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Dr.  Sundararajan Venkatadriagaram, Chairperson 

 

 

 

 

Wireless sensor network (WSN), one of the featured technologies that the 

U.S. Department of Energy (DOE) has identified to help improve the overall 

energy efficiency of US industry, provides a potentially low-cost approach for 

the health monitoring and fault diagnosis of induction motors.  The reduction of 

machine failures increases plant efficiency and productivity.  Low-cost wireless 

sensor systems can help the health monitoring of manufacturing equipments by 

eliminating the cost of installation and increasing the flexibility of system 

diagnosis. 
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This research focuses on developing a nonintrusive, condition based 

health monitory system for drive connected induction motors using the wireless 

sensor network method. A hierarchical classification system is designed for 

motor fault diagnosis.  To simulate and analyze a wide range of fault conditions 

that may arise in induction motors, an experimental test bed is also developed.  

Three major branches of induction motor faults are studied, both individually 

and in combination.  Wired sensors are first used to find optimal features for 

motor fault classification.  After performing feasibility studies of wireless sensors 

in electric machinery, two wireless sensor nodes are developed and implemented 

in the motor health monitoring and fault diagnosis system. The experimental 

results demonstrate the effectiveness and generalizability of the wireless sensor 

system for motor health monitoring and fault classification. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter presents the motivation and objective of this work in the first 

section.  An outline of this dissertation is given in the second section.  Then the 

necessary background information: condition monitoring, condition monitoring 

for motors, and sensor technology for induction machine monitoring are 

introduced.   

1.1 MOTIVATION AND OBJECTIVE 

With the increasing manufacturing expenses, reducing the operating cost 

and saving energy have become the urgent needs.  The utilization and 

effectiveness of manufacturing equipments have gained increasing importance 

for industries with intensive capital investment and high operating costs.  Across 

many industries, 15-40% of manufacturing costs are typically attributable to 

maintenance activities [1].  In the current competitive marketplace, maintenance 

management plays an increasingly important role in maintaining 

competitiveness. Effective maintenance management can reduce equipment 
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downtime and increase capital utilization, thereby allowing firms to minimize 

waste, reduce inventory and ensure timely delivery of products [2].   

There are three widely accepted methodologies of maintenance 1) 

Reactive (unplanned or breakdown) maintenance 2) Preventive Maintenance 3) 

Condition-based maintenance. Breakdown maintenance is carried out after a 

machine has broken down or damaged.  This strategy might be appropriate 

when failure rates are minimal and failure does not result in serious cost setbacks 

or safety consequence [3].  The conventional maintenance philosophy (called 

scheduled maintenance or preventive maintenance) is to stop the machine at pre-

determined intervals.  The EPRI M&DC [4] cites a Forbes magazine study that 

concluded that a third of the money spent on preventative maintenance in the 

utility industry was wasted.  Tavner et al [5] states that only 10 percent of 

components replaced during fixed-interval maintenance outages actually need to 

be replaced at that time.  The obvious implication is that 90 percent of what is 

replaced need not be.  In order to reduce the cost of maintenance, to avoid the 

unplanned downtime and to improve the efficiency, condition-based 

maintenance (predictive maintenance) stops the machine only before there is 

evidence of impending failure.  Although the return on investment depends on 

the specific industry and the equipment involved, Rao [6] states that an 
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investment in monitoring of between $10,000 and $20,000 dollars results in 

savings of 500,000 dollars a year.  It has been clearly demonstrated that the use of 

appropriate condition monitoring and maintenance management techniques can 

give industries significant improvements in efficiency and directly enhance 

profitability. 

Imagine a scenario, for example, where an induction motor has a bearing 

damaged by some foreign particles and the damage starts to grow gradually.  

Without a condition monitoring and fault detection system, this fault could cause 

the variation of the shaft alignment and further cause a serious air-gap 

eccentricity that may cause the rotor to rub against the stator leading to a 

catastrophic failure.  An effective condition monitoring system will allow a 

schedule for motor maintenance before the damage becomes serious enough to 

cause major disruptions. 

As one of the featured technologies in the 21st century that the U.S.  

Department of Energy (DOE) has identified to improve the overall energy 

efficiency of U.S. industry, wireless sensor network (WSN) technology provides a 

potential approach for a low-cost wireless motor monitoring system [7].  This 

becomes the motivation of this research.  Low-cost wireless sensor systems can 

provide an efficient approach for health monitoring of manufacturing 
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equipments because they can eliminate the cost of installation while increasing 

flexibility.  Wireless sensors can be installed in restricted and difficult to reach 

areas.  With the data automatically collected and transmitted to the database, less 

field worker will be needed. 

The objective of this work is to develop nonintrusive motor health 

monitoring systems for drive connected induction motors and to implement the 

monitoring system in a WSN architecture for industrial applications using only 

low-cost wireless sensors.  Although this research concentrates on induction 

motors, the health monitoring system and fault diagnosis techniques described 

in this dissertation are also applicable to similar engineering systems. 

1.2 Outline of Dissertation 

A brief background to condition monitoring, condition monitoring for 

motors, and sensor technology for induction machine monitoring is given later in 

this chapter. And the contributions are listed at the end of this chapter.  The 

motor construction, operation and failure modes will be introduced in chapter 2. 

All the major branches of motor failure are reviewed with emphasis on the fault 

characteristic frequency components in vibration, current or flux spectra. 

To facilitate the development of wireless sensor systems, a wired 

monitoring system is designed for feature selection purposes.  Chapter 3 



5 

introduces the signal processing procedures and feature selection based on the 

experimental results of wired sensor system using multiple wired sensors. It 

presents the experimental studies and algorithms to detect three types of faults 

both individually and in combination in three phase induction motors.  Separate 

experiments are conducted for developing the algorithms (training and testing) 

and for validation.   

In order to identify the reliability of wireless sensors for induction motor 

monitoring, chapter 4 addresses a feasibility study of wireless sensors in small 

and large induction motors.  Experimental studies on the packet delivery 

performance and data fidelity of wireless sensors used inside a 1 hp AC motor as 

well as a 200hp AC motor are presented.   

A wireless sensor monitoring system is then constructed based on the 

experimental results of the wired sensor system.  Chapter 5 describes a low-cost 

wireless sensor network designed for motor health monitoring and fault 

classification.  The wireless sensor nodes with an accelerometer sensor, a 

microphone, and a hall-effect sensor are developed and implemented in the 

wireless health monitoring system for induction motors. The same set of 

experiments is conducted for initial training and testing. The validation results 
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demonstrate the effectiveness and generalizability of the wireless system for 

motor health monitoring and fault classification.   

Chapter 6 presents conclusions and possible future directions in 

developing wireless condition monitoring systems.   

1.3 Background Review 

1.3.1 Condition Monitoring and Relevant Multidisciplinary Areas 

A brief taxonomy tree of maintenance philosophies can be found in 

Kothamasu’s (2006) paper [3] as shown in Figure 1.   

 

Condition monitoring (CM) or condition based maintenance (CBM) is the 

major component of proactive maintenance.  As the name indicates, the 

condition of specific areas of plant and equipment are monitored.  CM is the 

Fig. 1.1  Taxonomy of maintenance philosophies (Kothamasu et al 2006) 
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process of monitoring operating and health parameters in machinery systems. 

Significant changes may be indicative of impending failures.  Early detection 

allows actions to be taken to avoid the consequence of failure before the failure 

occurs.  This can be done automatically with the use of instrumentation such as 

accelerometers and current probes.  Condition monitoring is typically more cost 

effective than allowing the machinery to fail or performing scheduled 

maintenance [6].   

Many case studies have proven that the investment of the condition 

monitoring system is invaluable.  For example, at Iggesund Paperboard’s plant in 

Workington, Cumbria, U.K., the company’s No.2 board machine was reported to 

avoid an unscheduled downtime and production losses by SKF’s bearing 

condition monitoring system which provided a timely forewarning that enabled 

a planned repair to be undertaken during a scheduled plant shutdown.  Had the 

bearing failed completely, the resulting damage to the plant would have been 

catastrophic. It has been estimated that the machine may have had to be shut 

down for six months [8].  Another case study was presented in wind energy 

conference in Germany [9] about the gearbox condition monitoring system.  

GASTOPS’s on-line oil debris monitoring system was reported to be able to 

detect the initial damage of one planetary stage bearing and one planetary stage 
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gear of a gearbox installed in a wind turbine in the United States nine months 

prior to removal and had given five months of reliable warning that the gearbox 

was damaged.  The condition monitoring system provided ample lead-time to 

the operator to proactively deal with the gearbox repair, thus minimizing down 

time and avoiding secondary damage to the system.  Similar results have been 

achieved by GE Wind as presented at the EWEA conferences in 2004 [10] and 

2006 [11]. 

There are three relevant multidisciplinary areas mentioned in Worden’s 

[12] review paper which also make the monitoring and assessing fault/damage 

the principal concerns: Structural Health Monitoring (SHM), Non-Destructive 

Evaluation (NDE) and Statistical Process Control (SPC).  SHM is mainly relevant 

to structures such as aircrafts, buildings while SPC is process based rather than 

structure based.  NDE is primarily used for characterization and as a severity 

check when there is a priori knowledge of the location of the damage.  All of these 

areas including CM use sensors to provide signals.  Modern systems of 

manufacturing in industries are highly coupled by both mechanical and electrical 

or electronic subsystems.  The increasing complexity of the system brings more 

challenges to factory productivity and maintenance.  Multiple sensors, 
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hierarchical strategy and hybrid methods have been used to some extent which 

also induced the research area of data fusion or data mining. 

Data fusion uses data from multiple sources and gathers the desired 

information in order to achieve inferences. These inferences are generally more 

accurate than those achieved by means of a single source.  Data mining is a 

technique of sorting through large amount of data and extract relevant useful 

information from enormous data sets generated from modern experimental 

measurements.  It is also described as “the nontrivial extraction of implicit, 

previously unknown, and potentially useful information from data” [12] and "the 

science of extracting useful information from large data sets or databases" [13]. 

This work develops data-driven methods that use experimental 

measurements to build generalizable and extendable systems that can detect 

certain types of faults.  Data-driven techniques rely on comparative assessments 

of the status of a system under testing with other known occurrences.  As long as 

the behavior of the system under testing remains similar to that of a previously 

known, healthy configuration, the former is deemed to be healthy.  When the 

measured behavior deviates from this reference, a fault is detected, and a 

comparison with the conditions previously observed in analogous faulted 

systems can take place.  Under the appropriate conditions, this new comparison 
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has the potential to isolate and identify the fault efficiently.  Thus, the ability of 

data-driven techniques to perform the task of diagnosis is obtained by training 

classification algorithms.  Commonly used classifiers are introduced in chapter 3. 

1.3.2 Condition Monitoring for Motors 

Motor condition monitoring and diagnostics are important issues in 

motor-driven and power-electronics systems since they can greatly improve the 

reliability, availability and maintainability of the system.  The common faults of 

induction motors include the stator winding faults, bearing defects, air-gap 

eccentricity and rotor faults.  Chapter 2 will discuss these failure modes in detail.  

