum equation describes the dynamics of the fluid via Newton’s
second law, with the Cauchy stress tensor being defined by

o(u,p) =2usD(u) — pl, where D(u) = %[(Vu) + (Vu)']

and 1y > 0 is the (constant) fluid viscosity. The second equation (known as the incompress-
ibility condition) describing conservation of mass is an infinitesimal description of the fact
that the flow (under the assumption of constant fluid density, as we assume here) preserves
volume. We are given initial data ug € L*(Qy) for the linear Stokes equations.

Next, we define the boundary conditions for the fluid subproblem. Because we are allow-
ing for flow through the inlet and outlet of the channel, we will set

p Tin = Pl (t) a‘nd p|Fout = POUt(t)7

where Py, (t) and P, (t) are time-dependent inlet and outlet pressure data, which drive the
flow of the fluid through the channel. Furthermore, we will assume that the direction of the
flow at the inlet and outlet is purely horizontal so that

u, = 0, on I';, u Tl .

On the bottom boundary, because I'y is a line of even symmetry, we impose the following
boundary conditions along I'y for the flow velocity w, which essentially say that the flow
velocity respects the even symmetry at the central axis I'y:

u =0 and OJ,u, =0, on I'y.

The coupling conditions. Now that we have separately described the fluid and structure
dynamics, we need to couple them together to get a fully coupled FSI system. We emphasize
that the coupling in this FSI system is a two-way coupling, in the sense that the motion
of the structure and the dynamics of the fluid both mutually affect each other. There
are two types of coupling conditions: one which specifies continuity of displacements (the
kinematic coupling condition) and one which specifies the dynamic loading on the structure
(the dynamic coupling condition).

We remark that in most of the FSI systems that we will consider, there will be two-
way coupling described by a set of kinematic coupling conditions and dynamic coupling
conditions, which need to be specified in such a way that allows for a proper energy estimate
while respecting certain physically relevant considerations. In this prototypical model of
linearly coupled FSI, we have the following coupling conditions, which are evaluated along
the fixed reference fluid-structure interface I':
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e Kinematic coupling condition. This describes continuity of the velocity at the
interface, via the no-slip condition, which states that the particles of the fluid along
the elastic walls have the same velocity as the moving structure. Since we assume that
the structure displaces in only the radial direction, this kinematic coupling no-slip
condition takes the form:

ulr = dme,.

¢ Dynamic coupling condition. This condition specifies the fluid load on the struc-
ture. In this FSI system, the motion of the elastic structure is driven by the forcing
exerted on the structure by the fluid. Mathematically, this amounts to specifying the
source term on the elasticity equation describing the structure elastodynamics in (|1.3)).
We specify the external fluid load on the structure via the Cauchy stress tensor of the
fluid as
F =—o(u,p)e, - er.

Physically, this force F' represents the radial component of the force that the fluid
exerts on the elastic structure at the interface, where we are considering the fixed
reference fluid-structure interface I due to the linear coupling. We take only the radial
component of this force since we are assuming that the elastic walls of the channel are
constrained to move in only the radial direction for simplicity. Therefore, the equation
for the elastic structure reads

atQ,r] - 005377 + Cla;ln = _U(uvp)er : er|l'“

A priori energy estimate and weak formulation

Our next step will be to formulate the definition of a weak solution to the linearly coupled
prototypical FSI problem. This is done in a classical way, by testing against sufficiently
regular test functions and integrating by parts, in order to move derivatives from the solution
itself to the sufficiently regular test function. However, before deriving the weak formulation
that a weak solution must satisfy, it is useful to first do an a priori energy estimate, which
uses a formal calculation to show that we should expect the total energy of the system to be
controlled by the initial and boundary data. Obtaining an energy estimate validates, at least
on a preliminary level, that the mathematical model that we are considering is physically
reasonable. In addition, obtaining an energy estimate gives valuable information about what
finite energy function spaces we expect our weak solutions to belong to.

For the linearly coupled prototypical FSI model, we do not provide the details of the
computation of the energy estimate, as a similar computation will be done in a later chapter,
see Section [4.5/in Chapter 4. To get the energy estimate, we would test the structure equation
by 7, test the fluid equation by u, and relate the two resulting sets of equations using the
dynamic coupling condition. Define the norm

1 1
Il = §Co|!3z77!|i2(r) + §Cll|5§77|\%2(r)- (1.4)
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Then, we obtain the following energy estimate for all ¢ € [0,T], up to a fixed but arbitrary
final time 7"

1 1 !
§!|0m(t)|liz(r) + ()% + §!|U(t)|!i2<gf> + /ﬁffo || D(w)(5)|[72(,)ds
1 1
< §||U0||%2(F) + [Inoll% + §||’Uf0||%2(ﬂf) +C (HPin(t)H%Q(O,T) + ||P0ut||%2(O,T)> )

where the constant C' in the estimate above is independent of the final time T" and depends
only on the pre-specified geometry of the problem.

From this energy estimate, we can define the finite energy spaces for our weak solution,
by noting which norms must be bounded as a result of energy considerations. For example,
from the estimate above, we see that formally, we would expect the structure displacement
1 to have the norms ||0,(t)]|72(ry and [|n(t)[|% be bounded for (almost every) t € [0,T].
Hence, we would define the finite energy solution space for the structure displacement 7 to
be

V, = Wh2(0,T; LA(T)) A L#(0, T V),

where V is the following fixed-time solution space which incorporates the clamped boundary
conditions for the structure:
V, = H (). (1.5)

Similarly, we define the solution space for the fluid. For each fixed time, we expect the
solution to take values in the following space of divergence-free H' functions respecting the
boundary conditions of the fluid subproblem:

Vi={ue H () :V-u=0,u,=0o0n Ty Ul ulyu, =0onT} (1.6)

Then, from the energy estimate, we have the following finite energy space for the fluid

velocity u:
Vi = L*(0,T; L*(Qy)) 0 L*(0, T3 Vy).

Now that we have derived an energy estimate and the finite energy solution spaces, we
can define the weak formulation to the problem. We consider a test function (q,) where
q is the test function for the fluid velocity and ¢ is the test function for the structure
velocity, and where g|r = e, (which is the kinematic coupling condition imposed on the
test functions). We multiply the fluid equation by q and we multiply the structure equation
by v, and then we integrate by parts. In fact, many of these calculations will be similar to
the corresponding calculations used to obtain the a priori energy estimate. We then obtain
that a weak solution to the linearly coupled prototypical FSI problem satisfies the following
weak formulation.

Definition 1.2.1. A fluid velocity uw € V; and a structure displacement n € V; are a weak
solution to the linearly coupled FSI problem if n(0) = 7y and furthermore, for all test
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functions (g,v) € CP([0,T); Vs x Vy) such that g|r = ve,, the following weak formulation
holds:

—LTfou-atq-i-?HfJ: QfD(U):D(q)—LTL(?mﬁWﬂLCoLW-W

+ Cy L An- Ay = LT Ln P(t) - q. — LT Lm Pu(t) - q. + Lf uo - q(0) + Lvo -1(0).

If we substitute (u, yn) for the test function (g,) in the weak formulation, note that
we formally recover the a priori energy estimate above.

Construction of approximate solutions via Lie operator splitting

This linearly coupled FSI problem has a global weak solution, and we state this result in the
following theorem.

Theorem 1.2.1. Suppose we have initial data wy € L*(Qf), no € H(T'), and vy € L*(T).
Then, there exists a unique weak solution (u,n) to the linearly coupled fluid-structure in-
teraction problem above.

The method for showing uniqueness of weak solutions is handled using energy-type ar-
guments, where we have to carefully consider the regularity of the weak solution and the
test functions. We will not handle the proof of uniqueness now, as we will demonstrate the
mathematical methodology for establishing uniqueness of weak solutions later in Chatper 4
(specifically, see Lemma , so we will instead focus on the existence result for now. In
order to show this existence result, we use a splitting scheme that semidiscretizes in time
and splits the structure and fluid apart into two separate subproblems on each time step, in
such a way that the energy balance of the resulting scheme resembles the energy balance of
the continuous problem, hence resulting in a stable scheme. We remark that this splitting
must be done in a particular way in order to obtain a stable scheme, as one must carefully
take into account the two-way coupling between the fluid and structure when splitting them
apart from each other.

The splitting scheme that is used for this prototypical linearly coupled FSI model is as
follows. We set a final target time 1" and for each positive integer N, we discretize the full
time interval [0, 7] into N subintervals [t,, t,41] of length At = T'/N, where the endpoints
are defined by ¢, = nAt. On each time interval [t,,t,1], we run two subproblems, a
structure subproblem and a fluid subproblem, and update an approximate vector

nﬁj
UX,JW

ntg
uy >,
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consisting of the approximate state of the structure displacement, the structure velocity,
and the fluid velocity at that current time step. Each of the subproblems, which we will
now describe, will handle certain terms in the full weak formulation, so that when the weak
formulations for each of the two subproblems are combined, we obtain a semidiscretized
version of the full (continuous) weak formulation.

The structure subproblem. For the structure subproblem, we solve the weak formulation
of the elasticity equation with zero external forcing. We keep the fluid velocity from the

previous subproblem
n+% _n
uy > =uy

el
2 and the structure velocity UN+2. This entails

1 n 1 . . .
finding (777\,+2 U N+2) € HZ(T') x HZ(T) such that the following system is solved in the weak
formulation:

and update the structure displacement nz;r

p 1

r nty n .t
%g&dz = f UN+2g0dz, for all p € L*(T),
JI I
4
n+i
[ vy P — Uy ntg 2 nt3 A2 2
———— 0+ Cy | Oy 200 +Ch | Oiny 2059 =0, for all v € Hy(T').
Jr At r r
(1.7)
The fluid subproblem. For the fluid subproblem, we update both the structure velocity

v and the fluid velocity w/y'!, and we keep the structure displacement from the previous

subproblem so that
n+1 n+%

N =7y
While the structure velocity is a quantity associated with the structure rather than the fluid,
one must update both to obtain a stable scheme, since the structure velocity affects the fluid
velocity through the kinematic coupling condition (since the trace of the fluid velocity along

the fluid-structure interface I' is the structure velocity). For the fluid subproblem, we want
to find (uj, vit!) € Vp x L(T) satisfying w/y!|r = vi™" such that

n+1 n+s3

Uy — Uy n+1 Un  — Uy

M g | D@y Dig) ¢ |
Lf At Mo, 77X . At

n n
= f PN,z‘an - J PN,outq»Z7
Fin Fout

n n -
where Py, and Py, are the numerical inlet and outlet pressures

1 (n+1)At
PN,in/aut = E LAt P(t)dt
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Semidiscrete weak formulation and discrete energy estimates. On each time step,
the approximate structure displacement, structure velocity, and fluid velocity satisfy the
following semidiscrete weak formulation, obtained by adding the weak formulations for each
of the structure and fluid subproblems:

n+1 n

n+1 n
Uy Uy n+1 Un UN
—-q+2u D : D(q +J—¢
Lf At f o, ( ) ( ) . N

+ C'OJ 0. vy 2@@/} + C’lf 02v 2821/) J Py int- —J Py out@z- (1.8)
7,77, Cout

We establish discrete energy estimates for the approximate solutions on each time step, which
can be derived from the weak formulations for the structure and fluid subproblems above.

z
2

Define the discrete energy E]T

Bt g [ e [ e go [ et e [ et
f

and the discrete dissipation DY, by

Dy = us(80) | D)

Qf

We then obtain the following discrete energy estimates for the structure subproblem
n+i 1 n+i n 1 nt+i n 1 n+x n n
BE g | ont - ok 3G [ 1000 =R + 50 [ 10200~ ag)P = B
r r r

and the fluid subproblem

EJT\L]+1 + %J |un+1 2|2 J |Un+1 ]’zf+%|2
Qy
< EX, : +C (|’Bn(t>’|%2(nAt,(n+1)At) + |\Pout(t)||im,(n+1)m)> )

where the additional terms that are not already included in E]T\L,Jr§ and DY are numerical
dissipation terms, which arise as a result of the discretization in time.

Approximate solutions and uniform boundedness. The approximate quantities U7V+§,
77N , and vy N "2 are defined on each time step, so in order to construct approximate solutions,
we must glue together these approximate solutions on the individual time steps. We do this
using piecewise constant functions and linear interpolations, as described below.

We define the following piecewise constant approximate solutions 7y, vy, vy, and uy,

which are constant on each time step [n(At), (n + 1)At), with

nn(t) = gt on(t) = ot uh =o' 2wy = ult, ifte [n(A), (n + 1)Ab).
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We also define the approximate solutions 7, Uy, and uy by linearly interpolating values at
the points t,, = nAt, where the values of these linearly interpolated approximate solutions
at these discrete time values ¢,, are

y(nAt) =0y, Ty (nAt) =oy, uy(nAt) = uR, forn=20,1,...,N.

We remark that 0,7y = vy,. From the discrete energy estimates, we obtain the following
result, which shows that the approximate solutions are uniformly bounded in the finite energy
spaces.

Proposition 1.2.1. We have the following uniform boundedness results for the approximate
solutions, uniformly in N.

1. Structure displacement. 7y is uniformly bounded in L*(0,7; H3(T')) and 7 is
uniformly bounded in W (0, T; L*(T)) n L*(0,T; HZ(T)).

2. Fluid velocity. uy is uniformly bounded in L*(0, T; L?(2;)) n L*(0,T; H'(2y)).

3. Structure velocity. v} is uniformly bounded in L*(0,T; L*(T')). Using the continu-
ous trace operator mapping from H'(Q;) — HY*(T'), we have that vy = uy|r - e, is
uniformly bounded in L*(0,T; L*(T")) n L?(0, T; HY/?(T)).

An important feature of linearly coupled FSI models is that having uniform boundedness
of approximate solutions is sufficient for passing to the limit in approximate solutions in order
to obtain a weak solution to the continuous problem. This is because uniform boundedness
of approximate solutions in appropriate energy level function spaces allows us to obtain weak
and weak star convergence of approximate solutions along appropriate subsequences. Be-
cause the weak formulation to linearly coupled problems involves linear terms, this weak and
weak star convergence is sufficient for passing to the limit. From the uniform boundedness
result above, we conclude that there is a limiting structure displacement 7, fluid velocity wu,
and structure velocity v, such that the following convergences hold:

ny — n weakly star in L(0,T; H3(T)),

fy — 1 weakly star in WH*(0,T; L*(T")) n L*(0, T; HZ(T)),

vy — v weakly star in L*(0, T; L*(T)),

vy — v weakly in L*(0,T; HY*(T")) and weakly star in L*(0,T; L*(T")),
uy — u weakly in L*(0,T; H'(Q)) and weakly star in L*(0, T; L*(€)).

This is sufficient to pass to the limit in the semidiscrete formulation. We integrate the
semidiscrete formulation in time from ¢ = 0 to ¢ = T in order to obtain:

T
f XTI q+2uff D(uN f JOtUN ¢+COJ J&vN 0
0o Jay
(n+1)A (n+1)A
f J@QU;, 62¢_ J f PJT\lfin'QZ_ f J P]\Lfout'qh
nAt Tin ’ nAt Tout ’
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for all test functions (g, ) € CX([0,T); Vs x Vs). From the weak convergence of the approx-
imate structure velocities,

cojjavN choffavam, clff(ﬂ azwclffa?v o2,

From the weak convergence of the approximate fluid velocities,

2u || Dluw): D@y =2 || D Dla)

Finally, we use integration by parts in time, the weak convergence of the fluid velocities, and
the fact that g € CL([0,T); V) in order to deduce that

T N—-1 r(n+1)At
f @ﬁN‘q:ZJ OuN - q

0 Qf =0 nAt Qf

& 1( an)At Lfm, &tq—i—J ult o q((n +1)At) — Lf U?/-CI(HN)>

B R o R g

An identical argument shows that

[ famoefovso- [ [

Thus, the semidiscrete formulation converges to the weak formulation to the continuous
problem as N — oo, which establishes the existence of a weak solution to the prototypical
linearly coupled FSI problem, stated in Theorem [I.2.1]

1.3 A nonlinearly coupled prototypical FSI model

Next, we consider a prototypical nonlinearly coupled FSI problem, where the fluid domain
is determined by the displacement of the elastic structure from its reference configuration,
which gives rise to a moving boundary problem involving a coupled system of PDEs. While
the Lie operator splitting approach also works well for this nonlinearly coupled prototypi-
cal FSI problem, there are many unique challenges that arise when considering the moving
boundary, and we will emphasize the differences in the mathematical approach to the nonlin-
early coupled problem in comparison to the linearly coupled problem that was just presented.
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Literature review

Before we state the prototypical nonlinearly coupled model that we will consider in this intro-
duction, we give a brief summary of the results for various types of prototypical nonlinearly
coupled FSI models of types similar to the one that we will describe below.

The study of FSI involving time-dependent fluid domains is classical, and it arose first
from the problem of considering the motion of a rigid body in a viscous incompressible
Newtonian fluid, which is a problem that has been widely studied in the literature, see for
example [49, 60, 61, (84, 87, 91, |146| 161, (171} 172, [173]. However, in many applications
of FSI where the fluid occupies a time-dependent domain in space that evolves according
to the movement of a structure, the structure is actually elastic or deformable, rather than
rigid. This is the case for example in the study of blood flow in arteries where the arterial
walls are modeled to be elastic structures, and models of FSI that take into account of the
displacement of the arterial walls and other relevant biological properties of the blood flow
system are commonplace in the literature, see for example [36, 73,149, 151]. Hence, because
of their relevance to applications, the development of rigorous mathematical techniques for
analyzing the influence of the time-dependent nature of the fluid domain on nonlinearly
coupled fluid-structure dynamics is essential. There was some work done in [62] on the
interaction between an elastic structure and a fluid on a time-dependent domain modeled
by the Navier-Stokes equations, where only finitely many eigenmodes in order to update the
displacement of the structure. However, we want to more generally consider elastic structures
modeled with full equations of elasticity, which determine the a priori unknown configuration
of a time-dependent fluid domain in nonlinearly coupled models. In the literature, there are
two main types of such prototypical nonlinearly coupled FSI models: (1) models where the
structure is of lower dimension than the fluid, and is an elastic part of the boundary of the
time-dependent fluid domain [18], 30, 42, 81, 82, (124} |125] [140] and (2) models where the
structure has the same dimension as the fluid and hence can be thought of as an immersed
elastic body within a surrounding fluid [44, |45] 51}, 52, (93} |94}, 117 [152].

The first results for nonlinearly coupled FSI were obtained for fluid-structure systems
where the structure is of lower dimension than the fluid domain. One of the first well-
posedness results for nonlinearly coupled fluid-structure interaction was obtained in [18],
where existence of a local strong solution for sufficiently smooth and sufficiently small initial
data is obtained for a nonlinearly coupled FSI model involving the interaction between a 1D
viscoelastic structure described by the generalized string model interacting with the Navier-
Stokes equations in a 2D domain. This local existence result was shown by using a fixed
point argument to obtain a solution, after moving the problem on a moving domain to a fixed
domain, and linearizing the resulting system appropriately. These local existence results for
strong solutions were extended in [125], which considers a similar model involving a 1D
structure modeled by the damped beam equation interacting with a fluid modeled by the
Navier-Stokes equations. The smallness condition on the initial data from [1§] is removed, so
that in [125], local existence of strong solutions is established for general sufficiently regular
initial data, under the additional assumption that the structure is a viscoelastic plate (so
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that it has fourth order spatial derivatives in the defining equations). Furthermore, if the
initial data is sufficiently small, the result in [125] establishes global existence for small data,
if the structure is a viscoelastic plate. These past results for strong solutions |18} [125] involve
local existence of strong solutions and were recently improved in [82], where it is established
that there is global existence of strong solutions to an FSI problem involving a viscoelastic
plate interacting with a fluid modeled by the Navier-Stokes equations, assuming the initial
data is sufficiently regular and does not contact the bottom boundary of the fluid domain
at the initial time. In particular, this work [82] shows that if the structure is not touching
the bottom of the fluid domain at the initial time, then the structure will never contact the
bottom of the fluid domain, and hence the strong solution will exist globally in time.
These previously described results for nonlinearly coupled models involving elastic struc-
tures of lower dimension than the fluid are results involving strong solutions, but there has
also been a lot of work from the perspective of weak solutions for this particular model from
[18]. An existence result for weak solutions to such a model was first shown in [42], where
it is established that a weak solution exists until the time of self-contact of the structure in
a nonlinearly coupled FSI model involving a 3D fluid modeled by the Navier-Stokes equa-
tions interacting with a elastic plate with an additional regularization term. This result
is extended in [81], where it is shown that a weak solution exists for this model when the
coefficient in front of the regularizing term in the plate equation is zero. The study of weak
solutions to nonlinearly coupled FSI was continued in [140], which considered a 2D fluid
modeled by the Navier-Stokes equations interacting with a Koiter shell, where the flow is
driven by inlet and outlet dynamic pressure data. This work |140] was important because it
gave a new methodology for studying existence of weak solutions to nonlinearly coupled FSI
problems, as it featured a new constructive proof based on using an operator splitting scheme
to explicitly construct approximate solutions. These results on existence of weak solutions
were extended to nonlinearly coupled FSI models with curved structures in [124], where a
Koiter shell structure that is potentially curved is modeled by considering the contributions
of the membrane energy and the bending energy to the dynamics of the elastic shell.
Another class of prototypical FSI models that has been considered are models where the
structure is of the same dimension as the fluid domain. These are models in which the struc-
ture is an elastic solid that is modeled by the equations of linear elasticity, which is immersed
in a surrounding incompressible viscous fluid modeled by the Navier-Stokes equations. The
first well-posedness result for such a model was established in [51], where it is shown that
for a nonlinearly coupled model involving a fluid modeled by the Navier-Stokes equations
interacting with a linearly elastic solid, there is local existence of strong solutions given that
the initial fluid velocity and structure velocity are in H® and H? respectively. This local ex-
istence result for strong solutions to such an FSI model was extended in [52] where an elastic
solid modeled by quasilinear equations of elasticity is considered, [44] where the structure is
a biofluid shell that is modeled by nonlinear equations, and [45] where the elastodynamics
of the elastic shell is affected by inertial, membrane, and bending contributions. The result
on local existence of strong solutions, which was established first in [51], was later improved
in [117], where this result is shown for less regular initial data, where the initial data for the
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fluid and structure velocity are required only to be in H* and H?2. Further analysis of this
model, in terms of a priori energy estimates that are necessary for studying well-posedness,
was subsequently carried out in [94]. A variant of the initial model from [51], in which there
is an additional transmission boundary condition that stabilizes the dynamics, is studied in
[93], where it is shown that the damping and additional transmission boundary condition
give rise to a global existence result for smooth solutions, under the assumption that the ini-
tial data is sufficiently small with respect to some higher regularity Sobolev norms. Finally,
well-posedness of a model involving the Navier-Stokes equations interacting with a structure
modeled by the Lamé equations of elasticity is considered in [152], where local existence
of strong solutions is established with initial data requiring less regularity, compared to the
corresponding local existence results for strong solutions in past works such as [51] and [117].
For further discussion of results for nonlinearly coupled F'SI models, from the perspectives
of both weak solutions and strong solutions, we refer the reader to the references 30, 83].

Description of the model

We now discuss the existence of weak solutions to a prototypical nonlinearly coupled FSI
model, established using a splitting scheme that splits the fluid and structure dynamics to
explicitly construct approximate solutions.

In the summary that we will present in the remainder of this section, we summarize the
presentation of constructive existence for the prototypical nonlinearly coupled FSI model,
in the reference [30]. We refer the reader to this reference [30] for full details, and we insert
additional comments about the distinctions between the splitting scheme approach for the
prototypical nonlinearly coupled case and the linearly coupled case discussed in the previous
section.

First, we will define the prototypical nonlinearly coupled problem. As in the linearly
coupled case, we will consider a two-dimensional fluid domain where the reference configu-
ration for the fluid domain is Q; = [0, L] x [0, R], and the variables describing this domain
are (z,7) € Q. As in the linearly coupled case, we have that the top boundary I' of
is the reference configuration for an elastic structure, the left and right boundaries I';, and
Lout of €24 are the inlet and outlet, and the bottom boundary I'y of 2 is a line of even
symmetry. We denote the fluid velocity by w and we denote the structure displacement by
1. As before, we assume that the structure displaces in only the radial direction, so that 7
is a scalar quantity that describes the radial displacement of the structure from its reference
configuration I'. Hence, the time-dependent configuration of the elastic structure is given by

D(t)={(z,r) eR*: 0< z< L,r = R+n(t,2)}

Since we must consider the time-dependent configuration I'(t) of the elastic structure, we
remark that assuming that the structure displaces in only the radial direction simplifies the
analysis by preventing self-intersection of the structure with itself, so that domain degeneracy
occurs only when 7(t,z) = —R at any point z € I for any time ¢. Since this is a nonlinearly
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coupled FSI model, we have to take into account the motion of the elastic structure when
considering the fluid domain, which is now time-dependent. The time-dependent configura-
tion of the structure, given by I'(¢), will determine the top boundary of the time-dependent
fluid domain 2¢(¢), so that the time-dependent fluid domain 2/(¢) is defined by

Qrt) ={(z,m1) eR*: 0< 2 < RO<r < R+t 2)} (1.9)

Note that the bottom boundary €(¢) is fixed at I', because I'; is a fixed line of even symmetry
through the center of the full channel. See Figure [1.2]

VA
| > T Fn— Codin+ C10;n = —o(u,p)lrn(t) -, onT ulpy) = Oime,
r I'(t) 1
Lin -Qf Tout in -Qf (t) Fout
I | I
u+ (u-V)u—V - o(u,p) =0, on Q(t)
V-u=0,

Figure 1.2: Left: The reference configuration for the nonlinearly coupled prototypical F'SI problem
in two dimensions. Note that the structure equation is posed on the reference configuration I’
of the structure. Right: The moving fluid domain in physical space for the nonlinearly coupled
prototypical FSI problem in two dimensions. Note that the Navier-Stokes equations are posed on
the time-dependent a priori unknown fluid domain Q¢ (t), which is determined by the structure
displacement.

The fluid subproblem. In contrast to the linearly coupled prototypical FSI model, because
of the nonlinear coupling present in this current model, we must pose the fluid equations on
a moving fluid domain, whose time-dependent configuration €2;(¢) depends on the structure
displacement, as in . Because the fluid domain Q¢(¢) is now time-dependent, we must
consider the full Navier-Stokes equations rather than just the linear Stokes equations, as the
advection term is needed in order to obtain an energy estimate. Therefore, we model the
fluid velocity uw : Q;(t) — R? and the fluid pressure p : Q;(¢t) — R by the Navier-Stokes
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equations
u+ (u-V)u—V-o(u,p) =0, on Q(1). (1.10)
V-u=0,
where the Cauchy stress tensor is defined by
1
o(u,p) =2urD(u) — pI, D(u) = = ((Vu) + (Vu)"). (1.11)

2

We have the following boundary conditions on the inlet and outlet:

|u|”
Up = 07 p+ T = Pzn(t)a on Fina
2
Up = OJ D+ % = Pout(t)v on 1—\out-
u, =0, opu, =0, on I'y.

We note that all of these boundary conditions are the same, except for the condition

ul?
p+ T = Pin/out (t), on Fin/outv
which takes the form of p = P, jous o1 Iy j0us in the linearly coupled prototypical FSI model.

Due to the advection term which is present in the Navier-Stokes equations but not the linear
2

u
Stokes equations, we must include the additional 5 term in order to obtain an energy

2
u
estimate, and we remark the term p + - is referred to as the dynamic pressure.

The structure subproblem. The PDE describing the structure subproblem is unchanged
from the linearly coupled case:

02n — Cod®n + C0in = F, on I, (1.12)

The scalar quantity n : I' — R describes the radial displacement of the structure from its
reference configuration I', and Cj and ] are positive elasticity coefficients, as in the linearly
coupled case. The external force F' will be specified in the dynamic coupling condition
later as the fluid load on the structure. Even though the structure has a time-dependent
configuration described by

I'(t)={(z,r)eR?*:0< 2z < L,r = R+n(t, 2)},

the equations of elasticity for the structure are posed on the reference domain for the structure
I, or in the Fulerian formulation, which is common in the mathematical study of elasticity.

The coupling conditions. Next, we will describe the two-way nonlinear coupling between
the structure and the fluid via the kinematic coupling condition and the dynamic coupling



CHAPTER 1. INTRODUCTION AND BACKGROUND 23

condition. We emphasize that these coupling conditions are evaluated on the moving in-
terface I'(t), in contrast to the linearly coupled case in which the coupling conditions are
evaluated on the reference configuration I' of the fluid-structure interface. The fact that the
coupling conditions are evaluated on a moving interface introduces additional challenging
nonlinearities arising from the time-dependent geometry of the FSI problem. We describe
the two coupling conditions below:

e The kinematic coupling condition. The kinematic coupling condition, which is
the no-slip condition on the fluid, now reads

u(z, R+n(t,z)) = dml(t, z)e,.

We will informally write this condition above as u|ry) = dne,. We remark that this
informal way of writing this condition is not entirely precise, as 0;n is defined on I'
rather than on I'(¢), so we are implicitly composing with the map sending (z, R) € T’
to (2, R+n(t, z)) e I'(t).

e The dynamic coupling condition. The dynamic coupling condition loads the elas-
todynamics of the structure via the external load of the fluid on the structure. Because
we are evaluating the coupling conditions along the moving interface T'(t), this condi-
tion reads

F=-J%(u,p)rpn(t) - e,

where F' is the external load on the structure on the right hand side of the structure
equation , and n(t) is the outward unit normal vector to the time-dependent
configuration I'(t) of the structure representing the elastic walls of the channel. The
factor J" = /1 + (0,n)? appears since the fluid-structure interface is given by I'(¢)
while the elastodynamics of the structure are expressed on the reference domain I', so
J¢ is the arc length measure for I'(¢) to convert from lengths on the moving interface
['(t) to lengths on the reference configuration I'.

A priori energy estimate and weak formulation

Next, we use an a priori energy estimate to show that this prototypical nonlinearly coupled
mathematical FSI model is physically reasonable. Using the norm for the elastic energy
defined in ((1.4]), we multiply the Navier-Stokes equation by w and we multiply the structure
equation by 7;. After integrating by parts, we obtain the following formal energy estimate:

1 1 ¢
§||5t77(t)||%2(r) + [In(@)|[% + 5”“@)“%2(@@)) + MfJO ||D(u)(3)||%2(9f(s))d3

1 1
< 5ol + limoll + 51wl E2qay ) + C (1P (®)E202) + [1Poue® o 1))
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The only notable difference from the linearly coupled case is that the norms ||u(t)||%2(Qf(t))

and || D(u)(s)] |%2(Qf(t)) involve the moving time-dependent fluid domain, so that for example,

lu@Beo, = [ )P

Qr(t)

This is in contrast to the linearly coupled case, where the integrals in space over the fluid
domain were over the fixed reference fluid domain €.

This energy estimate allows us to define the finite energy spaces for the solutions. We
define the solution space Vy(t) (for fixed but arbitrary time) for the fluid, which is time-
dependent since the fluid domain is time dependent:

Vi(t) ={ue H (1) : V- -u=0,u=0on Ty Ul ulyu, =0onT}. (1.13)

Since the structure problem is posed on the fixed reference domain I', the finite energy space
for the structure is the same as in the linearly coupled case

v, = HA(D). (1.14)

The solution spaces for the fluid velocity and the structure displacement in space and time
are given by

Vi = L7(0,T5 LX(Q4(£))) 0 L*(0,T;5 Vy(1)), (1.15)
Ve = Whe(0,T; L*(T")) n L7(0,T; V). (1.16)

The full coupled solution space is
V= {(u,n) € V; x Vi : u|ry) = dime,}, (1.17)
and the test space is

Q = {(q,%) e CZ([0,T); Vy(t) x V&) : q|rpy = Ve, }. (1.18)

We note that the test space depends on the a priori unknown structure displacement because
the test space involves the function space Vy(t), which depends on Q¢(t) and hence n(t). The
fact that the test functions cannot be defined a priori is one of the additional challenges that
arises more generally in nonlinearly coupled FSI problems.

Now that we have defined the finite energy solution and test spaces, we can define the
weak formulation. To derive the weak formulation, we consider a test function (g, ) satis-
fying q|rq) = ve, and use integration by parts to derive a weak formulation. In this case,
the weak formulation has an additional symmetrized term arising from the advection term
in the Navier-Stokes equation, and furthermore, the integrals over the fluid domain are over
the time-dependent fluid domain Q¢(¢).
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Definition 1.3.1. An ordered pair (u,n) € V is a weak solution to the prototypical nonlin-
early coupled FSI problem if for all test functions (g,1) € Q, the following weak formulation
holds:

- Jo 005 ! Jo o (1 90 a G g - 5[ [@nr-v

T T T T
+2ij J D(u)iD(Q)—J Jam'@thrCof f@n'&szrle fain-aiw
0 Jy(s) o Jr o Jr o Jr

_ LTJN Py(t) - q. _LTLOM Pou(t) - q. +Lf(0) o - g(0) +Lvo-1/)(0).

This is the weak formulation defined on the moving domain. However, when developing
a splitting scheme to solve this problem, it is more convenient to solve the semidiscretized
problem on a fixed reference domain ;. Hnece, we will need to formulate an equivalent
version of this weak formulation, defined on the fixed reference domain €2 for the fluid. To
do this, we will need to discuss a mapping between the reference (Eulerian) fluid domain Qy
and the time-dependent physical (Lagrangian) fluid domain Q(¢), known as the Arbitrary
Lagrangian-Eulerian (ALE) mapping.

The ALE mapping and transformation of functions/derivatives. For the given
two-dimensional geometry of this particular model, it is easy to define a bijective mapping
between 2y and (), known as the Arbitrary Lagrangian-Eulerian (ALE) mapping, assum-
ing sufficient regularity of . We will denote this mapping by ®", where the superscript of n
emphasizes the dependency of the definition of this mapping on the structure displacement
7. We define the ALE mapping ®7 : Qy — Q(t) by

QY(2,7) = <z, <1 + %) r), (z,1) € Qy,

with an inverse (@7})_1 1 Qf(t) > Qy defined by

(@) (2,7) = <z R]i nr) L () € Q1)

We emphasize that as long as the structure displacement 7 is sufficiently regular (for example,
if it is a continuous function on I') and n > —R so that the structure does not come into
contact with itself (since the bottom boundary I', of the reference fluid domain €2 is a line
of even symmetry), the ALE mapping is a bijective map with a Jacobian given by

n

E>

which is a positive quantity since we are assuming that the structure displacement 7 satisfies
n>—R.

jj?=1+
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Next, we consider how functions and derivatives transform under this ALE mapping, so
that we can translate between quantities defined on Qy(¢) and Qy. First, for a function h
defined on the physical domain €2¢(t), we define the pullback of the function via composition
with the ALE mapping as follows:

hTI(t? ) = h(t7 (I)?}(ta ))
Conversely, we also have that
h(t7 ) = hn(t7 (@?)71@7 ))

Next, we want to consider how derivatives transform under the ALE mapping. To see why
we need to do this, let us consider the fluid velocity w, which is defined on Q¢(¢) and which
is required to be divergence-free so that

V-u=0 on Q(t).

If we consider the pullback via the ALE mapping, we have that the resulting fluid velocity
u" is defined on the fixed reference domain €2;. However, because the ALE mapping is a
nonlinear map, it is no longer true that V- u”7 = 0 on {2y, where the divergence is taken
with respect to the reference domain variables. Hence, we will need to find an appropriate
differential operator that translates the divergence-free condition on the physical domain to
an appropriate variant of the divergence-free condition on the fixed reference domain.

We use the chain rule to determine how derivatives will transform under the ALE map-
ping. For clarity, in the upcoming calculations, we will distinguish between the variables
(2,7) on the reference domain Q; and the variables (z,7) on the physical domain Q(¢),
though we will drop the tilde notation in the remainder of the section. Given a function h
on the physical domain Q(¢), we have that

0 0

= — S
é’Zh(t,z,r) aZh (t

z —R r| = ch — i (ro )@
Rtz ) 02 Rt 1V er
Oh" Fo.n  on

0z R+t z) or

where we used that r = (1 + %) 7, and we also have that

ih(t,z,r) = ih?7 (t

R R oh"
or ~or

P Rant2) ) Rentz) o

So if we define the differential operator

o (2o R0
0z R+n(t,2) R+n(t,z2)or)’
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we have that

VIR = (Vh) o @7, (1.19)

Similarly,
VT-u" = (V- u)o®,

and
D"(u") = D(u) o &),  where D"(u) = %((VW) + (T,

Next, we consider

ih(t z,r) = 2h" (t z i 7’) _ o 1 'Tatn%
ot ot "R+ n(t, 2) ot (R+n(t z2))? or
_Oh" rom  Oh"
ot R+n(tz) oF
So if we define the vector ~
w' = Latnera
R
which represents the velocity of the ALE mapping so that w"(Z,7) = %@?(2, ), we have
that oh o

Using the transformation laws ((1.19) and (1.20]) for derivatives, we can rewrite the weak
formulation for the prototypical nonlinearly coupled FSI problem on the fixed reference
domain Q. By transferring the weak formulation on the physical moving domain Q¢(t) to
the weak formulation involving integrals defined on the fixed reference domain €2, we will
introduce additional geometric nonlinearities in the problem, which arise from the Jacobian
of the ALE mapping <I>7} and from the transformation of derivatives via the ALE mapping.
We will now state the weak formulation for the prototypical nonlinearly coupled FSI problem
defined on the fixed reference domain for the fluid €.

We define the solution spaces for the fluid velocity and the structure displacement on
the fixed reference domain ;. Let us define the fluid velocity solution space on the fixed
reference domain ¢ by

Vi = L0, T; L*(Qy)) 0 L*(0, T V)), (1.21)
where
VI={ue H(Q): V" u=0,u.=0o0n Iy 0ley Ty u,=0onT}

For the structure displacement, we will use the same solution space V defined in (|1.16] for
the moving domain weak formulation. The full solution space is then

V1= {(u,n) € V]! x V; : ulr = Ome,.}.
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Similarly, the test space using the fixed reference fluid domain formulation is defined as

= {(q,¥) € C([0, T); V! x Vi) : qlr = e, ). (1.22)

Then, we can define the weak formulation that a weak solution (u,n) € V" defined on the
fixed reference domain satisfies.

Definition 1.3.2. An ordered pair (u,n) € V7 with u defined on the fixed reference fluid
domain )¢, is a weak solution in the fixed reference domain formulation of the nonlinearly
coupled FSI problem if the following weak formulation is satisfied for all test functions

(q, ) e QM

—Jj (1+2 u-&mfj 1 ) (1= w) Vul g~ [(w-w")-V7)g] )

Ui
f L Y7 (Omu - q+2,uff L 1+R)D”( ): D"(q J J@m oy
f f
+OOJaznaz¢+01Jvagnaz¢_J f Pzn(t)q,z_f J‘ Pout<t)'QZ
I I 0 an 0 Fout

+Lf uo-q(0)+Lvo-w(0)-

In the weak formulation above, there is an extra (yet important) term that arises due to
the motion of the fluid domain. This term is the term J J (0im)u - q. This term arises

as a result of the fact that the time derivative is applied to the fluid velocity defined on the
fixed reference fluid domain €2y rather than the fluid velocity defined on the physical moving
fluid domain Qy(¢). More specifically, after formally integrating by parts in time, this term
appears, since

T T T
n n o
— 14+ L) u"-0,qg = 14+ L) o - 2T un - q.
Lfgf< + )0 LLf( * 3g) o ‘”LLR “d

For full details, we refer the reader to a similar computation in a later chapter, see specifically
the computation in ([5.47)).

We emphasize that the fact that we must have a weak formulation defined for both the
moving (physical) fluid domain and the reference fluid domain is an important distinction
between the nonlinearly coupled and the linearly coupled models of FSI. The need to define
a weak formulation where all integrals involving the fluid domain are defined on the fixed
reference fluid domain €2y is due to the fact that the splitting scheme works better when
using a fixed domain, as we will see in the next step of the constructive existence proof
below.

Now that we have defined an appropriate weak formulation for the nonlinearly coupled
prototypical FSI problem, we can state the main existence result for this model.
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Theorem 1.3.1. Given an initial structure displacement 1y € HZ(T'), an initial structure
velocity vg € L*(T'), and an initial fluid velocity ug € L*(€(0)), there exists a weak solution
(u,n) € V that satisfies the weak formulation posed on the physical moving fluid domain
given by Definition on the time interval [0,7]. Furthermore, the solution can be
maximally extended in time in the sense that 7' can be taken to be infinite, or else, T' =
sup{t = 0: R+n(t,z) > 0 for all z € [0, L]} so that T is the first instance in time of domain
degeneracy.

The splitting scheme for nonlinearly coupled FSI

We will define a Lie operator splitting using the weak formulation defined on the fixed
reference domain. As in the linearly coupled case, we will develop a semidiscretized scheme,
where we discretize in time by the time step At = T'//N, where N is the number of discretized
time subintervals. On each time subinterval [t,,t,.1] for ¢, = nAt, we run two subproblems
and update the following approximate solution vector at the nth time step for the time step
At =T/N:

n+

%
X mnvﬁ fori=1,2andn=0,1,...,N -1,
vy

where ur]i;ri is the approximate fluid velocity defined on the fized reference domain €y, m’;*a

is the approximate structure displacement, and vﬁ,ﬁ is the approximate structure velocity.

The structure subproblem. We keep the fluid velocity the same so that

uy'* = uf,
1 1
and we update the structure displacement and velocity by letting 7)}?2 and UK,JFQ be the
unique solution that satisfies the following weak formulation. We remark that this weak
formulation is identical to that in the structure subproblem for the prototypical linearly

coupled FSI problem in ([1.7]), but we reproduce it here for the reader’s convenience.

f

n+i
2 _ n nal
L%gpdz = LUN+2¢dZ, for all p € L*(T),

”+% n 1 1
f Ny + Gy f Guy 200 + Cy f Gy P02 =0, forall e H(I).

At

The fluid subproblem. For the prototypical nonlinearly coupled FSI problem, the fluid
subproblem is more complex than the corresponding fluid subproblem for the prototypical



CHAPTER 1. INTRODUCTION AND BACKGROUND 30

linearly coupled FSI model, discussed in the previous section. This is because nonlinearly
coupled FSI models have weak formulations which include additional terms that take into
account, the time-dependent geometry of the fluid domain, which must be handled properly
in the fluid subproblem for the splitting scheme, so that the fluid subproblem indeed has a
unique solution that exists, and so that the fluid subproblem has an appropriate semidiscrete
energy estimate.

We will keep the structure displacement the same so that

1
TL+1 o n+§
Ny =71n s

and we will update the coupled fluid/structure velocities w™ and v3!, which will be in the
following solution space:

QY = {(u,v) e V;Z?V x L*(T) : ulp = ve,}, (1.23)

where we recall the definition of an for a structure displacement 7 from (1.21). We then

let ut and vi*! be the unique solution in QR, to the following weak formulation, to be
satisfied for all test functions (q,v) € Q%:

[(5) 5
Q; R At

1 77N ’I’L+l7" 1 + r n 1

- 14+ N no_ 2 NN _ _ . V"IN Lyt
+2Lf( + R>(<<’U,N Uy Re) ViINuyy > q <<uN Uy Rey> \Y% q) Uy

1
N nooon+l UN T Un

1+ -2 ) D'~ D" T

(e ) Py pra + [ g

[ PRae- [ Pt
Lin Tout

1 (n+1)A
where Py, jour = A JA P jout(t)dt is the discretized inlet/outlet pressure.
nAt

We have several remarks about this weak formulation, which we list below.

1 n—+ 1
+f R I cq+2u J
o, 2R N N f 0

1. We note that in the original weak formulation for the problem defined on a fixed
reference domain, we have the following terms:

g n
— 1+—u6q——JJ (0
Lﬁh( R) " e

While the signs in the above weak formulation of the fluid subproblem may seem
incongruous with these terms at first, if we integrate by parts in time, we get that the
above expression is equal to

J J 1+ atu q+—f (Omu-q,
Qpf Qy
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since the time derivative applies to both the term (1 + %) and u.

2. Because ny and v]T\L,Jr% have already been calculated previously in the splitting scheme,
the weak formulation above is a linearized problem, which crucial for allowing us to find
a unique solution (which can be done using a standard Lax-Milgram lemma argument).
Because we cannot use more than one term involving an unknown quantity at the n+1
time step per integral, in order to have a linearized problem, we must lag the numerical
fluid domains behind by one step when defining the weak formulations for the fluid
subproblem. For example, for the first term can be rewritten as:

n+1_ n n+l _ n
J <1+7g)A_th.q:J U U g
Qf }L,N

where O v = {(2,7) e R*: 0 < 2 < L,0 <7 < R+ n%(2)}. Note that this integral
(when brought back to the physical domain) is an integral over % \; rather than Qﬁvl SO
that there is a lag in the fluid domain that is used in the weak formulation in the current

n+1 n+1 n
NN ) N T Uy

q

step. This is because we cannot use the nonlinear term (1 +
Q; R At

in the weak formulation.
1

3. Finally, we remark that the use of the term UK,JFE is due to energy considerations. If

. 1
we substitute q = u’ﬁ’ )

n+1 n
77N) —UN ntl
1+ NN
Lf( R At N

1 In 1)2 1J NN 1 2 1J Uk 2
— 1+ n+ _ 1+_ n+l__ .n = 1+_ n )
) L N (R L M (R S L

n+1
However, we want the term <1 A ) [u|? instead of f (1 + Tg) Jui™ P,
Qy Q5

R

n+1
7]]}1% ) is the Jacobian of the ALE mapping for the fluid domain associated

since <1 +

1

with the current structure displacement njt*. It turns out that fortunately, the term

1
3R J U N u’f\,“ q compensates exactly for this, in the sense that upon substituting
n+1

g = uy' ", we have that
n+1 n
Uy — Uy n+1 1 n+* n+1
1 N TN :
Jo, (R ) g g [, g

1 77?\;rl 1)2 1J Ny 1 U
_ _ 1+ n+ - 1+_ n+1 n|2__ 1+_N n27
oL (e g (e e (0 ) e
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n+1
. n+i -
since o = IV 1Y
At
n+l , n+l

We note that the fluid subproblem has a unique solution (u}"™, vy ") as long as nj, > —R.

1
from the structure subproblem and the fact that nj" = 7717?2-

In particular, this is because the Jacobian of the ALE mapping, which is j}’ =1+ Q, would

be less than or equal to zero when n < —R, which would prevent us from having the
necessary coercivity in order to use the Lax-Milgram lemma. The fact that having ni, < —R
is problematic can also be seen by noting that the elastic structure comes into contact with
itself when 1} = —R. Thus, the splitting scheme runs for each /N as long as 73 > —R, and
an important fact is that the splitting scheme indeed holds locally up to some time Ty > 0
uniformly for all N (and hence At). The fact that the splitting scheme runs uniformly up
to some common (local) time allows us to construct approximate solutions for each time
step At that are all defined on a common time interval, and we will establish this essential
fact by deriving uniform energy estimates for the approximate solution vectors that we have
obtained from this splitting scheme.

Uniform energy estimates. By adding together the weak formulations for each of the sub-
problems, we obtain that the approximate solutions generated by the splitting scheme satisfy
the following semidiscrete weak formulation for all test functions (g,1) in an appropriate
test space Q:

[ (1e uy” ey
o R At

1 Ny no T on+d n n T on+i n
w3 by, () (= 7o) was) o= ((us - i) - v7ia) )

_’_J‘ 1 v +2un+1 q+2u J 1+ nN DT]N( n+1) DnN( ) JUK/'JA_UNd}
2RV N sy R r At

+ COJ aan Z¢ + Cl J aan 2 a2w J PN n ) - J P]’r\lf,out(t)qza (124)

Fout

where the test space Q% is

= {(q.v) € VI¥ x HAD) : qlr = ve,}. (1.25)

Next, we will derive uniform energy estimates for the approximate solutions, which will
be used to show weak convergence of the approximate solutions along a subsequence. We
define the total discrete energy

B -5 Wy g [N 0 [ et gon | e
2 Q;

and the total fluid dissipation

n nn I n
N = Mff (1 + %) |D"™ (u})|*.
Qy

n+
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We remark that these are the same expressions as for the linearly coupled case, except any
integrals over the fluid domain are over 2} y (when transferred to the physical domain)
rather than ;. We have the following discrete energy inequalities for the splitting scheme
for the prototypical nonlinearly coupled FSI problem, which correspond to the structure and
fluid subproblems respectively:

n+i n 1 n+i n 1 n+i n 1 n+i n
By = By g [ IR =k 3G [ 10007 =B + 50 [ 1 - P,

n+i 1 n n+l
Bt <EN+2 +§J (14—%\[) |’u&+1—u1\,+2|2
Qy

+ C (I1Pn®)Bs e s an + 1Poue Dl Baguarmsnan) -

Recall that the splitting scheme holds as long as n3, > —R, and hence these uni-
form energy estimates hold until this time step for which this condition no longer holds.

From the uniform discrete energy estimates above, we note that [[ny||gzr) and ||vg+%|\ £2(n)
are both uniformly bounded in time by some time-dependent constant C'(¢) depending on
|| Pinjout||£2(04) that is independent of N, and the initial structure displacement 7, is a con-
tinuous function satisfying 179 > —R by assumption. Therefore, because of these uniform
estimates, we can deduce that there exists a sufficiently small 7 > 0 for which ny > —R
as long as nAt < Ty. See Lemma in Chapter 5 for an explicit demonstration of this
argument. Without loss of generality, we will rename this time 7§ to just be the time 7, for
simplicity of notation.

Approximate solutions. As before in the prototypical linearly coupled FSI model, we
define piecewise constant approximate solutions wy, 1y, vx, and vy such that

1
nn(t) = 0l on(t) = ot uR(t) = oy 2, wy = witt, for t e (nAt, (n+ 1)At].

We also define the linearly interpolations, which interpolate the values of these functions
in the splitting scheme at the times ¢, = nAt. In particular, we will define the linear
interpolation 77, of the structure displacements by linearly interpolating the following values

y(nAt) =ny, forn=0,1,...N,

and we note that 0,7y = v}. We can similarly define the approximate solutions vy and wy
by linearly interpolating the values

vy (nAt) = v, un(nAt) =uly, forn=0,1,.. N.

From the discrete uniform energy estimates, we have the following uniform boundedness
result for the approximate solutions on the uniform time interval for which they are all
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defined. These follow from the fact that |[ny||co.rcm) = Ro > —R for some Ry that is

n+1

independent of N and hence At. This allows us to uniformly bound the factor of <1 + Iy

R
which appears in the discrete energy estimates. Note that the uniform boundedness results

that follow hold with the approximate solutions for the fluid velocity uy being defined on
the fixed reference domain €2y (however, the divergence free condition on each time step will
transform nonlinearly into the condition V% - u! = 0 on 7)-

Lemma 1.3.1. The following uniform boundedness results hold for the approximate solu-
tions constructed above:

e wy is uniformly bounded in L*(0, T; L?(2;)) n L*(0,T; H'(2y)).

Ty is uniformly bounded in W (0,T; L*(T')) n L*(0,T; HZ(T)).

nx is uniformly bounded in L*(0,T; HZ(T)).
e v% is uniformly bounded in L*(0,T; L*(T)).
e vy is uniformly bounded in L*(0,T; L*(T")) n L(0, T; H/2(T)).

These uniform boundedness results give us the following weak convergences. There exist
limiting solutions wu, n, and v such that

uy — u weakly-star in L*(0,T; L*(€2;)) and weakly in L*(0,T; H'(})),

Ty — n weakly-star in W (0, T'; L*(T")) and weakly-star in L*(0, T; H3(T)),
ny — n weakly-star in L®(0,7T; H3(T)),

v — v weakly-star in L*(0,T; L*(T")),

vy — v weakly-star in L°(0,T; L*(I")) and weakly in L(0,T; HY?(T")).

Weak convergence is useful for passing to the limit in approximate solutions to linear
problems, which is why at this point, we were able to pass to the limit in the semidiscrete
formulation for the prototypical linearly coupled FSI problem to complete the proof of exis-
tence of a solution. However, with only weak convergences, we do not have strong enough
convergence to pass to the limit in the semidiscrete formulation for the prototypical
nonlinearly coupled FSI problem. For example, if we consider the term

(045 - v q
oy R

for a fixed test function g, we have a nonlinear term where we cannot just use weak conver-
gence to pass to the limit, as we would need additional strong convergence results to take
the limit in this nonlinear term. Thus, unlike in the linearly coupled case, we need to use
compactness arguments to obtain stronger forms of convergence, in order to properly pass
to the limit in the semidiscrete formulation.
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A summary of compactness arguments. The general principle behind compactness
arguments is that by obtaining uniform boundedness of spacetime functions in a particu-
lar function space and by obtaining additional uniform boundedness of the time derivatives
of these functions in a weaker function space, we can obtain strong convergence of these
functions to a limiting function. This is the fundamental principle behind the Aubin-Lions
compactness lemma, which we will use to obtain strong convergence results for our approx-
imate solutions. The Aubin-Lions compactness lemma relies on a chain of embeddings of
function spaces in spatial variables:

ZccY cX,

where the embedding of Z into Y is a compact embedding. Then, for any 1 < p < oo,
showing that the functions {f,};°_; are uniformly bounded in L?(0,T; Z) and showing that
their time derivatives are uniformly bounded in LP(0,7T; X) implies that the functions f,
converge strongly along a subsequence in LP(0,7;Y) to a limiting function f. See [6, 129].

Note that the Aubin-Lions lemma immediately gives strong convergence of the structure
displacements 77, via the chain of embeddings:

Hg(r) cc LQ(F) c L2(F).

Since 7 are uniformly bounded in L*(0,T; H3(T')) and &7y = v% is uniformly bounded
in L*(0,T; L*(T)), the Aubin-Lions compactness lemma implies that ny converges along a
subsequence strongly to a limiting function 7 in L®(0,T; L*(T)).

We will need a more involved argument to show the convergence of the fluid velocities and
the structure velocities (uy, vy). In principle, we should be able to use an Aubin-Lions type
argument to show strong convergence of (uy,vy) in an appropriate function space along
a subsequence. To see this, let us return to the linearly coupled case for a brief moment,
and consider what would happen in that case. In the linearly coupled case, the semidiscrete
formulation reads:

n+1

n+1 n n
Uy — Uy n+l Un —Un
- q+2u D(u )rD(q)+J—¢
Lf At Mo, 707N . At

+3 1
+ OOJ azvxf 2. az¢ + Cl J‘ §§Un+2 ’ az¢ = f P]T\l/,znqz - f PJT\Zf,outqz’
r r an Fout

which we have reproduced from ([1.8]) for convenience, where (g, ) is a test function in a
fixed test function space Q := V; x V;, where V; and Vs are defined by (1.6 and (|1.5)

n+1 n n+1 n

v v
respectively. We can formally think of —~ and X—2 a5 a discretized form of

the time derivative of (wy,vy), in which case we can use the weak formulation for fixed
but arbitrary test functions (q, ) satisfying ||(g,%)|lo < 1 to show that the discretized
time derivative of (uy,vy) is at least formally uniformly bounded in L?(0,T;Q’). In ad-
dition, (uy,vy) itself is uniformly bounded in L*(0,T; H*(Q;) x HY*(T')), and hence we
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conclude that the fluid velocities and structure velocities (uy,vy) are strongly precompact
in L*(0,7; L*(Q2;) x L*(T")) via the chain of embeddings:

HY () x HY*(T) cc L*(Qy) x L*(I') < Q.

Even though in principle, we should expect there to be a similar convergence of (uy,vy)
in the nonlinearly coupled case, the same standard Aubin-Lions argument will not apply here.
This is because the approximate fluid velocities u}; are defined on moving fluid domains 27
which are defined by the approximate structure displacements nh via

tn={(zr)eR*:0<2z<L0<r<R+ny}

Therefore, all of the approximate fluid velocities uR, are defined on different fluid domains,
and hence, we cannot create a uniform chain of embeddings needed for the standard Aubin-
Lions compactness lemma.

We could try to pull back all of the approximate fluid velocities u; to the fixed reference
domain €2 so that all of the resulting approximate fluid velocities will be defined on the same
domain. However, the difficulty here is that the divergence-free condition V - uR, = 0 on the
physical domain will transform nonlinearly as V'~ - (u/! o <I>?Jnv ) = 0, so that the divergence-
free condition on the reference domain will change depending on n and N. This will make
it hard to properly identify an appropriate test space for the semidiscrete formulations on
the fixed reference domain, since the divergence-free condition on the fixed reference domain
becomes a nonlinear condition.

Instead, we will take the approach of working on the physical fluid domains 07y so that
the divergence-free condition remains the same for all of the approximate fluid velocities u%.
However, the difficulty here is that the approximate fluid velocities u; are still all defined
on different domains Q7% y. To address this difficulty, we will define the approximate fluid
velocities u’, on a common maximal fluid domain Qy that contains all of the approximate
fluid domains Q7 by extending u} by zero in Qy \Q% v The existence of such a maximal
fluid domain Q?I can be shown by establishing the existence of a continuous function M (z)
satisfying M (0) = M (L) = 0 such that

ny(z) < M(z), for all N and n=0,1,..., N,

which follows from the uniform boundedness properties of the structure displacements. Then,
we can define the maximal fluid domain by

O ={(z,1)eR*: 0< 2 < L,0<r <R+ M)},

and we can extend the fluid velocities u’; to Qﬁ‘ﬂ by keeping these fluid velocities the same
on )}y < Qy and then using an extension by zero outside of Q7% y so that

uy =0, on Q%\Q?N
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This gives us approximate fluid velocities that still satisfy the divergence-free condition, but
now all of the fluid velocities are defined on a common fluid domain Q% . While this extension
by zero may introduce discontinuities into the functions u};, because of the fact that the
structure displacements 7y, are uniformly Lipschitz and the fact that the fluid velocities uy
are uniformly bounded in L?(0,T; H*(€4(t))), we then have that the extended fluid velocities
uy are uniformly bounded in L*(0,T; H*(}")) for 0 < s < 1/2. This follows from results
in [131] on extensions by zero of functions defined on Lipschitz domains, and we refer the
reader to the arguments about extensions by zero to the maximal fluid domain in |30, |136]
for more details.

Therefore, for the approximate fluid velocities uy defined on the common maximal fluid
domain Q}', we have that uy are uniformly bounded in L*(0,T; H*(Q2}")) for 0 < s < 1/2.
However, for a Aubin-Lions type compactness argument to work, we need further bounds on
the “time derivatives” of uy. We get estimates on the “time derivatives” of wx by using the
semidiscretized form of the weak formulation, but since we are working with fluid velocities
that are defined on the physical domains 27y, we must transfer the semidiscretized weak
formulation from the reference fluid domain {2y to the physical fluid domain €2} v, so
that the fluid velocities satisfy

n+1 ~n
Un ~UN
n

At 1
f.N
1f |:(<~n r n""’ > n+1 ~n r n+g n+1
+ - Uy — 50Uy “€ |- Vuy -q| — Uy — ——vy ‘€ | -Vq |- -uy
2 Jon | R+ R+
41
1 ntg 1 1 vy _UZ/ ’
+j S A UN CUN g+ 2p f D(uy™) : D(q) + (0
an  2(R+ng) NN d ar N r At

= J P]?f,in(t)qz - J P]?/,out(t)qw
Fin Tout

n noty —1
where ufy, = uf, o <I>?N ) (CP?N 1) is defined on Q7% . Thus, at least on a formal level,
we can estimate the discretized time derivative in a dual space, where the test functions are
test functions defined on Q7% y. However, because the solution space and test space for this
semidiscretized weak formulatlon on the physical domains depend on n and N, we will have
to use a generalization of the Aubin-Lions compactness lemma to handle the fact that the
physical domains are changing, where we will have to verify additional conditions to show
that there exist mappings between the different test and solution spaces that are uniformly
bounded in an appropriate sense, which will allow us to be able to properly compare functions
defined on different physical domains with each other in a uniform way. We refer the reader to
[30, |136] for additional details. In the end, we will be able to obtain that along a subsequence,
we get convergence of the fluid velocities

Uy — u, in L*(0,T; L*(Q}")),
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as N — o0, as a result of Aubin-Lions compactness arguments, generalized to the context of
moving domains.

Convergence of test functions. In contrast to the linearly coupled prototypical model,
we have seen that for the nonlinearly coupled prototypical model, we had to show strong con-
vergence of the approximate solutions, as weak and weak-star convergence is not sufficient to
handle the nonlinear terms in the weak formulation. Even upon obtaining strong convergence
of the approximate solutions, there are still additional difficulties in passing to the limit that
arise from the time-dependent nature of the fluid domain. Recall the semidiscrete formula-
tion for the approximate solutions, which was stated in . The approximate solutions
constructed via the splitting scheme, for each N and corresponding time step At, satisfy the
semidiscrete formulation in for all appropriate test functions (q,) € Q%. Note that
the test space Q% depends on n and N, however, because the test function g € H*(£2;) must
satisfy V% - ¢ = 0 on Q. Therefore, even though the test functions in Q% are all defined
on the same domain Q0 x I', the divergence free condition transforms differently back to the
reference domain depending on 7} and hence, depending on n and N. The fact that the
divergence-free condition for the test space transforms differently depending on n and N is
a problem that directly arises from the fact that the moving domain Q(¢) depends on the
displacement 7 of the structure.

Therefore, test functions that are admissible in the test space for a certain choice of n
and N will not generally be admissible for all of the semidiscrete formulations for all n and
N. This makes it difficult to compare the semidiscrete formulations for different values of
n and N, and hence, we have to find a way to transfer test functions between the various
semidiscrete formulations, in such a way that these test functions become close to each other
in the limit as N goes to infinity. While it is nice to have test functions (q,) that are
defined on a common reference domain Qf x I, the divergence-free condition V'~ - g = 0 on
2y is a nonlinear condition that is highly nontrivial to work with. Hence, we will instead
consider test functions on the physical domain, where the divergence-free condition always
reads V - ¢ = 0 (albeit on a time-dependent domain), and then we will pull test functions
back to the reference domain using the ALE mapping for the structure displacement n}y for
a given value of n and N.

To do this, recall that we have defined a maximal domain by showing the existence of a
function M (z) for z € [0, L], satisfying M (0) = M (L) = 0 and

M(z) = nx(2), for all z € [0, L], positive integers N, and n = 0,1,2, ..., N.
We then defined the associated maximal fluid domain in the physical space, given by
OF ={(z,r)eR*:0<2<L,0<r <R+ M(2)}.

Note that for all n and N, Qv < Q} and furthermore, Q}(t) < Q} for all t € [0,7]]
by the convergence of the approximate structure displacements 7y to the limiting structure
displacement 7, where

V}(t) ={(2,7) eR?:0< 2 < L0 <7 < R+, 2)}.
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Recall that the test space for the problem on the fixed domain is given by Q7, defined
in . Our approach to constructing suitable test functions will involve constructing
an appropriate dense subset of test functions in Q" defined on the fixed reference domain,
for which we can find corresponding test functions for the semidiscrete weak formulations
which converge appropriately to the limiting test function for the limiting weak formulation
as N goes to infinity. We emphasize that we have already extracted the limiting structure
displacement 7 as a limit of the approximate structure displacements 1y so that n is a known
function. To construct appropriate test functions for the limiting weak formulation and for
the semidiscrete weak formulations, consider the subset of spatially smooth functions O from
[0, 7] to Qy x I' satisfying the following properties:

L. ¢ e C ([0, T); H3(T))
2. There exists a function n,,(t, z) € C*®([0,T); HZ(T')) such that n,,(¢,0) = n,,(¢t,L) = 0,

for all t € [0,7] and —R < n,,(t,2) < n(t,z) for all ¢ € [0,7] and z € [0, L], and
furthermore,

q(t) = ve, in Q%\QT(t),
where

QF(t) ={(z,7r)eR*: 0 <2< L0 <7 < R+t )}

3. q(t,-) is a divergence-free function in H'(Q}') satisfying the boundary conditions:
qr = Oa on Fin/outa
qr =0, on ['y.

So q(t,-) is a divergence-free extension of the constant vector field e, defined on
QI (t) to the entire maximal fluid domain Q.

Given a function (g,1) € 0, we define test functions (@y, ) for the semidiscrete weak
formulations and the test function (q,) for the limiting weak formulation by pulling the
divergence-free fluid functions on the maximal fluid domain back to the reference fluid domain
using the appropriate ALE mapping:

(~1N(t7 ) = q‘QKIN(t) © q)?N (t7 ')7 Q(ta ) = q’Q?(t) © q)?(t? )
Note that V™ . gy = 0 and V7 - g = 0 on {1y and in addition, by the way the functions
q € O are defined, we also have that g ~ylr = e, and q|r = e, as desired for all sufficiently
large N, by the strong convergence of ny to n in C(0,T; C(T")). We also remark that the test
function qy is actually discontinuous because of the fact that ny itself is piecewise constant
on the subintervals [nAt, (n + 1)At) and hence, (potentially) discontinuous at the endpoints
of each time step.

We then use the test functions (g, ¥n) restricted to the subintervals [nAt, (n + 1)At)
as the test functions in the semidiscrete weak formulations and we use (q,v) as the test
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functions for the limiting weak formulation, whenever (q, ) € Q. The test functions (q,)
on Q?(t) that can be generated in this way are dense in the test space Q7. In general, the
test functions q, and g are different. However, we can show that they are close to each
other for sufficiently large N, as

gy — q and Vqy — Vq pointwise uniformly in [0, T] x Q.

This convergence result for the test functions combined with the strong convergence results
for the approximate solutions allows us to pass to the limit in the semidiscrete weak formu-
lations to show that the limiting fluid velocity and structure displacement (u,n) satisfy the
limiting weak formulation. We remark that to show that this weak solution can be defined
on a maximal time interval until the time of domain degeneracy, one can use a standard
argument introduced in pg. 397-398 of [42], which is also used for the constructive existence
proof for the current nonlinearly coupled prototypical FSI model in the proof of Theorem
7.1 in [140]. This concludes the final step of the proof of the existence of a weak solution to
the nonlinearly coupled prototypical FSI model.

1.4 Summary of the prototypical FSI model

In the previous two sections, we outlined the main steps of constructive existence for two
prototypical models of FSI, consisting of a two-dimensional incompressible viscous fluid in
a channel interacting with the elastic walls of the channel, with the coupled fluid-structure
dynamics driven by inlet and outlet pressure data. The proof in both cases is a constructive
existence proof, which establishes existence of a weak solution to the prototypical FSI model
via a splitting scheme, where we split the structure and fluid subproblems and solve them
each on discretized time steps, giving rise to a semidiscrete weak formulation satisfied by
appropriate approximate solutions which are obtained from the constructive splitting scheme.
The splitting scheme is constructed by assigning certain terms in the weak formulation to
the structure and fluid subproblems, in a precise way that preserves the energy estimates in
the discretized setting.

From here, in the linearly coupled model involving the linear Stokes equations for the
fluid, uniform semidiscrete energy estimates obtained from the splitting scheme show that
we have uniform boundedness of the approximate solutions in the finite energy spaces, which
allows us to find weakly and weakly-star convergent subsequences of approximate solutions.
In the linearly coupled case, since the weak formulation involves linear terms, we can then
directly pass to the limit in the semidiscrete weak formulation to obtain existence of a weak
solution that satisfies the continuous-in-time weak formulation of the full problem. While we
also obtain uniform boundedness of approximate solutions in the nonlinearly coupled case,
the analysis is more complex in this case because of the moving boundary, which introduces
geometric nonlinearities into the weak formulation, and because of the nonlinear advection
term in the full Navier-Stokes equations.
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In contrast to the linearly coupled case, having weak and weak-star convergent subse-
quences of approximate solutions is not sufficient to conclude the proof for the nonlinearly
coupled prototypical model. The additional nonlinearities which appear in the weak formu-
lation require strong convergence of approximate solutions in order to pass to the limit, and
hence, one must obtain additional estimates on the time derivatives or on the discretized time
derivatives of the approximate solutions. By using the semidiscrete formulation, we can esti-
mate the discretized time derivatives of the approximate solutions in appropriate dual spaces
and obtain strong precompactness in appropriate function spaces by using Aubin-Lions type
compactness arguments. One important novelty in the analysis of the prototypical model
of nonlinearly coupled FSI is a new Aubin-Lions compactness argument for functions de-
fined on moving domains, which is needed to handle the fact that the test functions and
solution spaces for the semidiscretized problems depend on the structure displacement and
the moving physical fluid domains, so this generalization of the Aubin-Lions compactness
lemma to moving domains gives a way of uniformly comparing functions defined on different
physical domains with each other. These Aubin-Lions type compactness arguments allow
us to obtain the strong convergence results that will ultimately help us pass to the limit in
the semidiscrete formulations as N — oo. The final ingredient needed in the constructive
existence proof for the nonlinearly coupled prototypical FSI model is a careful analysis of the
test functions in the semidiscrete formulations, as the test functions themselves depend on
the structure displacement, through the transformation of the divergence-free condition on
the physical fluid domain to a nonlinear divergence-free type condition on the reference fluid
domain, due to the transformation of spatial derivatives under the ALE mapping. However,
by considering an appropriate subset of test functions and pulling them back to the reference
domain via the ALE mappings defined by the approximate structure displacements 7y, we
can define a test function (g, 1) for the semidiscrete weak formulation with parameter N
that will converge in the limit to the limiting test function (q, ) with V" - g = 0 where 7 is
the limiting structure displacement. This will allow us to complete the proof of constructive
existence of a weak solution for the nonlinearly coupled prototypical FSI model.

1.5 Extensions of the splitting scheme for FSI

The splitting scheme approach to fluid-structure interaction that we have demonstrated in
the context of the 2D prototypical model of FSI is robust, as it has been generalized to a
variety of different physically relevant contexts. The mathematical framework for showing
constructive existence of weak solutions provided by the splitting scheme approach has been
useful in analyzing complex fluid-structure interaction models, and has been used to analyze
coupled fluid-structure systems of real-life significance in applications. We outline the more
complex models of FSI that have been analyzed using extensions of this Lie operator split-
ting approach to fluid-structure interaction, in order to demonstrate the robustness of this
method, which will lay the foundation for the work outlined in this thesis.
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3D-2D fluid-structure systems

The prototypical model of FSI described in both the linearly coupled and nonlinearly cou-
pled case involves a 2D incompressible viscous fluid interacting with a 1D elastic structure.
However, it is of practical interest to extend constructive existence results for weak solutions
to coupled fluid-structure systems to the physically relevant dimensions. In particular, we
would like to obtain corresponding results for incompressible viscous fluids in three dimen-
sions interacting with two-dimensional elastic structures, such as membranes or shells.

We first note that in the linearly coupled prototypical model of FSI, the analysis would be
unchanged for the most part if we considered a three-dimensional Stokes flow interacting with
a two-dimensional elastic structure. This is because of the fact that in the linearly coupled
case, the geometric configuration of the fluid domain in time is not taken into account, so
the fluid equations, even in three dimensions, are posed on a fixed reference fluid domain €2,
which has a regular and well-behaved fixed geometry, even though it is a three-dimensional
spatial domain.

However, there are additional challenges that appear when considering three-dimensional
incompressible Navier-Stokes equations coupled to two-dimensional elastic structures, in the
nonlinearly coupled prototypical model of FSI. The main difficulty lies in the fact that
when considering a plate, we have that the structure displacement n from the reference
configuration is in the finite energy space W (0,T; L*(T")) n L*(0,T; H3(T')). Because the
problem is nonlinearly coupled, the regularity of the structure displacement 7 is especially
important, as the structure displacement determines the time-dependent location of the
structure I'(¢), which in turn determines the three-dimensional time-dependent fluid domain
Q¢(t), which is a domain that is bounded by the inlet and outlet I';,, and I',,, the bottom
boundary I'y, and the time-dependent moving structure I'(¢).

Because we are considering three spatial dimensions for the fluid and two spatial dimen-
sions for the elastic structure, we have different Sobolev embeddings. For a one-dimensional
structure as in the 2D-1D prototypical fluid-structure model described before, we have
that for a one-dimensional structure, a structure displacement n € W1*(0,T; L*(T)) n
L*(0,T; H3(T)) defines a function that is uniformly Lipschitz continuous for all ¢ € [0, T].
However, for a two-dimensional structure, a function n € H2(T) is not a Lipschitz continuous
function, so the domain 2¢(¢) is not a Lipschitz domain. This has several important ram-
ifications that complicate the analysis of three-dimensional nonlinearly coupled FSI, which
was carried out in [137] and was later extended to three-dimensional FSI involving nonlinear
elasticity in |141].

First, the standard trace theorem from the classical theory of Sobolev spaces states that
functions in H'(£2) have well-defined traces in L?(0€2) and even H'/2(0€2) under the condition
that Q is a Lipschitz domain. However, because €2;(¢) in the three-dimensional case of non-
linearly coupled FSI is no longer necessarily a Lipschitz domain due to the limited regularity
of the structure displacement 7, we must use an extension of the trace theory for Sobolev
spaces. This extension of the Sobolev trace theory was developed in a note [135], which states
an extension of the Sobolev trace theorem to functions defined on domains which are locally



CHAPTER 1. INTRODUCTION AND BACKGROUND 43

subgraphs of Holder continuous functions. This is exactly what is required in the current
scenario of three-dimensional nonlinearly coupled FSI, since structure displacements 7 which
are in HZ(T') are not Lipschitz continuous, but are a-Holder continuous for a € (0,1). The
result from [135] states that the trace of an H'(£2) function on a domain € that is locally a
subgraph of an a-Hélder continuous function belongs to H*(052) for any s € (0, a/2).

This result on the extension of the Sobolev trace theory, described in [135], is exactly
what is needed to properly define the trace of the fluid velocity w € L*(0,T; H'(Q;(t))).
This allows us to impose the boundary conditions on I';,, 'y, and I'y on u, as the trace of
u along the inlet, outlet, and bottom boundary are well-defined. The fact that we can define
the trace of w in a well-defined manner allows us to also precisely make sense of the kinematic
coupling condition u|r) = dine,, which involves the trace of w along the time-dependent
moving interface I'(t).

Nonlinear structures

The study of nonlinearly elastic structures, for example St. Venant-Kirchhoff elastic struc-
tures, nonlinearly elastic Koiter shells, and nonlinear biomembranes, has also been considered
in the literature on FSI [141] 143, 44} |45} [52} (153} |74, 80]. The splitting scheme methodology
of establishing existence of weak solutions to fluid-structure interaction has been successfully
extended from the prototypical model of FSI to fluid-structure systems with nonlinear elastic
structures in [141, [143]. These elastic structures with nonlinear behavior appear in many
applications of real-life significance. For example, a computational study of fluid-structure
interaction in a curved coronary artery [28] involves considering nonlinear equations of elas-
ticity for the displacement of the curved cylindrical arterial walls from its reference configu-
ration, where a cubic-type nonlinearity appears in the elasticity equations as a result of the
curved cylindrical geometry of the coronary artery. The extension of the splitting scheme
to FSI systems involving nonlinear structures was done first in [141], and splitting scheme
methods have been used in FSI systems of practical significance involving nonlinearly elastic
structures, see for example [143] 2§].

We briefly summarize some of the new approaches needed in the splitting scheme to
handle the unique challenges posed by nonlinear elastic structures. We describe these math-
ematical developments in the context of the study of FSI involving a nonlinear Koiter shell,
in [141]. Before discussing the nonlinear Koiter shell theory, we briefly look back at the
prototypical model of FSI, where in both the linearly coupled and the nonlinearly coupled
case, the transverse (scalar) displacement 7 of the elastic structure is described by a linear
Koiter shell equation

0?n — Cod?n + C103n = F, on I,

where in the prototypical model that we discussed, I' was the one-dimensional reference
configuration of a one-dimensional elastic structure. The linear Koiter shell equation is a
fourth-order linear PDE that has the following associated elastic energy ||n||%, which arises
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from testing the equation with d;n in a formal energy estimate and integrating by parts:

1
Il = 5 (Colloalfagey + Crllé2nllEaq))

As seen above, the linear Koiter shell equation can be written as a PDE, which then gives
rise to a corresponding associated elastic energy. Meanwhile, for the nonlinear Koiter shell
equation, it is most natural to define the nonlinear elastic energy first, and then from there,
one can derive an expression for the PDE governing the nonlinear Koiter shell dynamics.
The nonlinear elastic energy of the nonlinear Koiter shell is given by

Hm@=LAGw:Gm,

where A describes the elasticity tensor, and G(n) describes the change in the metric due to
the resulting curvature of the elastic shell arising from the displacement 7 of the shell. While
this elastic energy is inherently associated with a nonlinear operator, it can be shown to be
equivalent in norm to a standard Sobolev norm, which will be useful for the analysis of the
problem. We refer the reader to [141] for full details.