In industry, the losses associated with the unexpected downtime are usually 

much more than the cost of the motors themselves[14].  If these faults are 

predicted in a timely manner, the losses resulting from unexpected motor 

shutdowns and failures can be effectively avoided. 

Currently, traditional quantities, such as line currents and voltages are 

measured and analyzed by very skilled technicians using expensive equipments 

for health monitoring of large induction motors[5].  As the ready availability of 

sophisticated electronic and microprocessor-based wireless systems is 

increasingly translated into monitoring hardware, the trend to make cost-

effective investment of wireless monitoring equipments will be accelerated [15].   
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1.3.3 Sensor Technology for Induction Machine Monitoring 

The development of a condition monitoring system involves the 

measurement of operating variables and parameters that provide sufficient 

details to detect impeding faults at an early stage.  Temperature, vibration, force 

and torque, electrical and magnetic, as well as wear and debris sensors are 

commonly used for induction machines.   

Temperature 

Temperature is widely monitored in electrical drives and generators.  It 

provides valuable monitoring information when the measurement is combined 

with information about the loading and ambient conditions of the machine [5].  

Three types of temperature sensors are commonly used for measuring 

temperature electronically: (1) resistance temperature detection (RTD) (2) 

thermistors (3) thermocouples.   

RTD sensors (also called the resistance thermometer) use the resistance 

change of a metal to indicate temperature change. They are used for insertion 

between winding conductors in machine slots and the measurement range can 

go up to 1000 °C.  They have very good accuracy and precision but have a 

relatively low sensitivity [16].  Thermocouples are based on the well-known 

Seebeck effect - a current circulates in a closed loop formed of two dissimilar 
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metals joined in two places with a temperature difference between the junctions.  

Copper/constantan and chromel/alumel are most widely used junction materials 

for thermocouples used in coil temperature monitoring [5].  Depending on the 

quality of the signal conversion circuit, the performance of RTD temperature 

transduction can be very good but they are relatively expensive [16].  

Thermisters are another type of temperature transducer manufactured from 

blends of metal oxides. They provide a coarse but very sensitive response. The 

measurement range is generally limited to 300 °C.   

Other techniques such as quartz thermometers, fibre-optic temperature 

sensing and infrared thermography are generally more expensive and have not 

been widely used in condition monitoring of induction machines.   

Vibrations 

Vibration sensors take the measurement of three quantities that are related 

by numerical integration or differentiation: displacement, velocity, and 

acceleration.  Displacement transducers are most effective for measurements at 

the lower frequencies.  As the vibration frequency increases it is likely that 

displacement levels will fall but acceleration levels will rise.  Velocity 

measurement has the frequency response range in between the measurement of 

displacement and acceleration.  
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For displacement measurement, capacitive and inductive devices such as 

linear variable differential transformers (LVDT) are commonly used.  For motor 

condition monitoring, non-contacting displacement probes or proximeters are of 

most interest to achieve the measurements of shaft eccentricity and differential 

movements due to expansion [17].   

For velocity measurement, the most widely used transducer is an 

electromagnetic velocity probe.  It consists of a coil of wire and a magnet so 

arranged that if the housing is moved, the magnet tends to remain stationary due 

to its inertia. The relative motion between the magnetic field and the coil induces 

a current that is proportional to the velocity of motion. The device thus produces 

a signal directly proportional to vibration velocity.  It requires little or no signal 

conditioning but is relatively heavy and complex and thus expensive [18]. 

Nowadays, velocity and displacement are commonly measured using 

accelerometers. The required parameters are derived by integration. 

Accelerometers are rigidly fastened to the body undergoing acceleration. The 

piezoelectric accelerometer has become almost universally accepted as the 

transducer to use for vibration measurements[5]. It is physically more robust 

than the velocity transducer and has a far superior frequency range [18].   
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Acoustic sensors can also be categorized as vibration sensing devices.  Wei 

et al. [19] provides a general review of bearing condition monitoring via acoustic 

emission.  Li and Mechefske [20] compared the stator current, vibration and 

acoustic methods for detection of faults in induction motors. Their experimental 

results indicate that the acoustic sensor has the potential to show both the current 

and vibration frequency components related to the motor faults. 

Force and Torque 

Strain gauges are the most commonly used devices for force measurement.  

The resistance change of the device reflects the stress change under the action of 

the force.  Such a device can be used to measure torques applied to shafts.  For 

rotating shafts, alternative contact-free torque transducers also exist such as 

magneto-eleastic or fibre-optic torque sensors.  The use of specific techniques for 

particular applications can be found in literatures [21, 22]. 

Electrical and Magnetic Measurement  

The basic electrical quantities associated with induction machines are 

current and voltage.  They are usually obtained from current transformers and 

voltage transformers.   

To measure the magnetic flux density in or around electrical machines, a 

simple search coil or a hall-effect device can be used.  The search coil is a device 
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that passively generates electrical current when being placed in an alternating 

magnetic field.  It, however, cannot detect DC fields.  In addition, it has the risk 

of sparking [16].   

Hall-effect devices provide a measurement of flux density over a very 

small area.  Figure 1.2 shows the basic principle of the operation of hall-effect 

element.  When a current I is passed through a thin sheet of semiconducting 

material, the present magnetic field with strength B causes the disturbance of the 

current due to Lorentz force, resulting in a potential difference (voltage Vout) 

across the output. 

 

Hall-effect devices have the advantage of being able to measure down to 

DC, and can be made in extremely small sizes [23].  The current and voltage 

measurement can also be obtained by hall-effect transducers.   

I 

B 

Vout 

Fig. 1.2  Principle of hall effect 

Bulk semiconducting material 
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Wear and Debris Measurement 

In many induction machines, the condition of lubricant and coolant may 

provide crucial information of the machines.  For example, when the bearing 

wears, we would naturally expect to detect debris in the lubricant [24].  The most 

common method of debris measurement is to use a so-called debris sensitive 

detector.  There are two types of detectors: optical and electrical detectors.  The 

principle of the operation can be found in literature [16].  These two types of 

detectors are often used in combination in condition-monitoring applications [5].  

1.4 Contributions 

This work describes a complete methodology for the application of WSN 

technology in condition monitoring and fault classification for drive connected 

three-phase induction motors.  The contributions of this methodology can be 

further divided into the following areas: 

1) Based on the fault characteristic frequencies discovered in previous research, a 

new method to extract features using Hilbert-Huang Transform has been 

developed.   

2) Feasibility studies of wireless sensors in a small induction motor and a large 

induction motor have been conducted.  The packet delivery performance and 

data fidelity have been evaluated by experimental methods. 
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3) A general approach for motor health monitoring and fault classification in 

wireless sensor network architecture has been proposed based on the 

experimental results of a wired sensor system.  A two stage hierarchical 

classification process has been design for the motor fault classification. 

4) Following the approach, two wireless sensor nodes are developed for motor 

monitoring applications. Three major branches of motor faults are simulated in a 

test bench.  Experiments of thirteen conditions and three different loads have 

been conducted for the initial training and testing of the classifiers.  Three two-

fault conditions have been investigated using the combination of two single 

faults simulated simultaneously.  Validation tests are designed to demonstrate 

the effectiveness of the wireless motor monitoring and fault classification system. 
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CHAPTER 2 

MOTOR CONSTRUCTION, OPERATION AND FAILURE MODES 

 

This chapter introduces the basic construction of an induction motor and 

the principle of its operation.  Previous studies of different motor failures and 

their diagnosis are briefly reviewed in the second section.  All the faults related 

frequency components in current, vibration and sound waveform are presented. 

These fault characteristic frequencies are used as features for fault detection and 

classification. 

2.1 Motor Construction and Operation 

The basic construction of an induction motor is shown in Figure 2.1.  The 

rotor is normally supported by two bearings, one at each end.  The outer races of 

the bearings are mounted in the enclosure of the motor.  The stator is the fixed 

outer portion and the rotor spins inside separated from the stator by a carefully 

engineered air-gap.  Coils of insulated wires are inserted into the slots of stator 

core.  Each group of coils, together with the core it surrounds, forms an 

electromagnet (a pair of poles).  The drive end of the rotor shaft extends outside 

the enclosure of the motor and can be connected to various loads.  The non-drive 
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end of the rotor shaft is usually connected to a fan for the cooling system shown 

in Figure 2.1.  Some motors may have an accessory shaft on the non-driving end 

for mounting speed or position sensing devices.  Through the air gap between 

the stator and the rotor, the energy is transferred from the stator to the rotor due 

to the induction.   

 

The magnetic field created in the stator rotates at a synchronous speed �� 

calculated by [25]: 

�� = 120 × ��	      �2.1
 

where �� is the supply frequency in Hertz, and P is the number of poles on the 

stator.  The unit of �� is revolution per minute (rpm). 

Fig. 2.1  Structure of a 4 kW induction motor showing stator core and windings, 

stator frame, rotor, and bearings.  [Source: GE Power Systems, USA]  
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When the motor is standing still and the magnetic field produced in the 

rotor rotates at the synchronous speed, the high relative speed induces a large 

back electromotive force (e.m.f.) in the rotor. The e.m.f. sets up currents in the 

rotor that create a rotor magnetic field that opposes the stator field. The 

interaction of the two fields works to reduce the relative speed of the rotor with 

respect to the stator. The rotor, thus, starts running in the same direction as that 

of the stator flux and tries to catch up with the rotating flux.  However, in 

practice, the rotor never succeeds in “catching up” to the stator field but runs 

slower than the speed of the stator field.  This speed is called rotor mechanical 

speed ��.  The difference between �� and �� formulates the definition of slip [25]: 

� = �� − ����      �2.2
 

where s is the slip which varies with the load. 

2.2 Failure Modes of Induction Motors 

There are four major branches of failure modes for induction motors[26].  

Figure 2.2 shows the fishbone diagram that chained the causes to the resulting 

effects.  As shown in the diagram, final motor failure is caused by 1) rotor bar 

broken or cracked end ring, 2) stator winding open circuits or short circuits, 3) 

air-gap eccentricity and 4) bearing failure.  Rotor failure is caused by thermal 
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overload, shaft torque, centrifugal forces and contamination.  The stator failure is 

caused by insulation failure of the winding; the air gap eccentricity is caused by 

static eccentricity or dynamic eccentricity; the bearing failure is caused by fatigue, 

contamination, improper lubrication or improper installation.  Further causes can 

be chained as the figure. 

 

2.2.1 Rotor Bar Broken and End Ring Faults 

Rotor failures account for 5-10% of total induction motor failures [27, 28].  

The most common rotor is a squirrel-cage rotor.  It is made up of bars of either 

solid copper (most common) or aluminum that span the length of the rotor, and 

Fig. 2.2  Induction motor faults fishbone diagram.  Reproduced from Xue et al (2008) 
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are connected through a ring at each end [5].  There are two types of cage rotors: 

cast rotors and fabricated rotors, according to their fabrication process.  

Fabricated rotors are generally found in larger or special application machines 

while cast rotors are only used in smaller machines [29].  Cast rotors are usually 

more rugged than the fabricated type. However, they can almost never be 

repaired once faults like broken rotor bars develop in them [30]. 

 

Figure 2.3 gives an example of broken bar faults from literature [31].  

Broken rotor bars have been paid much attention among the variety of probable 

faults in induction motors because the rotor itself is usually quite expensive.  In 

motor theory, it is well known that broken rotor bar faults give rise to a sequence 

of sideband components of the supply frequency and its harmonics.  Kliman [28], 

Fig. 2.3  Example of broken rotor bar faults. Source: reference [31] 
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Thomson [32], Fillippetti [33], and Elkasabgy [34] used machine line current 

spectrum analysis (MCSA) to detect the broken bar faults.  They investigated the 

sideband components around the fundamental supply frequency at  

���� = �1 ± 2�
�� 

Where ����is the fault characteristic frequency (sideband components), �� is the 

supply frequency, and s is the slip.  Fillippetti [33] shows that broken bars 

actually give rise to a sequence of such sidebands which can be formulated as. 

���� = �1 ± 2��
�� , � = 1,2,3 …     �2.3
 

The left (lower) sideband is specifically due to broken bars, and the right (upper) 

sideband is due to consequent speed oscillation [35].   

According to Faiz et al. [36], even in the tested healthy induction motor, 

the amplitude of the sideband components are large, and broken rotor bars can 

slightly increase the sideband components.  Therefore, further research on other 

fault indicator is necessary. 

2.2.2 Stator Winding Faults 

The major cause of stator faults is insulation failure.  Almost 30-40% of all 

reported faults of induction motor failures fall under this category [27, 37].  The 

insulation is exposed to high temperatures, high voltages, vibrations and other 

mechanical forces, as well as some adverse environmental conditions. These 
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stresses can act together or individually to degrade insulation materials or 

systems [5].  A very thorough review of root causes of failures and failure modes 

in insulation systems and conducting components is given in Stone et al. [38].  A 

clear evidence of shorted winding burns [31] is shown in Figure 2.4. 

 

There has been a range of papers published on the analysis of air-gap and 

axial flux signals to detect shorted turns and the detailed mathematics can be 

found in the references [39, 40].  Air-gap flux monitoring is not attractive to the 

operators since it is highly invasive to existing motors in service.  Any 

interference from the sensor itself may cause serious damage to the motor.  There 

is also a leakage flux signal (axial along the shaft outside the motor’s frame) that 

will normally contain the components indicating the turn to turn faults.  Even the 

fault position could be detected by mounting four coils symmetrically in the four 

quadrants of the motor at a radius of about half the distance from the shaft to the 

Fig. 2.4  Stator winding faults.  Source: reference [31] 
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stator end winding [40].  The frequency components to detect winding faults in 

the flux waveform is given by 

��� = ��� �1 − �
 ± �� ��     �2.4
 

Where ���  represents the components that are a function of shorted turns, 

� = 1, 2, 3 … , � = 1, 3, 5, … , �  is the number of pole pairs.  Thomson [41] has 

reported the diagnosis of shorted turns via MCSA based on the same frequency 

components given by equation 2.4.  These components also appear in current 

waveform because the rotating flux waves can induce corresponding current 

components in the stator winding. 

2.2.3 Air-gap Eccentricity Related Faults 

Air-gap eccentricity is the condition that the air-gap between the stator 

and the rotor becomes uneven. When eccentricity becomes large enough, the 

resulting unbalanced radial force (also called unbalanced magnetic pull) can 

cause stator and rotor to contact.  This will result in the damage of the stator and 

rotor.   

Figure 2.5 shows a typical air-gap eccentricity drawing from literature [42].  

The eccentricity is called static air-gap eccentricity if the minimum air-gap length 

is fixed during the rotor rotation. The common cause is ovality of the stator core. 
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In the case of dynamic air-gap eccentricity, the minimum air-gap rotates with the 

rotor. It is caused by misalignment or bent shaft as chained in Figure 2.2.  

 

The high-frequency components of interest are formulated by [43] 

��  = �1 − �� ��! ± �"
 ± #� ��      �2.5
   

Where ��   is the components that are a function of air-gap eccentricity, ! is the 

number of rotor bars, � is the number of pole pairs,  �" = 0  when it is static 

eccentricity and   �" = 1, 2, 3  in case of dynamic eccentricity (�"  is known as 

eccentricity order); � is any integer,  # =  1,3,5 …  (# is known as the stator time 

harmonics that are present in the power supply driving the motor) [44].  Low-

frequency components near the fundamental given by [29] 

��  = �� ± ���      �2.6
 

Fig. 2.5  Illustration of air-gap eccentricity. Source: reference [42] 

Off centered rotor 

Bigger gap 

Smaller gap 
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are also related to air-gap eccentricity faults. 

Theoretical modeling to find frequency components of air-gap eccentricity 

related faults in line current have been described in references [44, 45].  Principal 

slot harmonic (PSH) is defined by equation 2.5 with  � = 1, # = 1, �" = 0.  Nandi 

introduced a nominal 38.46% static eccentricity by machining the bearing 

housing of the machine end bells.  The experimental results suggest that a 

pragmatic approach to detect the eccentricity faults requires examination of both 

high-frequency and low-frequency components in equation 2.5 and 2.6.  Toliyat 

[46] used a disc drilled with four small holes on one side of it which is loaded on 

the motor to emulate the case of rotor dynamic eccentricity. The results show that 

the 17th and 19th harmonic of current spectrum increases rapidly due to the 

dynamic air-gap eccentricity.  

2.2.4 Bearing Faults 

Bearing faults are of practical importance since approximately half of the 

motor faults accounts for bearing faults [47].  Fatigue failures can take place even 

under normal operating conditions with balanced load and good alignment.  

These faults may lead to increased vibration and noise levels [48].  Other than the 

normal internal operating stresses, bearings can be affected by external 

interference such as contamination, improper lubrication and improper 
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installation as chained in Figure 2.2.  An example showing inner race defect of 

ball bearing [49] is given in Figure 2.6. 

 

Wei [19] has given a general review on different bearing condition 

monitoring methods including vibration monitoring, temperature monitoring, 

chemical analysis, acoustic emission monitoring, sound pressure monitoring, 

laser monitoring and current monitoring. The most popular method is analyzing 

vibration spectrum [50-52].  Although current monitoring is non-invasive and 

may easily be implemented in the motor control center, the bearing-fault 

signatures are subtle in the stator current since the dominant components are 

supply frequency components [19]. 

For a rolling element bearing, the bearing outer/inner race fault 

characteristic frequencies are [29]:  

Fig. 2.6  Example of ball bearing inner race defect. Source: reference [49] 
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�% = �2 &1 − '( cos ,- ��      �2.7
 

�/ = �2 &1 + '( 12�,- ��    �2.8
 

where � is the number of balls, ' is the ball diameter, ( is the pitch diameter, , is 

the contact angle, and ��  is the rotation speed of the rotor.  The ball spin 

frequency is  

��� = (' 41 − &'( 12�,-56 ��     �2.9
 

A ball defect will give rise to two times of the ball spin frequency.  If a current 

sensor is used on the supply line or an audio sensor is used to collect the sound 

signals from the motor, the corresponding current and sound spectra show the 

fault characteristic frequency [29, 53] 

���8 = �� ± �� 9     �3.0
 

where ��  is the power supply frequency, �� 9 .is the bearing characteristic 

frequencies described above. 

2.3 Summary 

Although some important frequency components are discovered for 

detecting the motor faults, these faults are usually studied individually.  Most of 

the motor faults data used in literature are simulated data. Experimental data for 

induction motor faults have to be thoroughly analyzed.   



30 

This work studies three major categories of the motor faults both 

individually and in combination: 1) stator winding faults, 2) air-gap eccentricity 

faults and 3) bearing faults.  Due to the limited resources for experiments, rotor 

faults are not studied, but the system can easily be extended to include this type 

of faults by adding a category in the hierarchical classification tree.   

Vibration, current, sound data are easy to collect.  There are plenty of 

potential features to be used for faults classification.  The feature selection of 

induction motor faults based on results of the wired sensor system is described 

in the following chapter.  
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CHAPTER 3 

FEATURE SELECTION BASED ON RESULTS OF WIRED SENSOR SYSTEM 

 

This chapter introduces the signal processing techniques and pattern 

classification methods used in this research.  Experimental studies are reported 

for detecting three types of faults both individually and in combination in three 

phase induction motors. The faults studied are 1) eccentricity of the air-gap 

between the rotor and the stator, 2) damage to the inner/outer race of bearings, 

and 3) unbalanced resistance of the stator windings. The experiments are 

conducted under thirteen conditions: a normal no-fault control condition; three 

bearing fault conditions: bearing with a scratched inner race, bearing with a 

scratched outer race and bearing without grease; three air-gap eccentricity 

conditions: one-side tilted air-gap eccentricity, parallel type air-gap eccentricity, 

two-side reversed air-gap eccentricity; three unbalanced resistance conditions: 

phase A with additional resistance, phase B with additional resistance and phase 

C with additional resistance; three multi-fault conditions: inner race scratched 

bearing with unbalanced stator winding resistance, outer race scratched bearing 

with air-gap eccentricity, and unbalanced stator winding resistance with air-gap 
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eccentricity. Two microphones, one vibration sensor and one current sensor are 

used to collect sound, vibration and current data respectively. The data is 

analyzed using the Fast Fourier Transform (FFT), Hilbert-Huang transform 

(HHT), and the Discrete Wavelet Transform (DWT) described in the first section. 

Based on the classification results of each sensor, features extracted from the 

HHT and FFT are selected to classify all the motor faults in a hierarchical way. 

3.1 Signal Processing 

The technique most frequently used to detect frequencies is the Fast 

Fourier Transform (FFT).  However, this method has a number of deficiencies 

when directly used over a faulty motor’s vibration signature [54].  The FFT alone 

is not capable of analyzing the frequency content of a defective bearing signal 

because such a signal is amplitude-modulated and non-stationary i.e. the 

characteristics of the signal such as the mean change with time.  The wavelet 

transform is one of the most suitable time-frequency approaches [55, 56].  It 

however has the disadvantage of a fixed scale frequency resolution [57].  It 

depends on a single fixed type of mother wavelet chosen arbitrarily.  Hilbert-

Huang transform (HHT), on the other hand, provides multi-resolution at various 

frequency scales and takes into consideration - the signal’s frequency content and 

its variation [54, 58].  The implementation of the HHT for bearing fault diagnosis 
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has been reported by Hui and Haiqi [59] and Rai and Mohanty [57].  Hui and 

Haiqi analyzed the first intrinsic mode function (IMF) of vibration signal and 

used the spectrum of its envelope to detect the fault defect frequencies.  Rai and 

Mohanty compared the original vibration spectrum of vibration signal and the 

FFT of the decomposed signals for an outer race fault bearing and an inner race 

fault bearing.  All the characteristic defect frequencies are captured in multiple 

intrinsic mode functions (IMFs); by contrast some of the characteristic defect 

frequencies are missing in the original vibration spectrum.  Their results suggest 

that the FFT can be ineffective in the analysis of non-stationary vibration signal 

from defective bearings and demonstrate that the HHT with FFT of IMFs is an 

advanced signal processing technique which is necessary for bearing fault 

diagnosis. 