We mention that the main difference in the splitting scheme is the structure subprob-
lem. The nature of the splitting itself is similar in principle to the splitting scheme for
the prototypical FSI problem with the linear Koiter shell, in the sense that the structure is
split apart from the fluid, and the structure velocity is updated in both steps in order to
account for the influence of both the structure and fluid dynamics on the resulting structure
velocity. However, the main difference is the nature of the structure subproblem itself. The
prototypical model of FSI in both the linearly and nonlinearly coupled case involves solving
a time-discretized form of the linear Koiter shell with zero forcing, where the time deriva-
tive is discretized by using a backward Euler time discre’fization. This gives rise to a linear
2 written in weak formulation, see
1

(1.7), where the existence and uniqueness of the new updated structure displacement nX,Jr?
can be obtained using standard tools from the theory of linear elliptic PDEs, namely the
Lax-Milgram theorem. However, in the case of a nonlinearly elastic Koiter shell, there are
notable differences. First, one cannot use just a backwards Euler time discretization to dis-
cretize the structure subproblem, as a more involved time discretization is required in order
to obtain a semidiscrete energy estimate which mirrors the corresponding continuous energy
estimates for the nonlinear Koiter shell PDE. In addition, because the resulting problem
that arises after time discretization is no longer a linear problem, the Lax-Milgram theorem
is not sufficient for obtaining existence and uniqueness of a solution to the (nonlinear) weak
formulation of the structure subproblem, and instead, one must invoke a fixed point argu-
ment using the Schaefer Fixed Point Theorem in order to obtain existence of an updated

elliptic problem for the new structure displacement nz;r

1
structure displacement nz;r ? from the structure subproblem. However, if one is able to obtain
existence of a solution to the structure subproblem via a fixed point argument and if one is
able to discretize time derivatives in an appropriate way that preserves the balance of energy
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of the fully coupled FSI dynamics, then the splitting scheme remains an effective method for
studying well-posedness of FSI systems containing structures with nonlinear effects.

The consideration of splitting scheme methods for studying FSI with nonlinearly elastic
structures was extended in recent work [143|, in which a more general nonlinear Koiter
shell considering contributions both membrane and bending energy is considered, whereas
the past work in |[141] does not include the fully nonlinear terms arising from the bending
energy. The existence of a weak solution is established for this problem in [143] by using
a splitting scheme approach to show existence of a weak solution to a form of the weak
formulation containing a linear sixth order regularization of the structure dynamics, and
then obtaining uniform estimates that are independent of the regularization parameter. In
addition to showing well-posedness for this nonlinearly coupled FSI problem with a nonlinear
Koiter shell, this work also establishes regularity results for the structure displacement 7 and
the structure velocity ;.

Fluid-structure interaction with the Navier slip condition

In the prototypical model of fluid-structure interaction, we use the no-slip condition as a
kinematic coupling condition to couple the fluid and structure dynamics together, and we
hence impose continuity of velocities at the fluid-structure interface. In particular, we impose
that the fluid velocity at the fluid-structure interface must be equal to the structure velocity,
so that in the linearly coupled prototypical FSI model, we have that

’lL|F = (atlr])era

and in the nonlinearly coupled prototypical FSI model, we have that

ulry = (0m)e,.

In both the linearly coupled and nonlinearly coupled models, the no-slip condition implies
that the fluid velocity along the fluid-structure interface is purely transversal (radial), since
one of the assumptions in the prototypical model is that the structure displaces in only the
transverse (radial) direction.

The no-slip condition is a useful condition to start with for mathematical analysis, but
in many real-life systems, the no-slip condition is not sufficient to describe the coupled fluid-
structure dynamics. In particular, in many fluid-structure systems, there is often tangential
slip of the fluid along the fluid-structure interface, and one way of modeling this tangential
slip is by imposing the Navier slip condition, which allows for a mismatch between the
tangential components of the structure and fluid velocities. The extension of the Lie operator
splitting method beyond the prototypical FSI model with the no-slip kinematic coupling
condition to more complex FSI models involving the Navier slip condition was achieved in
[139] and compactness arguments for this Navier slip nonlinearly coupled FSI model were
carried out in [136] using the generalized Aubin-Lions compactness lemma for functions on
moving domains.
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The Navier slip condition will appear in an FSI model that we study later in this thesis
(see the nonlinearly coupled model described in Chapter 5), so we briefly summarize the
nonlinearly coupled FSI model involving the Navier slip condition from [139] and we discuss
the ways in which the splitting scheme approach is adapted to handle the new features of
this model. The fluid velocity and pressure are described as before by the nonlinear Navier-
Stokes equations describing an incompressible, viscous Newtonian fluid, stated previously in
(1.10) and , where the Navier-Stokes equations are posed on a time-dependent and a
priori unknown fluid domain (), which will be two-dimensional. However, for the elastic
structure, we will allow for arbitrary vector-valued displacements rather than considering
only transverse (radial) structure displacements, as was done in the prototypical model of
nonlinearly coupled FSI. Therefore, we will describe the structure displacement 1 : I' — R?
from the reference configuration I' by an elastodynamics equation governed by an elasticity
operator L,:

Oun + L = F, on I,

where the elasticity operator L. has the property that it will give rise to an elastic energy
defined by the norm ||n||% = (L£en, n)12(r), and this elastodynamics equation will be given
appropriate clamped boundary conditions. The time-dependent location of the structure

['(t) will be described by
I'(t)={(z,R)+n(t,z):z€]0,L]}

and since n(0) = n(L), we can then define the time-dependent fluid domain Q¢(¢) to be the
two-dimensional region that is bounded by I';,, I'oue, T, and I'(2).

We will couple the fluid and structure dynamics via the kinematic coupling condition and
the dynamic coupling condition, but these two coupling conditions will be different from the
corresponding conditions in the prototypical model of nonlinearly coupled FSI. We describe
these below:

e Kinematic coupling condition. Rather than imposing a single no-slip condition as
in the prototypical model of FSI described previously, we will instead impose two kine-
matic coupling conditions: a condition for the normal component of the fluid velocity
and another for the tangential component of the fluid velocity, where we consider the
fluid velocity along the moving fluid-structure interface. For the normal component of
the fluid velocity, we prescribe a no penetration condition, which states that there
is no net leakage of fluid out of the domain in the sense that the normal components
of the fluid velocity and the structure velocity along the interface I'(¢) agree:

ulr@) - n(t) = am - n(?),

where n(t) is the outward pointing unit normal vector to the moving fluid-structure
interface I'(t). For the tangential component of the fluid velocity, we prescribe the
Navier slip condition, which states that the difference in the tangential components
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of the structure velocity and the fluid velocity along the interface is proportional to
the tangential component of the normal stress of the fluid on the structure:

B(0m — ulrw) - T(t) = o(u,7)n(t) - 7(t)|rw),

where 7(t) is the unit rightward pointing tangent vector to I'(¢) and 5 > 0 is a non-
negative Navier slip coefficient.

e Dynamic coupling condition. In principle, the dynamic coupling condition here is
the same in the sense that it states that the structure subproblem is loaded by the
fluid load onto the structure. The only change in the dynamic coupling condition from
the prototypical model arises from the fact that we are considering general structure
displacements, so instead of loading the structure with —7"¢ (u,7)n(t) - e, which
would be the fluid load only in the transverse (radial) direction, the forcing on the
structure equation here is given by the full fluid load on the structure:

@gtn + ;Ce'r] = —jnO'(’U,, W)n(t)|p(t)

Now that we have finished the description of the nonlinearly coupled FSI problem, we
now point out some of the key differences in the splitting scheme proof, and refer the reader
to [136, [139] for full details. One of the first key differences is in the energy estimate, where
we can see the impact of the Navier slip condition in an additional Navier slip dissipation
term. In particular, the energy estimate for the nonlinearly coupled Navier slip FSI model
is given by:

1 1
§||5t"7(t)||%2(1‘) + ()% + §||u(t)||%2(ﬂf(t))

t t
T f 1D (1) (5)] B oy + 6]0 1@ — wle - 7() |2 ds

1 1
< 5ol + lmoll + 51 ol e, ) + € (1P (® 20z + |1 Poue Dl o))

where the term involving [ represents the frictional dissipation due to the tangential slip of
the fluid along the structure interface.

When defining the weak formulation, there are also several important modifications. In
the prototypical nonlinearly coupled no-slip model, the solution space incorporates a no-slip
condition u|pw = (0in)e, and the test space for the test functions (g,) incorporates this
condition also as q|r«) = te,. However, this changes slightly in the Navier slip case. For
the model with the Navier slip condition, we note that the Navier slip condition will be
incorporated into the weak formulation via a term with [, so the only condition that needs
to be explicitly prescribed in the solution space and the test space is the no penetration
condition. Therefore, we instead define the coupled solution space to be

V=A{(u,n) eV xVi:u-n(t)|rq = om-n(t)}
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for appropriate finite energy spaces V; and V;, and we define the test space to be

Q = {(g,%) e CZ([0,T); Vi(t) x Va) : - nlt) ey = ¢ - m(t)},

where Vy and Vs are defined similarly to and as in the prototypical nonlinearly
coupled FSI model, but in the current context, the trace of the fluid velocity along I'(¢) is
no longer restricted to be purely radial and the structure displacement can more generally
be vector-valued.

In this case, the weak formulation involves finding a solution (u,n) € V such that for all
test functions ( ) € Q,

—ﬁj@wuﬁm+iﬂjaw(WPVWIQ—WPVMWD—ﬁiLJénn@XUﬂ)

1 T
+ 2J0 L(t) (u . n(t))(u . q) -8 L(t)[(aﬂb — q) . T(t)] . [(5”7 . u) _ T(t)]
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We conclude by making a few observations about this weak formulation. Rather than having

a single term
T
|| @
o Jr

in the weak formulation as in the no-slip prototypical model, the weak formulation instead

has the terms
Jjﬁmn (u-q) ffun )(u - q),
I(t)

1 (T
which can also be expressed as the single term _§f f (6m - n(t))(u - @) by the no
0 Jre

penetration condition. Compared to the weak formulation for the prototypical model, there
is also an additional dissipation term in the weak formulation, which is the term involving
the Navier slip coefficient 5. We note that although the Navier slip FSI model now allows for
tangential fluid velocities, the problem is still well-defined in the sense that the tangential
fluid velocities are taken into account in the weak formulation (so that the Navier slip
condition on the tangential fluid and structure velocities is weakly imposed) and then the
remaining normal component of the fluid velocity is handled explicitly in the definition of the
solution and test spaces, where the matching of normal velocities of the fluid and structure at
the interface is strongly imposed. A similar fluid-structure splitting scheme can be developed
for this Navier slip model, and we refer the reader to [139] for a full exposition.
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Multilayered structures in FSI

Another important extension of the prototypical FSI model that will play an important role
in an FSI model considered later in Chapter 5 of this thesis is the extension to coupled
fluid-structure systems involving multilayered composite structures, which are made up of
different layers with varying properties. This is an important extension that is particularly
relevant in many real-life applications of FSI, as many FSI systems, especially in biomedical
applications, have structures that are made up of multiple layers with different physical
properties. This includes for example, arterial walls, which are made up of several different
layers of arterial tissue with different thicknesses and elastic properties, and bioartificial
organs, which have different layers in the structural walls that have different functionalities
[138]. The extension of the splitting scheme approach for FSI to the interaction between a
fluid and a multilayered structure was first carried out in |13§].

FSI with multilayered structures will play a role in a nonlinearly coupled FSI model
that is discussed later in this thesis in Chapter 5, so we will describe the multilayered
structure FSI model that is considered in [138]. In this model, the fluid is an incompressible,
viscous Newtonian fluid which is flowing in an elastic channel where the walls of the channel
are elastic and are made up of multiple layers. Thus, the structure is now a multilayered
composite structure that consists of an external thick layer and an inner thin layer that is
in contact with the fluid. The problem is posed on the following geometry: the fluid domain
has a reference configuration of Qy = [0, L] x [0, R], the thick structure has a reference
configuration of Q, = [0,L] x [R, R + h]| where h is the thickness of the structure, and
the thin structure is a one-dimensional elastic structure with a reference configuration of
I'=10,L] x {R}.

Let us define d to be the displacement of the two-dimensional thick structure from its
reference configuration €2, and let n be the displacement of the thin structure from its
one-dimensional reference configuration I'. The incompressible viscous Newtonian fluid is
described by the Navier-Stokes equations posed on a moving time-dependent fluid
domain, where the moving fluid domain Q(¢) is determined by the position I'(¢) of the inner
thin structure layer in direct contact with the fluid so that

Qp(t) = {(2,7) e R?: 0< 2 < L,0 <7 < R+t 2)},

where we assume that the thin layer displaces in only the transverse (radial) direction so
that
P(t)={(z,r)eR*:0<z< Lir = R+1(t, 2)}.

The elastodynamics of the thin structure is described by the wave equation, where the
scalar transverse displacement 7 of the one-dimensional thin structure from its reference

configuration I' is given by
Oun — An = F, on T,

where the external load F' on the thin structure will be described later in the dynamic
coupling condition. The elastodynamics of the thick structure are described by the equations
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of elasticity for the (two-dimensional) vector-valued displacement d of the thick structure
from its reference configuration €2 so that

@ttd -V S(d) = O, on Qs-

The elasticity stress tensor S for the thick structure is given by the Piola-Kirchhoff stress
tensor

S(d) = 2u.D(d) + NV - d),

where D(d) is the symmetrized gradient.
The kinematic and dynamic coupling conditions must now account for the fact that there
are three subproblems that must be coupled together appropriately.

e The kinematic coupling condition is given by a no-slip condition between the fluid and
thin structure
'u”l“(t) = (0m)er,
and a continuity of displacements condition which ensures that the thin structure and
thick structure share the same displacement along their common interface so that the
structure remains intact:
dlr =ne,, onl.

e The dynamic coupling condition specifies the fluid load on the thin structure, which is
in contact from one side with the fluid and which is in contact on the other side with
the thick structure. Therefore, there are two contributions to the traction along the
thin structure: the fluid load from the inside and the elastic loading from the outside
thick structure. Therefore, the elastodynamics equation for the thin structure reads:

Oun — An = —j”o-(u,p)n : er|F(t) + S(n)er : er‘Fu

where J" = /1 + (0,n)2.

For the multilayered structure FSI problem, we get contributions to the energy estimate
for the fully coupled problem that involve energies and dissipation for the fluid, and elastic
energies for both the thin structure and the thick structure. We obtain an energy estimate of
the following form for the nonlinearly coupled multilayered structure FSI problem described
above:

1 1 t
§||5t77(t)||%2(r) + )|y + §||’Uf(t)||%2(nf(t)) + MfL ||D(U)(5)||%2(Qf(s))d3
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As emphasized in the original manuscript [138], this energy estimate reveals one of the
primary reasons why considering multilayered structures in FSI is mathematically advanta-
geous, especially for problems involving thick structures that are of the same dimension as
the fluid domain. Having a multilayered structure where there is a thin layer that has a lower
dimension than the full composite structure/fluid regularizes the geometry of the problem in
the following way. For a thick elastic structure, the structure displacement d belongs to the
finite energy space L*(0,T; H'(£2,)) where € is two-dimensional. If the FST model just in-
volved a two-dimensional fluid in direct contact with a two-dimensional thick structure, then
the time-dependent location of the interface between the fluid and the thick structure would
be determined by the trace of d along the bottom boundary of €2, which would only be in
L*(0,T; HY?(T")) in the finite energy space. Even with the interface I'" between the thick
structure and the fluid being one-dimensional, H'/2(I") is not enough Sobolev regularity to
ensure that we even have a continuous moving interface, and this lack of boundary regularity
of the structure displacement for thick structures is one of the predominant mathematical
obstacles in FSI models between fluids and thick structures of the same dimension.

If we instead consider a composite multilayered structure interacting with a fluid as in
the model described above, we see that the elastodynamics of the thin membrane separating
the thick structure and the fluid regularize the time-dependent fluid-structure interface. In
particular, even though d is still in L*(0,7; H'(Q,)), we have by the kinematic coupling
condition that the trace of d along I' is equal to ne,, where by the energy estimates, n €
L*(0,T; H}(T)). Thus, the elastodynamics of n place the thin structure displacement in a
higher regularity space H'(T') in contrast to the space H'Y2(I') that would arise from the
Sobolev trace theorem applied to d. Since we have that d|r = ne, by the kinematic coupling
condition between the thick and thin structures, we see that the higher H'(T") regularity of
the interface displacement (which is now the thin structure displacement) transfers to the
trace of the thick structure displacement along the bottom boundary I' of €2,. This allows us
to define the fluid-structure interface T'(t) to be a continuous curve, which is advantageous
for the mathematical analysis of the problem.

One can then extend the splitting scheme for the nonlinearly coupled prototypical model
of FSI to this multilayered model by developing a similar fluid-structure splitting, where
the structure subproblem involves updating both the thick layer and the thin layer elasto-
dynamics, and the thin layer structure velocity is updated in both the fluid and structure
subproblem, in order to reflect the fact that the thin layer structure velocity must match the
fluid velocity along the moving fluid-structure interface I'(¢). For full details on the extension
of the Lie operator splitting scheme to the case of multilayered structures interacting with
incompressible fluids, we refer the reader to the exposition in the manuscript [138].

FSI with mesh-supported elastic structures

We conclude this literature review by discussing one more extension of the prototypical FSI
model that is motivated by recent progress in biomedical engineering. Atherosclerosis is
a cardiovascular condition caused by the buildup of excess plaque on arterial vessel walls,
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which limits the resulting flow of blood through arteries |106] |151]. Recently, advances
in biomedical technology have improved the quality of patient health in patients who are
affected by atherosclerosis. One of the leading successful treatments for this condition is the
implantation of prostheses, called stents, which are mesh-like structures which are inserted
in arteries with plaque buildup to restore healthy circulation. The specific geometry of how
the metallic rods in a stent are connected to each other to form the stent is essential to
the performance of the stent. Constructing stents to test in real-life experiments can be
costly and time-inefficient, which makes developing numerical methods for simulating stents
computationally essential for assessing stent design.

In past works, stents have been modeled as three-dimensional rod-like structures, but
because stents are comprised of slender metallic rods, finite element discretizations in three
dimensions of stents are costly in time, and also can suffer from inaccuracies, see the dis-
cussions for example in [31, 32]. Instead, a new approach, introduced in [174], models these
stents using a reduced-dimensional model, so that the stents are modeled as one-dimensional
structures described by a given mesh or graph topology. The stent is thus modeled as a net-
work of one-dimensional hyperbolic equations which are coupled to each other at junction
points. The reduced equations modeling the stent are one-dimensional, and this dimen-
sional reduction is accurate since the metallic rods of the stent are thin and slender. This
gives rise to a set of equations that can be solved efficiently, and which accurately model
stent dynamics. These governing equations are derived from a curved rod model, where the
equations are a coupled hyperbolic system of PDEs describing the evolution of the displace-
ment and rotation of the stent, in addition to the contact force and contact moment. It
is shown that this new reduced one-dimensional model of stents shows good agreement in
computational simulations with three-dimensional simulations of stent dynamics, see [32].
In addition, asymptotic studies that relate three-dimensional dynamics of linear elasticity to
one-dimensional equations for stents in limiting regimes (for example, the radius of the cross
section decreasing to zero) have mathematically justified the use of these one-dimensional
equations, see |85} 1100, 101} [102, [157].

Due to interest in simulating the behavior of stents on arterial walls, there was work on
simulating Naghdi type shells to the one-dimensional equations for a stent in [34], where
existence of a unique solution is established using the Lax-Milgram theorem. However,
the work [34] does not consider the blood flow through the arteries through an additional
coupling to the Navier-Stokes equations. Alternatively, there was also work on modeling
stents in [27], where a splitting scheme was used to show existence of weak solutions to a
nonlinearly coupled FSI problem involving an elastic shell and the Navier-Stokes equations,
where the elasticity parameters and thickness of the elastic shell are allowed to have jump
discontinuities and are hence only prescribed to be in L™, to model the influence of the stent
on the elastic properties of the structure. However, this work does not couple the resulting
fluid-structure system explicitly to the equations for stent dynamics.

A full FSI model with three subproblems considering a stent coupled to an elastic shell,
which is further coupled to fluid flow, was considered in [31, 35]. The splitting scheme
methodology has been used to analyze a linearly coupled version [35] and a nonlinearly cou-
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pled version [31] of an FSI involving mesh-supported elastic structures interacting with the
flow of a viscous incompressible Newtonian fluid. A similar fluid-structure splitting scheme
has been successfully employed in both the linearly coupled and nonlinearly coupled versions
of this FSI model involving structures supported by stents in order to show constructive ex-
istence of weak solutions. This model is particularly interesting because it is multiphysical,
involving the interaction between three different mediums across three different dimensions:
a three-dimensional fluid described by parabolic-type fluid equations for an incompressible
viscous Newtonian fluid, a two-dimensional elastic shell structure described by hyperbolic
equations of elasticity, and a one-dimensional mesh-like structure described by a hyperbolic
system of PDEs on a graph.

Since these first existence results via Lie operator splitting for this mesh-supported struc-
ture FSI model, there has been additional analysis of such models. Analysis of the regularity
of weak solutions to the linearly coupled model was carried out in recent work in [75]. In
addition, the mathematical analysis of mesh-supported structures in FSI has set the founda-
tion for the development of accurate numerical schemes which can be used to model real-life
stent dynamics and assess the performance of various stent designs through computational
simulations. This is done in 28] for example, where four different stent geometries are as-
sessed through computations that are performed using a numerical method, where the full
dynamics of blood flow interacting with arterial walls supported by different stent geometries
are computationally analyzed. We remark that the study of stents is now an active area of
research with many important practical implications for biomedicine. As a further example,
we refer the reader to work in 33|, where a numerical solver is used to model drug-eluting
stents, which are stents which release anti-inflammatory agents into surrounding tissue in
order to reduce the risk of arterial reclosure after stent implantation. In addition, studies
of optimal stent design have been carried out in order to inform decisions about the de-
sign of stents in bioengineering, using mathematical techniques for constrained optimization
problems, see [37].

1.6 Outline of the thesis

In this chapter, we have discussed the major developments in the analysis of fluid-structure
interaction, focusing in particular on a splitting scheme approach to FSI which uses a Lie
operator splitting to separate the fluid and structure subproblems in a precise way to allow
for constructive existence of weak solutions to FSI. We summarized the splitting scheme
methodology in the context of a linearly coupled prototypical model and a nonlinearly cou-
pled prototypical model of FSI describing the flow of a two-dimensional incompressible vis-
cous Newtonian fluid in an elastic channel with one-dimensional elastic walls. In the linearly
coupled prototypical model, we considered a problem where the coupling conditions are eval-
uated along a fixed reference fluid-structure interface and where the linear Stokes equations
modeling the fluid are posed on a fixed reference fluid domain. The nonlinearly coupled
prototypical model involved a moving boundary problem where the full Navier-Stokes equa-
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tions are solved on a moving a priori unknown fluid domain and the coupling conditions are
evaluated along the moving interface between the fluid and the structure.

This splitting scheme methodology for studying weak solutions to coupled fluid-structure
systems has proven to be extremely robust, and the splitting scheme used for the prototypical
model of FST has been extended to a wide variety of contexts of practical significance in real-
life applications, including higher-dimensional models involving three-dimensional fluid flow
through two-dimensional elastic shells, FSI models which allow tangential slip of the fluid
along the fluid-structure interface, FSI models involving multilayered structures, and FSI
models involving the flow of fluids in mesh-supported structures. This thesis will be focused
on new applications of the splitting scheme methodology, which involve new FSI models with
unique mathematical challenges that are inspired by real-life applications to engineering.
This thesis will initiate the study of FSI in brand new contexts, by generalizing a splitting
scheme approach in order to mathematically analyze new FSI models. The splitting scheme
approach to FSI will be generalized to two new contexts: FSI models involving stochastic-
ity (random effects in time) and models of nonlinearly coupled fluid-poroelastic structure
interaction. By demonstrating these new applications of the splitting scheme approach, this
work will affirm the robustness and wide applicability of splitting schemes in the analysis of
complex fluid-structure systems that arise in applications.

In Chapters 2-4, we focus on the study of fluid-structure interaction with stochastic ef-
fects, which involves fluid-structure systems where there are random effects which can affect
the system in time. All of the past analysis of fluid-structure systems has involved deter-
ministic systems and even though the study of stochastic PDEs is a rich field and an active
area of research, stochastic fluid-structure systems have not been considered previously. In
Chapter 2, we provide a brief summary of probabilistic preliminaries that will be useful for
the analysis of stochastic fluid-structure systems, with a particular emphasis on tools for
analyzing random variables which take values in Banach spaces. In Chapter 3, we describe
the first progress in stochastic fluid-structure interaction, involving the analysis of a lin-
early coupled reduced model of stochastic FSI, where the model is reduced in the sense that
the full fluid-structure dynamics can be fully described by a single self-contained stochastic
PDE for the structure dynamics known as the stochastic viscous wave equation. Although
the analysis of this stochastic viscous wave equation does not need the use of the splitting
scheme and relies more on standard tools from stochastic PDEs, we include a description of
the analysis of this equation in Chapter 3, since this equation was the first equation studied
in stochastic FSI. In Chapter 4, we use a splitting scheme approach to analyze a prototypi-
cal linearly coupled model of stochastic FSI, which describes the two-dimensional flow of an
incompressible fluid modeled by the linear Stokes equations through an elastic channel with
stochastically perturbed walls. This is the first such well-posedness result for a stochastic
fluid-structure system that is fully coupled, and the splitting scheme approach is shown to be
robust for such stochastic FSI problems involving stochastic multiphysical systems of PDEs.

Next, we turn our attention back to the deterministic theory of FSI in Chapter 5 and dis-
cuss recent developments in the analysis of fluid-structure interaction involving poroelastic
structures, known as fluid-poroelastic structure interaction (FPSI). Poroelastic structures
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are materials that are porous and have the flow of fluid through their pores coupled to
their elastic properties, and they can be modeled by a set of parabolic-hyperbolic or elliptic-
hyperbolic type PDEs known as the Biot equations. Many structures in applications which
are deformable or elastic are not completely solid or impermeable, and this includes soils,
tissues in the human body, bones, rocks, sponges, and media used in bioartificial prostheses
such as bioartificial organs. Due to their practical significance in technological advance-
ments that have positive and direct societal impacts, poroelastic materials are important to
consider, and creating a mathematical methodology for studying coupled FPSI systems is
essential. In Chapter 5, we describe a nonlinearly coupled model consisting of an incompress-
ible fluid interacting with a multilayered structure consisting of a thick poroelastic medium
and a thin plate. We use a spatial regularization to study a regularized nonlinearly coupled
FPSI problem via a splitting scheme approach, and the work done in this chapter represents
the first well-posedness result for a nonlinearly coupled moving boundary model of FPSI.
We continue the analysis of this nonlinearly coupled FPSI problem by showing that the
weak solutions that we have constructed to the regularized FPSI problem are consistent in
the sense that they converge as the regularization parameter tends to zero to classical solu-
tions of the original non-regularized FPSI problem when such classical solutions exist. This
will show that the weak solutions to the regularized FPSI problem that we have considered
are physically relevant to real-life FPSI dynamics. In Chapter 6, we give some concluding
remarks to summarize the work done in this thesis.
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Chapter 2

Probabilistic preliminaries

In Chapters 2-4, we will discuss stochastic fluid-structure interaction, which describes a
new and emerging class of coupled systems where a fluid and an elastic structure interact
dynamically under the additional influence of stochasticity, or randomness in time. The
study of stochastic FSI is motivated by the fact that randomness is inherent in many real-
life systems, and this randomness can take the form of random forcing on the elastic structure
in an FSI system, random deviations in the fluid flow, or randomness in the inlet and outlet
pressure that drives the flow of a fluid through an elastic channel. Because randomness
is commonplace in real-life dynamics and because stochasticity can have strong effects on
the resulting observed dynamics of a system, the study of stochastic PDEs has been an
active area of research for many decades. Despite the significant progress made in the
analysis of stochastic PDEs, the analysis of stochastic fluid-structure systems has not been
considered until very recently. The goal of Chapters 3 and 4 is to discuss the recent progress
in stochastic FSI, and these chapters will discuss the models of stochastic FSI which have
been developed to initiate the study of stochastic fluid-structure systems. In order to prepare
for the presentation of the results in these chapters on stochastic FSI, we will use this current
chapter, Chapter 2, in order to summarize the necessary probabilistic background and results
from stochastic analysis that will be useful for studying stochastic fluid-structure systems.
In this chapter, we will focus on probabilistic background, with an emphasis on consider-
ing random variables which take values in Banach spaces. This will be important since
stochastic fluid-structure systems involve random quantities, such as the fluid/structure
velocity and the structure displacement, which will now be random functions due to the
stochasticity in the system. We will summarize results about random variables taking values
in Banach spaces and discuss the three modes of probabilistic convergence of such random
variables which will play a key role in our analysis of stochastic FSI: convergence in prob-
ability, weak convergence (or convergence in law or distribution), and convergence almost
surely. We will discuss the relationships between these modes of convergence and review
classical theorems that will be important in our analysis later. Finally, in order to develop
a vocabulary for discussing stochasticity in random systems, we will review the concept of
one-dimensional white noise and spacetime white noise, which are prototypical examples of
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random noise that arise in stochastic PDEs. We will conclude by discussing the notion of
stochastic integration against these types of random noise, which will be important for quan-
tifying the effects of randomness on PDE dynamics and for rigorously defining the notion of
a solution to a stochastic PDE or stochastic system of PDEs.

Though we will provide a brief review of many of the foundational results from probabil-
ity theory that we will need later in this thesis, we assume that the reader is acquainted with
abstract probability spaces and is comfortable with real-valued random variables. Though
we will review the basics of probability theory more generally for random variables taking
values in Banach spaces, we note that there are many parallels with the case of real-valued
random variables. We refer the reader to texts such as [67, 103] for a detailed account
of measure theoretic probability theory, and we assume basic familiarity with the general
theory of abstract measure theoretic probability theory and real-valued random variables in
the remainder of this chapter. For more information about Brownian motion and stochas-
tic integration, we refer the reader to [58, (103} |150, 155] and for more information about
stochastic PDEs, we refer the reader to the introductory book [58], the following classic book
on stochastic analysis in infinite dimensional spaces |[150], and the references |90} |177]. For
more details about random variables taking values in general infinite dimensional Banach
spaces, we refer the reader to the reference [150].

2.1 Probability spaces and random variables

Recall that a probability space is an ordered triple (€2, F,P) consisting of a set of outcomes €2,
a sigma algebra of measurable sets F (which can be thought of as the collection of events),
and a probability measure P on the measurable sets (events) in F. Given a probability
space, we can talk about the probability of an event A € F happening, and we denote this
probability by P(A).

Let B be a Banach space with a norm denoted by || -||s. A B-valued random variable
X(w) is a measurable map X (w) : (Q,F) — (B,Borel(B)), where Borel(5) is the sigma
algebra of Borel measurable subsets of the Banach space B. For simplicity of notation, we
usually omit the dependence of a random variable on the outcome w € 2, and hence, we will
denote a random variable by X instead of X (w), whenever it is clear from context that X is
random. In the case where B = R, this coincides with the usual definition of a real-valued
random variable. Given a random variable X (w) : 2 — B, we define the law of X to be the
probability measure px on (B, Borel(B)) defined by

ux(A) =P(X(w)e A), for Ae Borel(B).

It will be important for us later to quantify the boundedness properties of random vari-
ables taking values in Banach spaces. A B-valued random variable X (w) : € — B belongs
to the space LP(€); B) if

E(||X(w)||g) <o, if1<p< o,
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| X (w)||s < C" almost surely for some constant C' > 0, if p = oo.

Knowing that a random variable X (w) is in LP(€; B) gives important information about how
likely it is for X to attain large values. This is quantified through Chebychev’s inequality,
which states that if X € LP(Q;B) for 1 < p < oo, then

E(|| X%
(XI5 > 3) < 2C 1B,

See also Theorem 1.6.4 in [67] for a more general form of Chebychev’s inequality.

for all A > 0.

2.2 Probabilistic convergence

Next, we discuss convergence of random variables, and review standard results about prob-
abilistic convergence in the context of random variables taking values in Banach spaces. We
discuss convergence in probability, weak convergence, and convergence almost surely, and
state several fundamental results which relate these different types of convergence with each
other and which will be useful in the future chapters about stochastic FSI.

Convergence almost surely

Convergence almost surely is the probabilistic analogy of pointwise convergence. Suppose
that {X,,(w)}r_, and X(w) are B-valued random variables that are all defined on the same

probability space (2, F,P). Then, X, (w) converges to X (w) almost surely if
P ( lim | (w) ~ X()lls = 0) = 1,
n—0o0

or equivalently if X, (w) — X(w) in B for all outcomes w in some measurable set )y € F
with Qg < Q, where P(£y) = 1.

Convergence in probability

Next, we describe convergence in probability of B-valued random variables, which states
informally that random variables are arbitrarily close in value to a limiting random variable
with arbitrarily high probabilities as n — oo. Given a sequence {X,(w)}*_, of B-valued
random variables and a B-valued random variable X (w), all defined on the same probability
space, we say that X,, converges in probability to X if

lim P(|| X, — X[z =€) =0 for all e > 0.
n—o0

There is the following well-known connection between convergence almost surely and
convergence in probability, see Theorem 2.3.2 in [67]. We note that the proof uses a well-
known measure theoretic result known as the Borel-Cantelli lemma, see Theorem 2.3.1 in
[67].
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Proposition 2.2.1. Let {X,(w)}*_, be a sequence of B-valued random variables such that
X, (w) converges in probability to a limiting B-valued random variable X (w). Then, there
exists a subsequence such that

Xy, (w) = X(w) in B almost surely as k — co.

Weak convergence

Next, we will discuss weak convergence of random variables, which describes convergence of
the expected values of observable quantities. For further discussion of weak convergence, we
refer the reader to Section 3.2 in [67] for example.

A sequence of random variables {X,,(w)}°_; converges weakly (or equivalently, con-
verges in law or distribution) to a limiting random variable X (w) if for all continuous
bounded functions f : B — R,

lim E[f(X,)] = E[f(X)].

n—0o0

Here, we can intuitively think of the bounded continuous function f : B — R as some
observable which depends on the random value of X, or X.

We can also define the notion of weak convergence for probability measures too, and
we will state this specifically for probability measures on Banach spaces. Suppose that
{pn}e_y and p are probability measures on a common Banach space (B, Borel(B)). Then,

the probability measures p,, converge weakly to p if for all continuous bounded functions
f:B—>R,

iy | f()d @ ff \dju(z

n—o0

Note that if B-valued random Varlables {X,}* | converge weakly to X, then their laws
{px, }o_, also converge weakly (as probability measures on B) to px.

Weak convergence is a particularly nice form of probabilistic convergence because there
is a well-known criterion, known as tightness, which will allow us to extract a weakly
convergent subsequence from a tight sequence of random variables, see Theorem 3.2.13 in
[67] and Proposition 6.1 in [128]. A sequence of B-valued random variables {X,,(w)}¥_; is
tight if for all € > 0, there exists a compact set K. < B depending on € such that

P(X,(w)e K) >1—¢,  foralln.

Essentially, tightness is a condition that keeps the probabilistic mass of random variables
from escaping out to infinity, by requiring the probabilistic mass of a collection of probability
measures to be uniformly contained in compact sets. If we specialize to the case of separable
Banach spaces, then tightness allows us to extract weakly convergent subsequences from
tight sequences of random variables. This is the content of the following classical probability
result, which is part of a more general result known as Prokhorov’s theorem, stated for
example in Proposition 6.1 in [128].
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Theorem 2.2.1. If {X,,(w)}¥_; is a tight sequence of random variables taking values in a
separable Banach space B, then there exists a subsequence and a B-valued random variable
X (w) such that X, (w) converges weakly to X(w) as k — c0.

We make some additional remarks about tightness, in terms of the connection between
uniform boundedness of random variables and tightness, which will be essential in the study
of stochastic PDEs. We first establish the following corollary to the previous theorem, which
states that uniform boundedness of real-valued random variables is sufficient to establish
tightness.

Corollary 2.2.1. Suppose that {X,,(w)}>_, is a sequence of real-valued random variables
such that

E(|X,|P) < C, for all n, for some 1 < p < .

Then, the sequence {X,,(w)}r_, is tight and hence, there exists a real-valued random variable
X(w) such that X, (w) converges weakly to X(w) as k — o0, along some subsequence

{nitizs-

C
Proof. Choose € > 0. Choose A sufficiently large so that ﬁ < €. Then, by Chebychev’s
inequality, if we set K. = [—\, A], we have that

P(X,(w)e K. >1—¢, foralln.

Since K, is a closed and bounded subset of R, it is a compact set in R, which establishes
that {X,(w)}>_, is a tight sequence of real-valued random variables, which establishes the
result. [

However, we note that a similar argument does not work for random variables X that
take values in general (infinite-dimensional) Banach spaces. In particular, if {X,,(w)}_, is
a sequence of B-valued random variables where B is a separable Banach space, then having
a uniform bound of the form

E(||X,||5) < C,  for all n, (2.1)

does not imply that the random variables {X,,(w)}*_; are tight. The reason the argument
above involving Chebychev’s inequality works for the case of real-valued random variables
is because closed and bounded subsets of R are compact in R. However, because general
Banach spaces can be infinite dimensional, closed and bounded subsets of Banach spaces are
no longer necessarily compact subsets of the Banach space. In particular, given the uniform

bound ({2.1)) above, we can find a closed ball B(R,) of radius R, in B for which

P(X, € B(R.)) >1—¢, foralln.

However, this closed ball B(R,) is not necessarily compact in B, which prevents us from ob-
taining that the random variables {X,,(w)}?_; are tight. Hence, in order to deduce tightness
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from the uniform bound ({2.1] . one would need to embed the Banach space B compactly into
another Banach space By. Then, the closure in By of the image of B(R,) under this compact
embedding from B to By would be a compact subset of By, in which case we can show that
the random variables {X,,(w)} considered instead as By-valued random variables are tight.

Additional classical results about convergence

We will finish this discussion of probabilistic convergence by discussing two classical results
that will be needed in later chapters on stochastic FSI. We will first discuss the Skorokhod
representation theorem, which relates weak convergence and convergence almost surely. We
will then discuss the Gyongy-Krylov lemma, which relates weak convergence of appropri-
ate joint laws of random variables to convergence in probability, and hence to almost sure
convergence along a subsequence.

First, we discuss the Skorokhod representation theorem, which will give a way of “upgrad-
ing” weak convergence of random variables to almost sure convergence of random variables,
at the expense of moving to a potentially different probability space. However, moving to
a different probability space can be done while retaining the laws of the random variables,
so that even on the new probability space, we can make statements about the distributions
of the random variables on the initial probability space. The statement of the Skorokhod
representation theorem, see Proposition 6.2 in [12§] for example, is as follows.

Theorem 2.2.2. Suppose that {u,}>_; is a sequence of probability measures on a separable
Banach space B that converges weakly to a limiting probability measure p on B. Then,
there exists a probability space (€, F,P) and B-valued random variables {X,}*_, and X on
(Q, F,P) such that

X, - X, P-almost surely,

and the laws of X,, and X for all positive integers n are u, and p respectively.

Remark 2.2.1. Though we have stated the result above for a weakly convergent sequence
of probability measures {u,}>_;, the Skorokhod representation theorem is often applied
to weakly convergent sequences of random variables {X,}>_, taking values in a separable
Banach space B, all defined on a common initial probability space (€2, F,P). Given such a
sequence {X,}*_, that converges weakly to a B-valued random variable X also defined on
(Q, F,P), there exists a new probability space (Q, F,P) and new B-valued random variables
{X }n , and X on this new probability space such that X, — X P-almost surely, and X,

and X have the same laws as X,, and X. This follows from the previous statement of the
Skorokhod representation theorem by letting u,, be the law of X,, and by letting p be the
law of X.

Example 2.2.1. Since the Skorokhod representation theorem may seem abstract initially,
we give a concrete example to demonstrate how this theorem works. Consider the probability
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space 2 = [0,1], where F is the set of Borel measurable sets and P is the usual uniform
measure on [0, 1] (Lebesgue measure dx). For each k and n, define the random variables

X (W) = Lk—1)/nje/m] (W), for w e [0, 1],

wheren > 1 and 1 < k < n. Then, consider the sequence of random variables { X,,}°_,, where
if NV is the largest integer such that 1 +2+3+..+ N <nandifk=n—(14+2+3+...+ N),
then

X, = Xnsip

Explicitly, the sequence we are considering is
X1, Xo1, Xop, X31, X392, X33, Xa1, Xa2, Xa3, Xa4,....

One can verify that the sequence {X,}°_; constructed above converges weakly to the zero
random variable X which is zero for all w € [0, 1], but X, does not converge almost surely.

However, by the Skorokhod representation theorem, we can essentially rearrange how out-
comes are mapped to realizations without changing laws to recover almost sure convergence.
In the notation of the Skorokhod representation theorem, we will let the tilde probability
space (Q, F,P) be the same as the initial probability space (€2, F,P). (However, we remark
that in general, the probability space (€, F,P) can be different from (Q2, F,P), but we do
not need to do this for this particular example.) Then, we will define X,, by letting N as
before be the largest positive integer such that 1 +2 + ... + N < n, and then we will define

Xn = XN+1,1-
Thus, the sequence of random variables {X,,}%_, is given by
Xl,h X2,17 X2,17 X3,17 X3,17 X3,17 X4,17 X4,17 X4,17 X4,17

Note that X'n has the same law of Xn~for all n, but now we have that Xn converges almost
surely to the zero random variable X, whereas the original sequence {X,}*_; converges
weakly to the zero random variable X, but does not converge almost surely.

Next, we will discuss a result which uses weak convergence in order to show convergence
in probability of random variables. This result is known as the Gyongy-Krylov lemma, and
it will be closely connected to the Skorokhod representation theorem. In stochastic PDE
problems, what often happens is that one uses the Skorokhod representation theorem to
upgrade weak convergence to almost sure convergence, but the challenge is that the random
functions are now defined on an alternate tilde probability space. One often wants to see if
the random solution that is constructed to a stochastic problem can be shown to exist on
the original probability space, and to do this, one usually invokes a standard Gyongy-Krylov
argument which uses a uniqueness result for the stochastic problem to transfer the random
functions on the tilde probability space back to the initial probability space. In Chapter 4,
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we will discuss the full so-called Gyongy-Krylov diagonal argument in the context of fully
coupled stochastic FSI problems, but here, we state the relevant lemma for future reference.
This lemma can be thought of as a criterion for showing that random variables converge
in probability, which relies on the weak convergence of the joint laws of ordered pairs of
these random variables. For further discussion about the Gyoéngy-Krylov lemma and its
applications, see Lemma 1.1 in [88] and Proposition 6.3 in |128].

Theorem 2.2.3. Let {X,,}°_; be a sequence of random variables taking values in a separable
Banach space B. Denote the joint law of (X,,, X,,) by v, which is a probability measure
on B x B defined by

Umn(A X B) =P(X,, € A, X,, € B), for A, B e Borel(B),
and more generally,
pmn(A) = P((Xm, X)) € A), for A e Borel(B x B).

Consider the collection of joint laws {vpn},; ,—1- Suppose that for any subsequence my, ny
where {my}{_, and {n,};>; are monotically increasing to infinity, we have that the sequence
of probability measures {V,, », }1o; converges weakly to a probability measure v on B x B
such that

v({(z,y)e BxB:x=y}) =1.

This condition is known as the diagonal condition, and if the diagonal condition is satisfied,
then the sequence of B-valued random variables { X,,}*°_; converges in probability to a limiting
B-valued random variable X.

2.3 Stochastic integration

Next, we will discuss the types of random noise that will be relevant to our analysis of
stochastic FSI later. We will begin with one-dimensional white noise, which is a type of
random noise in time whose intensity at every point in time is independent from its intensity
at every other point in time. We will formally denote the intensity of a one-dimensional
white noise at a given time ¢ by W (t), so that we can express this independence property of
white noise formally as

E[W(s)W(t)] = 6o(t —s), s, =0,

where 9, is the Dirac delta function.

As the notation suggests, we can think of white noise as the formal time derivative
of a stochastic process {W(t)}i>0, known as a one-dimensional Brownian motion. In this
section, we will review basic properties of stochastic processes, and review the definition and
properties of a one-dimensional Brownian motion. We will then use these ideas to review
the construction of the stochastic integral against one-dimensional white noise, which is the
[to integral.
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Stochastic processes

While we described random variables in the previous section, because PDE dynamics are
often evolving in time, we will have to consider more generally random quantities in time.
Thus, we will introduce the notion of a stochastic process, or a random process in time.
Stochastic processes can be indexed by discrete time steps (such as a random walk), or can
be indexed by continuous time (such as a Brownian motion). We will focus on the case
of stochastic processes indexed by continuous time, since this will be the case that is most
relevant to our analysis later. In this case, a stochastic process on a probability space
(Q, F,P) is a collection of random variables {X;};>o indexed by time ¢ > 0, where each
random variable X; is a random variable on the probability space (2, F,P). These random
variables all take values in the same space, which can be assumed to be a Banach space
(which is often just the real numbers R, but can be more general Banach spaces too).

When we index the random variables { X;};>¢ by time ¢ > 0, it will be convenient to think
of X; as the random information that we observe at a time ¢ > 0. Intuitively, when we have
such a stochastic process, we can then think of observing X, for increasing values of ¢ as
observing more information in time about a random system. We will mathematically encode
this increase in observed information about a random system in time using the mathematical
concept of a filtration.

Definition 2.3.1. Suppose that (2, F,P) is a probability space. A filtration {F;};~ is an
increasing family of sigma algebras, in the sense that F, < F for all t > 0, each F; is a
sigma algebra, and F, < F; for all s < ¢t. This filtration is a complete filtration if every
measurable set A < F with P(A) = 0 is included in F; for all ¢ > 0. When we have a
probability space (2, F,P) and a particular filtration {F;};>¢ on this probability space, we
can refer to the probability space with filtration as (Q, F, {F;}i=0, P).

Given a filtration, we can then discuss whether a given stochastic process is compatible
with the information that is observable at each time ¢ > 0, specified by the filtration {F;}i=0
on the underlying probability space.

Definition 2.3.2. A stochastic process { X;};>0 defined on a probability space with filtration
(Q, F,{Fi}i=0,P) is adapted to the filtration {F;}i>o if X; is Fr-measurable for all ¢ = 0.

By viewing a stochastic process {X;};>0 as a collection of random variables on a proba-
bility space (2, F,P) indexed in time, we are viewing the stochastic process as a collection
of random variables X; : 2 — B, where B is a Banach space. However, instead of viewing
time as just an index set, we can also view the entire stochastic process, which we will refer
to as X, as a random function X : [0,00) x  — B, where X (¢,w) is a function of both time
t € [0,00) and the outcome w € 2. We can then define measurability properties of stochastic
processes that refer to how the measurability properties of the stochastic process evolve in
time and interact with the time parameter. We will consider two measurability properties
in time that will be important in our future analysis: joint measurability and predictability.
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Definition 2.3.3. Given a stochastic process { X;};>0 on a probability space (2, F,P) taking
values in a Banach space B, the stochastic process is jointly measurable if it is measurable
as a function X : [0,00) x  — B, where [0,00) x €2 is considered with the product sigma
algebra consisting of the product of the Borel measurable subsets of [0, ) and F, and where
B is considered with the sigma algebra of Borel measurable subsets of B.

Definition 2.3.4. Given a probability space (2, F,P) with a filtration {F;}:>o, the pre-
dictable sigma algebra is the sigma algebra on [0,00) x Q generated by subsets of the
form

{la,b) x A:0<a<band Ae F,}.

A stochastic process {X;}>0 is predictable if it is measurable as a function from [0, c0) x
to B, where [0,0) x Q is considered with the predictable sigma algebra and B is considered
with the sigma algebra of Borel measurable subsets of B.

We can use the following criterion to classify stochastic processes as predictable, see
Proposition 5.1 in Chapter IV, Section 5 of [155].

Proposition 2.3.1. Suppose that {X;};~0 is a stochastic process on a probability space
(Q, F,P) that is adapted to the filtration {F;};>0. Suppose that {X;};>¢ also has left contin-
uous paths almost surely so that with probability one, X (¢,w) : [0,0) — B is left continuous.
Then, {X;};>0 is predictable as a stochastic process taking values in .

We refer the reader to Chapter IV, Section 5 of [155] for example, for more details about
predictable processes and the predictable sigma algebra.

One-dimensional Brownian motion

We will next discuss an important stochastic process, known as (one-dimensional) Brownian
motion. Brownian motion is a nice prototypical stochastic process to consider in many
applications since it has many desirable properties, such as having continuous paths almost
surely and having stationary increments W (t) — W (s), whose distribution depends only on
the time difference ¢t — s. We recall the following definition of a one-dimensional Brownian
motion.

Definition 2.3.5. Given a probability space (2, F,P), a stochastic process {W;}i>¢ tak-
ing values in R is a one-dimensional Brownian motion if the following properties are
satisfied:

e The path W(t,w) : [0,00) — R is a continuous path with W (0) = 0 almost surely (for
all w in a measurable set having probability one).

e The increments W (t) — W (s) are distributed as N(0,t—s), a normal distribution with
mean zero and variance ¢ — s.
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e The independent increments property is satisfied: if s; < t; < sg < to, then W(ts) —
W (s9) and W (t;) — W (s;) are independent random variables.

The independent increments property has the following direct corollary: if we define the
natural filtration {F;},;>0 associated to the Brownian motion {W,;};>¢ by

Fi=0({Ws:0<s<t}),

where o ({W : 0 < s < t}) < F denotes the sigma algebra generated by the random variables
Wy for 0 < s < t, then the increment W(t) — W(s) for 0 < s < t is independent of any
random variable that is F,-measurable.

We can extend this independence criterion to general filtrations. Suppose that we are
given a probability space (£, F,P) and a filtration {G;};>0 on this probability space. Then,
we say that a one-dimensional Brownian motion is more specifically a Brownian motion
with respect to the filtration {G;};>¢ if

e IV, is adapted to G; for all ¢t > 0.
o W (t)—W/(s) is independent of all G;-measurable random variables whenever 0 < s < t.

In particular, note that any one-dimensional Brownian motion {W,;},>¢ is a Brownian motion
with respect to its natural filtration {F;};>o defined above.

Brownian motion has many interesting properties, and we refer the reader to the ex-
position in references, such as [155], Chapter 7 of [67], and Chapter 14 of |103], for more
detailed information about Brownian motion and its relevant probabilistic properties. We
will conclude our brief summary of Brownian motion by describing some of its fundamental
path properties, in particular its properties when considered as a random function of time
t € [0, 00), that will play a role in describing some of the subtleties underlying the theory of
stochastic integration.

We recall the following definitions to discuss the path properties of one-dimensional
Brownian motion. Recall that a real-valued function f : [0,00) — R is locally a-Ho6lder
continuous for a € (0,1) if for all T > 0,

|f(t) = f(s)]

sup —————— < 0.
5,t€[0,T],s%¢ ]

Recall that a real-valued function f : [a,b] — R is of finite variation if

|P|

SUPZ |f(ti) — f(tiz1)| < oo,
P iz

where the supremum is over all finite partitions P of the interval [a, b] consisting of points:

a=ty <t <..<ty_1<ty=0,



CHAPTER 2. PROBABILISTIC PRELIMINARIES 67

where N = |P| is the number of subintervals in the partition. We then have the following
results about the path properties of one-dimensional Brownian motion. For more information
about these properties, see Theorem 14.5 and Proposition 14.10 in [103] and Chapter I,
Section 2 of [155].

Proposition 2.3.2. Let {W,;};>¢ be a one-dimensional Brownian motion on a probability
space (§2, F,P).

e With probability 1, the paths of Brownian motion are not differentiable for all ¢ > 0.

e More generally, with probability 1, the paths of Brownian motion are not a-Holder
continuous on any closed interval for a € [1/2,1).

e The paths of Brownian motion are not of finite variation on any closed interval with
probability 1.

e The paths of Brownian motion with probability 1 are locally a-Holder continuous for
ae (0,1/2).

Stochastic integration and the It6 integral

Next, we discuss the construction of the Ito integral, which is a way of integrating pre-
dictable processes against one-dimensional white noise dW (¢). For the construction of the
It6 integral, we follow the presentation in Section 2.2 in [111], co-authored with Suncica
Cani¢, which discusses stochastic integration more generally against spacetime white noise,
and we specialize the discussion in [111] to the more specific case of stochastic integration
against one-dimensional white noise in the current subsection. We refer the interested reader
to Chapter IV of [155] for a more involved discussion of stochastic integration.

As we discussed in the previous subsection, Brownian motion is almost surely not dif-
ferentaible at any time, so the formal expression dW (t) for white noise does not make sense in
a classical pathwise sense, meaning that with probability one, the path W (¢,w) : [0,00) — R
is not differentiable at any time ¢t > 0. This complicates the construction of the stochastic
integral for the following reason. If we wanted to define the stochastic integral

f U X (W)W (b,

where X (¢,w) is a predictable stochastic process, we might first try to follow the procedure
in the case of Riemann integration and consider for each partition P consisting of points

O=t0<t1<...<tN_1<tN=T,

the following discrete sums:

X(tir,w) - [W(t:) = W(ti-1)],

N
i=1

7
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which is a real-valued random quantity depending on w, and then we might hope to pass to
the limit almost surely in these random sums, so that we would pass to the limit pathwise
for each w in a probability one measurable subset of (2. However, these random sums do not
necessarily converge pathwise as |P| — 0, and this has to do with the fact that the paths
of Brownian motion are not differentiable for any time ¢ > 0, and are not even of finite
variation on any finite closed interval, with probability one. In fact, the convergence of these
random sums must be taken in probability, rather than almost surely, in order to obtain a
reasonable limit, which reflects the fact that Brownian motion behaves well in a probabilitic
sense but not path by path, see Proposition 2.13 in Chapter IV, Section 2 of [155].

We will thus use a different approach to define the stochastic integral, where we will define
stochastic integration of elementary integrands and then use a density argument to extend
the stochastic integral to a more general class of integrands. Consider a Brownian motion
{W,}i=0 on a probability space (2, F,P) and let {F;};~0 be the natural filtration associated
with the Brownian motion. Then, we define the collection S of elementary predictable
integrands, which are finite sums of random functions in time of the following form:

f(t,(x)) = X(w)l(a,b] (t)v
where X (w) is a real-valued F,-measurable random variable and 0 < a < b. We define the

stochastic integral of f(t,w) = X (w)1liy(t) to be

fo F(tw)dW (1) = X(w) - [W(B) — W(a)],

and by linearity, we have more generally that for f € S of the form

ZX ) (s 17 (), (2.2)

where X; is a real-valued F,,-measurable random variable and 0 < a; < b <as <by < ... <
an < bN7

fftde ZX (bs) — W (ay)].

We note that every elementary predlctable 1ntegrand f € S can be expressed uniquely in the
form since for 0 < s < t, we have that the filtration {F;};>¢ satisfies F5 < F;. For more
on elementary integrands and elementary processes, see Chapter IV, Section 2 of |155].

Next, we will extend the definition of the stochastic [to integral from elementary pre-
dictable integrands to more general integrands by establishing the following identity, which
is known as the Itd isometry.

Proposition 2.3.3. For elementary predictable integrands f € S,

E [(LOO f(t,w)dW(t)>2] =E (f ]f(t,w)\%t) :
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Proof. Consider f € §, which thus has the form

N

f(t,CU) = ZXi(w)l[ai,bi)(t)a

i=1

where X; is F,,-measurable and a; < b; < as <by < ... <ay < by.
We first compute the left hand side and we use the definition of the stochastic integral
to calculate

We will show that the cross terms ¢ # j will vanish. Suppose without loss of generality that
i < j so that we have a; < b; < a; < b;. In this case, X;(w), X;(w), and W (b;) — W(a;) are
all F,, measurable (by properties of filtrations), so they are all independent of the increment
W(b;) — W(a;). Hence, we have that for i < j,

E(Xi(w) - X5(w) - [W(5) = W(ai)] - [W(5) = W(ay)))
= B(Xi(w) - X;(w) - [W(0:) = W(ai)]) - E(W (b)) — Wiay)) =0,

since the increment W (b;) — W (a;) has mean zero. Therefore, only the terms where i = j
remain and thus, using the fact that | X;(w)[? is F,,-measurable and is hence independent of
[W (b;) — W (a;)|?, we obtain that

[(f Flt.w)aw )] (Z|X () - W(a»ﬁ)

Z E(W (b)) = W(a)])* = ) (b — @) - E(| X (w) ).

i=1
For the right hand side, we compute that
o N
B( [ Irtwrar) - ( [ 2 X)L >> — (k- a) - E( X))
i=1

since the sets (a;, b;] are all disjoint from each other. This establishes the desired identity. [
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Using this isometry, we can extend the definition of the Ito integral to a broader class of
integrands P, which is the collection of jointly measurable integrands f(¢,w) : [0,00)xQ — R
that can be obtained as the closure of S in the set of jointly measurable stochastic processes,
under the norm || - [|p defined by:

115 = ( [ Iwpar).

Since we have defined the Ito integral for elementary predictable integrands f € S, we will
use the Ito isometry to extend the definition of the It6 integral to the broader class of
integrands f € P by using a density argument. Given an integrand f € P, we consider
an approximating sequence {f,}>_; of elementary predictable integrands f,, € S, where f,
converges goo f in the norm of P. Given such an approximating sequence, we define the Ito

integral f f(t,w)dW (t) to be the real-valued random variable that is the limit in L*(Q) of
0

Q0

the random variables f fa(t,w)dW (t) for f, € S, where the existence of this limit follows
0
from the Ito isometry.

White noise and stochastic integration

We conclude this chapter by extending our past disucssion of one-dimensional white noise
and stochastic integration to the context of spacetime white noise, which is random noise
with an intensity that is formally independent at every point in space and time. The material
from this section is adapted from Section 2.2 of the manuscript [111] written with Suncica
Cani¢.

In this section we review the concept of spacetime white noise on R x R™ and stochastic
integration against white noise. This will be used throughout the rest of the manuscript.
Note that we will use R* to denote [0, 00), which represents the time variable. While we will
be primarily concerned with dimensions n = 1,2, we will define white noise in full generality,
as the extension to higher dimensions is no more difficult.

We follow the exposition that can be found in [107] about martingale measures and refer
the reader to the original reference by Walsh [177] for more details. We note that while
the forthcoming analysis can be carried out more generally for martingale measures, we will
restrict to the case of white noise for simplicity. The full martingale measure theory can be
found in [177] and [107].

Recall that a Gaussian process is a process {G;}icr, such that the finite dimensional
random vectors

(Gil, Gi2, ceny le>, 11,02, ..., 1 € 1
have distributions that are multivariable Gaussian, for any finite collection of iy, is, ..., iy € I.

We will define the covariance function to be the symmetric function C': I x I — R that

gives the covariance of any two Gaussians GG;, and Gj,,

Cl(ir,i9) = E[(Giy, — E(Gyy))(Gi, — E(Gy,))]-
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For a mean zero Gaussian process, which is a Gaussian process {G;};s such that E[G;] =0
for all ¢ € I, this reduces to the simpler formula

Clir,iz) = E[Gi,Gy,).

We will now define white noise as a Gaussian process, taking for granted the existence
of such a process.

Definition 2.3.6 (White noise on R* x R™). Let B(R* x R"™) denote the collection of
all Borel subsets of R* x R". White noise on R* x R" is a mean zero Gaussian process
{W(A)} seB®+xrny indexed by the Borel subsets of R* x R", with the covariance function

C(A,B) := E[W(A)W(B)] = A(An B), for A, B e B(RT x R"), (2.3)
where ) is Lebesgue measure in RT x R™.

Some basic facts about white noise that will be useful later are summarized in the fol-
lowing proposition.

Proposition 2.3.4. Let {IV(A4)} AeB(R+xrn) denote white noise. Then, the following holds
true:

e For each bounded set A € B(R* x R"), W(A) is normally distributed with mean 0
and variance A\(A), namely W (A) ~ N(0,\(4)). So W(A) € L?(Q), where 2 is the
probability space.

o If An B =@, then W(A) and W(B) are independent.

e Given A, B € BR* x R"), W(A U B) = W(A) + W(B) — W(A n B), almost surely
(a.s.), as random variables.

e White noise is a signed measure taking values in L*(Q), namely W : B(R* x R") —
L?(Q). Furthermore, white noise considered as a measure is o-finite.

Proof. The first point follows from the fact that white noise is a mean zero Gaussian process,

and E[(W(A))?] = AA n A) = X(A) by (2.3). The second and third points are from
Exercise 3.15 in [107]. The second point follows from the fact that W (A) and W(B) are
mean zero Gaussians with zero covariance, by applying . The third fact follows from
the computation of the expectation E[(W(Au B) —W(A)—W(B)+W(An B))?] = 0. One
can verify this by expanding the square and applying repeatedly. Note that the third
property gives the finite additivity properties of a measure. For the final property, one must
check that white noise has the remaining properties of a measure, and we refer the reader
to the proof of Proposition 5.1 in [107]. O
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Remark 2.3.1. Heuristically, one thinks of white noise as random noise that is “indepen-
dent” at every point in time and space. One can then interpret W(A) heuristically as being
the net contribution of the noise in A. With this heuristic interpretation, it is at least intu-
itively reasonable that white noise has the properties of a measure. The fact that the noise
is independent at every point in time and space is in accordance with the second property

in Proposition [2.3.4]

Stochastic integration against white noise. We will first define integration of simple
functions against white noise, and then proceed to the most general case by an approximation
argument. For this purpose, we introduce the following nomenclature (see Sec. 5 of |[107]):

e For any A € B(R") and t € R*, we use W;(A) to denote W;(A) = W([0,¢] x A), for
A e B(R"), so that [0,t] x Ae B(RT x R").

e For t > 0, we consider the filtration F; associated to white noise to be the o-algebra
generated by the collection of random variables {WWs(A) : s € [0,t], A € B(R")}.

e We use S to denote the space of simple functions, which are functions of the form

n

f(ta 1:’(")) = ZXi(w)l(ai,bi] (t)lAi(x)7 (24)

i=1

where X; is a bounded, F, -measurable random variable with 0 < a; < b;, and A; €
B(R™) is bounded.

Definition 2.3.7. Let f € S be a simple function. We define
t t n
f f(s, 2, w)W (dz, ds) = f f D Xi(w) a0 (5)La, ()W (da, ds)
0 JR™ 0 =1
= ) Xi(@)[Winb, (Ai) = Wina, (4], (2.5)
i=1

where the “wedge” notation corresponds to @ A f = min{«, 5}.

It is easy to check that the definition of the integral in is independent of the repre-
sentation of the simple function as (2.4)).

We have the following crucial isometry property for the stochastic integral of simple
functions against spacetime white noise. This is an extension of the It6 isometry to the
stochastic integral against spacetime white noise.

Proposition 2.3.5. For f € S,

E [(f . ft, z,w)W(du, dt)>2] =E U: f ) \f(t,x,w)\%dt) . (2.6)
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Proof. In the case where f(¢,x,w) is a simple function of the form
ftz,w) = X (W)l (t)la(z),

one easily checks that

N [(f o @IV, dt)) ] = E (X*(w) [Wy(A) = Wa(A)])
= B (E[X?(w) (Wi(4) = Wa(4))* |F]) = B (X*(@)E[(W(4) = Wa(4))* |1F])

where we used the fact that X € F, to take it out of the conditional expectation. Using the
third property in Proposition [2.3.4]

0 2
E [( J f(t,x,w)W(dx,dt)) ] —E (XQ(w)E [W2((a,b] x A)]]—“aD .
0 Jre
Using the second property in Proposition [2.3.4] we deduce that this is equal to

— E[X%(w)]E [W?((a, b] x A))] —AA)(b- Q)E[X2(w)] = E (Loof |f(t,x,w)|2dxdt> .

We note that (2.6) holds for general f € S, by choosing a representation (2.4) of an
arbitrary simple function where the sets (a; x b;] x A; are disjoint, and then using the
independence property in the second property listed in Proposition [2.3.4} O

Next, we want to extend the definition of the stochastic integral to more general inte-
grands. For this purpose we recall the following definitions.

Definition 2.3.8. Let f(t,z,w) be a real valued function f: R* x R" x Q — R.

1. We say that f(t,x,w) is adapted to the filtration {F;}i>o if the map w — f(t,x,w) is
JF: measurable for each z € R™ and ¢ > 0.

2. We say that f(t,z,w) is jointly measurable if it is measurable as a function in time,
space, and the probability space, f: RT x R" x Q — R.

To define the stochastic integral, we must identify the class of admissible integrands,
which will be called predictable processes [56]. To do that, we denote by H the set of all
jointly measurable f(¢,x,w) such that

0
E (J f(t,a:,w)%xdt) < 0.
0o Jrn
Note that S < H.
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Definition 2.3.9. Define Py, to be the the closure of S € H under the norm

IfI% = E <JO B f(t,x,w>2dmt> - 2.7)

The elements of Py, are called predictable processes.

Finally, we define the stochastic integral for predicable processes, namely

JOC f(t,z,w)W (dz,dt), for f € Pw, (2.8)
0o Jre

by utilizing a density argument that uses the It6 isometry. In particular, we use the fact
that functions S are dense in Py (see Proposition 2.3 in [177]). Hence, given f € Py, there
is a sequence fr € S such that f, — f in Py, as k — oo. Using the isometry relation in
Proposition [2.3.5 one can show that the sequence

0 0
{J fr(t, z,w)W (dx, dt)} (2.9)
0 JR® k=1
is a Cauchy sequence in L?*(Q).

Definition 2.3.10. The random variable obtained in the limit of integrals (2.9) is the
stochastic integral (2.8)).

We can also define the integral on bounded time intervals, by noting that

LT (@)W (dr,d) = fo i f Loy (t)f (¢, 2, )W (da, dt).

Since the definition of the admissible integrands Py, is abstract, we list a set of criteria
that will help us determine whether a given integrand is in Py or not. Hence, we use the
following proposition, which follows directly from Proposition 2 in [56].

Proposition 2.3.6. Let {u(t, ) }sc[o,r],2er» be a stochastic process adapted to the filtration
{F:}+=0 such that the following conditions hold.

1. Joint measurability: (¢, z,w) — u(t,z,w) is B([0,T] x R™) x Fr measurable.
2. Finite second moments: E (Ju(t, z)|*) < o for all ¢t € [0,T], x € R™.
3. Continuity in L?*(Q): The process u considered as a map (¢,x) € [0,T] x R™ — L?*(2)

is continuous in L*(2).

T
4. Square integrability: E <f J ]u(s,y)\%yds) < .
0 n
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Then, the stochastic integral

¢
J f u(s, y)W(ds, dy)
0 n
is defined for all ¢ € [0, T].

Proof. This proposition follows from Proposition 2 of [56], and is Proposition 2 of [56]
adapted to the current context. Though Proposition 2 of [56] is stated for the more gen-
eral case of spatially homogeneous Gaussian noise, the statement of Proposition 2 of [56]
specialized to the case of white noise reads as follows:

Let {u(t, z)}icr+ 2ern be a stochastic process adapted to the filtration {F;}i>o and define
F = Uiz Ft- Suppose the following conditions hold:

1. Joint measurability: (¢, z,w) — u(t,z,w) is B(R,; x R™) x F measurable.
2. Finite second moments: E (|u(t, z)|?) < co for all t € RT, 2 € R".

3. Continuity in L*(2): The process u considered as a map (t,z) € RT x R® — L*() is
continuous in L?(Q).

4. Square integrability on a compact set and finite time: There exists a compact set
K < R™ and ty > 0 such that

E (f: L |u(s,y)|2dyds) <o

While the result in Proposition 2 of [56] is stated specifically for spatial dimension two,
one can verify that it holds for arbitrary dimension.

To see that the statement of Proposition 2 of [56] implies the result in Proposition m,
let K; be a sequence of compact sets that increase to R", and consider {u(t,x)}se[o,r]zcrn
satisfying the four conditions in Proposition We extend {u(z, t)}te[O,T]’xe]Rn to be defined
on all of time ¢ > 0 by defining

Then, 1jo)xx (¢, T)u(t, ) € Py.

w(z,t) = u(x,t) iftel0,T], w(x,t) =u(z,T) ift=T.

Then, {a(t, x)}icr+ zern along with tg = T" and each K; satisfies the conditions in Proposition
2 in [56]. Therefore, 1jo rxk, (¢, 2)u(t, z) = ljorx k. (t, ©)0(t, x) € Pw.
Since the fourth condition of Proposition [2.3.6| states that

B ([ [ s Panas) <

we have that 1jrxxk, (t, 2)u(t,z) — ljorxrn(t, x)u(t,z) in the norm of Py, since K; is a
sequence of compact sets in R increasing to all of R™. Hence, 1jor)xr~(t, z)u(t,z) € Pw
since Py is complete with respect to its norm. O
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A couple of remarks are in order. The first one uses the concept of modification, which
we now recall.

Definition 2.3.11. Let {u(t, z)}w[0,172ern be a stochastic process. Then {a(t, z)}ie[o, 17 zerm
is a modification of {u(t,x)}se0,7,zern if

P(u(t,x) = a(t,x)) =1, for all £ € [0, T],x € R™.

Remark 2.3.2. The third condition in Proposition [2.3.6] implies that there is a jointly
measurable modification (see the discussion on pg. 201 of [56], and the proof of Theorem
13 in [54]). Thus, in practice, one does not need to check the first condition, as by taking a
modification, the third condition implies the first.

Finally, we recall the following useful inequality, which is a direct consequence of a clas-
sical result known as the BDG (Burkholder-Davis-Gundy) inequality, which will be used
frequently, see [107] and Chapter IV, Section 4 of [155].

Theorem 2.3.1. For each p > 2, there exists a positive constant ¢, depending only on p

(and not on T) such that
( Yeon ([ enrn)”).

for all f e Py .

f(t, z,w)W (dx, dt)

Rn
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Chapter 3

A reduced model of stochastic FSI

In this chapter, we begin the study of stochastic fluid-structure interaction by considering
a reduced model of stochastic FSI, given by a stochastic viscous wave equation. The model
under consideration is a fully coupled fluid-structure interaction model involving a viscous
incompressible Newtonian fluid modeled by the stationary Stokes equations in the lower
half space (2 < 0) < R? interacting dynamically with an elastic structure which displaces
transversally from its reference configuration (z = 0). There is two-way coupling between
the fluid and structure, and the model is linearly coupled so that the stationary Stokes
equations for the fluid are posed on the fixed reference domain for the fluid Q; = (¢ < 0).
In order to consider the effects of randomness on the coupled fluid-structure dynamics,
we consider spacetime white noise forcing, scaled by a nonlinear Lipschitz function of the
structure displacement, acting on the elastic membrane, where the stochastic forcing on
the membrane perturbs the coupled dynamics of the fluid and structure, as a result of the
two-way coupling between the fluid and structure.

This model is a reduced model because even though the original model is described in
terms of a fluid subproblem and a structure subproblem that are appropriately coupled
through a kinematic and dynamic coupling condition, one can show that the full dynamics
of the structure and fluid can be described by a single self-contained equation for the struc-
ture displacement, known as the stochastic viscous wave equation. This is a wave equation
perturbed by stochastic spacetime white noise forcing, with an additional term +/—An, aris-
ing from the Dirichlet-to-Neumann operator for the lower half space, which mathematically
reflects the regularizing effects of the fluid viscosity on the structure dynamics. The original
fully coupled FSI model, involving a coupled system of PDEs, can be reduced to a single self-
contained stochastic equation for the structure displacement, since the fluid normal stress on
the structure, which is the forcing on the elastodynamics equation for the structure via the
dynamic coupling condition, can be expressed purely in terms of the structure displacement.
This allows us to consider a single stochastic equation for the whole stochastic FSI model,
and the specific geometry for this model allows us to consider a stochastic equation on R? for
the physical model, called the stochastic viscous wave equation. We can more generally
consider this stochastic viscous wave equation for general spatial dimensions n, where we
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emphasize that n = 2 is the dimension of the physical FSI model from which we derived this
equation.

Having a single self-contained stochastic equation on R™ allows us to analyze this fluid-
structure interaction model by using classical methods from stochastic PDEs, that have been
used to study stochastic heat and wave equations for example. This involves considering mild
solutions, which are solutions that are defined via convolution of the fundamental solution
with the spacetime white noise via an appropriately defined stochastic integral. In this
chapter, we will derive the stochastic viscous wave equation, and analyze its well-posedness
in various dimensions. The important result here will be well-posedness in terms of mild
solutions in spatial dimensions n = 1 and n = 2, which improves upon classically known
results for the stochastic heat and wave equations. We will also show that the stochastic vis-
cous wave equation has better Holder regularity of mild solutions in both spatial dimensions
n = 1 and n = 2 than the stochastic heat and wave equations. The improvements in terms
of well-posedness and regularity of mild solutions to the stochastic viscous wave equation
when compared to the classical stochastic heat and wave equations with spacetime white
noise arise from a combination of a favorable spacetime scaling in the equation combined
with the regularizing effects of fluid viscosity on the structure. While the methods we use
will be based on fundamental solutions, Fourier analysis, and stochastic integration rather
than the splitting scheme approaches found in Chapter 1, we discuss this reduced model
since the first well-posedness results for stochastic FSI were developed in the context of this
reduced model, and led the way for further analysis of such stochastic fluid-structure sys-
tems. In addition, the methods used in the analysis of this reduced model and the stochastic
viscous wave equation provide a nice application of the theory of spacetime white noise and
stochastic integration.

We emphasize that the content in this chapter is adapted from the previously published
paper [111], co-authored with Sunéica Canié.

3.1 Introduction

We propose a stochastic model for fluid-structure interaction given by a stochastic wave
equation augmented by dissipation associated with the effects of an incompressible, viscous
fluid:

N + 2uN—An, — An = f(n)W (dt, dx), in R". (3.1)

The wave operator models the elastodynamics of a linearly elastic membrane, where n denotes
membrane displacement, while the dissipative part, which is in the form of the Dirichlet-to-
Neumann operator applied to the time derivative of displacement, accounts for dissipation
due to fluid viscosity, where p denotes the fluid viscosity coefficient. The equation is forced
by spacetime white noise W (dt, dz), which accounts for stochastic effects in real-life prob-
lems. The spacetime white noise is scaled by a nonlinear, Lipschitz function f(n). We show
below how this equation is derived from a coupled fluid-structure interaction problem in-
volving the Stokes equations describing the flow of an incompressible, viscous fluid, and the



CHAPTER 3. A REDUCED MODEL OF STOCHASTIC FSI 79

wave equation modeling the elastodynamics of a (stretched) linearly elastic membrane. We
consider equation in R” with n = 1 and n = 2, focusing primarily on n = 2, which is
the physical dimension.

We prove the existence of a function-valued mild solution to a Cauchy problem for equa-
tion (3.1), which holds both in dimensions 1 and 2. Here, by “mild solution” we refer to
a stochastic mild solution defined via stochastic integration involving the Green’s function,
specified below in Definition [3.3.1} This is interesting because our result contrasts the results
that hold for the stochastic heat and wave equations: the stochastic heat and the stochastic
wave equations do not have function-valued mild solutions in spatial dimension 2 or higher.
Additionally, we prove that sample paths of the stochastic mild solution for the stochastic
viscous wave equation are Holder continuous with Holder exponents « € [0, 1) for n = 1, and
a€[0,1/2) for n = 2.

Our results show that the viscous fluid dissipation in fluid-structure interaction is suffi-
cient to smooth out the rough stochastic nature of the real-life data in the problem modeled
by the spacetime white noise. In particular, the Dirichlet-to-Neumann operator controls the
high frequencies in the structure (membrane) displacement that are driven by the spacetime
white noise. To the best of our knowledge, this is the first result on stochastic fluid-structure
interaction.

We begin by describing the fluid-structure interaction model from which the equation
arises. Consider a prestressed infinite elastic membrane surface, which is modeled by
the linear wave equation

e —An=F,, onl :={(r,15,0)eR®: (z,,,) € R}, (3.2)

where 7(x1, x2) denotes the transverse displacement (in the 3 direction) of the elastic surface
from its reference configuration I' and the external load Fy will be specified later in the
dynamic coupling condition. See Figure [3.1]

Beneath this elastic drum surface, we consider a viscous, incompressible fluid, which
resides in the lower half-space in R3,

Q = {(71, 72, 73) € R® : 23 < 0}, (3.3)
modeled by the stationary Stokes equations for an incompressible, viscous fluid:

V.o(r,u) = 0,

V.u = 0 } in Q = {(1,7,23) € R* : 23 < 0}, (3.4)

where o is the Cauchy stress tensor, and the unknown quantities are the fluid pressure
7 : Q0 — R and the fluid velocity v : Q@ — R3. We will be assuming that the fluid is
Newtonian, so that

o =-—nl+2uD(u),

where p denotes the fluid viscosity coefficient, I is the three by three identity matrix, and
D(u) is the symmetrized gradient of fluid velocity D(u) = (Vu + (Vu)T)/2. Therefore, the
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Figure 3.1: A sketch of the fluid and structure domains.

Stokes equations now read

Vr = ulu,

V.u — 0 } in Q = {(z1,19,73) e R* : 2 < 0}, (3.5)

where we require that the fluid velocity is bounded in the lower half space, and the pressure
m— 0 as |z| - o.

We consider the problem in which the elastic surface is displaced from its reference
configuration I' with some given initial displacement and velocity, allowing only vertical
displacement, where the elastodynamics of the elastic surface is driven by the total force ex-
erted onto the membrane, which comes from the fluid on one side, and an external stochastic
forcing on the other. See Figure

Inifinite domains are considered to simplify the analysis, since the main purpose of this
work is to understand the interplay between the dispersion effects in the 2D wave equation,
dissipation due to fluid viscosity, and stochasticity imposed by the external forcing, which can
be related to the stochasticity of not only the external forcing, but also to the stochasticity
of data (e.g., inlet/outlet data) in real-life applications, such as blood flow through arteries.