3.1.1 Fast Fourier Transform (FFT) 

FFT is an efficient method to compute the Discrete Fourier Transform 

(DFT).  Let :;, … :<=> be the time series.  The DFT is defined by the formula 

?� = @ :AB=/5C�A<
<=>

AD;
, � = 0, ⋯ , F − 1 
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For this study, the frequency axis is divided into bins that correspond to 

frequency zones of interest.  The magnitudes of the FFT coefficients in the bins 

are used as features. 

3.1.2 Hilbert-Huang Transform (HHT) 

Hilbert-Huang Transform is a method to analyze nonstationary and 

nonlinear time series data in time-frequency-energy representation [60].  HHT is 

computed in two steps –- 1) empirical mode decomposition (EMD) and 2) Hilbert 

spectral analysis.  The HHT uses the EMD to decompose a signal into intrinsic 

mode functions (IMFs), and then uses the Hilbert transform of the IMFs to obtain 

instantaneous frequency data.   

3.1.2.1 Definition of Intrinsic Mode Functions (IMFs) 

Huang et al [60, 61] have defined Intrinsic Mode Functions (IMFs) as a 

class of functions that satisfy two conditions: 

(1) In the whole data set, the number of extrema and the number of zero-

crossings must be either equal or differ at most by one.  (In other words, 

every adjacent local maxima and minima of the wave must across the zero 

line.) 

(2) At any point, the mean value of the envelope defined by the local maxima 

and the envelope defined by the local minima is zero.  (In other words, the 
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upper envelope and the lower envelope estimated from the local maxima 

and local minima are approximately symmetric with regard to the zero 

line.) 

The next section explains the process, called empirical mode 

decomposition (EMD) to obtain IMFs. 

3.1.2.2 Empirical Mode Decomposition (EMD) 

To extract IMFs from the signal  :�G
, a sifting process comprising the 

following steps is used:  

1) Find the positions and amplitudes of local maxima, and local minima 

of  :�G
.  Then construct an upper envelope by interpolation (typically a cubic 

spline interpolation) of the local maxima, and a lower envelope by a similar 

interpolation of the local minima.  Calculate the mean  H>�G
 of the upper and 

lower envelopes.  Subtracting the envelope mean signal from the original input 

signal, we have  

ℎ>�G
 = :�G
 − H>�G
    �3.1
 

Check whether ℎ>�G
 meets the requirements to be an IMF as defined in the 

section above.  If not, treat  ℎ>�G
 as new data and repeat the previous process.  

Then set  

ℎ>>�G
 = ℎ>�G
 − H>>�G
    �3.2
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Repeat this sifting procedure � times until ℎ>��G
 is an IMF as defined in the 

previous section; this is designated as the first IMF.   

1>�G
 = ℎ>��G
   �3.3
 

2) Subtract 1>�G
 from the input signal and define the remainder,  J>�G
 , as 

the first residue.  Since the residue,   J>�G
 , still contains information related to 

longer period components, it is taken as a new data stream.  Repeat the above-

described sifting process to find more IMFs until the following stopping criteria 

are met.  The sifting process is stopped when either of the following criteria are 

met: 1) the component   1A�G
 , or the residue   JA�G
 , becomes so small in 

magnitude as to be considered inconsequential, or 2) the residue,   JA�G
 , becomes 

a monotonic function from which an IMF cannot be extracted.  Finally, the signal 

can be represented as the sum of IMFs and a residue. 

:�G
 = @ 1K�G
 + JA�G

A

KD>
     �3.4
 

An example of EMD is shown in Figure 3.1.  The original signal (Figure 3.1 

(a)) is simulated by adding a chirp signal to a pure tone.  The decomposed IMFs 

and the residue are shown in Figure 3.1 (b).  The first IMF represents the signal in 

a higher frequency band which is very similar to the chirp signal. The second 
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IMF perfectly matches the pure tone.  All the other IMFs are lower bands signals 

which can be ignored.  

 

3.1.2.3 Envelope of IMFs and Instantaneous Frequency 

Apply the Hilbert transform [62] to all the IMFs, 1K�G
, we have  

LM1K�G
N = 1O P 1K�G
G − Q
RS

=S 'Q     �3.5
 

A complex signal is formed using the IMF and its Hilbert transform as  

TK�G
 = 1K�G
 + U L[1K�G
] 
Expressing TK�G
 in complex exponential form 

TK�G
 = XK�G
B/YZ��
    �3.6
 

where the amplitude of the envelope, 

tone 

chirp 

tone+chirp 

(a) original signal (b) decomposed IMFs 

Fig. 3.1  Example of EMD (a) original signal (b) decomposed IMFs 

Empirical Mode Decomposition
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XK�G
 = [1K�G
5 + L[1K�G
]5     �3.7
 

and the phase angle 

\K�G
 = arctan aLM1K�G
N1K�G
 b     �3.8
 

Then the instantaneous frequency is  

�K�G
 = '\K�G
'G      �3.9
 

Thus the original signal can be expressed as 

:�G
 = @ XK�G
B/ c dZ��
"�
A

KD>
 

where the residue has been left out, and the expression represents a generalized 

Fourier expansion.  The average amplitude of the envelope, mean of  XK�G
, for 

certain IMFs will be used as the HHT features.  This average amplitude of the 

envelope is the representation of the energy level of the IMF. 

3.1.3 Discrete Wavelet Transform (DWT) 

Wavelets provide time-scale information of a signal, enabling the 

information extraction of the signal.  The continuous wavelet transform (CWT) of 

:�G
 is a time-scale method of signal processing that is defined by: 

efg�X, h
 = 1
i|X| P :�G
Ψ∗ &G − hX - 'G

RS

=S
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where m�G
 denotes the mother wavelet.  The parameter X represents the scale 

index which is a reciprocal of frequency.  The parameter h indicates the time 

shifting (or translation).  The discrete wavelet transform (DWT) is derived from 

the discretization of CWT �X, h
 and the most common discretization is dyadic, 

given by 

(fg�n, H
 = 1
√2p P :�G
Ψ∗ aG − 2pH2p b 'G

RS

=S
 

where X and h are replaced by 2p and 2pH.  An efficient way to implement this 

scheme is using high pass and low pass filters developed by Mallat [63].  The 

original signal, :�G
, passes through two complementary filters and emerges as 

low frequency [approximations (A’s)] and high frequency [details (D’s)] signals.  

The decomposition process can be iterated, with successive approximations 

being decomposed in turn, so that a signal can be broken down into many lower-

resolution components.   

In this study, the vibration signal is decomposed to the first level 

approximation A1 and detail D1.  The current and sound signals are all 

decomposed to the fifth level approximation A5 and detail D5.  Higher level 

detail signals D3 and D4 are also used since their bandwidths also carry 

frequencies of interest. 
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3.2 Pattern Classification Methods 

There are a number of pattern classification methods available for fault 

detection and classification. Three widely used classifiers are implemented in 

this study. 

3.2.1 Naïve Bayesian Classifier (NB) 

A Naïve Bayesian Classifier is a simple probabilistic classifier based on 

applying Bayesian theorem with strong (naïve) independence assumptions.  It 

assumes that the presence of a particular feature of a class is unrelated to the 

presence of any other feature. 

Let � be a feature vector of size  � × 1, C is the class that belongs to m 

classes.  Given the feature vector �and the likelihood  	��/|e
, the most probable 

class of a sample is decided by [64] 

	�e|�
 = XJqHX:  	�e
 r 	��/|e

A

/D>
 

3.2.2 K-Nearest Neighbor Rule (KNN) 

The nearest neighbor rule classifier is trying to find the nearest neighbor 

of an unknown pattern by calculate the distance from the unknown class pattern 

to all the training patterns. Then classify this pattern to the class that its nearest 

neighbor is. The k-nearest neighbor rule is an obvious extension of the nearest 
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neighbor rule. A decision is made by examining the labels on the k nearest 

neighbors and taking a vote. To calculate the distance in ' dimensions, we can 

use Euclidean formula as follows 

(�s, t
 = u@�X/ − h/
5
"

/D>
v

>5
 

The computational complexity of the nearest neighbor rule depends on 

the number of training samples and the feature dimension. It is a good choice to 

use a nearest neighbor classifier if the feature dimension is not too large [65]. 

Other metrics also exist such as Manhattan or city block distance (L1 norm), 

Cosine (one minus the cosine of the included angle between two vectors). 

3.2.3 Artificial Neural-Network Classifier (ANN) 

An artificial neural network (ANN) is a mathematical model that tries to 

simulate the structure and functional aspects of biological neural networks.  It 

consists of an interconnected group of artificial neurons and processes 

information using a connectionist approach to computation.  In most cases an 

ANN is an adaptive system that changes its structure based on external or 

internal information that flows through the network during the learning or 

training phase.  It can be used to model complex relationships between inputs 

and outputs or to find patterns in data. 
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In the training stage, given a set of example pairs  ��, 1
 , 

( � ∈ x �BXGyJB '2HXU�, 1 ∈ e 1nX�� '2HXU� ), the aim is to find a function 

q: x → e that maps the input features to the output class in a mean squared error 

sense.  Back propagation algorithm is the most well-known training algorithm 

for ANN classifiers.  The detail of the algorithm can be find in literature [65, 66].  

In this study, the back propagation ANN classifier with one hidden layer and ten 

neurons are used. 

3.3 Feature Selection and Results of Wired Sensor System 

3.3.1 Materials 

Motor 

 
Fig. 3.2  Diagram of experiment setup 

Shaft 

Accelerometer 
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The experiment setup is shown in Figure 3.2.  The motor used here is a 

1.5hp 6-pole three phase induction motor rated at 230V line voltage and 4.8A line 

current.  It is connected to an adjustable speed drive to control the speed.  The 

running speed of the motor with no load is 1200rpm which corresponds to 20 

revolutions per second (20 Hz).   

Sensors 

Current, vibration and sound signals are collected by a current probe, an 

accelerometer and two microphones respectively.  The current probe is an ac 

current transformer which gives output of 1mA/A AC.  The current signal is 

collected by the data acquisition board using Labview software.  The sampling 

rate for the current probe is set at 8.192 kHz.  The accelerometer is commercially 

available from Crossbow Tech, Inc.  The output is a voltage and the sensitivity is 

0.506V/g, where g, the earth’s gravitational acceleration, is approximately 9.8 

m/s2.  The sampling rate of the accelerometer using the company’s hardware and 

software is 160 Hz.  The microphones are connected to the audio analog input on 

the computer. Sound recording software is used to collect the data.  The 

sampling rate is set to 44.1 kHz.  The resulting signal is then down sampled to 

8192 Hz. 
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Conditions 

This paper studies the current, vibration and sound signal collected from a 

1.5 hp 3-phase induction motor with five categories of conditions (Figure 3.3) : 1) 

two-fault condition; 2) unbalanced stator winding resistance; 3) air-gap 

eccentricity; 4) damaged bearings; 5) normal condition.  Except the normal 

condition, each category contains three sub-classes.  The various categories are 

shown in Figure 3.3.  The single faults can interact with each other which 

challenges the detection of two-fault conditions.  The two-fault conditions 

studied are a) damaged bearing with unbalanced stator winding resistance; b) 

damaged bearing with air-gap eccentricity; c) unbalanced stator winding 

resistance with air-gap eccentricity.  Category 2), 3) and 4) are single fault 

conditions.  Three phases of stator winding with bigger resistance 

(approximately 8% larger than the original resistance) are studied as sub-classes.  

Any two-fault condition which involves unbalanced stator winding resistance 

fault uses an additional resistor for stator phase A winding.  The three sub-

conditions of air-gap eccentricity are a) one-side tilted type; b) two-side parallel 

type; c) two-side reversed type.  The damaged bearing conditions are inner race 

scratched, outer race scratched and no grease condition.  These will be described 

in detail.   
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The effects of air-gap eccentricity are studied by replacing the bearings in 

the motor housing by a smaller outside diameter bearing located in an off-

centered bushing (Figure 3.4).  The circled mark indicates the thickest point of 

the bushing.  The offset causes a deviation of the rotor center line as shown in 

Figure 3.4.  Three types of air-gap eccentricity are studied.  The first one called 

the one-side tilted air-gap eccentricity replaces only the pulley side bearing 

Fig.3.3  Diagram of 

induction motor 

conditions; totally 13 

conditions grouped as 

five categories.   
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(Figure 3.5(a)).  The offset causes an uneven air-gap length between the rotor and 

the stator core thus resulting in eccentricity of the air-gap fault.  The side view 

shows the air gap changing linearly between the rotor and stator core along the 

shaft axis.  The second one called the two-side parallel type replaces both the 

pulley side bearing and the opposite bearing (Figure 3.5(b)).  The center line of 

the rotor is parallel with the ideal original center line.  Both the marked sides 

(circled in Figure 3.4) of the bushings are placed on bottom.  The third one called 

the two-side reversed type also replaces both the pulley side bearing and the 

opposite bearing (Figure 3.5(c)).  The difference is to put the marked sides 

(circled in Figure 3.4) on opposite sides of the center line.  This causes the center 

line of the rotor to intersect with the original center line only at the mid-point.  In 

Figure 3.4, L1 is the minimum air gap which is approximately 0.2 mm, and L2 is 

the maximum air gap which is approximately 0.6 mm.  All the two-fault 

conditions use the one-side tilted type air-gap eccentricity (Figure 3.4 (a)) which 

installs the pulley side bearing with its marked side on bottom. 

 

Fig. 3.4  Original bearings and their replacement; the mark indicates the 

thickest part of the bushing. 

Pulley side bearing Opposite bearing 
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Bearing faults are studied by replacing the opposite bearing of the motor 

with an open bearing.  The open bearing allows access to the race way of a 

bearing.  This bearing is scratched using a diamond mounted tool on the surface 

of inner/outer race way.  The other bearing fault is studied by running the 

bearing without grease.  This will cause damage to both inner and outer race 

way after some time of running. The two-fault condition of damaged bearing 

and unbalanced stator winding resistance uses an inner race damaged bearing.  

The two-fault condition of damaged bearing and air-gap eccentricity uses an 

outer race damaged bearing. 

Fig.3.5  Static air-gap eccentricity (a) one-side tilted type (b) two-side parallel 

type (c) two-side reversed type 
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(a) one-side tilted type (b) two-side parallel type 

(c) two-side reversed type 
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3.3.2 Experimental Design 

Experiments are conducted under thirteen different conditions which are 

grouped as five categories: only bearing fault condition, only air-gap eccentricity 

condition, only unbalanced stator resistance condition, two faults simultaneously 

and a normal control condition.  For each condition, the motor is set up three 

times randomly switched from one condition to another.  The data are collected 

in 1 minute time spans and cut to 4 seconds for the vibration signal and 2 

seconds for the current and sound signals.  The sensor data sets are summarized 

in Table 1.  The sound data are collected at a sampling rate of 44.1 kHz and 

downsampled to 8192 Hz.  The current data is passed through a low pass filter 

with the cut-off frequency of 1500Hz in order to get rid of the high order 

harmonics generated by the adjustable speed drive due to pulse width 

modulation [67].  Current and microphone data frame are set for 2 second 

durations whereas the accelerometer data is gathered for 4 second durations.  For 

each sensor, 120 sets of data are obtained for each condition except for the 

normal condition.  In order to fit in the 5-category classifier, 360 sets of data are 

obtained for normal condition.  Thus each category has equal number of data 

sets.  For validation purposes, additional experiments are conducted under two 

conditions randomly selected from these thirteen conditions. 
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Table 3.1 Data sets summary (wired sensor) 

Sensor type 
Sampling 

rate (Hz) 

Frame length 

(second) 

No. of 

frames 

accelerometer 160 4 120 

Current probe 8192 2 120 

Microphone 1 8192 2 120 

Microphone 2 8192 2 120 

 

3.3.3 Analysis 

 

The Intrinsic Mode Functions (IMFs) are extracted using the procedure 

outlined in Section 3.1.2.  Since the sampling rate of the accelerometer is lower, 

there are fewer features from the vibration sensors.  Only two IMFs are used in 

vibration data, seven IMFs are used in sound, and eight IMFs are used in current 

Original signal Original signal 

A1 D1 A1 D1 

A2 D2 

A3 D3 

A4 D4 

A5 D5 

Fig.3.6  Frequency bandwidth of wavelet decomposition (a) vibration 

signal decomposition (b) current and sound signal decomposition 

Vibration fmax = 80Hz 

(a) 

(b) 

Current and sound fmax = 4096Hz 

0 – 40 Hz 40 – 80 Hz 0 – 2048 Hz 

0 – 1024 Hz 

0 – 512 Hz 

0 – 256 Hz 

0 – 128 Hz 

2048 – 4096 Hz 

1024 – 2048 Hz 

512 – 1024 Hz 

256 – 512 Hz 

128 – 256 Hz 
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data analysis.  The frequency components selected from each IMF are based on 

the fault characteristic frequencies mentioned in chapter 2.   

Table 3.2 Features list 

Vibration data 

HHT features FFT DWT 

fr (IMF2) 

2fr (IMF1) 

3fr (IMF1) 

fbs (IMF1) 

fo (IMF1) 

IMF1 average envelope 

Total: 6 

fr 

2fr 

3fr 

fbs 

fo 

Total: 

5 

fr (A1) 

2fr (A1) 

3fr (D1) 

fbs (A1) 

fo (D1) 

Total: 

5 

Current data Sound data 

HHT features FFT DWT HHT features FFT DWT 

fs+fi (IMF1) 

PSH (IMF2) 

40fr (IMF2) 

fs+7fr (IMF3) 

fs+6fr (IMF3) 

fs+6fr (IMF4) 

fs+3fr (IMF4) 

fs-fi (IMF4) 

fs+fo (IMF4) 

fs (IMF5) 

fs+3fr (IMF5) 

fs-fo (IMF8) 

IMF2 average 

envelope 

Total: 13 

 

 

 

PSH 

f1 

fs+3fr 

fs+6fr 

fs+7fr 

fs+fi 

fs-fi 

fs+fo 

fs-fo 

Total: 

9 

PSH (D3) 

fs (A5) 

fs+3fr (A5) 

fs+6fr (D5) 

fs+7fr (D5) 

fs+fi (D5) 

fs-fi (A5) 

fs+fo (D5) 

fs-fo (A5) 

Total: 

9 

PSH (IMF1) 

fs+14fr (IMF1) 

fs+13fr (IMF2) 

fs+12fr (IMF2) 

fs+10fr (IMF2) 

fs+2fr (IMF3) 

fs+3fr (IMF3) 

fs+4fr (IMF3) 

fs+5fr (IMF3) 

fs+6fr (IMF3) 

fs+7fr (IMF3) 

fs+5fr (IMF4) 

fs+fo (IMF4) 

fs+fi (IMF4) 

fs (IMF5) 

fs-fi (IMF5) 

fi (IMF5) 

fo (IMF5) 

fr (IMF6) 

fs-fo (IMF7) 

IMF4 average 

envelope 

Total: 21 

PSH 

fs+14fr 

fs+13fr 

fs+12fr 

fs+10fr 

fs+2fr 

fs+3fr 

fs+4fr 

fs+5fr 

fs+6fr 

fs+7fr 

fs+fo 

fs-fo 

fs+fi 

fs-fi 

fs 

fi 

fo 

fr 

Total: 

19 

 

PSH (D3) 

fs+14fr (D4) 

fs+13fr (D4) 

fs+12fr (D4) 

fs+10fr (D4) 

fs+2fr (A5) 

fs+3fr (A5) 

fs+4fr (D5) 

fs+5fr (D5) 

fs+6fr (D5) 

fs+7fr (D5) 

fs+fo (D5) 

fs-fo (A5) 

fs+fi (D5) 

fs-fi (A5) 

fs (A5) 

fi (A5) 

fo (A5) 

fr (A5) 

Total: 

19 

 

The frequency bandwidths of approximations and details of wavelet 

decompositions are shown in Figure 3.6.  According to the fault related 
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frequencies, the final approximation and several detail signals are used.  The 

mother wavelet used here is Daubechies 4 (db4) [56, 68].  Daubechies wavelet is 

the most commonly used set of wavelet [68]. 

The HHT features, FFT features and DWT features selected for different 

sensors are listed in Table 3.2.  The features are all selected based on the 

discovered frequency components that indicate certain faults mentioned in 

chapter 2.  The features are then used as input to various two stage classifiers as 

shown in Figure 3.7.  Half of the data sets are randomly picked from the data sets 

of each condition as training data.  The training data sets are used twice, one for 

the 5-category classifier, and again for one of the subclass classifiers.  The 

performance is evaluated based on 10 cross validation tests.  The details are 

discussed in the next section.   

 

Testing 

samples 

5-category 

classifier 
Normal 

condition

Classified as 

normal 

Training 

samples 

3-subclass 

classifier 

Classified as 

certain subclass 

Yes 

No 

Fig. 3.6  Two-stage classifier processing structure 
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3.3.4 Results 

The Principal Slot Harmonic (PSH) can be calculated from equation 2.5.  

Since the rotor of the induction motor in this set of experiments has 46 bars, the 

PSH frequency is approximately 978.4 Hz.  The opposite bearing is SKF bearing 

of series 6206, a deep grove ball bearing.  There are 9 balls in the bearing.  The 

contact angle is 0°.  The ball diameter is 9.525mm and the pitch diameter is 46mm.  