The fluid and the structure are coupled via two coupling conditions, the kinematic and
dynamic coupling conditions, giving rise to the so-called two-way coupled fluid-structure
interaction problem. The coupling conditions in the present study are evaluated at a fized
(linearized) fluid-structure interface corresponding to the structure’s reference configuration
I'. This is known as linear coupling. The two conditions read:

e Kinematic coupling condition. The kinematic coupling condition describes the
coupling between the kinematic quantities such as velocity. We will be assuming the
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no-slip condition, meaning that the fluid and structure velocities are continuous at the
interface (there is no slip between the two):

n = ulr, forx = (1;,1,)eR*t=>0. (3.6)

e Dynamic coupling condition. The dynamic coupling condition describes the bal-
ance of forces at the fluid-structure interface I', namely, it states that the elastody-
namics of the membrane is driven by the force corresponding to the jump in traction
(normal stress) across the membrane. This specifies the external load F; on the struc-
ture elastodynamics in the structure equation . On the fluid side, the traction
(normal stress) at the interface is given by —oes,, where e, is the normal vector to
', while on the other side, we are assuming a given loading F,.:(n) to be a stochastic
process f(n)W (dt,dx) in the e, direction. Examples of such a loading can be found
in cardiovascular applications, see e.g., [132]. Since we assume that the structure only
has transversal displacement, the dynamic coupling condition reads:

Nt — AN = —O €y - €4y + f(n(t,2))W(dt,dr) where z = (z1,29) e Rt = 0. (3.7)

In fluid-structure interaction problems and physical problems in general, physical phe-
nomena are subject to small random deviations that cause deviations from deterministic
behavior. The consideration of such stochastic effects in partial differential equations can
give rise to new phenomena, and is an area of active research. Furthermore, in real-life data,
one observes such stochastic noise both in terms of the force exerted onto the structure, as
well as in the data that drives the problem. For example, the measured inlet/outlet pres-
sure data in a fluid-structure interaction problem describing arterial blood flow, has similar
stochastic noise deviations to Fo.(n) = f(n(t,x))W(dt,dx). Here W (dt,dx) is spacetime
white noise in (¢,7) € RT x R? whose properties we will recall in Sec. . We will as-
sume that f : R — R is a Lipschitz continuous function. In particular, the case f # 1
allows dependence of the magnitude of the stochastic noise at each point on the structure
displacement 7(t, x) itself.

To derive equation as a model which describes the fluid-structure interaction prob-
lem —, we focus on the dynamic coupling condition (3.7). The goal is to try to
express the effects of fluid normal stress via the Dirichlet-to-Neumann operator defined en-
tirely in terms of 1 and/or its derivatives. In this derivation we also use the kinematic
coupling condition (|3.6)) as explained below.

First notice that the right hand-side of is given by

Oy,
—O0€gy - €p, =T — 21— on I
al'g

Since the tangential displacements are assumed to be zero, the kinematic coupling condition
(3.6) implies that the x; and x5 components of the fluid velocity w are zero on I', namely
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Uz, = Uz, = 0onI'. By the divergence free condition, one immediately gets that du,,/dzs = 0
on I'. Therefore,
—0€p, €y =7 onl, (3.8)

where 7 is the fluid pressure given as a solution to the Stokes equations (3.5)). So it remains
to find an appropriate expression for m on I' in terms of the structure displacement 7. In
fact, we will show that the following formula holds

= —=2uv—An onTl, (3.9)

under the assumption that 1 and 7, along with their spatial derivatives, are smooth functions
that are rapidly decreasing at infinity. We will also impose the boundary conditions on ,
stating that the fluid velocity is bounded on the lower half space, and the pressure 7 has
a limit equal to zero as |x| — oo in the lower half space. Details of this calculation are
presented in [112]. Here we present the main steps.

To derive the formula , we note that by taking the inner product of the first equation

in (3.5) with e,, we obtain

or 0%u,
2o Az 2y Uy + 14 @x%S = AU, (3.10)
02 0?
where Ay, 4, = Fr) + ol Furthermore, by taking the divergence of the first equation in
1 2

(3.5), and by using the divergence-free condition, we get that the pressure 7 is harmonic.
Thus, if we can compute the right hand side of on I', we can recover 7 as the solution
to a Neumann boundary value problem for Laplace’s equation in the lower half space, with
the boundary condition requiring that m goes to zero at infinity.

To compute the right hand side of , we need to compute v,,. Taking the Laplacian
on both sides of , and using the fact that 7 is harmonic, we obtain

A?u,, =0, on Q = {(x1, 15, 73) € R® : 23 < 0}. (3.11)

Thus, u,, satisfies the biharmonic equation with the following two boundary conditions:
from the kinematic coupling condition, we get

Ugs (T1, T2,0) = (21, T2, 0), onI' = {(z1, 79, 73) e R® : 23 = 0}, (3.12)

and from the fact that u,, = u,, = 0 on I'; by the kinematic coupling condition and the fact
that w is divergence free, we get

Oy,

6953

We solve (3.11)) with boundary conditions (3.12) and (3.13)) by taking a Fourier transform in
the variables x1 and x5, but not in x3. We will denote the Fourier variables associated with

(x1,22,0) =0, on I' = {(x1, 75, 73) € R* : x5 = 0}. (3.13)
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x1 and x5 by & and &, and we will denote € = (£,&), [£]* = €2 +&5. The Fourier transform
equation then reads:

€] s (&, 23) — 2|£\ 5l (8§, %3) + 571z, (§, w3) = 0. (3.14)
3 O
The solution is given by
Uy (€, 5) = (&)l — [€]77,(€)wge!®l"s. (3.15)

We can now compute the right hand side of (3.10]). Taking the Fourier transform of ({3.10))
in the 1 and x5 variables, and evaluating the equation on I' by using the kinematic coupling
condition (3.6)), we get

32%3

£(6.0) = —Hl€PR(E) + nR2 (€.0) = ~2l€PRLO), (3.1
where the last equality follows by using the explicit formula for g, (£, 2) in (3.15).

We now know that the pressure 7 is a harmonic function in the lower half space, satisfying
the Neumann boundary condition given in Fourier space. To recover formula ({3.9)
we want 7 on I'. This can be obtained via the Neumann to Dirichlet operator. It is well
known that the Dirichlet to Neumann operator for Laplace’s equation in the lower half
space is given by v/—A, thereby having a Fourier multiplier |¢|, see e.g., [29]. Therefore,
the Neumann to Dirichlet operator for Laplace’s equation in the lower half space (with the
solution to Laplace’s equation having a limit of zero at infinity) is a Fourier multiplier of

the form —. Thus, the Neumann to Dirichlet operator applied to the Neumann data (3.16])

gives the pressure as Dirichlet data:

m(§) = —2ul¢lm(§)  onT,

which establishes the desired formula ((3.9)).
The dynamic coupling condition (3.7]), together with (3.9) gives the stochastic model

Ne +V—=An, — An = f(n)W(dt,dr) on RQ,

where we have set the fluid viscosity pu = 1/2. We will refer to this model as the stochastic
viscous wave equation, as it is a stochastic wave equation augmented by the viscous effects of
the fluid, which are captured by the Dirichlet to Neumann operator acting on the structure
velocity ;.

Fluid-structure interaction systems have been considered extensively in the past mathe-
matical literature, and we refer the reader to the references described for linearly coupled and
nonlinearly coupled models of FSI in Chapter 1 of this thesis for an overview of what is known
in the deterministic context. However, we emphasize that to the best of our knowledge, prior
work in FSI has been exclusively for deterministic models of fluid-structure interaction.
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On the other hand, the study of stochasticity in PDEs has been of recent interest. Most
physical phenomena occurring in real-life applications feature the presence of some sort of
random noise that perturbs the system from what may be deterministically expected. The
types of noise added to the equation can vary, from the simplest spacetime white noise,
which intuitively is noise that is “independent at each time and space”, to forms of noise
with smoother spatial correlation so that the noise is still independent at separate times, but
the noise in space allows for correlation between points and is hence “smoother” than white
noise.

Many classical partial differential equations, such as the heat and wave equations, have
been studied with the addition of stochastic random forcing. There are many approaches to
the study of such stochastic PDEs. One approach uses Walsh’s theory of martingale mea-
sures, of which white noise is an example. The theory of integration against such martingale
measures can be found in Walsh’s work [177]. Upon defining such an appropriate theory
of stochastic integration, one can define what is called a mild solution to a given stochastic
partial differential equation by means of the Green’s function.

The choice of the stochastic noise used in the PDE being studied is of utmost importance.
White noise, which is noise that is intuitively “independent at all spaces and times”, is
a starting point for many studies. In formal mathematical notation, the time and space
independence property of white noise is expressed via expectation as

E(W(t, 2)W(s,y)) = do(t — s)do(z — ),

where dg is the Dirac delta function, and W(t,x), or W(dt,dx), denotes spacetime white
noise. In the rest of this manuscript, we will be using W (dt, dx) to denote spacetime white
noise and stochastic integration against white noise.

The white noise perturbed heat and wave equations have interesting properties. When
perturbed by white noise, the two equations:

m — An = W(dt,de) and ny — An = W(dt,dx) in R",

do not allow function-valued mild solutions in spatial dimensions two and higher, while they
do in spatial dimension one. See, for example, [55] and [107], where questions of existence
and uniqueness of mild solutions are addressed. This interesting property related to spatial
dimensions two and higher is due to the lack of square integrability of the Green’s function in
time and space, as we discuss later. Because of this property, “smoother” types of stochastic
noise, such as spatially homogeneous Gaussian noise, are used to perturb the stochastic heat
and wave equations in higher dimensions in order to yield function-valued mild solutions.
In formal mathematical notation, such spatially homogeneous Gaussian noise F'(t,z) has a
covariance structure

E(F(t,2)F(s,y)) = do(t — s)k(z —y), (3.17)

where k£ : R® — R. Note that the formal case of setting k to be the Dirac delta “function”
recovers the previous white noise case, though choosing smoother functions £ allows us to
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formulate “smoother” types of noise. See Sec. 3 of [55] and the work in [56] for more infor-
mation about spatially homogeneous Gaussian noise. One of the key questions in studying
stochastically perturbed PDEs is what conditions on k need to be imposed so that the result-
ing equation with the spatially homogeneous Gaussian noise with covariance structure (3.17))
has function-valued mild solutions? See, for example [56], and for more general contexts [54]
and [105].

In the current manuscript, we do not need the properties of general spatially homogeneous
Gaussian noise. This is because, as we shall see below, the viscous wave equation

e +V—An, — An = F, on R™, (3.18)

considered in [112} 116] as a model for fluid-structure interaction, combines the following
two desirable properties: the “right” spacetime scaling (c.f. wave equation), and adequate
dissipative effects. The resulting behavior is “in between” the wave and heat equations. The
viscous wave equation turns out to have just the right scaling and dissipation to allow
function-valued mild solutions even in spatial dimension two for the white noise perturbed
equation

N + N —An, — Anp = W (dt, dx) in R". (3.19)

This is of great interest, since equations and in two spatial dimensions correspond
exactly to the physical fluid-structure interaction model we are considering, and hence have
direct physical significance.

The main results of this work are: (1) the existence of a function-valued mild solution for
the white noise perturbed viscous wave equation (and ) for dimensions n = 1 and
n = 2, and (2) Hélder continuity C%* with a € [0,1) for n = 1, and a € [0,1/2) for n = 2,
of “every” realization of the displacement u, obtained as a mild solution to the randomly
perturbed viscous wave equation.

In particular, in terms of Holder continuity, our results imply that the stochastic mild
solution to equation (3.1)) with zero initial data has a continuous modification that is a-
Hoélder continuous in time and space, with o € [0,1) for n = 1, and a € [0,1/2) for n = 2.
Here, a modification of a stochastic process {X;}is is defined to be a stochastic process
{Xi}ier such that the probability P(X; = X;) = 1, for all i € I. Thus, we show that
the stochastic function-valued mild solution has a modification that is a Holder continuous
function for every realization u of the displacement, obtained as a mild solution to the
randomly perturbed viscous wave equation (3.1)).

Even in dimension n = 1, this contrasts the results for the stochastically perturbed heat
and wave equations:

m— An = f(n)W(dt,dr) and ny —An= f(n)W(dt,dx) on R. (3.20)

Namely, in n = 1, the function-valued mild solutions (up to modification) for zero initial data
are a-Holder continuous in time and S-Holder continuous in space, where o € [0,1/4), 8 €
[0,1/2) for the stochastic heat equation, and «, § € [0,1/2) for the stochastic wave equation,
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Stochastic equation with W (dt, dx) ‘ Spatial dimension n ‘ Regularity of mild solution

Stochastic heat equation n=1 a€0,1/4), B [0,1/2)
Stochastic wave equation n=1 a€0,1/2), B [0,1/2)
Stochastic viscous wave equation n=1 ae|0,1), 5€]0,1)
Stochastic heat equation n=2 Mild solution does not exist
Stochastic wave equation n=2 Mild solution does not exist
Stochastic viscous wave equation n =2 a€|0,1/2), B [0,1/2)

Table 3.1: This table shows the a-Holder regularity in time and the S-Holder regularity in
space for the mild solutions of the various stochastic equations with spacetime white noise
in spatial dimensions n = 1 and n = 2. Note that the regularity of the mild solutions is
improved for the stochastic viscous wave equation over the classical stochastic heat and wave
equations, where these equations are all considered with spacetime white noise forcing.

see [107], [55], and [90]. The difference in space and time Holder regularity between the heat
and wave equations is due to the scaling of space and time, where for the heat equation,
one time derivative “corresponds” to two spatial derivatives, while for the wave equation,
one time derivative “corresponds” to one spatial derivative. In the stochastic viscous wave
equation, the additional regularizing effect of the fluid viscosity implies improved Holder
regularity. In spatial dimension one, the solution is Holder continuous of order a € [0, 1)
in space and time, which is an improvement over the results for both the stochastic heat
and wave equations. In spatial dimension two, the solution is Holder continuous of order
a € [0,1/2) in space and time, whereas the stochastic heat and wave equations do not
have function-valued mild solutions in spatial dimension two. We summarize these Holder
continuity results for mild solutions with appropriate initial data in Table below, for the
three stochastic equations with spacetime white noise stochasticity that we have previously
mentioned.

The literature on the Holder continuity properties of the solutions to the heat equation
and the wave equation with random noise in spatial dimensions two and higher, is an area of
extensive study. However, we emphasize again that for these equations, the stochastic noise
is not white noise, but something smoother, such as, e.g., spatially homogeneous Gaussian
noise, as a function-valued mild solution does not exist with spacetime white noise in spatial
dimensions two and higher for these equations. We refer the reader to [50], [57], [158] for
more details.

This chapter is organized as follows. In Sec.|3.2, we recall the properties of white noise,
stochastic integration, and the deterministic forms of the heat, wave, and viscous wave
equation solutions that will be necessary to show the main result. In Sec. [3.3] we show the
existence and uniqueness of a stochastic function-valued mild solution for equation , in
dimensions n = 1,2, where f : R® — R is a Lipschitz continuous function, and in Sec. [3.4]
we study the Holder continuity of sample paths of solutions to .
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3.2 Preliminaries

In this section, we recall some basic facts about the deterministic linear heat, wave, and
viscous wave equations that will be needed later in the analysis of the stochastic viscous
wave equation.

The viscous wave equation

We begin by considering the (linear) viscous wave equation
N + vV —An — An =0, (3.21)

with initial data

n(0,2) = g(x),  am(0,z) = h(z).
We recall some basic properties related to the analysis of this equation here, and recommend
[112] for more information. Assuming that the initial data g,h are regular enough, for
example g, h € S(R™), we can explicitly solve this equation using the Fourier transform to
obtain

(6.6 = 95" (cos (Plel) + S (Let) ) + ﬁ(@eitm;iﬁ. 3.2

From the Fourier representation one can see that this equation has both parabolic and wave-
like properties. The wavelike behavior is represented by the presence of cosine and sine,
and the strong parabolic dissipation is given by the exponential factor et
damping of frequencies over time.

Of particular interest to this work is the solution to the general inhomogeneous problem
Mg + V —AT]t — An = F, (323)

with initial data u(0,z) = g(x), d;u(0,2) = h(x), which can be obtained using Duhamel’s
principle:

, which causes

~ sin( et
n¢) = /g\(é)e_%‘t (cos (‘/7§|£|t> + \%sin <%§|§|t>> + h(f)e_%t (\é;; )
t in ()el(t - 7))
F(r,&)e= 5= Sm( 2 0 1ol
) e L (824

The inverse Fourier transform gives the solution u in physical space:
_ Y V3 | (V3 _voBsin( VAT
nt,-) =e "z ! (COS (7\/*At> + Zsin (7\/—At>> g+te =z tﬁ
sin <\/7§\/—A(t — T)>
V3
TV -A

h

F(r,-)dr. (3.25)

¢
+J e~ (=)
0
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Of considerable importance in future sections will be the effect of an inhomogeneous
source term on the linear operator. In particular, the solution to (3.23)) with zero initial data
is given by the formula:

n(t,) — L T (#v=ae-9) F(s, )dr. (3.26)

2
BV-A
By recalling that the Fourier transform interchanges multiplication of functions and con-

volution, we can rewrite the formula (3.26]) in a more explicit manner. Let us define the
kernel K;(x) by the inverse Fourier transform,

i (V3
1 e e, S (7’5“)
Ki(x) = f e st L ¢ (3.27)
) e Ble]
To take advantage of the scaling of this PDE, we introduce the unit scale kernel K(x),
defined by
in (V3
1 A g S (7’60
K(x) = —f e — "2 d¢, (3.28)
2m)" Jgn «/gm

which is just the kernel Ky(x) at unit time ¢ = 1. A simple change of variables shows the
following crucial scaling relation:

K(z) = K (%) . (3.29)

Equipped with the notation above, we can rewrite (3.26)) in physical spatial variables as

nit, ) = f Kies) Plo)ds = || Kieulo = )P (s, y)dyds. (3.30)

0 Jrr
where the convolution operator = denotes a convolution only in the spatial variables.

The importance of using the kernel K;(z) to express the solution to the viscous wave
equation explicitly as lies in the fact that we have the following strong estimate for the
unit-scale kernel K (x), which carries over to the general kernel K;(x) by the scaling relation
(3.29). The following lemma reflects the strong dissipative effects of the fluid viscosity,
represented by the presence of the Dirichlet to Neumann operator.

Lemma 3.2.1. For all dimensions n, the kernel K (z) is in LI(R™) for all 1 < g < .

Proof. The proof of this lemma is by estimates using a repeated integration by parts. We
refer the reader to the proof of Lemma 3.3 in [112]. O
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This representation of solution will be important later in Section [3.3] when we discuss
well-posedness of the stochastic viscous wave equation. To compare the stochastic viscous
wave equation with the stochastic heat and the stochastic wave equations as will be done in
Section [3.3], we now give the analogue of the above analysis using a convolution kernel for
the heat and wave equations, focusing on the inhomogeneous forms of these equations with

zero initial data.
First, we consider the inhomogeneous heat equation. Define the heat equation kernel and
the corresponding unit scale kernel:

1 ; 2 1 22 ]. . 2 ]_ 22
KH _ ix-£ ,—|&| tde = - K7 — f iz-€ —|€] d¢é = —T,
¢ () (2m)" J e e £ (4ﬂ-t>n/26 , (2) 2r)" Jgn e e £ (47)n/2 e !
(3.31)

A simple change of variables shows the following scaling relation for the heat equation

kernel: .
KH(z) =t 5 KH (W> . (3.32)

In terms of the heat equation kernel, the solution to the inhomogeneous heat equation
m—An=F

with zero initial data is given by the formula:

) = [ R ds = [0+ Fisovts = [ KELe = 0)F (s

’ (3.33)
Note that in all dimensions n, and for all times ¢ > 0, the kernel K/ (z) defined in (3.31),
is function-valued and is, in fact, a Schwartz function.
Next, we carry out the same analysis for the inhomogeneous wave equation. The wave
equation kernel and the corresponding unit scale kernel can be defined similarly as

W () — 1 ez‘x.gsmﬂ’f‘t) W) — R eix~§Sin(|£D
K = o o S KO - g | S 0w

The corresponding scaling relation is

KWV (z) = KW (%) , (3.35)

which is the same as the scaling (3.29) of the kernel for the viscous wave equation. The
solution to the inhomogeneous wave equation

e — An = F
with zero initial data is then given by the formula:

n(t.) = L sin((t;%ﬂ)

F(s,-)ds = Jo K} ()% F(s,)ds = fo N K} (x —y)F(s,y)dyds. (3.36)
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It is important to note that unlike the viscous wave and heat equation, the kernel K,(x) is
no longer necessarily function-valued. In fact, we have, for example, the following well-known
formulas for the kernel Ky(x), giving the fundamental solution for the wave equation:

(1
= Ljaj<t forn =1,
2
w 1 ! 1 f =2
Kt (I‘) = < mm lz|<t orn = z, (337)
1
\ Eat(dx) for n = 3,

where oy(dz) in the last expression denotes the surface measure on the sphere of radius ¢
centered at the origin. There are more complicated formulas for higher dimensions also,
but K}V (z) is function-valued only in dimensions one and two. In fact, KV (x) becomes
increasingly singular as the dimension increases.

It is interesting to note that the kernel for the wave equation K}" can be tied to the
kernel for the viscous wave equation K; by the following result.

Proposition 3.2.1. The kernel K;(x) for the viscous wave equation in dimension n, defined
by ([3.27)), is given by the convolution

t W
fule) = f Py e

where ¢, is a constant depending only on the dimension n.

Proof. We use formula (3.27]) and recall that the Fourier transform interchanges multiplica-
I€ly .

tion and convolutions. The inverse Fourier transform of e~ 2% is
1 f ix-€ @t ~ 13
eteT2tdE = ¢ —
27)" Jgn "2 4 4lz2) "

where ¢, depends only on n. From the definition of K}V, we get

(3
1 ~ s —|£’t 2

The result then follows by using the fact that the Fourier transform interchanges multipli-
cation and convolution, where we replaced the constant %én by ¢,. O

We have so far considered the inhomogeneous viscous wave equation with zero initial data.
However, we will consider eventually the stochastic form of this equation with continuous
bounded initial data, and will hence have to consider the full form of the solution given in
, which takes into account the possibility of nonzero initial displacement and velocity.
Note that the convolution kernel K(z) defined in can be used to describe the effect
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of an inhomogeneous source term and an initial velocity, as seen in (3.25). However, the
kernel K (z) does not describe the effect of an initial displacement g on the solution. For
this reason, we introduce the corresponding convolution kernel J;(x) and the respective unit
scale kernel J(x) associated to the propagation of g(z) in (3.25)):

Ha) = - Qi)n fRn girt oS <cos <*/7§|g\t> i \/Lgsi (?\f]t)) e, (3.39)

J(z) = (2i)n fRn s <Cos (*/75\51) + \/%sm (?m)) de. (3.40)

A change of variables shows that

J(z) =t (%) . (3.41)

We can then write the representation formula (3.25]) for the solution of the general viscous
wave equation with nonzero initial data 7(0,x) = g(z) and ¢;n(0,z) = h(z) and inhomoge-
neous source term F, as

t

Ko —g)h(y)dy+ | | Koifo=)Fls.sdy. (3.42)

0 JR™

n(t,z) = J ) Ji(x —y)g(y)dy +

R

In analogy to Lemma [3.2.1] one can show the following lemma, which shows that the
unit scale kernel J(z) has strong integrability properties.

Lemma 3.2.2. For all dimensions n, the kernel J(x) is in LI(R™) for all 1 < ¢ < oo.
Furthermore, we have the estimate,

J(@)| < Cwla] ™5,
for any N > n + 1, where Cly is a constant depending on V.

Proof. We refer the reader to the proof of Lemma 3.3 in [112]. While the proof there is
for the slightly different unit kernel K (x), the corresponding proof for J(x) is just a slight
modification of the proof given there. m

Finally, we establish a final lemma in this section, which shows the effect of the viscous
wave operator on initial data n(0,x) = g(x) and dn(0,x) = h(z), where g and h are the
continuous versions of functions in H?(R™). This will be useful when showing existence and
uniqueness of a mild solution to the stochastic viscous wave equation with initial data g and
h, which are the continuous versions of functions in H?(R"), see Section .

Lemma 3.2.3. Let n =1 or n = 2, and let g and h be the continuous versions of functions
in H%(R™). Then, for any positive time T" > 0, the solution to

M +V—An, — An =0,
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with initial data

77(07x) = g(l’), atn(oax) = h(l’),
is a bounded, continuous function on [0,7] x R™. Furthermore, the solution 7(¢, z) has the
following Holder continuity properties depending on the dimension n:

e If n = 1, then for every p € [0, 1], there exists a constant C,, r depending only on p and
T such that for all ¢,¢' € [0,T], x,2' € R,

Int, ) = n(t.a')| < Cprle — 217, In(t.a) —n(t',2)| < Cprlt — U

o If n = 2, then for every p € [0, 1), there exists a constant C,r depending only on p
and T such that for all ¢,¢' € [0,T], z, 2’ € R?,

|7](t7 l’) - 7](757 JI/)‘ < CfP,T|‘r - x/|p7 |77(t7 ‘T) - n(tla l’)| < CP,T‘t - t,|p/2‘

Remark 3.2.1. By Sobolev embedding, every function in H%(R") for n = 1,2 is a continuous
function, up to a set of measure zero. Because we need the initial data g, h to be continuous
for our arguments, we state that g, h are the continuous versions of functions in H?(R"), in
order to indicate that g, h € H?(R") are potentially redefined on a set of measure zero so
that they are also continuous functions. We will use this terminology for the remainder of
the chapter.

Proof. First we show that n(¢,z) is bounded. By Lemma and Lemma 3.2.2) J K €
L'(R™). Therefore, by using the scaling relations (3.41]) and (3.29)), we have that for ¢ € [0, T,

fRn | Ji(x)|dr = thn
fRn | Ki()|dar = tl_nfn

Using these facts along with the fact that g, h are bounded (by Sobolev embedding since
they are in H?(R™)), the explicit formula

J (%) ‘ dz = ||J|| < o0, (3.43)

K (%) ) dr = t||K||p < T|| K] < . (3.44)

n(t,r) = J Ji(w)g(x —y)dy + |  Ki(y)h(z —y)dy (3.45)

Rn

implies that 7(¢, z) is bounded on [0,T] x R™.

Next, we establish continuity. First, we consider spatial increments. Since g, h € H*(R"™)
are continuous, they are p-Holder continuous for p € [0,1) by Sobolev embedding, and in
fact also Lipschitz continuous in dimension one. Then, for z, 2’ € R"™ and ¢t > 0,

tta) =t < [ 130 late =) =g’ = )ldy + | 1K) b =) = hla’ = )ldy

oot ([ 1nldn+ [ 1lar) < e~ o' (3.4
R™ R™
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where p = [0,1] if n = 1, and p € [0,1) if n = 2, with C, depending on p. In particular,
the Lipschitz or Holder continuity of the initial data is propagated in time on a finite time
interval. We have also shown that u(¢,z) at each fixed time is a continuous function.

Next, we consider time increments. Consider 0 < ¢’ <t < T. We want to estimate the
quantity |n(t,x) — n(t’,x)| for arbitrary x € R™. We consider the two cases of n = 1 and
n = 2 separately.

Case 1: If n = 1, then we have that (n,n;) € C([0,T]; H*(R)) x C([0,T]; H(R)). Since
H'(R) embeds continuously into the bounded continuous functions on R, 7; is bounded and
continuous on [0, 7] x R. Hence, |n:(¢,x)| < Cr, Yx € R and t € [0, T]. By the fundamental
theorem of calculus,

t
In(t,x) —n(t',2)] < f mi(s, 2)|ds < Colt — . (3.47)
t/

Case 2: If n = 2, by uniqueness of the solution in C([0,T]; H*(R?)) x C([0,T]; H'(R?)),
we can consider n(t', z) and dyn(t’, x) as initial data at time ¢, to get

|77(t7 1:) - 77(75/7 ZL’)| =

J J—v(yn(t',x —y)dy —n(t',z) + | Kv(y)om(t',x —y)dy|.

Rn

Since Ji(y)dy = jt(g = 0) = 1, the following estimate holds:
Rn

In(t,z) —n(t' 2)| < JR | Je—pr ()] - [n(t 2 —y) —n(t', z)|dy + JR \Ki—p(y)| - |om(t, & —y)|dy

=11 + Is. (348)

To complete the estimate, we first consider integral I;. We break up the integral [; into
two parts,

I = f [Je—v (Y)] - (', 2 —y) —n(t',2)|dy + J |Je—e(y)] - In(t', 2 —y) —n(t', z)|dy
lyl<|t—t/|1/2 lyl>t—t/|1/2
= 11’1 + 11,2. (349)
Using the Hoélder continuity in space from (3.46)), and using the estimate (3.43)), we get for
pel0,1),
Il,l < Cp,TJ‘

lyl<[t—t'|*/2

[Ji—e(9)] - y|Pdy < Cprlt — ']/ f [Je—e(y)|dy < Coplt — |72,

lyl<[t—t|1/2
(3.50)
To estimate [, 5, we recall that we already showed that 7(¢, z) is bounded on [0,7] x R™
by some constant Mp. Therefore, by the scaling relation (3.41)), and by using a change of
e(wldy =20 (e~ )" |

variables, we get
< : ,) ‘ W
lyl>[t—t'|'/2 t—t

— 2My f 17 (2)|dz. (3.51)
|z|>[t—t/|~1/2

L5 < 2My J

lyl>[t—t|'/2
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To estimate the last integral, we recall the estimate stated in Lemma and choose an NV
in that estimate (which depends on p) N, > n + 1, sufficiently large so that

N,—1
1+n( 3\/ )Zn—l—p, or equivalently pél—i, (3.52)

p N,

for arbitrary p € [0,1). Then, continuing from (3.51]) and switching to polar coordinates, the
estimate from Lemma [3.2.2) together with the inequality (3.52), imply

n—1 * —1—N(M> n—1
Lo < 2M7rCl, dz = 2M7Chy,|S"| r No ™ dr

Np—1
|Z‘>‘t t/ —1/2 | |1+TL< N, ) ‘t*t,|_1/2
o0

— My Ciy S| P2 Rdr = O plt — PR < O gl — 2

‘t*t/‘_l/Q

(3.53)

for p € [0,1), where C, denotes the constant for N = N, in the inequality in Lemma .
In the last inequality, we used the fact that ;¢ belong to a bounded interval [0, 7], and in
the last step, with a slight abuse of notation, we used the same notation for the constant
Cr,p.

Finally, we estimate

Iy = f Ko (y)] - [0m(t', x — y)|dy.

Since (n,dm) € C([0,T]; H*(R™)) x C([0,T]; H*(R™)), we have that d;n(t,-) is uniformly
bounded in H'(R") for ¢ € [0,7]. We note that for n = 2, H'(R") embeds into L¢(R™) for
all 2 < ¢ < oo. This is because for general dimension n, if a function f € H™?(R"), we can
show that for all 1 < p < 2, f € LP(R™), which implies the result by the Hausdorff-Young
inequality. Using Holder’s inequality with the conjugate exponents 2/p and 2/(2 — p), one
can compute:

| 1F@pas = | iy gpy foas

2-p

< ([ avierrm=de) " e, = Coll Bynogany

since ﬁ > 1 for 1 < p < 2. Hence, for ¢q such that 2 < ¢ < oo, by the Hausdorff-Young

inequality, we have that for conjugate exponents p and ¢,

[ fllLany < [ fllzo@ny < Cpll 1l mne @y

so that H*(R?) embeds continuously into L4(R?) for 2 < ¢ < oo.
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Hence, since dyn(t,-) is uniformly bounded in H'(R") on t € [0,T], we have that

sup ||0m(t, -)||La@ey < Crg, for 2 < g < . (3.54)
0<t<T

In addition, we use the scaling property for the kernel K;(x) given by (3.29)) to deduce that

1/p 1/p
T\ P pan
K(3) d“") - U 'K@)'pd‘y)

1K (@) |y = £ (j

n

= "4 || K| ogny = Cpt' 4, (3.55)
where p and ¢ are conjugate exponents. Therefore, by (3.54) and (3.55)),
I < Crglt —t'|'" %, (3.56)

for 2 < g < oo, where n = 2. By choosing 2 < ¢ < o0 appropriately, this implies the desired
estimate
I, < Cpplt — 75/|p/2

for p e [0,1).
By combining (3.48), (3.49), (3.50), (3.53), and (3.56|), we get the desired result:

[t x) = n(t',2)| < Cprlt — 172, (3.57)

for p € [0,1) in the case n = 2.

The spatial estimate (3.46)), and the time estimates (3.47)) for n = 1 and (3.57)) for n = 2,
which are uniform on [0, T] x R"™, establish the continuity of n(¢,x) on [0,T] x R™. O

3.3 The stochastic viscous wave equation in
dimensions n = 1,2

We are now in the position to study the stochastic viscous wave equation:
e +V—An, — An = f(n)W(dt, dz), in R", (3.58)

with initial data:

For simplicity, we assume that g and h are the continuous versions of functions in H?(R"),
f : R — R is Lipschitz continuous, and W (dt, dzx) is spacetime white noise. In particular,
since f is Lipschitz continuous, there exists a constant L > 0 such that

[f(x) = fW)l < Llx—yl,  forallz,yeR,
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|f(z)| < L(1 + |z]), for all z € R. (3.60)

We will show that the Cauchy problem , has a mild solution in the sense of a
stochastic process satisfying a stochastic integral equation (see Definition below), which
is function-valued in dimensions n = 1,2. This is in contrast to the corresponding stochastic
heat and wave equations,

e — An = f(n)W(dt,dz), in R™, (3.61)
e — An = f(n)W(dt,dx), in R", (3.62)

which have function-valued mild solutions only in dimension n = 1.

In the next section, we review the concept of mild solution for the stochastic heat and
wave equations, and demonstrate the well-known fact that there are function-valued mild
solutions only in dimension one. We then consider the concept of mild solutions for the
stochastic viscous wave equation, showing heuristically why we will be able to consider such
solutions in dimension two. In Section [3.3| we rigorously prove existence and uniqueness of a

mild solution to (3.58]), (3.59)) using a Picard iteration argument to deal with the nonlinearity
f(n).

The concept of mild solution

To define the concept of mild solution for the stochastic viscous wave equation (3.58)), we
first recall the solution for the deterministic inhomogeneous problem . Namely, as
shown earlier, the solution to the deterministic inhomogeneous problem with initial
data (0, z) = g(x) and ¢;1(0,z) = h(x), is given by the formula

t

Koz — y)h(y)dy + f Kooz —y)F(s,y)dyds, (3.63)

0 JR™

n(t,z) = J ) Ji(x —y)g(y)dy +

where J;(z) is defined by (3.39)), and K;(z) by (3.27). For the general stochastic case (3.58)
with initial data (3.59)), we can formally regard the stochastic forcing f(n)W (dt,dz) as the
forcing term F' in the deterministic equation, and formally require that the solution u to the
stochastic viscous wave equation satisfy the stochastic integral equation alla (3.63)):

R

t

wtaw) = | ha=pay+ | K= nh@dy+ | | K=o Wds.d).

The result of this formal argument gives rise to the concept of a mild solution.

Definition 3.3.1. A stochastic process 7(t,z) is a mild solution to the stochastic viscous
wave equation ([3.58) with initial data (3.59) if n(¢, z) is jointly measurable and adapted to
the filtration F; with
t
n(t, z,w) = J Ji(z —y)g(y)dy + N Ki(z —y)h(y)dy + JO N Ki—s(x —y)f(n(s,y,w))W (ds, dy),
(3.64)
and the stochastic integral on the right hand side of (3.64)) is defined.
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Remark 3.3.1 (Probabilistic notation). In the remainder of this manuscript, we will gener-
ally follow the probabilistic convention of not writing the explicit w dependence of random
variables and stochastic processes. In particular, while we wrote out the explicit w de-
pendence in the stochastic process u(t, x,w) in , we will henceforth omit the explicit
w dependence when it is clear from context that the mathematical quantity involved is a
random variable. For example, we would write

t

n(t,z) = | Jlz—y)gly)dy + Kt(x—y)h(y)dwf Ky s(x—y)f(n(s,y))W(dy,ds),

R" R® 0 Jrn
for the full expression in (3.64)).

We can define the concept of a mild solution to the stochastic heat and the stochastic wave
equations (3.61)) and (3.62)) in the same way using the deterministic heat and wave equation
representation formulas for the solutions of the corresponding inhomogeneous equation, given

in (3:33) and (30).

As mentioned earlier, the existence of a function-valued mild solution to the stochastic
heat and wave equations and , defined this way, can be obtained only in di-
mension n = 1, as was discussed in [55| and [107]. However, we will be able to prove the
existence of a function-valued mild solution to the stochastic viscous wave equation (3.58))
in both dimensions n = 1,2. To give an idea of why we might expect this to be true, we
present the following heuristic argument.

A heuristic argument for the existence of a mild solution to (3.58)), (3.59)) in n = 2.

For simplicity, let f : R — R on the right hand-side in (3.58]), (3.61)), and (3.62)) be identically
equal to 1, so that we can just consider the case of additive noise. Therefore, we consider

the equations

ne — An = W(dt, dx), on R", (3.65)
e — An = W(dt, dz), on R", (3.66)
e + vV —An, — An = W(dt, dx), on R™. (3.67)

Furthermore, for simplicity, we consider zero initial data for the purposes of this heuristic
argument.

For the stochastic heat equation with additive noise , we have an explicit formula
for the solution as a stochastic integral,

t
o) = || K= ) Wids,dy)
0 JR™

where the kernel K is defined by (3.31)). For this stochastic integral to make sense, we
must have

t
f f K (z—y)]Pdyds < . (3.68)
0 n
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Using the scaling relation (3.32]), we can rewrite condition (3.68)) in terms of the unit kernel

as
T—y 2
—(t )i dyds

[ [ imtte = ppavas = [ [ s

t
J f )2 K () Rdyds < J (t—s)”/2ds) 5| 2sgey < 0. (3.60)

0

Because K is a Gaussian in all dimensions n, we have that ||K# H%Q(Rn) < oo for all n.

However, the time integral Sé(t — 5)™™2ds only converges in dimension n = 1. This is the
reason why a function-valued mild solution to the stochastic heat equation with additive

noise ([3.65]) exists only in dimension 1.
Let us carry out a similar analysis for the stochastic wave equation with additive noise

(3.66)). A mild solution, if it exists, must be given by the stochastic integral

n(t.z) = f KY (x — y)W (ds, dy),

0 JR”

where K}V is defined by (3.34). This stochastic integral exists only if the following integra-
bility condition is satisfied:

¢
f f K (z —y)Pdyds < 0. (3.70)
0 n

By using the scaling relation ((3.35)), this condition can be rewritten as

2
J |K) (x—y) dyds-J J )22 KW (::_yﬂ dyds
n n _S

R
t
f f 1271 KW () Pdyds — (L (t—s)2_"ds> Y gy < 0. (3.71)

t
Note here that the time integral f (t — 5)>™" converges for n = 1,2. However, it is easy
0

to check from the explicit form of the fundamental solution in that K" is in L?(R")
only for dimension n = 1. This is the reason why a function-valued mild solution to the
stochastic wave equation with additive noise exists only in dimension one.

The stochastic viscous wave equation with additive noise is exactly in between
these two cases, with both factors of the unit kernel integrable in both n = 1 and n = 2.
Namely, a function-valued mild solution to would be defined by

n(t,x) = j K,z — y)W(ds, dy),

0 JR"™
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where K;(x) is the kernel given by ([3.27). Using the scaling relation ([3.29)) involving the unit
kernel (3.28)), we compute, similarly as in the previous examples, that this integral exists
only if the following integrability condition is satisfied:

t t
LJ;zgﬂu—yW@ms:<La—sﬁm@)nxmﬂwr<m. (3.72)

However, by Lemma K € L*(R") for all n. Therefore, this integrability condition is
satisfied in both dimensions one and two. Thus, the stochastic viscous wave equation with
additive noise has a function-valued mild solution both in dimensions one and two.

Finally, we note that the nature of the parabolic damping is essential for the stochastic
viscous wave equation to have a function-valued mild solution in dimension two also. In
particular, the stochastic damped wave equation

e + ey — An = W(dz, dt), on R" (3.73)

with ¢ > 0 and zero initial data, has a function-valued mild solution only in dimension one.
To see this, we use the explicit formula for the fundamental solution from [54] in frequency
space,

RPY(€) = (¢ = ¢ ™2™ sinh (t/e = [P (3.74)
so that the mild solution if it exists for (3.73) must be given by

n(t, x) J JnKtDVSV x —y)W(ds,dy).

Here, the superscript DW indicates that we are considering the fundamental solution for
the damped wave equation. Thus, the integrability condition for the mild solution to exist

is that
f J |\ KPW (2 — y)Pdyds < .

This is equivalent, by Plancherel’s theorem, to

J f K2 (2 — y)[*dyds = Ltf |\KPY ()| dyds = Ltj |KPW (€)|2deds < oo, (3.75)

However, the condition (3.75) holds only in dimension n = 1. This is because k(&) ¢
L*(R™) for n > 2 for all t > 0. To see this, note that for || > ¢, the explicit formula ([3.74])
gives that

RPY(€) = (g = )2 sin (ty/[EP =), forf¢] >
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We then compute that

H[?tDWH%Q(R”) > e JIEI (J€)> = )~ sin® <t €2 — c2> d¢
>c

00 n—1
_ r .
= 1€ MJ SR sin? (t\/r2 — 02> dr,
c

re—c

where a,,_; denotes the surface area of the sphere S"~! = R". We use a change of variables,

p=V1r2—c2 = r=+/p*+c2 dpz;dr.

r2 — 2

Then,

~ * sin®(t n
IREY ey > anae ™ [ 2 1 230
0

So for n > 2, we have that § —1 > 0 and hence for any ¢ > 0,

~ 3 o [ sin?(t
||KtDWH%2(Rn) >, e 2" QJ —p( p)d
0

p = 0 for n = 2,

since this integral diverges. Thus, the integrability condition (3.75) does not hold in di-
mensions two and higher and holds only in dimension one. So the stochastic damped wave
equation has a function-valued mild solution only in dimension one.

Existence and uniqueness for the stochastic viscous wave equation

While the heuristic argument above was done for a simpler case of additive white noise when
f(n) =1, we can get an existence and uniqueness result for the more general equation ((3.58))
with a general, Lipschitz f(n) in dimensions one and two, by a standard Picard iteration
procedure, and by estimates of the kernel. We then obtain estimates on the higher moments
of the solution for later use in Section[3.4] Such a Picard iteration and higher moment bound
procedure are standard in the stochastic PDE literature [55, 107, (177, 54]. More precisely,
we have the following main result.

Theorem 3.3.1 (Existence and uniqueness). Let n = 1 or n = 2, and let g and h be the
continuous versions of functions in H*(R"). Suppose f : R — R is a Lipschitz continuous
function. Then, there exists a function-valued mild solution to the equation

N +V—An — An = f(n)W(dt, dx) on R” (3.76)

with initial data 7(0,z) = g(x), &n(0, ) = h(x), which is unique up to stochastic modifica-
tion.
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Proof. To establish existence, we use Picard iterations. We begin by setting the first iterate
7o to be the deterministic function

n(t,z) =1 Ji(z—ygly)dy+ | Ki(z—y)h(y)dy, (3.77)

R7 R7

which is the solution to the deterministic linear homogeneous viscous wave equation with
initial data given by g and h. By Lemma [3.2.3] 1(¢, ) is a bounded, continuous function
on [0,7] x R™.

Then, define the Picard iterates 7, for k£ > 1 inductively by

t

m@w)=m@w%+f Koo — ) f (s (s, 9))W (ds. dy). (3.78)

0 JR7™

where 7y captures the deterministic evolution of the initial data g and h. However, we must
check that the stochastic integral on the right hand side makes sense. This is the content of
the following lemma.

Lemma 3.3.1. The Picard iteration procedure (3.78) is well-defined at each step. Further-
more,
sup sup E (|nk(t,x)|2) < o, forall k = 0,7 > 0.
te[0,T"] zeR™
The proof of Lemma [3.3.1] is given in the Appendix.

Remark 3.3.2. Note that because random variables are only defined up to a measure zero
set, the kth Picard iterate {n(t,z)}c[0,7)cern is defined only up to stochastic modifica-
tion. However, as we show in the proof of Lemma [3.3.1] there exists a modification of
{nk(t, ) }1e[o,1],zern for which the stochastic integral

[ [ e =i st v ay,as)

0 JRn»

is defined, where this stochastic integral is needed to obtain the next iterate 7;,1. Hence,
when defining 7 at each point (¢,x) € [0, 7] x R™ in , we choose the modification that
allows the stochastic integral needed for the next step of the Picard iteration to be defined.
Note that all of the arguments that follow are well suited to the fact that the Picard iterates
1, are defined only up to stochastic modification. For example, we will later consider the
quantity for each k and ¢ € [0, T,

sup E[(nk - nk—1)2(5>$)]7

0<s<t,zeR"

when studying convergence of the iterates, and this quantity is unchanged by stochastic
modification of any of the individual iterates.
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The next step is to show that 7 (¢, ) converge in an appropriate sense as k — o, and
that the limit is a unique mild solution to the stochastic viscous wave equation (3.76)).

Convergence. We start by considering the difference between consecutive iterates:

t

Mt ) = e (8 2) = J Kio(z = y)[f (m-1(s,y)) = [ (me—2(s,9))]W (ds, dy), k = 2.

0 Jrn
(3.79)
Using the It6 isometry ([2.6]) and the fact that f is Lipschitz continuous with a global Lipschitz
constant L, we obtain

Bl e 60) < 8 ([ [ K2 o= ilmca(ov) = sl P

=) R (R

where we used Fubini’s theorem in the last step.
Let

Hi(t):= sup  E[(m —m1)’(s,2)]. (3.80)

0<s<t,zeR"”

We want to show that for every t > 0, Y.,” | Hy.(t) < o0, as this would imply that {ns(¢, z)},
is a Cauchy sequence in L?(f2) for each ¢t > 0,z € R". Indeed, first notice that the following
inequality holds:

t
H,f(t) < LQJ J Kfﬁs(a: — y)H,ffl(s)dyds. (3.81)
0 Jrn

To further estimate the right hand side, we estimate the kernel using a calculation as in
(3.72)) for dimensions n = 1 and 2 to obtain

|| K=y = €= P e = e = P < (32

for some constant ¢, depending only on n, for s € [0,¢]. Combining this estimate with ([3.81]),
one obtains

t
HE(t) < cn,tf HE ((s)ds, k=2,3,... (3.83)
0

for a finite constant ¢, ; that depends only on ¢ and the dimension n = 1,2. We will use
this inequality inductively, for £ = 2,3,... to obtain the desired result. For this purpose,
we must first show that H;(t) is finite. In particular, recalling and using the result in
Lemma [3.3.1, we have

mi <2 (s B(nGoP) ¢ sw E(wlsaf)) =A<

0<s<t,zeR"” 0<s<t,zeR"”
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where A; is a constant depending only on ¢. Hence, by inductively using (3.83)), we have that

A, - . ktk
H2(t) < % (3.84)

Thus,
k/2tk/2

ZHk(t) Al Z Tl (3.85)

as this series converges. Recalling the definition of H?(t) in (3.80)), we conclude that
{ne(t,z)}2, for each t = 0,z € R™ is a Cauchy sequence in L*(Q2). Hence, n(t,z) con-
verges in L?(Q) to some 7(t, z) for each t > 0,z € R™.

Existence of a mild solution. We now show that the limit 7(¢,z) is a mild solution to
. Indeed, after passing to the limit on both sides of we immediately see that
the left hand side of converges to n(t, z) in L*(2). To deal with the limit on the right
hand side of , we first calculate the following estimate: by the Lipschitz property of f
and the It isometry we have

To further estimate the right hand side, we recall the convergence of the series (3.85)) and
the definition (3.80]) of HZ(t), to conclude:

j Kooz = 9)[f (1 (s,9)) — F(n(5,9))]W (ds, dy)

0 JR»

L2(Q)

JLKES v = y)E (|m-1(y, s) — n(y. s)|*) dyds. (3.86)

E(|m_1(s,y) — n(s,9)]*) = 0 as k — oo, uniformly for 0 < s <t and y € R".

(3.87)

Additionally, by recalling (3.82)), we get:
K? y)dyds = —"— 3", 3.88
[ [ o= v = 52 (3.5%)

Therefore, combining this equality with (3.87)), and using it in the right hand side of (3.86]),
we obtain that for every fixed ¢t > 0, the following convergence result holds:

t t
fo ) Kt_s@,y)f(nk_l(s,y))W(ds,dy>efo K fals ) Wdsdy)  in 9.
This shows that 7 satisfies ((3.64)).

To complete the proof that n is a mild solution, we must show according to Definition|3.3.1
that {n(t,x)}r+xrn is jointly measurable and adapted to JF;. Since each 7y is adapted to
Ft, so is the limit u. In addition, by the uniform convergence (3.87)), n is continuous in L?()
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on R* x R™ since each n; has this property, by the proof of Lemma in the Appendix.
Hence, by Remark 1 has a stochastic modification that is jointly measurable. This
completes the proof that u is a mild solution.

Uniqueness. Uniqueness follows from Gronwall’s inequality. More precisely, suppose that
n and ¢ are both mild solutions with the same initial data (3.59). Then, their difference
1 :=n — ¢ satisfies the following stochastic integral equation:

b(t,z) = j Koo — 9)[f((s.9)) — F(6(s,9))]W (dy. ds).

0 JR™

Taking the L?(2) norm of both sides, we get that

B 0] < 2 [ [ K2 = 0B (o) — 005, 0)F) duds

So defining
H(t):= sup E[p*(s,2)],

0<s<t,zeR"”

we get after using (3.82)), the following inequality:

H(t) < f (JKf dy> ds — e, L2 JH

Since H(0) = 0, using Gronwall’s inequality then implies that H () is identically zero for all t.
In particular, 7 is unique up to stochastic modification since the expectation E[¢*(¢,x)] = 0
forallt > 0 and x € R™. This completes the uniqueness proof, and the proof of Theorem [3.3.1}

]

Now that we have shown an appropriate notion of existence and uniqueness of a mild
solution for in dimensions one and two, we would like to understand more details of
the solution behavior. In particular, we would like to study the Hélder continuity of the
sample paths, defined below in Section [3.4] In order to do that, it is useful to obtain uniform
boundedness of P moments of the unique mild solution, for p > 2, uniformly in space and
time on a bounded time interval. The proof of this result will rely on the BDG inequality,
stated in Theorem 2.3.11

Theorem 3.3.2. Let n =1 or 2, and let g and h be the continuous versions of functions in
H?(R™). Let n(t,x) be the unique function-valued mild solution to ([3.58)) with initial data
(3.59). Then, for each T'> 0 and p > 2,

sup sup E(|n(t, z)|P) < oo. (3.89)

0<t<T zeR™
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Proof. Note that we have already established this result for p = 2 by using Lemma |3.3.1
and the uniform convergence in L?(Q) given by (3.87). To prove the higher moment bound

(3.89)), we reexamine our Picard iterates (3.78):
t
it ) = e (8, 7) = f Kis(z = y)lf (h-a(5,9)) = F(mr—2(s,9))IW (ds, dy).
R

Using the BDG inequality stated in Theorem [2.3.1] for k£ > 2 we get

p/2
E(mi(t,2) — mer (£, 2)]7) < [(f f K2 J(a — )| f (s (5,9)) — f(nkz(svy))lzdyds> ]

Since f is Lipschitz, we can further estimate the right hand side to obtain:

t p/2
E(|n(t, ©) — np—1(t,2)|P) < L7 - E [(L . K? (@ —y)|mk—1(s,y) — nk—a(s, y)IQdyd8> ] :
(3.90)

We would like to move the expectation inside the integral sign on the right hand side, but
we cannot do this yet because of the exponent of p/2. To handle this, we will separate
K? (x —y) into

2p—4 4
Ef (x—y) = [Kis(z—y)l 7 - |[Kes(z —y)|>. (3.91)

We then apply Holder’s inequality with the conjugate exponents p/2 and p/(p — 2) in ([3.90))
to obtain

E(lnw(t, x) = k-1 (L, 2)|7)

p_

t 5—1 t
< cpL? (L . K? J(z— y)dde) E ( L ) K? oz —y)ne-1(s,y) — nkz(s,y)\pdyd8>

R
et ([ st its) ([ RE = 0B o) e )
(3.92)

Therefore, defining

Jp(t) = sup  E(|m(s, ) —ne-a(s, 2)"),

0<s<t,zeR™

we get that

'U

JE(t) < e, LP (LtJan_s(a:—y)dyds>2 J JE L ( UKE . )ds. (3.93)

Using (13.82)) and (3.88)), we obtain the following recursive inequality:

TP(E) < epnt® J TP (5)(t— )2 ds < ¢y t®E J i (3.94)
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Note that J7(¢) is finite. Namely, by using the BDG inequality from Theorem one
obtains
)

Bl (t.0) - wt0)") = 5 (
< GE [(f K} (x =) f(no(s, y))IQdyds> W]

0 JR™

< pl”- [(Jt K J(z—y)(1+ Ino(syy)\)Qdde)m] :

[ [ e = st v as, )

0 JR™

0 JR7™

where we eliminated the expectation because 7y(¢, ) is deterministic. We then use the
splitting from (3.91]) above, and the same Holder inequality argument as before, to obtain

s (t0) —mtt o) < oot ([ [ K2 o dyds)g ([ [ 52 o=+ mts.vaus ).

The right hand-side is uniformly bounded for ¢ € [0,7] and x € R™ by Lemma and
(3-72). So JI(t) is finite for each ¢ > 0.

The recursive inequality implies that for any fixed T" > 0, we have that for all
0<t<Tand k>2

t

JP(t) < C'Typ,nf J?_(s)ds. (3.95)

0

Since J7(t) is finite and bounded by a constant Az for all 0 < ¢ < T, we then apply (3.95)
inductively to conclude that

© AL © k/ptk/p
DU(t) < Z < for all t € [0, T]. (3.96)
k=1 k=0

Since 1) is bounded on [0, T'] x R™ for all T' > 0, deterministic, and continuous by Lemma
3.2.3] we have that ny € C([0,T] x R"; L?(2)). Since >, Ji(T) < o0, we have that the
sequence M, k = 1,2,... is a Cauchy sequence in the complete space of bounded functions
on [0,T] x R™, taking values in LP(£2), equipped with the appropriate supremum norm:

|fl| = sup sup (E(|f(t,;p)|P))1/P‘

0<t<T xzeR"

Hence, the sequence 7, converges in this space as k — o0, and the limit must be u. Thus,
91| = suPo<rer SUD,ern (E(|n(t, 2)["))""” is bounded. O
3.4 Holder continuity of sample paths

In this section we investigate additional properties of our unique mild solution by focusing
on what the sample paths of the solution look like. In particular, we study Holder continuity
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of sample paths. Because we are working with a stochastic process, we have to precisely
define what we mean by Holder continuity of the sample paths.

For this purpose, we recall the notion of a modification. If {X;};c; where I is an index set
is a stochastic process on a complete probability space (2, F,P), then {X}} is a modification
if P(X; = X;) =1,Yiel

We also recall that, given a stochastic process {X;}icr, the finite dimensional distribu-
tions are the distributions of the random vectors (X;,, Xj,, ..., X;,) for all finite collections
(11,12, ..., 1) of indices in I.

Note that {X;},e; and a modification have the same finite dimensional distributions.
Because the uniqueness result for the equation is up to modification, we will show
that has a suitable modification such that the sample paths are Holder continuous
with a certain degree of Holder regularity.

17

Theorem 3.4.1 (H6lder continuity of sample paths). Let g, h be the continuous ver-
sions of functions in H?(R"), and let f : R — R be a Lipschitz continuous function. For
each a € [0,1) in the case of n = 1 and for each « € [0,1/2) in the case of n = 2, the mild
solution to has a modification that is (locally) a-Hélder continuous on R* x R™ in
space and time.

Remark 3.4.1. There are analogous results for the stochastic heat and wave equations
and , but only in one dimension, since existence and uniqueness hold only in
one dimension. For the stochastic heat equation in n = 1 , there is a modification that
is a-Holder continuous in time and S-Holder continuous in space for each « € [0,1/4) and
each 8 € [0,1/2). For the stochastic wave equation in n = 1 (3.62)), there is a modification
that is a-Holder continuous in time and space for a € [0,1/2). The difference in the degree
of Hélder regularity is due to the differences in spacetime scaling. We emphasize that our
result for the stochastic viscous wave equation considers both n = 1 and n = 2.

The proof of Theorem follows from a version of the Kolmogorov continuity criterion
(see e.g. Theorem 2.1 in Chapter I, Section 2 of Revuz and Yor [155]).

Theorem 3.4.2 (Kolmogorov continuity criterion). Let {X};cjo1v be a real-valued
stochastic process. If there exist two positive constants v and € such that

E(|Xi, — Xi,|") < Cliy — oV,
€
then for each a such that 0 < a < —, the stochastic process {X;};c[o1;v has a modification
Y
that is a-Holder continuous.

We can extend this to stochastic processes on unbounded Euclidean domains. In partic-
ular, we will reframe the Kolmogorov continuity criterion for our current case of a stochastic
process indexed by (t,z) € Rt x R™. This is similar to Theorem 2.5.1 in [108].
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Corollary 3.4.1. Let {X(t,%)})er+ xrn be a real-valued stochastic process. If there exist
two positive constants v and e such that for each compact set K < Rt x R",

E(|X(t,2) — X(s,9)]") < Ckl|(t,z) — (s,y)[" T for all (t,z), (s,y) € K,

€
where C'i can depend on K, then for each « such that 0 < o < —, the stochastic process

{X(t,2)}(1,2)er+ xrr has a modification {X(t, )} (1,0)er+ xre that is locally a-Holder continuous
on Rt x R™.

Proof. Since the Kolmogorov continuity theorem appears more often in the form listed in
Theorem [3.4.2] we provide an explicit proof of Corollary [3.4.1] using an idea called a patching
argument, as described on pg. 160 of [108]. The corollary follows from the Kolmogorov
continuity criterion in Theorem by considering compact cubes, for example

Ay = [0,k] x [-k/2,k/2]" <« R* x R",

that increase to all of R* x R”. We will construct the desired modification {X (t, T) }(t,0)eR+ xR
as the limit & — oo of a-Hélder continuous modifications {Xj(¢,x)} defined for (¢,z) € Ag,
constructed as follows.

Fix a such that 0 < a < 5 By the usual Kolmogorov continuity criterion given in
Theorem , we can construct a modification {X(t, %)}t z)ea, of {X(t,2)}¢2)ea, that is
a-Hoélder continuous on Aj. The modifications { X (t, )} z)ea, in particular are continuous.

We claim that any two of these modifications Xy (¢, z) and X;(t,z) must agree with
probability one on their overlap because they are continuous modifications. Otherwise there
exists a ball with rational radius and center with rational coordinates on which the two
modifications have disjoint range with positive probability. More precisely, consider k < [ so
that A, < A; is the overlap. We claim that

P(Xy(t,x) = X(t,z) for all (t,x) € Ag) = 1.

We argue by contradiction. Suppose that P(Xy(to, o) # X;(to, o) for some (o, x9) € Ax) >
0. Since Xi(t,z) and X;(t,x) are continuous on Ay, for every outcome w € ) for which
Xk (to, xo) # X(to, o) for some (tg,x¢) € Ay, we can find an open ball B,.(q) with rational
radius r centered at a point ¢ = (t,z) € Q* x Q" n A, < RT x R, such that X} and X;
have “disjoint” range on the ball B,.(q) n Ay in the sense that there exist two closed intervals
K, © R and K5 < R such that

Xi(Br(q) n Ag) < Ky, Xi(B:(q) n Ag) © Ko, KinK,=0.
Hence,

P( U {X}, and X, have “disjoint” range on B,.(q) N Ax})
reQ,qgeQ+ xQnrn Ay
= ]P)(Xk(to, LL’()) #* Xl(tg,l’o) for some (to, l’o) € Ak) > 0.
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Therefore, by the countability of the index set, there exist 7o € Q" and ¢g € QT x Q™" n Ay,
such that
P(X} and X; have “disjoint” range on B,,(qo) N Ax) > 0.

But this implies that P(Xj(qo) # Xi(qo)) > 0, which contradicts that {X(t,%)}z)ea, and
{Xi(t, 7)}t,0)ea, are modifications of the same stochastic process on Aj and A; respectively,
since qg € Ay < A;. Therefore, X, = X; on Ay almost surely.

This implies that, with probability one (up to a null set), any two modifications from
this collection of modifications {Xj(t, )} (,z)ea, on increasing cubes must agree.

To define the desired modification X (¢, ) we now focus on the null sets Ey; for k <[ on
which the modifications { X (¢, %)} ¢ z)ea, and {X;(t, )} ¢ z)ea, do not agree on Ay. Define

E= | B

k<l and k,leZ+

and note that P(E) = 0. Then, the desired modification {X (t,2)} z)er+xzn i

X(t,z,w) = klim Xi(t, z,w) for w e E°,
—00

X(t,z,w) =0, forwe F.
This limit exists since the sequence X (¢, z,w) for w € E° is eventually constant, because
the modifications { X (¢, )}t z)ea, all agree pairwise on their common domains for w € E°.
It is easy to check that {X(t,%)}q)er+xrn is a modification that is a-Hoélder continuous,
by using the properties that each of the {Xj(t, %)} s)ea, are modification on Aj that are
a-Holder continuous. This completes the proof of the corollary. n

Proof of Theorem [3.4.1]

We will prove the theorem for n = 1 and n = 2. Though the specific estimates will be
slightly different for each dimension, the general computations are the same for both and
hence we prove the results for n = 1 and n = 2 simultaneously.

By Corollary [3.4.1] it follows that to prove Theorem [3.4.1] it suffices to show that for all
T >0, for all § € (0,1), and for all p > 2, there exists a constant Cr, s depending on 7, p,
and 0 such that:

1. The following two estimates hold if n = 1:

(a+

E(n(t,z) —n(t', z)[?) < Crpslt =t 2 forall t,¢ e [0,T], and z e R,  (3.97)

(14+9)p

E(n(t,z) — n(t,2")|P) < Crpsle —a'| "2, forall t € [0,T], and z,2" € R.  (3.98)

2. The following two estimates hold if n = 2:
E(|n(t,z) —nt', z)|P) < Crpslt — t'|67p, for all t,¢' € [0,T], and x € R?, (3.99)
E(n(t,z) — n(t,2")P) < Crpsle — x’|%p, for all t € [0,T], and z,2" € R%.  (3.100)
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Estimate for the time increments. To prove estimates and - we consider
for p = 2,
E(n(t, z) —n(t', 2)[), for ¢,¢ € [0, 77,

for n = 1,2, where T' > 0 is fixed but arbitrary. Recall from the definition of a mild solution

B64) that

t

n@w)=%@w%+f Koo — ) f (1(s, 9))W (ds. dy),

0 JR™

where 7o(t, ) is the deterministic function solving the homogeneous deterministic viscous
wave equation with initial data g, h. We assume that 0 < ¢’ <t < T and express the time
increment as

—n(t', ) =mno(t,z) —no(t', z)
J f =)= Koo =)l s i) Wldssdy)+ | | Kislo=9) s, )W (s, d).

Next, we use the BDG inequality from Theorem [2.3.1} along with (a + b + ¢)? < ¢,(|al? +
b]P + |¢|P) for a,b,c = 0, to obtain

E (|77(t7 C(Z) - 77(tI7 x)|’p)

t/ p/2
<%b%mxwwmamV+E<Lj}unxx—w—wax—wmﬂMawW@@)

+E(£JJKs@—wﬂﬂM&wW@%ymr=%M+&+k) (3101)

By Lemma |3.2.3] there exists Cr such that
I = |no(t,z) — no(t', )P < Crlt — |7, in the case of n =1, (3.102)

and for every 0 € (0, 1), there exists a constant Crs depending only on 7" > 0 and § such
that s
I = |no(t,x) —no(t', 2)[P < Crglt — )%, in the case of n = 2. (3.103)

For the integral in I3 defined in (3.101f), we use the same idea as in (3.91)) and separate the
term involving the kernel into two factors by using Holder’s inequality with p/2 and p/(p—2)

to obtain
<J fn‘Kt s\ —vy Kt' ( ?J)deds)
’ <J0 fRn Kool —y) = Kooz = y)I*If (n(s, y))\pdyds) .

p
B
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In the second factor, we can move the expectation into the integrand, and use the Lipschitz
property of f to obtain that for all s € [0,#'],y € R", the following estimate holds:

E([f(n(s,y))[") < 2PLPE(1 + [n(s, y)|") = Crp < 0,

(3.104)

where the last inequality follows from the boundedness of pth moments in (3.89). Therefore,

ya
2

@W<JJ>Ust— Ky (x yW@%)

Using Plancherel’s theorem and absorbing constants into Cr,

(&

2
’ _ig=o ®10 <\§|§|<t B 8)) _lele=s) 511 (_\é§|§|(t' - 8)>
I2 < CT,p (& 2 o 3

€] €]

Continuing to absorb constants into C'r,, as necessary, we separate this into
I, < Cry(Ji + Jo)?,

where

deds,

JJ sin® f‘f’ )) _lelt=s) g =s)|?
J1 = ‘6 Lo e

€12

2

Jg:Jﬂf eIl =) Sm<%ﬂg@—sﬁ__$n@§KW“—@) deds
o Jun

€] €]

To estimate J;, we first simplify J; to get

o sin® (€| (t — ) N2
JLZZJ‘ J' o—lEl=s) (% ) (1-e ™57 deds.
0 n

€12

Next, we use the fact that there exists a uniform constant C' such that

0<1—e" <min(l,r), for all » > 0.

deds

In addition, there exists a uniform constant depending only on 6 € (0, 1) such that

< Cs, for all > 0,6 € (0,1).

[Nl

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)
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Thus, for each § € (0,1) we have:

’

1 1 1 ,
Ji < C’(;J —_— JR — |§|2 min <1, 1]§|2(t —t )2) déds

o (=) Jpu €7
1 1
<Cs | g | e min(1L € — ¢)deds

| 1
=C - —)%d —d 3.111
' Jo (' —s)° (—[|£|<t vy €1 fepl ~ Ve J|£|>(t ) |f|2+5 5) ) - By

where Cr is a constant depending on 0 € (0,1), and on the fixed but arbitrary 7' > 0. Note
that we have restricted § to the range of 4 € (0,1) so that the appropriate integrals converge
in both spatial dimension n = 1 and n = 2. Computing the integrals in (3.111)) gives

t/
1 1) 19
Jl < 05 <J0 m(t — t,)1+ dS) = CT75‘25 — t,|1+ y fOI‘ n = 1, (3112)
v 1 0 é
/ /
J1 < Cs L (t’—s)‘s(t_t) ds | = Crslt —t'|°, for n = 2. (3.113)

We now consider Jy as defined in (3.108)). By the mean value theorem,
3 3
sin (el =) —sin (i)

< in (2 £|5|<t—t>) min(2, €](t — £).

(3.114)
Combining the estimates (3.110)) and (3.114}) gives for arbitrary § € (0, 1),
o 1
JQ<C5J —J — min (1, |£]7 (¢ — ")) déds.
T o o T (ISP =)
The rest proceeds exactly as for the computation for J;, see (3.111f), and thus we obtain

Jy < Crglt — ' forn =1, Jy < Crglt —t)° for n = 2,

for Cs5r depending only on ¢ € (0,1) and T'. Substituting into (3.106]), we have for arbitrary
de(0,1),

(+)p

< Crpslt =t for n = 1, I < Crpslt—t|%  forn=2. (3.115)
For I3 as defined in , we use the idea from (3.91), combined with the Lipschitz
(t,x

property of f, the boun e ness of pth moments of u on finite time intervals, and a
calculation similar to ) to obtain for n =1, 2,

e ([ [ ste y>|2dyds) T L e e s

¢ 5 ¢ p/2 ,
<ery ([ [ Vo= nPauas) = ery ([ 0= 77as) KT oy = erple — 012,
t’ JR™ t
(3.116)
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The estimates (3.102)), (3.103)), (3.115)), (3.116) for Iy, I3, and I3 and (3.101)) establish the

desired time increment estimates ((3.97 for n =1 and (3.99)) for n = 2.

Estimate for the spatial increments. We examine the spatial regularity of the stochastic
solution u(t,z) by establishing (3.98)) and (3.100). For 0 < ¢t < T and z,2’ € R", we have
that

0lt.2) = 0t = (e ) =t a) + [ [ (Kimalo =90 = Ko = ) P )W s ),
and hence, for p > 2,
E(|n(t,) ~n(t,a")P)

= (Imte.0) = mie P+ B (|| [ (Femato =) = Koesla! = o) (s, )W (0. )

— cp(Iy + I5). (3.117)

We bound I, by using Lemma to obtain
Iy = |no(t,x) = no(t,2")|P < Cplo —2'|P forn =1, (3.118)
and for arbitrary d € (0,1),
Iy = |no(t,x) —no(t,a")|P < Crgsle — x’\%p, for n = 2. (3.119)

To estimate I5, we use the BDG inequality stated in Theorem to obtain

[Nl

£ ([ [ 1Ko =) = B! = P10 ) Pt

By using the same computation as in (3.91]),

r_q

b ([ [ e =)~ Kt = Payas)

U f Ko =) = Kis(a = y)PE(1f (n <s,y>>|p>dyd5).

Using the higher moment bound on u as in (3.104)), we have

< Cryp (J J Ky s(x —y) — K;_s(2' — 3 dyds)
= Cryp (J J Ky s(y) — Ki_s(y + 2’ — I)deds) )
0 n

[S]
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Absorbing constants into Cr, as necessary and using Plancherel’s formula gives that

2 £

i (3
¢ sin | 52|€[(t — ) o
I; < Cr, f f e~ 59 (2 g >(1*e’£'(x_x)) déds
0 n

5]

2

—Cy, (f: f n ﬁ“—ﬂﬁ 1= cos(é - (2 — 2))] dgds>

We use the inequality 1 — cos(¢ - (2 — x)) < min(2, |¢[*|2’ — x|?) and (3.110)) to obtain for
de (0,1),

M|

I; < Cry (L fn e"g(t_s)ﬁ [1—cos(¢- (2" —x))] d§d5>

Co L et e )
< Crps (Jo i) fRn e min(2, [£]%|z" — x| )dfds)

Lo 1 2 :
< Crps (J Y <J — |2’ — x|*d¢ + J —dﬁ) ds) :
"\ (6= 8)° \gi<ia—ar 1 1€1° je12la—ar- 1€

These integrals converge for n = 1,2 since § € (0,1). We can compute these integrals to
obtain

t 1 2
Is < Crps (J mkﬂ — $/|1+6ds) = Crpsle — 2| = forn=1,  (3.120)
0 — S
t ]_ g ép
I5 < CTJ;’(S <J m|l‘ - $/|6d8) = CT,p#;’ZU — 513'/‘7, for n = 2. (3121)
0 — S

The estimates (3.117)), (3.118)), (3.119), (3.120)), and (3.121)) establish the required spatial
increment estimates (3.98]) for n = 1 and (3.100)) for n = 2. This completes the proof of
Theorem B.4.11

3.5 Conclusion

We have shown that a Cauchy problem for the stochastically perturbed viscous wave equation
has a unique (up to a modification) mild solution in both n = 1 and n = 2, and that the
stochastic mild solution has a modification which is a-Holder continuous, where a-Holder
continuity is up to @« = 1 in n = 1, and up to @ = 1/2 in n = 2. This result is significant,
especially for n = 2, since it indicates that stochastically perturbed fluid-structure interaction
problems involving viscous, incompressible fluids at low-to-medium Reynolds numbers, will
have Holder continuous solutions for almost all realizations of sample paths, even in the case
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when the stochasticity in the forcing (or data) is represented by the very rough spacetime
white noise. We remark that this would not be the case if the structure itself, modeled by the
stochastically perturbed wave equation in n = 2, were considered without the fluid, as it is
well known that for the spacetime white noise perturbed wave and heat equations, stochastic
mild solutions do not exist in dimensions n = 2 and higher. It is the coupled problem
that provides the right scaling and sufficient dissipation that damps high-order frequencies
exponentially fast in time, thereby allowing a unique stochastic, Holder continuous mild
solution to exist for almost all realizations.

3.6 Appendix

Proof of Lemma 3.1. To prove this lemma we use induction, presented in several steps below.

Step 1. For the inductive step, suppose that the following properties of u;_; are satisfied:
1. nm,_1 is adapted to the filtration {F;}>o,
2. Mp_1 is jointly measurable,
3. mr_1 satisfies for every T' > 0,

sup sup E (|nx_1(s,y))*) := Chorr < . (3.122)
te[0,T"] zeR™

4. mj,_1 is continuous as a map from (¢, z) € [0,T] x R" to L*(Q), for arbitrary T' > 0.
Certainly, the base case holds. This is because 7y is deterministic, hence it immediately
satisfies the adaptedness and joint measurability conditions. For , we can get rid of
the expectation, since 7y is deterministic. Then, follows from the fact that 7 is
bounded by Lemma . The L?(2) continuity, since 7, is deterministic, follows from the
continuity statement in Lemma |3.2.3

Step 2. We want to show that with this inductive assumption, the stochastic integral in
is well-defined. So given arbitrary ¢t > 0, we must show that the integrand K; ,(z —
Y)f(me—1(y, s)) for s € [0,¢),y € R, satisfies the conditions in Proposition [2.3.6] Recall
from that (t,z) is a fixed but arbitrary point in R™ x R"™ and (s, y) here indicates the
variables that are integrated against the spacetime white noise. Since the kernel K;  (z —y)
is singular at s = t and x = y, we first show that the conditions in Proposition hold
for s € [0,¢) and then also in the limit s — ¢. We start by showing that the conditions in

Proposition hold for s € [0, ?):

e Since nx_1(s,y) for s € [0,t),y € R™ is adapted, so is K;_4(x,y)f(nk—_1(s,y)) since f is
continuous.

e For each s € [0,t), y € R", we have

E (|Ki-s(x = y) flur-1(s,9))*) <2L°Cos (1 + E (|1 (s,9)[*)) < o0,
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by the inductive assumption (3.122)). Here, L is the Lipschitz constant for f, and
we used the fact that K; 4(-) is bounded by a finite constant C;_, depending on the
parameter ¢ — s.

e To show that K; ¢ (x —y)f(me_1(y, s)) is L*(Q)-continuous for s € [0,¢) and y € R™, we
fix sg € [0,¢) and yo € R™ and compute
E(|Kt-s; (z = y1) f(me-1(51,91)) = Ke-so(z = y0) f (me—1(50, %)) [*)
< 2E (|Ki—, (& — y1) f(me—1(51,51)) — Kisy (2 — y1) f (k=1 (50, 90)) *)
+2E (| Ki—sy (2 — y1) f (k=1 (50, %0)) — Ki—so (x — y0) f (Mk—1(50, %0))|?) -

Using the Lipschitz condition for f in the first term on the right hand side, and the
fact that f is linearly bounded by |f(x)| < L(1 + |z|) in the second term on the right
hand side,

E(|Ki—s, (x = y1) f(e-1(51,91)) — Ki—so(x — y0) f (k-1 (S0, ?Jo))|2)
< 2L%| Ky, (z — y1)|PE (Jun—1(s1, y1) — wr—1(50, %0)|*)
+ 4 Koo, (7 = y1) = Koo (x = 90)PE (L*(1 + |ug—1(s0, y0) *)) -
By using the inductive assumption (3.122]), in the second term above we can bound
the expectation of |n;,_1(s0,0)|?> to obtain the following estimate:
E(| Kis, (x = y2) f (h-1(y1, 1)) — Kimso (& = y0) f (=150, 90)) [*)

< 2L2|Kt751(3: - y1)|2]E (|77k71<517 Y1) — M—1(50, yo)‘2)

+ C/7<:—1,1t|K1t—51(917 — 1) — Ky_g (2 — yo)|27 (3.123)
for some constant ék—l,t depending only on k£ — 1 and ¢. To show continuity, we want
to make the right hand-side of (3.123|) arbitrarily small whenever |(s1,v1) — (S0, yo)| is
small. Indeed, in the first term on the right hand-side, K, s(z — y) is locally bounded
for s € [0,¢) and y € R™, and ug_; is L?(Q2) continuous by the inductive assumption,
so the first term on the right hand-side of (3.123) can be made arbitrarily small for
|(s1,y1) — (S0, %0)| < 9, for § sufficiently small. This is also true for the second term on

the right hand side because K; 4(x — y) is continuous for s € [0,¢) and y € R™. This
establishes the claim.

e To check the square integrability condition, we compute

B[ [ 1Ko = P (o) s

< 2L2J0 Jn |Ki—s(z —y)]? (1 + E (|me—1(s,9)|?)) dyds

07t] 7y/€Rn 0

t
=2I? (1 + Sup E(|77k—1(3/>y,)|)2) (J (t - 5)2_"ds) K72y < 0,
s'e
(3.124)
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where we used the identity in (3.72)), the fact that n = 1 or 2, Lemma [3.2.1] and the
inductive assumption (3.122)).

To show that the stochastic integral in (3.78]) is still well-defined for s € [0, ], we claim
that this stochastic integral can be defined as the L?*(€2) limit of stochastic integrals whose
integrands are explicitly in the admissible class Py of integrands. To see this, choose an

increasing sequence t;,7 = 1,2,... of positive real numbers such that t; — ¢ as ¢« — c0. Note
that .
f Ki—s(x = y) f(r—1(s,y))W (dy, ds) (3.125)
0o Jrr

is a well-defined stochastic integral by the properties verified above, by Proposition [2.3.6|

By (3.124), t
E j f Kos(z — )P (s (s, ) Pdyds — 0, as t; — t.
t; n

Hence, since Py is a closed Banach space, the integrand in is in Py, and can be
defined rigorously as the limit of the Cauchy sequence in L?(), by the It6 isometry
and the finiteness of the quantity in (3.124]).

Step 3. It remains to show that uy(t, z) satisfies the conditions in the inductive assump-
tion in Step 1. Indeed, nx(¢,x) is adapted by the construction of the stochastic integral.
Joint measurability (up to modification) will follow from the later verification of continuity
in L?(€), as noted in Remark . Thus, properties 1 and 2 in Step 1 are verified.

To verify property 3 in Step 1, we check that for each T' > 0,

sup sup E (|ni(t, 2)|*) = Crr < 0. (3.126)
te[0,T] zeR™

This follows by direct calculation. Fix arbitrary 7' > 0 and consider ¢ € [0,T], z € R". By
(2.6) and (3.78), we get
t
E (Ine(t, 2)I?) = 2E(|no(t, z)*) + 2EJ f | Koms(@ = y) PLf (i (s, 9)[Pdyds
0 n

=2t +28 | | Ko = )Pl sl Pdyds. (3120

Note that by Lemma no(t, ) is bounded on t € [0,T], € R". So we consider the
remaining term. Using the calculation in (3.124) and the bound |f(x)| < L(1 + |z|) for some
L by the Lipschitz condition,

E j Ko, 9) 1S (e (5, ) Pdyds

0 JR”

t
<or? (1+ s E(!n“(s',y')\)?) ([ e ds) 1T Bsgan) < o,
s'e

0,t],y’eR™ 0
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where é’k’T is the finite constant, independent of ¢ € [0, T] and x € R",

s’e[0,T],y'eR™

T
Cup =217 <1+ sup E<|nk_1<s',y'>|>2) (] =9 as) 1€ B
0

which is finite by the inductive assumption , Lemma , and the fact that n = 1
or 2. This verifies .

Finally, we show that property 4 in Step 1 holds, namely that the mapping (t,x) —
ni(t, ) taking values in L?(Q) is continuous on R x R™. We decompose uy (¢, z) in ([3.78)
as

t

mltsn) = (e 2) + [ [ Koo ) e (5. )W (s, dy) = mlt,0) + 2 1. 2).

0 Jrn

Because no(t, z) is deterministic and continuous by Lemma [3.2.3] it suffices to show that

nitoch(t, ) is continuous in L*(Q2). Consider ¢ty > 0 and xo € R™. (The argument for ¢ty = 0
is similar.) Let

Ss ={(t,x) e R" x R™ : |t — to| < 0, |z — x0| < I} (3.128)

Continuity would follow if we can show that given arbitrary e > 0, there exists 6 > 0
sufficiently small such that

E (|ngoe(t, z0) — mi*™ (to, w0)|?) < €, for [t — o] < 0, (3.129)

E (|npfoc™ (¢, 21) — it (¢, 20) %) <, for all (¢,21), (¢, z0) € Ss. (3.130)
Denote

T* =ty + 1. (3.131)

Let us show the first part of the continuity estimate (3.129)). For every € > 0, we need to
find a 6 > 0 such that (3.129) holds. We begin by first assuming that o > 0 is such that

d < min{l, —} = 5 ! (3.132)

(the reason for this choice will be clear later), and we denote
Tm =1 A tg >0, M =1tvity>0, (3.133)
where t v to := max{t, ty}. By using a change of variables,

|775toch ¢ $o nstoch(to’ )|

f B = U sl 7= ) = (s, 20)W (s, d)

TM —Tm

TM S )f(nk,l(s,xo))W(ds,dy) :
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Using the Lipschitz condition and the growth condition (3.60) on f, together with the It6
isometry (2.6]), we can bound the expectation E(|ni" (¢, x9) — 05" (ty, 2o)|*) by two inte-
grals, J; and J,, one integrated from 0 to 7, and the other from 7,, to 7:

E(|ni'**" (¢, o) — mi*" (to, o) [*)

< QLZJ J K, _(z —y)]’E (|77k_1(8 + T — T, To) — M—1(8, arg)|2) dyds
0 n

TM —Tm
+ 4L2J J [Kry—s(@ =) (1 +E (Ink-1(s,20)[*)) dyds := 2L*(Jy + 2.J2).
O n
(3.134)

To handle J;, as long as the condition (3.132)) on § is satisfied, we have 7, < T*, where T*
is defined in (3.131)). Hence, by (3.72)),

Tm T*
L f n|KTm_s<x—y>|2dyds<<f <T*—s>2-"ds>-||K||%2<Rn> =

0

Since continuous functions are uniformly continuous on compact sets, by using the fact that
up_1(t, ) is L*(Q) continuous, along with 0 < 7, < 73y < T* and |7y — 7| < 6, we can

make
€

J o< — 3.135
LS g (3.135)
by choosing § < %0 A 1 sufficiently small so that

E (|mk—1(t1, z0) — mi—1(t2, z0)|*) < Cflé, whenever [t; — to| < ¢ and ty,t5 € [0,T7].

To handle .J5, we note that by (3.126]) and a calculation similar to (3.72]),

TM —Tm B T™M —Tm
Jo < (14 Cp_y1.1%) J f | K., —s(z — y)|2dyd8 = Cr_11% J (Tnm — 3)2_”ds
0 n 0
_ 1
- 3—-n

Therefore, because |7y — 7| < 0 and 0 < 7, < 7y < T% by (3.131)) and (3.132)), we can
choose 4 satisfying condition (3.132)) sufficiently small such that

C’k—l,T* (T]?J_n — 7_3—71)‘

m

€

Jy < —. 3.136

2 < 312 ( )

So by (3.134)), (3.135)), (3.136]), we can choose ¢ sufficiently small so that (3.129)) holds.
Next, we verify . By the It6 isometry ({2.6) and the bound in Lemma m

t
E (jngtoch (£, 21) — ngtooh (t, zo)|?) = f f Kool — y) — Koo(@o — )P (Ines (s,9)[?) dyds
0 n
t
< ckfl,T*f j Koy (21 — ) — Kiou(zo — y)2dyds
0 Jrr

t
= Cl_171% J f |Ks(y) — Ks(y + 2o — x1)|2dyds.
0 n
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1, sin (S et)

Recall that the Fourier transform of Kj(x) is e” 2! ‘f—l\ Therefore, by Plancherel’s
formula,
stoch stoch i Sln \F’€| ) i(zo—x1)-£|2
E(|n7 e (¢, 1) — ni?*" (¢, 20)[*) < Ch1.1+ f|§| |1 — ei@o=20€12g¢ s

2
mef 7;\8811“ (\/7§|§\5)
e 2’ ————— =

= 2Ck-11% J 7 [1—cos((zg — 1) - §)]déds
¢l

2
T 7ussin (‘/7§|§|s)
<20 [ [ |8 | ol )

0

2
- sin (2lels)
< ACH 17+ f e N2 T /) geds

Jo Jer Bie|

T f f
+ 2C)_1 1+ [‘ J 625% [1— cos((zg — 1) - €)]dEds
2

JT

= 4Ok—1,T* J3 + QCk—l,T* Ju, (3137)

where 7 > 0 will be chosen later. We have repeatedly used the fact that as long as § is
chosen so that it is also less than one (see (3.132))), then ¢ € [0,T*] for ¢t € Ss5. Note that

JT*J« " sm \f|§| T*
*— dgds—f J Y)|2dyds < oo,
n Be| n

by a calculation similar to (3.72). Therefore, by choosing 7 € (0,7*) sufficiently small, we
can make

ACk_y#J5 < % (3.138)

Now that we have fixed a choice of 7, we consider J,. We split it into two integrals, one over
the frequencies ¢ such that [¢| > Ms™!, and the other over |£] < Ms™!, where M > 0 we
will be chosen later:

T* T* 7Ussin (%g‘f’b) i
Jy < L J|§>M31 4+ J Jg|<M51 e 2 —‘/7§|§| [1— cos((zg — 1) - &)]dEds.

T
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sin( ¥3|¢|s
% <s<T*and 0 < 1—cos((xg— 1) -§) <2 in the first integral,
and 0 < 1 —cos(f) <

By noting that

6? in the second integral, we get:

N = —

T*

T%
Jy < 2(T*)QJ J e Klsagds + J f e 8|2y — zy[2dEds
T |é|>Ms—1 T lgl<Ms—1

T* T%
= 2(T*)? J S”J e~ dads + |xg — a1)? f S”J e~ dads
T |a|>M T |a|<M

<277 <(T*)2f e~ lda + |zg — 21| e'ada) :
|a|>M R

By taking M sufficiently large such that

and then taking 6 > 0 sufficiently small satisfying the condition (3.132)), such that

1 €
o8 | e Mldy < —— &
’ Le TR

we have that 2Cy_1 r+Jy < § whenever (¢, x9), (t,71) € S5 with |2y — 2| < 0. Using this fact
along with (3.138)) in ([3.137)) establishes the desired result (3.130)). O
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Chapter 4

A fully coupled model of stochastic
FSI

In this chapter, we continue the study of stochastic fluid-structure interaction by considering
a more general approach to stochastic FSI. In the past chapter, we showed well-posedness of
a reduced model of stochastic FSI represented by a stochastic viscous wave equation, which
is a single self-contained equation that describes the full dynamics of a linearly coupled
stochastic fluid-structure system in an unbounded domain. The special geometry of the
stochastic reduced model found in the previous chapter, which consists of a fluid residing
in the lower half space (z < 0) = R? interacting with an elastic membrane with reference
configuration (z = 0), was essential for reducing the equations down to a single self-contained
equation. In addition, the fact that we have a final equation, the stochastic viscous wave
equation, posed on R? allowed us to appeal to Fourier analysis and fundamental solutions
in order to define the solution via a mild formulation, where the solution is defined by
convolving the fundamental solution with the stochastic spacetime white noise. In fact, the
use of Fourier analysis on the space R? allowed for a very specific characterization of the
fundamental solution for the viscous wave operator, which was essential for our analysis of the
reduced stochastic model. However, the unbounded geometry of the model is not feasible for
use in real-life applications, which often involve problems posed on finite bounded domains,
and attempting to do the same model reduction in the case of even a linearly coupled fluid-
structure model posed on a finite domain would be challenging.

Thus, our goal in the current chapter is to develop a more general framework for ana-
lyzing stochastic F'SI models posed on more general domains. In this case, we will use the
operator splitting method in order to construct random approximate solutions to our linearly
coupled fluid-structure problem, where we will more generally consider a 2D linear Stokes
flow describing an incompressible viscous Newtonian fluid (rather than a stationary Stokes
flow as in the previous chapter) interacting with a stochastically forced 1D elastic membrane
whose transverse displacement is described by a wave equation. The notion of solution that
we will develop here is the notion of a weak solution analytically, where the solution will
satisfy an appropriate weak formulation almost surely for every admissible deterministic test
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function, and we will constructively generate this analytically weak random solution through
an operator splitting method where we split the problem into three subproblems: a struc-
ture, stochastic, and fluid subproblem, which each will handle different parts of the full weak
formulation. We will then pass to the limit in these random approximate solutions using
probabilistic methods, which differ from the methods used for the deterministic problem. In
particular, because the uniform boundedness of approximate solutions in finite energy spaces
is only in expectation rather than pathwise, we will use compactness arguments to show that
the laws of the approximate solutions converge weakly to a limiting law. These compactness
arguments are used to establish weak convergence of the laws of the approximate solutions
since one must verify a condition called tightness to obtain a limiting law as a weak limit
along a subsequence of laws of the approximate solutions. Since weak convergence of laws
is not sufficient to conclude almost sure convergence of the approximate solutions, which is
what is needed to pass to the limit in the semidiscrete weak formulations for the approximate
solutions, we will need to use probabilistic techniques such as the Skorokhod representation
theorem and the Gydngy-Krylov lemma (see Chapter 2), to strengthen the convergence of
our approximate solutions to almost sure convergence along a subsequence. This chapter
discusses a new general framework for analyzing general stochastic fluid-structure systems
based on an operator splitting approach, and represents the first application of this approach
to a stochastic FSI problem, which highlights the versatility of the operator splitting method.

We emphasize that the material discussed in this chapter is adapted from the manuscript
[113], co-authored with Suncica Canié.

4.1 Introduction

In this chapter, we introduce a constructive approach to study solutions of stochastic fluid-
structure interaction (SFSI) with stochastic noise. This chapter is written as an introduction
to the use of stochastic techniques to study SFSI, and is aimed at audiences that have
experience with deterministic FSI, but may be new to stochastic analysis. We focus on
a benchmark problem in which a stochastically forced linearly elastic membrane interacts
with the flow of a viscous incompressible Newtonian fluid in two spatial dimensions. The
membrane is modeled by the linear wave equation, while the fluid is modeled by the 2D time-
dependent Stokes equations. The problem is forced by a “rough” stochastic forcing given by
a time-dependent white noise W (t), where W is a given one-dimensional Brownian motion
with respect to a complete probability space (€2, F,P) with complete filtration {F;};>0. The
fluid and the membrane are coupled via a two-way coupling describing continuity of fluid and
structure velocities at the fluid-structure interface, and continuity of contact forces at the
interface. The coupling is calculated at the linearized, fixed interface, rendering this problem
a linear stochastic fluid-structure interaction problem. The goal is to show that despite
the rough white noise, the resulting problem is well-posed, showing that the underlying
deterministic fluid-structure interaction problem is robust to noise. Indeed, we prove the
existence of a unique weak solution in the probabilistically strong sense (see Definition m
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in Section to this stochastic fluid-structure interaction problem. This means that there
exist unique random variables (stochastic processes), describing the fluid velocity w, the
structure velocity v, and the structure displacement 7, such that those stochastic processes
are adapted to the filtration {F;}¢=0, i.e., they only depend on the past history of the processes
up to time ¢ and not on the future, which satisfy the weak formulation of the original problem
almost surely. This is the main result of this manuscript.

To prove the existence of a unique weak solution in the probabilistically strong sense,
we design a constructive existence proof. The constructive existence proof is based on semi-
discretizing the problem in time by dividing the time interval (0,7") into N subintervals
of width At = T/N, and combining a fluid-structure splitting introduced in [140] with a
stochastic splitting up method introduced in [20], to construct approximate solutions. The
goal is to show that the approximate solutions converge almost surely with respect to a cer-
tain topology, to the unique weak solution as At goes to zero. In contrast to the deterministic
case, see the works of Muha and Canié¢ in (140, 138, [137], where a time-discretization via
operator splitting approach was used to study existence of weak solutions, we propose an
alternative splitting scheme in Section |4.6| where the stochastic part is considered separately
from the deterministic part, and the fluid and structure problems are split and solved in a
particular order so that the resulting stochastic integrals involving the stochastic noise in-
crements can be evaluated and estimated to prove stability. See Remark in Section [1.6]
More precisely, along each time sub-interval (£%,t%"),n = 0,..., N — 1, the following three
sub-problems are solved to obtain approximate solutions consisting of the fluid and struc-
ture velocities, and the structure displacement, (w,v,n). First, in Step 1, the structure
displacement and structure velocity are updated using only the structure displacement and
structure velocity from the previous time step. The resulting random variables are mea-
surable with respect to the sigma algebra Fin . Then, in Step 2, which is the stochastic
step, the structure velocity is updated by adding to the structure velocity calculated in Step
1 the stochastic noise increment from time step ¢, to time step t’}vﬂ. Since the structure
velocity obtained in Step 1 is a random variable that is measurable with respect to the sigma
algebra Fin , and the stochastic increment from ¢y to " is independent of it, we will be
able to obtain boundedness of the stochastic integral involving these two quantities by using
their independence. This will lead to stability. The resulting updated structure velocity is
a random variable that is measurable with respect to the sigma algebra F, ntl. Finally, in
Step 3, the fluid and structure velocities are updated by using the mformatlon from the just
calculated structure velocity in Step 2. This gives rise to random variables that are measur-
able with respect to the sigma algebra F, nl We would like to show that the sequence or a
subsequence of random variables constructed this way converges in a certain topology to a
weak solution in the probabilistically strong sense of the coupled SFSI problem.

Based on this splitting scheme, uniform energy estimates in terms of expectation can
be derived. In addition to estimating the expectation of the kinetic and elastic energy of
the problem, it is important to get a uniform bound on the expectation of the numerical
dissipation, to show that the numerical dissipation is bounded and that it in fact, approaches
zero as the time step At goes to zero, which is crucial in the convergence proof. This
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is provided in Proposition Furthermore, another interesting observation is that the
energy estimates will have an extra term on the right-hand side which accounts for the energy
pumped into the problem by the stochastic noise. This is in addition to the energy/work
contributions by the initial and boundary data. These energy estimates define an energy
function space for the unknown functions (u,v,n). A separable Banach space containing the
energy space, specified in in Section [4.8]is called a phase space, and is denoted by X,
and will be the space in which we will consider our approximate solutions.

For this linearly coupled prototypical model of stochastic FSI, we want to pass to the
limit in our random approximate solutions. Our main goal in developing a way of passing
to the limit is to develop a robust methodology that generalizes well to a wide class of
stochastic FSI problems. In particular, we want to establish a mathematical framework
that generalizes both to the case where the stochastic noise dW(t) is scaled by a nonlinear
function f that can depend on the solution itself, as in the model discussed in Chapter 3, and
the case where the stochastic FSI system is nonlinearly coupled so that we are considering
the Navier-Stokes equations posed on an a priori random time-dependent domain. Thus,
we will consider probabilistic compactness arguments for passing to the limit, by invoking
probabilistic tools which show that the laws of the approximate solutions on the phase
space X converge as the time discretization parameter goes to 0, along a subsequence. We
anticipate that these probabilistic arguments which we apply to this prototypical linearly
coupled stochastic FSI system will generalize well to the aforementioned models of stochastic
FSI containing nonlinearities, both in the intensity of the noise and in the fluid-structure
coupling.

We remark that while it may be possible to use a generalization of the so-called Skorokhod
representation theorem to Jakubowski spaces [99] to pass to the limit, instead of probabilistic
compactness arguments, this methodology would not generalize well to other more complex
cases of interest. This methodology however would work well to handle convergence in
Banach spaces equipped with the topology of only weak or weak star convergence rather
than strong convergence, and we refer the reader to the discussions in Appendix A in both
papers [166, 167] for further discussion of more general Jakubowski spaces, which generalize
Banach spaces. This will however not be the approach that we will take here, and we will
use a more standard framework of well-known probabilistic compactness arguments that
generalizes well to more complex stochastic FSI models and gives a broad overview of some
key techniques from stochastic analysis that are commonly used in the study of stochastic
PDEs.

Hence, will develop a robust mathematical method of establishing probabilistic conver-
gence of our (random) approximate solutions, and the first step in doing this is to show that
the laws of the approximate solutions converge weakly. To establish weak convergence of
probability measures, one must show that the probability measures are tight. More pre-
cisely, one must show that for each ¢ > 0, there exists a compact set in the phase space
X of displacements and fluid and structure velocities, such that the probability that our
approximate solutions (uy, vy, ny) live in that compact set is greater than 1 — €. See Defi-
nition for tightness of measures. The proof of tightness of the sequence of probability
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measures py corresponding to the laws of the approximate solutions (wuy, vy, ny) will follow
from a deterministic compactness argument alla Aubin-Lions. The compactness argument
will establish the existence of a compact subset of the phase space X that contains the
approximate solutions (ux,vy,ny) with probability greater than 1 — €, thus verifying the
tightness property.

Once we have established the existence of a subsequence of probability measures p that
converges weakly to some probability measure p as N — o0, or equivalently, as At — 0,
we would like to show that on a further subsequence, the random variables (w,v,n)n will
converge almost surely to a random variable with the law p, with respect to the probability
space (€2, F,P). Showing this almost sure convergence with respect to the probability space
(Q, F,P), however, has to be done in two parts. In the first part, we get a hold of a
subsequence of approximate solutions that converge almost surely but on another probability
space, and then use this information in the second part to construct a convergent subsequence
of approximate solutions that converge on the original probability space. The following is a
more detailed albeit succinct description of the two parts.

Part 1. We use the Skorokhod representation theorem to deduce that there exists a
sequence of random variables (@, 7,7)y, defined on a probability space (Q,f , I@’), which is
not necessarily the same as the original probability space (€2, F,P), such that the laws of
(w,v,7)n are uy, and (@, ,7)y converge almost surely to a random variable (w, v, 7) with
the law u, on the “tilde” probability space. On this “tilde” probability space we also show
that the almost sure limit (w,?,7) satisfies the weak formulation of the original problem
almost surely, but with respect to the “tilde” probability space. This means that this limit
is a weak solution to the original problem in the probabilistically weak sense, see
Definition [£.4.1] This result will be useful in showing the existence of a unique weak solution
in the probabilistically strong sense on the original probability space (2, F,P), discussed in
the second part.

Part 2. We would like to be able to prove that our sequence of approximate solutions
(u,v,m)N, obtained using our time-discretization via operator splitting approach described
above, converges almost surely to a random variable (u,v,7n) on the original probability
space, and satisfies the weak formulation almost surely on the original probability space.
Namely, we would like to prove that the limit is a weak solution to the original problem
in the probabilistically strong sense. If we could obtain that the sequence (u,v,n)x
converges in probability to a random variable on the original probability space (2, F,P),
namely (u,v,n)y = (u,v,7), then the almost sure convergence along a subsequence will
follow immediately. To obtain convergence in probability of (w,v,n)y, we will invoke a
standard Gyongy-Krylov argument [88].

More precisely, to prove that Xy = (u,v,n)y converge in probability to some random
variable X* = (u,v,n) on (Q, F,P), Xy 2 X*, based on the Gyéngy-Krylov lemma [8§],
we need to show that for every two subsequences X; and X,,, there exists a subsequence
xr = (X, Xm, ) such that the following two properties hold:

1. The joint laws VX, X, of the subsequence z converge to some probability measure v
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as k — oo;
2. The limiting law is supported on the diagonal: v({(X,Y): X =Y}) = 1.

The first property will follow from the tightness of measures y; and p,, which are the laws
associated with the random variables X; = (u,v,7n), and X,, = (uw,v,1),. The tightness
of the measures 14 and p,, implies tightness of the joint measures vy, x,, as well. To show
that the second property holds, we will use the result of Part 1 above, combined with
a deterministic uniqueness argument. Namely, Part 1 gives us the existence of the almost
surely convergent subsequences X; = (1, 9,7); and X,,, = (@, 7, ), on the “tilde” probability
space that have the same laws y; and p,, as X; = (u,v,n); and X, = (u,v,7),,. Those two
“tilde” subsequences of random variables converge to the limits X1 and X2, respectively,
each of which has the law u, and a joint law of ()N( X %) equal to v from Property 1 above.
Recall, from Step 1, that both X1 and X? are weak solutions in the probabilistically weak
sense. To show that this joint law v is supported on the diagonal, namely, to show Property
2 above, it is sufficient to show that X! is equal to X2 almost surely, namely it will be
sufficient to show that P(X! = X?) = 1. Indeed, proving the diagonal condition from the
Gyongy-Krylov lemma is associated with proving pathwise uniqueness of weak solutions,
which we present in Section [£.9

Once the properties from the Gyongy-Krylov lemma have been verified, we can conclude
that there exists a subsequence of (u,v,n)y, which we continue to denote by N, such that
(w,v,n)y 2 (u,v,n), which implies almost sure convergence along a subsequence on the
original probability space. This is presented in Section [4.9]

Finally, the proof that the limiting function (u,v,n) recovered above is a weak solution
in the probabilistically strong sense is presented in Section 4.9

To the best of our knowledge, this is the first well-posedness result in the context of
stochastic fluid-structure interaction. The result shows that our deterministic benchmark
FSI model is robust to stochastic noise, even in the presence of rough white noise in time.
This proof combines stochastic PDE analysis tools with deterministic FSI approaches. Ad-
ditionally, the constructive proof lays out a framework for the development of a numerical
scheme for this class of SFSI problems.

In the next section, we provide a brief review of the related literature.

4.2 Literature review

The mathematical analysis of deterministic fluid-structure interaction began around twenty
years ago by focusing on rigorous well-posedness for linearly coupled fluid-structure interac-
tion models. Linearly coupled F'SI models are models where the fluid and structure coupling
conditions are evaluated along a fixed fluid-structure interface, and the fluid equations are
posed on a fixed fluid domain, even though the structure is assumed to be elastic and dis-
places from its reference configuration. The results concerning these linearly coupled models
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typically deal with establishing existence/uniqueness of weak or strong solutions. The exis-
tence and uniqueness of a weak solution to a linearly coupled model involving an interaction
between the linear Stokes equations and the equations of linear elasticity was established in
[66] using a Galerkin method. The Navier-Stokes equations for an incompressible, viscous
fluid linearly coupled to immersed elastic solids were considered in |12} |13, |118]. In partic-
ular, the work in [12] deals with showing the existence of energy-level weak solutions, by a
careful examination of the trace regularity of the hyperbolic structure dynamics in terms of
the normal stress at the fluid-structure interface. The results in [13] [118] deal with estab-
lishing sufficient regularity of initial data that provides existence of strong solutions of the
corresponding linearly coupled systems.

The well-posedness analysis of deterministic FSI models was extended later to nonlin-
early coupled models, where the fluid domain changes in time according to the structure
displacement, and hence the problem is a moving boundary problem where the fluid domain
is not known a priori. There is by now an extensive mathematical literature dealing with
the well-posedness of such models, see the discussion in Chapter 1. Of these references,
we note that the approach outlined in 86| (137, 138|139} 140, |141] is closely related to the
approach used in the current manuscript, in that we use a splitting scheme in order to obtain
a constructive existence proof.

In particular, the approach is based on using a splitting scheme, known as the Lie operator
splitting scheme, that discretizes the nonlinearly coupled problem in time by a time step At,
and separates the coupled problem into fluid and structure subproblems. Then, compactness
arguments of Aubin-Lions type (see [6 129} 136]) are used to pass to the limit as At —
0 in the approximate weak formulations satisfied by the approximate solutions, in order
to obtain a constructive existence proof for weak solutions to nonlinearly coupled fluid-
structure interaction problems. This approach proved to be quite robust for deterministic
fluid-structure interaction problems, since it provided existence of weak solutions for several
different scenarios involving thin, thick, and multi-layered structures coupled to the flow of
an incompressible, viscous fluid via the no-slip or Navier slip boundary conditions, see [137,
138} 139, |140, [141].

In the present work, a version of this approach is extended to deal with stochastic fluid-
structure interaction problems, by combining stochastic calculus with stochastic operator
splitting approaches introduced in [20] and analyzed in [89]. More precisely, we design a
time-discretized, operator splitting method in just the right way so that all the stochastic
integrals are well-defined, and the resulting time-discretized scheme is stable, allowing us to
show, using stochastic calculus, an almost sure convergence of approximate solutions to a
weak solution in the probabilistically strong sense of the coupled fluid-structure interaction
problem. To the best of our knowledge, this is the first well-posedness result on fully coupled
stochastic fluid-structure interaction. Our result builds on recent developments in the area
of stochastic partial differential equations (SPDEs).

Stochastic partial differential equations are PDEs that feature some sort of random noise
forcing, such as white noise forcing in either time, or both time and space, or spatially
homogeneous Gaussian noise that is independent at every time but potentially correlated
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in space. They are motivated by the fact that many real-life systems modeled by PDEs
exhibit some type of random noise, which can significantly impact the resulting dynamics of
the system. The current manuscript considers a stochastic linearly coupled fluid-structure
interaction model involving the interaction between a fluid modeled by the linear Stokes
equations and an elastic membrane modeled by the wave equation. Although the coupled
stochastic FSI model has not been previously considered in the stochastic PDE literature,
there are many works that study either stochastic fluid dynamics or stochastic wave equations
separately, as we summarize below.

In terms of stochastic fluid equations, the consideration of stochastic Navier-Stokes equa-
tions is an active area of research, see e.g., [21, 38, [72, [121]. The study of stochastic Navier-
Stokes equations was initiated in the work of [21], which considered an abstract stochastic
equation of Navier-Stokes type, with an additive random noise forcing in time, and a ran-
dom initial condition. It was shown that there exists a solution that satisfies the problem
almost surely in a distributional sense. In the works of [38, 72|, this abstract equation of
Navier-Stokes type is extended to more general settings where there is nonlinear dependence
of the intensity of the random noise forcing on the actual solution itself. These two works
consider different abstract conditions on this nonlinear dependence and prove existence of
martingale, or probabilistically weak, solutions to the resulting stochastic equations. Both
of these works use a Galerkin scheme to construct solutions and obtain existence by estab-
lishing uniform bounds on the sequence of random functions satisfying the finite-dimensional
Galerkin problems. We note that passing to the limit in the Galerkin solutions in [38] |72]
was done by using standard probabilistic methods, such as establishing tightness of laws,
showing weak convergence in law, and invoking the Skorokhod representation theorem, which
are standard techniques that we will employ for our current problem as well. While there
are many works on stochastic fluid dynamics, we mention in particular a recent work [128],
which establishes the existence of local martingale solutions, which are martingale solutions
up to some stopping time, for a system of one layer shallow water equations for fluid velocity
and water depth in two spatial dimensions, driven by random noise forcing described by
cylindrical Wiener processes. We remark that [128] employs similar probabilistic methods in
passing to the limit in a sequence of random approximate solutions (obtained by a Galerkin
method) that motivated many of the probabilistic arguments in this manuscript, though the
methods used in this current manuscript for constructing approximate solutions are differ-
ent, as they are based on time discretization using an operator splitting approach, and not
spatial discretization using a Galerkin method. One reason for the use of time-discretization
via operator splitting, versus a Galerkin approach, is a possible extension to the moving
boundary case. In the Galerkin case, the basis functions for the moving boundary case will
depend on the random solution itself, which is difficult to deal with.

In terms of stochastic wave equations, there is extensive work on well-posedness and
properties of solutions. It is classically well-known that the stochastic wave equation with
spacetime white noise has a mild solution only in dimension one, but not in dimensions two
and higher (see for example [55]). This is due to the fact that the fundamental solution of the
linear wave equation in dimension two is not square integrable in spacetime, and in higher
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dimensions, it is not even function-valued. Hence, work on the stochastic wave equation in
dimensions two and higher, focuses on considering stochastic wave equations with a more
general type of noise, such as spatially homogeneous Gaussian noise (see for example [150])
which is independent in time but correlated in space. In particular, the authors of [54]
56, [105] consider conditions for this spatially homogeneous Gaussian noise, such that the
resulting stochastic wave equation has a solution that is function-valued (rather than just
a distribution) in dimensions two and higher. Existence results for such stochastic wave
equations in higher dimensions are also considered in [50], and the Hélder continuity and
regularity properties of stochastic wave equations in higher dimensions are considered in [50),
57).

As discussed in Chapter 3, some past progress in stochastic FSI [111] involves a stochastic
viscous wave equation, which was derived as a reduced model for a stochastic linearly coupled
fluid-structure interaction problem, where the entire fluid-structure system can be modeled
by a single stochastic viscous wave equation, describing the random displacement of the
structure from its reference configuration. The work in [111] considers well-posedness for the
stochastic viscous wave equation and establishes existence and uniqueness of a mild solution
in spatial dimensions one and two, in addition to improved Holder regularity properties.
While the results in [111] provide an insight into the behavior of solutions to stochastic FSI,
they are restricted by the fact that the stochastic viscous wave equation is not a fully coupled
model, it is defined in a special geometry on the entire R?, and it does not include the fluid
inertia effects. This allowed the use of mathematical techniques that are not available in
the fully coupled case of stochastic FSI. The goal of the current manuscript is to develop
techniques for studying fully coupled stochastic fluid-structure interaction systems, defined on
physically relevant geometries, including fluid inertia effects described by the time-dependent
Stokes equations.

4.3 Description of the model

The model problem considered here is defined on a fixed fluid domain, which is a rectangle
Qy = [0, L] x[0, R]. The boundary d€2; of the fluid domain consists of four parts: the moving
boundary part denoted by I (it is the reference configuration of the moving boundary), the
bottom of the “channel” denoted by I',, and the inlet and outlet parts of the boundary I';,
and I'y,; where the pressure data is prescribed. The flow in the fluid domain € is driven by
the inlet and outlet pressure data, and by the motion of the moving boundary. See Fig. [4.1]
We will use & = (z,7) to denote the coordinates of points in the fluid domain.

The fluid flow in 0y will be modeled by the time-dependent Stokes equations for an
incompressible, viscous fluid:

N T (41)
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Figure 4.1: Left: A sketch of the linearly coupled stochastic FSI problem, with Q0 denoting the
reference fluid domain, I' denoting the reference configuration of the structure, and W(t) denoting
stochastic white noise forcing on the structure. Right: The different colors represent different
possible outcomes for the random configuration I'(t) of the structure at some time t. The lightly
shaded region represents a confidence interval of where the structure is likely to be.

where u(t,z) = (u,(t,x),u.(t,x)) is the fluid velocity, & = —pI + 2uD(u) is the Cauchy

stress tensor describing a Newtonian fluid, and p is the fluid pressure. This gives rise to the
following system:

ow — pAu +Vp = 0, .

Vou = 0 in Q. (4.2)

At the top boundary I' of the fluid domain, an elastic membrane interacts with the fluid

flow. We assume that this elastic structure experiences displacement only in the vertical di-

rection from its reference configuration I', and we denote the magnitude of this displacement

by n(t, z). The elastodynamics of the structure will be modeled by the wave equation:

e — An = f, on I', (4.3)

where f is an external forcing term.

The fluid and structure are coupled via two sets of coupling conditions, the kinematic and
dynamic coupling conditions, which are evaluated along the fixed interface. This is known as
linear coupling. The kinematic coupling condition considered in this work describes
the continuity of velocities at the fluid-structure interface

u = ne,, on I, (4.4)

also known as the no-slip condition. The dynamic coupling condition describes balance
of forces at the interface. Namely, it states that the elastodynamics of the thin elastic
structure is driven by the jump in the force acting on the structure, coming from the normal
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component of the normal fluid stress oe, - €, on one side, and the external forcing F,,; on
the other:
N — An = —oe, - e, + Fouy, on I,

where e, is the unit outer normal to the fixed fluid-structure interface I'.
In this manuscript, we consider the external force F,,; to be a stochastic force. In
particular, as a start, we consider

Fe:r;t = W(t)a

where W is a one-dimensional Brownian motion in time. Note that the stochastic force is
constant on the whole structure at each time. As a result, the stochastic noise is rough
temporally but is constant spatially. We remark that although this is a simplified model, we
use it to demonstrate the difficulties present in the stochastic case in the simplest possible
setting.

More precisely, we let W denote a one-dimensional Brownian motion with respect to an
underlying probability space with filtration, (Q, F, {F;}i>0, P), in which case dW is formally
the derivative of this Brownian motion. This is a purely formal notation that we will give
precise meaning to later, as Brownian motion is almost surely nowhere differentiable.

In addition, we will assume that the filtration {F;};~o is a complete filtration, which
means that F; contains all null sets of (2, F,P) for every ¢ > 0, where a null set is defined
to be any measurable set in F that has probability zero. This technical assumption will be
useful to pass to the limit in our analysis of the stochastic problem above, as it allows us
to bypass technicalities regarding null sets when considering almost sure limits of stochastic
processes. In particular, the almost sure limit of F; measurable random variables for any
arbitrary t = 0 is still F, measurable under the assumption of a complete filtration. This is
not a restrictive assumption, as one can complete a filtration by simply adding all null sets
to F; for all t = 0, and W will still be a Brownian motion with respect to the completed
filtration. See Section 1.4 in Revuz and Yor [155] for more information about complete
filtrations.

In summary, the coupled stochastic fluid-structure interaction problem studied in this
manuscript, supplemented with initial and boundary data, is given by the following: Find
(u,n) such that

R BT A I

with boundary data:

u;; z % y t(t) } on Fin/outa Uy = aruz = 0, on Fb, (46)

and the following deterministic initial data:

u(0,z,7) = ug(z,7), n(0,z, R) = no(2), om0, z, R) = vo(z2), (4.7)
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where wy € L*(Qy), no € HJ(T'), and vo € L*(T'), and W is a given one-dimensional Brow-
nian motion with respect to the complete probability space (0, F,P) with complete filtration

{Fiti=0-

Thus, the problem is driven by deterministic inlet and outlet pressure data P, jpu:(t)
prescribed on I'y;/ou, With the flow symmetry condition imposed at the bottom boundary
I'y. Notice that throughout this manuscript, we will be using €2 to denote the underlying
probability space, while {1y denotes the fluid domain.

4.4 Definition of a weak solution and main result

To define the space of weak solutions to the above problem, we first introduce the function
space for the fluid velocity:

Ve ={u = (u,,u,) e H'(Q;)*:V-u=0, u, =00on T, u, =0 on 0Q;\I'}. (4.8)

Since the structure subproblem is given by the wave equation with clamped ends, the natural
space of functions for the structure is

Vg = Hy(T). (4.9)

Motivated by the energy inequality presented in Sec. we introduce the following solution
spaces in time for the fluid and structure subproblems:

Wi (0,T) = L*(€; L2(0, T; L*(Q))) n LA(Q; L*(0, T; Vi)). (4.10)

Ws(0,T) = L2(: Wh*(0, T; LA(T))) A L*(Q; L2(0,T; V). (4.11)

We emphasize that u and 7 are random variables, and that the L?(Q) part of the solution
spaces reflects the fact that the energy estimate will hold in expectation.
Finally, we introduce the solution space for the stochastic coupled FSI problem:

W(0,T) = {(u,n) e Wp(0,T) x Ws(0,T) : ulr = nie, for almost every t € [0,T], a.s.}.
(4.12)
Notice that in this solution space, the kinematic coupling condition is enforced strongly.
As in the deterministic case, we define weak solutions by integrating in space and time
against an appropriate space of test functions, which we define to be:

Q(0,T) = {(g.¥) € C:([0,T); Vp x Vs) : q(t, z, R) = ¥(t, 2)er}. (4.13)

These test functions are deterministic functions. Because the fluid domain does not change
in time with the assumption of linear coupling, we can define

Q= {(q,¥) € Vr x Vs : q|r = Ve,}, (4.14)
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and hence view the test functions as differentiable, compactly supported functions on [0, T)
that take values in the fixed function space Q.

To motivate the definition of a weak solution, we will proceed as in [140]. For the
purposes of the derivation of the weak solution, we consider, for the moment, the case of a
general deterministic external force Fi..(t) in place of W (t), so that the first equation for
the structure becomes

—An = —oe, e, + F(t).

We will derive the standard deterministic partial differential equation definition of a weak
solution, assuming that Fi,,(t) is a purely deterministic function in time, and then generalize
this to the stochastic case.

We start by taking a test function (q,v) € Q(0,T), and multiplying the linear Stokes
equation by g and integrating in space and time. We obtain

T T
f o - gdzdt = J f (V-o) - qdxdt.
0 JQy 0 JQy

By integrating the first term by parts in time, we obtain:

T e T
J J oy - qdxdt = f u - qdx — J J u - 0yqdadt
0 Jay Qy =0 o Jay

T
= —f up - q(0)dx — J f u - qdxdt.
Q; o Jo;

By integrating the second term by parts in space and using the divergence free condition on
q, we obtain:

L (V.-o)- - qdx = LQ (on)-qdS —2pu ) D(u) : D(q)dz,

where D(u) and D(q) represent the symmetrized gradient. Using the definition of the
Cauchy stress tensor, o = —pI + 2uD(u), and integrating in time, we obtain

f o, (V-o) qd:cdt—J J pqzdrdt—f Loutpqzdrdt—QuJ ) : D(q)dadt
f an Vq,bdzdt+f famathdwf vt (0 )dz+jo <J wdz) Fo(t)dt

Putting this all together, we get that

T T T
- f f u - Oyqdxdt + 2/;[ D(u) : D(q)dxdt — f J Omoppdzdt
0 Joy 0 Joy o Jr

+ LT L Vn - Vipdzdt = JOT P, (t) (Ln qzdr> dt — LT Pou(t) <Lm qzdr) dt

+ Lf uo - q(0)de + [ vo¢(0)dZ+LT ([ was) Frterae
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where we used the fact that P, /0u(t) = p on L'iyjou-
Now, we formally substitute F..(t) = W(t), into the definition of the deterministic weak
solution, to get that the term containing F,,;(t) can be interpreted in the stochastic case as:

L ' UF ¢dz) AW (t).

Since W is a one dimensional Brownian motion and since Sr Wdz is a deterministic function
in time, we can interpret this term as a stochastic integral.

Before we give the definition of a weak solution to the stochastic FSI problem above, we
recall the definition of a stochastic basis. A stochastic basis S is an ordered quintuple
(see |128] for the notation)

S = (Q,f, {‘Ft}t>07pa W)7

where (€2, F,P) is a probability space, {F;}i=0 is a complete filtration with respect to this
probability space, and W is a one-dimensional Brownian motion on the probability space
with respect to the filtration {F;};>0, meaning that: (1) W has continuous paths, almost
surely, (2) W is adapted to the filtration {F;};=0, and (3) W (t) — W (s) is independent of F;
for all t > s and W (t) — W(s) ~ N(0,t — s) for all 0 < s < t, where N denotes the normal
distribution.

We will define two notions of solution: (1) a weak solution in a probabilistically weak
sense, and (2) a weak solution in a probabilistically strong sense. The second one is stronger
than the first, but we will need the first to be able to prove the existence of a weak solution
in a probabilistically strong sense.

Definition 4.4.1. An ordered triple (S, @, ) is a weak solution in a probabilistically weak
sense if there exists a stochastic basis

S = (Q,F {Fi}i=0, B, W)
and (@, 7) € W(0,T) with paths almost surely in C(0,7T; Q’), which satisfies:
e (@,7) is adapted to the filtration {F;};=o,
e 77(0) = 1o almost surely, and
e for all (q,v) € Q(0,7),

T T T
- J f - Oyqdxdt + 2uf D(a) : D(q)dxdt — f J Oinoppdzdt
0 Joy 0 Joy o Jr

+ LT L Vi - Vipdzdt = JOT P, (t) (Ln qzdr> dt — LT Pou(t) <Lm qzdr) dt

4 Lf o a(0)iz + [ wo0)iz + [ ' ([ vas)

almost surely.
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Definition 4.4.2. An ordered pair (u,n) is a weak solution in a probabilistically strong
sense if (u,n) € W(0,T) with paths almost surely in C'(0,7"; Q’), satisfies:

e (u,n) is adapted to the filtration {F;}i=o

e 7)(0) = 1o almost surely, and
e for all (g,v) € Q(0,7),

T T T
— f f u - Oyqdxdt + 2uf D(u) : D(q)dxdt — f J Oynoypdzdt
0 Jay 0 Jay 0o Jr

; fo ! L Vi - Vipdzdt — LT Pon(t) ( L qzdr> dt — fo o) UF qzdr> dt

+ Jﬂf uo - q(0)dz + L vo(0)dz + LT (L Wz) dw.

almost surely.

In a probabilistically strong solution as in the second definition above, we have a random
solution satisfying the initial conditions on the originally given (arbitrary) probability space
with a one dimensional Brownian motion with respect to a complete filtration. In a prob-
abilistically weak solution, we have a weaker requirement that the random solution exists
on a particular (not arbitrary) probability space, where the initial conditions are satisfied “in
law”. We will show the existence of a weak solution in the probabilistically strong sense.
However, to get to that solution, we will first show existence of a convergent subsequence
of probability measures corresponding to the laws of the approximate solutions, then con-
struct a weak solution in the probabilistically weak sense using the Skorokhod representation
theorem, and then use the Gyongy-Krylov argument [88] to get to a weak solution in the
probabilistically strong sense.

The main result of this work is stated in the following theorem.

Theorem 4.4.1 (Main Result). Let ug € L*(Qy), vo € L*(T'), and 1y € H(T'). Let
Pinjout € Li,.(0,00) and let (2, F,P) be a probability space with a Brownian motion W with
respect to a given complete filtration {F;};>09. Then, for any 7' > 0, there exists a unique weak

solution in a probabilistically strong sense to the given stochastic fluid-structure interaction

problem (4.5)-(4.7).

4.5 A priori energy estimate

We derive a formal energy estimate by assuming that the solution is pathwise regular enough
to justify the integration by parts. We use | - |/z2) and (-,-) to denote the norm and inner
product on L*(T'), and | - | 12(q,) and (-, -) to denote the norm and inner product on L*(€y).
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We define the total energy at time 7" by
E(T) =2 [ |vnpaz+ 1 2 1+ 2dz = L (12 i ]
(T) = 5 Vnl*dz + 5 [v]*dz + 5 [ul"dx = 5 IVOlZ2y + vz + HU”L?(Qf) 5
r r Q

and the total dissipation by time T by

- [ f, 1ot

To estimate the total energy and dissipation for the stochastic processes w, v and 7, we
rewrite the stochastic fluid-structure interaction problem in the following stochastic differ-
ential formulation:

dn = vdt,
dv = (An — oe, - e.)dt + dW,
du = (V- o)dt.

Notice that the first equation implies d(Vn) = (Vv)dt. To obtain an energy estimate, we first
apply Ito’s formula to express the differentials of the L?-norms of the stochastic processes
that define the total energy of the problem:

(Vi) = 2(Vn, Vo)dt,
d([v[Z2y) = [2(An,v) — 2(ce, - ep,v) + L]dt + 2(1,v)dW,
d(”’“f”%?(@,-)) = AV - o, u)dt.

By adding these equations together, we obtain that the differential of the total energy sat-
isfies:

A(IVlZawy + WlZew) + lulizg,) = [XV - o,u) — 2(oe, - ey,v) + L]dt + 2(1,v)dW,

where we have used that (An,v) = —(Vn, Vv) under the assumption that n and v are smooth
and vanish at the endpoints of I'. Recalling the kinematic coupling condition u|r = v, we
obtain that

f (V-0o)- udx = J pu,dr — J pu.dr + f (oe, - ep)vdz — 2,uj |D(u)|*dz,
Qf Fin Pout r Qf

which implies

1 1 1
d —J V772d2+—J v2dz+—f ul*dx
(QFH a5 ]
L 2
=|(=—-2u| |D(u)|*dx+ pu.dr — pu.dr | dt + vdz | dW.
2 Qf Cin Pout r
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Therefore, after integration, for all 7' > 0, we have

B(T) + 2u fo ' Lf |D(w)|2dadt

IT T T T
=Fy+ — + f J Py, (t)u,drdt — f f Py (t)u drdt + J <J vdz) dW. (4.15)
2 0o Jri, 0 Jlow 0 r

We estimate the terms on the right hand side of (4.15)) as follows. For the pressure term
we use Holder’s inequality, the trace inequality, Poincaré’s inequality, and Korn’s inequality

[109] to get
T 1/2
J (f ]uz|2dr> Py, (t)dt
0 Fin

T
f <J uzdr> Pm(t)dt‘ <C

T
JO HD(U)ILa(Qf)Pm(t)dt‘ < C(D(T) || POl 2(0.7) < €D(T) + C()||Pin(D)[72(0 7
(4.16)

T
gCJ;) HV’lL|L2(Qf)Bn(t)dt'

<C

We note that the constant C'(¢) depends only on e and the parameters of the problem. The
same computation holds for the outlet pressure.

For the stochastic integral, we bound the expectation E (maxongT ‘S(T) (Xr 8t77dz) dWD
since the final energy estimate will be given in terms of expectation of the total energy and
dissipation at time 7. To bound this quantity, we use the Burkholder-Davis-Gundy (BDG)
inequality (see Theorem [2.3.1)) under the assumption that the process ;1 is a predictable
stochastic process with respect to the given filtration {F;};>o:

s T 2 |12 1/2
J <J 0mdz> dW’) <E f <J &mdz) dt < C’E( )
0<s<T | Jo T 0 T
1/2 1/2
C <E ) <CcrT'?. [E < max ||0n(t, ')H%Q(F)>]
2
< C(e)T + €E <01£ta<XT |0 (t, ')||L2(F)> < C(e)T + €E (()IéltagXT E(t)) . (4.17)

0<t<T
Now, we first use (4.16|) in (4.15) to obtain

T
B(T) + 20D(T) < () + 5+ 2D(T) + (O (1Pl at0y + Pl riory) + [ ([ o)

T
E < max J 10l (72 dt
0

A

T
|0l [72 )t
0

and then choose € < £ and € < % to get

T
B(D) + uD(T) < B0) + 5+ 0O (IPuOlBao) + 1P Ol + [ ( [ vaz) aw:

Taking a maximum over times ¢ € [0,7], taking an expectation, and then using the
estimate in (4.17)), we obtain the following a priori energy estimate for the coupled problem
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E-3-E2:

t
E ( mas B0+ | | rD<u>12dmds) < (T4 BO) + 11Pa®Ba0ry + P20
f

0<t<T
where C' is independent of 7', depending only on the parameters of the problem.

Remark 4.5.1. The right hand side of the energy estimate shows the four sources of energy
input into the system: E(0) represents the initial kinetic and potential energy, the two final
terms represent the energy input from the inlet and outlet pressure, and C'T' represents the
energy input from the stochastic forcing on the structure.

4.6 The splitting scheme

To prove the existence of a weak solution to the given stochastic FSI problem we adapt a Lie
operator splitting scheme that was first designed in the context of nonlinear fluid-structure
interaction by Muha and Canié¢ in [140]. See also [86]. To modularize the problem which now
involves a fluid, structure, and stochastic effects, we use a stochastic splitting introduced in
[20], which has been used in stochastic differential equations to split stochastic effects from
all other deterministic effects, and combine it with classical fluid-structure splitting such as
the one introduced in [140]. We design a three part splitting scheme that involves a structure
subproblem, a stochastic subproblem, and a fluid subproblem, which gives rise to a stable
and convergent scheme, as we show below.

Given a fixed time T > 0, for each positive integer N, let At = % denote the associated
time step, and let t% = nAt denote the discrete times for n = 0,1,...., N — 1, N. At each
time step, we update the following vector using a three step method described below:

i i i i\ T
X" = (u"NW,vﬁin]@*g) Cn=01,..N—1, i=123
where ¢ = 1 corresponds to the result after updating the structure subproblem, i = 2
corresponds to the stochastic subproblem, and ¢ = 3 corresponds to the fluid subproblem,
with the initial data X% = (ug,vo, )" for each N.

The structure subproblem

In this subproblem, we keep the fluid velocity fixed, so that

Longl

and update the structure displacement and the structure velocity by having (777V+3,UN %)
satisfy the following first order system in weak variational form:

n+% _on
[ Bde = [ ot foran e D)
I At r
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1
’I’L+§

f Az J Vil Ve =0, forall g e HY(D), (4.18)
T r

el pad
where this system is solved pathwise for each w € () separately. We note that (nN+3 , UN+3)
is a random variable taking values in H}(T') x H}(T). To verify this, we must check that it
is a measurable function of the probability space.

Proposition 4.6.1. Suppose that 7y and v} are Fin measurable random variables taking
values in H}(T') and L*(T) respectively. Then, the structure problem (4.18)) has a unique
1

1 1
solution (77?3,@?3), which is a random variable taking values in H}(T') x Hj(T) that is
measurable with respect to Fin .

n 1 n 1 o . . .
Proof. Let F{ : (i, vy) — (77N+3,’UN+3) be the deterministic linear map that sends deter-

1ol
ministic data (77, v%) € HY(T') x L*(T') to the unique solution (ny 2, vy ) € HL(I') x HX(T)
satisfying the weak formulation (4.18) as a deterministic problem. We must show that this
R . n+i  ntllo, . .
deterministic linear map F¥ : (nx,vx) — (ny *,vy *) is a continuous (or equivalently,
bounded) linear map from H{(T') x L*(T") to H3(T') x H}(T). To do this, we must show that
for given deterministic functions % and v% in H}(T') and L?*(T), there is a unique solution

(nv . v’ ) to the above problem in H}(I') x HY(T), and that the solution map is a bounded
linear map.

The existence of a unique weak solution follows from the Lax-Milgram lemma. Namely,
1

by plugging the first equation in (4.18)) into the second equation, we see that 177V+§ must
satisfy the following weak formulation:

f T dz + (AL)? f Vit Vids = (MJ v dz + f nydz, for all v e Hy(T).
r r r r

(4.19)
The bilinear form B : H}(T') x H}(T') — R (defined by the left-hand side)

B(n,v) := Lmﬁdz + (At)? L Vn - Vipdz,

is clearly coercive and continuous, and furthermore, for any fixed but arbitrary n € H}(T)
and v € L*(T), the map

v (80 |

vpdz + f nyvdz
r r

1
is a linear functional on HY(T'). So the existence of a unique 7y ° € HZ(I') satisfying the
weak formulation above in (4.19)) is given by the Lax-Milgram lemma applied to Hj(T'). One

then recovers )

1 3 . n
’UX:_S = W € Hé(F)
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Lopgll . .
To show that the linear map F" : (%, vl) — (7721+3 , UN+3) is a bounded linear map from
n+i . .
HL(T) x L2(T) to HL(I') x H(T), we note that by substituting 1 =y * in (£.19)), we obtain

n+% 2 n n+% n n+%
[ ||H01(I‘) <Oy (AY) [ vy -y *dz+ | ny -y *dz
r r
n n n+i
< Cn (Inllimry + 10312y ) o gy

n 1 .
Hence, ||77N+3||H5(p) < Cy (||7]K,]|Hé(p) + ||U]T\L[HL2(F)) for a constant Cy depending only on N.
1
3

n

n+
Ny = — 7NN

1
Then, by the fact that UZ+3 = A7

, we also have

n+i n n
lon" lgery < Cv (Il gy + o322 -

1 n 1 . .
Thus, FP @ (g%, 0%) — (ny *,vn °) is a bounded linear map from HZ(I') x L*(T) to
H}(T) x Hg(T'), and so the result of the structure subproblem, which consists of the random

functions (77]\;r3 ) N+3) = Fyo(ny,vy), is a pair of Fi» measurable random variables, taking
values in H}(T') x H(T). O

To show that the approximate solutions defined by the subproblems converge to the
weak solution of the continuous problem as At — 0, we will need uniform bounds on the
approximating sequences, which will follow from the uniform bounds on the discrete energy
of the problem. For this purpose, we define the discrete energy at time t, by

n+i 1
-

and we define the fluid dissipation at time ¢,, by

n+i n+i n+i
JQ Uy Pda + o 3||%2(F) +[|Vny BH%Q(F)) ) (4.20)
f

DY = (At)p L |D(u})|*dx. (4.21)

We emphasize that these are random variables.

Proposition 4.6.2. The following discrete energy equality is satisfied pathwise:
B 45 (lon™ = vkl ey ) + 5 (1908 = Vil ey ) = B

Proof. Because v N+3 € H}(T'), we can substitute ¢ = v N+3 in the weak formulation to obtain
that pathwise,

1 1 1 1
J (UZJFE — o) - v:;rgdz + (At)J anrg . VUX,Jrgdz =0.
r r
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1
By using the identity (a — b) - a = 1(|a|* + |a — b]* — [b]?), along with the fact that UK,JF‘Q’ =
n+7

L -] Y ) , we obtain that the following identity holds pathwise:

nTz n+5 1 n—‘,—l 7’L+l
gllon? 172y + S 12y + llon * = VRl 2y + SV ® = Vi |22y

1
5””?]“%2(1“) + §V|V77Rr|’2m(r)

1
The result follows once we note that uT;,JrB = uy. []

The stochastic subproblem

In this subproblem, we incorporate only the effects of the stochastic forcing, which appears
in only the structure equation. In this step, we keep the structure displacement and fluid
velocity fixed

n+f o n+% n+f . n+%
NN " =T1n 7 Uy " = Uy 7,

and only update the structure velocity as

n+f

VI M W (n+ 1A — W (nA)]. (4.22)

In particular, we are splitting the stochastic part of the structure problem from the deter-
ministic part. This is necessary to obtain a stable scheme. We state the following simple
proposition.

1
Proposition 4.6.3. Suppose that v;+3 is an Fyn measurable random variable taking values

2
in HY(T"). Then, vy ° is an Fn+1 measurable random variable taking values in H'(I").

n+2 . . .
Notice that the solution UN+5 to the stochastic subproblem taking values in H*(T), sat-
isfies pathwise the following integral equality, which will be useful later:

n+2 n+

Uy Uy W((n+ 1)At) — W(nAt) 1
L TM f N Wdz,  forall e HAT).  (4.23)

Proposition 4.6.4. The following discrete energy identity holds pathwise:

BN BT LW (n + 1AL — W(nm)]f O Sz S (0 -+ DAY~ W(nAn),
r
Pmof. From U;\L,Jr% =vy * + [W((n+ 1)At) — W(nAt)], we get that
P = | o I+

| ot VW (n+ DAL — W (nAL)] + %[W((n +1)At) — W (A2

Therefore, after integrating over I', one gets the desired energy equality, after recalling that
n and v do not change in this subproblem. O]
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The fluid subproblem

In this subproblem, we keep the structure displacement fixed

n+2
M=y
and update the fluid and structure velocities. To define the problem satisfied by the fluid
and structure velocities, we introduce the following notation for the corresponding fixed time
function spaces:

V= {(u,v) € Vi x L*(I') : ulr = ve,}, Q=1{(q,¥)eVrx H)():q|r = ve,},

where Vg is defined by (4.8)). Note that the definition of V and Q does not depend on N or
n.
Then, the fluid subproblem is to find (u", vi!) taking values in V pathwise, such that

n+1 3

n+1 nT3

Uy — Uy n+l Un *UN

— &~ .qd 2 D : D(q)d & __hd
Lf A7 qw+qu (uy"™) (q)ﬂHfF Ay vdr

R

R
= Pl | @lemadr = Pl | (@)lecsr, ¥ig.0)e Q. (420)
0 0

pathwise for each outcome w € €2, where Py in Jout = A Sn"Atl YAt P jout (t)dt.

2 2
Proposition 4.6.5. Suppose that u},ﬂ and UX/J'_B are .Erllvﬂ measurable random variables

taking values in Vp and H!(T') respectively. Then, the fluid subproblem (4.24) has a unique

solution (wi™, vi*!) that is an Fjn+1 measurable random variable taking values in V.
N

Proof. We establish this result using the Lax-Milgram lemma. Let T% : Vp x HY(T') x R x

2
R — V be the deterministic map that sends deterministic data (ur;'d : v;,% s PN ins PN out) €
Vi x HY(T) x R x R to the unique solution (uy™ vi!) € V satisfying the deterministic

form of the weak formulation We want to show that the deterministic linear map

2 2
n . nt3y "3 pn n ntl o, ntly : .
TN (uy * o8 2 Phins Phoout) = (uN viy') is a continuous map. We start by showing

that the bilinear form B : V x )V — R given by

B((w,v), (g, %)) :J w - qdz + 2u(Ab) D(u):D(q)dw+J vibdz,

Q Q r

is coercive and continuous. Coercivity follows from the Korn equality (see for example,
Lemma 6 on pg. 377 in [42]), applied to

B((uw,v), (u,v)) = L lu|?dx + 2M(At)f

Q

|D(u)|*dzx + f vidz,
P r



CHAPTER 4. A FULLY COUPLED MODEL OF STOCHASTIC FSI 144

to obtain ||V'u,||i2(9f) = 2||D(u )||L2 o). Continuity of the bilinear form B follows from an
application of the Cauchy-Schwarz 1nequality.
Next, one can verify that the map sending

R

2 2 R
(q’ ¢) — u?v"‘z -qdx + f UN+377Z}dZ + (At) <P]7\l/,mJ (qz)|Z=0dT — P]\}’O“tJ‘
I 0 0

(1)),
Qf

is a continuous linear functional on V. Thus, the existence of a unique (uy™' o) e V
satisfying with the larger space of test functions (q,%) € V is guaranteed by the
Lax-Milgram lemma. Note that V is a larger space than the space Q required for the test
functions in the fluid subproblem (4.24). However, we still have the desired uniqueness of
the solution in V if we restrict the test functions to Q as in because Q is dense in V.

Then, using coercivity, the trace inequality for uw € H*(€2;), and the fact that

B((uy™, vy™), (ui™, vy'™)

R R
+2 n+2
:JQ T I R R ) (Px,m f (™). —odr — Py J (uyy"! >d>
f

we obtain the continuity of the map 7™.
2

. n—+ n+2 . .
[hus, since u, * and v, * are F»+1 measurable by assumption, the random functions
N N ¢ )
N

2 2
(uy™,oN") = TR o (uy 3,vy *), which solve the fluid subproblem, are Fin+1 measurable
random variables also. O

Proposition 4.6.6. The following discrete energy identity holds pathwise:

En+1 2 At D n+1 d 1 n+l "Jr% 2 1 n+l "Jr% 2
N+ 2u(Al) |D(uj™))? f”"‘ |y Uy HL?(Qf) vy Z2 ()

Qs
a2 R R
=5yt an (Px,m [ oo = P f (W)l sir )
0 0
Proof. We can substitute (g,v) = (uy", v%") into the weak formulation of the fluid sub-

problem since we showed in Proposition 4.6.5 that (4.24)) holds more generally for test func-
tions in V. We obtain

n+1 n+

TL+1 ’I’L+§ o
f % ”+1d:c+2uf |D(uit))? da:—i—f % vt ldz
oy oF r

R

R
= Pl || )l = P | ()l csdr
0 0

The desired equality follows after multiplication by At, and by using the identity (a—b)-a =
s(lal? +fa — o> — [b]). O
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The full, coupled semidiscrete problem
By adding the weak formulations of the stochastic and ﬂIlld subproblems ([4.23)) and ([4.24)),
and the second equation in the structure subproblem , We have that the solutlon to the

full semidiscrete problem is (w',v%™) € V, and (vy 2,1y ) € HY(T) x HL(T), satisfying
the following equality pathwise:

un+1 un Un+1 n
j NN qdx + 2“J D(u%™) : D(q)dz + f IN_ ZON s+ vn”“ Vipdz
o, Al ) e A
W((n +1)At) — W(nAt n n
= j (( ) Ai ( )¢dz + PN,ZnJ (qz)‘zzodr - PN,outf (QZ)’Z=Ldr7 V(q, w) € Q7
0 0
n+1l 1
f NN g, f VS gdz, Ve LAT),
r At r
(4.25)
| (oA el
where Py i, out = A J Py jout(t)dt. Note that n™ = n, ° by the way we constructed
nAt

the splitting scheme.

The following proposition provides uniform estimates on the expectation of the kinetic
and elastic energy for the full, semidiscrete coupled problem (uniform in the number of time
steps N, or equivalently, uniform in At), as well as uniform estimates on the expectation of
the numerical dissipation.

Proposition 4.6.7. Let N > 0 and let At = % There exists a constant C independent of N
and depending only on the initial data, the parameters of the problem, and || Py, /out|7 2 01)
such that the following uniform energy estimates hold:

1. Uniform semaidiscrete kinetic energy and elastic energy estimates:

n=0,1,...N—1 n=0,1,....N— n=0,1,...N—

1 2
IE( max E;\L,J%) <C, E( max 1E]7\l,+3> <C, E( max 1E]T\L,+1> <C.

2. Uniform semaidiscrete viscous fluid dissipation estimate:
N .
Y E(Dy) <C
j=1

3. Uniform numerical dissipation estimates:

N-1

ntx n ntli n
2 (E (HUN ’ —vNH%z(p)> +E (anN 5 _ VnNHiz(p))) <C.
n=0

N-1

C.

N

42 41
E (HU?\/ P - U]Tif 3||%2(r))

n=0
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N—
n n n+3
2( (Il =y By +E (15 = o B ) < €.

Proof. First, recall the definitions of the discrete energy E]T\L,Jr% and the discrete fluid dissi-
pation D7 from (4.20) and (4.21]). We start with the second uniform numerical dissipation
estimate. This estimate follows directly from the stochastic subproblem (4.22)) after integra-
tion

L\v? — vy 5 2dz = L - [W((n + 1)At) — W (nAt)]?,

and summation of the expectations of both sides:

N-1 9 1 N—
Z E <||U]Tif+§ B UN+3||iQ(F)> Z (n+1)At) — W(nAt)]Q) =LT.
n=0 n=0

We now verify the remaining uniform energy estimates. By summing the structure,
stochastic, and fluid discrete energy identities, we obtain

n 1 k42 1 k+3
E+1+Z(2uAt) j D@ e+ 5 (™ =y e ) + 5 (5 - 3lliz<p))>

k=0 Qf

+E< (I = oheqey) + 5 (1972 - WV”%“F)))

n R
- EO + At 2 <PN 7nf k+1) |Z Odr PZ’ff,outJ (u?\f—‘rl) |Z_Ldr>
0

n

+ Z] <[W((k +1)At) — W (kA?)] f vfﬁdz + %[W((k +1)At) — W(kAt)]2> ., (4.26)

k=( r

42 — k2 k+g
. Z(QMN J D@k P+ (k™ — uh Fa,)) + 5 (105 - 3|izm)>
k+i k+1
# 30 (5 (087 ki) o 5 (197~ k)
1 R R
PIk\},Z’nJ;) (u?\’+1)2|z=0d’r - P],ff,outfo (uﬁc\’+1)2|Z=Ldr

By 4 g[W((k‘ +1)AL) — W(km)]?) ,

= Fy + (At)

(G

k=0

ngll

0

/—\f

((k + 1)At) — W(k;At)]J
T
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1

1 — k+2 Jit3

. E@At j D@k P+ 5 (k™ — uh FBa,)) + 5 (105 - %Z(F)))
k k+3

25 (Hv il ) + 2 (19 w’w%zm))

Z_] ( ((k+1)At) — W(k:At)]f ufﬁdz + %[W((k: + 1)At) — W(kAt)]Z) :

r

forn=0,1,..., N — 1. Therefore,

1
1 2
n+3 k1 k1 _ o k4512 )
E (zn’iaZXfﬁ |:n—071’1na),<N 1 + P E <2,U/ ( )| d ) + QE <|| N HLZ(Qf)

0
L3 1 k+l 1 L
+ 3B (I o 2, +(2E(|v =Kl )+2E(||VnN3—Vn¢v||%z<p>))]

n R
< 2F, + ZE[ max 2 (PN nf uk ) —odr — P]f,youtf (u’;V“)Zp:Ldrﬂ
k=0 0

n=0,1,...,

n

+2E l max ) ([W((k +1)At) — W(kAt)] L iy ¢ g[W((k +1)At) — W(kAt)]er>] :

n=0,1,...,N—1 &~

What is left is to bound the quantities

n R R
I :=E [ max  (Al) Z (P]’\cﬂz‘nf (U§V+1)Z|Z=0dr - P]]\ﬁf,outf (uﬁv+1)Z|Z=LdT)] ’
" 0 0

=0,1,...,N—1
k=0
and
k+3 L 2
l” Jma k20< ((k 4+ 1)At) — W(kAL)] L v Bz + 5 Wk + 1)AL) — W (kAD)] dr)}
<E| max i < ((k +1)At) — (k:At)]J v’”édz> Ly Nz_l[W((m 1)At) — W (kAt)]?
= n=0,1,..., k:=0 r N 2 P

= 12 + 13.

Bound for I : The same argument will work for Py ;. and Py, so without loss of gen-
(k+1)At

erality, we perform the bounds below for P ;.. We recall that Py, = th Py, (t)dt,
kAt

where P}, is deterministic. Therefore, we have the following bound, for the term in I that
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)

- ko
involves Py,

N-1

k=0

R
J ( k+1) |z odT
0

n R
ko k+1
E [n—O,IE?‘.},{Nl(At) Z (PN,an (uN ) |Z=0dr>
1 R 2
E [ (0) f1Pl? + e(0) ([ b )locor) ]

0

(k+1)At 2 R
f Pin(t)dt —i—C’e(At)f (uht 2| ,—odr
0

1
< ) E [ZLEHRnHQL%kAa(kH)At) + Ce(At) L |D(uy™)? dw]
/

N-—1
EIPnlZaom + O E (Cemt) f |D<u§v1>|2dm),

k=0 Qy

where we used Korn’s inequality in the last line. Therefore,

1 1 g
I < 4_6HPinH%2(0,T) + 4_€HPoutH%2(0T Z (206 (At) J ]D(u’fv+1)|2dw> :

Qf

Note that the constant C' is independent of At and N. It is the geometric constant arising
from the application of the Poincaré inequality on the fluid domain €.

Bound for I,: Next, we examine [, and start with an estimate involving the absolute

values:

Next, we consider the expression under the absolute value sign, and consider it as the fol-
lowing stochastic integral:

(

where f(t) is the random function on [0,7"] defined by:

N—1 L i 1
-2, U Uy 3d2) Lanernag (f). (4.27)
k=0 VO

i (LL vzkv+3d2) A[W((k + 1)At) — W (kAt)]

(n+1)At

JL v]’“v*3dz) W ((k + 1)AL) — W (kAt)] = f F)dW (),

0 0

ol
-
o

1
Because U]]i/+3 is E;ICV measurable, this integrand is predictable. This is a direct consequence of
how we split the stochastic part of the problem from the structure subproblem. Without such
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a splitting, we would not be able to make the same conclusion. Hence, since the stochastic
integral is a continuous process in time, we have

J o)

0<s<T

I, < ( max

Using the BDG inequality, we obtain that

<eINADE(  max  [[o5F5|2 + Ll coan@anE(  max EVS) 4+
= k=01, .N—1' N LAD) de n=0,1,.,N—1 N 4e’
Bound for I3: Finally, by using the properties of Brownian motion, we immediately deduce

that

L - LE (JVZ_:l[W((k L DAY - W(kAt)]2> _ %

2 k=0

Conclusion: From the above estimates, we conclude that

N
0 1 k+2
k+1y2 k+1 2
B (e, | omes B ) o 2[ (2““ Jo, P dw)*ﬂ("“ — )

k=0

1 k+1 k+1
+ 5E (I = on ¥ 13y ) + ( it~ o§IBay) + 5B (190! Vn?vuiz(r)))]

k=0 Qf

N—
<280 + 5Pl + e WPl + Z <4ceAt | |D<u§“v“>|2dw>

n=0,1,..., —

w1
+4eLT~E( max EN*§>++LT.
N-1 2e

We note that the constant C' depends only on the fluid domain €2y and not on At or N.
The result follows once we fix € > 0, independent of At, such that 4C'e < p and 4eLT < %
and move the associated terms from the right hand side to the left hand side. We emphasize
that this gives a uniform energy estimate because the choice of € is independent of At and

hence N.
O]

Remark 4.6.1. We remark that it is in these energy estimates that one can see the im-
portance of using our particular splitting strategy to obtain a stable scheme. Namely, this
splitting strategy enabled us to estimate the terms involving the white noise as stochastic
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1
integrals, such as the second to last term in estimate (4.26]). Because vxr"’ is Fyr measurable,

1
the stochastic increment [W((k + 1)At) — W (kAt)] is independent of the integral of 0?3,
and hence, we were able to rewrite this term as a stochastic integral, see (4.27)).

4.7 Approximate solutions

We use the solutions at fixed times of our semidiscrete scheme, uz;r%, 77;,%, and UJT% for
1 = 1,2,3, to create approximate solutions for the given stochastic FSI problem in time on
the time interval [0, T], for each N, which we will need to pass to the limit as At — 0. The
approximate solutions will be defined as piecewise functions in time. However, we must be
careful in this construction of approximate solutions to make sure that they are adapted to
the given filtration {F;};>o associated to the given Brownian motion.

Definition of approximate solutions

We start with the fluid. We define the approximate random function uy on [0,77] x Q; to
be the piecewise constant function

un(t,) = uy?, for t € ((n — 1)At, nAt].

Note that because w},; is Fi» measurable, the choice of w ! instead of u% above is used so
that the resulting process uy is adapted to the filtration {F;}i>o.

1
Next, we consider the functions associated with the structure. Note that 7y, 77;?3, and
1 2
UX,JF‘?’ are Jyn measurable while UX,JF‘"’ is Fyn+1 measurable. It turns out that we will not need

2
to keep track of UZ,+3 when passing to the limit, since it does not appear in (4.25). So it
suffices to define

2
nn(t, ) =nh on(t, ) = vt vi(t,) = vy °, for t € ((n — 1)At, nAt],

and these are all adapted to the given filtration {F;};~¢. Note that vy defined on [0,7] x T
is pathwise the trace of the fluid velocity ux defined on [0, 7] x 2y for all £ € [0, T], but this
is not true for v}, since v} is the structure velocity obtained after the structure subproblem
in the semidiscrete scheme, which does not update the fluid velocity directly.

We also introduce a piecewise linear interpolation 775 of ny to add additional regular-
ity to the structure displacement, since we will want the structure displacement to be in
W10, T; L*(T')) almost surely in the limit as At — 0. Thus, 77, is piecewise linear such
that

My (nAt) = ny, forn=0,1,..., N. (4.28)

Note that 77 has Lipschitz continuous paths in time, and furthermore,

Oy = v (4.29)
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Because both 7% and 7! are Fin adapted, 7 is adapted to the filtration {F;}i~o. We will
also introduce a piecewise constant function 5! for the structure displacement, given by

N (t, ) =, for t € ((n — 1)At, nAt]. (4.30)

Note that n{! is adapted to the filtration {F;};>o and is a time-shifted version of 7y, which
is emphasized in the notation by the superscript of At. This time-shifted structure displace-
ment will be useful for passing to the limit in Section 4.8|

We will also consider the corresponding piecewise linear interpolations for the fluid ve-
locity and structure velocity, which satisfy

uy(nAt) = ul, Un(nAt) = vy, forn=0,1,...,N. (4.31)

We will need to consider wy and Ty because we will express the discrete time derivatives
Tl —un oty . 9. . . . . .
Mo and 2~ in the semidiscrete formulation (4.25) in terms of the time derivatives

of uy and vy. We will also need to consider piecewise constant time-shifted functions uﬁt

and v§! for the fluid velocity and the structure velocity, defined by

uli(t, ) = uy, vt ) = U, for t € ((n — 1)At, nAt]. (4.32)

We note that w5’ and v{! are time-shifted versions of uy and vy. We will need these time-
shifted functions because the fluid dissipation estimate in Proposition implies that uyy,
rather than wy, is uniformly bounded in L*(Q; L*(0,T; H*())). See Proposition [1.7.2]

We make the following important observation. Unlike 77,5, we note that wy and Ty are
not necessarily adapted to the filtration {F;};~0, even though they can still be considered
as random variables taking values in their appropriate path spaces. Similarly, u%! and vg?,
unlike uy and vy, are not necessarily adapted to the filtration {F;};~9. However, this will
not be an issue, because we will see later in Lemma that wy, uy, Uy, and vy are
almost surely “close to” the random processes uy and vy, which are adapted to the filtration
{Fi}i=0, as N — o0 along a subsequence.

We summarize some of the previously discussed measure theoretic properties of the

stochastic approximate solutions in the following proposition, for future reference.

Proposition 4.7.1. Recall that W is a one dimensional Brownian motion with respect to
the probability space with complete filtration, (Q, F, {F;}i=0, P). For all N € N, uy, vy, vk,
Ny, and 77 are adapted to the filtration {F;};>¢ with left continuous paths, with 775 having
continuous paths. In addition, for some fixed ¢ > 0 and for each N, define ny = || + 1.
Then, W, — W, is independent of each of the random variables in the following collection of
random variables for each N and for each 7 > t:

ne?
{ul o oy Pl <n < ngk, {1 0 <n < ngl, n(s) : s € [0,npAt]}.
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Uniform boundedness of approximate solutions

Using the previous discrete energy estimates, we establish uniform boundedness of the ap-
proximate solutions in the following proposition. We note that in contrast to the case of
deterministic FSI, the uniform boundedness of these (random) approximate solutions is only
in expectation.

Proposition 4.7.2. The following uniform boundedness results hold:
e (nx)nen is uniformly bounded in L?(Q2; L*(0,T; H3(T))).
o
o

)
))-
v% ) Nen is uniformly bounded in L2(Q; L*(0,T; L*(T))).

(

v ) Nen is uniformly bounded in L2(Q2; L*(0,T; L*(T))).

V&) ven is uniformly bounded in L2(€2; L?(0, T; HY*(T"
(

)
uny)Nen is uniformly bounded in L?(2; L(0,T; L*(Q))).

(
(
(
(03
(
(

u!) ven is uniformly bounded in L2(Q; L2(0, T; H'(Q;))).

Proof. The only part of this result that does not follow directly from Proposition is to
show that (u4!)nen is uniformly bounded in L2(Q; L?(0,T; H'(€2;))). We compute

N
||UN ||L2 (L2(0,T5HL(2y))) (J ||U ||%11(Qf)dt> = (AHE (Z ||U?v|§{1(ﬂf)>
k=1
N
<oz (31Dl )

k=1

The result follows from the uniform boundedness of the sum of the dissipation terms (recall
that the (At) term is included in the definition of the energy dissipation (4.21])). By taking
the trace of the r component of the fluid velocity w%, which is in HY?(I'), we get the
corresponding boundedness of (v{!)nen in L2(Q; L2(0,T; HY?(T))). O

We also state the corresponding uniform boundedness property for the linear interpola-
tions (7 )nven. Note that in terms of distributional derivatives, 6,77, = vx holds pathwise
for w € ). Therefore, we have:

Proposition 4.7.3. The sequence of linear interpolations of the structure displacements
(My ) Nen is uniformly bounded in L?(Q; L*®(0,T; H}(T))) n L*(Q; Wh(0,T; L*(T))).