The inner/outer race fault characteristic frequencies are 108.63Hz (equation 2.7) 

and 71.36 Hz (equation 2.8) respectively.  The ball spin frequency is 46.22 Hz 

(equation 2.9).  These features are used in various classifiers.  The results are 

shown below. 

Figure 3.8 shows the IMFs and their corresponding spectrum of a typical 

vibration signal for normal condition and a two-fault condition: bearing outer 

race with scratch and air-gap eccentricity.  It is obvious the EMD process works 

like an adaptive filter that decomposes the signal into a set of IMFs with different 

frequency bands.  The current and sound signals are decomposed similarly.  The 

normal condition in Figure 3.8 (a) captures the ball spin frequency of 46.25 Hz in 

its first IMF C(1)’s spectrum and the rotating frequency 20 Hz in its second IMF 

C(2)’s spectrum.  The two-fault condition in Figure 3.8 (b) captures the outer race 

fault characteristic frequency 71.5 Hz which is absent in normal condition C(1)’s 
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spectrum.  There is an obvious difference between the magnitude of the third 

harmonic of rotating frequency 60 Hz in both spectrums of C(1).  This contrast 

also exists between the magnitude of average envelope (equation 3.7) in both of 

the first IMF C(1).   
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The features described in Table 3.2 are used as input to simple classifiers.  

The three classifiers used are Naïve Bayesian (NB) classifier, k-Nearest Neighbor 

C(1) 

C(2) 

C(3) 

C(6) 

C(5) 

C(4) 

Fig.3.8  IMFs of vibration signal and the corresponding spectrum (a) normal condition 

(b) two-fault condition: bearing outer race with scratch and air-gap eccentricity 

×10
-3

 

×10
-3

 

×10
-3

 

×10
-3

 

×10
-3

 

×10
-3

 

(a) 

C(1) 

C(2) 

C(3) 

C(6) 

C(5) 

C(4) 

(b) 

×10
-3

 

×10
-3

 

×10
-3

 

×10
-3

 

×10
-3

 

×10
-3

 



55 

(KNN) classifier and feed-forward back propagation Artificial Neural Network 

(ANN) described in previous section.  For 5-category classification, 180 trials of 

each category are randomly selected as training data, and the remaining 180 

trials are used as testing data.  For 3-subclass classification, 60 trials of each class 

are used as training data, and the remaining 60 trials are used as testing data.  

FFT features, IMF features and DWT features are all extracted and used as input 

to these classifiers respectively.  The comparison is carried out in all 5-category 

classification tests.   

3.3.4.1 Results of First Stage: 5-category Classification 

Table 3.3 lists the 5-category classifier results using only one of these 

sensors in the experiment.  The microphone sensor itself can achieve 88.6% 

correct classification rate.  Vibration sensor can only achieve 72.7% correct 

classification rate.  This could be caused by the low sampling rate of vibration 

sensor and fewer features.  The current sensor shows better performance than the 

vibration sensor in all three classifiers.  Two microphones give similar 

classification rate results, but it should be considered that the experiments were 

conducted in a quiet lab environment.  In industry applications, the microphone 

sensor performance will be reduced.  The validation test in a noisy environment 

is described in section 3.3.4.3.  From this table of results, none of the sensors 
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individually can achieve a performance that is higher than 90% correct 

classification rate in the lab environment.   

Because of the low classification accuracy, multiple sensors are necessary.  

From the vibration sensor results, the performance using HHT features is much 

better than using FFT and DWT features.  Given the large number of trials (180 

trials for each category) in the testing process, the difference (about 10%) is 

unlikely due to the chance error.  From the current and microphone sensor 

results, the performance using HHT features is slightly worse than using FFT 

features.  The performance using DWT features doesn’t show any advantage.  In 

order to achieve higher performance by using multiple sensor features, the HHT 

features from the vibration sensor and FFT features from current and 

microphone sensors are used in the feature level sensor fusion.   

Table 3.3.  Correct classification rate of the testing data using one sensor 

Sensor 

Classifier 

Accelero-

meter 

Current 

probe 

Micro-

phone 1 

Micro-

phone 2 

NB  (%) 

HHT 60.7 59.5 72.9 68.5 

FFT 52.1 62.0 76.3 73.9 

DWT 48.9 57.2 69.1 68.7 

KNN (%) 

HHT 72.7 68.5 81.7 87.1 

FFT 57.6 73.5 86.6 88.5 

DWT 51.5 58.3 73.7 71.9 

ANN (%) 

HHT 70.5 71.1 85.2 87.5 

FFT 55.3 71.8 87.2 88.6 

DWT 53.8 62.0 73.5 73.5 
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Table 3.4 Classification results using two sensors 

    

 

Sensors* 

Correct Classification Rate (%) 

NB KNN ANN 

ACC + CP 76.9 89.2 90.3 

ACC +Mic1 84.5 88.9 90.7 

ACC+ Mic2 85.3 90.2 93.5 

CP + Mic1 83.7 90.8 92.6 

CP + Mic2 81.9 92.7 94.3 

Mic1 + Mic2 83.7 91.7 96.3 

*ACC: accelerometer; CP: Current Probe; Mic: Microphone 

Table 3.4 shows the results tested using features from two sensors.  The 

features from different sensors are simply accumulated in a feature vector (this is 

called feature level sensor fusion).  The performance is greatly improved by 

using two sensor features.  All the classification performance exceeds 90%.  

Although all the performances that involve microphone 2 are superior in Table 

3.4 and the highest performance of single sensor in Table 3.3 is microphone 2, it 

does not mean that the performance is related to the position of the microphone 

tested here.  To test the hypothesis that the position of the microphone 2 is 

responsible for its superior performance, the two microphones were 

interchanged so that microphone 1 now occupied the position of microphone 2 

and vice versa.  The results showed that it was the specific microphone hardware 

that contributed to its better performance, and not its location.  Table 3.4 shows 

the results of best combination of two sensor features which the combination of 
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two microphone sensors.  The performance can be increased to 96.3% correct 

classification rate using ANN classifier.  The other two classifiers also have high 

classification performance. 

Table 3.5 lists the classification results using all combinations of three 

sensors’ features and all sensors’ features.  The performance of all combinations 

are higher than most of two sensor results.  Almost all the classification 

performances exceed 95%.  Among the combinations of three sensors’ features, 

Microphone 2, vibration and current sensor give the highest performance.  With 

all sensors used, the performance can achieve 97.9% correct classification rate 

using ANN classifier and all the classifiers give the performance above 95% 

correct classification rate.  The higher performance of the first stage result, the 

higher the final classification rate of the system.  Therefore, we should use all the 

sensors’ features for the first stage classification. 

Table 3.5  Classification results using three or more sensors 

 

Sensors 

Correct Classification Rate (%) 

NB KNN ANN 

ACC + CP + 

Mic1 
88.7 94 94.6 

ACC+CP+Mi

c2 
91.9 96.8 97.1 

ACC+Mic1+

Mic2 
88.5 92.3 96.0 

CP+Mic1+Mi

c2 
87.6 94.3 96.4 

ACC+CP+Mi

c1+Mic2 
95.7 97.0 97.9 
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3.3.4.2 Results of Second Stage: Subclass Classification 

In the 2nd stage classification, every category contains 3 subclasses except 

the normal condition.  All the classification results above are an average of 10 

cross validation tests since the training data sets are randomly selected from each 

condition of the training and testing data sets. Based on one simulation test 

results of the 1st stage classification using ANN classifier (Figure 3.9), all the 

correctly classified trials are used for the 2nd stage classification test.  The final 

performance is simply the multiplication of these two stages’ correct 

classification rate.   

 

Fig. 3.9  Confusion matrix of ANN for 5-category classification 

using all sensors’ features 
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Figure 3.9 shows the confusion matrix of the 1st stage 5-category 

classification results.  A confusion matrix contains information about targeted 

and predicted classifications done by a classification system.  In this case, each 

class has 180 testing trials.  Class 1 to 5 represents two-fault condition, 

unbalanced stator winding resistance, air-gap eccentricity, damaged bearings 

and normal condition respectively.  To read it vertically, for instance, there are 

178 trials are correctly classified as class 1, one trial of class 1 is wrongly 

classified as class 3 and one trial of class 1 is wrongly classified as class 4.  To 

read it horizontally, 5 trials of class 3 are wrongly classified as class 1.  The last 

row shows the correct classification rate of each category in the 1st stage.  The 

total of 900 testing trials in the 1st stage classification has the final performance of 

98.4% correct classification rate.   

In the 2nd stage, all the training trials are used again in the subclass 

classifiers.  Only the correct classified testing trials are evaluated in the subclass 

classifiers because there is no chance of correct classification at the second stage 

when the first stage classification is incorrect.  Table 3.6 lists the results of the test 

finished for both 1st stage and 2nd stage classification.  All the features from 

different sensors are used in the 2nd stage subclass classifiers.  For simplicity the 

classifiers chose here are NB classifiers.  Almost all the 2nd stage classification 
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performance of this test has 100% correct classification rate.  The final 

performance is about the same as the 1st stage performance.   

Table 3.6.  Final performance of all conditions 

 
two-fault 

condition 

unbalanced 

stator winding 

resistance 

air-gap 

eccentricity 

damaged 

bearing 
normal 

1st stage 

CRC 
98.9 99.4 96.7 98.3 98.9 

2nd stage 

CRC 
98.3 98.3 100 100 100 100 100 100 100 100 100 100  

final 

perfor-

mance 

97.2 97.2 98.9 99.4 99.4 99.4 96.7 96.7 96.7 98.3 98.3 98.3 98.9 

*CRC: Correct Classification Rate 

3.3.4.3 Validation Tests 

In order to verify the system reliability, four validation tests are conducted 

in: (1) quiet lab environment; (2) noisy fan and DC motor running; (3) loud music 

playing environment; (4) noisy fan, DC motor running and loud music playing 

environment.  Two conditions, which were not used for training, are randomly 

chosen from the various possible conditions and four sets of data are collected 

for each condition to validate the classification system.  The experiments 

conducted for validation are (1) unbalanced resistance in phase C, (2) inner race 

scratched bearing and one-side tilted type air-gap eccentricity.   

In the experiments for training and testing above, the resistance of phase 

C winding is 8% larger than the original resistance but in validation test 
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condition (1) the resistance of phase C winding is 5% larger than the original 

resistance; an outer race damaged bearing is used for two-fault condition of 

damaged bearing and air-gap eccentricity but in validation test condition (2) an 

inner race damaged bearing is used as the damaged bearing.  The data are 

collected for 2 minutes using the same sensors and data acquisition method for 

each set.  All the data are used as testing samples, no training involved.  30 

frames are gathered to perform the testing using the classifier trained above.   