Remark 4.7.1. To be very precise, one must check that the stochastic approximate solutions
are measurable, as random variables taking values in a given path space. The measurability of
these stochastic processes is easy to see by using the measurability properties of the functions

uR;, vx;rg, and n%. For example, ny is measurable as a map from the probability space €2 to
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L*(0,T; H}(T)) because ny can be considered as the composition of a measurable map F}
with a continuous map F,. F} is the map from w € () to the space of bounded sequences of
length N with values in H}(T), given by Fy : w — (7%, nk, -, 7y *), which is measurable by
the measurability properties of each n},. Fj is the map from the space of bounded sequences
of length N with values in H}(T') to L®(0,T; H}(T')), given by Fy : (0%, 1k, nn 1) —
Z,QVJ n - Leat,(k+1)aq (t), which is continuous.

4.8 Passage to the limit

We would like to show that our approximate solution sequences converge in a certain sense,
to a weak solution of the original problem. While one could use a generalized Skorokhod-type
argument for general Jakubowski spaces (see [99, 166, |167]), we employ a standard proba-
bilistic compactness argument which has the advantage of generalizing to a broad class of
more complex nonlinear stochastic FSI systems of interest. In this probabilistic compactness
methodology, we will show the existence of a convergent subsequence of the probability mea-
sures which describe the laws or equivalently, the distributions of the approximate solutions.
From here, we will eventually be able to get to almost sure convergence of the stochastic
approximate solutions themselves.

We start by designing compactness arguments that will provide weak convergence of the
probability measures describing the laws of our random approximate solutions.

Weak convergence of measures

We first show that along subsequences, the probability measures, or the laws describing
the distributions of our stochastic approximate solutions constructed earlier, converge to a
probability measure, as the time step At — 0, or N — oo. For this purpose, we recall
that we are given a probability space with complete filtration (Q, F, {F;}i>0,P), with a one
dimensional Brownian motion W with respect to the given filtration. For each N, we define
the probability measure (or the law) uy:

IN = Ry X [y X fndt X fluy X floy X Huy X Hy X gy X flgy X flyde X fpar Xy, (4.33)
defined on the phase space X:
X = [L2(0,T; LX(T))° x [L*(0, T3 L*(Qy)) x L*(0, T; L*(D))]* x C(0, T;R).  (4.34)

Here, p,, denotes the law of ny on L*(0,T;L*(T)), pu, denotes the law of uy on
L*(0,T; L*(€2y)), uw denotes the law of W on C'(0,T;R), and so on. Thus, py is the joint
law of the random variables 0y, Ny, 78, UN, UN, UNVY, BN, Dy, R, 05, and W. As we
shall see below, it is easier to work with the fluid velocity and the structure velocity in pairs,
which is the reason why in (4.33) above, we consider (ftuy, floy)s (Huy s ot ), (Hay s Hoy ), and

(,U/u]%t, /,L,Uz%t). The main result of this subsection is the following.
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Theorem 4.8.1. Along a subsequence (which we will continue to denote by V), ux converges
weakly as probability measures to a probability measure o on X,

To show weak convergence of these probability measures along a subsequence, stated in
Theorem [4.8.1, we must show that the probability measures are tight.

Definition 4.8.1. The probability measures py are tight if for every € > 0, there exists a
compact set A, compact in X, such that

pun(A) > 1 — €, for all N.

To get a hold of the compact subset A., we will need the following two deterministic
compactness results for the structure displacements {nxy(w)} and for the fluid and structure
velocities {uy(w)} and {vy(w)}. The two results are obtained in the following two lemmas.

The first lemma, which will be applied to the structure displacements {ny(w)}, is a direct
consequence of the classical Aubin-Lions compactness lemma [6, [129):

Lemma 4.8.1. The following holds:
[Wh*(0,T; L*(T')) n L*(0,T; Hy(T))] == L*(0,T; L*(T)).

The Aubin-Lions compactness lemma actually gives a stronger compact embedding of
Whe(0,T; L*(T")) n L*(0,T; H3(T)) into C(0,T; L*(T")), but since we want ny and 7y to
take values in the same path space, we use L®(0,T; L*(T")) since 7y is not continuous.

To handle the compactness argument for the structure and fluid velocities, we consider
the subsets K and Kg in L?(0,T; L*(Qy)) x L*(0,T; L*(T")), defined as follows.

Definition 4.8.2 (Definition of £ and Kg). The sets K and K of paths (or realizations
are defined as follows. For the pathwise left continuous approximate functions uy(w), vy (w
on [0,T], we define:

K = {(u,v) € L*(0,T; L*(Qy)) x L*(0,T; L*(I")) : w = un(w) and v = vy (w) for some w € Q and N e N}.

For any arbitrary positive constant R, define g to be the subset of paths (uy(w), vy (w)) € K
where w and N satisfy the following properties.

1. Uniform boundedness:

||(uﬁt’ U]%t)||L2(07T?H1(Qf))XLQ(OvT;Hl/Q(F)) <R, ||uN||L°°(O,T;L2(Qf)) < R,
lonlleeorzzmy < B, |lnnlleormm) < B.

2. Boundedness of numerical dissipation:

N

N n+2 = n+i
1 312 3 2
Z luf™ —uy 3HL’Z(Qf) <R, Z oy ° *U%Hm(r) R,
n=0

n=0

R n+2 n+i 2 = n+1 n+2 2

2 lox * — vy 3HL2(r) < R, Z [l — oy 3||L2(r) < R
n=0 n=0
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3. Boundedness of fluid dissipation:
N
(At) ZJ |D(u?)|*de < R.
n=1Y8s

4. Boundedness of 1/4-Hélder exponent of Brownian motion:

wp WO -W()

5,t€[0,T],s%t |t - 3‘1/4

< R

Remark 4.8.1. In the fourth condition above, any positive Holder exponent that is strictly
less than 1/2 would suffice, since Brownian motion is “almost” 1/2-Hdélder continuous, but
we have fixed 1/4 for concreteness.

The following lemma provides the desired compactness result for (uy,vy).
Lemma 4.8.2. The set Ky is precompact in L*(0, T'; L*(§2;)) x L*(0, T'; L*(T")) for any R > 0.

Proof. We use the Simon’s compactness theorem [165] |136]. According to Simon’s theorem,
it suffices to check two conditions.

First condition: We show that for any 0 < t; < t5 < T, the collection {SZ fydt: fe ICR}
is relatively compact in L*(Qy) x L*(T"). Consider a sequence {f,,(t,-)}%_; in Kg, where
fm(t, ) = (wm(t, ), vn(t, ). We want to show that there is a subsequence {Szf fons, (t)dt}oc

that converges in L*(Q;) x L*(T).
For each m, there exists some N,, and w,, € 2 (both depending on m) such that

k=1

Nm—1
U, (1) = U - Ligo,(At),] + Z wy, (Win) * Lie(n(At)m,(n+1)(At)m]»
n=1
Np—1
Vi (t) = 00 - Liefo,a0m] T D, Ve (Win) * Lie(n(At)m(nt1)(A0m]
n=1

where (At),, = T'/N,,. Therefore, we have that

to max(tg,(At)m) to max(tg,(At)m)
J o (1)t — apttg + J (1), f ()t = amuo + f om(#)dt,
t

1 max(t1,(At)m) t1 max(t1,(At)m)

where a,, = max(0, (At),, — t1). Because a,, € [0,T], we can find a subsequence {my}7_;
such that a,,, — a as k — oo, for some a € [0,T]. Because ug and v, are the fixed initial
data for the fluid velocity and the structure velocity, a,,, uo and a,,, vy converge along this
subsequence in L?(Q2f) and L*(T).
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It remains to show that the sequences in k given by

Uy, (t)dt and

o (1)t (4.35)
max(tl,(At)mk)

k

J*max<t2,(At)mk> J\max(tg,(At)mk)
max(tl,(At)mk)

converge in L*(Q;) and L*(T) respectively along a further subsequence. Because of the
compact embedding H'(Q;) x HY2(I') cc L?(Qf) x L*(T), it suffices to show that the two
sequences in k given in are uniformly bounded in H*(€;) and HY?(T"). This can be
easily verified by using the uniform boundedness property of functions in Kg in Definition

4,82

‘ J\max(tg,(At)mlC )

W, (1)dt +

HY ()

max(tg,(At)mk )
J Vg, ()dt

max(tl,(At)mk) max<t1,(At)mk)

H2(I)

T T
<| @l [ o Ol
( (At mp

Ab)m,

T 1/2 T 1/2
<TV? (f ) [[wm, (t)||%1(gf)dt> + T2 (f Ivmk(t)@uz(p)dt) < 2T'R.

(Al (Al)m,

0¢]
So we can further refine the subsequence {my}_; to obtain that { (Ui, (1), Uy (1)) dt}

converges in L?(Q2;) x L?(T"), where we continue to denote the refined subsequence by {mj}3;.

Second condition: We must show that |[7,f — f|[r2n1;22(05)x22(r)) — 0 uniformly for all
f = (u,v) € Kg, as h — 0. Here 7, for h > 0 denotes the time shift map (7,f)(¢,:) =
f(t = h,-). Consider an arbitrary ¢ > 0. We want to find h > 0 sufficiently small such that

[7hu — |22y < € and ||Thv — vl|L2 hT.L2(F)) <e VY(u,v) e K.
To verify this, we can write h = [(At) + s, for each At = <, where 0 < s < At, so that
T — |2 iz, < ||Tsmiace — Tiacu| |22 0p)) + ||7'1Atu — |2 (hriL2@)))s

700 = V]| L2z @y < |TsTiact — Tiaevl| ez @y + 11aev — vl 22 ry)-

The above estimates require one estimate for the small s time shift, and one for the larger
[At time shift. We will handle the first time shift estimate using the numerical dissipation
estimate holding for K, specified in Definition £.8.2] and we will handle the second time
shift estimate using an Ehrling property.

Estimate for time shift by s: Consider arbitrary (uy,vy) € Kg. Recalling that 0 < s <
At, we compute

N—1-2

|| TsTiarun — TlAtUN||L2(hTL2 Q) = Z Jui™ — U?v”%agf)

N-1

<8 Z [|luy™ — U%H%?(Qf) < SR,
=0

3
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n+3
where we used that ufy, = uy *

Similarly,

and the numerical dissipation estimate in the last inequality.

N—1-2 N-1
[7sTiatvn — TZAtUNH%‘Z(h,T;B(F)) =S Z HUK/H - UJT\LTH%Q(F) SS Z H”?x“ - U%H%%r)
n=0

n=0
N-L N-Lo o N-1 L2
nrszs 2 nrszs nr+s 2 1 nr+s 2
< 3s <Z oy ? _U}ZVHH(F) + Z loy * — vy 3||L2(1") + Z vy — vy 3||L2(F)) < 9sR.
n=0 n=0 n=0

Recalling that h = s+ [At so that 0 < s < h, we can make these quantities arbitrarily small
by taking h sufficiently small, since R is a fixed arbitrary positive constant.
Estimate for time shift by [At: Consider arbitrary (uy,vy) € Kr. We want to estimate

[[macuny — w22 ) + l|Tiavn — vnllz2 ez @y)-

This is identically zero if h < At, so we assume for the following estimate that h > At. We
use the chain of embeddings H'(Q;) x HY2(I') cc L*(Q) x L*(T) = Q', where Q is the
test space defined in ({.14). Applying the uniform Ehrling property, see e.g., [154} [136], we
obtain

l[matun —un|lL2,mi2(0,)) + [[maton — onllp2 2y

< 2|[mac(un,vn) — (U’N7UN)‘|L2(h,(l+1)At;L2(Qf)><L2(F)) +2[|mat(un, vn) — (u’N7UN)'|L2((Z+I)At,T;L2(Qf)><L2(F))

< 2[|nac(un, vn) — (UN»UN)\|L2(h,<z+1)At;L2(szf)xL?(r)) +0l[mat(un, vn) — (un, vN)'|L2((l+1)At,T;H1(Qf)><H1/2(1"))

+ C0)||Imat(un,vn) — (un, on)||L2(@iyae oy =11 + 12 + Is.

To estimate I;, we use the triangle inequality, the assumption that A > At, and the uniform
boundedness property of g in Definition [4.8.2;

I <2||mac(un, o)l L2 n,ar)anc2 @) <22y + 20[(wn, on)l L2,y anL2 ) < L2 ) < 8(At)’R < 8h'/*R.

To estimate I, we use the triangle inequality and the uniform boundedness property of Kg
in Definition E.8.2

I, <o (Hsz(uN, ON )| L2 (v ae i @) x Y2 (0)) H(UN,’UN)|\Lz((lH)At,T;Hl(Qf)le/z(p))>
< 20||(uw, UN)‘|L2(At,T;H1(Qf)><H1/2(F)) < 20R.
To estimate I3, we multiply the first equation in the weak formulation (4.25) by At to obtain:

L (uhtt —ul) - qdx + L(v}@“ —ol)dz = L[W((n + 1)At) — W(nAt)dz

! R R
+ (A?) Z (Pf@ﬁl f (¢:)|:=0dr — P;\lffoﬁtil f (¢:)|o=rdr
k=1

0 0
—2u | D(u}™): D(q)dx — J A/ de2>, V(q,v) € Q.
Q r

We estimate the terms on the right hand side as follows. For (q,v) € Q, where Q is defined
in (4.14)), with ||(g,?)||o < 1, we have the following estimates.
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e Using Cauchy-Schwarz and the boundedness of the 1/4-Holder exponent of Brownian
motion in the definition of g, see Definition we obtain

1/2
L [W((n + )At) — W(nAD]bdz| < (L W ((n +1)At) — W(nAt)\zdz)

1/2
< ( J \R(lAt)1/4\2dz> < C(1AH)YA,
r

e We recall the definition of the discretized pressure Py, Jout = 3 Sf;z;l Jat P jout(t)dt,

and use the trace inequality on the integral involving ¢, to obtain

R
]3] f 0] = (20|33 P 0ot
0
(n+l)At
C(At) P]\“ﬁ;ﬁ ' = f Py (t)dt
nAt

< C(ZAt)l/Q\|Pm||L2(nAt7(n+l)At) < C(lAt)1/2||Pm||Lz(O,T) — C(1At)Y2.
The same estimate holds for the outlet pressure term.

e Using Cauchy-Schwarz and the uniform fluid dissipation estimate in Definition [4.8.2]

of Kg, we get
! 1/2
c@ny, ( | 1y dw)
k=1 \Y$r
1/2

< CIV?(At) (Zf ulsth)| daz)

1/2
< CU'2(AL) (ZJ ") dm) < C(IAH)Y2,

e Using Cauchy-Schwarz and the uniform boundedness of 7y in Definition [4.8.2] of Kk,
we get:

(@032 | D) Dig)da| <

(At) ZJ Vnvtk . Vepdz| <

l
< (At) ZJ |Vntr . Vipldz < C(AL) Z ™ oy < CL(AE).

Here, all constants C' are independent of n, [, and At and hence N, but can depend on the
fixed, arbitrary constant R, and on the given parameters of the problem. Combining all of
these estimates together, we obtain that

(i vy) = (ufy, vyl < CUADYY, (4.36)
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where we use the estimate 0 < [(At) < T to reduce all exponents on (IAt) to the smallest
one, which is 1/4. Hence,

[ Tiae(un, vv) — (un, UN)H%Q((HI)AtT Q)
N—-1-1 N-1
= (A1) D ([ op) = (u, v l[e < C(AD) Y (1AYY? < C(1an)Y?,
n=0

n=1

and so ]3 = 0(5)||TlAt(uNyvN) — (’U,N, UN)||L2((Z+1)At7T;Q’) < C(5)(lAt)1/4
Combining the estimates for Iy, I, and I3, we obtain

HTZAt’u,N - UNHL2(h7T;L2(Qf)) + HTZAtUN — UNHLQ(h,T;LQ(F)) < 8hl/2R + 20R + 0(5)(1At)1/4.

We can now conclude the verification of the second condition of Simon’s compactness
result. Namely, we have shown that

7w — wl[ 220, < (sR)Y? + 8h'2R + 26 R + C(5)(1AH)*,
70 — V|| 2n 2@y < 3(sR)Y? + 8hY2R + 25R + CO(8)(1At) Y4,
()

Now, since h = s + [At and s,lAt € [0, h], we get

R)V? 4+ 8hY2R + 26R + C(8)h'/4,

HThu U/HL2 h,T;L2(Q)) (
3(hR)Y? + 8hY?R + 26R + C(5)n"/*.

<
||ThU—U||L2hTL2 )<

€

Therefore, given € > 0, we can first choose > 0 so that 20 R < §, which fixes a value for
C(9). Then, we can choose h > 0 sufficiently small so that

3(hR)Y? + 8h'?R + C(6)hV/* < >
This establishes the desired equicontinuity estimate, and hence Lemma follows from
Simon’s compactness theorem. O

Finally, we note that we have obtained compactness results only for the velocity approx-
imate function vy and not vy. In addition, when passing to the limit, we will consider
the linear interpolations and time-shifted versions of the fluid velocity and of the struc-
ture displacement and Velocity We recall that the linear interpolations are piecewise linear
functions defined by (4 , , and the time-shifted functions are piecewise constant
functions defined by - . Hence, we will need the following result.
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Lemma 4.8.3. For an appropriate subsequence, which we continue to denote by N,

llow = x|l 220,102 (0)) — 0, as N — oo, almost surely,
llvnv = On||20,7:2(0)) — 0, as N — oo, almost surely,
llow — 8| 2,122y — O, as N — oo, almost surely,
llun —un||r201:22(0,)) — 0, as N — o0, almost surely,
|un — uﬁt||L2(07T;L2(Qf)) — 0, as N — oo, almost surely,
Iy = Tixlle20,r:020)) — 0, as N — o0, almost surely,
Inv — 8l 2 .rz2ry) — O, as N — oo, almost surely.

Proof. We start by showing the first convergence result. To do that, we introduce the events

1 .
Ejn = {HUN - UM\L?(O,T;H(F)) < —.}, Jj=1,

and show that the probability that the complements of £ 5 occur for infinitely many j,
is zero. Indeed, by multiplying by At the uniform numerical dissipation estimate from
Proposition 4.6.7] and keeping only the first term on the left hand side, we obtain

N-1
n+tg n *
E <At Z log = UNH%Q(F)) =E <HUN - UNH%Q(O,T;LQ(F))) < C(At). (4.37)
n=0

By Chebychev’s inequality, we get P(E ) < C(At)j* = CTN~'j% Thus, for the events
E; n_ji, we have Z P(ES y_j1) < CTZ % < o0. Therefore, by the Borel-Cantelli
lemma,

P (EJ N—j+ occurs for infinitely many ]) = 0.

This implies that for almost every w € €, there exists jo(w) such that [[vy, —v} |[r20,22(r) <
1 for all j > jo(w), where N; := j* which implies the desired result, where our subsequence

N will Contmue to be denoted by N for simplicity of notation.
To show the the remaining convergence results, we use Proposition [£.6.7] to conclude that
there exists a uniform constant C' independent of N such that

N-1 N-1 N—1
Y E (Il —oiliar) <€ N E (Hu”“ wklBay) <€ Y B (ViR = Vi) <C.
n=0 n=0 n=0

2
where we recall that 'u,X,Jr ® = u} and N N = nit!, and where we used the triangle inequality

to obtain the first estimate. Then, the same argument as above gives the desired result, once
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we note that

=

-1

E (|[on - onlarz2y) < (A0 X E (05 = okl ) < C(AL) — as N — o,
n=0
(4.38)
N-1
E (yw - UNH%Q(O,T;LQ(F))) —an Y E (WH V2, F)) C(At) — 0, as N — o,
n=0
(4.39)
N-1
E ([an = unl ooy ) < (A0 3 E([[uf = uhlBagq, ) < C(AH) -0, as N >,
n=0
(4.40)
N-—1
E ([[uf’ - unlBaoriza,) = (A0 ) E (Il = ukl,)) < CA) -0, as N -,
n=0
(4.41)
N—-1
E (HﬁN - 77NH%2(0,T;L2(F))) < (At) Z E (Hn"“ - 771%”%2@)) < C'(At) -0, as N — o,
n=0
(4.42)
N—-1
E (1R’ — 120020 ) = (A8) 2 E (Il = iliZen) < C'(A) — 0, as N — oo,
n=0
(4.43)
where we used Poincaré’s inequality to deduce and ( - O]

Notice that this result follows from the numerical dissipation estimates in Proposition
[4.6.7, which imply convergence to zero in expectation, of the numerical dissipation terms,
shown in (4.38]), (4.39), (4.40), (4.41), (4.42), and (4.43)), from which we were able to deduce

the almost sure convergence.

Proof of Theorem |4.8.1. To show weak convergence of probability measures along a subse-
quence, we must show that the probability measures uy are tight, see Definition [4.8.1] Here,
we note that for reasons that will be clear later (see Step 2 below), we will take IV to be the
subsequence provided by Lemma and begin with this indexing convention of N.

Step 1: Weak convergence of pz, and ji,, x 4, along a subsequence. We show
this by showing that p, and fi,, X p,, are tight. To show the tightness of j, , we define
the set

Ap ={ne WH*(0,T; L*(T)) n L®(0,T; Hy(I)) : |71l 0,1;02(r)) < Ry HﬁHLOC(O,T;H(}(F)) < R}

By Lemma 4.8.1) A is a compact set in L?(0, T; L*(I")) since L*(0,T; L*(T")) embeds con-
tinuously into L?(0,T; L*(T')), where the closure is taken in the topology of L?(0,T; L*(T)).
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So by Chebychev’s inequality and the previous uniform boundedness results, we have that
for an arbitrary € > 0,
Hin (AR) >1—¢,

if R is chosen sufficiently large. So there exists a subsequence, which we continue to denote
by N, for which i, converges weakly to some probability measure p, on L*(0,T; L*(T')).

To show the tightness of fu,, X f,, recall the definition of the set Kg, and note that
by Lemma , Kr is a compact set in L2(0,T; L?(Q;)) x L?(0,T; L*(T')). Furthermore,
using the uniform boundedness estimates from Proposition [4.7.2| combined with Chebychev’s
inequality, we have that for any € > 0, we can find R sufficiently large such that

(/’LUN X /’L'UN)(IC_R> >1—e

Hence, there exists a subsequence, which we continue to denote by N, for which the measures
Py X Hoy converge weakly to some limiting probability measure on L*(0,T; L*(Qy)) x
L?(0,T; L*(T)), which we denote by fiq, X fi,.

Step 2: Weak convergence of fu,, X f,%, fay X Hoy, [t X fydty [y s and [ along
the subsequence obtained from Step 1. Since 1, X ftyy, = [ty X [y, Dy the definition
of weak convergence, we have

E[f(un,vn)] — fd(p % ),
L2(0,T;L2(924)) x L2(0,T5L2(I"))
for all bounded, Lipschitz continuous functions f : L*(0,T; L*(;)) x L*(0,T; L*(T")) — R.
However, because ||vy — v¥||r20,m:22r)) — 0 a.s. due to Lemma [4.8.3 we have that by the
Lipschitz continuity of f,

F(u,vox) — flun, o8| < Lip(f) oy — v§lzorzzmy = 0, as. as N — oo,

Hence, by the bounded convergence theorem, E[ f(uy, vy)]—E[f(uy,vy)] — 0, as N — oo,
and hence,
E[f(uN>UX7)] - fd(,uu x UU)»
L2(0,T;L2 () x L2(0,T;L2(T'))

for all bounded, Lipschitz continuous functions f : L*(0,T; L*(Qy)) x L*(0,T; L*(T)) — R.
Thus, along the subsequence generated from Step 1, we have that both fi,,, X [ty and fi,, %
[ converge weakly to the same limiting probability measure ji,, x u,, on L*(0,T; L*(Qy)) x
L2(0,T; L*(T)).

The same argument can be used to show that pz, % uz, and Pt X [yt also converge
weakly to fty, X fi,. This follows from the result on a.s. convergence of |[wn —un||r207:22(0,))
||UN — UN| |L2(O,T;L2(F))a ||uﬁt — ’U,N| |L2(07T;L2(Qf)), and ||U]%t — UN| |L2(0,T;L2(F)) in Lemma .

Finally, we have from Step 1 that g, converges weakly to some probability measure ,,
as probability measures on L?*(0,7; L*(T")). Then, the weak convergence of ju,, and [hnat
to this same weak limit p, follows from the same argument as above, and the result from
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Lemmam that ||y — nnllz20rz2) — 0 and |[n8" — nnllz20rr2@y — 0, as N — oo,
a.s.

Step 3: Tightness of full measures iy along the subsequence obtained from Step
1. We now consider the full probability measures uy specified in on the phase space
X specified in . We want to show that these probability measures uy are tight along
the subsequence N constructed as a result of Step 1.

Consider € > 0. We want to construct a compact set in the phase space X’ for which the
probability measure p has probability greater than 1 — € on this compact set, for all N. We
will construct this compact set component-wise, using 7, ..., T2 to denote the projections
onto the components 1 through 12 of uy.

By the weak convergence of the measures ji,, iy, and [yt by Prohorov’s theorem
(see for example Proposition 6.1 in [128]), there exist compact sets B;, B2, and Bs in
L?(0,T; L*(T)) such that

€ € €
m(pun)(By) > 1 — 3 mo(un)(B2) > 1 — 3 ms(pun)(Bs) > 1 — 3 for all N.

Similarly, because (uy,vy), (un,v%), (Wy,Vy), and (ui,v4?) converge weakly along

this subsequence N by Step 1 and Step 2, there exist compact sets Bys, Bs7, Bsg, and
BlO,ll in L2<O,T, L2(Qf)) X L2(0,T, LZ(F)) such that

€ €
Ta5(in)(Bas) > 1 — 3’ 7e,7(n)(Be7) > 1 — 3’
€

€
7T8’9<,U/N>(Bg’9) >1— é, 7T10711(/LN)(B10’11) > 11— g, for all N.

Finally, the last component of py, which is uy, is constant in N. Hence, the probability
measures m2(uy) defined on C(0,T;R) are trivially, weakly compact. Therefore, the collec-
tion m2(uy) for all N is tight, and hence, there exists a compact set Bz < C'(0,7;R) such
that

7T12<,UN)(B12) >1-— g, for all V.

Based on this construction, we have the set M, := By x By X By x By 5 x Bg 7 x Bg 9 x Bg,11 X
Biy, which is a compact subset of the phase space X, satisfying uy(M,) > 1 — ¢, for all N.
This establishes the desired tightness of the probability measures, and completes the proof
of Proposition [4.8.1] ]

Continuity properties of the weak limit

To be able to prove appropriate measure theoretic properties of the limiting solutions, we
need to establish continuity properties of the limiting solution. This is because many mea-
sure theoretic properties are simpler for stochastic processes with continuous paths in time.
This is simple to do for the structure displacements, since the approximate structure dis-
placements 77 all have Lipschitz continuous paths. However, because the approximate fluid
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and structure velocities uy and vy have paths that are not continuous, we want to establish
that the limiting solutions for the fluid and structure velocities have continuous paths in
time, with an appropriate notion of continuity.

First, we introduce the following definition, which will be used throughout the remainder
of the manuscript.

Definition 4.8.3. Let B be an arbitrary Banach space and let f,g : [0,7] — B. The
function ¢ : [0,7] — B is a version of f if f = g a.e. on [0,T].

The goal is to show that the limit function (u,v) is in C(0,7; Q') almost surely, or more
precisely, that the limiting measure p is supported on a measurable subset of phase space
X, with the projections onto the functions involving the fluid and structure velocities being
in C(0,7; Q') almost surely. This continuity property will allow us to conclude later that
the resulting limit process is well-behaved in a stochastic measure theoretic sense.

To do this, we will use the idea of p-variation for functions in time taking values in Q’.
The notion of considering total variations of functions is a classical idea [144], |181]. We
remark however that our definition below differs slightly from classical definitions of total
p-variation.

Definition 4.8.4. For any real number p > 1 and any 6 > 0, we define the p-variation of
length scale 0 of a given function (u,v) : [0,T] — Q" by

Vo(u,0) = sup 3 [[(u(ts), v(t:) = (u(tio), o(tim1))| [y,

|P|<é ;4

where P denotes a partition 0 < tg < t; < ... < t); < T for some positive integer M, and
the condition |P| < § means that [t; —t;_1| < d forall i =1,2,..., M.

We introduce this definition of the p-variation of length scale § because we will invoke
estimates on the time shifts, as in ([£.36]), in order to deduce continuity in Q’. The strategy
will be to show that almost surely, the limiting fluid velocity and structure velocity, denoted
by the pair (u,v), has a variation that goes to zero as the length scale d goes to zero, which
would imply that the pair (u,v) cannot have any discontinuities and is hence continuous in
Q’. We hence want to define and examine the subset of functions whose p-variation of length
scale ¢ is bounded above by a certain parameter e. We do this in the following lemma.

Lemma 4.8.4. Let A, 5. be the set of functions (u,v) : [0,7] — Q" in
X = L*0,T; L*(Qy)) x L*(0,T; L*(T"))
such that the following properties hold:

1. (w,v) has a version that is left continuous on [0, T'] as a function of time, taking values

in Q.
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2. This version of (u,v) is also right continuous at ¢ = 0 as a function taking values in

Ql
3. For this (necessarily unique) left continuous version, V’(u,v) < e.
Then, for any p>1, 6 > 0, and € > 0, A, 5, is a closed set in X.

Proof. To show that A, ;. is a closed set in X, we consider a sequence {(w,,v,)}w_; in A, ;.

that converges to some element (u,v) € X in the norm of X. We claim that (u,v) € A, ;..

We start by showing Property 3 above, namely V(u,v) < e. Because (u,,v,) — (u,v)

in L?(0,T; L*(Qy) x L*(T")), we have that along a subsequence, which we will continue to

denote by the same index, we have (u,(t),v,(t)) — (u(t),v(t)) in L*(Q;) x L*(T), for a.e.
€ [0,T]. Since L*(Qf) x L*(T') embeds continuously into Q’,

(wn (), va(t)) — (u(t),v(t)), in @, Vte S, (4.44)

where S is some measurable subset of [0, 7], which consists of the points ¢ € [0, 7] for which
the convergence above holds. Note that S has almost every ¢ € [0, T].

Consider any partition P with |P| < ¢, consisting only of points in S. Now, from the fact
that V;f(un, v,) < € for all n, we have that Zf‘il [(wn (t:), v (t:) — (W (tim1), vn (1)) |5 < €.
Because the partition is finite and because the partition consists of points in .S for which the
convergence holds, in the limit as n — oo:

Z [(w(ti), v(ti) — (w(tior), v(ti1))|[o < e (4.45)

This verifies Property 3 for partitions |P| < ¢ consisting of points in S. To show Properties 1
and 2, we use the above inequality and construct a version of (w,v) which will satisfy
all the properties of the set A, s.. Then, we will conclude the proof by verifying Property 3
for this new version and extending the verification of Property 3 to general partitions |P| < §
consisting of any points in [0, 7"]. We start with Property 1 above, namely that (u,v) must
have a version that is left continuous. We do this in the following steps.

Step 1: First, we show that at each point ¢ € [0, T], the left and right limits of (u,v) along
points in S must exist. This will be useful, as S is dense in [0,7]. In addition, the density
of S in [0, 7] means that for all ¢ € [0, 7], the notion of a left and right limit along points in
S makes sense.

To show this, consider any point ¢y € [0,7]. We emphasize that ¢, is not necessarily
in the set S. We claim that the left and right limit at ¢, along points in S must exist. In
particular, for any sequence {t,}%_; with ¢, € S that increases to ty or decreases to tq, we
claim that lim, . (u(t,), v(t,)) exists in Q'

We show this by contradiction. Suppose there exists a strictly increasing sequence {¢,,}%_,
with ¢, € S and t, / to, such that lim, . (wu(t,),v(t,)) does not exist in Q. The same
argument will hold in the case of a decreasing sequence. This implies that {(w(t,), v(t,))}>,
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does not converge in Q’, and hence is not a Cauchy sequence. Thus, there exists ¢ > 0,
such that given any N, there exists ny,ns = N such that

[(w(tn,); v(tn,) = (w(tn,), v(tn,))llor = €o-

Note that we have called this constant ¢, to distinguish it from the € in the definition of
Apse. Now, choose M sufficiently large such that

M(€)? > e.
Choose a partition P consisting of points sg, ..., Sopr—1 in S with the following properties.
1. Foreach ¢ =0,1,...,2M — 1, we have that to — § < s; < 1.
2. The sequence Sq, ..., Sopr—2, Soas—1 i strictly increasing.

3. Foreveni =0,2,...,2M —2, |[(u(s;),v(s;)) — (w(si+1),v(Si+1))||or = €o. This can be ac-
complished by using the non-convergent sequence {(u(t,), v(t,))}_; and the definition
of €y to choose the s; from the sequence {t,}_;, as t, € S for all n.

Since M was chosen so that M (ey)P > e, for this partition P, consisting of points in S with
|P| < §, we have

2 [I(w(si), v(s:)) = (wlsia), v(sia))llg > €

which is a contradiction.
Furthermore, the left and right limits along points in S are well-defined. Suppose for
contradiction that

Jim (u(sn),v(sn)) = Ly # Lz = lim (u(tn), v(tn)),

for two increasing sequences s, " tg and t, / ty, consisting of points in S. Then, we can
construct a new sequence {ry}_;, where we set 1y = so. Then, we set r; to be any t, for
which t,, € (so,%0). We continue, creating an interlaced sequence where all odd indices of ry
come from the sequence of s, points, and all even indices of r, come from the sequence of ¢,
points, where along the odd sequence, the indices of the corresponding s, points is strictly
increasing, and similarly for the even sequence of the ¢, points. We can also perform this
construction so that the points in r; are strictly increasing to to. However, one can see that
limy, 0 (w(ry,), v(ry,)) does not exist, which contradicts our earlier result. So the left and
right limits along points in S are well-defined.

Step 2: In Step 1, we have shown that lim,_,,- ,cs(u(t), v(t)) and lim,_,.+ , s (u(t), v(t)) both
exist for all ¢ € [0, T'], where these are limits in @’. We show that there can only be countably
many points g € (0,7") for which these limits, which take values in @', do not agree.
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To do this, we argue by contradiction. Suppose that there are uncountably many points
in (0,7") for which these limits do not agree. Then, there exists p > 0 sufficiently small such
that there are infinitely many points tq € (0,7") for which

| lim (u(t),0(t) = lim (u(t),v(t))llo = p.

t—ty teS t—td teS

Let M be sufficiently large such that M (g)p > € and select ty, ..., ty; points of discontinuity
in (0,7") with

|| lim (w(t),v(t)) — lim (w(t),v(t))|lo = p, forn=1,2,... M.

t—t;, teS t—t] teS

We can order these points as t; <ty < ... < ty, and select 2M points {S,; }1<n<iriz12 in S,
such that

1. S1,1 < 51,2 < S2.1 < S22 < ... < SM1 < SM,2-
2. Foreachn=1,2,...,M,1, — g < Spa <ty < Spo <t + %-

3. Foreach n =1,2,..., M, [[(u(sn,1),v(sn1)) — lim,_,,— ,.o(u(t),v(t))||or < §, and
||(u(sn,2>av(8n,2)> - hmt—%,t,tes’(u(t)’U(t))HQ’ < ﬁ)

Then, we can form a partition of points in S that interlaces the sequence s11 < s12 < 521 <
Sp9 < ... < sp1 < Sy2 with additional points so that the resulting partition P has |P| <,
since S is dense in [0,7]. We can do this in a way that keeps the points s, ; for i = 1,2
consecutive in the partition for each n = 1,2,..., M. Since M (g)p > ¢, we have that the
variation for this resulting partition is greater than e, which is a contradiction.

The same argument as above implies that there are only countably many points ty € S
for which

lim  (u(t),v(t) # (u(t), v(ty)).

t—ty teS

Thus, we define S* to be the set of points ¢y € S for which

lim (u(t), vt) = (uto), v(t)).

t—ty teS

Since countable sets have measure zero, S* still has the property that [0, 7] —S* is of measure
zero. So in particular, S* is still dense in [0,7"]. We emphasize that now, (u(t),v(t)) has the
useful property that it is left continuous on S*.

Step 3: Because S* < S and is still a dense set in [0, 7], the result from Step 1 implies
that:
lmy e (u(t),v(t)) and lmy e e (u(t), v(t)) exist for all ty € [0,T].
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However, these limits are only along points in S*. By the density of S* in [0, T] and the fact
that [0, 7] — S* has measure zero, we can redefine (u,v) up to a version, so that

(u(to),v(tg)) is unchanged if ty € S*, and (u(to),v(tg)) = lim (w(t),v(t)) if tp € [0,T] — S*.
t—ty teS*

(4.46)
For the remainder of this proof, (u,v) will denote this newly defined version in (4.46)).
We then claim that for this version,

lim  (w(t),o(t) = lim (u(t),v(t))  and lim  (w(t),v(t)) = lim (u(t),v(t)),

t—ty teS* t—ty t—td teS* t—td
(4.47)

for all ¢ € [0,7]. We will just prove the first statement, for the limit from the left, as the
statement for the limit from the right is proved analogously. To see this, note that by the
definition of the version and by the definition of S* in Step 2,

(u(ty),v(to)) = lim (w(t),v(t)), for all ¢y € [0,T1]. (4.48)

t—ty teS*

So given any strictly increasing sequence ¢,, /" t, where ¢, is not necessarily in S*, we want
to show that
lim (u(t,),v(t,)) = lim (w(t),v(t)).

n—a t—t, teS*

To do this, we use the density of S* in [0,7] along with (4.48]) to construct a sequence s,
such that

1. so <tgand t,_1 < s, <t, foralln > 1.

2. |sp, —t,| <27 for all n.

w

N(w(sn), v(sn)) — (w(tn), v(ty))||lor < 27™ for all n.
4. s, € S* for all n.

This is possible because S* is dense in [0, T'], and shows the desired result, as s, is a strictly
increasing sequence converging to to by Property 1 and 2, and by Property 3 and 4 we have

lim (w(t,),v(t,)) = lim (u(s,),v(s,)) =  lm  (w(t),v(t)).

n—0 n—0 t—ty teS*

Note that this version of (w(t),v(t)) on [0,7] is left continuous by (4.47) and (4.48)), with
only countably many points of discontinuity by Step 2.

Conclusion: We have constructed a left continuous version of (w(t),v(t)) on [0,7T] taking
values in Q" in Step 3. At the left boundary, t = 0, we can set the version of (u,v) so that
(u(0),v(0)) = limy g+ (u(t),v(t)), so that we have right continuity at ¢ = 0. This is possible
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since this limit exists by Step 1 and (4.47)). For the newly defined version of (u(t),v(t)), we
have that

Z (w(zi), v(w:)) — (u(%—l)?U(%—l))HEf S 6

for all partitions P consisting of points in S* with |P| < ¢, since we did not change the
original (w(t),v(t)) on points of S*, which is a subset of S. We can now show that this
p-variation inequality holds more generally for all partitions P with points in [0,7] with
|P| < 6. To do this, we note that since S* is dense in [0,7], we can approximate any
partition P of arbitrary points in [0,7"] with |P| < § by a sequence of partitions {Py}r>1 of
points in S* with |P;| < ¢ containing the same number of points as P. We can do this by
approaching any partition points of P in (0, 7'] from the left by points in S*, and approaching
t = 0 from the right by points in S* if t = 0 is a partition point in P. We then obtain the
desired result by taking the limit in k& as the partitions P, approach P. This process of
taking the limit uses the fact that the version of (u,v) as defined in Step 3 is left continuous
on [0,7] and right continuous at ¢t = 0. Therefore, we conclude that V;f(u, v) < e O

The next lemma, along with the weak convergence of the laws iy, will allow us to use the
result above to prove almost sure continuity in Q' of the limiting fluid and structure velocity.
In particular, this next lemma will show that if the length scale ¢ is chosen appropriately,
then eventually, for large enough N (or equivalently small enough At), the approximate
solutions will have p-variation (for p > 4) with length scale § bounded above uniformly with
high probability. This is to be expected, due to the time shift estimate , which is
independent of N.

For the following results, we recall the definition of ux on the phase space X from (4.33))
and , and we denote by 7455 the projection onto the fourth and fifth components of
X, which gives the law of (uy,vy) on L2(0,T; L*(Qy)) x L*(0,T; L*(T)).

Lemma 4.8.5. For any p > 4 and any € > 0, there exists d; > 0 sufficiently small and N,
sufficiently large such that for all 0 < § < dy,

Tasin(Apse) > 1 —¢, for all N > Nj.

Proof. We start by first introducing a set g . Let Kr n be the collection of paths in g
(introduced in Definition 4.8.2)), corresponding to path realizations of the random variables
(un,vy) for fixed N, satisfying the properties in the definition of Kg. In particular, Kr =
Ux—; Krn. Notice that we can choose R large enough so that

7T475,LLN(,CR7N) >1-— €, for all ]\/'7
where the closure is taken in L?(0,T; L?(Q2f)) x L*(0,T; L*(T")). Recall from (4.36)) that

(™, ox™) = (uy, vi)llo < Cr(ADM,
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where Cp is a constant depending only on R for all (uy,vy) € Kg. In particular, Ck is
independent of n, [, and N and hence At. We will use this estimate on the increments
in Q" to choose g > 0 and Ny such that Kpny < A,5., forall N > Nyand 0 < § <
S0, and ultimately, Kry = Ay, forall N > Nyand 0 < § < &, from which the result
Tasiin(Apse) > 1 —¢ forall N = Ny and 0 < § < &y will follow. Indeed, for any given
partition P with |P| < ¢, the following estimate holds:

l

Z [(w(z:), v(2:)) — (w(@im1), v(@i1))|[o < Z (kAP

for any (u,v) € Kg, where ny, is the number of increments that have indices k apart and [ is
the maximum integer for which [At < § + At. This is true by the fact that the paths (u,v)
in K are defined as piecewise constant functions taking values (ul, v}), and by inequality
(4.36]). Because the partition P has |P| < d, we have that [ must satisfy

l
INt <0+ At =6+ N"'T and Z (kAt) —1)At =T — At. (4.49)

Therefore, since p > 4, we have that for any partition P with |P| < ¢ and for any (u,v) € Kg,
! !

M
Dl (w(a), v(:) = (w(@io1), v(@io1))|h < Z (kAtP* < Cg <2 nk(kAt)> (IAt) T~
=1

k=1
< CRT( AL < CRT (6 + N'T)5,

where we used (4.49)). The proof is complete once we choose d; > 0 sufficiently small and
Ny sufficiently large such that

CrT (0o + N'T)5 ™ <.

Therefore, for (uy,vy) in Kg for any N = Ny and 0 < 6 < &, we have V?(uy,vy) < e
Thus,

Krn C Apses for all N > Ny and 0 < 0 < d.
Since A, 5. is closed in L*(0,T; L*(Qy)) x L*(0,T; L*(T")) by Lemma [4.8.4] we conclude that
Krn S Apses for all N > Ny and 0 < 6 < &,

where the closure is taken with respect to the norm of L(0,T; L*(0y)) x L*(0,T; L*(T)).
Since mys5un (K ) > 1 — € for all positive integers N by the initial choice of R, this implies
the result. n

Lemma 4.8.6. For the weak limit p,
7T475/JJ(X M C(O, 777 Q/)> =

where X := L?(0,T; L*(0y)) x L*(0,T; L*(T")). Furthermore, m5u is supported on a Borel
measurable subset of X such that every function has a version in C(0,7; Q') that is equal
to (wg, vo) at t = 0.
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Remark 4.8.2. We remark that X n C(0,7; Q') is a Borel measurable subset of X, and
hence the statement above makes sense. To see this, note that the inclusion map

v: X - L*0,T; Q)

is continuous since L*(Q;) x L*(T") embeds continuously into Q'. It suffices to show that
C(0,T; Q') is a Borel measurable subset of L?(0, T; Q'). Then, XnC(0,T; Q') is the preimage
of C(0,T; Q') under ¢, and is hence measurable in X, which is the desired result.

To show that C'(0,7; Q') is a Borel measurable subset of L?(0,T;Q’), we note that a
closed ball of arbitrary radius R in L*(0,T; Q') is Borel measurable in L*(0,7T; Q') since
it is a closed set in L?(0,T; Q). Since one can express an open ball as a countable union
of closed balls, an open ball of arbitrary radius R in L*(0,7;Q’) is also measurable in
L?(0,T; Q). Since C(0,T; Q) is closed in L*(0,T; Q) in the topology of L*(0,T;Q’), and
since closed and open balls of L*(0,T; Q') are Borel measurable in L?(0,7’; Q'), this implies
that C(0,T; Q') is Borel measurable in L?(0,T; Q').

Proof. Fix p > 4 and set ¢, = 27%. Then, by Lemma there exists a decreasing sequence
of positive real numbers {d;};~; and an increasing sequence of positive integers { Ny}~ ,, such
that

Tasin(Apsye.) > 1 — €k, for all N > N, and ke Z*.

Note that since pn converges weakly to p, we have that my5un converges weakly to mysp.
For each fixed positive integer k, since A, ;, ., is a closed set in X, we have by Portmanteau’s
theorem for weak convergence of probability measures that

7T475/L(Ap,5k7€k) = lim sup 7r475:uN(Ap,5k75k) =1 —¢.
N—0

By the Borel Cantelli lemma and by the choice of ¢, = 2% so that Y., 2% < o,
Tusi(A; s, o occurs infinitely often in ke Z7) = 0.

So almost surely, 74 54 takes values in the set {4, 5, ., occurs for infinitely many k}. However,
one can show that

{Ap s, .. occurs for infinitely many k} < X n C(0,T; Q'), (4.50)
which then implies the result. To see why this is true, suppose that
(u,v) € {A,5, ., occurs for infinitely many k}.

By the fact that V;fk(u, v) < €, we must have that for every ¢y € [0, 7] (modified appropri-
ately for the endpoint cases tg = 0 and to =T,

[|[(w(t),v(t)) — (u(to), v(ty))||or < e,lc/p, for all ¢t € (tg — 0k, to + 0x) N [0, 17,
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for any k such that (u,v) € A5, ... But since (u,v) € A, 5, ., for infinitely many k and since
€, = 2% — 0 as kK — oo, this implies that

lim (u(t), v(t)) exists and equals (u(ty), v(to)).

t—to

This shows the desired result in . Therefore, we have shown the first part of the lemma,
that mysu(X n C(0,7;Q')) =1

It remains to show that m, 54 is supported more specifically on a Borel measurable subset
of X that consists entirely of functions that have a version that is in C'(0,7; Q') with value
(wg, vo) at time ¢ = 0. Define the set By to be the set of functions (u,v) € L*(0,T; L*() x
L?(T")) such that

(w(-), v() = (o, v0)|| 2000 < CrAY, forall0 < h < T, (4.51)

where C is the constant from the estimate (4.36]).
One can check that for every R > 0, every element of g satisfies (4.51) and hence is in
Bg. This is because by using (4.36)), which states that

[(u™ o) — (uhy, v)||or < Cr(lAL)YA, for all (uy,vy) € Kg,

we have that for all 0 < h < T and for all (u,v) € Kg,

10, 0() = (a0 By < | (o), 5) = sl s < G- (1) = Ca®™.

Furthermore, one checks easily that By is closed in L*(0,T; L*(Qy) x L*(T")) since a sequence
that converges in L?(0,T; L*(2;) x L*(T")) also converges in L*(0,T; Q'), in which case one
can take the limit in to get the corresponding property for the limit function. Since
Kr © Br and Bpy is closed in X, we obtain that

Kr < Br c X, for all R > 0.
Consider any € > 0. Choose R sufficiently large so that
Taspn(Kg) > 1 —¢, for all N.
Then, by Portmanteau’s theorem,

Tasi(Bgr) = limsup 7y sy (Br) = limsup 7T475IUN(K_R) >1—e

N—o n— 00

So there exists an increasing sequence {Ry};”, such that mysu (U, Br,) = 1. Thus,

M’SMKU BRk> C(0,T; Q)] = 1, where <U BRk> nC(0,T;Q) = <U BRk> NnXnC0,T;9)

k=1 k=1



CHAPTER 4. A FULLY COUPLED MODEL OF STOCHASTIC FSI 173

is a Borel measurable subset of X. However, we note that any function in (UZO=1 BRk) N
C(0,T; Q') must have the property that its (unique) continuous version taking values in Q’
must be equal to (ug,vo) at t = 0. To see this, if instead, («(0),v(0)) # (uwg, vo), let

d = [|(u(0),v(0)) — (w0, o)l > 0.
Then, one can show that there exists hy such that for all 0 < h < hy,

d

Zpi2.
2

[(w(), v()) = (o, vo)ll 20,050 =
Therefore, this function cannot satisfy an estimate of the type
[(w(-), v()) = (o, vo)|| 20,10 < Ch**, for all 0 < < ho,

for any C, and so this function cannot be in any Bg. This completes the proof. O

Skorokhod representation theorem

We now use the classical Skorokhod representation theorem posed for random variables tak-
ing values in separable Banach spaces to translate weak convergence of probability measures
to almost sure convergence of random variables, which will allow us to pass to the limit in
the semidiscrete weak formulation. However, this will be at the expense of working on a
different probability space. Namely, the Skorokhod representation theorem provides the ez-
istence of a probability space, on which we will have almost sure convergence of new random
variables with the same laws as the original approximate solutions, to a weak solution with
the law p from Theorem [4.8.1L This probability space is not necessarily the same as the
original probability space on which our problem is posed. Nevertheless, we can get back to
the original probability space by using another result, known as the Gyongy-Krylov lemma,
see Section [4.9] to show that along a subsequence, the original approximate solutions on
the original probability space converge almost surely to a limit with the same law p from
Theorem KA.8.1]

More precisely, showing convergence of our approximate solutions almost surely to a weak
solution on the original probability space, consists of two steps. First, we use the Skorokhod
representation theorem to show that there exists a probability space, which we denote by
“tilde”, on which a sequence of random variables that are equal to our approximate solutions
in law converges almost surely in X as N — o0, to a weak solution on the “tilde” probability
space, where the law of this weak solution is equal to u, obtained in Theorem [4.8.1] Thus,
in this step, we prove the existence of a weak solution in a probabilistically weak sense, see
Definition [£.4.1] Then, in step two, we show using the Gyongy-Krylov lemma, that we can
bring that weak solution back to the original probability space, implying that we will have
constructed a weak solution in a probabilistically strong sense, see Definition [£.4.2] of the
original continuous problem. This will complete the existence proof, which is the main result
of this manuscript.
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To achieve these goals, we first obtain almost sure convergence along a subsequence of ap-
proximate solutions on a “tilde” probability space using Skorokhod’s theorem. A statement
of the Skorokhod representation theorem, which holds for probability measures on complete
separable metric spaces, can be found in Theorem [2.2.2

Before we state the result, we introduce the notation “=;” to denote random variables
that are “equal in distribution” i.e., the random variables have the same laws as random
variables taking values on the same given phase space X'. Namely, we will say that a random
variable X is equal in distribution (or equal in law) to the random variable X , and denote

13

X =¢ X if px=pg,

where px for example is the probability measure on X describing the law of the random
variable X on X.

Recall again the definition of the laws corresponding to the approximate solutions ,
and the definition of the corresponding phase space .

Lemma 4.8.7. Let pu denote the probability measure obtained as a weak limit of the mea-
sures py from Theorem | Then, there exists a probability space (Q, F,P) and X-valued

random variables on (€, ]—" : IP’):

~ ok ~k At

(ﬁvﬁaﬁAtvﬂaﬁau , U, u, % u
for each N, such that

~At 4 ~ At

7W)7 and (TIN’UN’UN ’quvauN’vN’uNaUNquavN ,WN)
~ = ~At ~ ~ ~k ~k = ~ At ~At TF = At ¥ o At At
(77N777N777N7uNaUN7uN7UN7uN7UN7uN7UN7WN) =d (nN777N777N7uN7UN7uN7vN7uN7UN7uN7UN7W)7
for all N, and

= = ~At ~At 11
, U, UV, U, U 7W))

(TN Ty TN B, O, By, O T, O, AR 081, Wiv) = (7,7, 77, @, 3, 2%,
) (4.52)
a.s. in X, as N — oo, where the law of (7,7, 7, @, 0, @*, 0%, @, v, u™, 02, W) is p.
Furthermore, the following properties hold:
Loay = 'Eb}k\,, ﬂ = @* = u = 4™ almost surely, ¥ = o* = T = 92! almost surely, and
i =1 = 7> almost surely.
2. @e LX(Q; L2(0,T; HY () n L0, T; LA(Qy))), & € LA(Q; L*(0, T; LA(T))), and
e LA(Q; W (0,75 LA(T)) o L*(0, T; HY(D))).
3. 71(0) = no almost surely.
4. 0,1 = v almost surely.
5. (w,0) € C(0,T; Q') and (w,7) € W(0,T) almost surely.
6. Define the filtration

Fi = o(i(s),a(s),5(s) : 0 < s < t). (4.53)

Then W is a Brownian motion with respect to .
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7. (,7,0) is a predictable process with respect to the filtration {F;}o<i<r-

Proof. The existence of the probability space (Q, F, 1[3) and the given random variables fol-
lows from the previous result on weak convergence in Theorem and the Skorokhod
representation theorem. So it suffices to prove the given properties.

Property 1: Because (Gy,uy) =q4 (un,uwy), we have that ay — @y =4 0 as random
variables taking values in L*(0,T; L*(§)), so uy = @} a.s. for all N. Hence, by taking the
limit as N — o0, we obtain @ = u* a.s., since uy — @ and @} — @* in L*(0,T; L*(}))
a.s.

Because uy and uwy actually have different laws from each other, we must use a different
argument to conclude that @ = @ a.s. However, we recall the following fact from the
proof of Lemma [4.8.3],

E <||'U/N — HNH%Q(O,T;L2(Qf))> — 0, as N — O0.
Hence, by the equivalence of laws,
E <||’EI,N — ﬁNH%Q(O’T;LZ(Qf))) - 07 as N — 0.

Therefore, along a further subsequence, |luy — ﬁNHiz(o TiI2Q)) 0 almost surely, by a

standard Borel Cantelli lemma argument. Since @y — @ and uy — @ in L*(0,T; L*(y)),
we conclude that u = w a.s.
The remaining statements follow from the same argument as above. In particular, by

using the estimates (4.37)—(4.43)) from the proof of Lemma [4.8.3| the equivalence of laws,

and the almost sure convergence of the “tilde” random variables in (4.52)), we obtain the
desired result.

Property 2: These properties will all be handled similarly. By the uniform energy estimates
in Lemma and Lemma |4.7.3] we have that

E (||7_]N||%/V1v00(0,T;L2(F))> <C E (HﬁNH%w(O,T;H&(F))) <C,

E (1207000, ) < E (lunlBoorazany) < € E (lovl Bz <C

for a constant C' that is independent of N. Therefore, by the equivalence of laws, we have
that these uniform estimates hold for the random variables on the new probability space, so
that

B (1inlne oy ) <G B (vl oo rmry) < C
E (1168 B0 rumapy) < O E (llanlBaoriza) < C B (IonlBaorizay) <C,

for a constant C' that is i{ldependent of N. Therefore, by this uniform boundedness, we
conclude for example that 77, converges weakly star in L*(Q; W1*(0,T; L*(T"))) and weakly
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star in L2(€; L?(0,T; H}(I"))). Since we already have that 77, converges to 7 almost surely
in L?(0,7T; L*(T")) and 7 = 7 almost surely by Property 1, by the uniqueness of this limit, we
conclude that ﬁN — 71, weakly star in L*(Q; Wb*(0,T; L*(I))) and L*(Q; L*(0, T; HA(I))).

Similarly, @y’ — @', weakly L2(Q; L*(0,T; Hl(Qf))), uy — u weakly star in the space
L2(Q; L*(0,T; L2(9))), and 9y — © weakly star in L*(€; L*(0, T; L*(T"))). This establishes
Property 2.

Property 3: Since 7j = 7 almost surely, it suffices to show that 7(0) = 1, almost surely. To
do this, we use a method similar to the method in the proof of Lemma We define

Dy = {ne L*0,T; L*(1)) : |In(-) — noll20mz2@y) < ME*?, forall 0 < h < T}, (4.54)

Because of the uniform bound E (HﬁNHIZ/I/LOO(O,T;LQ(F))) < C for all N, from Lemma [4.7.3]

we have that o

Py € Dy) =1 — e for all M and N,
by using Chebychev’s inequality. This is because if ||7y||w1.«@orr2(r)) < M, then from the
fact that 7, (0) = o for all w e 2 and N, we have that

h 1/2 h 1/2
||ﬁ<->—no||m<o,hm»=(j ||ﬁ(8)—770||%2(r>d8> <(f <Ms>2ds) < Mp2.
0

0

Then, by equivalence of laws,

- C

Py € Dy) =1 — e for all M and N.
Because D)y is a closed set in L2(0, T; L*(T")) and 7y — 77 in L2(0, T'; L*(T")) a.s., we conclude
that

e}
P(7 € Dyy) = limsup P(7jy € Dyy) > 1—% for all M, which implies P (ﬁ e DM> — 1.

N—o0 M=1

Because 7 is almost surely continuous on [0, 7] taking values in L*(I') by Property 2, we
obtain 7(0) = 7y almost surely. This is because if a continuous function n on [0, 7] taking
values in L?*(T") has 7(0) # no, then

d
1) = ollz2 mizzry = 5hM2,

for all i sufficiently small where d = ||1(0)—7o||z2(r, and hence n cannot belong to | Jy,;_; Ds.

Property 4: To prove this property, we recall from the second equation in the semidiscrete
formulation (4.25)) that

n+1
v~ =1 n+3
JFNTthsdz - LUN Sdz,
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almost surely for all ¢ € L*(T"). Integrating in time, we obtain for all N that

T T
f f Oy odzdt = f f v pdzdt, for all ¢ € C*([0,T); L*(T")),
o Jr o Jr

almost surely. Because each 7y is almost surely a piecewise linear continuous function
satisfying 77(0) = 7o, we obtain by integration by parts that almost surely, for all ¢ €
CH([0,T); L*(I)),

—1o - ¢(0) — LTLﬁN(?tqbdzdt = LT L vy opdzdt,

and hence, by equivalence of laws,

—1o - $(0) — L ' L TinOpdzdt = L TLf;Ngbdzdt.

Passing to the limit, we obtain

—1o - $(0) — LT L Norpdzdt = L ' L Dodzdt,

for all ¢ € C*([0,T); L*(T")), almost surely. This implies that ;7 = © holds almost surely for
the limiting solution, since we showed in Property 3 that 7(0) = 7y almost surely.

Property 5: The fact that (@,0) € C(0,7; Q') almost surely follows from Lemma [4.8.6]
since the limiting random variables with the tildes have their law given by the probability
measure . So it remains to show that (@, 0) € W(0,T), where W(0,T) is defined in (4.12)).

To establish this result, first notice that we already know from Property 2 that @ €
L2 L°(0,T; L* () and @ € L2(Q; L*(0, T; H'(S2;))), and Property 2 already gives the
desired result for the structure. Thus, it remains to show that @ € L*(0, T; Vr) almost surely,
where Vp is defined in (4.§)), and that the kinematic coupling condition holds. By Property
4, we must show in particular that w = ve, a.s. on I'.

To do this, define the deterministic function space

H = {(u,v) € L*(0,T; Vr) x L*(0,T; L*(T)) : u = ve, for almost every t € [0,7T]}.

One can check that the linear subspace H < L*(0,T; H'(Qy)) x L*(0,T; L*(T)) is closed
in the Hilbert space L*(0,T; H' (%)) x L*(0,T; L*(T)), and hence H is a Hilbert space
with the inner product of L%(0,7T; H'(Q;)) x L?(0,T; L*(T")). By equivalence of laws and
the uniform boundedness in Lemma (@, Uy) is uniformly bounded in L?(€; H), and
hence converges weakly to (w,0) € L*(2;H) by uniqueness of the limit, since we already
have that (@y,0x) converges almost surely to (w,?) in L*(0,T; L*(Qy)) x L*(0,T; L*(T)).
This gives the desired result.

Property 6: First, we sketch the idea. By construction, we have that on the original
probability space, W (t) — W (s) is independent of o(un(7),vn(T),nn(7), for 0 < 7 < s),
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where we recall that these processes (uy(7), vy (7),nn (7)) are piecewise constant on intervals
of length At = T/N. This is because for a given time 7 € [0,T], (un(7),vn(T), NN (T))
depends only on the values of the Brownian motion at time | 5;|At or earlier, from which
the claim follows by the independent increments property of Brownian motion. The idea
will be to transfer this independence property over to the new random variables (tn, DN, TN)
on the new probability space (2, F',P) and then take a limit as N — oo to get the desired
independence in the limit.
Note that the definition of ft as

F, = o(a(s), 5(s),7(s), for 0 < s <)

makes sense, since by the above properties, 77 and (@, ?) are continuous on [0,7] in time,
taking values in L?(T") and Q' respectively. So it makes sense to refer to values pointwise
at specific times, for example as in @(7) for a given 7 € [0, T]. However, it is not clear yet,
for example, what @y (7) would be, since a priori, we only know that uy € L2(0,T; L*(Q;)),
and hence, each path of @y is only defined up to a version for ¢t € [0, T1].

To handle this, define the set Ky of all functions in L?(0,T; L*(£2;)) that have a version
that is piecewise constant on the intervals of the form [0, At] and (nAt, (n + 1)At] for
1 <n< N -1, where At = T/N. Note that Ky is a closed subset of L?(0,T; L*(Qy)), so
by equivalence of laws,

Play € Ky) = Pluy € Ky) = 1.

Therefore, wy is almost surely piecewise constant on [0, At] and (nAt, (n + 1)At] for 1 <
n < N — 1. The same argument shows that vy and 7 also almost surely have versions that
are piecewise constant on these same intervals, since vy and 7y on the original probability
space almost surely have this property too.

Therefore, for each N, up to taking a version of uy, vy, and 7y, we can define random
variables @}, U3, and 7y for 0 < n < N — 1, satistying

UN(t UJ) = '&?V(w), if
O (t,w) = By (w),
)

ﬁN(taw) = ﬁ?\/(w )

0<t<Atand uy(t,w) =uy(w), if nAt <t < (n+1)At,
0<t<Atand on(t,w) = Vy(w), if nAt <t <(n+1)At
0<t<Atand ny(t,w) =1ny(w), if nAt <t < (n+1)At

Furthermore, by the equivalence of laws, the joint distribution of @)y, 0%,y for 0 <n < N—1
is the same as that of uR, v}, Ny for 0 < n < N — 1. Therefore, we can now make sense of
wy(7) for example for any 7 € [0, 7T'], by considering the piecewise constant versions of these
stochastic processes as given above. When we refer to uy, vy, and 7y, we will refer to the
piecewise constant versions defined above.

We now show the desired independence. We consider 75 € [0,s] and 0 < s < ¢, and
show that @(r) and W (t) — W (s) are independent. The same argument will Work for v(To)
and 7)(7g), so it suffices to show the independence of W (t) — W (s) and @(7,) for arbitrary
10 € [0,s] and 0 < s < t.
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Recall that @y — @ almost surely in L?(0,T; L?(Q2f)). Define the set
Enn ={(t,w)e[0,T] x Q: |lat,w, ) — an(t,w, )|l 2@, = 27"}

For each positive integer n, we can choose N := N(n) sufficiently large such that N(n) >
N(n—1) for n > 2, and )
(dt x P) (EN(n),n) <27 (4.55)

To see this, one selects N(n) sufficiently large so that
P (lla = tvllr2orie@y <277) 2 1-27",

and then apply Chebychev’s inequality in time. Then, by applying the Borel Cantelli lemma

to (4.55)), we obtain that
An(tw, ) — alt,w,) i LX), (4.56)

for all (t,w) € S < [0,T] x Q for a set S satisfying (dt x P)(S) = T, where we continue
to denote the new subsequence N(n) by N. Thus, ([0,T] x Q) — S has measure zero with
respect to the measure (dt x I@)

Let Sy < [0,7] be the set of all ¢ € [0,7] such that P((t,w) € S) = 1. By Fubini’s
theorem, Sy is a measurable subset of [0,7"] for which [0,7] — Sy has measure zero. Note
that for each t € Sy, wuy(t,-) — a(t, ) almost surely as random variables taking values in
L*(Sy).

So if 75 € Sy, we deduce the independence of @(ry) and W (t) — W (s) as follows. By the
fact that uy(79) and W (t) — W (s) are independent, we have by equivalence of laws that

@ (1) and Wiy (t) — W (s) are independent.

Here, N denotes the subsequence N(n) we used to define S and Sy. However, since 7y € Sp,
we have that @(7) is the almost sure limit of 4y (7)), and furthermore, W (t) — W (s) is the
almost sure limit of Wy (t) — Wix(s). So since the almost sure limits of independent random
variables are independent, this gives the desired result.

If 79 ¢ Sp, since [0,T] — Sy has measure zero in [0,T], there exists a sequence 7; € Sy
that converges to 7y as i — oo, where 7; € [0,s]. Then, since @&(r;) and W (t) — W(s)
are independent for each i and since u(7;) — @(7) almost surely by continuity, the result
follows. (For the case of 79 = 0, we recall from Lemma [£.8.6 that (@(0),%(0)) = (w0, vo)
almost surely.)

We use the equivalence of laws to verify the remaining properties of Brownian motion.
In particular, we just need to show that W (t) — W(s) is distributed as N (0, — s). By the
equivalence of laws and the fact that W is originally a Brownian motion, Wy (t) — Wy(s) =4
W (t) — W(s), so that Wy (t) — Wi(s) is distributed as N(0,t — s). Since Wy — W a.s. in
C(0,T;R), we obtain that W (t)—Wx(s) — W (t)—W (s) almost surely, so that W (£)—TW (s)
is the almost sure limit of random variables distributed as N(0,¢ — s). Thus, we conclude
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that W (t) — W(s) must also be distributed as N(0,# — s), which concludes the proof of
Property 6.

Property 7: By the definition of 7, the process (1, ,7) is adapted to F,. By Property
2, 77 almost surely has continuous paths on [0, 7], taking values in L*(§2;). By Property 5,
(w, 0) almost surely has continuous paths on [0, 7], taking values in Q. Since a continuous
adapted process is predictable (see Proposition 5.1 in Chapter IV of Revuz and Yor [155]),
this establishes the desired property.

This completes the proof of Lemma m

Passing to the limit

We now consider the approximate solutions defined as random variables on the probability
space (€, F,P), discussed in Lemma , and show that the almost sure limit obtained
in Lemma 4.8.7, satisfies the weak formulation stated in Definition [4.4.1] almost surely on
(Q F P). For this purpose, we recall the semidiscrete formulation of the problem from

, given by

un+1 u” Un+1 —n
W((n + 1)At) — W(nAt n R " R
- [ WA wdz n PN,me (@)oo = P | (@2)ecsir, a0 € @

77nJrl _ 77 41
f NN pdz = f vy P pdz, Vo e LA(I),
T At I

where PN injout = AL Sn"Atl)At Py /0 (t)dt. Notice that as stated, this semidiscrete formulation
refers to the original variables, defined on the original probability space. Given a general

(g,v) € Q(0,T), we use the semidiscrete formulation at each fixed time and integrate in
time from 0 to 7" to obtain for all (gq,v) € Q(0,7),

T T
J 8tuN qdx + 2MJ D(uy!) : D(q)dxdt + J J O NYdzdt
0 I
N 1 (n+l _
f f Vit . Vidzdt = J J Wi+ 1>A£ WA bt
nAt

(n+1)At R (n+1)At R
T Z J P;\lfﬂn J (qz) |Z:0drdt B J P]7\l7,out J (QZ) |Z:Ldrdt )
n=0 nAt 0 nAt 0

T T
J f O yopdzdt = f f viedzdt, Yo e CH0,T; L*(T)),
0 Jr o Jr

where wy, Ty and 7, are the piecewise linear approximations, given by (4.28) and (4.31]),
and uy! and 1y’ are the piecewise constant time shifted functions, given by (4.30) and
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. Now, we convert to the new probability space by noticing that the same identities
hold for the new random variables defined on the “tilde” probability space since the two
sets of random variables have the same law on X'. So for all (g,v) € Q(0,T), on the new
probability space (€, F, ]fD) with the filtration {F;},0 defined in ([.53)), we obtain

T T T
J atﬁN -qdx + 2 J D(ay) : D(q)dxdt + f f PN Ydzdt

N-1 n+1)At W
~At N n + )At) WN(nAt)
f J Viy - Vidzdt = ng . Lm J At Wdzdt

(n+1)At R (n+1)At R
S [ ot [ b [ s,

0 nAt 0

LTLaﬁNqbdzdt = LTLf)Nd)dzdt Yo e C1(0,T; L*(I)).

We can now pass to the limit in all of the integrals, and use the almost sure convergence of
the “tilde” random variables as follows.

First term: For the functions on the original probability space, note that because g(7") = 0,
we can integrate by parts to obtain

T T
f diuy - gqdxdt = —J J uy - Oyqdxdt — J uo - q(0)dex.
0o Ja, o Jo, Q;

By equivalence of laws, this identity also holds with Wy in place of Wy. Then, because
uy — @ almost surely in L*(0,T; L*(Qy)), we can pass to the limit to obtain the desired
almost sure convergence,

T T
f J Oty - gdx — —f J u - Oyqdxdt — J uo - q(0)dx.
0o Jo, 0 Ja, Qf

Third term: For the third term, we use an argument similar to that for the first term.
Since ¥(T') = 0, we can integrate by parts,

LT L ONpdzdt = — LT L TnOppdzdt — L ve(0)dz

This holds with T in place of Ty too by equivalence of laws. Since vy — @ in L(0,T; L*(T"))
almost surely, we have the desired almost sure convergence:

LT L Ondzdt = — JOT L%Natwdzdt — Lvm/}(O)dz o LT L D0 dzdt — Lvow(o)dz
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Second and fourth term with smooth test function: For the second and fourth term,
we have to use an approximation argument, since we only have estimates of convergence of
@y and a4y’ in L2(0,T; L?(Q)) and Oy in L2(0,T; L*(T)).

We will first show the desired convergence under the assumption that (g, ) € Q(0,7) is
spatially smooth at each time in [0, 7"]. Then, on the original probability space,

T T
QML ) D(uy!) : D(q)dxdt = p L Vuy' : Vadzdt = _’“‘J L S Aqdxdt,
f f

where the last integration by parts has no boundary terms due to the properties of the
solution space and test space for the fluid. Then, by the uniform dissipation estimate in

Proposition [1.6.7, YV E (Hun+1 _ u}i]H%Q(Qf)) < C, we have that

n=0

E (H'Ulj%t — uNH%2(O7T;L2(Qf))> < C(At) — O, as N — oo.

By equivalence of laws, the above identities and estimates hold for @4

the Borel-Cantelli lemma, we have that

" in place of uy’. By

|ay! — un||r2(0,1:02(0,)) — 0 almost surely as N — oo,

taking a subsequence if needed. Because @y converges to @ in L*(0,T; L*(Qy)) as N — 0,
we also have that

|ay! — @||2(0,1;02(2,)) — 0 almost surely as N — oo

along this subsequence, which allows us to pass to the limit to obtain
T T
zuf D(u4!) : D(q)dxdt = —p f f ay’ - Agdxdt (4.57)
0o Joy 0o Joy

T T
— —ﬂf J w - Aqdxdt = 2/1[ D(u) : D(q)dzdt.
0 Joy 0 Ja,

For the fourth term, one can use a similar argument under the assumption that the test
function (g, ) is spatially smooth. On the original probability space,

T T
J f V' - Vibdzdt = —f J ny - Avdzdt.
o Jr o Jr

By the numerical dissipation estimate from Lemma|4.6.7| ZnNz_ol E <\ |V77Z,+7 — Vil |L2(F ) <

C, so we obtain, by Poincaré’s inequality, that

E <H771%t - 77NH%2(0,T;L2(F))) < C(At) — 0, as N — o0.
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These estimates hold on the new probability space with 7y in place of ny. By the Borel-
Cantelli lemma and the convergence of 7y to 77 in L*(0,T; L*(T")),

|75 — |2 0,7:02(r)) — 0, almost surely as N — o0,

taking a subsequence. This allows us to pass to the limit to obtain the almost sure conver-
gence,

T T
f J Vil . Vipdzdt = —J fﬁﬁt-mdzdt (4.58)
0 r 0 r

T T
— —f J 7 - Adzdt = f J V- Vidzdt, as N — 0.
0o Jr 0o Jr

Second and fourth term with general test function: To show the almost sure conver-
gence in the previous step, we assumed that (q,) € Q(0,7T) was spatially smooth. To get
the general convergence, we use an approximation argument. Suppose that (g, 1) € Q(0,T)
is not smooth spatially. It suffices to show that S(:]F Sﬂf D(uy!) : D(q)dxdt — Sg Sszf D(a) :
D(g)dzdt in probability, and §; §. V&' - Vidzdt — i §. Vi - Vibdzdt in probability (see
below for the precise definition), as we would get the desired result from the fact that we
then have almost sure convergence along a subsequence. So given any ¢ > 0 and § > 0, we

must show that there exists Ny such that for all N > N,
~ T T
P J D(a%) : D(q)dxdt — f D(w) : D(q)dzdt
0 Qy 0 Qf
. T T
P ( J J ViR - Vipdzdt — J J Vi - Vipdzdt
0 Jr 0 Jr

To show this, observe that by the uniform dissipation estimate in Proposition we
have that

> 5) <e (4.59)

> 6) <e (4.60)

N—-1
E <2 @ | rD<u;e“>|2dw> — E (|ID@f)xrizi0yy ) < C:

n=0 Qf

and hence by equivalence of laws,

E (ID@8) 20102009 ) < C:

for a uniform constant C. Since @ € L*(Q; L?(0,T; H'(€4))) by Property 2 of Lemma [4.8.7]
we conclude that there exists a sufficiently large positive constant M such that for all IV,

P (||D(a3")| 120,200, = M) < =, P (I[D(@)||2(0,75020,)) = M) < (4.61)

Wl ™
Wl ™
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For the fourth term involving structure displacements, recall from Lemma that
At))2
E (HVnNtHLm(O,T;L?(F))) <C,

and by Property 2 in Lemmam il e L*(Q; L*(0,T; HY(T))). So using equivalence of laws,
M can also be chosen sufficiently large so that for all NV,
P ([IVillLooriamy = M) <

P ([VARl| o o2y = M) < (4.62)

Wl ™

€
ga

Then, choose (q,%) € Q(0,T) that are smooth spatially at all times in [0, 7], such that

)
3M’

J

||V¢ — VQZHLl(O,T;L?(F)) < 3_M (4.63)

1D (q) — D(q)||20,7522(05)) <

Then, the almost sure convergences (4.57)) and (4.58)), which hold for this smoother ((A],QZ),
allow us to choose Ny sufficiently large such that for all N > N,
R T T
P f D(ay) : D(q)dxdt — J D(w) : D(q)dzdt
0 Qp 0 Qp
~ T ~ T ~ ) €
P ( J f ViR - Vibdzdt — J f \Y/E Vz/zdzdt’ > —) < - (4.65)
0o Jr 0o Jr 3 3

Furthermore, the choice of (q, @Z) in (4.63]) and the choice of M in (4.61) and (4.62)) give that
for all N,

'

) €
-] <=, 4.64
>3> 3 (4.64)

T T
J D(u%') : D(q)dzdt — J D(@y) : D(q)dxdt
0 JQy 0 JQy

§7
B T T =R 5 €
P ( J f Vi - Vipdzdt — J f Vﬁﬁt.vwzdt‘ > —> <, (4.67)
0o Jr 0o Jr 3 3
and
_ T T 5 €
B f D(@) : D(q)dwdt — f D(@) : D(§)dadt| > 2 | < &, (4.68)
0 Qf 0 Qf 3 3
~ T T ~ ) €
P (J f Vﬁ-Vz/;dzdt—J f Vﬁ~dezdt‘ > —) < - (4.69)
o Jr o Jr 3 3

Combining the estimates (4.64)), (4.65)), (4.66), (4.67), (4.68), and (4.69)) establishes the
desired estimates (4.59)) and (4.60)), and hence proves the desired convergence in probability.
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Passing to the limit in the stochastic integral. We want to pass to the limit in the
stochastic integral and show that for arbitrary v such that (q,%) € Q(0,7T),

NZ_fJnH Wi ((n + 1)At) — Wy (nAt) wdzdtHJT dez dW, as. as N — o0
At 0 F 9 D *

n=0 nAt

Note that because v is deterministic, we can express the right hand side as a stochastic
integral,

N—1 ~(n+1)At 7 R

At

n=0 nAt

T N-1 n+1)(At)
f (Atf f Y(s, 2 dZdS) Licmat,(nrnyag (t )dWN( ).
nAt

Because convergence in probability implies convergence almost surely along a subsequence,
it thus suffices to prove that

TN-1 (n+1)(At)
f Atf J (s, 2)dzds | Ligmat,mrnag(t )dWN — J <f wdz) dW
nAt

as N — oo in probability. So we must show that given any § > 0 and any € > 0, there exists
Ny sufficiently large such that for all N > N,
> 5) <e€

R TNzl [ | rn+1)(AD) . T -
Pl X (5] | o 21deds ) Lieguar oo O - | ( | ¢dz) aw
0 =0 nAt r o \Jr

We accomplish this through two estimates. We claim that we can choose N sufficiently
large such that

TNl (n+1)(At) ., ~ E
(J Z <At Lm J P(s, z dst) Lie(nat, (n+1)At]( )dWN L <L ¢dz) dWn| > g) < 5
(4.70)
and
. T i . ) 6
P J f wdz | dWy —f f vdz | dW| > - | < =, (4.71)
< 0 T 0 r 9 5

for all N > N,.
For the first estimate (4.70)), it suffices to use the Itd isometry along with the fact that

N-1 1 (n+1)(At)
Z Atf f w S, z dZdS lte(nAt (n+1)At] ( ) —J Pdz
I

n=0 nAt

— 0, as N — oo,

L2(0,T)
2
) - 07

to conclude that

T N—1 (n+1)(At) ~ T 3
f Z J f Y(s, 2)dzds | Lic(nat,(nrvyan (H)dWn —f (J wdz> AW
At nAt r 0 T




CHAPTER 4. A FULLY COUPLED MODEL OF STOCHASTIC FSI 186

as N — o0. The first estimate (4.70]) thus follows from taking Ny sufficiently large to make
this expectation sufficiently small, and then using Chebychev’s inequality.
For the second estimate, note that we can approximate {1 (t, z)dz := g(t) by a deter-

ministic step function
kT kT kE+1)T
gm(t)=g<—> 1f—<t<—(+> .
m m m

By the continuity of g(t), we can select m sufficiently large such that

2
2 € 5
l9(0) =m0 < £ ()

Then, by the Ito isometry and Chebychev’s inequality,

—e ~ T ~ 0 €
P ( (J wdz> AWy _J gm ()dWy| > —) < -, (4.72)
Jo r 0 6 6
for all N, and
5 ! - (7 - J €
P ( f (J Wiz) dW - gm(t)dW' > —) < -. (4.73)
0 r 0 6 6
So it remains to choose Ny sufficiently large such that for all N > Ny,
= g = T - 0 €
P (J G () AWy —f gm(t)dW‘ > —) <-. (4.74)
0 0 6 6

We note that |g,,(t)| < K for some constant K that is deterministic, as ¢,,(t) is a determin-
istic function of time. Also, note that

[ = 5 () (9 (45) - (),

with an analogous formula for the integration against . Hence,

T T
gm( )dWN_J Gm (t dW‘

(30 (5 (450) e () 3 () - (12

Z K||[W — Wxlloorr) < 2Km - |[|W — Wxlloorw):-

-1

S

~

k=0

Because Wy — W in C (0, T;R) almost surely, there exists Ny sufficiently large such that

~ ~ ~ )
p (HW Wlleors > ) <

for all N > N,.

(=2 A Ne)

12Km
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Therefore,

_ 5
]P’( >6)<%’ for all N = Nj.

The estimates (4.72)), (4.73)), and (4.74)) thus imply the desired estimate in (4.71)).

Convergence of the pressure term. Finally, we show that

N-1 n~(n+1)At R T R
3 f Py < J (qz)|z=0d7“) it — J Pun(t) (f (qz)|2=0dr) i, as N — .
nAt 0 0 0

" (4.75)

JT (BT — JT ()T

0 0

The same argument will work for the outlet pressure term.
Define the following piecewise approximation of the test function q,

kT kT kE+ 1T
qm(t)fq( ) if—<t<—(+) .

m m m

For any positive integer IV,

LT Py (t) UOR(QZ - odT) Nz_: fnﬂm P, ( L R(q5)|z=0dr> @t

=3 [ w0 P ([ @)

n=0 YnAt 0

Ng U q o= odr) J(M)At(ﬂn(t) — Py )dt = 0.

nAt

To establish (4.75]), it suffices to show that
T R T R
f Po(t) < J (qz)|3=0dr) dt - f Pon(t) ( f (qiv)|zzod7’) dt >0,  asN -, (4.76)

0 0 0 0

N-1 ~(n+1)At R N—-1 ~(n+1)At R
> J PR J (g)]z=odr | dt— ) f PR f (¢M)|2zodr | dt — 0, as N — o, (4.77)
0 0

n=0 nAt n=0 nAt

For (4.76)), we compute

J; 2t ([} @ecotr )= [ ) ([ o)
LT e UOR(% ) qiv)‘z_()dr) dt| < [1Ballzom) (LT UOR(QZ —qY )I,z_odr)2 dt) 1/2

T 1/2
< Cl|Pullsror) (f Ilq—qNII?p(Qf)dt) . (4.78)
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Because q is continuous taking values in Vr equipped with the norm of H'(Q;), we have
that ||g — q"||s1(q,) — 0 uniformly on [0, 7] as N — oo, which establishes the desired limit.
Similary, to estabish (4.77)) we calculate

N-1 (n+1)At R
S8 [ ([ o)
n=0 nAt 0

(n+1)At / R 2\ 12
J (J (4. — ¢ )\z_odr> dt
nAt 0

(n+1)At 1/2
N
f g — |t

N-1

n=0

N—-1
<c|Y@anrg, (

n=0 nAt
= / (n+1)At 1/2
<C (AP ] max J g — |2 o dt
n=0 a 0<n<N-1 \ J, A¢ H'(Qy)
NI 1 (n1)As (n+1)At 1/2
C S (At)12 LM | Pin (1) | nax Lm la —aq" i @)
(n+1)At 1/2
N2
SnSA = nAt

Again, because ¢ is continuous taking values in Vp equipped with the norm of H'(£2;), we
have that ||q — ¢"||g1(q,) — 0 uniformly on [0,T] as N — oo, which establishes the desired
limit.

We have, therefore, established the existence of a weak solution to the stochastic fluid-
structure interaction problem in a probabilistically weak sense, as in Definition [4.4.1]

4.9 Return to the original probability space

We have thus constructed a stochastic process (@, 7), which satisfies the weak formulation
of the continuous problem almost surely on the “tilde” probability space determined by
the Skorokhod representation theorem. However, we want to bring the solution back to the
original probability space. In particular, we must get convergence of the original approximate
solutions (uy,vy,ny) on the original probability space (€2, F,P) with the original given
complete filtration {F;}¢>o and the original Brownian motion W ().

Recall from Theorem [2.2.3]that to show that a sequence of random variables X, converges
in probability, we must verify that for every two subsequences X;, and X,,, , there exists a
further subsequence such that the joint probability measures associated with zy = (X, , Xy, )
on B x B, defined by

Vg = VXlk,ka (Al X Ag) = P<Xlk S Al,ka € Ag), Al,AQ € B(B),
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where B(B) is the Borel sigma algebra on B, converge weakly along this further subsequence
to some probability measure v, where v is such that

v({(z,y) e Bx B:a=y}) = 1. (4.79)

Thus, the limits of any two convergent subsequences have to be “the same” with probability
1.

Once we show convergence in probability of our original sequence using the Gyongy-
Krylov lemma, we will have almost sure convergence along a subsequence of our approxi-
mate solutions on the original probability space. Then, using the fact that our approximate
solutions converge almost surely along a subsequence on the original probability space, we
can adapt the arguments in Section in order to show that the limiting weak solution
on the original probability space satisfies the weak form of the continuous problem almost
surely, so that the limiting solution is a weak solution in a probabilistically strong sense.

Thus, what remains to be shown is that the diagonal condition in the Gyongy-Krylov
lemma holds. Since our problem is linear and the stochastic noise is additive, using the
Skorokhod representation theorem, one can show that the diagonal condition is equivalent
to showing deterministic uniqueness holding pathwise. To demonstrate this, we first prove
deterministic uniqueness, and then use it to show how this implies the diagonal condition.

Uniqueness of the deterministic linear problem
Lemma 4.9.1 (Uniqueness for the deterministic problem). Suppose we have (u,v,n) with

we L0, T; L*(Q)) n L*(0,T; Vr), n € WH*(0,T; L*(T)) n L*(0,T; Vs), and u|r = de,.
Suppose also that (u, o) € C(0,T; Q’), with n(0) = 0. If for all (g,v) € Q(0,T),

T T T T
J f u - Opqdxdt + ZHJ D(u) : D(q)dxdt — J J Oinophdzdt + f f Vn - Vipdzdt = 0,
0 JQy 0 JQy 0 JI 0 Jr

then (u,n) = 0.

Proof. Observe first that to get the usual energy equality, we would want to formally sub-
stitute in (u, d;n) for (g, ). However, since (g, ) must have 1 (t) € Hy (') by the definition
of the test space Q(0,T), we do not have enough regularity to do this. Therefore, we use
a different approach of taking an antiderivative, which is an approach used for example in
establishing uniqueness of weak solutions for general hyperbolic equations (see Section 7.2
in [70]).

Consider an arbitrary s such that 0 < s < 7. We use the following test function,

(qo(t),1o(t)) = (f (LT U(U)da) dr, fn(T)dT) if0<t<s,

(0,0) if s<t<T.
Recall that n(0) = 0 by assumption. Note that since

LTU(U)dU‘F = JOT om(o)do = n(T)
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for all 7 € [0,77], the function (g,,v0) satisfies the necessary kinematic coupling condition
for Q(0,7"). While this test function is only piecewise differentiable, it is easy to show by an
approximation argument that the weak formulation should still hold with this test function
by approximating it with differentiable functions. For notational simplicity, we define

Substituting the test function into the weak formulation, we obtain for all s € [0, T,

f f u- wadt+2uj D(u) : D(q,) dwdt+J J om - ndzdt+J J Vn-Vidzdt = 0,
Qf Qf

where we note that 0,q,(t) = —U(t) and 0yb(t) = —n(t), for t € [0,s). We handle the four
terms on the left hand side as follows.

e First term: We note that u = d;U. Hence, using the fact that U (0) = 0, we get

s d (1 1
u-Ud:z:dt=f—(—|U2 )dt:—Us)|2 .
). G (G, ) de = ST,

e Second term: For the second term, we again use that w = 0,U. Therefore,
QuJ D(u) : D(q,)dzdt = 2,uf D (6:U) : D(q,)dxdt.
Qs

We integrate by parts in time. Note that U(0) = 0 and g,(s) = 0, so there are no
boundary terms from the integration by parts. Hence, using the fact that d,q, = —
we obtain

QMJ D(u) : D(qq)dxdt = —Q;LJ D(U) : D(6:qq)dxdt = QMJ J |D(U)|?dadt.
0 Jo; 0 0 Jo;

Qf

e Third term: We immediately have that
8 1 9 1 9 1 9
O - ndzdt = Z|[n(s)l|zawy = SlONz2wy = 5l0(8) T2y
0o Jr

e Fourth term: Since n = —d;1), we have that

1d
f Vi Viodz = —5 (||w0||L2 ) ,

and hence, using the fact that ¢y(s) = 0, we get that

5 1
| | v vendzat = 5196000 .
0 JI
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Therefore, for all 0 < s < T, the entire expression (energy) can now be written as
1 2 ’ 2 1 2 1 2
§HU(5)HL2(Qf) +2p oo |1D(U)|"dzdt + 5”77(5)”L2(F) + §HV¢0(O)HL2(F) =0.

f

Thus, we conclude that U(s) = 0 and n(s) = 0 for all s € [0,7]. From the definition of U,
we conclude that w(t) = U (t) = 0 for all ¢ € [0, T'] also, which completes the proof. O

Verifying the diagonal condition of the Gyongy-Krylov lemma

Now that we have established a uniqueness result, we can construct a solution on the original
probability space (€2, F,[P) by invoking a standard argument involving the Gyongy-Krylov
argument (Theorem [2.2.3)), to show that the random variables (nn,uy,vy) defined on the
original probability space converge in probability, and hence converge almost surely along a
subsequence in the original topology.

Because we have already shown deterministic uniqueness in Sec. [£.9] it only remains to
demonstrate how the Skorokhod representation theorem can be used to show that the diag-
onal condition from the Gyongy-Krylov lemma is equivalent to showing deterministic
uniqueness.

For this purpose, denote by {X}V[k},?:l and {XJQ\,R},{“C‘:1 any two subsequences of our random
variables (approximate solutions) defined on the original probability space (2, F,P):

1 At At
XMk = (anv SV anv UMy UMy, UMy UM,@ Ungy,, Uiy, Upg,» Uy, W)v

2 At | At
XNk - (nNm N, nNkv UN, ;s UNy,, UNy, UNka U’Nk’ UNk? U'Nk? UN,» W)

Recall that the laws corresponding to each of these these two sequences of random variables
individually converge to the law u. However, to verify the diagonal condition in the Gyongy-
Krylov lemma, we must examine the joint laws of these random variables (XMC, XJQVk)

Hence, we consider the joint probability measures (or joint laws) {ijlwk7 X3, 1 on X x X,
associated with the subsequence (X]}@, X%Vk) By the tightness of the original probability
measures /iy, established in the proof of Theorem [4.8.1] we have that the collection of joint
laws {Vlewk X3 172, is also tight, and hence converges weakly to a probability measure v on
X x X along a further subsequence, which we will continue to denote by the same indexing
for notational simplicity. Then, by the Skorokhod representation theorem, there exists a
probability space (€, F,P) and random variables

X1 At~ ~x1 =1 =1 Af1 <Al Wi
M — (an’an’an uMk7UMk7'u’Mk7,UMk7uMk7UMkauMk ka ) Mk)7
2 ~9 X2 At2 ~ ~%2 ~x2 =2 =2 _A{9 ~At2

XNk - (77Nk777Nk777Nk 7'u’Nk7/UNk7uN 7IUN 7uNk7UNk7’u‘N ) Nk 7WNk)
such that
v 1 2 _ 1 2



CHAPTER 4. A FULLY COUPLED MODEL OF STOCHASTIC FSI 192

and (X1, ,X% ) — (X', X?) in X x X almost surely as k — o0, where
My N ) )
o1 1 2l A1 ~1 ~1 w1 ~x1 =1 21 AT <A1 Ti/1
X :(777177/’7 7u7v 7u 7U 7u’v7u 71} 7W)

2 L2 22 A2 ~2 ~2 ~%2 ~x2 =2 22 ~At2 ~At2 1772
X :(/’7’77777 7u7U 7u 7v 7u7v7u 7U ’W)

are random variables on (Q, F,P), and v is the law of (X1, X5).

We want to show that v is supported on the diagonal. It suffices to show that If"(f( =
X?) = 1. We do this in three steps.

Step 1. First we notice that X! is a weak solution in a probabilistically weak sense with
respect to the stochastic basis (Q, F, {F!}=0, P, W1) in the sense of Definition . This
follows from the results of Lemma [£.8.7 Namely, the results of Lemma imply that
Al=7 =it gl =gt =g = a9l = =5 = 9241, and 0, = ©' almost surely.
Furthermore, (u ,n') € W(0,T) and (u ,0') € C(0,T; Q'), satisfying the initial condition
7' (0) = no almost surely. Furthermore, X' is a weak solution in a probabilistically weak
sense with respect to the stochastic basis (€, F, {]—" V=0, P, W) in the sense of Definition
. The same is true for the components of X2, with respect to (Q,F, {F?}=0, P, Wa).
Here, the filtrations {F}};>0 and {F?}i=0 are defined by (£.53)) with the appropriate limiting
random variables with superscripts “1” and “2” respectively.

Step 2. Here we notice that the limiting white noise satisfies W, = Ws. This follows
directly from (4.80)), which implies W]\l@ = W]%]k almost surely, since the law of (W]b[k, W]%,k)
is the same as that of (W, W). Thus, by the convergence of WJ% and W]%,k in C(0,T;R)

almost surely to W' and W2, we have that W' = W? almost surely in C'(0,7;R). This will
allow us to make sense of the difference of the stochastic integrals with respect to Wi and
W, in the weak formulations on the “tilde” probability space.

Step 3. Finally, we use deterministic uniqueness to obtain the diagonal condition. We
consider the difference (7' — 72, @' — @?). By subtracting the weak formulations defining
(@',7') and (w? 7?) as probabilistically weak solutions, given in Definition , and by
using the result of Step 2 above, we obtain that (@' — @?, 7' — 77%) almost surely satisfies for

all (g,v) € Q(0,7),

T T
—f f (uy — ug) - Grgdadt + 2uf D(u;, — uy) : D(q)dzdt
Qy 0 Jo;
Ui

— LT L Or(m — m2)Opbdzdt + JOT L \Y

with 77! — 72 = 0 almost surely. Therefore, by using the uniqueness result in Lemma m,
we conclude that 7' = 72 and @' = @* almost surely. Since o' = ¢,7* and ¥? = 9,77%, we also
obtain that ©' = ¢ almost surely. This allows us to conclude that P(X' = X?) = 1, which
implies that the limiting joint probability measure (or law) v is supported on the diagonal.
This completes the verification of the diagonal condition of the Gyongy-Krylov lemma.

|~ 1) - Vibdzdt = 0,
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Existence of a weak solution in a probabilistically strong sense

The existence of a weak solution in a probabilistically strong sense, given by Definition [4.4.2]
now follows from the Gyongy-Krylov lemma in Lemmal[2.2.3] More precisely, by the Gyongy-
Krylov lemma, the original sequence (ny, My, 5, UN, UN, Un, Vi, Wy, Dy, ui’, vy, W) con-
verges in probability to some random variable (1,7, 7%, uw, v, u*, v*, w, v, u™, v>*, W), where
the last component must be W up to a null set, since the limit in probability of any constant
sequence is almost surely exactly that constant.

Since convergence in probability implies almost sure convergence along a subsequence,
we conclude that along a subsequence which we continue to denote by N, we have that

(77N7ﬁN7 n]%ta UN,VN,UN, ’l)}i],ﬁN, 6]Va u%ta U]%ta W) - (777 ﬁa 77At7 u,v, U*a U*a ﬁ? 67 ’u’At7 UAta W)7
(4.81)
almost surely in X'. To show that this limit is a weak solution in the sense of Definition 4.4.2]
we use the same arguments as in Lemma [4.8.7] All of the properties from Definition |4.4.2
follow from Lemma [4.8.7 except for uniqueness and showing that (u,v,n) is Fi-adapted.

Uniqueness follows from the deterministic uniqueness result of Lemma [4.9.1]

Fi~adaptedness of (u,v,n): Note that this is not provided by Lemma [4.8.7, as we want
to show that this solution is adapted to the original filtration {F;};>0, while the filtration
defined in is not necessarily the same filtration.

To verify this, we note that by construction, (uy, vy, nx) is adapted to the given complete
filtration {F;}i=0. We want to pass to the limit as N — oo. By the convergence in (4.81]),

uy — u, almost surely in L*(0,T; L*(Qy)),
UN — U, almost surely in L*(0,T; L*(T")),
nN — 1, almost surely in L*(0,T; L*(T)).

By the same argument used to establish (4.56)) for example, we obtain that for a measurable
set S < [0,T] x Q with (dt x P)(S) =T,

up, (t,w, ) = ut,w,-) in L*(Q), vy, (t,w, ) = v(t,w,), nn,(t,w,) = nt,w,-) in L*(T)
(4.82)

along a common subsequence Ni. In particular, ([0,7] x Q) — S has measure zero with
respect to the product measure dt x IP.

Define Sy < [0,T] to be all times t € [0, T] for which P((t,w) € S) = 1, so that the time
slice at time ¢ has full measure in probability. Sy is measurable in [0, 7] and contains almost
every time in [0, T'] by Fubini’s theorem. So for all ¢ € Sy, the convergences are almost
sure convergences.

Because {F;};>0 is a complete filtration by assumption, the almost sure limit of F;-
measurable random variables must also be F;-measurable, since F; contains all null sets of
(Q,F,P). So for all t € Sy, u(t), v(t), and n(t) are F-measurable since uy, (t), vy, (t), and
nn, (t) are F-measurable by construction.
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To show wu(t), v(t), and n(t) are Fi-measurable for ¢t ¢ Sy, we use the fact that S
has full measure in [0,7] and is hence dense. We can assume t # 0, since at t = 0,
(u(0),v(0),7(0)) = (wo, v, M) almost surely so the result holds. So for ¢ ¢ Sy and t # 0,
we can construct ¢, € Sy such that ¢, / t. By the fact that (u,v) € C(0,7; Q') and 7 is
Lipschitz continuous almost surely, we have that (w(t),v(t),n(t)) is the almost sure limit of
(u(t,),v(t,),n(t,)), which are Fi-measurable since F;, < F;, as t, < t. This establishes the
adaptedness of (u,v,n) to the given complete filtration {F;};>o.

In conclusion, we have now shown that (u, v, n) has all of the required properties needed to
be a weak solution in a probabilistically strong sense to the given fluid-structure interaction
problem with respect to the Brownian motion W with complete filtration {F;};>0, as in
Definition [4.4.2] This completes the proof of the main result, stated in Theorem [4.4.1] and

restated here:

Theorem 4.9.1 (Main Result). Let uy € L*(Qy), vo € L*(T'), and 1y € H}(T). Let
Pinjout € Li,.(0,00) and let (2, F,P) be a probability space with a Brownian motion W with
respect to a given complete filtration {F;};>0. Then, for any T > 0, there exists a unique weak
solution in a probabilistically strong sense to the given stochastic fluid-structure interaction

problem —.

4.10 Conclusions

In this manuscript, we presented a constructive proof of the existence of a weak solution in
a probabilistically strong sense, to a benchmark stochastic fluid-structure interaction (SFSI)
problem —. Our well-posedness result indicates that stochastic FSI models are
robust in the sense that a unique weak solution in the sense of Definition will exist
even when the problem is stochastically forced by a rough time-dependent white noise, as
considered in this work.

In addition to the importance of this work in terms of modeling real-life fluid structure
interaction phenomena with stochastic noise, to the best of our knowledge the results of this
work present a first constructive existence proof of a unique weak solution in a probabilis-
tically strong sense to a stochastically forced and fully coupled FSI problem, as defined in
Definition £.4.21

In contrast to the deterministic case, the proof based on the operator splitting strategy
presented in this work has several new interesting components, which we summarize below.

1. The energy estimates are given in expectation, and do not necessarily hold pathwise.
Furthermore, the energy estimate has an extra term that accounts for the energy
pumped into the problem by the stochastic forcing in expectation.

2. We can modularize the fully coupled problem into three separate subproblems via an
operator splitting scheme, where the three separate subproblems must be solved in the
“correct” order to obtain a stable scheme. In particular, the order is: (1) the structure
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subproblem, (2) the stochastic subproblem, and (3) the fluid subproblem. With this
order, we can properly interpret the terms involving time increments of the stochastic
forcing as a stochastic integral, due to the measurability properties of the approximate
solutions, which allows us to show stability.

3. To establish weak convergence of probability measures, one can show that the probabil-
ity measures are tight, which requires the use of a compactness result alla Aubin-Lions.
This is a robust approach to showing convergence of the (random) approximate solu-
tions that generalizes well to problems with nonlinear scaling in the intensity of the
stochastic noise and to stochastic FSI problems with nonlinear coupling, where the
fluid domain is determined by the random structure displacement and hence the fluid
equations are posed on time-dependent random (and a priori unknown) domains. The
consideration of such complex nonlinearly coupled FSI models is work in progress |175].

4. Once weak convergence of the probability measures (laws) associated with the approx-
imate solutions is established, probabilistic techniques based on the Skorokhod repre-
sentation theorem and the Gyongy-Krylov lemma can be employed to obtain almost
sure convergence along a subsequence to a weak solution.
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Chapter 5

Fluid-poroelastic structure interaction

This chapter will be devoted to the study of nonlinearly coupled fluid-poroelastic structure
interaction (FPSI), which describes the coupled dynamical interaction between poroelastic
structures and fluids. Poroelastic materials are porous materials with elastic properties that
are coupled to the flow of fluid through their pores. These materials are described by a
set of equations known as the Biot equations, which are a pair of coupled equations for
the displacement of the poroelastic material from its reference configuration and the pore
pressure. In this chapter, we will consider a nonlinearly coupled FPSI system consisting of
an incompressible fluid modeled by the Navier-Stokes equations interacting with a multilay-
ered poroelastic structure, consisting of a thin reticular plate and a thick Biot poroelastic
material modeled by the Biot equations. This FPSI system will be nonlinearly coupled,
so that both the fluid domain and the Biot domain are moving domains, where the time-
dependent configuration of the fluid domain is determined by the thin plate displacement
and the time-dependent configuration of the Biot domain is determined by the displacement
of the Biot material from its reference configuration. The nonlinearly coupled nature of
this problem and the additional geometric nonlinearities arising from considering the Biot
equations and the Navier-Stokes equations on moving domains make the analysis of this
problem complicated. In this chapter, our goal is to develop a well-posedness theory for
this problem, involving weak solutions to a regularized FPSI problem. We will then show
that our well-posedness theory is compatible with real-life dynamics, by establishing a weak-
classical consistency result that states that weak solutions to the regularized FPSI problem
coincide with smooth solutions to the original problem when smooth solutions exist, as the
regularization parameter goes to zero. We begin by describing the Biot equations on a fixed
domain in the introduction to this chapter, and we give a brief literature review of the Biot
equations and FPSI. We then precisely state the specific nonlinearly coupled FPSI model
that we will consider. We then carry out a priori estimates and define the concept of a
weak solution to a regularized form of the problem. We use a splitting scheme to construct
approximate solutions and then use compactness arguments for functions defined on moving
domains, where there are additional subtleties that make this constructive existence proof
distinct from the corresponding existence proof for the prototypical model of nonlinearly
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coupled FSI. We end this chapter by stating and establishing the weak-classical consistency
result for the regularized FPSI problem.

5.1 Introduction

The Biot equations on a fixed domain. In this introduction, we first define the Biot
equations for poroelasticity. These equations were first formulated in the context of geo-
science by Maurice A. Biot in the seminal works [22] and [23], where these equations for
poroelasticity arose from Biot’s interest in modeling soil consolidation. Our nonlinearly cou-
pled model of FPSI will involve the Biot equations posed on a moving (time-dependent)
domain. However, it will be useful to first discuss the Biot equations defined on a fixed
domain €2, where €2, is a bounded domain in R™. The Biot equations are a set of two
coupled PDEs for the displacement n : €2, — R" of a poroelastic material from its reference
configuration €2, and its pore pressure p : €}, — R, given by

pbattn -V U(Vn7p) = 07 in Qba (51>

coOp+a(V-n)—V-(kVp) =0, iny, (5.2)

where the Cauchy stress tensor is given by

o(Vn,p) = op(Vn,p) — apl.

Here, o 5(Vn, p) is the elastic part of the full stress tensor, which can be given for example
by the usual Piola-Kirchhoff stress tensor in linear elasticity.

The first equation describes the elastodynamics of the poroelastic material, arising
from balance of momentum, where the influence of the pore pressure on the elastodynamics
appears in the term apl in the stress tensor o(Vn,p) for the poroelastic material. The
second equation describes conservation of mass, where the quantity xVp is related to
the filtration velocity q, or the velocity of fluid flow through the pores of the poroelastic
material, via Darcy’s law:

qg = —kVp, (5.3)

where £ > 0 is a positive constant. If we use Darcy’s law to rewrite the term —V - (kVp)
appearing in the second equation as V- q, we see that the second equation relates
the local change in the volume occupied by the fluid in the pores of the material to the local
expansion/contraction of the poroelastic material and the change in the pore pressure.

We make several remarks about the values of the physical constants which appear in
the Biot equations and (5.2). The constant p, is nonnegative, and if p, = 0, then
the resulting equations are known as the quasistatic Biot equations, which describe the
situation when the inertial effects of the structure are negligible. Generally, one can take
a >0, k>0, and ¢y = 0, though in many works, it is assumed that ¢ is a strictly positive
constant.
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Literature on the Biot equations. Now that we have stated the Biot equations on a
fixed domain, we describe some of the literature about these equations. One of the first well-
posedness analyses of the Biot equations was carried out in [183], where the quasi-static Biot
equations with p, = 0 in addition to ¢y = 0 are analyzed from the perspective of solutions
satisfying a variational formulation. The existence of weak (variational) solutions that are
in addition unique is established in this work by discretizing the problem in time using a
backwards Euler scheme and by discretizing the problem in space using finite elements, and
then passing to the limit in the time and space approximation parameters. The result in
[183] is later extended in [148], where the same quasistatic Biot system with p, = ¢g = 0
is considered, but more regularity is established for the resulting weak solutions. The Biot
displacement and pore pressure are shown to be continuous as functions taking values in
H'(Qy), with the Biot displacement additionally having a time derivative in L*(0,T; H'(€)))
in [148], via a Galerkin method combined with energy estimates.

Variational solutions to the Biot equations are also considered in the later work [15],
where the authors consider the Biot equations with so-called secondary consolidation. In
this case, the second equation remains the same and the first equation has a secondary
consolidation term involving a parameter A* > 0 that reads

oMy — VA (V-n)) =V -a(Vn,p)=F on ,

where F is an external forcing term. This work [15] considers several regimes, and shows the
existence of a weak solution via a Galerkin approach if p > 0 and \* > 0. By taking the limit
as \* = 0, this work also obtains results for the so-called thermoelastic case where p > 0 and
A* = 0, which has also been considered in the different context of linear thermoelasticity
in [53] (where in thermoelasticity, the elastodynamics equation takes a similar form to the
first equation in the Biot equations, and the temperature equation takes a similar form to
the pressure equations in the Biot equations). Finally, the work in [15] also considers the
limiting case where p = 0 and A* > 0 by taking the limit as p goes to zero to obtain
results for the quasi-static Biot equations with secondary consolidation. Work on variational
solutions to Biot equations was extended to nonlinear Biot equations on fixed domains in
[14], where a semilinear Biot equation in 1D is considered. This equation involves the same
second equation , but adds an additional semilinear nonlinearity in addition to secondary
consolidation to the first equation (5.1]), which now reads

Pu0un — N*0,02m — 0,0 (Vn, p) — w0, (|0um|*20,u) = f on

for some g > 1.

Another approach to studying the Biot equations is to reframe the Biot equations as an
abstract evolution equation, for which the tools of implicit/degenerate evolution equation
theory can be applied in order to obtain well-posedness results. This is the approach taken in
[162], where a quasistatic Biot model with ¢q = 0, and potentially with secondary consolida-
tion, is considered. This framework of considering abstract evolution equations is extended
in the work |164] to a quasistatic nonlinear Biot model on a fixed domain, where there are
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nonlinear relationships between the pore pressure and physical quantities in the problem.
The work in [164] studies a problem, which has the same relation for the first equation ([5.1))
with p, = 0, but the second equation is now replaced by the nonlinear equation

(bp) +aV -n); =V - (sVp+g(p) =F on,

where b and g are nonlinear functions describing the relationship between pore pressure, and
density and gravitational effects respectively.

Finally, there has been recent work on challenging Biot models involving nonlinear per-
meability in Darcy’s law. This work was initiated in [25], where quasistatic Biot models with
co = 0 are considered with poroelasticity and poroviscoelasticity. The model here was

a(V-n);—V - (k(V-n)Vp) =5,

on a fixed domain {2, where the permeability x depends on V - 7. The stress tensor is given
by
o(n,p) = 2pue D) + Ac(V - )T + 201, D(n,) + Ao(V - 1) — apl,

and the problem is purely poroelastic when u, = 0,\, = 0 and poroviscoelastic when g,
and A, are positive. This work [25] discretizes in space and time, as in [183], and passes
to the limit in the discretization parameters, in order to establish existence of a solution
under appropriate assumptions on the nonlinear permeability. This work was extended in
[24], where a more general quasistatic case where ¢y = 0 is considered, rather than the case
of ¢g = 0in [25]. In this case, the permeability « is not just a function of V-7, but it is more
generally a function of c¢op + @V - 1. The well-posedness analysis in this work [24] is based
on only spatial discretization rather than discretization in both time and space, and it relies
on analyzing a linear problem and using a fixed point argument for multi-valued maps, since
it is not known if weak solutions are unique for the specific linear system that is needed for
this fixed point argument.

Literature on FPSI. Now that we have discussed the literature for the Biot equations,
we discuss the literature for fluid-poroelastic structure interaction (FPSI), which couples the
Biot equations to the equations of fluid flow in order to describe a fluid interacting with a
poroelastic structure. Poroelastic structures are commonplace in applications, for example
in applications to geoscience [79, 126] and in applications to modeling biological tissues in
the human bodies [40, [180]. We remark that despite the importance of FPSI in engineering
applications, there are few works analyzing the well-posedness of fluids interacting with
poroelastic structures, and the past work in FPSI has only considered linearly coupled FPSI
models, leaving the consideration of nonlinearly coupled FPSI models with moving fluid and
Biot domains open.

The abstract evolution equation approach from the Biot equations on a fixed domain
[162], [164] has been considered for linearly coupled FPSI in [163], where an FPSI system
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involving the Biot equations interacting with slightly compressible (rather than incompress-
ible) Stokes equations is considered from an abstract evolution equation framework. Next, a
linearly coupled FPSI system involving a poroelastic material modeled by the Biot equations
interacting with an incompressible fluid modeled by the Navier-Stokes equations driven by
inlet flow is considered in [41], and it is shown that there exists a unique weak solution
to this problem given sufficiently small external forcing and inlet pressure. To show this
result, a Galerkin method is used to obtain existence of solutions to a weak formulation,
where the test functions for the fluid velocity are divergence-free test functions in H*(£2;).
The fluid pressure is recovered using an inf-sup argument, where the fluid pressure along
with the other quantities satisfy a weak formulation where the fluid velocity test functions
are not necessarily divergence-free functions in H'(£2;) and the divergence-free condition on
the fluid velocity is enforced by testing this divergence-free condition with test functions in
L*(€24). The analysis of linearly coupled FPSI has been extended to the interaction between
Biot poroelastic materials and non-Newtonian fluids in [3], where the generalized Stokes
equations model the fluid dynamics. In this case, the fluid viscosity is a nonlinear function
of the strain D(w), which is a behavior that can be observed in non-Newtonian fluids such
as shear-thinning fluids. In addition, the effective viscosity in the Biot poroelastic material
is also a nonlinear function of the filtration velocity g, so that Darcy’s law (/5.3) now reads

Veff(q)/i_lq + Vp = 0.

Finally, we mention the recent work in [26], which considers a novel FPSI model involving
the coupled interaction between an incompressible fluid modeled by the Stokes equations and
a multilayered poroelastic structure consisting of a thin poroelastic plate and a thick Biot
poroelastic material. This model was motivated by applications to biomedical engineering
in the context of developing bioartificial organs. A well-posedness result in the context of
weak solutions is obtained for this problem by discretizing the problem in time in order to
construct approximate solutions and then passing to the limit in the time discretization.

While the study of fluids interacting with poroelastic materials is an emerging, yet im-
portant, field of mathematical research, we note that the study of FPSI has arisen naturally
from past studies of incompressible Newtonian fluids interacting with porous materials [63),
123, /156 and more generally non-Newtonian fluids interacting with porous materials [39, 64,
68, 69], where the porous material dynamics is modeled using the Darcy equation for porous
media flow.

Next, we discuss the nonlinearly coupled FPSI problem that we will consider. We empha-
size that this chapter is adapted from a forthcoming manuscript co-authored with Suncica
Cani¢ and Boris Muha [115], and features work from the paper [114], co-authored with
Sunéica Cani¢ and Boris Muha also.
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5.2 Statement of the problem and motivation

Description of the model

In this chapter, we study the nonlinearly coupled evolution of a Biot poroviscoelastic ma-
terial with an incompressible fluid modeled by the Navier-Stokes equations, separated by a
plate interface. Such problems are of interest in biomedical applications, in which biofluids
interact with solid media. While past studies of fluid-structure interaction problems aris-
ing in biological applications model such solid structures using equations of elasticity (such
as the equations for a Koiter shell), many biological tissues and substances are actually
porous in nature, admitting fluid flow through their pores. This makes such moving bound-
ary fluid-poroelastic structure interaction (FPSI) problems of interest in modeling real-life
phenomena.

We begin by describing the model. We will consider a two-dimensional model for this
problem. Although eventually, it will be of interest to extend such a model to three spatial
dimensions, there are already significant mathematical difficulties arising from the moving
domains that occur in even the two-dimensional case. We thus begin with the simplest pos-
sible geometric configuration of two-dimensional rectangles as the reference configuration for
the whole problem, where the entire two-dimensional reference domain () can be decomposed
into a reference domain for the fluid 7, a reference domain for the Biot poroviscoelastic
material (), and the interface r separating these two media, which will be the reference
configuration of the elastic plate that is between the fluid and the poroviscoelastic structure:

Q = Qb U Qf U f‘
We will consider a simple geometric configuration where
O, = (0,L) x (0,R), T =(0,L)x{0},  Q=(0,L)x (—R,0). (5.4)

We use the variables 2 and y as coordinates, where x € [0, L], y € [—R, R]. Because we
are considering a problem with nonlinear coupling, all of these regions on the physical time-
dependent domain will evolve in time, giving rise to time-dependent Q(t) = Q(t) U Qf(t) U
['(t). See Figure On each of these regions, we will pose a different subproblem, and
we will have three subproblems, one for the fluid, the Biot media, and the plate separately.
These will then be coupled using appropriate coupling conditions, to be described later. We
emphasize that we will be using the notational convention, where we will denote objects
associated with the reference domain with a hat, and we will denote objects associated with
the physical domain with no hat. We begin by first describing each of the subproblems
separately.

The Biot poroviscoelastic structure subproblem

We consider a 2D Biot poroviscoelastic material with reference configuration Q. We will
denote by 7 : [0,T] x €, — R? the displacement of the material from the reference config-
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X
| >y LAGRANGIAN MAP (BIOT)
®, =1d+4
-Qb Q'b (t)
T MAP FOR PLATE r(t)

A w

@F(:%: 0) = (5%? (I)(:,f:))

QO Qf (t)

A 4

ALE MAP (FLUID)

REFERENCE DOMAIN & (,9) = (x g+ (1 + %) Q,) MOVING DOMAIN

Figure 5.1: A sketch of the nonlinearly coupled FPSI problem domains, with the reference domain
on the left and the moving time-dependent fluid/Biot domains Q¢ (t) and (t), and time-dependent
interface T'(t) on the right. We also illustrate the various maps between the reference domains
and the moving domains, including the Lagrangian map for the Biot medium and the Arbitrary
Lagrangian-Eulerian (ALE) map for the fluid.

uration €2, and we will denote the pore pressure by p : (), — R. We denote the Lagrangian
map by

- . .

D, (t,) =1d+n(t, ) : QU — (), (5.5)

and we denote its inverse by (®])7!(t,-) : Q(t) — . We model the poroviscoelastic
structure by the nonlinear moving-domain Biot equations, given by

polut) = V- Sy(Vir,p),  in (5.6)

Co D D _
— —p+aV-—n—-V-(kVp) =0, in (1), 57
[det(V@;)] o (@]) 1 DI pi" V- (kVp) W), (57)

where the Piola-Kirchhoff stress tensor is given by

Su(Vi, D) = 2ueD(R) + Ae(V - AT + 21, D () + \o(V - 1) T — o det(VE,)p(VE,) . (5.8)

In the Piola-Kirchhoff stress tensor, D denotes the symmetrized gradient, u. and A, are
parameters related to the elastic stress, u, and A, are parameters related to the viscoelastic
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stress, and @Z is the Lagrangian map defined above. Recall the convention that variables
with hats are defined on the reference domain Qb, and variables without hats are defined
on the physical domain €2(¢). Thus, for example, in the second equation , the Biot
material displacement 1 and the pore pressure p on the physical domain €,(¢) are defined

as
77(757 ) = 'f’(tv ((I)Z)_l(tv ))7 p(t, ) = ﬁ(t7 ((I)Z)_l(t7 ))

We remark that in the definition of the Piola-Kirchhoff stress tensor , we have used the

Piola transform. The Piola transform is a transformation that maps tensors in Lagrangian

coordinates to corresponding tensors in Eulerian coordinates, in such a way that divergence-

free tensors in Lagrangian coordinates are still divergence free when transferred to Eulerian

coordinates. In particular, given a tensor T'(x) on the moving domain €2,(¢) and the map

@Z - (0, — Q4(t), the Piola transform is defined by
T(z) — T (&) = det(V®,)T (&, (2))(VE,) "'

See Section 1.7 of [48] for more details about the Piola transform.

The first equation . ) describes the elastodynamics of the structure, while the second
equation . ) describes the change in the fluid content of the pores. We emphasize that
while the first equation is defined on the fixed domain Q, the second equation is defined on
the moving domain, where

(1) = By (1, ). (5.9)

These nonlinear Biot equations for a moving poroelastic structure have been introduced in
(160, |182].

A priori, we note that the notion of €),(¢) is not entirely clear, unless 7 is sufficiently
regular and furthermore, the formulation of this problem makes sense only if the map
<I>b = Id + 7 is an injective map from € to Oy (t). For the purposes of defining the problem,
we do not consider these mathematical difficulties yet, and remark that we will handle these
important issues later.

The plate subproblem

We give the equations describing the plate separating the fluid and the Biot poroviscoelastic
medium. We assume for simplicity that the plate experiences displacement only in the
transverse y direction from the reference configuration I, and we denote this displacement
by w = we,. Making this assumption avoids technical issues related to potential self-
intersection of the plate that would arise if we consider general vector displacements w. The
equation for the plate displacement @ in the radial direction is given by

~ A

ppOuto + A% = F, on T, (5.10)

where p, is the plate density coefficient and Fp is the external forcing on the plate in the
y direction, to be specified later as the difference in normal stress on both sides from the
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fluid and the Biot medium. We emphasize that the plate equation is posed on the reference
configuration I' of the plate.
The time-dependent configuration of the plate

Iit)={(z,y):0<zx < L, y=w(tx)},

forms the bottom boundary of the moving domain (), and the remaining left, top, and
right boundaries of €,(t) are fixed in time. This reflects the fact that the plate displaces in
only the transverse y direction. Hence, if the Biot structure displacement 7 is sufficiently
regular, then we can describe the moving domain Q(¢), defined in (5.9)), equivalently as

Q(t) ={(z,y): 0<x < Lw(t,zr) <y < R},

since on the left, top, and right boundary of €,(¢), we assume that § = 0 as a boundary
condition, see Sec. |5.2]

The fluid subproblem
We model the incompressible fluid by the Navier-Stokes equations, given by
du+ (u-V)u=V-osVu,n), in Q(t), (5.11)

Vou=0  inQ), (5.12)

where w is the fluid velocity and 7 is the fluid pressure. The Cauchy stress tensor is given
by
o¢(Vu,n) =2vD(u) — nl,

where 7 is the fluid pressure and v is the kinematic viscosity coefficient. The moving fluid
domain Qy(¢) is determined by the plate displacement w, as follows:

Qp(t) ={(z,y):0<zx < L,—R <y <w(t,x)}
The first equation describes the balance of forces in the fluid, whereas the second equation
is the incompressibility condition for the fluid.
The coupling conditions

Next, we describe the coupling conditions that will couple these three subproblems together.
To state the coupling conditions, we introduce the following notation. The flow of fluid
through the poroviscoelastic medium is given by the Darcy velocity g, defined by

q=—kVp on (1), (5.13)

where k is a positive permeability constant.
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We also define the Biot Cauchy stress tensor on the physical domain, by applying the
Piola transform to the Biot Cauchy stress tensor on the reference domain Sy(Vn,p). In
particular,

Sy (Vm, p) = [det(V,) 1S, (V), p)(V®;)!] o (®])

1 . . . NN PP .
= | ——— [2ueD(R) + A\(V - 7)) + 2u,D(1),) + Mo(V - V&) | o(®) ! —apl.
<det<vq>g>[“ (7) + AV 7)) + 240, D() + Mo(V - 7)] b>) (@)~ ap

(5.14)

We define the Eulerian structure velocity of the Biot poroviscoelastic material, which
gives the structure velocity at each point of the physical domain €,(t), by

&(t,) = am (t, ()7 (t,-)). (5.15)

Finally, we define n(t) to be the normal unit vector to the moving interface I'(t) and we
define n to be the normal unit vector to the reference configuration of the interface I'. Note
that n = e,. We will follow the convention that n(¢) and n will point away from Q(¢) and
¢, and inward towards §2,(t) and €.

With all of this notation, we can now describe the coupling conditions:
e Conservation of mass of the fluid,
u-n(t) =(q+§&) - n(t), on (0,7) x T'(¢).
e Continuity of the displacement (kinematic coupling condition),
n = we,, on (0,7) x T,
e Beavers-Joseph-Saffman condition describing tangential fluid slip on the interface,
B —u) T(t) =omn(t) T(t), on (0,7) x I'(t), (5.16)

where § > 0 is a constant and 7(t) is the rightward pointing unit tangent vector to
['(t). The Beavers-Joseph-Saffman coupling condition was rigorously justified using
homogenization theory in the context of Stokes-Darcy coupling in seminal works of
Jager and Mikeli¢ [97] 98].

e Equality of forces (dynamic coupling condition) describing the external forcing on the
plate as the difference between the external and internal load,

B, = —det(V®;)[o;(Vu, 7)o ®;|(V®,) 171+ S,(V), v 1l on I, (5.17)

where <i>j: - Qp — Q4(t) is the Arbitrary Lagrangian-Eulerian (ALE) map for the fluid

fw, L Z} R
¢, (7,9) = (a:,y+ (1+§> w),
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which maps the reference fluid domain to the moving fluid domain, jF‘“ is the arc length

measure R
Je =/1+ 002 (5.18)

and (®2)! : [(t) — [ is the inverse of the Lagrangian map
&.(#,0) = (#,@(2)),  onl, (5.19)

e Balance of pressure at the interface,

o/ (Vu, m)n(t) - m(t) + %yuﬁ _ . on (0,T) x T(b). (5.20)

The boundary conditions

Furthermore, we will impose the following boundary conditions. We recall that the dynamics
are occurring in a domain with solid walls, given by [0, L] x [-R, R]. The physical fluid
domain is given by

Qp(t) ={(z,y): 0<z < L,—R <y <t )},

so that the portion of the boundary given by 0€Q;(¢)\I'(¢) consists of rigid walls. Thus, for
the fluid, we will impose a no-slip condition that

u =0, on 0Q¢(t)\I'(¢).

Similarly, we will assume that the boundaries of the Biot poroviscoelastic medium, ex-
cluding the interface I'(t), are rigid walls. Thus, we will also impose a Dirichlet condition on
the left, top, and right boundaries of the Biot poroviscoelastic domain €, so that

n=0 and p=0, on (%%\f.

Statement of the main results and overview of the proof strategy

The goal of this chapter is to study weak solutions to the presented FPSI problem. We
will work with class of finite energy weak solutions analogous to the Leray-Hopf class for the
Navier-Stokes equations. Such solutions have been widely studied in the context of FSI when
the structure is lower dimensional, i.e. described by plate/shell type of the model, see for
example the references for the prototypical model of FSI described in Chapter 1. However, in
the case of FSI problems with bulk elasticity (i.e. when the dimension of fluid domain is the
same as the dimension of the structure domain) the existence of a weak solution is still open.
The issue is that the energy inequality does not provide enough regularity of the interface
to define the moving domain, the corresponding traces of functions along the interface, and
integrals over the interface in the weak formulation. To the best of our knowledge, in the
current literature, there are currently only two approaches to circumvent this issue. The
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first one is to consider the elastic interface with mass [138]. The elastic interface with mass
regularizes the problem [134], which makes it possible to define and construct a weak solution.
The second one is to consider a nonlinear second order viscoelastic model with energy that is
coercive in WP p > 3, see [19]. Our approach is closer to the former. In our FPSI problem,
the issue is even more difficult because equation ({5.7)) is given in Eulerian coordinates and
therefore, the weak formulation has terms involving integrals over Q(¢) which are not well
defined (see Section for more a precise discussion and a formal derivation of the weak
formulation). Consequently, in the analysis of moving boundary FPSI problems it is not
enough to regularize the interface, since one needs more regularity of the displacement in
the whole domain. Our approach is to define weak solutions to a regularized form of the
problem by using a suitably constructed convolution in the space variables, see Section
for more details. We regularize only the ”"problematic” terms, i.e. the terms that are not
well defined in the finite energy regularity class. We emphasize that the regularized problem
is still a nonlinear moving boundary problem of FPSI type and is thus very challenging.
Our first main result is the existence of a weak solution to the regularized FPSI problem. It
holds for both elastic and visocelastic case for the Biot material. Here we state the theorem
informally and refer reader to Theorem for the precise statement.

Theorem 5.2.1 (Existence of a weak solution). Let op, ftc, Ae, @, pp, v > 0 and i, Ap = 0.
Moreover, assume that initial data are in finite energy class and that initially, the interface
does not touch the outer boundary and certain compatibility condition are satisfied. Then
for every regularization parameter 6 > 0, there exists T > 0 (potentially depending on § > 0)
such that there is a weak solution to the regularized problem with regularization parameter

d on [0,T7].

The proof of this theorem is carried out in Sections 5.5 5.7, and In Section [5.5]
we define a splitting scheme that will be used in the construction of approximate solutions.
The scheme is combination of a semi-discretization in the time variable and a Lie operator
splitting. Even though this scheme has already been successfully used in analysis and nu-
merics for FSI problems, we needed to adapt it to the setting of FPSI problems. The main
benefit of this approach is that it enables us to decouple the interface dynamics from the
Biot-Navier-Stokes coupling so that we can treat both subproblems separately. The approx-
imate solutions are constructed in Section [5.6, where it is also proved that the approximate
solutions satisfy energy estimates which are uniform in the discretization parameter. In Sec-
tion [5.7], we study compactness properties of the sequences of approximate solutions, i.e. we
show that the approximate solutions converge strongly in a suitable topology. This is the
most delicate part of the existence proof. Here, we use two abstract compactness results
which are generalizations of the Aubin-Lions theorem for piecewise constant functions [65]
and moving domains |136]. Here, we note that the compactness proof differs from the stan-
dard FSI cases due to the fact that in the test space, the fluid and the structure test functions
are not coupled. Therefore, we can divide the compactness proof into several distinct parts.
Finally, in Section [5.8] we pass to the limit in the approximate solutions to show that the
limit of the approximate solutions is indeed a weak solution.



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 208

Our second main result is a weak-classical consistency result. Namely, in order to justify
our regularization procedure and the corresponding definition of weak solutions to the reg-
ularized problem, we prove that weak solutions to the regularized problem indeed converge
to the solution to the original FPSI problem. More precisely, we prove the following result
(for the full statement, see Theorem

Theorem 5.2.2 (Weak-classical consistency). Assume that a classical (smooth) solution to
the FPSI with a Biot poroviscoelastic medium exists (so that p,, A, > 0). Then, there exists
T > 0 such that every sequence of weak solutions to the regularized problem with regu-
larization parameter ¢ > 0 converge to the classical solution on [0, 7] as the regularization
parameter 6 converges to 0. In particular, there exists d; > 0 such that regularized solutions
exist on [0,T] for § < dg, i.e. provided that a classical solution exists, the time interval
of existence for the weak solutions to the regularized problem is uniform in regularization
parameter.

The heart of the proof of this theorem is a bootstrap argument presented in Section
(.90 Namely, the main issue is that geometric quantities, such as the determinant of the
displacement, cannot be estimated by the energy and thus are not uniformly bounded in the
regularization parameter 9. We derive appropriate bounds by using a bootstrap argument in
combination with optimal convergence rate estimates for the convolution regularization. The
main technical issue in comparing the classical solution with weak solutions to the regularized
problem is the fact that they are defined on different domains. Therefore, we use a change
of variables that transfers fluid velocities as vector fields and preserves the divergence-free
condition. This transformation was introduced by [95] and was used in proving weak-strong
type of results in the context of FSI in [43, 142, 159]. The corresponding estimates are
carried out in Section [5.10l

5.3 Definition of a weak solution

Maps between reference and physical domains

Because this problem is nonlinearly coupled, the fluid domain Q((¢) and the Biot porovis-
coelastic domain §2,,(¢) in physical space are time-dependent and hence are not known apriori.
This is a mathematical difficulty that is seen even in prototypical fluid-structure interaction
models.

To handle the moving domains, it will be useful to work on the fixed reference domains €,
I, and Q 7, which are defined by . Hence, we need a map that maps the fixed reference
domains onto the appropriate time-dependent domains. We will denote these maps for the
Biot medium, plate, and fluid by

A

Byt ) - lt), Bp(t) DT, () Q- (t).
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See Figure [5.1] We emphasize that these maps are time-dependent, even though in the rest
of this manuscript, we will not explicitly notate this time dependence for ease of notation.

On the reference domain for the Biot poroviscoelastic material {, = (0,L) x (0, R), we
define ®, on Q) as before in (-5), by

27 .
On the reference domain I' for the plate, we define <i>UFJ on I asin (5.19) by

& (2,0) = (2,0(2)).

On the reference domain for the fluid Q = (0, L) x (=R, 0), we define ‘iffj on Q by using
the standard Arbitrary Lagrangian-Eulerian (ALE) mapping

cw, o U\ . o N
Q. (2,7) = (x,y + (1 + E) w> , (z,7) € Qy, (5.21)
where we are using the variables (Z,7) to denote the coordinates on the reference domain

and we are using the variables (x,y) to denote the coordinates on the physical domain. We
can express the inverse of this map as

(%) (2,y) = ( re T (ry y>) L ) e ),

R+w

In the analysis of the full FPSI problem, it is necessary to consider functions on both

the reference and the physical domains, and hence, we must examine how functions and
S -

derivatives transform under @, and <I>Z. We will first focus on the behavior of functions

under the transformation <i>:: on #, considering in particular the fluid velocity w.

. . 5 w
First, we note that on 2y, the Jacobian of @L; is given by J;" = ‘1 + =l Because our

results will hold up until the time of domain degeneracy when |w| > R, we can get rid of the
absolute values and just write

~
~

w
=1+ —. 5.22
gr=1+% (5:22)
We will furthermore denote the fluid velocity w defined on Qy(t), transferred to the fixed
reference domain €2y, by

~
A

w(t,, 1) = uo dy, for (&,9) € Q.
Recall that on the moving domain €(¢), the fluid velocity w is divergence free, so that
V -u = 0. However, when we pull the fluid velocity back to the reference domain, u is
not necessarily divergence free on O 7. Hence, we want to reformulate the divergence free
condition on the fixed reference domain. To do this, we look at how derivatives transform
under the map @U;
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In particular, note that for any function g defined on €(¢),

Vg =V (50 (7)) = (Vig) o (@)™
for the differential operator
v (’3 - (R + y)a w 2(3 aj (R+9)0z wa
- ( 7505 ) < RRJgf : (5.23)
R+w Rio

where we used y = y + (1 + )d) Therefore, the divergence free condition on the fixed
reference domain € is V¢ “ -4 = 0 and the symmetrized gradient transforms as D f( u) =

§(v;zu+( ta)').
Next, we consider how time derivatives are transformed under the map <i>;j We have

that

N o\—1/a ~ . . R . . (R+ 7)o
ovu(t, x,y) = o(a(t, (®9)(2,9)) = &tu—agu-(R—i—y)-T@tw = atu—a@u%.

(R+w)? R+w
So defining R
W = R; Yowe,, (5.24)
we have that X
dru = Oyt — (W - V¥)u. (5.25)

The weak formulation will also involve integrals with a time-dependent domain for the
Biot equations, €2,(t), so we will examine the transformation of spatial derivatives via the
7 A
map ®, on €,. Recall that

®y(2,9) = (#.9) +0#.9),  for (&,7) € U,
where we recall that the displacement 7) is defined on the fixed reference domain Q. So

given a scalar function g defined on (t), we want to see how Vg transforms when pulled
back to the reference domain. We define the pull back of g to the reference domain €2, by

~

X

g=go®,

We claim that for some differential operator @Z,
Vg=V(30(®})") = (Vig)o (@)

We emphasize that V is a gradient on the physical domain, Visa gradient on the reference
domain, and V] is a differential operator (different from V) on the reference domain. For
any function ¢ defined on the physical domain, we have that

V(g0 @) =[(Vg) o &1+ (I + V).
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Hence, for R R

Vii = (Vo) o &y,
we have the following explicit formula for the differential operator @Z on the reference do-
main, given by

s _ (09 0F -
Vig=|=.= ) - I+Vip™ 5.26
- (2.5) - a+va) (5.20
We finally note that the Jacobian of the map @Z on € is
T = det(I + V7). (5.27)

We remark that the invertibility of the matrix I + V#) will be related to whether the map
(2,7) — (&,9) + 77(&,9) is a bijection between €, and Q,(%).

We now derive the definition of a weak solution to the given FPSI problem, by means
of the following formal calculation. We start with the fluid equations and multiply by a
test function v. Recall the definition of the Eulerian structure velocity & from (5.15)). For
the acceleration term of the Navier-Stokes equations, we obtain by the Reynold’s transport
theorem and integration by parts,

f (é’tu+(u-V)u))-v=i u-’u—f u-é’tv—f (& -n)u-v
(1) dt Ja ) (1) K

+%Lf(t)[((u-V)u)-v—(u-V)v)-u]+%f (u-n)u-v

I(t)
d

1 1
~dt Q1) um_fm(t) uﬁtv+§ Lf(t)[((U'V)u)-v—((u-v)u).u]+§ L(t)(U-n—Zﬁ-n)u.v.

For the diffusive term of the Navier Stokes equations, we integrate by parts to obtain

—f (V-o¢(Vu,n)) v =2v D(u) : D(v) —f o/(Vu,m)n v,

Q(t) Qy(t) I(t)

where we used the fact that the test function v is divergence free to eliminate the pressure
from the integral over Q;(¢), and we use that the test function satisfies v = 0 on 02 (¢)\I'(¢)
due to the boundary conditions for the fluid velocity .

Next, we multiply the structure equation by a test function 'I:b to obtain

fA (pOun —V - S (V1) D)) - = py (% f om - — om - at":b>
Q Q

+JA Sy(V,p) - Vb + | Sp(Vn,pley - = py (E an-Y— | &nﬁttb)
Qb T Qb Qb

~

) + 20, D(07) : D(3p) + AoV - 0) (V- 9)))

T

o Lb(t)pw )+ f (Vi e, - .
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Except on I, there are no boundary terms, because n = 0 on the left, top, and right
boundaries of €, and hence the same condition holds for the corresponding test function d)
Note that in the integral over ,(t), ¢ := Po (®)!

Finally, we test the second equation corresponding to the evolution of the pore pressure
for the Biot poroviscoelastic medium with a test function r, where we recall the definition
of the Darcy velocity g from and we emphasize that m is the inward normal vector to

Oy (t).

Co D D
— —p+aV-—n—-V - (kVp) |r
be(t) ([det(V@Z)] o (®))! Dt Dt77 ( )>
D
:J Coatﬁ‘fJff a(V-—n)r+J RVP-VT—J (q-n)r
% (1) Dt (1) r(t)

d D
= — coﬁ-f—f coﬁ-atf—f a—n-Vr—cm (ﬁ'n)r—l-f KVp-VT—J (g-m)r.
dt Jo, o am Dt r(1) (1) r(1)

There are no boundary terms except on ['(t) from the integration by parts in the integral
involving o and in the integral involving s because we have from the Dirichlet boundary
condition that the test function satisfies r = 0 (since p = 0) on the left, top, and right
boundaries of Qb.

We recall the definition of @} in and the arc length measure J¥ and we

sum the two terms

~

| oVumnev | ST, b
(#)

I
= J( | o;(Vu,m)n - (¢ —v) + f(ﬁb(ﬁﬁ,p)ey — J& (o (Vu, T)n|rg o BE) - 1.
(t r
Since the displacement of the plate is only in the y direction so that 1) = we, on f’ the test

function 1,b points in the y direction on [ as well. We will denote by ¢ the magnitude of ¢|F
so that 1,b pe, on I. By the dynamic coupling condition | , we have that the previous
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expression is equal to
_ f o 1 (Vu, m)m - (1 — v) +f Fyep— J o (Ve m)m- (4 —v) + f Pyt + A%0)¢
I'(t) r I(t) r
= J oi(Vu,m)n - -n(y, —v,) + f oi(Vu,m)n - 1(¢, —v;) + J (ppOuco + A%0)¢
I'(t) I'(t) r

= J oi(Vu,m)n - n(y, —v,) + B&—u) T, —v) + j(ppéttd) + A%)¢
0 I'(t) r

[ (Gl ) o [ st w w0
(1) (1)
d . .
Ol 1+ Op P Aw - AP,
dt (J Pplt 90) f PpOtW - Opp + L W ap

where we used the coupling conditions (5.16]) and (5.20]) in the last step.
We sum everything together to get the following definition of a weak solution. Define the
transverse velocity of the plate by the variable (, so that

~

ow = (, (5.28)
and let ¢ = Co o (®¢)~". The ordered four-tuple (u,w, ), p) is a weak solution if for every test
function (v, $,p,7) that is C; in time on [0,T] taking values in the test space, satisfying
P = pe, on I', we have that

_ff u-atv+1fTLf [((u-v>u>-v—((u-V)v)-uH%LTL(t)m-n—%ey-n)uv

voo [ P ff (|ur2—p>wn—vn)wfL(t)@ey—u)»rw—v)w

—ppf jata-at¢+f wa-Agé—pbf Jmam-atmzuef D) D)

+Af L (V) +2uvf DU D)+, f va 0n) (V)

SRS R P
+/€J e vp W—JJ (u —Cey) - m)r

w000 + 5, [ 0000)- 200+ 1 [ 200 9(0) + o [ 50)-510). (529
Qy(0 )

Qb Qb

We remark however that the above weak formulation is inadequate for the regularity of
finite-energy solutions for the following reason. By the energy estimates (see Section[5.4)), the
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regularity of the structure displacement # on €2, in the finite energy space is L (0,7, H' (Qb)),
which is not enough regularity to interpret the term

af Y -4,
D (1)

since the test function has regularity QZ e H 1(Qb) on the fized reference domain, due to the
corresponding finite energy regularity of 7). Hence, after changing variables, which adds an
extra factor of det(I + V#) arising from the Jacobian (which is only in LOO(O T L'(€)) in
two dimensions), there is not enough regularity to guarantee that this integral is finite.
Therefore, we cannot interpret the above notion of weak solution properly in the space
of finite energy solutions, as the finite energy space does not have enough regularity to make
sense of certain integrals in the weak formulation, involving the deformed domain €2,(t).

5.4 Regularized weak solution

We note that all of these mathematical challenges, which are related to the inability to
properly interpret all of the terms in the weak solution, arise fundamentally from the lack
of regularity of i on (). Therefore, we modify our weak formulation appropriately to give
7) more regularity, by convolving with a smooth compactly supported function with support
on the order of §. This allows us to develop an appropriate reqularized weak formulation of
the original FPSI problem. To show that the weak solutions we construct to the regularized
problem are physically relevant, we show that as 6 — 0, given a sufficiently smooth classical
solution to the original FPSI problem, the weak solutions to the regularized problem will
converge to this classical solution as 6 — 0. See Section

Therefore, we will define a regularized version of the structure displacement, 'f75, which
is spatially smooth. We do this by convolution with a smooth compactly supported func-
tion. However, because we are working on a bounded domain Qg” we must be careful to do
this convolution in a way that preserves the Dirichlet condition on the left, top, and right
boundaries of €.

To do this, we define an extended domain €, as follows. Recalling that the reference
configuration of the Biot domain is given by €, = (0, L) x (0, R), we define

Qp = [-L,2L] x [-R, 2R].

Assuming that § < min(L, R), then the convolution of a function on (), with a smooth
function of compact support in the closed ball of radius ¢ gives a function defined on .

We must extend the function 7 on Q) to the larger domain €, in such a way so that
the resulting spatial convolution has the desired properties. To do this, we will use an odd
extension along the lines * = 0, £ = L, y = 0 and y = R. Thus, we will introduce the
following definition.



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 215

Definition 5.4.1. Given 7) defined on o satisfying 7 =0 on 2 =0, % = L, and §y = R and
n = we, on § = 0, we define the odd extension of 7} to 2, by keeping 7 the same on
[0, L] x [0, R] and defining 7 outside of the closure of €, as follows:

[0, L] x [~ 0], set 71, §) = &(2)e, + (@(2)e, — id, —))
2. On [0, L] x [R,2R], set n(Z,y) = —N(z,2R — g).

3. On [-L,0] x [-R,2R], set n(z,9) = —N(—2, 7).

4. On [L,2L] x [-R,2R], set (&,9) = —N(2L — &, ).

1. On [0

Let o be a radially symmetric function on R? with compact support in the closed ball of

radius one, with the property that J o =1. Let
RQ

o5 =0%0(6'x), on R?.

We regularize in space, and define

'fl = ’f’ * 0y, on Qb: (530)
and we note that these regularized functions are spatially smooth on the closure of Q. We
define

)

&, =1d+7’, (5.31)

and we define the regularized moving Biot domain by
nd A
Q1) = &, (). (5.32)

Note that even though the kinematic coupling condition holds for 7 in the sense that n|s =
wey, it is not necessarily true that ﬁ5\f = we,. Therefore, we will also define the moving
interface by
R
(t) = &, (I).

Alternatively, 7 is the plate interface if it were displaced from the reference configuration
[ in the direction i \F, which is a purely transverse y displacement, as one can verify.

Note that by the way we extended #) to the larger domain €, before doing the spatial
convolution, we have that

on JQ\I'.

With these regularized versions of the Biot structure displacement and velocity, we now
define the notion of a reqularized weak solution with reqularization parameter § to the non-
linearly coupled FPSI problem. We start by defining the solution and test space, which
are motivated by the energy estimates in Section [5.4] and then we state the regularized
weak formulation. We will formulate the solution space, test space, and regularized weak
formulation for both the moving fluid domain and the fixed reference fluid domain.



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 216

Definition 5.4.2. (Solution and test space)
o Fluid function space (moving domain).

Vi(t) = {u = (uz,uy) € H'(Q(t)): V-u=0, and u =0 when 2 = 0,z = L,y = —R},
(5.33)

Vi = L7(0,T5 L*(Q4(1)) 0 L*(0,T5 Vi (t)). (5.34)
e Fluid function space (fixed domain).

VE = {@ = (ty,a,) € H'(Q) : V4 -2 =0, and @ = 0 when # = 0,4 = L,§ = —R},

A (5.35)
V¢ = L*(0,T; L*(Qy)) n L*(0,T; V). (5.36)

e Plate function space.
V, = Wh(0,T; L*(T)) n L*(0,T; H3(T)). (5.37)

e Biot displacement function space.

Vy= {71 = () € H (W) : =0 for & = 0,4 = L,j = R, and 7}, = 0 on T},

Vo = W20, T3 L()) 0 L7 (0,75 V) ~ H'(0,T: Vo). E?:iﬁ;
e Biot pore pressure function space.
V,={pe H' () :p=0for & =0,z = L,j = R}, (5.40)
Q, = L™(0,T; L*(Cy)) n L*(0,T: V). (5.41)
e Weak solution space (moving domain).
Vil = {(w,0,7,p) € Vy x Vy x V) x Q1 ) = e, on T'}. (5.42)
o Weak solution space (fized domain,).
Ve = {(4,&,7,p) € Vi x Vo x Vy x Q1 ) = e, on '}, (5.43)

e Test space (moving domain).
Viest = {(v, 4, %,7) € CH([0,T); Vy(t) x Hy(T') x Va x V) : 9 = e, on I'}. (5.44)

o Test space (fixred domain).

Vig = {(®,4,9,7) e CH[0,T); VP x HI(L) x Vyx V) :1p = pe, on I'}. (5.45)
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Remark 5.4.1. Because I is one dimensional, for plate displacements w € V,,, we have that
we C(0,T;CHT)) and hence, there is a one-to-one correspondence between functions in Vi
and V¢, and functions i in Viest and Vii;, given by composition with the ALE mapping ((5.21))

for the fluid domain, & I X 5 — §Q(t), for the component involving fluid velocities.

est)

We now state the regularized weak formulation in the moving domain formulation. We
note that the regularization that we have used in regularizing the Biot domain is minimal, in
the sense that it only affects four terms in the weak formulation, and we use the regularization
in only the terms in which it is strictly necessary. In the following statement of the regularized
weak formulation, we recall the definition (5.28)) of the plate velocity f )

Definition 5.4.3. (Weak solution to the regularized problem, moving fluid domain for-
mulation) An ordered four-tuple (w,w,7,p) € Vo is a weak solution to the regularized
nonlinearly coupled FPSI problem with regularization parameter § if for every test function

('U, @7 ’{ba 7:) € Vtesta

—jj u-atvﬁﬁﬂf [((u-V)u)~v—<<u-v>v>-u]+§ffp(t)m-n—zcey-n)uv
+2VJ Qf(t)D JJ (Iu!2—p> (wn—vn)JrﬁJTJ (Cey—u) T(¢Yp—v)T
f J@tw atgo+f JAw Ap — pbf me at¢+2uef QbD : D(v))

+>\f Lb )V - 1) +2MUJ . D(0h) : D(¥) + A, J va o) (V - )

-« pV - 1,/)—00 P &tr—oz —77 Vr —« (Ce, - no)r
S0 o SORL )
+ KJU o Vp-Vr— f J (u—Cey) -n)r

w000+ g, [ 000)- 000+ 1 [ 200 D(0) 4o [ 50)-5(0), (5.0
(0 )

Qb Qp

where g—i =44 (&° - V) with & = 0,m° is the material derivative with respect to the
regularized displacement, m denotes the upward pointing normal vector to I'(t), and n’
denotes the upward pointing normal vector to I'°(t).

Remark 5.4.2 (Remark on notation in the weak formulation). We will omit explicit mention
of function compositions with the mappings ®; and <I>2 (defined in and ), and
their inverses throughout the chapter, as the function compositions needed will be clear from
the context. In particular, we follow this convention in the weak formulation above. For
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example, since the pore pressure p and the test function 4 are defined on the reference

domain €2, the integral
T
o | 9w
0 Jaj)

- LT Lg(t) (ﬁo ((I)Zé)_1> v <¢ : ((I)Zé)_1> '

As another example, the integral

Nl (e

), Joy (= (Cot@n)es) m) ooy,

Our goal will be to reformulate the definition of a regularized weak solution on the fixed
reference domain. In particular, we will need to handle any integrals dealing with time-
dependent domains by using a change of variables. We recall the factors that appear upon
using a change of variables to the reference domain for the fluid, the Biot medium, and the
moving interface, which are given by jf , jb", and jf" respectively in , , and
(5.18]).

We handle the terms in (5.46)) as follows. For the first term, we use the formula for the
transformation of time derivatives, given by (5.24) and (5.25). Furthermore, we assume that
| < R so that there is no domain degeneracy. Using (5.24) and (5.23)), we then have that

w w R
'u,~(9v=f <1+—>'&‘8®—f <1+—>'&~ w - V)
Lf(t) ' 0 R ' Q R A 7)ol

w\ . .1 . A A
= J (1 + E) u - O — = 0 w-[(R+79)0wigo]

Q

means

means

w\ . . 1 . U 1 NP
—JQ <1+}—%>u‘8tv—ﬁ qu-[(R—i—y)&tw@g’v]—i—ﬁJ (G)u - v

P S (U
by Qf[(R + §)0rwdgt] - v — 5 L(u D)0
w\ . .1 w G Ay Gy ey n
:L (1+E>u-§tv—§L <1+E) [(w-V$)v) - a— ((w-Vi)a) - 0]
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where we integrated by parts in the ¢ direction. Recall that w is defined by (5.24). We also
note that the final term in (5.47) will combine with the following term in ([5.46):

LT F(t)(Cey ‘n)u-v = LTJF@ D). (5.48)

1
This is clear, once we observe that the normal vector to the interface is n = —(—0d;w, 1),
w

r
and Cey|r) = dwoe,, which establishes the equality (5.48)). Because the transformation from

I'(t) to T' cancels out the factor of J¢ in the unit normal vector, it will be useful to define
the following renormalized normal and tangent vectors:

We will similarly define

)

n = (=0 (7°|p), 1). (5.50)
We can now define a weak solution to the regularized problem on the fixed reference domain
as follows, where we recall that we use the variable ¢ to denote the plate velocity on I', see
(5.28]).

Definition 5.4.4. (Weak solution to the regularized problem, fixed fluid domain formula-
tion) An ordered four-tuple (u,w, 7, p) € V¥, is a weak solution to the reqularized nonlmearly
coupled FPSI problem with reqularization parameter § if for all test functions (v, @, zb, ) €
Vi, the following equality holds:

_LTLf <1+%)a.at@+%ff@f <1+£)[((fa—w)-@;zra)-ﬁ—((ﬁ—@)-@‘;ﬁ).a]
N e W NIt
+f f(% —p)w—v v fﬁey—u S — )7

T
o[ [ oeaps f [ pbf f 8- 0 + 21, f D) : D)
0 JI Q O

~ ~ ~

o[ <©-ma¢¢:+m%f D) D *AJ‘L%V o) (V)

0 J
T
—ozf jb pV" % —cof J D &tr—ozf Jb (9,517 V"
0 Qp 0 JOy
T
—ozj (e, A’ r+ﬁf VA VZp V"T—J J o — Cey) - )P
Q

0

w000+ g, [ 0000)- 200+ 1 [ 200 D(0) 4o [ 50)-5(0). (550
Q5(0 )

Qp Qp
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We list the definitions of all of the relevant expressions below.

- R+4.. . (R + 1)0:0 R i (0§ 8§ NN
=Y, @ — (05 — 05, o), Vig=|== ) I+Vh
w ey ! < R+o PR+a? b 9=\ 02 05 ( )

1)

ne = (—0:w, 1), 7= (1,0:0), Y = (=0:(7’]:), 1),

T’ =det(I+VR)),  J¢=+/1+ |08

Formal energy inequality

In this subsection, we show that our regularization is defined in a way that preserves the
variational structure of the problem. More precisely, we formally prove that a weak solution
to the regularized problem satisfies an energy inequality. To do this, we recall the regularized
weak formulation defined on the fixed reference domain and we formally substitute

(@7 (;57 /’:ba ’ﬁ) = (’CI;, éa atﬁvﬁ)
in for the test function. We verify that
1 ~ = AW~ L. ~ w ~ = A0 A
5 @ cepnap s [ (Gl - 5) (Cey—a) - | (@-ey)-aip -0
2 Jr r\2 r
Furthermore, by integration by parts, we have that

a( IV am+ | G am v p+j<éey-ﬁ“‘5>ﬁ)
Qp

=a<f pv'£+f s-Vp+f (cey-n%p):o,
Qo (t) Q1) o(t)

O

b

where we recall that n’ is the upward pointing unit normal vector to I'’(¢). Finally, by the
Reynold’s transport theorem, we have that

’ L 2 _ 1 2 1 2
u~§tu+§ (Cey-n)ul* = 3 |u| ~3 lu|”.
o Jasw o Jre Q,(1) 2;(0)

We then obtain the final energy estimate:

;Lfm |u(T)2+2VLTJm(t) rD(u)PwJOTL(t) |(£—’“>‘T|2+1Ppﬁ |‘9t°°(T>|2+fA Ab(T)?
*ipbfg |9t’7<T>|2+2uefQ [D(@)(T)[? + 2\ f V7 +2va L

o [ 9w g [ R [ Jogio ¥ = 3 ], 1O +2ppf|atw< i

# [ IBSO + Jon [ @AOF + 2 [ ID@OF 20 | 1950 + 5eo | 1O

Qp Qp
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5.5 The existence result and splitting scheme

To show the existence of a weak solution to the regularized problem, we use a constructive
existence proof, which involves a splitting scheme. This is an approach that has been used
for constructive existence of weak solutions for a large variety of FSI problems, see for
example [140]. The goal of this section is to define the splitting scheme, which consists of
two subproblems: one for the fluid/Biot medium, and one for the plate.

An important notational convention. For notational simplicity, we will no longer
distinguish between functions on the reference domain and functions on the physical domain,
as we have in previous sections. Specifically, we will no longer use the “hat” notation
to distinguish between functions and domains in the physical or reference configuration:
for example, we will denote both the pore pressure p on ,(¢) and p on O by p, as the
distinction between these two will be clear from context. In addition, we will remove the
“hat” convention from the reference domains, and for example, we will denote the reference
domain Qb for the Biot medium by £2,. We will follow this notational convention for the rest
of the manuscript.

We now state the main result.

Theorem 5.5.1. Let p., Ac > 0, and let p,, A\, both be positive or both be zero. Consider
initial data for the plate displacement wy € HE(T'), plate velocity ¢y € L*(T'), Biot displace-
ment 1, € H'(Q), Biot velocity &, € L*(%), Biot pore pressure py € L2(£), and fluid
velocity ug € H'(Q24(0)), where ug is divergence-free. Suppose further that |wo| < Ry < R
for some Ry and my|r = woe,, and for some arbitrary but fixed regularization parameter
§ > 0, suppose that Id + (n,)° is an invertible map with det(I + V(n,)°) > 0. Then,
there exists a weak solution (u,w,n,p) to the regularized FPSI problem with regularization
parameter 4 on some time interval [0, T, for some T > 0.

Remark 5.5.1. The result above is a local result, since it holds up to some time T" > 0,
which will need to be sufficiently small, as seen in the proof. However, it is easy to show
that this 7" > 0 can be made to be maximal, in the sense that it is either infinite or it is
the finite time at which Id + (n,)° fails to be invertible, or | (T, £)| = R for some # € [0, L]
so that the plate collides with either the top or bottom boundary of the domain. This will
not be the focus of the current work, as this is done by a standard method. See for example
pg. 397-398 of [42] or the proof of Theorem 7.1 in [140].