The validation test results are shown in table 3.7 and 3.8.  The first stage 

classifier is ANN classifier and the second stage is still NB classifier.  Table 3.7 

lists the testing results in lab quiet environment.  Only 1 trial is failed to be 

correctly classified in the first stage for the unbalanced stator winding condition 

and 3 trials are failed to be classified in the first stage for the two-fault condition 

of damaged bearing and air-gap eccentricity.  The total performance is 96.7% and 

90.0% correct classification rate respectively.  Table 3.8 lists the testing results in 

noisy environments.  The performance of the first stage classification is reduced 

by more than 10%.  The second stage classification of unbalanced resistance 

condition is perfect probably because the significant features are not the sound 

features.  The final performances of all validation tests are above 70% correct 

classification rate. 
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Table 3.7  Validation test performance (quiet environment) 

condition 
First stage 

classification 

Second stage 

classification 
Total performance 

Phase C with 

additional resistance 
96.7% (29/30) 100% (29/29) 96.7% 

Damaged bearing and 

air-gap eccentricity 
90.0% (27/30) 100% (29/29) 90.0% 

 

Table 3.8  Validation test performance (noisy environment) 

Condition Phase C with additional resistance 
Inner race scratched bearing and air-

gap eccentricity 

Environment 
Fan and DC 

motor noise 
Music 

Fan, DC 

motor and 

music 

Fan and DC 

motor noise 
Music 

Fan, DC 

motor and 

music 

First stage 

classification 
83.3%(25/30) 80.0%(24/30) 86.7%(26/30) 83.3%(26/30) 90.0%(27/30) 80.0%(24/30) 

Second stage 

classification 
100%(25/25) 100%(24/24) 100%(26/26) 96.2%(25/26) 96.4%(27/28) 95.8%(22/24) 

Final testing 

performance 
83.3% 80.0% 86.7% 80.1% 86.8% 73.4% 

 

3.4 Summary 

This chapter described the feature selection process based on the 

classification results of various motor faults using wired sensors.  The 

experiments are conducted under no-fault, single fault and multiple faults 

condition.  The results demonstrate the effectiveness of using intrinsic mode 

functions in Hilbert-Huang transform to construct vibration sensor features for 

classification.  However, no single sensor was able to achieve a high enough 

classification accuracy.  Multiple sensors were required to enable reliable 

classification.   



64 

Due to the large number of classes, a two stage classification system is 

designed to solve the problem.  Both HHT features of vibration sensor and FFT 

features of current and microphone sensors are selected as final features for 

classification.  The first stage contains five categories and the second stage 

contains 3 subclasses for each faulty category.  High classification accuracy is 

achieved by using multiple sensors and both HHT and FFT features.  Two 

validation conditions using separate experiment data prove the effectiveness of 

the system even in a noisy environment.  These features thus will be used in the 

study of fault diagnosis using wireless sensors. 
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CHAPTER 4 

FEASIBILITY OF WIRELESS SENSORS FOR HEALTH MONITORING 

 

This chapter investigates the characteristics and performance of wireless 

sensors for application in both small and large induction motors.  The 

parameters that are studied are: 1. The fidelity of the data acquisition as 

determined by comparison with wired sensors; 2. The reliability of the 

communications as a function of distance, spatial position and battery life of the 

sensor.  This reliability is measured as the percentage of successfully delivered 

data packets.  The experiments employ vibration sensors placed inside the motor 

enclosure on the stator and on the motor shaft.  Each sensor is interfaced to a 

wireless node that possesses communication and computational capability.  The 

transmitted data is collected by a base station located outside the motor. 

4.1 The Need for Feasibility Study 

Electric motors are used in a wide range of industrial applications and 

consume a significant portion of energy of the industrial sector [14, 69].  Their 

inefficiencies and failure cause substantial losses in the form of increased energy 

costs and maintenance costs.  Online condition monitoring can improve the 
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reliability, availability and maintainability of electric motors by providing early 

warning of impending failures [69]. 

At present, most of the sensors are physically wired.  The wires provide 

both power and communications paths.  However, in many applications, wired 

sensors are impractical or inconvenient.  For example, they are difficult to mount 

on rotating machinery or high temperature applications.  In these situations, 

wireless sensor networks provide a possible solution.  These networks can be 

used in remote locations and also offer inexpensive and flexible installation. 

In contrast to conventional condition monitoring of electrical machinery 

that measure current or vibration signals outside the motor, wireless sensors 

provide access to useful signals inside the motor where the phenomena 

responsible for failure occur.  These sensors are capable of not only sensing, but 

also of processing, storage and eventually communication.  This chapter studies 

the feasibility of wireless sensor nodes inside the motors using current 

technology and evaluates the data acquisition and transmission performance of 

these nodes. 

Wireless sensors bring up several issues that need careful study and 

experimentation.  The quality of wireless communication depends on the 

environment, the part of the frequency spectrum under use, the particular 
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modulation schemes under use, and possibly the communicating devices 

themselves [70].  Wireless receptions change with slight spatial displacements 

and also may vary over time.  Multi-path interference cause signal nulling, signal 

amplitude increasing or decreasing, and data corruption.  Many of the current 

sensor platforms use low-power radios which do not have enough frequency 

diversity to reject multi-path cancellation.  In addition, when signals are sending 

from the transmitter inside the motor, the motor enclosure may block the signal 

but the extent is unknown.  Although the induction motors are designed to have 

minimum field leakage, there are still some fringing fields around the windings.  

These fields may affect the operation of the sensor and the wireless 

communication.   

Finally, wireless sensors are conventionally operated on batteries that 

have a finite life.  Thus the quality of data acquisition and communication can 

deteriorate as the battery becomes weaker.  Some sensitive patterns of faults 

need frequency analysis with data acquired at a higher sampling rate which in 

turn implies higher transmission rates.  Packet delivery performance is important 

since it translates to data completeness.  With such a high sampling rate and 

transmission rate, the battery life is reduced.  We also inspect the packet delivery 

performance during the whole battery lifetime.   
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In this work, we study packet delivery performance at the communication 

stack and the data fidelity of the wireless accelerometer sensor that is used in 

industrial applications for vibration analysis.  The packet delivery performance is 

related to the reliability in the wireless communication [71].  The data fidelity of 

wireless sensors measures the quality of wireless communication used in 

induction motors.   

Compared with wired accelerometers, wireless sensor has limited 

sampling rate and data precision.  A comparison between wireless and wired 

accelerometer measurements answers the question whether the data collected 

from the wireless sensor is reliable and useful. 

4.2 Related Research 

There is not much work that has evaluated packet delivery performance 

on ad hoc or infrastructure based wireless sensor networks (WSN) in industrial 

environments.  Zhao et al.  [70] describe results from three different 

environments on a medium scale (up to 60 motes) ad hoc WSN.  The 

environments they studied are office building hallway, a spacious parking lot 

and a local state park.  Ganesan et al.  [72] studied a large-scale (approximately 

180 motes) testbed grid on an unobstructed parking lot.  Their research focuses 
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on the loss and asymmetry of packet delivery at both the physical layer and the 

medium access control (MAC) layer.   

Tsai et al.  [73] study the feasibility of an In-car WSN and test the wireless 

communication channel between the base station and a sensor placed under the 

engine compartment.  Their statistical study shows that the In-the-Engine-

Compartment channels can satisfy the requirement of up to 98% packet reception 

rate.  Paselli et al.  [74] designed a modular wireless sensor node for machine 

control applications.  It demonstrates the feasibility of wireless communication 

between fixed and moving parts of industrial machines in the distance of 1.5m.  

However, the power consumption (3W) is very high.  Rahimi et al.  [75] study the 

feasibility of extending the lifetime of a wireless web-cam network in building by 

exploiting mobility.  In their system, a small percentage of network nodes 

equipped with solar cells are autonomously mobile, allowing them to move in 

search of energy, recharge, and deliver energy to immobile, energy-depleted 

nodes assuming the static nodes are rechargeable.   

There are already some existed industrial applications reported using 

wireless sensors.  Jemielmiak [76] reported a wireless acoustic emission sensor 

commercially available from some companies such as ARTIS [77], Nordmann 

[78], Prometec [79].  It is implemented in a machine tool condition monitoring 
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application.  The wireless AE sensor consists of a rotating sensor and a fixed 

receiver with an airgap of only 0.6mm.  Discenzo [80] described a pump 

condition monitoring application using self-powered wireless sensors.  Shen et al.  

[81] and Bonivento et al.  [82] have described their design flow of industrial 

applications of WSN using commercial nodes.  Shen targets the application in 

industrial process monitoring and controlling.  Bonivento presents a case study 

of a control application for manufacturing plants.  This chapter presents an 

application of industrial WSN by investigating the feasibility of wireless sensor 

nodes inside induction motors. 

4.3 Studies in Small Induction Motors 

4.3.1 Equipment and Instrumentation 

(a) Motor: A three-phase induction motor from Newman Electric Motors, Inc.  

stands on a strong-hold steel workbench table.  The 1 hp induction motor is 

connected to an adjustable speed drive from Toshiba International Corporation.  

The running speed ranges from 0 to 900 rpm and can be adjusted by the speed 

drive.  Figure 4.1 shows the placement of a wireless sensor node inside the 

induction motor.  The diagram shows the leakage magnetic field around the 

windings outside the stator core.  The sensor node inside is exposed inevitably to 



71 

the fringing field.  The dynamic field when motor running is up to 70 gauss in 

the peak close to the core edge measured by the hall-effect sensor [83] (in 

comparison, the maximum field strength of the earth is about 0.6 gauss [84]). 

 

(b) Sensor: Three vibration sensors are mounted on the side-box by the double-

sided tapes.  Vibration specifications are usually expressed in terms of 

acceleration peak for sine and acceleration RMS for random vibration.  Spectral 

content such as power spectral density curve is used to describe random 

vibration specifications.  The vibration spectral content is compared between 

these three sensors. 

Fig. 4.1  Experiment set up (a) Photo (b) Diagram 
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(c) Wireless Sensor System: A wireless sensor system consists of at least one 

sensor node and a base station.  A sensor node is comprised of a sensor mote and 

a sensor board.  Figure 4.2 (a) shows the sensor node and its casing.  Figure 4.2 (b) 

gives the corresponding block diagram.  The sensor mote (MICA2DOT) hosts an 

Atmel128L CPU that runs the Tiny Operating System (TinyOS).  The operating 

system executes programs independently written in the programming language 

nesC [85].  This microcontroller has its maximum clock frequency of 8 MHz and 

provides the following features: 128K bytes of In-System Programmable Flash 

with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, An 8 

channel 10-bit analog to digital converters (ADC), Real Time Counter (RTC), etc.  

An external flash memory of 512K bytes is used to store measurements.  The 

(a) Quarter Size Mica2Dot Sensor Node and Casing 

(b) Mica2Dot Sensor Node Block 

Diagram 

(c) Base Station Block Diagram 

Fig. 4.2  Wireless Sensor Components 
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radio center frequency is 916MHz.  The data transmission rate is characterized at 

38.4 kbits/s.  Typically, the power for computing is 24mW, the transmitting 

power is 81mW and the receiving power is 30mW. 