We now define the splitting scheme. We will semi-discretize the problem in time with
time step At = T'/N, and we will keep track of the fluid velocity, plate displacement and
velocity, and Biot poroviscoelastic material displacement and pressure. We will denote these
by o

(u?i,w?i,C]T\L,+§7n1]1\,+§,pnN+§), forn=0,1,....,N and ¢ = 0, 1.
Note that the plate displacement offvﬁ and the plate velocity C;\L,Jri are scalars, because we
are assuming that the plate displaces in only the transverse y direction. For the splitting
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scheme, we will work on the fixed reference domain and hence, we will semi-discretize the
regularized weak formulation ([5.51]) on the fixed reference domain. We will use the backwards
Euler discretization to approximate time derivatives, and we will use the following shorthand

notation:

) n+7—1
f'n+é _ f fN
N At

Before stating the splitting scheme, we remark that the existence result above holds for
both the purely poroelastic case and the poroviscoelastic case. In the poroviscoelastic case
where 11, and )\, are both strictly positive, we remark that € € L?(0,T; H'(€))) and hence
we can interpret the trace of £ along I' as the plate velocity ¢. While this is no longer
true in the purely poroelastic case pu, = \, = 0, where £ is only in L*(0,T; L*(€%)), the
constructive existence proof via splitting scheme still works since the time discretized Biot

velocity T"” still retains H'(€) regularity due to the time discretization, and hence
it can still be used as a test function in the weak formulation for the Biot subproblem.
Thus, we can get discrete energy estimates as usual and the rest of the argument works. We
remark that we will carry out the constructive existence proof in the specific case of a Biot
poroviscoelastic medium but we emphasize that the techniques that follow will generalize to
the purely poroelastic case as well.

The plate subproblem. For the plate subproblem, we will update only the plate
displacement and velocity, to obtain the updated time-dependent domains to be used for the

fluid/Biot subproblem in the next time step. Therefore,
n+3 n+s3 n+3
U Ny : :‘URM nAI2 ::nRh pN'2 ::p%a

1
and we will update w) N "2 and Cr N . We write the structure subproblem in the following weak

1 1
formulation: find wy * € H2(T) and Cy 2 € H2(T), such that

n+
L(WN A ) |Gt torangerm, (5.52)
ppf (CN At CN) '%0+J Aup'? Ap=0,  forall pe H(D). (5.53)
r I

1
When n = 0, we set wy? = w(0) and ¢} = ¢(0). In particular, w(0)e, = n(0)|r and
¢(0)e, = £(0).
We must show that this subproblem written in weak formulation has a unique solution.
To see this, we use the fact that
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1
so that we must find w]T\L,JrQ € HZ(T') such that the following is satisfied in weak formulation:

o[ e (A07 | A Ap =g, [T @OR)p torall pe HAD)
I N I

We consider the bilinear form

Blw, ¢] =ppf

r

w-(p—i—(At)QJAw-Ago.

r

It is clear that this bilinear form is coercive on H3(T). In addition,
o — ppf (wr 7 + (A0 -
r

nol
is a continuous linear functional on HZ(T'), since we will have wy, 2 € HZ(T') and (% € L*(T)
by the way our splitting scheme is defined. So this guarantees the existence of a unique

n 1 .
solution wy ? € H2(T') by the Lax-Milgram theorem. We then recover

1 1
n+3 n—s

2
nty Wy T — Wy 2
= —= e H3(T).
N At 0()
n+% nfl

1 _ 2
To obtain an energy inequality, we then substitute ¢ = §]7\L,+2 = v e H3(T) and
use the identity

1
(a=b)-a=3(af* +]a = b = o).
We obtain the following energy equality:

1

1 ntt 1 ntx n 1 nt 1 n+2 n—1
360 | I g [ 1G7E = 5 [ 18w+ 5 | IAGETE - o
T T T T
Lot ! 1
o N e B CER
r r

The fluid and Biot subproblem. For the fluid and Biot subproblem, we update the
quantities related to the fluid and the Biot medium. Due to the kinematic coupling between
the Biot medium displacement and the plate displacement, we must also update the plate
velocity, as the dynamics of the Biot medium hence affect the kinematics of the plate via the
continuity of displacements. In this step, we will not update the plate displacement, so that

We will use w}; calculated from the previous step for the ALE mapping for the fluid.
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The weak formulation of the fluid and Biot subproblem reads as follows. First, we define
the solution space as

Vit = {(u, B,m,p) € ViV x HA(T) x Vg x V,}, (5.55)
and the test space as
Qi = {(v, ., 1) € V/N x Hg(r) x Vi x Vp :4p = pe, on '}, (5.56)
where Vi, Vg, and V,, are defined as in - , and

The weak formulation of the fluid/Biot subproblem is: ﬁnd (wyt et it pt) e

Vit defined on the reference domain, such that for all test functlons ( .)€ Qutt
defined on the reference domain, the following holds:

wn
1-i-N>u"+1 v
1 Wi " n+2R+y W n nti R+y W' "
w3 J, () [ -6 e ) vt o= (-6 e ) w70 s

1 n+i n 1 n n+1 wh n
+ﬁ C 2 +1 U+§L(UN+1 Ny ) - nEN (uf - v)

n wn 1 n
+ QVJ <1 + O.g) Df (u’]i/:"l) : DfN(’U) + J <2u71i[+1 n pyli/j_l) (¢ —v) - nN
Qf r

ﬂ n n Wi Wi =R
+ J(WNH W) TR =) T | I Ly
Qp

I
nt+l n+%
o | (m)wzﬂe D) : D)+ A | (Veni (T )
r Qp Qp
n\& n\&
+2:uv 5 D( n+1) . D('I,b) + A, JQ (V n”;{/:‘rl)(v’l,b) 7O‘J‘Q jb(nN) pnN+1vl(;nN) w
n+l . n n\é8
+COJ PN PN, _ j(nN e V(nN T_QJ (it n @8y
Q At Qp T
b g et R (i) e =0, (557)
Qb T
and "
n J—
J <"7N "N) . Jg@“ey #,  forall e LX) (5.58)
T

Here, n“~ and n“¥)” are the renormalized normal vectors (—d,w?, 1) and (—d, ((m%)°Ir) , 1)
and 7%~ is the renormalized tangent vector (1, 0,w%).

We consider the scheme under the following two essential assumptions, which are
necessary for the scheme to successfully produce a numerical solution:

1. Assumption 1A: Boundedness of the plate displacement away from R. There exists
a positive constant R,,,, such that

\wN | Roaz < R, for all k=0,1,2,...,n—1and i = 0, 1. (5.59)
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2. Assumption 2A: Invertibility of the map from fized to moving Biot domain. The
map
Id+ (%) - Q% — ()% is invertible, (5.60)

where (Q,)%° is defined as the image of the reference Biot domain 2, under the map
Id + (n%)’.

We will show that the above subproblem and in weak formulation has a unique
solution, under these two assumptions 1A and 2A.

To do this, we first rewrite the weak formulation so that all of the functions on the n + 1
time step are on the left hand side while all other quantities are on the right hand side. In
addition, we can rewrite the variable (%" in terms of 0% and n"" by using (5.58):

(e, = U
At r
The resulting weak formulation does not involve a coercive bilinear form because of a mis-
match in scaling. However, we can recover a coercive structure when we transform the weak
formulation using the following rescaling of test functions:

v — (At)v, r — (At)r.
This scaling of the test functions is valid because if (v, p,1,v) € Q%! then the rescaled

test function satisfies ((At) v, @, 1, (At)~'r) € Q3! also. After performing this rescaling,
the weak formulation involves the following coercive and continuous bilinear form:

Blusv.msbpor] = (807 [ (1 " “W) -
f

R
AL (D05 o) () )
f F80° | (u= (207 n (g o)
(AL 5 (1+> R (v )+(At)2fr (;u-u?\,—p) (4 — (Ab)v) - nek
" ?%(A”QL“A” n—ul- T (g — (At >-rw”ﬁ+pbfﬂbn-w+ppfrn-w
+ (2e(A7 + 20(80) | D(m): D) + (e (A1) + (A1) ng(v (V)

n\8 n\8 n\3 n\3
—aan? [ e g coan? | pr-a(an? [ g0 o
b b b

n n\6 n\8 n\8
Oé(At)2J (n-n(“N)é)r—l—ﬁ(At)?’ jb(ﬂzv) V[()’IN) p'V£nN) r
r [973

(AP j [(u— (At) ) - ¥
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The weak formulation is: find functions (ujt*, nitt, i) e V}u% x Vi x V,, such that for all

test functions (v,4,r) € V;JR’ x Vi x V,

Blu v, pt ] = (A)? fQ
f

L f - R (4 — (Atyw) - 1 gy f @ — %) -+ py j (0 + (AN Eey) - ap
jFN r Q r

20,(A0) | D) D) + A0 jQ (V13 (V - 1p)

n 1 n
<1 + “}g) u v — Q(At)2f 0y - neN (uly - v)
T

n\0 n \é n n
+co(At)2J por—a(At)? jb(nN) n?v'vl()nN) r—a(At)QJ (n},-n(”N)é)r—i-(AtyJ (N m“N)r.
o o r r
(5.61)

We verify that the bilinear form Blu,v,n, 4, p,r] is coercive and continuous as a bilinear
form on the Hilbert space
ViV x Vg x Vp,

with the inner product given by

{u,m,p), (v,p,r)) = (u"v+Vu:Vv)+f

(77-1/)+V77:V1,/))+J (p-r+Vp-Vr).
Qf Qp

Qp

Proving that this bilinear form is continuous is standard, so we focus on establishing coer-
civity. To compute Blu,u,n,n,p, p], we note that by integration by parts,
<,,7 . n%)5> p=0.

n \o n \o n \é n \o
—Oé(At)Q J %(WN) pvl()njv) - C((At)Z ‘-717(771\7) n- vl()nN) p— Oé(At)Q J
Qp

o r

To do this, we bring the integrals back to the time-dependent physical domain, which we
can do as long as (n%)° is a bijection from €, to (€,)%°, which we are assuming in
Assumption 2A (5.60). We compute

—a(at? | Z v g~ a(At)? ) F 0 IR, (AL L (,7 . n(ww) »
b

Qp
= —a(At)? J pV-nJrf n-Vp+J (m-m)p| =0,
(913)7(7’(S (Qb)’;\z’(s e

N

by integration by parts, once we recall that m points outwards from €2y and hence inwards
towards €2, and also once we recall that n = 0 on the left, right, and top boundaries of

), by the Dirichlet boundary condition. Combining this with the fact that (AIS)CZ,Jr§ =
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1 n—1
wz;r? —wy 2 =W — W, we compute that
2 Wiy +wy' 2 3 Wy Wi 2
Qf Qf

# g 00 ] o @0w) w5 | g, | inf s G072 80 [ 1D

E (AN + Ay (AD) f

n\o n\d
IVl A f b+ w(A0* | g
b b

Qp

We must show that the symmetrized gradient can be expressed in terms of the usual
gradient. It is well-known that one can do this for the fluid, and one even has a Korn
equality in this case. However, this is not immediate for the Biot material. We thus prove
the following explicit Korn inequality for the Biot domain.

Proposition 5.5.1 (Korn inequality for the Biot poroviscoelastic domain). For all n € Vj,

1
ML T
Q Q

Proof. By a standard approximation argument, it suffices to assume that n is smooth. Be-
cause 1, = 0 on I and because 7 = 0 on the left, top, and right boundaries of €2, we have
from integration by parts, that

f 5%%:_J ; o*ny :J 1. 01y
a, 0y Oz a, | 0xdy Jq, 0z dy

Therefore,
n\*  (m\® 1 on,\’
Dim? — Oty 1 y
JQb| (@) Jﬂb(a$> +(0?J) +2 0y +(71:
_J N P S TP AT P W L
B Q, \ O oy 2 oy ox oy ox
o \* | omalny | (om\' 1|\ (on\7] 1 2
= _ J—— _ — —Z > —
Lb (61’) * ox Oy * Yy * 2 oy * or QLb Vol

by using the inequality a? 4 2ab + b* > 0. n

We then deduce coercivity from the fact that \wjli,+%| < R (see Assumption 1A in (5.59))
and the preceding Korn inequality, once we handle the last term and show that

n \6 n \o
/i(At)?’ \71)(7]]\]) |vl()771\7) p|2 > CJ |vp|2’
Qp Qp
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for some positive constant ¢ > 0. Recall from (5.27) and ((5.26]) that
n \d n\é
G = det(T+ V0R)), =V (T4 V)

Therefore, letting | - | denote the matrix norm, we have that

n\d n \d
w(an? | TR I 2 > (AL ) TN+ V()2 Vpl. (5.62)
b b

We recall from Assumption 2A (5.60) that I + (m 7Y% is an invertible map from €, to ()%,
and note that \I + V(n%)?| is continuous on €, and hence is bounded from above. Thus,
1T+ V(n%)°|72 = ¢y > 0 for some positive constant co. The assumption that I + (g%)° i
invertible nnphes that det(I+V(n%)?) > 0. However, since this determinant is a contlnuous
function on the compact set €, we conclude that there exists a positive constant ¢; > 0
such that det(I + V(n%)°) = ¢; > 0. This establishes coercivity.

We obtain the existence of a unique solution (u', ni™, pit!) e V}U?V x Vg x V, to the

weak formulation (5.61]) from the Lax-Milgram lemma. We recover (5™, by using C}t,“ey

n+l _ ..n n+l _ ..n
% . Note that we have that W
r r

trace of any function i € V; on I' points in the y direction by definition (see (5.38)).
Energy equality: For the fluid and Biot subproblem, we substitute v = u%™, p = (&,

P =ny" and r = pitt and we use the identity

points in the y direction, because the

1
(a=b)-a=Z(laf +]a = b = o).

We will substitute this test function into the original form of the weak formulation ([5.57)),

. . . . n+1 n+% n+% n+% n .
without the time scaling. Since wi™ = wy ? and (At)(y > = wy 2 — Wy, we obtain the

following energy equality for the fluid subproblem:

[, (1 S e g [ b Geo [ [ DGR G 19
Qf Q Qb Qb

n\6 n\6
T f P 4 200, (AY) j DT + A (A1) f IV -5 + (A j T | (i’ e 2

Qp Q Qy

At

f| oy ) TSR S [ R e | IR R | 1D = P
Qp Qp 943

n n 1 -1 1 n n
-— j vt =P =g [ (0 o [ R S [ kP [ D0
2 ), 2 Jo, R 2 o, 2 )., o

1 n 1 n+i
+5Aef |V~nN|2+§ppf IKv 2P
Qp T

2

Note that the following terms cancel out, by bringing the integrals back to the time-
dependent domain and integrating by parts, recalling that the normal vector points inward
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towards the Biot domain.
— af j(nz\r n+1v m3)° SLVJFI a ~7bnN 7V+1 V (7 p%-i-l f (nfji;rl (WN)6> pﬁ,“
Qp

_ _af n+1(v nn+1) J n+1 vpn+1 O‘f (nrjif+1 )p?ﬁl = 0.
)y %)y NN

N

The semidiscrete problem. We express the entire scheme in the following weak
semidiscrete formulation. The following equality holds for all test functions (v, p, 1, 7) €

nH where Q! is defined by (5.56)).

w?f sn+1
u -V
J,, ()
1 w n n+2R+y Wi u” n+s R+y Wi n
O (e e R R (G A R R

1 n 1 -n wh n
o Jy, v g [ R e v

n o 1 .
+ 21/‘[ <1 + c«g) DfN(u;{,'H) : DU;N('U) + J <2u§(,+1 Suly p;ifi_l) (Y —v) -n“~
Qf T

ﬁ n+1 TL+1 W" W” J- n?V+1 - 1:’7]%
+ij5@ My —ul™ ) TV (Y —v) - TV +py o A7 Y
n+l n
“’pfr (N At )9"+2Mef D( "“>.D(¢>+Aefg (V-ni™)(V-9)
b
e T nye
2, | DGR D), f e A Rl I At
n+1 - n n\s
+COJQ 7])]\[ —aL ("N At v i) 57‘—04J (T @Ry
b b
T IR A /L Ea R R f [y =0y - V] + J Awh'E - Ap =0, (5.63)
Qp T
| N ch o [ () e fc;c“ey 6, forall 6, ¢ L3(T).
I I

(5.64)
Uniform energy estimates. Define the following discrete energy and discrete dissipa-
tion:

n+i 1 Wy n+i 1 .t i 1 n+i n+i
EN2=—f 14N |uN2|2+—pbj |nN2|2+—cof |pN2|2+uef D )P
2 Jo, R 2" Jo 2 " Jo Q

b b b

1 n+ti 1 n+ti 1 n+i
+—/\6J v 2|2+—ppf 1o 2|2+-f AT (5.65)
2 Q 2 T 2 I
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W w n n n
Dt = 2u(At) L (1 + g) (DfN N“)‘ + 2p, (Al) JQ ID@%2 + A (AL L IV -t
f
H,(At) %(n%)ﬁvl()m%) n+1 2
Qp

n+1 ur]{[Jrl w]’{,| ) (566)

We then have the following energy equahty.
2

1
Eve g 5P — E} (5.67)

J‘A n+7_WN )

A 1 2, 1 . .
(1 T %) uit — UnN‘2+§PbJ ‘nnﬂ — ’I'IN’Q—FEC()J ! pr

n n\|2 n n n+ 5 n %
+ueJ |D(ny —n)| +—Aef V- (i =)+ ppJ Gt — ¢y PP = By
Q N
(5.68)

The remaining terms not included in the definition of the discrete energy and discrete dissi-
pation are numerical dissipation terms.

N

These discrete energy estimates immediately imply that EX,JF% for n+ =0,%,1,2 N—

ORI R IR
%, N and 25:1 D7}, are uniformly bounded by a constant C independent of n and N.

5.6 Approximate solutions

Now that we have defined the numerical solutions at each time step, we collect the solutions
into approximate solutions defined on the whole time interval [0, T'], for which we will obtain
uniform estimates from our previous energy estimates.

We define the following piecewise constant approximate solutions

uN<t) = uxﬁ nN(t) = TIT](/: pN(t> = p?\h wN<t) = wzf_ga CN(t) = C]?[_§> C]ﬂif(t> = C]QL]?
for (n — 1)At <t < nAt.

To obtain an estimate on time derivatives for the compactness arguments, we also define
the following approximate solutions, which are linear interpolations of the following points:

1
Ny (nAt) = n'Y, Py (nAt) = pl, On(nAt) = wy 2, forn=0,1,...,N,

1
where we formally set wy*> = wy. Note that by construction, we have that

0N = (N, OMn|r = (vey.

From the preceding energy estimates, we have the following lemma on uniform bound-
edness.
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Lemma 5.6.1 (Uniform boundedness of approximate solutions). Consider the following
three assumptions:

1. Assumption 1B: Uniform boundedness of plate displacements. There exists a positive
constant R,,,, such that for all NV,

_1
lwy ?| < Rpmae < R, for all n = 0,1,..., N, (5.69)
|(n3)°Ir| < Rimae < R, for all n = 0,1, ..., N. (5.70)

2. Assumption 2B: Uniform invertibility of the ALE mapping (Jacobian). There exists
a positive constant ¢y such that for all N,

det(I + V(n7%)°) = ¢o > 0, on Q for all n = 0,1,..., N. (5.71)

3. Assumption 2C: Uniform boundedness of the ALE mapping (matriz norm). There
exists positive constants ¢; and ¢, such that for all NV,

(I +V () <e, 1T+ V()] < e, forallmn =0,1,...., N.  (5.72)

If these three assumptions hold, then we have the following uniform boundedness results for
all N:

e uy is uniformly bounded in L*(0,T; L*(y)) and L*(0,T; H'(2y)).
e 7y is uniformly bounded in L*(0,7T; H'(Q)).
e py is uniformly bounded in L*(0,7T; L*(€2)) and L*(0,T; H'()).
e wy is uniformly bounded in L*(0,T; H3(T)).

In addition, we have the following estimates on the linear interpolations.
e 7]y is uniformly bounded in W' (0, T; L*()).
e wy is uniformly bounded in W1*(0, T; L*(T)).

Remark 5.6.1 (A crucial remark about invertibility). At first, it would appear that to
show the uniform boundedness results above, we also need to have a fourth assumption,
which is Assumption 2A from before: that the map Id + (n%)° : Q, — R? is injective
(and is hence a bijection onto its image), for each n = 0,1, ..., N and for all N. However,
this is implied by an injectivity theorem (see Ciarlet [48] Theorem 5-5-2). Note also that
Assumption 1A from before is automatically satisfied once we verify Assumption 1B
(5.69).

In particular, this injectivity theorem is as follows. Since det(I + V(n%)°) > 0 by
Assumption 2B (5.71), it suffices to show that Id + (%)’ = ¢, on 0§, for some injective
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mapping ¢, from €, — R2. Furthermore, this would imply the very useful fact that (Id +
(M52 (%) = (), so that the deformed configuration is fully determined by the behavior
on the boundary.

To construct the mapping ¢, we use a standard ALE mapping. Because (1)’ = we,
on I' for some function w with |w| < Ryee < R (by Assumption 1B (5.69)) and w = 0 on
oT, with (n'%)° satisfying Dirichlet boundary conditions on all other parts of the boundary
0, we can define the following injective mapping ¢, satisfying the necessary conditions on

O = (0, L) x (0, R):
polz,1) = <a:,y + <1 - %) w) .

Note also that w, which is the trace of (n%)° on I, is a continuous function. We observe
that this map ¢, is an injective map. Thus, we conclude that Id + (n%)° is injective for all
n=0,1,...,N and for all N, if Assumptions 1B and 2B, given by ([5.69)), (5.70)), (5.71)), hold.

Proof. This result follows from the uniform energy estimates. To establish the uniform
boundedness of uy in L*(0,T; L*(Q)), we use Assumption 1B (5.69). To establish the
uniform boundedness of uy in L*(0,T; H'(§2)), we use Korn’s inequality on the fluid do-
main. To establish the uniform boundedness of n, in L*(0,T; H*(£,)), we combine the
uniform energy estimates with Korn’s inequality, stated in Proposition [5.5.1, To establish
the uniform boundedness of py in L*(0,T; H'(Q)), we recall that by the uniform dissipation
estimate,

N
Z K(At) %UN |V (n7%)° n+1|2 < C,
n=1

for some constant C' uniform in N, Where

TR det(I + V(n)?),

and
() n &y —1
V, N r=Vr-(I+V(ny)) on 2.

By Assumption 2B ([5.71)), we conclude that

N
n \o
@03 [ v <
n=1 b

Since on €2, we have that Vpi'! = V((,nN) PHL(T+V(n%)?), we use the fact from Assumption
2C (5.72)) that [I + V(n7)°] < ¢ to obtam the estimate

N
(At)ZL IVp 12 < |T+V(n (At) ZJ |v,j7N PP < O,
n=1 b

for a constant C' independent of N, which gives the final estimate that py is uniformly
bounded in L*(0,T; H*(%)).
O
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We emphasize that later, we will have to establish that the three assumptions listed above
are in fact true, in order to use this uniform boundedness result. Using the above uniform
boundedness result, we can obtain the following weak convergences.

Proposition 5.6.1. Assuming that the three assumptions listed in Lemma [5.6.1| hold, we
conclude that along an appropriate subsequence, we have the following weak convergences
to limiting functions w, p, n, and w:

o uy — u weakly* in L®(0,T; L*(£2y)).

e uy — u weakly in L*(0,7; H'(Qy)).

e 1y — n weakly* in L®(0,T; H'(Q)).

o 7y — M weakly* in WH® (0, T; L*(€),)).

e py — p weakly* in L®(0,T; L*(%)).

e py — p weakly in L*(0,T; H*(%)).

e wy — w weakly* in L*(0,T; H(T)).

e Wy — w weakly* in Wh(0, T; L*(T)).
Furthermore, n =1 and w = w.

Because the uniform boundedness result requires the three assumptions listed in Lemma
[.6.1], we must verify that these assumptions hold. We note that these assumptions in Lemma
imply the assumptions needed for the splitting scheme to successfully go through, in
Assumptions 1A and 2A . This is because Assumptions 1B and 2B in Lemma
imply Assumption 2A that I + V(n%)° is invertible, by the previous discussion
in Remark [5.6.1]

So in particular, verifying these assumptions is essential for showing that our approximate
solutions can actually be constructed. We verify the assumptions in Lemma in the
lemma below.

Lemma 5.6.2. Suppose that the initial data satisfies |wg| < Ry < R for some Ry, and n,
has the property that Id + (n,)° is invertible with det(I + V(n,)°) > 0 on €, for some
positive constant c¢g. Then, there exists a sufficiently small time 7" > 0 such that for all N,
the splitting scheme successfully runs until time 7" and all three assumptions (Assumptions
1B, 2B, and 2C) in Lemma [5.6.1] hold.

Proof. Consider T' > 0 sufficiently small that we will choose later in the proof. It suffices to
show that the three assumptions in Lemma hold, as this will ensure that the splitting
scheme will successfully go through.
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First, we note that the three assumptions clearly hold for n = 0, because w3 = wy and

n% = 1, for all N, and because of the assumptions on the initial data. In particular, there
exist constants ayg, oy, and ay such that

det(I + V(n,)°) = ap > 0, (5.73)

[T+ V ()= 01>0,  |[(T+V(n)")7" =0 >0. (5.74)
This is because det(I + V(n,)°), [T + V(n,)°|, and |(I + V(n,)°)~}| are positive continuous

functions on the compact set Q.

Next, we want to choose an appropriate time 7" such that the three assumptions hold
uniformly for all N and nAt up to time T'. To do this, we use the energy estimates. Define
the initial energy determined by the initial data by Fy. Recall the definition of the discretized
energy in ((5.65). Then, by the uniform energy estimates, we have that

1
EN:<E, EV'<E,
Therefore, after completing both subproblems of the scheme on the time step [kAt, (k+1)At],
we obtain that

Hn'r]ifHLQ(Qb) < C’ fOI' n = 07 17 ceey k + 17 (575)
1
ng—i_Q HH&(F) < C? for n = 07 17 "-)ky (576)
e 2oy <€, for0<n+ % <k+1 andi=01, (5.77)

for a constant C' depending only on the initial energy Ej.

Step 1. Let us first find a condition on T that will imply that Assumption 1B ([5.69))
and will hold up to time T, if the splitting scheme runs until time 7. Suppose that
the linear interpolation Wy is defined up to time (k + 1)At¢. Then, by and , it
satisfies

[@nllwreominasceay < C, 0N eo,kenasmz@) < C, (5.78)

where C' depends only on Ej and is independent of N. Thus, following the method in [140],
we obtain by an interpolation inequality that for all t,t + 7 € [0, (k + 1)At] with 7 > 0,

[@x(t+7) = D)l ey < Clan(t + ) — Dy )] o Bx E+7) = Dn O[3 (5.79)

Here, we used a Sobolev interpolation inequality, see for example Theorem 4.17 (pg. 79) of
[1]. By the Lipschitz continuity of Wy taking values in L*(T") and the boundedness of Wy in
HE(T),

[&n (t +7) = Tn (Ol < C- 712 (5.80)

for a constant C' depending only on FEy (and in particular, not depending on k or N).
Therefore, setting ¢ = 0 and 7 = (k + 1)At and using the continuous embedding of H'(T)
into C(I),

||wh T — wollem < C - [(k + N2 < -T2, (5.81)
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where C' depends only Ey. Because |wy| < R, we can choose T' > 0 sufficiently small so that
C-T? < R —||wollem. (5.82)

This will give the first part of Assumption 1B, which is ([5.69)).
Step 2. Next, we show the remaining assumptions by controlling the behavior of the
structure displacement 7. To do this, note that

k+1

— Mol < (A8) Y 10|12, < C(k + 1)(At) < CT,

n=1

k+1

nN

for C' depending only on Ejy. So by the odd extension defined in Definition [5.4.1

k+1 k+1

- WOHLZ(F)) < (T,

— Mollzz(,) S N = ol + Wy
I = mol] C (|ln

for a constant C' depending only on Ey, where the estimate [|wk™ — wol|r2r) < OT follows
from the bound ([5.78). By regularization, we then have that for a constant depending only
on ¢ and Fj,

1(n%™)" = (1)’ llmacqyy < C(6, Eo) - T

By using the trace theorem and the continuous embedding of H?(T') into C(T"), we thus
conclude that

%) e = (o)’ Ielleq) < C(6, Eo) - T (5.83)
Since H?(£2) embeds continuously into C'(£2,), we also have that

V™)’ = V(o) lleq, < C 6, Eo) - T. (5.84)

Note that det(I + A) is a continuous function of the entries of A. Also note that the
matrix norms [T+ A| and |(I+A)™!| are continuous functions of the matrix A. Furthermore,
we emphasize that the constant C'(d, Ey) depends only on § and Ej and hence is independent
of k and N. This dependence on ¢ is allowable, since for this existence proof, J is an arbitrary
but fixed regularization parameter.

Thus, there exists T sufficiently small so that by and , the remaining as-
sumptions , , and are satisfied, since these assumptions are all satisfied for
the initial displacement 7. Furthermore, we can choose the constants ¢y, ¢, co, and R4z
(defined in the statement of those assumptions) independently of N and n = 0,1, ..., N, be-
cause of the fact that the constant C'(9, Fy) in our estimates does not depend on k (satisfying
(k+1)At <T)or N. O

5.7 Compactness arguments

We next want to pass to the limit in the semidiscrete formulation for the approximate
solutions, stated in (5.63|) and (5.64)). Because this is a nonlinear problem with geometric
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nonlinearities, we must obtain stronger convergence than just weak and weak™® convergence
in Proposition [5.6.1] in order to pass to the limit. To do this, we will use compactness
arguments of two types: the classical Aubin-Lions compactness theorem for functions defined
on fixed domains, and generalized Aubin-Lions compactness arguments for functions defined
on moving domains (using methods from [140], [136]). We will first deal with compactness
arguments for the plate displacement and the Biot domain displacement. Then, we will deal
with compactness arguments for the fluid velocity defined on moving domains.

Compactness for Biot poroelastic medium displacement

We begin with compactness arguments for the quantities associated with the Biot medium.
In particular, we will show strong convergence of the Biot structure displacements 77,,. Since
the Biot poroviscoelastic structure displacement is defined on the fixed domain 2, this will
be achieved by using a standard Aubin-Lions compactness argument. In particular, we have
the following strong convergence result for the Biot medium displacement:

Lemma 5.7.1. We have the following compact embedding:
W20, T; L*(%)) n L7(0,T; H' () =< C(0,T; L*(€)).
Hence, there exists a subsequence such that 77y — n strongly in C'(0,7T; L*()).

Proof. The compact embedding above is a direct consequence of the standard Aubin-Lions
compactness lemma [6} [129] in the case of p = o0, which gives a stronger compact embedding
into C(0,T; L?(£)) rather than just L®(0,T; L*(€%)). The fact that we can find a strongly
convergent subsequence follows from this compact embedding, once we recall that {7,}%_,
are uniformly bounded in the Banach space W' (0,T; L*(€%)) n L*(0,T; H'()) by the
uniform energy estimates. O]

Compactness for the plate displacement

Next, we show strong convergence of the approximate plate displacements wy. We have that
the linear interpolation 7, of the plate displacement is bounded in W1* (0, T; L*(T")) and
L*(0,T; H3(T)). We use this to establish the following convergence result.

Proposition 5.7.1. Given arbitrary 0 < s < 2, there exists a subsequence such that the
following strong convergences hold:

Wy —w,  inC0,T; H(I)),
WN — W, in L*(0,7; H*(T)).

Proof. For the linear interpolations wy, we have the uniform estimate for 7 > 0, t,t + 7 €
[0, 7], that
||wN(t + T) - wN(t)HHw(F) < CTl_a, for0<a< 1,
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where the constant C is independent of N (but can depend on the choice of ). This follows
from the same argument used in Step 1 of the proof of Lemma [5.6.2l Because the constant
C in the estimate above is independent of N, the estimate implies that for a given arbitrary
a € (0,1), the functions wy are uniformly bounded as functions in C%'=*(0, T; H**(T")).
Hence, the strong convergence of Wy follows directly from the Arzela-Ascoli theorem and
the fact that H?** embeds compactly into any H?*~¢ for € > 0, once we choose a € (0,1)
and € > 0 appropriately so that 2a — ¢ = s for a given arbitrary 0 < s < 2. Hence, we
obtain the desired strong convergence, as the equicontinuity condition for the Arzela-Ascoli
theorem follows from the above estimate.
To show a similar strong convergence result for wy, we must show that

[lon () = DN (O] 2= 01305 (r)) — 0,

for arbitrary 0 < s < 2. Once we observe that wy(nAt) = wy(t) for nAt <t < (n + 1)At,
this follows immediately from the above Holder continuity estimate, as

||wN(t) — wN(t)||Loo(07T;Hs(F)) < C(At)l_% — 0, as N — 0.

Thus, wy and Wy have the same limit in L*(0,7; H*(")) for 0 < s < 2.

Compactness arguments for the Biot velocity and plate velocity

Next, we will obtain compactness for the Biot velocity, plate velocity, pore pressure, and fluid
velocity. Because the test space has the pore pressure and fluid velocity decoupled
from the Biot/plate velocity, we can handle the compactness argument for each of these
quantities separately. In particular, we recall the definition of the discrete test space from
(5.56)):

oMt = {(v,p,9,7) € Vfw% x H3(T) x Vg x V, 11 = pe, on T'}.

We note that we can decouple this test space into three smaller test spaces, one for the
Biot/plate displacement/velocity, one for the pore pressure, and one for the fluid velocity.
In this section, we will start by obtaining compactness results for the Biot/plate velocity,
which must be treated together since they are coupled by a kinematic coupling condition at
the plate interface I'. We will show the following result:

Theorem 5.7.1. For —1/2 < s < 0, there exists a subsequence such that
(&n Cv) — (£,0) strongly in L*(0, T; H™*(Q) x H*(T)).

Proof. We will establish this result by using a compactness criterion for piecewise constant
functions due to Dreher and Jiingel [65]. To simplify arguments, we define a slightly more
regular Biot/plate velocity test space:

Q, = {(¢, ) € (Van H* () x HZ(T) : ¢p = e, on T'}. (5.85)
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We will use the following chain of embeddings
L*(Qy) x L*(T') cc H*() x H*([) < Q.,

where the first embedding is compact, in the Dreher-Jiingel compactness criterion [65].
Let 7ao; denote the time shift 7o, f(t,) = f(t — At,-) for a function f defined on [0, T].
We must verify that there exists a uniform constant C' such that for all At =T/N,

TAt(€N7 CN) - (51\77 CN>
At

+ 1€ ns Cv)lon0.7:22() < L2 (1)) < C- (5.86)
L1(7,T;Q%)

We have that (£, (y) is uniformly bounded in L*(0,T; L?(2) x L*(T")) by Lemma [5.6.1]
For the other term, we use the semidiscrete formulation. Because we are considering only
the Biot and plate velocities, we can set the test functions v and r for the fluid velocity and

Biot pore pressure to be zero. We obtain that for all test functions (¢, ¢) € Q,, where Q,
is defined in ([5.85)),

n+1_£ TL+1_C
prb< ~ N)-1/J+ppL< N N)-so
:—L<;U7fvﬂ uN p%—i-l) f 5 Cn—&-l n+1) (7,[) TwN)

—2u. | D) D(w) - A, f (v n"“)(v-w)—m D(&y") : D(¥)

Qp Qp Qp

n n n 1
- )\vf (V n+1)(v ’(/)) + %(HN)(SP%HV;(;?N)& . ¢ o J AwN+2 ) AQO
Q .

Qp
Consider an arbitrary [|(, ¢)||lg, < 1, so that ||][nz2(q,) < 1 and |[¢[|gzr) < 1. By the
uniform estimates in Lemma and the regularity of the test functions in ([5.85)), it is

clear that the terms on the right hand side are all uniformly bounded by a constant C|
independent of ||(1, ¢)||o, < 1, so that

H (€N, — (En, SR
At

< C, for a constant C' that is independent of n and N.

Q,

The only term that requires some care is the term

For this term, we recall that by definition,

TV = det(I +V)), VR = b [Vap- (1 4+ (m3)*) .
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By assumption 2C (5.72)) and the fact that ||||g1(q,) < 1, we have that ||V R)° || 2(q,) 18

n \o
uniformly bounded, while by the boundedness of n%; in H'(£2;), we have that ]jb(nN ) | < C.
Therefore, using the fact that py is uniformly bounded in L®(0,T; L?(€);)), we can estimate

n\o n \6
« %(WN) pnN+1vI()77N) ¢‘ < O

Qp
Since
N-1 n+1 n+1) _ (én Cn) N-1
(A EN L ON NooN <(Ay) Y c<CT
n= 1 At Q'v n=1
we conclude that | - ) holds for a uniform constant C'. This establishes the desired result.

]

Compactness arguments for the pore pressure
We show a similar compactness result for the Biot pore pressure in this section.

Theorem 5.7.2. There exists a subsequence such that
PN — D, strongly in L*(0,T; L*(£)).

We proceed using similar arguments based on the Dreher-Jiingel compactness criterion
for piecewise constant functions |65]. We observe that the approximate solutions for the
pore pressure satisfy the following weak formulation for all test functions r € V,,, where V,, is

defined by ([5.40)):

ntl 1K n ) n
COJ (pN ~ pN> P — %(UN nTJiT-H V(WN) r— aJ (,,'77]%4-1 . n(wN)a)T
Qp Qp

r
‘o j(nN) 77N)6p§bv+1 . vl()"?r)ér _ J [(ul — ) - n“N]r = 0. (5.87)
o r

Proof. By the Dreher-Jiingel compactness criterion [65], it suffices to show that for a constant
C independent of N,

HTAtPN —pN‘
At

since we have the chain of embeddings (V,, n H*())" << L?() < H'(Q). We use more
regularity for the test space Vj, n H*(€;) to make the following estimates simpler.
We compute that for any r € V,, n H*(£2,),

n+l . n n \6
COJ (pN ~ pN> = %nN T]{[+1 . vl(;nN) r+ O‘J‘ (CnJrl wN)‘S)T
Qp

5 n n
_ Hf (77N ”N) pR{+1 . vl(anN) r+ f [< n+1 §n+1 ) wN]T.
Qp r

LUALT(VynH2()Y) [l 220,01 () ( )
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n )&
We estimate the right hand side for ||7||v, ~g2(q,) < 1. Recall that jb(nN) = det(I+V(n%)°),

apxﬁl 5]97]?_1
or 0y

()8 or or n _ ()8
VbnN r = <5£, 5@) . (I"‘V(T]N)(S) 1, and VbnN p%—i_l = <

) (T +V(3))

We have by Assumption 2C (5.72)) that |(I + V(n%)?) | is uniformly bounded, and further-

n \é
more, Jb(nN " s positive and bounded above. Therefore, combining these facts with standard
estimates, we conclude that

Combining this with the fact that py is uniformly bounded in L?(0,T; H(€))), this gives
the desired estimate in ([5.88]). m

n+1 n
Pn  —Pn

Al < C, for a constant C' that is independent of n and V.

(Vo H2(2))’

Compactness arguments for the fluid velocity

We will obtain convergence of the fluid velocity along a subsequence, by using a generalized
Aubin-Lions compactness theorem for functions defined on moving domains. The reason
we must use a generalized Aubin-Lions compactness theorem is that the approximate fluid
velocities are defined on different time-dependent fluid domains. Thus, we need to introduce
a maximal domain that contains all of the possible moving fluid domains, extend the fluid
velocities to be defined on this maximal domain, and then apply a generalized form of the
Aubin-Lions compactness theorem for problems on moving domains. For these compactness
arguments, we can modify the argument found in [136] since we are still considering a moving
fluid domain with a boundary determined by the time-dependent configuration of an elastic
plate, with additional arguments which are needed to handle the unique form of the weak
formulation corresponding to this specific FPSI model.

We first recall the semidiscrete formulation in and rewrite it so that we can obtain
an equation for the fluid velocities defined on the physical domain, rather than the reference
domain. Since the fluid velocities are decoupled from the remaining physical quantities,
we can simplify the semidiscrete weak formulation by taking the fluid velocity test
function to be the only nonzero test function. Our arguments will require us to consider the
physical fluid domain Q7  rather than the fixed reference fluid domain €2y, where we define

in={(z,9) eR*:0< 2 < L,—R <y <wy(z)}.
We redefine the fluid velocity solution space and test space as follows:
Vit ={ue H' () : V-u=0o0n Qf y,u =0 on oQ} y\I'y}. (5.89)

Y=Vttt a HY( FN) (5.90)
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We then obtain the following semidiscrete formulation on the physical fluid domain: the

approximate fluid velocities u' € V! satisfy the following equality for all test functions

v e Q)

un+1_un
NNy D(ut) : D(v)
At N
% 0%

1 - nti R+y 1 - nts R+y 1
+2J?N [<<UN—CN 2R+w}{,ey> -Vu}z\;r SV — uy — Cy 2R+w}(,ey - Vo -u}(;’
1 R +1 1 . -

*om |y, mragoy g [ R i ma v

1
(Gt a8 G ) roem) <0 (591
N

n
N

where we recall that w}; is originally defined on the domain Q?}Vl, and hence we define

n—1 n
@y o 8 o (@5,

where the ALE map @4V : Q; — Q7  is defined by (5.21).

Extension to maximal domain

We first uniformly bound the physical fluid domains €2} v, as this will allow us to extend
the approximate fluid velocity functions to a common maximal domain. To do this, we will
use the following proposition, which is Lemma 2.5 in [30] and Lemma 4.5 in [136], which
was established in the context of nonlinearly coupled FSI between an incompressible viscous
Newtonian fluid and an elastic Koiter shell.

Proposition 5.7.2. There exists smooth functions m(z) and M (x) defined on I' = [0, L],
such that

m(z) < wh(z) < M(x), for all z € [0, L], N, and n =0,1,..., N.

Furthermore, there exist smooth functions m?ﬁ,’l(m) and M}\Zfl(m) defined for positive integers
N,n=0,1,...,N—1and [ =0,1,..., N — n, such that

L omil(z) < wii(z) < My'(x), for all z € [0, L] and i = 0,1, ..., 1.
2. Myl(z) —m(z) < CVIAL, for all x € [0, L].
3. |IMy () = my' ()|l 2y < CUAR),

where C' is independent of n, [, and N. Finally, the functions M]T\L,l(x) and m’fvl(x) for all
n, I, and N, are Lipschitz continuous with a Lipschitz constant that is uniformly bounded
above by some constant L > 0 independent of n, [, and N.
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The result in Proposition |5.7.2| allows us to define a maximal domain Q?/[ defined by the
function M (x), containing all of the physical approximate fluid domains QF N

O ={(z,y) eR*: 0< < L,~R<y< M)}

We can extend the fluid velocities wy on (2% to this common maximal domain Q?f , by
extending by zero in Q} n (€} 5)°. We have the following result, which follows from the
fact that the functions n} (x) are all uniformly Lipschitz and a result on extensions by zero
of H! functions defined on Lipschitz domains, see [131] and the corresponding discussions in
(30, |136].

Lemma 5.7.2. The approximate fluid velocities {uy}%_; defined on the maximal fluid
domain Q}' by extension by zero are uniformly bounded in L*(0, T; H*(Q}")) for s € (0,1/2).

The generalized Aubin-Lions compactness lemma

We now pass to the limit along a subsequence in the approximate fluid velocities uy, which
are now functions in time defined on the fixed maximal domain Qﬁ/f . We have the following
convergence result.

Proposition 5.7.3. The sequence uy is relatively compact in L*(0,T; L*(2}")).

The rest of this section will be devoted to using a generalized Aubin-Lions compactness
theorem for problems on moving domains, see [136, 30|, to verify this convergence result.
We first define the relevant function spaces

H=L*Q), V=H(@Q, for 0 < s < 1/2,

where we note that V' cc H. Note that VI x Q% defined by and embeds
continuously into V' x V by the extension by zero operator to the maximal domain Q¥
uniformly in n and N.

We want to verify the conditions of the generalized Aubin-Lions compactness theorem
[136] (Properties A, B, C1, C2, and C3), for the approximate solutions uy, which we recall
are defined by

uy = ul, on ((n —1)At,nAt], forn =1,2,...,N.

The proofs of Properties A, C1, C2, and C3 are analogous to the corresponding proofs in
[136] (Section 4.2). So it suffices to verify Property B.

Property B. There exists a constant C' independent of n and N, a constant 1 < p < 2,
and for each N, a sequence of nonnegative {a% }2— satisfying (At) 22:01 la%|* < C uniformly
in N, such that

l

un+1 —un p
P]’\}NTtN <C (a"N + [luyllve + ‘|U§LV+1|’V£+1> : foralln =0,1,...,N — 1,

@3
(5.92)
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where Py denotes the orthogonal projection onto the closed subspace Q_’J(,H of the Hilbert
space H.

Remark 5.7.1. In the original reference [136], there is a different statement of Property B,
which is that there exists a constant C' > 0 independent of N such that

i

The above version of Property B can be seen as a generalization of this, and this generalized
version of Property B is needed, due to the appearance of terms in the weak formulation
that do not allow us to show that holds. With the generalized form of Property B as
above in (5.92), the generalized Aubin-Lions compactness theorem stated in [136] for moving
domains still holds, as we still have the essential equicontinuity estimate needed in the proof.
In particular, for the original form of Property B in (5.93)), one has from Lemma 3.1 in [136]
the following equicontinuity estimate for a constant C' > 0 that is independent of N:

n+1 n
Uy —uy

Y

<C (1 + |\u7v+1\|vﬁ+1) . foralln=0,1,..N—1.  (5.93)
@)

n,l n n
|| Py (U'NH - U’N)H(QT&J)/ < CVIAL.

With the generalized form of Property B that we use above in ((5.92)), the same arguments as
in the proof of Lemma 3.1 in [136] will still give rise to the following equicontinuity estimate
for a constant C' > 0 that is independent of N:

N/ n n _P
|| PA; (ui" — u)lgnty < C(1At)' "z,

where the generalized Aubin-Lions compactness theorem on moving domains still holds with
this new equicontinuity estimate, since 1 < p < 2 and hence, C' (lAt)l_g still converges to
zero as At — 0.

Proof of Property B. We consider

~ w7t Wiy 1
uN:unNO(I)fN O("I)fN) )
and use the semidiscrete formulation for the fluid velocity on the physical domain. By

definition,
n+1

1
‘ P]@u _ J Uy —ul vdx (5.94)
JAN? @ry  Illag<t|Jon JAN?
We then estimate
witt —ut utt —al upy — ul,
—— .pdx| < -vdx| + vdx 5.95
|, s [ [ (599
FN FN N
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By the semidiscrete formulation (5.91f), we have that

n+1 ~n
f YN TUN  yde| < 20 D(u™) : D(v)
. At 2y
1 nty Rty n nti R+y "
|y, [ (= ) 7o) o (-6 ) 9e) )
N
1 n 1 n n ~Nn
+ﬁ fn R+wNCN : N +§ jn(uN+1 M) - n(ag - v)
1 ~ M T n n
+ Jn <2u§§,+1 uy — pN+1> (v-n)|+p (At —uthy (v T)|.
N N

We can bound the terms uniformly in n, NV, and ||v|[gn < 1 as follows. By the boundedness

n+1

of " in the uniform energy estimates, we have

2v D(u}h) : D(v)| <

Clluy™ | -
Q;}’ ’

Because |[v[|grn < 1, by the definition of Q% in (5.90), we have that v is bounded in
H 3(9? ~), and hence, v and Vv are bounded pointwise. Furthermore, by the boundedness
of the fluid velocity u% on the reference domain by the uniform energy estimates, and the

uniform boundedness of the Jacobian of the ALE map CI)O;?V , we obtain the following bound:

ntl R 1 R
Jo [(( - e ) o) o (3 -t i) vo) |

~ 1
<0(||u5@||mw+||<"+2||Lz )||u"+1||H1<Q;N>-||v|\Hs<f < Cllup oy,

1

2

The next term is bounded similarly by

1

2 n+1
2R CN

+1 +1
Jn R T+ V| < C||CN ||L2 r)Hun ||L2(Q;§YN) : ||’U||H3(Q?’N) < Cfluly ||L2(Q?’N)-

We observe that ||| z2r) is bounded uniformly and furthermore, the arc length el-
ement on I'% is uniformly bounded pointwise since 7% is uniformly bounded in HZ(T).
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Therefore, by using the trace inequality on €2y, we have that

1 n n ~n
3 ), () ma o)
n 1 7
< C ey Ik sy -y + 105 sy - sy - ol
< O (Il lasacey - el ooy - 10l + 15 2y - Ibllovacey - ol vaey)
n+1 n
< O (Il sy - ke llrsincayy + 1R ey -t llmsis o) - ol e
n 1/4 u” 3/4 1/4 3/4 n+1 n 11/4 n 13/4
< C (I 15 1 15 o I 1 e 15 10 o b 1 e 5 )

3/4 3/4 3/4 3/2
G(Hun“n/mf) el 5,y + Ikl q,) ) < 1+ (lulivg + lluillvg) ™|

We also estimate

U( V) (o)

< C (s - Hkllesqr - [ollzay + 195 52wy - 1ollzaqr)
< © (R eyl el + 15 - i)
< C (Il llmncay - ek llmsnca) + 193 oy
1/4 3/4 1/4 3/4
c(u o [ /o [ M [/ [ PRy
n+1 n+1 3/2
O |1+ (I e + Nkl + sl ) |-

Finally, we estimate

dll ! =)o) < € ol + 1 ol

< C(L+[luy™mey)) -

Therefore, we obtain the final estimate that for a constant C' independent of n and N,

3/
< C (a + llullvg + 1y g )

n+1 ~n
Uy —Uy
_— ’vd:c
J . At

max
ollgy, <1

N—
for aN =1+ Hp HHl (%) where At Z <2 [(At)N + HpNH%%O,T;Hl(Qb))] < C.

(5.96)
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uyn — ul
From the inequality (5.95)), it remains to estimate f NN . pdx|. The same
Q

n At
N

estimates as in [136] show that there exists a constant C' independent of n and N, such that

max J UN " UN iz < O (5.97)
llvllor <t | Jan At
Combining (5.96) and (5.97) with (5.94) and ([5.95|) establishes Property B. O

This completes the proof of Proposition [5.7.3|

5.8 Passing to the limit

With the convergences that we have established, we now pass to the limit in the semidiscrete
formulation. The main difficulty in passing to the limit will be the test functions for the fluid
velocity. In particular, on the fixed reference domain €2 for the fluid, we note that the test
functions for the fluid velocity in satisty V- v = 0 on {2y, where w is the solution for
the plate displacement. However, the test functions for the fluid velocity in the semidiscrete
formulation in the semidiscrete test space Q% defined by (5.56)), satisfy V¥~ -v = 0 on f-
Hence, we need a way of comparing test functions in Q%' to test functions in the actual
test space Vi.

To do this, recall that we have defined the maximal domain QM that contains all of
the numerical fluid domains 2% . Note that the maximal domaln QM is fixed in time.
Hence, we can consider the followmg test space X', which consists of functlons v defined on
CH([0,T); H'(Q}")), satisfying the following properties for each ¢ € [0, T):

1. For each t € [0,T), v(t) is a smooth vector-valued function on Q}'.
2. V-o(t) =0on Qf foralltel[0,T).

3. v(t) = 0 on 0Q}\I'y for all t € [0, T), where T'yy = {(x, M(x)) : 0 < = < L} is the top
boundary of the maximal fluid domain Q}.

We note that restricting functions in X' to the physical domain deﬁned by the plate displace-
ment w and composing with the ALE mapping ®% defined in gives a space of test
functions X’ that is dense in V§, which is the fluid Ve10C1ty component of the full test space
(5-45). We emphasize that in the definition of the full test space V in - the only
component of the test space whose definition depends on the plate displacement is the fluid
velocity, and fortunately, this fluid velocity component of the test space is decoupled from
the other components of the test space.

Then, given a function v € X', we can construct a fluid velocity that is in the limiting
test space V§ and the semidiscrete test space QF. We transfer the function by the ALE
mapping, and define

{J(t7 ) = v<t> ')|Q‘}’(t) © (I)L;(tv ')7
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where Q4(t) = {(z,y) e R*: 0 <2 < L,—R <y < w(t,z)}. To construct approximate test
functions that are admissible in the semidiscrete formulation, we define

’INJN(tv ) = ’U(t, ')|Q?N(t) © (I)‘}JN(t7 ')7

where we analogously define Q¥ (t) = {(z,y) e R* : 0 < # < L,—R < y < wi(v)}. We
note that o € Q% on [nAt, (n + 1)At). Therefore, we can use the test function vy in
the semidiscrete formulation on the time interval [nAt, (n + 1)At). We emphasize that
vy is discontinuous at time, due to the jumps in wy at each nAt. We have the following
convergence result, see Lemma 7.1 in [140] and Lemma 2.8 in [30], which shows that the
test functions for the semidiscretized problem vy given v € X converge to the test function
v € Xy for the limiting weak formulation.

Proposition 5.8.1. Forv € X, vy — v, and Vo — Vo pointwise uniformly on [0, 7] xQ_f,
as N — 0.

We use thls convergenee result to pass to the limit in the semidiscrete formulation. We
have from ) that for all (v, ¢, 1, r) in the test space with v € X,

T T
TALWN L 1 TAIWN R+y -
1+ 6’uN-'uN+fJf 1+ ((TAuN—CN e)-VT“‘”NuN)-'UN
Lfgf( ) 2ogf( ) t )

R
R+ T, WN
_ <<TAt’u,N—CN Ryey> VAf ’UN> CUN

T

J’_i
2R )y Jo,

(NUN - DN

1 T T
1 f j (un — Clrey) - NN (razuy - By) + 20 j J (1+ BE2) D (un) s DR (o)
Qy

f J ( UN - TALUN — PN) (¢ —on)- TA‘wN+jTA,wNJ f (Ney —un) - TN (P —vy) - TTAN

+pr Lb (gN TM&N) ~¢+,0pf0 L 0tZN-<P+2ueJO QbD(nN) : D(v)

T T
Y j (V- 0n) (V) + 200 f D(€x): D(®) + A, f (V- £3)(Y - )
0 Qy 0 Qy 0 Qp

g (raenn )’ (raen)? ’ ’ (raenn)? (raen)’
_ Oé‘[ jb AtTIN pNVb AtTIN ’l,b + COJ‘ atﬁ]v S — aJ jb AtTIN ’SN . vb AtTIN r
0 0 Qp

Qp
_ O‘J f CNey TAfLA}N T + ﬁf j (taenn)® V(TAt'r]N V(TAH?N)'ST
Qp

J f (un — Chey) - TAwaT+f JAwN Ay = 0.

We summarize the main strong convergences that we have obtained.
Ny —mn, inC0,T;L*(Y)),

wy = w, in L7(0,T; H*(T)) for 0 < s < 2,
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(v — ¢, in L*0,T; H*(T)), for —1/2 <5 <0,
(v — ¢, in L*0,T; H*(T)), for —1/2 <5 <0,
Ex — & in L2(0,T; H*()), for —1/2 <s <0,
uy —u, in L*(0,T; LQ(Qy)), py —p, in L*(0,T; L*()),
where (% and (y converge to the same limit in LQ(O T; H*(T")) for —1/2 < s < 0 due to
the numerical dissipation estimates ij:l ¢ — ¢y 2|| 72y < C, which imply that [[(v —

CXllz2 2y — 0.

Due to the presence of terms in the weak formulation involving the trace of the fluid
velocity along I', we will also need stronger convergence results for the trace of the fluid
velocities along I'. In particular, we have the following convergence result.

Proposition 5.8.2. We have that
Gnlr — dlr,  in LX0,T; H2(T)),  for se (0,1),

where uy = uy o QD}AWN

and u = u o 9.
To prove Proposition [5.8.2] we will use the following elementary lemma.

Lemma 5.8.1. Suppose that the functions {f,}*_ , and f are all uniformly bounded in
L*(0,T; H'(Qy)) and f, — f in L*(0,T;L*(y)). Then, f, — f in L*(0,T; H*(Qy)) and
hence f,|p — flp in L2(0,T; H*~2(T")) for s € (0,1).

Proof of Lemma[5.8.1. For s € (0,1), we compute using the trace lemma and Sobolev inter-
polation that

1 fale = flelf?

L2(0,T;H®~ ?

T
(1-s 2(1—s s
< j 1= DO 1= DO 0t < 1 fa=FlI 022, 1= F 10 mm1 0))-

0

T
o <M = Pz = | 10 = DO,
0

The result then follows from the fact that || f, — f|[2(0,r;01 (@ ;) < C for a constant C' that
does not depend on N and the assumption that ||f, — fl|z207:L20,) > 0as N — o0, [

We can use the elementary lemma above to show the desired strong convergence of the
fluid velocity traces.

Proof of Proposition [5.8.34 We have that uy — w in L*(0, T} LQ(Qj‘{I)) on the physical max-
imal fluid domain and we want to combine this with the fact that uy for all N and u are
all uniformly bounded in L*(0,7; H'(24(¢))) in order to deduce strong convergence of the
trace of the fluid velocities using the previous elementary lemma. We do this in the following
steps.
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Step 1. Consider the fluid velocities wy and @ defined on the reference fluid domain. We
claim that @y — @ on L*(0,T; L*(Qy)). To show this, we recall that the original functions
uy and u are defined on the maximal domain Qy and we compute that

lan =@l 7:2(0,)) = LT L ’“N (o (1+ %) ran ) —u by + (1+ %) “’)‘2
f

< 2([1 + ]2),

where

2

Y

I = LT Lf ‘uN <t,x,y+ (1 + %) TAth> —u (t,x,y + <1 + %) TAth>
= [ (ms (1) o) —u (e (14 ) )

Since 1 + % is uniformly bounded from above by a positive constant, we have that

N=1 ~(n+1)At W N—-1 r(n+1)At
DN G ] R N
* n=0 }L,N

n=0 JnAt TN nAt

< CHuN - uHiQ(O,T;[?(Q}”)) — O,

as N — oo, since QQ/[ contains all of the domains Q7% .. For I, we break up the integral into

two parts:
I = I + 1o,

where

T L rmin(0,y*(t,z)) Y Yy
Iy = J J f ‘u (t,x,y + (1 + —) TAtWN> —u (tvxay + (1 + _> w)
0o Jo J-R R .
T L 0 y 2
Iy = J f J ‘u <t, x,y + (1 + —> TAtWN>
0 JO Jmin(0,y*(t,z)) R

for y*(t,x) = %. We can interpret y*(¢, x) as the y value for which y+ (1 + %) TAIWN =

w. Note that

T rL ,min(0,y*(t,z)) y+(1+% )w 2
I < f f J f layu(t,x,y’ﬂdy'
o Jo J-r y+(1+4)rarwn

T rL rmin(0,y*(t,z)) y+(1+%)w y
<[] | oeult,z )Py ) (14 L) o~ maonl.
0o Jo J-Rr R

y+(1+%)TAth

Y

?
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By Proposition , wy — win C(0,T; H5(T")) for 0 < s < 2, and combining this with the
estimate (5.80)), we obtain that Taqwy — w pointwise uniformly on [0,7] x I as N — o0,
Combining this with the fact that HVUHLQ(QT;LZ(QL}!@))) is bounded, we have that Io; — 0 as
N — o0.

Next, by Poincare’s inequality,

we[—R,w(t,z)

T L
Iro < J J |min(0,y*(¢,z))| - max ]|u(t,x,w)|2
0 0

T rL w(t,z)
<[] iyl [ ot gPay,

o Jo -R
so we conclude that I» — 0 as N — oo by the fact that | min(0,y*(¢,2))| — 0 uniformly
on [0,T] x I, and by the boundedness of |[Vul|120,7;r202()- Thus, we have that ||ty —
wll20m;12(0) = 0.
Step 2. We claim that the functions wy for positive integers N and @ are all uniformly
bounded in L?*(0,T; H*(Q;)). Recall from Lemma that the approximate solutions
@y are uniformly bounded in L2*(0,7T; H'(2f)). Since @ is the strong limit of @y in
L*(0,T; L*(€2)) and @y converge weakly in L2(0,T; H*(£2;)) along a subsequence to a weak
limit which hence must also be @, we conclude that @ is also in L*(0,7; H*(€2;)), which
establishes the desired result of this step.

Step 3. From Step 1, we have that 4y — @ in L*(0,7;L*(Q;)) and from Step 2, the
functions @y and 4 are bounded in L*(0,T; H'(Q;)) independently of N, so we can conclude
the proof of Proposition by using Lemma [5.8.1] O

Using these strong convergences, in addition to the previously established weak conver-
gences in Proposition [5.6.1, we can pass to the limit in all of the terms in the semidiscrete
weak formulation except those involving time derivatives. However, we can handle these by
a discrete integration by parts. For example, for the first integral, we can use a discrete
integration by parts to obtain that

T
TAtWN _ -

1+ Uy -V
ff( Y S

LG R [ ] o= [ (e R)uo-o0

where vy = v 0 @7V and ¥ = v o &% for v € X. See for example pg. 79-81 in [30].

Thus, we conclude that the weak formulation holds for all test functions in the smooth
test space X} for the fluid velocities, which consists of all test functions of the form v = vo®}
for v € X. We can extend to the more general test space Vi defined in by using
a density argument. This completes the proof of the existence of a weak solution to the
regularized nonlinearly coupled FPSI problem.
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We conclude this section by making the important observation that the weak solution that
we have constructed to the regularized FPSI problem satisfies the desired energy estimate.
This will be important for showing weak-classical consistency in the next section, and can
be shown easily by using the discrete energy estimate for the approximate solutions.

Proposition 5.8.3. The weak solution (u,n, p,w) constructed from the splitting scheme as
the limit of approximate solutions satisfies the following energy estimate

1 1 1
! j [+ Lo, f €2 + Zeg f P + s f D)
2 Jo, ) 2 2

oA f V4 o [ G+ [ 18w 20 f f(
+2uv“m ©)F + A, ”ﬂbw s\m” |Vp|2+ﬁ” (Cey—u)-T)? < B,

(5.98)
for almost every t € [0,T1].
Proof. The approximate solutions (uy, Ny, Py, wy) satisfy the following energy inequality:

1 1 1
3 ), g | et geo | o wf DI+ A [ 19wl
QN (t) 2

+ pr v l? + J ’AWN|2+2VJ J D(uy |2+2uvf J
QfNS
+)\vff ’V'£N|2+HJJ yvayhﬁfJ (Che, —uy) - T|* < Eo,
0 J 0 JOp ()

where Fj is the initial energy of the problem. We can then use the weak and weak-star con-
vergences of the approximate solutions, stated in Proposition [5.6.1], and lower semicontinuity
in order to pass to the limit in the energy inequality. O

5.9 Weak-classical consistency

Statement of the result and notation

We have now shown the existence of weak solutions to the regularized FPSI problem ([5.46]).
However, it is not clear that the solutions to this regularized problem are physically relevant,
since the regularized weak formulation is not equivalent to the original weak formulation
without the regularization. However, we will demonstrate a weak-classical consistency result
in this section: given a spatially and temporally smooth solution (w;,n;, p1,w;) to the FPSI
problem, then the weak solutions to the regularized problem with regularization parameter
d, which we will denote by (25,15 5, P25, w2,), converge to the smooth solution as § — 0.
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Recall that the regularized weak formulation uses a spatial convolution with respect to
a smooth compactly supported function to regularize the Biot displacement 7). For ease of
notation, for the regularized solutions, we will use a more compact notation for the spatial
convolution, defined by . In particular, we will use the new notation in this section,
that
Mg = (M)’ 1= 021y 5 % 0 (/5),

Because we will later have to use the spatial convolution of the strong solution n; with the
convolution kernel, we will adopt a similar notation:

n = (771)6 = 5_2771 0 (x/0).

We also use this notation for the domain Qb’zﬁ(t), which denotes the physical Biot domain
under the regularized displacement. In particular,

Up,5(t) = (T + 7y 5(1)) (). (5.99)

For convenience, we reproduce the weak formulation and the regularized weak formula-
tions below. Furthermore, we note that even though the weak formulation and the
regularized weak formulation (5.46) are stated up until a fixed final time 7', we can refor-
mulate the weak formulation for almost every time 7 € [0, 7] by using a cutoff function (see
for example the proof of Lemma in the appendix where this is done explicitly). Thus,
we have that the classical solution (uy,mn,,p1,w) satisfies the following (non-regularized)
weak formulation for almost all 7 € [0, T], for all test functions (v, p, %, r) € Viest with the
(moving domain) test space Vies defined in ([5.44)):

f f up - v+ — f f ((ug - Viuy) v — ((ug - V)v) - uq] f f (ug-n—2€ -n)u;-v
Qj 1 t) Qf 1(t) Fl(t

+zuf meul: JL@( |u1|2—p1) (Y — v +ﬁf fw € — 1) - 7(%r —v7)

—ppf fatwl 0t<p+J fAm Ap — pbf Oemy - (9t¢+2uef D(n,) : D(v)
0 JOy

vy f (Vm)(V ) +2uvj _ D(@m): D)+ A, f (V- 2m)(V - )

b b N
,O‘f Lb V- wfcof Jﬂbplatraf th) D v JJ € on
+;<J Jﬂb(T)Vp1~VT—f Ll(t)((ul_gl).n)r

__ Lm(t) A GRICE ) ) J p(7) ()
+ sz(o) ug - v(0) + pp L Bo - (0) + be & - ¥(0) + COJ po-7(0). (5.100)

We also have that for each § > 0 and for almost every 7 € [0,75] where the final
time T potentially depends on 4, the corresponding solution (uzs, s, P2s,ws2,s) to the
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regularized FPSI problem with regularization parameter § satisfies the following regularized
weak formulation for every test function (v, @, ¥, 7r) € Vies:

T 1 T 1 T
—f f U2, 5 OV + = f J [((w2,5:V)uzs) v—((u2,6-V)v) - uz,s]+ 5 j J (u2,6-m—2€, 5-n)us v
Qf25(t) Qf25(t) 0 JTa 5(¢)

+2VJ qu(t) (t12.) f L”(t)< [uasl” = pa 5>( _””)"'BJT Lz S(t)(ﬁz,a—uz,é)"r(iﬁf—w)

J Jatw25 attp+J JAW25 Ap — PbJ at'rlzg at¢+2ﬂef Dn26) D(¢)
o Jo,

| | m)( )42 || D@myy:D +Avf (V- am, ) (V)

Qp

T o A o
Qp 2,5 (t) Qp Qp 2,5 (t) Ta, 5(t)
+ KJJ f~ Vpas-Vr —j J ((u2,s — 52,5) “n)r
Qp 2,5 (t) Iy 5(t)

+ jﬂf(()) uo - v(0) + pp L Bo - ©(0) + p» jﬂh & ¥ (0) + co Jﬂb po-r(0), (5.101)

where %i is the material derivative with respect to the regularized Biot displacement. We

remark that while our existence proof in the previous sections holds for both a purely elastic
and viscoelastic Biot medium, our weak-classical consistency result will hold in the specific
case of a Biot poroviscoelastic medium so that the viscoelasticity parameters u, and \, are
strictly positive, and hence, the plate velocity (2 se, in the weak formulation is equivalently
the trace of the Biot medium velocity &, 5 € L*(0,T; H'(€2,)) along I'. We need viscoelasticity
in the Biot medium because we will need to estimate certain terms involving the trace of the
Biot velocity along the moving interface, which will require having extra spatial regularity
on the Biot velocity defined on €2,,.

In the remainder of the manuscript, we will prove the weak-classical consistency result,
which we will state at the end of this subsection. However, before stating the result, we
need to introduce some additional notation. To motivate why we need this notation, we
note that to prove this weak-classical consistency, we will subtract the weak formulations
for the two solutions and test formally with the difference of the two solutions. Hence, for
the fluid part of the weak formulation, we formally want to test with a fluid test function
v = u;—uys. However, the functions u; and u, 5 are defined on different domains, and hence,
the difference w; — w95 is not well-defined. Therefore, we will have to use a transformation
to bring a divergence-free function defined on one fluid domain to a divergence-free function
on another fluid domain.

Consider the two fluid domains

Qpa(t) ={(z,y) eR*: 0 <z < L,~R <y <wi(t,2)},

Qpas(t) ={(z,y) eR*: 0 <2 < L, —R < y < wa(t, 2)},
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that are associated to the plate displacements wy and ws 5. We define a map between Q;(t)
and Qg 5(t), and a transformation that sends functions on one domain to functions on the
other domain as follows. We denote

R+ wy(t, x)

t = - 5.102
%s(t, ) R+ wys(t, )’ ( )

and we define the map ¥5(t) : Qr24(t) — Qp1(t) by
%(ta%y) = (t,x,w(t,x)(R—i—y) _R) (5103)

However, we cannot use s to move fluid velocity functions from one fluid domain to the
other because of the fact that we want the fluid velocity to remain divergence free under
such a transformation. Therefore, we define the matrices

1 0
J(;(t, xa@/) = ((R + y)0us(t, ) ’}/5(75,1‘)) ) (5.104)
7 -1 1 0
= (g gygettn) o) 109

Note that the Jacobian matrix Js defined in (5.104]) is associated with a change of variables
under the map 15 of the gradient of functions, since for a function w defined on {2y,

V(uo ;) = [(Vu) o s Js. (5.106)

Given a divergence-free function u; on €, (t), we can define a function @y on Qg 5(t)
by
Uy =55 - (w0 ¢s), (5.107)

and given a divergence-free function wus s defined on ¢ 5(t), we can define a function s
on Qy1(t) by

~ 15 ~1

Uss =75 Js- (Ua50957). (5.108)

We remark that even though the definition of @, depends on ¢, we will not explicitly notate

this dependence, as 0 will be clear from the context, since we will be considering w; and

us 5 together for a specific but arbitrary choice of ¢ whenever this notation appears. The

resulting functions are both also divergence free on their respective fluid domains. Note

further that both of these transformations preserve the trace of the function along I' also.
We now state the weak-classical consistency result.

Theorem 5.9.1. Consider smooth initial data (1, &, po, wo, Bo, Uo) to the given nonlinearly
coupled FPSI problem. Suppose (n,,w;,p1,u1) is a classical solution to the given FPSI
problem on the time interval [0, 7] with this initial data, that is smooth in space and time.
Then, if (1,5, was,P2s, U2,s) denotes the weak solution to the regularized FPSI problem



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 255

with regularity parameter d, then (1,5, wa s, P25, 2,5) can be uniformly defined on the time
interval [0, 7] for all 6 > 0, and furthermore,

Es(t) — 0, for all t € [0, T, as 0 — 0,

where

t
Es(t) :==[|(u1 — u2,6)(t)’|%2(9f,275(t)) + f | D(u, — ’u’275)(8)||%2(Qf7275(s))d8
0
+ 1€ = &26) O T2y + (w1 = w26) O[Ty + (€1 = &2,5) (D720,

1D (1 = 155) Ol + (V- (11 = 155)) (D)l 22(0) + fo 1D (&1 = &5,5)(5)l |20, ds

t
£ IV (6~ €06 iz + 1101 — o) ()2 + f V1~ 226} () oy
(5.109)

The general strategy

We want to estimate the energy difference between (wy,my,p1,w:1) and (uas, M55, D25, W25),
defined in (5.109). We want to obtain an estimate for Ej(t) in terms of Ej(0), the integral
of Es(s) for times s € [0,¢], and other terms that have sufficiently strong convergence in
d as 6 — 0 (see Lemma in the next subsection). To do this, we will test the weak
formulations for w; and wugs with appropriate test functions and use the energy inequality,
as described formally in the following steps:

1. Since (uq,ny, p1,w:) is a classical solution to the non-regularized FPSI problem, we test
the non-regularized weak formulation with the “difference” of (w1, d;my, p1, Owi) and
(w25, 0iMy 5, P2,5, Oiwa 5), Where this notion of the difference between these two solutions
will be made precise in Section [5.9]

2. We test the weak formulation for (ugs, 1y 5, P25, wo,5) With (w1, 0imy, p1, Giwr).

3. We rewrite the energy inequality for (ua s,y s, P25, ws,s) 50 that it parallels the terms
in the weak formulation.

4. We combine the equations from Step 1, Step 2, and Step 3. This will give us an
expression that we can analyze term by term in order to obtain an estimate for the
energy difference Fs(t) by Gronwall’s inequality.

Most of the proof, carried out in Section [5.10 will involve estimating, term by term, the
various quantities that arise from combining the weak formulations in Steps 1 and 2, and
the energy estimate in Step 3. As noted in Step 4 above, this will allow us to obtain an
inequality for the energy Ejs(t) that can be used to conclude the proof of Theorem by
an application of Gronwall’s inequality. We emphasize that the outline of the proof given
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above is formal, and needs to be rigorously justified due to the following two mathematical
difficulties:

1. The regularized weak formulation involves integrals on the physical time-dependent
Biot domain 5 (t), which give an extra factor of det(I + V1), ) in the integrand from
the Jacobian, when the integrals are transferred to the fixed reference Biot domain (2.
This factor cannot be estimated in the finite energy space, where 7, 5 is only bounded
uniformly in ¢ in the function space L*(0,T; H*(€2)). Thus, we need to use a bootstrap
argument to estimate this determinant, as discussed in Section

2. We want to test with the “difference” of (w1, 0y, p1, Giw1) and (ua s, O4my 5, D25, o s)-
However, this is formal because the test functions in V., defined in , must
be continuously differentiable in time, and furthermore, for the fluid velocities, the
difference between u; and us s does not make sense, since these functions are defined
on different fluid domains. Thus, we must carefully define which test functions we will

use, see Section [5.9]

Setting up the bootstrap argument

We note that one recurring challenge in showing weak-classical consistency involves the terms
in the regularized weak formulation , which are integrals over ng’g(t). This is because
if we use a change of variables to rewrite these as integrals on the fixed reference domain €2,
we obtain an additional factor of det(I + V1), ) in the integrand from the Jacobian.

This factor of det(I + V1, 4) is problematic, because although this factor is a smooth
function due to the spatial convolution, it is not uniformly bounded in the appropriate func-
tion space. In particular, we only have that 1, ;5 is uniformly bounded in L*(0,T; H' (%))
in §. Therefore, det(I + V7),) is only uniformly bounded in L*(0,T; L'(€)), which is
insufficient for estimating any integrands with this factor, since any explicit estimate on this
Jacobian incurs a substantial loss in spatial integrability.

Hence, we will use an alternative strategy. In particular, we recall that by the way we
constructed the weak solution to the regularized problem by the splitting scheme, we have
that there exists a sufficiently small constant ¢ (uniform in §) such that

det(I + V1),4) = ¢ >0, for all t € [0, T3], (5.110)

for Ts > 0 potentially depending on §. This estimate holds at least locally (though not
locally uniformly) for each § > 0. However, we would ideally want to show a stronger result,
which states that

det(I + V1y5) = ¢ >0, for all ¢t € [0,T1], (5.111)

for some time T > 0 that is independent of 0.
To do this, the strategy will be to use a bootstrap argument. We note that like the
estimate in (5.110]), the following three estimates hold locally (though not locally uniformly



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 257

in §), with positive constants ¢ and C' that are independent of ¢:

det (T + Vﬁm) > ¢, (5.112)
0<c<|[I+ Vil < pointwise in €, (5.113)
Vi, 5] < C, pointwise in . (5.114)

We emphasize that the time interval for which these estimates hold may depend on §. Note
that the previous three estimates imply (after potentially making ¢ > 0 smaller, if necessary)
that

0<C <+ Ve <

We can choose ¢ and C' so that these estimates also hold for the classical solution n up to
the time 7", where the classical solution exists on the time interval [0, T'].
We will use Gronwall’s inequality to get an estimate that will hold as long as the assump-

tions (5.112)), (5.113)), and (5.114]) are valid. The resulting estimate we obtain will formally
be of the form

t
<& [l = m) s +C [ Bxtoyds,

where the constants C; and Cy are independent of § and FEj(t) is the energy difference be-
tween the classical solution and the weak solution to the regularized problem with regularity

parameter d, defined by (}5.109)).

As we will prove in the upcoming lemma,
171 — M| ) < C8%2, for all t € [0, 77,

since the classical solution 7, is spatially smooth. This is an essential observation, as the
Gronwall estimate we obtain would give that

<0 (j 1y = 1)) o ds)e@t<c(j 16 ><s>||%{1<m>d8>ecﬁ~0536C2t~

By the definition of Es(t) and an application of Poincare’s and Korn’s inequality on €, (see

Proposition , this implies that [[(n; — 155) ()] a1, and [[(w1 — was)(t)||m2(r), Which
are terms in Ej(t), converges to zero as  — 0 at a rate of 5%/ 2 as long as the assumptions
, , and hold. Therefore, by Holder’s inequality, this gives the estimate
for sufficiently small § that

(V71 = Vi 5)(E, )| =

f() (Vn, — Vnz(;)(t,y)a(;(x —y)dy| ~ 52571 -0
b

pointwise uniformly in [0,7] x €, as 6 — 0. (5.115)

Here, we recall that the convolution is defined using an odd extension as in Definition [5.4.1}
and by the definition of the odd extensions of m; and n, 5 to the larger domain ),

11 — 1 6||H1 () (||"71 "72,5|’H1(Qb) + [Jwr — W2,6||H1(r)) :
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In addition, since we have extended the functions 1, and 7,5 to the larger domain Qp, the

estimate (5.115)) holds for all § such that {(x,y) € R? : dist((z,y), %) < 6} < Q. In addition,

from the upcoming lemma,
(Vn, — Vi)(t,z)] < Co — 0, pointwise uniformly in [0, 7] x €2, as § — 0.

So combining this with (5.115]), we have that |(Vn, — V7, 5)(t, )| — 0 pointwise uniformly
in [0,T] x € as § — 0. So we can use a bootstrap argument on det(I + V), s) by continuity,
since we have that det(I + Vn,) = ¢ > 0 up to a final time 7" > 0 (which depends only on
the classical solution and has no dependence on ¢). Similarly, for all sufficiently small §, the
assumptions and will also hold up to the final time 7" > 0, as we can also
bootstrap these two conditions and similarly. This closes the bootstrap and
so we obtain that the estimate (5.112), and similarly the estimates (5.113) and (5.114)), hold
uniformly up to the final time 7" > 0 uniformly in §.

We end this section by proving the following lemma, which establishes convergence of the
spatial convolution of the classical solution 1, in H'(€2,), which is needed for the bootstrap
argument described above.

Lemma 5.9.1. Let n; € L¥(0,T;Vy) be an arbitrary but fixed smooth function in time
and space on [0,T] x €, where V; is defined in (5.38). Then, there exists a constant C
independent of 6 > 0, depending only on 7,, such that

053/2
e [l =l @)

and |V, — Vn,| < C6 for all z € Q, and for all ¢ € [0, 7.

Remark 5.9.1. More generally, if f is a smooth function on R? with sufficient decay at
infinity, such as a Schwartz function, then the argument shown below shows that the function
f defined by

f=fxos on R?

would satisfy ||f — f||z1(q, < C6? for a constant C'. However, because we are working on a
bounded domain 2, we must use an odd extension to define the spatial convolution of n;.
Since the odd extension of 7, to the larger domain Q) is not necessarily smooth on Q, even if
7, is a smooth function on €2, we incur a loss in our estimate due to potentially irregularities
of the odd extension due to the behavior of the initial function 1, near the boundary 02,
which gives rise to the convergence rate 6*? instead of the optimal rate of convergence §2.

Proof. We separate the domain €, = (0, L) x (0, R) into two parts:
Qb,l = ((5, L — (5) X ((5, R — 5), Qb72 = Qb\QbJ.

For o € (), 1, we note that because the convolution kernel o, is radially symmetric,

=) = [ (Gl a) —mle) + gnile =) ) olal)in
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Vi - Im)@) = [ (GTmlae) - Inie) + 3Tmla - o) ) ola)da

For € )1, we have that these points are at least J away from the boundary, so that we
have the following estimate for the discretized second derivative:

1 / 1 !/ 2 /
5771(33+33)_771($)+§"71(93_5’3) <5 for |2 <4,

and similarly for Vn,, by using the fact that 1, is spatially smooth in ;. So we conclude
that

(7 —m)()] < Co%, |(Vig, — V) ()] < C9, for @ € (1, (5.116)

for a constant C' depending only on n;.

For ¢ € ()2, we cannot use the same estimate, since after extending 7, to the larger
domain Qb, the extended function on Qb does not necessarily have a continuous second deriva-
tive, as a result of the properties of odd extension, and in fact, there may be discontinuities
of the second derivative along the boundary 0€2,. However, V7, on the larger domain Q is
still Lipschitz continuous so we instead use the equations:

(7y — m)(@) = f (m (@ + @) — my())os(')da,

(Vii, — Vi,)() = f (Vi (@ + ) — Vg, (2))os(@')da.

Qp

Since T € (Y5, even if |x'| < 0, we may have that & + 2’ is outside of 2. However, due to
the Lipschitz continuity of Vn, on the larger domain €2, we still have the estimates

m(z +a) —m(z)| < C6, |V (z+a) - Vn(z) <Co,  forme Qo |2’ <,
which gives
(7 —m) ()| < C6, (Vg — V) (2)] < CF, for & € Q5. (5.117)

The area of € is < (2R+2L)4, so by (5.116)) and (5.117)), we have ||7), — 1, || m1(o,) < C5*/?
for a spatially smooth function 1, on Qp, where C' depends only on the norms of up to the
second spatial derivative of 17; on €2,. The generalization of this result to a function n, that

also depends on time and is spatially smooth in both space and time follows analogously.
]



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 260

The test functions

As described in Section we want to test the non-regularized weak formulation formally
with the difference between (w1, d;my,p1, dw1) and (ugs, 0imy 5, P2.s, Oiwa5). However, there
are two reasons why this is not rigorously justified. First, dim; — d;m, 5 is not a continuously
differentiable function in time as is required for the test functions, and hence, we must first
use a convolution in time and pass to the limit as the convolution parameter goes to zero.
Second, the fluid velocities give an additional difficulty, as the fluid velocities are defined
on time-dependent moving domains. Thus, we must transfer the fluid velocities between
different time-dependent domains in order to make sense of the “difference” between u; and
Uy 5 as a test function, and the way in which we do this transformation and the way in which
we perform the convolution in time must both respect the divergence-free nature of the fluid
velocity on the time-dependent domain. We will address both of these difficulties in this
section, using a transformation that preserves the divergence-free condition from [95] and
additional mathematical techniques for regularizing the test functions found in [159].

We address the first difficulty by defining a convolution in time. This will allow us
to regularize 0y(n, — My5) = & — &u5 D1 — P2, and G(w1 — was) = Pi — Pas so that
these functions are continuously differentiable in time. Since the classical solution is already
continuously differentiable in time, we only need to regularize the weak solutions to the
regularized problem. Because these differences are all defined on fixed domains, we can use a
standard convolution in time. We let j(-) : R — R be a compactly supported even function

with supp(j) © [-1,1] and | j = 1, and we define j,(t) = a~'j(a~'t), where @ > 0 is the
R

convolution parameter in time.
Consider o > 0. We extend &, 4, pas, and (a5 to the larger interval [—a,T + a] by
reflecting across t = 0 and ¢t = T'. For example, we define

EZ,é(t) = EQ,6<_t)v for ¢ € [—Oé, 0]7
€o5(t) = &y5(2T — 1), for t € [T, T + «].

We then convolve in time and define for ¢ € [0, T],

(€2 5)a(t) = Exglt ") # o = f €,5(5)jalt — 5)ds.

We define (pa5)o and ((2,5)q similarly. We will hence test with & — (§55)a, P1 — (P2,5)a, and
G = (C26)a-

Because the fluid velocities are defined on moving time-dependent domains, we cannot
directly apply a convolution in time. Before we can convolve in time, we must be able to
transform fluid velocities from one domain to another, while preserving the divergence-free
condition. We do this by using the following matrix:

R+w(s,x)
K(s,t,z,y) = e s "), (5.118)
—(R + 1), (#@)) 1
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This matrix has the following essential property. If w(z,y) is a divergence-free function
defined on the domain €¢(s) defined by the structure displacement w(s, ), then the function

R+ w(s,x)

K(s,t —_—
(87 7'T7y)u ('T7 R—f—w(t’l')

(R+y)—R>

is a divergence-free vector field defined on Q¢(t) defined by the structure displacement w(t, ).
We can therefore use this transformation to convolve in time, as follows. We extend us 5 to
[—a, T + «] by reflection, as above, and define, for ¢ € [0, 7],

R+ wos(s,x)
"R+ wos(t, )

(u2,5)a(t) = JRKM(S, t, 2, y)ugs <s, x (R+y) — R) Jalt — s)ds.  (5.119)

For a divergence-free function v, extended as above in time to [—«, T + «], we can define v,
on €4 (t) analogously by

R+ wi(s, )
"R+ wi(t,x)

v, (t) = JRKl(s,t, T,y)v (5, x (R+vy) — R> Jalt — 8)ds.

Here, Ki(s,t,z,y) and Kys(s,t,x,y) are defined as K(s,t,x,y) with the choices of w =
wp and w = wg s respectively. One such function v which will be convenient to consider
on Qg;(t) is the function %ys defined on €7(¢), which is the function uys defined on
Q25(t) transferred in a divergence-free manner, as described above, onto the domain Q; (¢).
Specifically,

R+w t,x
G s(t 2, y) = R_++cjf(7(f,x)-) 0 e <x M(R +y) — R)

We collect some properties of (us4), in the proposition below, which are from the refer-
ence [159], and which are a specific case of Lemma 2.6 in [159].

Proposition 5.9.1. Fix an arbitrary 6 > 0. Given uss € L?(0,T; H (Q2,5(t)) and wy,wa 5 €
HZ(T') with |wi] < Ry < R and |was| < Ry < R, div[(u24)a] = 0 and div[(tz,s)a] = 0 for all
t € [0,7] and for all & > 0. In addition,

(U2,6)a — Uas strongly in LP(0,T; LY(Qf2,)), for all pe [1,0),q € [1,2),
(T2,6)0 — Uas strongly in LP(0,7; LY (1)), for all p e [1,0),q € [1,2),
and
(U2,6)a — Uas weakly in L*(0,T; Wl’p<Qf,2,6))7 for all p € [1,2),

(U2,6)a — Tas weakly in L*(0,T; W"P(Q4)), for all p € [1,2).
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5.10 Proof of weak-classical consistency: obtaining a
Gronwall estimate

In the next subsections, we will carry out the strategy outlined in the previous section by
obtaining an appropriate Gronwall estimate involving the energy difference FEs(t) defined
n between the classical solution u; and the weak solution uys to the regularized
problem with regularization parameter o, under the assumption that the three conditions

(5.112)), (5.113)), and (5.114]) hold. We will test the weak formulation ([5.100)) for the classical
solution (wy,my,p1,w1) to the original non-regularized problem with

v=u — (U25)a, ©=0C—(C26)as Y=E — (52,6)a7 r=p1 — (P25)a- (5.120)

We test the regularized weak formulations for the weak solutions (us s, M55 D2.6 Wa )
with

v=t, o=G, Y=& r=p. (5.121)
Finally, we note that the energy estimate in Proposition holds for the function us 5. We
will rewrite the energy inequality for us s in a more convenient form by adding extra terms

that will cancel out, in order to have the energy inequality parallel the weak formulation
term by term. In particular, we have that for almost every 7 € [0, T5],

1 1 (" 1 ("
sl sl [ (s Viwes) was (e Vywnal b g [ unsen 26y muns s
Qf,275(7—) 0 Qf(t) 0 FQ,(;(t)

T T 1 T
v [ [ D@+ f | (*\w,slz—pz,s)(£2,5—U2,6)-n+ﬁ [ s —uns)
0 Iy o 5(t) Ty s5(t) 0 JI'p 5(t)

1
+g0n | 16asl? 5 [ 180nsl 5o | teasl wne | 1D

" Af V1 5 (1) +2uvff D)+ [ [ 1V-P
Qp Qp
T 1 D
—al| | P25V - &y5+ 50 | [p2s(T W—al | EﬂQ,&'VpZ,é—a (&5 m)p2s
0 JQy 2 5(t) Qy 0 JQp 2 s(t) 0 JT'y 5(t)

T T
1 1
se[ [ el [ (s e < g [ funl s Jo [ ek
0 JQyp 2 5(t) 0 JTy 5(t) Qy(0) r
1 1 1 1
+ 5J |Awol® + prf €0l +uef |D(n,)|* + §AEJ IV - mol® + Ecof pol®. (5.122)
T Qp Qp Qp Qp

We will then combine these estimates together by taking the weak formulation for u; tested
with (5.120]), subtracting the regularized weak formulation for us, s tested with ([5.121]), and
adding the energy estimate for w5 in (5.122)). After doing this, we will obtain an expression

of the form
YT <0, (5.123)

where each T} contains the terms relating to a particular term in the weak formulation. We
will then take the limit in the resulting expression as a — 0 in order to obtain a Gronwall
estimate for the energy difference Ess defined in (5.109). The terms 7; in the expression

(5.123)) are as follows.
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r--| Lf e ()] - i L(ﬂ(a s - fur — (fizs)a] + Lf ) [ a)alir)

ff w1(0) - [ur — (¥2.5)a Jf wss atul——ff (€as 25 uns
Q7 (0) Qyf 2.5(t) Ty s5(t)

1
+ J a5 (7) - G () — f w2.5(0) - 1 (0) + if s (72 — §J wol?  (5.124)
Q2 s5(T) Q5 (0) Q2 s5(T) Qyf 2,6(0)

-5 ' Lﬁm«ul Vyw) [ (ns)el — g | ' Lf,m(’“ V) — (G, 5)a] -

1 (" R 1 i
_ if Jgf y )((’uz,a -V)uzs) - (U1 —uz,s5) + if Jgf g )((’U,Qﬁg V) (W1 —uzs)) - uzs  (5.125)

1 (" - 1 (7 ~
= (u1-m1 — & -n)ur - [ur — (B2,6)a] — 5 (u2,6 - Mas — &y 5 M2,5)U2,5 - Ut
2 2 )
T1(t) o 5(t)

1 (7 1 (7 - 1 (" ~
+ff j \u1|2<sl-nru1vm>ﬂj f 1 2[(€.5)er -1 — (T, 5 ) 701 ] — f f 5 2 (€120, — 1 1)
2Jo Jri 2Jo Jri 2Jo Jry s

1 T 1 T
+ EJ j (uz,s - m — €25 vn)\ust? + §f j |“2’6|2(€z,5 ‘n—uzs-n) (5.126)
Ty 5(t) 0 JIg s5(t)

T, = ZVJ fQ D(u1 — (G2,5)a) — 21/[ Lz " D(us2,5) : D(t1 — ua,s) (5.127)
2.
Ts = ﬁj L —u1)-[(& — (€25)a)r — (w1 — (TU2,6) ﬁj L (Ea,5 —u2,6)7[(§1 — &a5)r — (1 — u2,6)-]
. ! (5.128)
f f(l 9 [ — (C2,8)a +prC1 = (€2,6)a f(l — (¢2,6)a(0)]
+ppf0 L Ca,5 - 0t1 —ppLCQ,a <CGi(r +ppf ¢2,5(0) - ¢1(0 2ppj €5 (T) | — §ppf ICo? (5.129)
T; = J f Awr - AG — (C2,) J f Awzs - AG + = J |Awa 5 (T)]> — *f | Awol? (5.130)

Ts=—pbf 06 — Eag)al t v [ €0 [6:7) = Eag)a] — oo [ €00)-[€1(0) = (€.5)a(0)]
0 JQ, Qy Qy

o] ] o agi—m | &s) 6@ ] 6s0) 6O 5o | s -G | el G131

To = 2pte LT o D(n,): D [51 - (52,5)&] — 24 JT

D<n2,5>:D<sl>+uej D)) — e j D)
0 JQ Qy Qp

(5.132)
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To=e [ ] (700 (-6~ @) A [ (Tma (T €05 30 [ 19 masr = [ 19l
(5.133)
Ty = 20 f D(&,): D€, — (Es4)a] — 2010 f D(&,,): D(E,) + 20 j D&, (5.134)
0 J 0 JOy 0 Jy
T = A | L6 (7 [~ el 0 | L (V- &5)(V-€)+ 0 | f V&% (5135)
fa = 70[ J;% 1(®) 525 +O‘f ‘le25(t) p26 e 5)) (5:130)
Tis = —co f ’ j P10 [p1 — (p2.6)a] + o f pi(7)  [1(7) = (P2.5)a(7)] - co j po - [91(0) = (p2.5)a (0)]
v [ ] pslm e[ pas) @ v | nl e | s - Ge |l 6197
Tie = —af Ll(t (& ) [p1 — (p2,8)a] +aj sz) &5 1) (p1 — D25) (5.139)
Tir =k j L PR UECORE *’"L L IRCTRCEn (5.140)
T = f frl(t) P = f frl(t) (tz,) 52 ? T f Lz s (%) prolur &) n
f L” p2,5(u2,6 —&a5) J Ll (ur — &) - (p2,6)a J L”m (u2,6 —&55) - m)(P1 — P2,5)
(5.141)

We will estimate each of the terms in this list in the subsequent subsections.

Term 1

In the weak formulation (5.100)) for u, we test with v = w; — (t24), and obtain the terms:

T, = f Lfl uy - O [ug — ——J Ll(t) & n)ur - [ur — (Gzs)a]

+ Jﬂﬁl(ﬂ U (7') . [u1 - (17/275)04] (T) — fgf(o) U (()) . [Ul _ (’lvlz,(s)a] (0)7



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 265

where 2£(0) is the fluid domain corresponding to the initial structure displacement wy. We
note that w, is smooth in time and (%2 4), as a result of the time convolution is differentiable
in time. Thus, by the Reynold’s transport theorem,

T1 1= J J (%’lﬂ u1 u25 J J n1 [u1 - ({‘275)0]'
Qf 1 Fl(t)

Because u; is smooth and by the weak convergence properties of (3 5), in Proposition m,

T o 1 T -
T, = J J Oy - [ug — Ao 5] + §f J (& -my)ug - [ug — Uos] + K10,
0 JQs1(t) 0 JI'i()

where K1, — 0 as @ — 0. Using estimates as found in [159], we can transfer the first
integral from Qy;(¢) to Qs24(t) at the cost of an additional term, so that

T N R 1 T o
T, = J f Qi - (ug — Uz,(s) + §f J (& -my)ug - (ug — Uz,(s) + Riis+ Kijga,
0 JQys25(t) 0 JIi(t)

where

.
|Ri1s] < EJO ||a — U2.6||§{1(Qf,2,5(t))

) (j leor — wasl oy + f uon — By oy + j ||a1—u2,5||%2(9f,2,5<t>)).
0 0

Thus, by using Proposition again,

T, = J J ity - (Ug — U25 f J (& -ny)uy - (ug — (Uz 5)a )+R1,1,5+[~(1,1,a,
Qy2.5(t) Ty (t
(5.142)

where K1,1,a —0asa—0.
Next, we test the regularized weak formulation for u, s with @, and obtain the following
terms:

T12— JJ U - atul__JJ 525 "125)“25 Ul
Qy9,5(t) o s(t

LMJ( )U25( T) - () - Lf(()) u,5(0) - 6y (0).

We want to integrate by parts in time, but us s is not necessarily smooth in time. Thus, we
replace ug 5 by its time regularization (uss), at the cost of a term K 5, which goes to zero
as a — 0 by Proposition [5.9.1] Combining this with the Reynold’s transport theorem,

T12—J f i [(u2,6)a] - Ur + 5 f J (€25 - M2,5) (U2,6)a - Uy + Kipa,  (5.143)
Qfg(s F26
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where K5, — 0 as a — 0.
From the energy inequality, we obtain the terms

1 1
T1,3 = §f |’U,2’5(T)‘2 — QJ ”U/275(0)|2. (5144)
Qf.2,6(7) Qf.2.6(0)

Using the Reynold’s transport theorem, the total contribution 77 =T} ; — T2 + T 3 is

~ 1 ~ ~ ~
f-g | @@P-G @mOP- [ @@l [ G ()0
Qy,2,6(7) Qf,2,6(0) Qf,2,6(7) Qy,2,6(0)

1 1 1 (7 ~ ~
fr ] s [ s P 5 [ [ (s mas)n @ ()
Qf,2,5(7) Q,2,5(0) 0 JT2,5(t)

1 (" . N
+ §J f (& -ni)ur - (U1 — (B2,5)a) + Riis + Kita+ Ki2,a.
o Jri(p)

By Proposition [5.9.1] (u2s)s and (@2s)s converge weakly to ugs and e s respectively,
weakly in L2(0, T, W'P(Q25)) and L*(0,T, W'?(Q;,)) for all p € [1,2). Furthermore, we
have that

f (fir-(u2.5)0) (0) — <a1-u2,5><o>,f (- (w3,5)a) (r) — (i -un5) (7).
Qy2.5(0) Qf2.5(0) Qf25(7)

Qp25(7)
(5.145)
We defer the technical proof of this statement to the appendix, see Lemma |[5.12.5, Thus,
taking the limit as & — 0, the contribution of this term is now

N 1 A
T, = _f (@1 — ug)(7)]* — §J (@1 — u26)(0) [
Qpos(r Qy.2,500)

2
(1)
1 (7 . . 1 (7 o
- 5] f (52,5 ‘N5 Uy - (U — Uss) + §J f (& -m)ug - (U — Uos) + Ry
0 ngg(t) 0 Fl(t)

Since 4;(0) = u2,45(0) = g, we obtain after some standard estimates that

1 ~
Ti=g | 1@ - wa) )P R,
Qf2,6(7)

where
T
|R1,5| < EL H’u1 - U2.5||12H1(Qf,2,5(t))

T T
+C0 ([l = el + [ 11w = Gl + |
0

0 0

T
Hal - U2,5H%2(Qf’2,5(t))) ’
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Term 2

Because (Uz5), converges weakly to @a s in L?(0,T; WP(Q4)) for p € [1,2) by Proposition
5.9.1, and because w; is smooth, as @ — 0, we have that 75 converges to

-2 L ) Lf’l(t)((u1 VYur) - (uy — i) — %fo Jgf,lu)((ul V) — i) -

1 (™ N 1 (7 ~
— §J J (w5 - V)usy) - (U1 —ugs) + §J J (w25 - V) (U1 — uas)) - U2 5.
0 nyg}g(t) 0 Qf,2,5(t)

We note that the quantity

1 T
5 f f ((Uz,(s : V)UM) c U5,
0 JQyo5(t)

is well-defined because ua s € L*(0,T; L*(Qf25)) N L*(0,T; H (42,5)), which by interpola-
tion is in L*(0,T; HY?(Q.2)), which embeds into L*(0, T; L*(Q4.5)).
We want to transfer the integrals

f J ((’Ll,l . V)’Ll,l) . (’LL1 — 1\2275), J J ((ul . V)(U1 — 1\2275)) U, (5146)
0 Qf’l(t) 0 Qf’l(t)
to integrals on €75 5(f) by using the map s : Qf95(t) — Qf1(¢) defined by (5.103]). We use

uy =yt (ug 0 s), Uy —ugs = v5J5 ' ((wy — Ug) 0 Ys),

where we recall the definitions of the appropriate terms from (5.102]), (5.103)), (5.104)), (5.107]),

and ((5.108)).

Following arguments found in [159], we obtain the following estimates. We have, using

(.100), that
fJ' (a1 -V )aar) - (ur ) = \[j V (wr0v)) Ty (wr 0s)] - (un — ) 0 s
Qy,1(t) Qf26(t)

=fﬁméuvmmwmmyhg%mvaﬂ
[ el - 7o) 5 )
Lﬁmé (Va)th) - (#h — ) + fﬁmé (7 =3T3 ) s © ) 0) - (B — )
e 105 @ )

- j Lm (@1 V)] - ( — uag) + Ry, (5.147)
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where

0

R, = JT Lf’zyé(t)(V((I — s T ) (w0 Ws))in) - (T — usg)
- L L (ﬂKv(ul o vs)) ] - [(I — 5" Js) (U — ua)].

In the following estimates, we will repeatedly use the following inequalities, which hold for
a constant C' that is independent of d:

s s = 1| < Cllys ' = U + [Vsl) < Cllwr — wasll 2y,

55t = 1| < Cllvs — 1 + [Vs]) < Ollwr = wasllm2m),
V(155 )] < C(1075] + [0aars]) < C(llwn — wasllm2(r) + |Oan (w1 — was))), (5.148)
so that
IV (65 2250 < Cllwr — was 2 (ry. (5.149)

To obtain ((5.148]), we estimate |0,,7s| by using the fact that w; is smooth so that |0,,wi1| < C

and a direct computation of 0,,7s.
Using these estimates, the Leibniz rule, and the smoothness of u,

JTJ (VI =755 1) (w1 0 96)) ) - (T — ua5)
0 Josas0)

T T T
<cC f s — w2 1 — 2.5l L2y 2 s < C (f ot — wl2pa sy + j iy - u2,5||%2<9f,2,5<t>>) .

By using (5.106)), and using the fact that |Js5| < C' is uniformly bounded, due to the fact
that |J5| < C(1 + [|w1 — was]|m2(r)) < C is uniformly bounded, we obtain a similar estimate
that

fﬂ[ (7 (s 0 469))an] - [(1 — 75" Js) (@ — 125)]
0 JQs25(t)

<C(Lwﬂ—ww;m+ﬁum—wméﬁwm)

Thus, we obtain

um<c(£wﬁ—mw;m+ﬁ|m—wﬂ@www). (5.150)
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Handling the second integral in ((5.146)), we have by using ([5.106|) that

fo (u1-V)(u1—t2s)) us = JTJ 75[(V((u1—ﬁz,a)O%))J(s_l(“lO%)]'(ulo%)
0 Jasit) 0 JQro (1)
B J J [(V (w1 — Bas) 0 5))ta] - (v Jstiy)
0 JQyo5(t)
- j f (7 (21— T ) 010 ] -y — f f (7 ((ttr — i ) 0t Y- [ (1~ 3]
0 JQso5(t) 0 JQso(t)
- Jo fm,;dﬂwml ~ Uas)th) fo JQf,Q,a(t)(v[([ =55 ) ((wr — o) 0 s)]U1) - U
o R RS AN (SR RRATH
0 JQy2s()
_ f f (@1 - V) (@1 — wsg)) - Gr + Ra, (5.151)
0 JQya5(t)
where

fe = JTJ (VI =755 ) (w1 = o) © ¥5)]0) - U
Qf2,5(t)

0

_ LT L (t)[(v((ul — as) 0 U5))aa] - [(1 — ~5 Js)iun).

To estimate Ry, we will use the following inequalities:
(w1 — o) 09| = |75 ' 5 (B — uas)| < Ol — uayl,
IV (wr—ta5)os)| = [V (75" T (T —a6))| < [V(757 o) | [t~ 4|75 5|V (@1 —ua )]
< C(V (5 o)l - [ty — uz| + [V (81 — uas)]).

Therefore, we estimate, using max (\I — ;5 s, | — 75J§1|) < C'min (1, [lwi — w275HH2(F)),

el < € (J J IV (55 D) - (w1 — o 5) 0 s +J f 1L = 5J5 " [V ((wr — Tins) 0 ¥s)]
0 JQy 2 5(t) 0 JQy 2 5(t)

[ 9 — i) o%))

0 JQy o 5(t)

<C<J f (|V(75J(;1)|+|V(7(;1J5)‘) ~|1’21—u2,5|+f f ||"-’1_°~’2,5||H2(r)'|V(ﬁ1—uQ75)|>
0 JQf 0 .5(t) 0 JQgs 2 5(t)

< €J HV(ﬁl - u2,5)||iQ(Qf’2'5(t)) + C(G) (J ||UJ1 - W2,6||§{2(F) +J ||ﬁ1 - u276||§12(ﬂf,275(t))) . (5152)
0 0 0
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In the last line, we use the following estimates, derived similarly as for (5.149),
V(5 Js)| < C10:(75 )]+ 10:75] + 10za75]) < Cllwn — wasll 2y + [Ona(wi — was))),

IV (5 J6)| 2 Q051 < Cllwr — wasl|m2r)

Therefore, in the expression in (5.125)), after transferring the integrals ((5.147]) and (5 m

and estimating R; (5.150) and Ry |D the remaining terms we have to handle are as
follows:

lfLWIWFme@—w@—mywvaMIm

1 (" ~ ~
- —f J [(u2s - V)uas|- (U1 —uas) — [(u2s - V)(U — u2ys)] - Uas
Qs2.5(t))

1 (" o oy X )
= §J J [((U1 —uays) - V)ugs] - uy — 5] J [((T) — o) - VU] - ugs.
0 02401 0 JQy25(t)

In absolute values, we can bound this by

<EJHV@VWMMQWWMW+C@J|mrﬁ%ﬂ%mmm»
0 0

Thus, combining this with (5.150) and (5.152)), we obtain
1 < ¢ [ 1900~ ) a0y + €O (f|m ws ol ar) Lum—wm@mmmﬁ-

Term 3

Because u; and &, are smooth, we can pass to the limit as o — 0 using Proposition
and the fact that (§,5)a — &u5 strongly in L?(0,7; H'(€)), so that we can ultimately just
test with v = uy — U5 and Y = &, — €55 In the regularized weak formulation for uy s, we
test with u;, and &;. Note that both test functions u; — @2 and Uy — us s have the same
trace along I';(t) and 'y 5(¢) respectively, which we will formally denote by u; — uy s along
the reference configuration of the interface I'. Combining the resulting expressions, we have
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the following contribution of 73 in the limit as a@ — 0:

1 - N
T = 5 f (u1 n;—§ 'nl)ul : (u1 - Uz,(s) - 5 f f (U2,5 "MNas — 52,5 : ’n2,5)u2,5 " Uy
0 Fl(t) Tos
1 1 (" -
+ 5‘[ f !U1|2(€1 My — Uy ) — —f J |U1|2(£2,5 STy — Ugs - M)
0 JIi(¢) (¢
1 -
- 5] J |U2,5|2(51 "MNays — Uy - nza f J ‘T — Uy 'n1)u1 “Ug s
0 JTy5(t) ri(t
1 o R
- §J J (52,5 TN — Ugs nl)’u1’2 - §f J (51 N5 — U nz,é)\uz,é\Q
0 JI () 0 JIy5(1)
1 (7 ~
5 J J (Eo5 - M2s — Uzs - Mos)Uss - U = Ry + Ry,
Ty s(t)
where

f J — U y’u25 (Ul U2 5 ——f f 525 u2§>yu1 (ul_u26)
1 T 1 T 2
=3 5;5&11(“1)33“1 U5 — = awwl(u2,6):v|u1|
2Jo Jr 2Jo Jr

1 (" 1 ("
— —J f Ozw2.5(U1) + —f J Ozwa 5(U25)z Ut - U 5.
2J)o Jr 2J)o Jr

We estimate R, as follows. We decompose R as Ry = Ri1 + Rio, where

Ry = —% LT L(fl)y(ul —Uss) - (U1 — Uzy) J J = &ap)yun - (U — uzg),

1 (7 1 ("
Ry = —J J (Ul)y(ul - U2,5) : (Ul - U2,5) - —J J (Ul - u2,§)yu1 : (ul - U2,§)-
2J)o Jr 2Jo Jr

By interpolation,

T ~ 1/2 A~ 3/2 T ~
|R11| <C (J; Hul - u2y5||L/2(ny2’6(t))Hu1 - u2,5‘|1;1(9f72'5(t)) + L H£1 - 52,6||L2(F)Hu1 - u276HH1(Qf7215(t)))
4 ~ 2 T ~ 2 T 2
< EJ |21 — u275||H1(ny215(t)) + C(e) (J a1 — u2»5HL2(Qf,21(;(t)) +f 1€, — &2,6HL2(F)) .
0 0 0

By using the same interpolation inequality, we obtain

2
(Qf,2,5(1))"

T T
Risl <c f s — wa sl , i + €L f 6 —
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For R,, we rewrite Ry as

1 (" 1 (7
Ry = ——J J ((9xw1—5xw2,5)(ul)zu1'(Ul—u2,5)——f J Ozw2 (U1 ) (U1 — U 5) (U1 — U2 5)
2 o Jr 2 0 JI
1 (7 1 ("
+ —f J (Ozwy — Oz s) (U1 — u2,6)x‘u1‘2 + —f J Opwas(U1 — Uz 5),u - (U1 — Ung).
2Jo Jr 2 Jo Jr

By interpolation, the boundedness of |0,w;| and |0yws 5|, and the smoothness of w4,

T T T
Rl < f o — sl e, iy + 1) ( f o — waallegey + f 8 — uz,a\!%sz,2,5<t)>) .

Hence, we obtain the final result that

|T3 S J‘ Hul u25||H1 Qf25())

e ( f e — wa oy + f 1€, — €12 + j ||a1—uz,auisz,z,é(t))).

Term 4

As usual, we use Proposition to pass to the limit as @ — 0 so that the contribution
from T} is

T4 = QVJ J D(’U,l) . D(’Ll,l - 1\1275) - QI/J‘ J D(Ugﬁ) : D('ﬁ,l - ’U/275>. (5153)
Qpa(t Qros

We want to transfer the integral on Q;(t) to Qf25(t). Recalling (5.106]), we have that

f J Dl =) J f Vi(wa 0) Jy 1" [V (wr = thzg) 00s) Iy,
Falt 7,2,8(t

where the superscript ‘s’ notation denotes a symmetrization. Following estimates in [159],
we break up the integral as

J f D(’qu) . D(’u,l—’l\igﬁ) = f J D(ﬁl) . D(ﬁl—UQ75)+R1+R2+R3+R4,
Q1 Qras
(5.154)

where

= f J ( )(V(m 0 1hs) Iy )T [V(WU —uas)(J5 ' — 1) + (Js — D)V (U — uag)J5 '],
Qpaslt

Rom [ 0= 300Vl o ) + Vs o 0a) (U5 = D)5 Dl — was).
Qros
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s = f J V(uy o) J5 1) (3 V (5 o) (U — uas)J5 1),
Qp2.5(t)

j[£m6JWWMFDMO%PJX%—UM)

To verify this equality, one can use the Leibniz rule, the definition w; = ~s.J; L (uy 0 v5),
and the identity u; — ugs = %J(S_l “((uy — U s) 0 Ys).
Recalling the definition of Js from ([5.104]), we have the following inequalities

< CA+[0)), 1y =11 < Cllvg" = 1]+ |2s)),
[ Js = 1| < Cllvs = 1 +10:%]), [ d5" =11 < Cllvs — 1] + [0:7])-
Recalling the definition (5.102)),
s — 1] < Cllwn — wosllzy, st =1 < Cllwr — wasl |2y

1027s] < Cllwn = wasllmzy,  10:(75 )] < Cllwr — wasl|2(ry-
Because |J; | < C(1 + |0,7s]) < C since |0,75] is bounded, and because w; is smooth,
|R1| < CLT IV (81 — w2.6)lI 120,250 (V5" = Ulrzyas) + 1176 — Ulrz, s + 10275l 200, 2 56))
< [ 19~ w2 + OO [ llor = waallieqr
We also have that
T -
Ral < € | 1D w2l + €O | llor =l
For R3 and R4, we compute that

-1
. - Vs 0 1y s 0

Therefore,
V(35 Js)| < C(10(05 D+ 103s] + 10mavs])s V(365 )] < C(1076] + |0avs])
where we can estimate
10225 < C(||lwr — wasl|m2(r) [ Ozewi | + |Oa (w1 — wos)| + |[w1 — was||m2(r))-

So since ||0pow1||2(0;,51) < C since wy is uniformly bounded in H?(T"), we have that
Ral <€ | V5 )0 s = w200

cjum—wmmaum—ummmmﬂ»

(j\wrﬂ@amz Luarwmm;mmﬂm).
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Similarly, using ||V (vsJ; ) 12(0;050) < Cllwr — wasl|m2(r), we have the following estimate
for Ry:

Ral <€ | IV O8I izt D@1 ~ w2ty

< f 1D () — 5)| (o, ) + C6) f eor — w2l
0 0

Therefore, using ([5.153|) and ((5.154)), we have that the total contribution of this term is

T, = 2uf f |D(t; — uas)|* + R,
Qf2.5(t)
where

71 < € [ 1D = w0y + OO [ = sl + [ 181 = wasllEaa )

Term 5

After passing to the limit as o — 0, the contribution of this term is
I RIC o) —2) ] B [ [ (5 uaa) (€~ o) — (@1 —uas),
T (t) 0 Jra st

We note that when we test the weak formulation for w; with v = u; — (%25), and ¢ =
€, — (&3,6)a, We can pass to the limit as & — 0 to obtain the first term in 75 above, by using
similar arguments involving Proposition [5.9.1] as for the previously considered terms.

We can rewrite this term as

Ty = 3 f f (€ — Eog)r — (@ — uag) > + Rs,
0 JTz5(t)

where

R5 = 5J Ll —&55)r — (w1 —U25)r 5[ L” (€1 —&a,6)r — (U1 —u26)-].

We denote the arc length elements of I'y(t) and I'y 5(¢) respectively by Ji* = 4/1 + |0pw1|?
and Jp*° = /1 + |02 ]2, and we denote the tangent vectors to I'y(¢) and T'y5(¢) respec-
tively by 71 = ﬁ(l, O,wi) and To 5 = ﬁ(l, Ox2.5)-

We can rewrite R5 by writing everyghing in terms of the z and y components, where
we recall that &, and &, ; along the interface displace in only the y direction. We formally
express the common trace of u; — %y 5 and Uy — us s along the reference configuration of the
interface I' by u; — ugs. Thus,

Rs— 3 j ' j (€, —w1) - (1, 0son) (€1 — Eng) — (1 — wag)] - 71
3 f ' f (€1 —w1) - (L Gsns)[(E1 — €25) — (w1 — usg)] - T
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In the previous step, we use the fact that when transferred back to the reference configuration
Qf, u; — uss and uy — Uss have the same trace along I'. Thus, Rs = R5; + Rs 2, where

Rs, = 5f J (/zwl 0 w2,6)[(€1 - 52,5) — (w1 — uz,a)] " T,

R52 = 5‘[ f 1 , Opo 5)[(51 - 52,5) - (Ul - U2,5)] ’ (7'1 - 7'2,5)-

We can use the fact that |0,wi| and |0,ws 5| are uniformly bounded to obtain the following
estimates:

Rou| < ¢ f 1D (@1 — us)llz2(0, 0 + C(6) (f er — wasl oy + f e, - 52,5||%2m) ,

where we used the trace inequality, Poincare’s inequality, and Korn’s inequality for the fluid.
For the second term Rg o, we use the estimate |79 — 7925| < C|0,wy — dywa 5] to obtain

Rsal < ¢ j 1D (@ — was)l 220, , 50 + C(6) ( f leor — sl oy + f Hal—sgmzm).

Hence,
15[ [ 16~ &) — @ - was)o 4 R,
Iy s5(t)

where
Ryl < ¢ f D@ — t2) |22, 00y + C(6) (j ler — | Brngry + f Hsl—sg,m%m).

Terms 6-8

We will consider Term 6, as the same procedure will hold for Terms 7 and 8. For Term 6,
we note that ¢; and (o5 are weakly continuous in L?(T'), by the weak formulation. Hence,

| | a-ats. fJCza oG
JJQ 0 [(C2.6)a JJ@& o [(C1)a JJC% O [(C1)a — G1

~ | o) -castn) - | 1ol
This is because by Lemma 2.5 in |159],

Jf@ 0 [(C26) fJCza 0 [(C1)a —’JQ “Cos(T J|Co\2 as a — 0,
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and since (; is smooth in space and time, we have that

JTJ Co5 - 0 [(C1)a — C1] — 0, as o — 0.
0 Jr

Furthermore, because (;(0) = (2,5(0) = (o, we have that LQ(O) [¢1(0) = (¢26)a(0)] — 0 as

a — 0 by the weak continuity of (35 at ¢ = 0 and similarly, f G(7) - [G(T) = (Gap)alT)] = 0

r
as a — 0 for almost every 7 € [0, T]. Hence, as o — 0, the contribution from Ty is

7 =50 | G- @)

Similarly, the contributions from Terms 7 and 8 as v — 0 are

1 1
A Rl R T T IR SIS
Terms 9-12

Because &, 5 € L*(0,T; H'()) where  is a fixed domain, we have that (§,5)a — &2,
strongly in L*(0,T; H'(€)). Hence, we have that Terms 9-12 converge to the following as
a— 0.

1
Ty = [ 1D = m)(OF, Tw= ) [ 19 (= m)(),
Qp Qp

T = 2p, . JQ ID(&, — &), Ty = )\vL J;Z V- (& — 52,5)|2-

Term 13

By taking the limit as & — 0, we have that

T3 = —Oéf f V(& — 52,5) + af f pasV - (& — 52,5)-
0 JQu1(t) 0 JQp25(t)

Then, we estimate using (5.26) and the matrix identity B~ = — B¢,

det(B)
Tl = o[ f PPV (€ €a5) - f T o sV - (€ — En)
0
_ ~ \C
af J p1 - tr ( — &) (I +Vn,)° J J pas - tr ( —&s5) (I +Vy,) )I<I1+Ig,
Qb Qb

where the superscript “C” denotes the cofactor matrix and where

D1 tr —&,5) - (V(m 772,5))0)

)

Qp
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[2204

L ' L (01— pog) - tr (V(&s — &) - (I + Vitns)C)]

In the previous calculations, we observe that the cofactor matrix operation is linear when
the matrices are two by two. Using the fact that p; is smooth, the assumption (5.114)), and
the fact that

V7, — V7~72,5HL2(95) < Cl|Vn, - VU2HL2(Q,,) <C (anl - V’?z,aHL2(Qb) + [lwr — W2,6HH2(F))
(5.155)

for a constant C' independent of 4, by Young’s convolution inequality and the definition of
odd extension to the larger domain {2, in Definition , we obtain

L<e f V(&) — &05)|Paray) + OO (f v, — vm,auizmb))
< o<e>j0 1V, — Vi oy + ¢ f V(€ — &25) oo
+ (0 ( [ 190 = e + [ o - w2,5||%pm) ,

and

< e [ 19~ &l + 00O ([ = pealling, )

Therefore, we conclude that

Ths| < O(@L N V7~71H%2(Qb) + EL V(& — 52,5)“%2@,)

e ( f 1V — Vsl + f len — sl By + f ||p1—p2,6||%z(gb))-
0 0 0

Term 14

This term can be handled in the same way as Terms 6-8. We obtain that in the limit as
a — 0, the contribution from this term is

1

Ty = §Cof ‘(pl - p2,6)(7)’2'
Qp

Term 15

Upon passing to the limit as o — 0,

T D T D
Ti5 = —Oéf J —1M1 - V(p1 — p2,6) + Oéf J 26 V(p1 — p2,6)-
0 JQ1(t) Dt 0 Qb,2,6(t) Dt
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By pulling back to the reference domain, we can estimate using ([5.26) and the cofactor
formula for the matrix inverse:

Tis] = a f TP oy -V (91— pag) — j T 35 - VI (01— pag)
0 Qp
—a f oy - [V(pr = pos) - (I + Viy)C f j Bettas - [ p2,5>~<1+vm,5>0]\<11+12,
0 Qp
where

Ileé

f 0 oy - [V(p1 —pas) (Vmy — V"~7275)0]' )

0

o (Pmy — at’h,a) : [V(p1 —p2s) - (I + V7~72,5)C] .
b

For Iy, by using ((5.112)), (5.113]), and the convolution inequality ([5.155)), we have

GJO Hv<pl - p2’6)|‘i2(ﬁb,2,6(t)) + C(E)J;) anl - v'f'IH%Q(Qb)

+C@<JHVm—V%mﬁmm+f|Wrw%m%m)-
0 0

Here, we used the following estimate on the norm of the gradient of the pressure on the

reference domain and on the moving domain. We observe, using ((5.112)), (5.113)), and (5.26]),
that

||V(p1—p275)(t)|]%2(9b) = L IV (p1—p2,)]* = . J},ﬁ“]VZ“(pl—pg,(;)-(IJerf;M)]2.(‘7;7275)*1
b

b

<O | TPVl = ClIV D~ 2s) Ol (5150
b

for a constant C' independent of § and the time ¢ € [0, T5].
For I, we have

J IV (p1 — p2 6)||L2 (Q.2.5(1)) J |[0emy — dm, 6||L2(Qb
Thus, we have that
Ths] < €J0 IV (p1 — p?,é)”iz(ﬁhlg(t)) + C(E)L IV, — VIF’IH%P(Q,J)

+C@(JHVmV%d@mw+JHMWMﬁmm+JH@m@mA@QO-
0 0 0
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Term 16

After passing to the limit as @ — 0, we want to estimate the quantity

T16——Ozfj 1) (p1 — Pas ‘f‘aff 526 T25)(P1 — D2,s),
Fl F26

where 79 5 is the upward pointing normal vector to f‘g,g(t). We integrate by parts to obtain
that |Tig| < I + I3, where

I =«

LT L,,,1<t)(v +&1)(p1 — p2s) — LT J (V- &0.5) (01 — as)]

Qp,2,5(t)

T T
f f €, V(p1— pog) — f | s V- ma).
0 JOy1(t) 0 JQp o 5(t)

By using (5.26)) and the bootstrap assumption (5.114)), we have that

[2 =

IlfOl

f T (VI €)) (pr — pas) j T (6e(V €y ) (01 — pa)
Qp

=«

f f (Ve - (T +V)) (o1 — pag) — f f (Vs - (I + Vit 5)) (01 — pos)
0 JQ 0 JQ,

tr(VE - (Vmy — Vﬁz,a)c)(]?l —pas)| +

LT L} tr(V(& — &) - (1 + Vﬁg’é)c)(pl —pas)

Qp

< Cf IV — Vi sllez,) - Ip1 — p2sllzza,) + Cf [IV& — V& sllrz(a) - [Ip1 — p2,sllL2(0y)-
0 0

For the second term, we compute that

T

I, =« . &5 [ Vo1 —p2s) - (I + vﬁQ,é)C]‘
b

[ [ €= 19—+ |

[[] & 1901 =pa)- r+9n) - |
0 JQ,

0

<«

J. & - [V(p1 —p2s) - (Vi — Vﬁ“)c]‘ +a
0 JQ
CJ [IVp1 = Vpasllz,) - IV — Vo sllr2(a,) + CJ 11€1 — &25llz2(00) - IVPL = VD25l 22(0y)-

By the convolution inequality ([5.155 m and the previous estimate on the gradient of the
pressure ([5.156|), we conclude that

Tial < ([ 196 = Vel + [ 1991 = Traliaga, ) + 000 ([ 11 = paslia

+L [V, — v'f]1||2L2(Qb) +J0 [V, — V%,a”%zmb) +L llwr — W2,6||§12(r) +J0 1€ — 52,5||2L2(Qb)) :
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Term 17

We want to estimate

T17—/<f J V(p1 — p2s) —/ff f pr V(p1 — pas)-
Q1 (t) Qp2,5(t

Using ((5.26)), we compute that

T

T17 _ KJ %ﬁl VZl]h . vgl (p1 _ p2,6) o "QJ jﬂ2 5V772 5 . VZz,a (p1 . pz,s)

0 Jay 0 Joy

= liJ jnnvm6(p1—p2,5)'vg2’6(p1—p2,5)+]1+f2 = Iif f [V (p1—p2s)|*+11+ 1o,
0 Jo, Q2.5

where

I = /if jbmvmp vn (p1 P2 —'ff nQ&VmPl Vnz (pl p2,5);
Qp

[2 _ ’%J ) 7725 Vglpl o VZZ&pl) . VZQ,J (P1 _p275).
b

We estimate I; as follows. Using (/5.26]), we compute

L = HJT Vitpr- (V(pl — P2s) [(I + V)" = (I + Vﬁzé)c] )

0 Jay

Because 1, is smooth, |V} p;| < C uniformly in space and time. Therefore,

1 < € [ 1901 = pas)lzzen (9 = V1) e
Using the estimate in ([5.156[), we obtain the desired estimate that
Bl < ¢ | 1901 = P20l 0y + €O | 193 = Fitsslfny
For I, we use the bootstrap assumption ((5.114]) that there exists a constant C' (inde-

pendent of 6) such that [V, ;| < C pointwise for ¢ € [0, T5]. Therefore, |(I + V), ;)] is is
pointwise uniformly bounded in space and time on the time interval [0, Ts]. Thus, by (5.26]),

I, = /iJ (Vi'p — VZ2,5p1) [ V(pr — pas) - (I + V7~72,6)C]
0 Jo,

and hence,

Bl < C [ 1929 = 93 pilisen [V 01 = pa)l i
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Using ((5.26)), we compute that
i _ L N_172
IV = Vi pillZ2q,) = L Vo1 - [(L+ V)™ = (T + V)|
b
o . _ 2
= | VB @ Vi) T )T V) 1)
Qp
= | IVp i) T Vi)~ (X IONE I
Q
e s 12
— | IVB @ Vi) Vit = )+ V)
Qp
Using the fact that p; is smooth and the bootstrap assumption (5.113)), we have that
IV = Vi millE2 i, < ClIVAas — V2,
Therefore, combining this with the previous estimate ({5.156)), we obtain
2= [ 190 2oty e + €O [ 197 = Tl
By applying the previous convolution inequality (5.155)), we thus obtain the final estimate
that N
Ti7 < Kf Jl |V(p1 —p275)|2 + R,
0 JQp25(t)
where the remainder is bounded by
Rl < e [ 1960~ r2) a0

£ C( ( f 1V — Vit |aey + f IV — Vsl oy, + f o —wz,(suzm).
0 0 0
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Term 18

We want to estimate

- fo Lw(t) pas(ur — &) - mas + L Lw(t) Pas(Uzs — Eg5) - Mg
- LT Ll (w1 — &) - m1)(p1 — pas) + JT LQ » (w25 — &) - M25)(P1 — P2,s)
f f (g5 —&o5) M1 — J L” p2s(ur — &) - naos
+Lﬁwﬂm—&Wme+Lﬁm&mw—ﬁﬁﬂum

By bringing all of the integrals back to the reference domain I,

Tis = = | ] prtoas = ag)- (1 ffmam €0) (~0rin.1)
# [ [ pastur =) omn )+ [ | rlas - €0)- (~orns)
~ [ [ prtwas 2512 s = s = [ [ pastun — 1) (s — usn)
- || il was—a5)21 @2+ || rpas) =€) B0

We obtain that in absolute values, this quantity is bounded as follows.

p1[(u1 — &)z — (u2,6 — &5.5)x] - (Oxw1 — Ouwa,s)| + (Pl —p2,6)(u1 — &1)a - (w1 — Opw25)

<C (J (w1 — (u2,5 — &5.5)allL2(0)|0ewr — Gow2,s]|L2(1y +J [lp1 — 2,5l L2y [|Gawn — Ouw2 5HL2(F)> :

We thus use the trace theorem, Poincare’s inequality, and Korn’s inequality to conclude
that

ial < e ([ 1D -~ was)lBa wuioy + | 196 = ol + [ 1901 =m0l )
) | llor =l

5.11 The Gronwall estimate

Combining all of the previous estimates, we have that the following integral inequality holds
for almost all 7 € [0, Ts], as long as the three assumptions ((5.112)), (5.113]), and (5.114]) hold:



CHAPTER 5. FLUID-POROELASTIC STRUCTURE INTERACTION 283

str) < C ([ 19m = Vil + [ Estar). (5.157)
0 0

where Fs(t) is defined by (5.109). We have by Lemma that
t
Jo IVn, — V'th%?(Qb) < 00,

So we rewrite ((5.157)) as
t
Es(t) < C8° + CJ Es(s)ds.
0
So by Gronwall’s inequality, for all ¢ € [0, T],

E(;(t) < 05366’15’

as long as the three conditions (5.112)), (5.113)), and ([5.114)) hold, where the constant C' is
independent of 4. By using the bootstrap argument described in Section [5.9, we complete the
proof of the weak-classical consistency result described in the statement of Theorem [5.9.1]

5.12 Appendix

In this appendix, we show a result related to weak continuity of solutions to the regularized
FPSI problem. This result will allow us to verify the claims from before that as @ — 0,

A~

j 1(0) - (ws)a(0) — fuol?, andf () (uns)alt) = [ () uas(),
Q52(0) (0) Qy 2(t) Qg 9(t)

Qp o

for almost all points 0 < ¢t < 7. This result was used in (5.145]), for estimating the first
term T) given by ([5.124) in order to show the weak-classical consistency result. We will
accomplish this through the following series of lemmas.

Lemma 5.12.1. Let w e L*(0,T; HZ(T')) n Wh(0,T; L*(T)) with

min R+ w(t,z) >0,
te[0,T],z€[0,L]

define the moving fluid domain Q%(t). Given w € L*(0,T; H'(Q%(t))) n L=(0,T; L*(Q(t)))
where Q(t) = {(z,y) e R*: 0 <z < L,—R <y < w(t,z)}, we have that

||’u’0t(t7x7y> - u(t7x7y>||L2(Q‘}’(t)) — 0 as o — O,

for almost all ¢ € [0,T].
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Proof. Recall that in the case of real-valued functions, one shows convergence of the convolu-

tion to the function itself almost everywhere by using the Lebesgue differentiation theorem,

see Section C.5 in [70]. To apply the theorem in this context, we need to apply it to a

function taking values in a fized Banach space rather than a time-dependent Banach space.
As a result, we consider the following function,

R+ w(t,x)

v(t,z,y) = K(t,0,2,9)u (t,az, (R+y) — R) ,

where we have pulled the fluid velocity back to the fixed initial domain ©%(0). We recall the
definition of K (s,t,z,r) from (5.118)) and its inverse:

IR;‘:-UJES,J:)) 0
K s, t, z, _ +w(t,x :
by <—<R b (Bt 1)

R+w(t ) O
_1 . R+w(s,x)
K (S, t,x, y) - ((R + y) R+w(t,a:)) ax <R+w(s,x)> 1) .

R+w(s,z R+w(t,r)
By the uniform boundedness of R+w(t, ) and |0,w(t, x)|, and minepo 7,zef0,0] R+w(t, ) > 0,
it is immediate to see that w(t,z,7) is in L*(0,T; L*(Q24(0))), where we emphasize that
L?(€24(0)) is a fixed function space that no longer depends on time.
By Lebesgue’s differentiation theorem, almost every t € [0,T] is a Lebesgue point satis-

fying

) 1 t+a
lim o La Io(t, ) = v(s, |2 opds — 0. (5.158)

Recall that by definition (5.119)),

R+ w(s,x)

ua(t, 2,y) = JR K(s,t,z,y)u (s, O LR R) Jalt — s)ds.

Thus, we compute that

o)~ Rewlsn) o N L
ualtseg) = uttag) = [ (Kt (s 20T Ry - R) = utnn)) dale = o)
=1 + I,
where
_ R+ w(0,x)
L =| K! _— — .
' JIR{ (t,(),x, R+ w(t,x) (B+9) R)

(v( R“’—me)—z%)—v(t, R*“—W(Rw)—z%))ja(t—s)ds,

* TRy w(t, o)
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I, = JR (K(s,t,apy)K_l (S,O,x, %(R+y) - R) - K™ (t,O,x, %(R+y) - R)) .

v <s,m, %%(R—i— y) — R) Ja(t — ).

We estimate each of these terms as follows. For I;, we compute that

R+w(0,z)
R+ C«J(O, l’) R+w(t,xz) 0

K! (t,O,x,—(R+y)—R)= 2 ;
R+ w(t,2) (R+y) () o (fess) 1

which we note is uniformly bounded on [0, T]. Hence, using the fact that [j,(t — s)| < 1,

1]l z2(0z 1)
1 t+a
t—a

u( R“"(O’x)mw)—z{)—v(t R“"M(Rw)—za) o

2T Ry w(t ) D Ry w(t, )

«

1 JM (R + w(t, )

1/2
<C-= R+w(0,x)) [lv(s,z,y) — v(t,x,y)HL2(Q«}J(O))d8 — 0,

-

as a — 0 if ¢ is a Lebesgue point, by (5.158) and the uniform boundedness of EIZ(%”;)) on

[0,77].

To estimate I, we can use the continuity in time of w and Jd,w to calculate that

_ R+ w(0,z) _ R+ w(0,z)
K K Tt ) “R)-K! i 1 ~R)|—
‘ (s, t,x,y) (S’O’x’R+w(t,x) (R+vy) R) (t’o’x’Rer(t,x) (R+y)—R 0,

uniformly in (z,y) as s — t. We estimate

HIQHLQ(Q‘}’(t))
_ R+ w(0, ) 1 R+ w(0, )
< K(s,t K! -1 — - K t -1 .
. v<s,x,R+w7(0’x)(R+y)—R) - Ja(t — s)ds
R—I—w(t,m) L2(Q‘j‘?(t))
_ R+ w(0, ) 1 R+ w(0, z)
< K(s,t Kt -1 - - K -1 -
| (KK (30,0 FEE0 ()~ R) 0, T Ry — 1
R+ w(t, x) 1/2 .
) (m) v (5755711)HL2(97(0)) “Ja(t — s)ds
_ R+ w(0, z) 1 R+ w(0, z)
< K(s,t K! - - - K t - —
o mas, [kt (0 Z TR R ) - ) 0., SR (R ) R

: ]ﬂ(t - S)dS,

where we used the fact that v € L*(0, T} L2(Q°f’(0))) Thus, we conclude that || 5] |L2(Q?(t)) —
0 as a« — 0. This completes the proof. O]
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We also have a weak continuity lemma, which states that the value of us 5 tested against
any function in the fluid function space has a continuity property as t — 0.

Lemma 5.12.2. Consider an arbitrary g € C*(0,7; V5 5(t)) and the weak solution us s to
the regularized problem for arbitrary J, where Vo 45(t) is defined by the displacement wy s
and (5.33)). There exists a measure zero subset S of [0,7"] (depending on §) such that

lim f uys(t) - q(t) = J uo - q(0).
t—0,te[0,T]nS° Q25 Qf2.5(0)
Proof. Consider the following function for each 7 € [0,7T] and « > 0, given by
t

Jra(t) =1— f Ja(s — T)ds, (5.159)
0

and note that J, ,(t) = —ja(t — 7). We want to test the regularized weak formulation for
g5 with the test function J, ,(t)q for certain admissible choices of 7. To see which 7 we
want to choose, we define the function

R+(,U2§(t) ( R+WQ5(t) > < R-f—(,UQ(;(t) >
Lt was\l) poo, 2280 p R gt Y2 p VR
Rt wng(0) 20\07 R+w2,g(0)( +9) \he R+w275(0)( +9)

We claim that w € L®(0,T; L*(€242,5(0))). To see this, we compute by a change of variables
that

w(t,z,y) =

||w(t7xay)||L1(Qf’2,5(O)) = J |’U,275(t,$,y) : Q(ta%y”»
Qf2,5(t)

and we then use the fact that uas,q € L%(0,T; L*(2,5(t))).

Hence, by the Lebesgue differentiation theorem, there exists a measurable subset S
[0, T'] of measure zero such that every point in [0, 7] n S¢ is a Lebesgue point of w, in the
sense that

) 1 T+
lim _J lw(7, ) —w(s,)||L1(0.50)ds — 0. (5.160)

a—0 2y —a

for every 7 € [0,7] n S°. These are the 7 for which we will consider the test function
Jra(t)g. For the test functions for the Biot medium and the plate, we will take these test
functions to be zero. Hence, in the regularized weak formulation (5.101)), we will test with

(v, 0,9,7) = (J; ()q,OOO)

Hence, we obtam the following equality:

J Lm(t)u“ 0ol f me (2,5 - V)uzs) - (Jra(1)q) = (2,5 - V)(Jra (1)) 25]

+ 5_[ J (u2,6 n— 26275 "I’L)’U,Q’(; : (J‘r,a(t>q)
o s(t)

T T
1
+ QVJ J- D(us2s) : D(J;o(t)g) — J J (2|u2}52 —pz&) Jra(t)an
0 JQyas(t) T2,5(t)

— BJ Jl"2 5 52 §)T u2 5) ] . J-r,oc(t)QT = J‘Qf‘z‘é(o) ug - JT,a(O)q(O).
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Consider 7 € (0,T) n S¢. We want to pass to the limit as « — 0, and then pass to the limit
as 7 — 0, in order to obtain the desired result.
First, we pass to the limit as & — 0. We handle the convergences as follows.

First term: We will show that because 7 is a Lebesgue point of w,

T T
[ s atae) - ws(ar) = [ | wsdg asa-o
0 JQf2s(t) Qy2,5(7) 0 JQya5(t)

We compute that

T T T
L wsateto = | | wsdtona- || ws dataa
0 JQf2,5(t) 0 JQy05(t) 0 JQy25()

It is easy to see that
T T
J J Ug 50 (t)01q — J f U2,50:q.
0 JQsos(t) 0 JQr25(t)

So it remains to show that
T
J f U Jolt — T)q — Ua,5(7)q(T), as a — 0.
Q2,5 Qfo5(T)

By a change of variables, we compute that

T
f | wesdate-nia
Qf 2.5(t)

fL Rt ws(t) uw( M(R—&—y)—b’u)'ja(t_T)Q(ta%M(R‘Fy)_R)

fH(T)R+w257' "R+ wo,s(T) R+ wa s(7)

)
:J LM(T R+w25EO) <t R+w“(0;(R+y)R>'ja(t7)JTLf”(O)w(t,x,y)ja(t7-),

>R+w257') "R+ was(T

By (5.160)), we have that

T
f f w(tax7y) 'joc(t_T) - w(7—7$7y) = J ’U/275(7—) ‘(](7—),
0 JQjs25(0) Qf,2,6(0) Qf2,5(7)

which establishes the desired convergence.

Final term: It is immediate to see that for all sufficiently small o > 0,

me) w00 = [ (o)

Qy,2,500)
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Passing to the limit in the remaining terms as o« — 0, we obtain that for any 7 €

(0,7) NS¢,

T 1 T
| wsma- [ wsdarg [ [ (s Viwe) g (s 9)a) s
Qy.2,5(7) 0 JQy25(t) 0 JQyr25(t)

1 (7 T
+ B} f f (ugs M —2€5 M)uzs-q+ QVJ J D(uz;s) : D(q)
0 JI'5(t) 0 JOso5(t)

T 1 T
- j f (2|u2,5|2 - p2,5> Gn — 5J f [(€2,6)r — (u2,6)r] - gr = f ug - q(0).
0 JTy 5(t) 0 JTy5(t) Qy2,5(0)

Passing to the limit as 7 — 0 with 7 € (0,7") n S¢ gives the desired result.

O
Lemma 5.12.3. Recall the definition
Tt 0
B wa.s (6
st = | iy gy (o) |
and consider the function
q(t,z,y) = Ks(0,t, z,y)ug (1:, %(R +y) — R) ) (5.161)

for wy which is divergence free and smooth on €27(0). There exists a sequence of functions
d,, € CH0,T;V;a5(t)), with Via4(t) determined by the plate displacement wys via the
definition ([5.33)), such that

Orgtz}% ||(~] — EImHLZ(Qf,z,a(t)) — 0, as m — 0.
Proof. There exists a rectangular two-dimensional maximal domain €2, of the form [0, L] x
[—R, Rynas| for some positive constant R,,,, that contains all of the domains Q4 4(t) for
t € [0,T]. We will extend g to the maximal spacetime domain [0,T] x €, by extending
vertically in the radial direction by the trace of q along I'; 5(¢). In particular, we define

q(t,z,y) = K(0,t,z,wss(t, x))up (z,w25(0,2)),
for (¢t,z,y) € ([0,T] x Q) — ([0, T] x Qsas(t)). (5.162)

Note that this extension preserves the divergence free property.

We have the following two claims about the extended function, considered as a function on
the fired maximal domain ;. First, we claim that g € L®(0,T; H'(4/)). Second, we claim
that g € C(0,T; L*(Q2)). To see that g € L*(0,T; H*(Qr)), we note that ws s and d,ws 5
are bounded uniformly pointwise, and furthermore wg and its first spatial derivatives are
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bounded by assumption. In addition, 0Zwss € L*(0,T; L*(T")), which allows us to conclude
that g € L2(0,T; H ().

Next, we want to verify that g € C(0,T; L*(25)). Consider any ¢ € [0,T] and consider
any s € [0, 7] with s # t. We define the following regions:

A(s,t) = Qy N (Qr2s(s) U Qsas(t)),
B(s,t) = [Qp26(s) 0 (Qr2s(t)T U [(Qr25(5) N Qypas(t)],
C(S,t) = Qﬁg’g(s) M Qf7275(t).
Consider € > 0. We want to find & > 0 such that
la(t,-) — a(s, iz, <& for all s € (t — h,t + h) n [0,T]. (5.163)

We compute that

_ j (2, y) — (s, 2 9P+ j @t 2,y) — (s, 2, y)1P+ f d(t, @, y)— (s, 7, 9)
A(s,t) B(s,t) C(s,t)

=Is+ 1+ Ic. (5164)

We estimate each of the terms 14, Ig, and Io separately.
For 14, we recall that we are extending by the trace as in ((5.162)) on A(s,t), so we have
that

Iy = J |K5(0,t, z,wss(t,x)) — K5(0, s,x,wg,(«;(s,x)ﬂ2 - ’U()(I',WQ’g(O,JI))F.
A(s,t)

We have that |ug(z, ws (0, 2))| < M; for some constant M; by the fact that wug is continuous

on Q£(0). By continuity, we can choose h > 0 sufficiently small so that

€

<
3MZ(R + Rppaz)L’

‘Ké(o)tax7w2,5(t7$))_K5(0a 3>$7w275(5>$))‘2 for all s € (t—h,t—l—h)ﬁ[O,T]-

Thus, for all s € (t — h,t + h) n [0,T],

€

3(R+ Ryaz)L

<

Ly < |A(s,1)]-

wl ™

For Ip, we will use the fact that wy; does not change much in time over small time
intervals, by continuity. We note that there exists a uniform constant M, such that |q| < M,
on [0,T] x Q. Hence,

L
[B = J ‘Q(ta 2,7’) - Z](S,Z,T)P < ’B(S7t)| ’ 4M22 = 4M22f ’C‘-)Q,é(t?a:) - w275(8,1')’d$.
B(s,t) 0
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Because wy 5 € L*(0,T; H3(T')) nWH*(0,T; L*(T")), there exists h > 0 sufficiently small such
that

€

<m, forall x € [0,L] and s € (t — h,t + h) n [0,T7].

|lwas(t, x) — was(s, )]

This allows us to conclude that Ip < g, for all s € (t — h,t + h) [0, T].

For I¢, we refer to the definition of g in (5.161]) and note that K5(0,t, x,y) is continuous
in time uniformly in (z,y) € [0, L] X [— R, Ryaz], wo is uniformly continuous as a function on
Q4(0), and wo (¢, x) is continuous in time uniformly in z € [0, L]. Hence, there exists h > 0
sufficiently small such that

€

SET RaL Al @) e Cls,t) and s (t—ht+h)n[0,7],

IQ(ta z, y)_Q(Sa xz, y)‘Q <

which gives the desired result that Io < € for all s € (t — h,t + h) n [0, T]. Thus, by using

(5-164), we have established (5.163).

Since g € L*(0,T; H'(Qar)) nC(0, T; L*()), we can extend g to a continuous function
on all of R as follows. We can find an increasing sequence T,,, with T,, — T as m — oo, such
that q(T,,) € H' () for all m. Define an extension q,, for each m to all of R by q,, = q if
te[0,T,],

wlm

4,, = q(0), ift<0, q,=qT,), ift>T,.
Define
qm = qm * jl/m;
where the convolution is a convolution in time with j, for @« = 1/m. Because q,, €

L0, T; HY (Qur)) n C(0,T; L*(25)) with q,, being divergence free for every t € [0,T],
we have that g, restricted to (.o {t} x Qr2,4(t) gives a function in CH[0,T); Vias(t)),
where V5 5(t) is the space defined in (5.33) with the plate displacement ws 5. The fact that

fax [1g = @ llr2@pa 500 = 0, as m — o,
follows from the uniform continuity of g on [0,T] as a function taking values in L?*(2),
convergence properties of convolutions, and the fact that g € C(0,7T; L?(Qy)) which gives
the convergence

Jnax [19(T) = 4®llxay) =0, asm— o0,

O
Lemma 5.12.4. For the function q defined in (5.161f), there exists a measure zero subset S
of [0,7T] such that

lim j() wss(t)- a0 = [ o qlo)

t—0,te[0,TnS° Qf.2.6(0)
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Proof. Note that because ¢;q is not necessarily in H'(Q45(t)), g is not a valid test function.
Thus, we use the sequence q,, € C'(0,T;V;a5(t)) from Lemma [5.12.3 which satisfies

Oréltaé}% ||(.~I - QmHLz(Qf,Q,a(t)) - 07 as m — 0.

We can then apply Lemma [5.12.2] to each of the test functions gq,,,, to deduce that there
exists a measure zero subset S,, of [0, 7] such that

lim f Uy 5(t) - q,, (1) = f Ug - G, (0).
tﬁO,tE[O,T]ﬁan Qf’z,g(t) Qf,2,5(0)

In addition, by uniform boundedness, us s € L*(0,T; L*(272,5(t))), and hence, there exists
a measure zero subset Sy of [0, 7], and a positive constant C' such that ||uo||z2(q;, 5(0)) < C,
and

||u2,5(t)||L2(Qf,27§(t)) < C, for all t e Sg (5165)
Define S = Sy U (J,,»1 Sm, Which is also a measure zero subset of [0, T]. Then, for each m,
lim f wos(t) -, () = f wo -, (0). (5.166)

t—0,te[0,T]nS¢ Qf.5(t) Qf.2.5(0)

By passing to the limit in m, we claim that in addition,

lim f() wss(t)-a) = [ o qlo)

t—0,te[0,T]nS* Qf.2.6(0)

To see this, consider € > 0. We claim that there exists A > 0 sufficiently small such that
for all t € (0,h) N S°,

< €.

f wns(t) - alt) — f wo - (0)
Qs o26(t) Qy2.5(0)

We can choose M sufficiently large such that nax. @ — @arllrz
defined by (|5.165]). Therefore, for all ¢ € [0,T] n S¢,

Qfos(t) < %, where C' is

f was(t) - qt) — f ws(t) - dpr(t)
Qp2.5(t) Qf o 5(t)

In addition,

f wo - 4(0) — f wo - Gy (0)
Q¢.2,5(0) Q¢.2,5(0)
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By applying (5.166|) with m = M, we can choose h > 0 sufficiently small such that for all
te(0,h) N S°,

€
< —-.
3

Lm o Uns(t) - @ (1) — J o - Gy (0)

Qf,2,500)

Thus, by applying the triangle inequality, we have that for all ¢ € (0, h) n S¢,

j was(t) - 4(t) — f wo - 4(0)
Qy2.5(t) Q¢ .2,5(0)

which establishes the desired result.

<€,

]

We can now prove the final result of this appendix. We recall the definition of u; from

E109).
Lemma 5.12.5. As a — 0,

lugl?, and J

Qp2,5(t)

) (wasal) = | ) uas(t)

f 1(0) - (t12,5)a(0) —
Q¢ .2,5(0) Qy2,5(t)

Qf,2,6(0)
for almost all points ¢ € (0, 7.

Proof. The second convergence for almost all points ¢t € (0, T] follows directly from Lemma

5.12.1| and the fact that @y € L®(0,T; L*(Q25(t))).
So we just need to verify the convergence at t = 0. To do this, we note that u;(0) = wuo.

Hence,

j @1(0) - (u25)a(0)
Qf2.5(0)

R+ Wo g(s,m) )
N Ks(s,0 ST (R4 y) — R Gt — s)d dud
JQWO <JR 6(8’ ’x7y)u2,5 (Sal‘a R+ w2’6<0’x)( + y) .](5( S) S Uo(l',y) ray

R+ was(s, @ .
) f ( g 5 T2 ( " Rw—éo;m - R) (e, y)dmdy) Jalt — 5)ds

R 0 R 0
— J (J Uss(s,2,y) - Wb, T) wa s ’x)Kg <s 0,z ¥ Wasllh ) w2s(0, ) (R+y) — R>
R Qys2.5(s)

R + wos(s,x) "R+ was(s, x)

( R + ws5(0, )
-uO :I/‘ S ——

R — R ) dzxdy | jo(t — s)ds.
G ) < R ) dedy ) ot~ 5)ds
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We compute that

R+w 0,z
R+ wy5(0,2) R + ws5(0,2) 1 (R+y)V <Riwj§§s,w§>
—'K5 S,O,.T,—(R+y)_R = R+w25(01)’
R+ wy (s, 7) R+ wns(s,2) 0 Frans(sm)
R+w275(0,a¢) _ R‘HU2,5(O,:E) R+UJ215(0,1)
— Rtws s(s,z) 0.5) 0 + 1 R+wy 5(s,x) (R + y)v (R-‘rwg’,;(s,a:))
. R+ws 5(0,z R+4ws 5(0,x) R+ws 5(0,x)
(R + y)v <R+wz,5(571‘)> 1 <R + y)v <R+w:§(s,z)> Rerij;(s,x) -1
= K5(07 S, T, y) + R5(07 S, T, y)
Hence,

j @1(0) - (u2,5)a(0)
Qg 2,5(0)

R+ w2 5(0,x) )
= uz,5(s,z,y) - Ks 0,8,$,yuo<m,7’R+y 7R>dmdy ja(t — s)ds
‘[R (Jﬂf,z,a(S) s ) ( ) R+w2,5(s,x)( ) ( )

R + w2,5(0, z) )
+J J u2,5(s,z,y) - Rs(0, s, 2, y)uo (m,i’R—l—y — R ) dxdy | ja(t —s)ds = Iks + IRrs.
]R( 0 2.5(5) ( ) R+w2,6(8,$)( ) (t=9)

Note that

Ixs = f (f Uy 5(s,x,y) - fl(s,x,y)dl’dy> Ja(t — s)ds
R Q¢,2,5(s)

where g is defined by (5.161). Since ug5(s) = u25(—s) so that wys(s) = was(—s) for s <0
(see the extension procedure in Section , we conclude by Lemma [5.12.4] that

Igs — uo - q(0) :J [uol?, as a — 0.
Q.2,5(0) Qf,2,5(0)

So it suffices to show that Irs — 0 as @ — 0. This follows from the fact that |Rs| — 0
uniformly as s — 0. In particular,

fﬂf,2,6(3)

by the boundedness of uss € L*(0,7T;L*(Qs25(t)) and the fact that wg is uniformly
bounded. In addition, by the continuity properties of ws 5 in time, we have that

R + w9 5(0,x)

"Rt was(s,2) dxdy < C, for almost all s € [0,7T],

uz,5(8,T,y) - uo <$ (R+y)— R)

max  |Rs(0,s,x,y)| — 0, as s — 0,
(z,9)€Q,2,6(s)

which implies that Ir; — 0 as o — 0. This completes the proof.
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Chapter 6

Concluding remarks

In this thesis, we have studied several important extensions of FSI models that are moti-
vated by real-life applications in engineering. These include two main types of models: (1)
stochastic FSI models that take into account the influence of stochasticity and randomness
on the fully coupled fluid-structure dynamics, and (2) fluid-poroelastic structure interaction
systems (FPSI), specifically FPSI in the context of nonlinearly coupled models in which the
fluid and Biot domains are time-dependent and a priori unknown. While there has been
significant progress in prototypical models of fluid-structure interaction and several exten-
sions of this model, as discussed in Chapter 1, the models considered in this thesis are novel
problems that require the development of new mathematical techniques for their analysis.

The work in this thesis has initiated the study of stochastic fluid-structure interaction
by considering two models of stochastic FSI. The first model that was considered in the
field of stochastic FSI was the model described in Chapter 3, which is a reduced model
whose dynamics are described by a stochastic viscous wave equation. This stochastic viscous
wave equation is a single self-contained stochastic equation for the structure displacement
in a linearly coupled FSI model where a fluid modeled by the stationary Stokes equations
interacts with an elastic membrane modeled by the wave equation, under the additional
influence of stochastic forcing in space and time acting on the elastic membrane. Due to the
special geometry of this model, the full fluid-structure dynamics can be captured in just a
single stochastic equation rather than a stochastic system of equations, which allows us to
invoke classical techniques from the theory of stochastic analysis to establish the existence
and uniqueness of a mild solution. Furthermore, we also established regularity of sample
paths of the mild solution and showed that when compared to classical stochastic heat and
wave equations with the same type of random noise, the stochastic viscous wave equation
arising in stochastic FSI has improved existence and sample path properties.

We then extended the study of stochastic FSI to a stochastic fully coupled model involv-
ing a linear Stokes flow through a channel with elastic and stochastically forced walls. The
goal of this work, described in Chapter 4, was to develop a new methodology for studying
stochastic systems of PDEs, as this problem cannot be reduced to a single equation, and
hence must be considered as a coupled stochastic system of fluid and structure equations.
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Here, we used an operator splitting scheme for a constructive existence proof, which explicitly
constructs random approximate solutions to the problem, and we introduce a methodology
for passing to the limit in the random approximate solutions that combines compactness
arguments with tools from stochastic analysis and stochastic PDEs. This involves showing
weak convergence of the approximate solutions, using the Skorokhod representation theo-
rem to upgrade this weak convergence to almost sure convergence to obtain probabilistically
weak solutions, and then using the Gyongy-Krylov lemma to show that we can obtain prob-
abilistically strong solutions on the initially given probability space. We anticipate that
this constructive existence scheme that we have developed for fully coupled stochastic FSI
will apply more generally to more challenging problems of interest, including the study of
stochastic nonlinearly coupled FSI, where the fluid domain is not only time-dependent and a
priori unknown, but also random. Work on the well-posedness of these stochastic nonlinearly
coupled FSI models is ongoing [175].

In this thesis, we have also studied deterministic FPSI, with particular attention given to
nonlinearly coupled FPSI. As discussed in the introduction to Chapter 5, there have been a
few works that have studied the well-posedness of linearly coupled FPSI systems, where the
fluid and Biot domains are fixed in time for the purposes of defining the problem. The goal of
the work in this thesis was to extend well-posedness results to the context of FPSI problems
where we take into account the time-dependent nature of the Biot and fluid domains. The
particular challenge here is that the Biot displacement determines the moving Biot domain
in time via the Lagrangian map, but the structure displacement 7 of the Biot material does
not possess enough spatial regularity to make proper sense of the moving Biot domain, or to
guarantee that the integrals over the moving Biot domain appearing in the weak formulation
are well-defined. Therefore, we have developed a new mathematical framework for analyzing
these nonlinearly coupled FPSI problems which involves minimally regularizing the FPSI
problem using a spatial regularization of the structure displacement n of the Biot medium.
This regularization is minimal in the sense that we try to regularize as few terms as possible
in the regularized weak formulation of the FPSI problem. We apply this regularization tech-
nique to a model of nonlinearly coupled FPSI involving a multilayered structure consisting
of a thin plate and a thick Biot poroelastic medium interacting with a fluid described by the
Navier-Stokes equations. In this case, the regularization must be performed in a specific way
by using an odd extension to extend the structure displacement to a larger domain and then
convolving spatially, since we are working on bounded domains. We use a splitting scheme to
show constructive existence of weak solutions to the regularized FPSI problem and in order
to show that these resulting solutions to the regularized problem are physically reasonable,
we have also established a weak-classical consistency result in the case of a poroviscoelastic
Biot medium. This result shows that given a classical (smooth) solution to the original FPSI
problem without regularization, the weak solutions to the regularized FPSI problem will con-
verge to the classical solution as the regularization parameter tends to zero. This method of
using regularization to study FPSI problems on moving domains shows significant promise,
and we hope to extend these methods in order to analyze and simulate more complex FPSI
systems, in particular those that are directly relevant to real-life applications.
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