A sensor board is a Peripheral Component Interconnect (PCI) board that 

can be connected to the mote.  The design of the sensor board depends on the 

type and the number of sensors needed.  The sensor node and the programming 

boards used in the experiment here are commercially available from Crossbow 

Technology Inc.  Figure 4.2 (a) depicts the sensor node in a plastic casing.  A 

magnet is integrated to the bottom layer of the sensor node case.  The sensor 

board and mote is about 25 mm in diameter.  The measured data is transmitted 

from the sensor node and is received by the base station.  The base station 

consists of one sensor node and a programming board.  The programming board 

is connected to a computer by a serial cable.  Figure 4.2 (c) shows the block 

diagram. 

(d) Wired Sensor Systems: Wired sensors and data acquisition systems are used 

to study the fidelity of wireless sensor data.  One of the wired accelerometers 

(from Crossbow, Inc), is a one directional sensor with ±4g measurement range 

and 500±15mV/g sensitivity.  Another accelerometer chip from Analog Devices, 

Inc. that has better accuracy than the one used in wireless sensor board is used 
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for cross validation.  The measurement range is ±5g and its sensitivity is 174±17 

mV/g.  The accelerometer chip on the wireless sensor board has its measurement 

range of ±2g and sensitivity of 167±27 mV/g. 

(e) Operation of the Wireless Sensor Node: The sensor node collects data at a 

sampling frequency of 100 Hz.  The data is collected for 2 seconds continuously 

and stored in a buffer.  Then the data is transmitted from the sensor node to the 

receiver in the form of packets.  When all the packets are sent out, the sensor 

node starts to collect data again.  Each measurement data uses 2 bytes of memory; 

hence the data rate is 200 bytes/s.  In the data area for each packet, 20 bytes is 

used for collected data, 2 additional bytes are used for time stamp, and the last 

byte is used to mark the Cyclic Redundancy Check (CRC) code.  The packet ID 

number and the time stamp are used to compute the percentage of packets 

received. 

To send a packet, the application layer (in our case, this will be the data 

acquisition and processing application that runs on the sensor nodes) invokes the 

communication stack with the packet to be sent and the address of the 

destination node of the packet.  After performing medium access control (MAC) 

to ensure that there is no other communication in progress on the wireless 

channel, the MAC layer begins sending the packet one byte at a time.  Each byte 
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is coded and sent over the channel.  Simultaneously, a cyclic redundancy check 

(CRC) code is computed over the entire packet and is appended to the 

transmission.  The receiver receives the coded bytes and decodes them, 

correcting any single bit errors and flagging double bit errors.  When the entire 

packet has been received, a CRC code is computed by the receiver on this packet 

and is compared to the CRC that was computed and transmitted by the sender.  

If the CRC from the sender and the receiver do not match, the packet is rejected 

as spurious.  If the packet is incomplete it is considered a damaged packet.  CRCs 

are popular because they are simple to implement in binary hardware, are easy 

to analyze mathematically, and are particularly good at detecting common errors 

caused by noise in transmission channels. 

 

(a)  

(b)  

Fig. 4.3  (a) Packet Construction (b) Packet Transmission Flow 
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Figure 4.3 shows the packet construction and packet transmission flow.  

Each packet has 29 data bytes.   In the data column for each packet 20 bytes are 

used for collected data, two bytes for the time stamp, and two to mark the CRC 

checking results. 

The Berkeley media access control (B-MAC) [86] protocol is used in this 

study.  B-Mac is a reconfigurable carrier sense multiple access (CSMA) protocol 

that achieves low power processing, collision avoidance, and high channel 

utilization.   The B-MAC contains a clear channel assessment (CCA), to 

determine if the channel is clear for collision avoidance, and packet back off, link-

layer acknowledgement, and low power listening (LPL) [87]. 

4.3.2 Experiments 

4.3.2.1 Packet Delivery Performance 

The most basic aspect of wireless communication is the packet delivery 

performance.  In order to characterize the packet delivery performance, we 

investigate the packet loss rate (the fraction of packets that were transmitted 

within a time window, but not received) or its complement - packet reception 

rate.  The number of packets that fail the CRC checks is also recorded.  Therefore 
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we measure two metrics: 1) percentage of packets received; 2) percentage of 

packets without error. 

In Figure 4.4, a side-box is on the left side where the winding terminals 

usually come out and connect with the power source.  There is always some part 

(at least a hole) not sealed with metals.  In fact, industrial totally enclosed small 

motors are not really completely enclosed/sealed.  A radio frequency signal 

encounters objects that reflect, refract, diffract or interfere with the signal and can 

be then received outside.  In order to study the spatial characterizations, we use 

three base stations (see Figure 4.4) to receive the signal from three different 

directions and vary with the distances.  The sensor node is located at the stator of 

the motor or on the shaft.  We also check the packet delivery performance along 

the battery lifetime in the base station 2 direction with the sensor node on stator. 

 

(a) Sensor node on stator (b) Sensor node on shaft 

Fig. 4.4  Three base station set-up 
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Experiments show that there are points where there is zero or faint signal 

reception.  This is due a phenomenon called fading effect.  Fading is caused by 

interference between two or more versions of the transmitted signal which arrive 

at the receiver at slightly different times.  These waves, called multi-path waves, 

combine at receiver antenna to give a resultant signal which can vary widely in 

amplitude and phase, depending on the distribution of the intensity and relative 

propagation time of the waves and the bandwidth of the transmitted signal.  

Signal nulling occurs when the reflected waves arrive exactly out of phase with 

the main signal and cancel the main signal completely.  To investigate the fading 

phenomenon, we move the base station in steps of 1cm on either side of one null 

signal point.  The base station position is showed in Figure 4.5.  We also check 

the same locations for the sensor node on shaft. 

 

 

Initial 

Null 

Fig. 4.5  Fading effect observation 

1.1m 
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4.3.2.2 Data Fidelity 

In order to monitor the motor health, the vibration frequency spectrum 

needs to be monitored.  The wireless sensor and two wired sensors are installed 

on top of the side box in the same direction.  All of them are mounted by a 

double sided tape.  With the motor running, these sensors should detect the same 

frequency contents.  This setup cannot be done inside the motor because the 

curvature of the motor housing makes it very hard to install three sensors at the 

same position.  Instead, we use each of the wired sensor set up with the wireless 

sensor at the same position but one inside and one outside (Figure 4.6). 

 

4.3.3 Experimental Results and Discussion 

The first experiment is to study the spatial characterization of packet 

delivery performance.  The reception rate of three base stations (see Figure 4.4) is 

Fig. 4.6  Inside/outside wireless/wired sensor set-up 



80 

shown in Figure 4.7.  The total height of the bars is the percentage of packets 

received.  The green bar represents the percentage of the packets that have CRC 

ok.  When the sensor node is installed on the stator, the reception rate of base 

station 1 is above 98% until as far as 3 meters away from the sensor node.  It 

seems that there is no null point when the sensor node is on the shaft. 

 

The second experiment was conducted for a continuous period of 42 

hours to investigate the time based difference of packet delivery performance.  

Figure 4.8 shows two base stations’ packet delivery performance in the direction 

of base station 2 in Figure 4.4.  The packets are collected every 30 minutes before 

Fig. 4.7  Spatial characterization 

Base station 1 

(a) Wireless sensor node on stator 

(b) Wireless sensor node on shaft 

Base station 2 Base station 3 

Base station 3 Base station 2 

Base station 1 
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1500 minutes and every hour after that.  The closer base station (approximately 

0.5m) shows very good data reception rate in the time span of continuously 

running for 39 hours.  The farther base station (approximately 1.35m) shows a 

clear degradation of the CRC passed rate in the first 10 hours.  The reception rate 

keeps above 80% until the last 3 hours of operation.  The CRC passed rate in 

Figure 4.8(a) got better performance before the battery died.  It is probably 

because of the variance of the environment. 

 

During the experiments above, we found there are always some null 

points that no signal can be received at particular position.  These null points are 

due to fading in wireless communication and will affect the packet delivery 

performance and eventually the data quality.  To explore further, the base station 

was placed at a point of low reception.   This point was approximately 1.1m from 

(a) Base station at 0.5m 

Temporal characterization 

(b) Base station at 1.35m 

Temporal characterization Fig. 4.8  Time based difference  
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the sensor node as seen in Figure 4.5.  The base station was then moved in steps 

of 1 cm in each direction.  Figure 4.9 shows the results of packet delivery 

performance besides this null point.  As can be seen there are some other null 

points found in the position closer to the sensor node because of the multi-path 

effect in the indoor environment.  The sensor platform uses low-power radios 

which do not have enough frequency diversity to reject multi-path propagation.  

Thus the position of receiving node outside the motor should be carefully chosen 

when the sensor network is set up.  At the same location, Figure 4.9 (b) shows if 

the sensor node is installed on the shaft and rotates when the motor is running, 

the losses are relatively uniform because the mobility of the sensor node 

provides more transmission path than the fixed one. 

 
Fig. 4.9  Fading effect observation 

(a) Sensor node on stator (b) Sensor node on shaft 



83 

In order to investigate the data fidelity of wireless accelerometer, two 

wired sensors are used to compare with the wireless sensor.  One wired sensor 

and its data acquisition board is from Crossbow, Inc.  This acceleration has a 

sampling rate about 180Hz.  The other wired sensor is an evaluation board with 

the accelerometer chip from Analog Device, Inc.  A 3V DC power supply and a 

data acquisition device are used for this evaluation board.  This accelerometer 

has a sampling rate of 100Hz.  Figure 4.10 (a) shows the spectral analysis of three 

accelerometer sensors on the side box.  Figure 4.10 (b) and (c) shows the 

spectrum of each wired sensor outside compared with wireless sensor inside the 

motor. 
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The motor is running at 900 rpm (15Hz).  The spectrum clearly shows the 

main frequency peak and other unknown contents.  The wired accelerometer has 

lowest noise level because of its higher sampling rate.  As can be seen their 

frequency spectra match very well.  The wireless sensor spectrum has a slight 

frequency shift due to small sampling rate and short data collection period.  It 

Wireless sensor spectrum Evaluation board spectrum Wired sensor spectrum 

Fig. 4.10  Vibration sensor frequency analysis 

(a) Three sensors on side box 

Wireless sensor inside 

Evaluation board outside 

Wireless sensor inside 

Wired sensor outside 

(b) Compared with wired accelerometer (c) Compared with evaluation board 



can be improved by changing the sampling rate and by taking longer recording 

time period. 

4.4 Studies in Large Induction Motors

4.4.1 Experiment Setup

The motor used in this 

alternating current (AC) motor running at 1800 

The motor is mounted on a flat metal table

and two wireless.  The sensors and data acquisition devices used are as same as 

the ones in small induction motor studies.  

same point on the outside of the stator frame as the wireless se

stator frame. 

Figure 4.11 (a) shows the wireless sensor on a metal plate (

x 0.5mm ), wrapped around with resin tape attached to the motor inside the 

stator frame.  The accelerometers on the sensors attached to the stator fr

directed downwards.  

(Figure 4.11 (b)).  The collar is bolted on the shaft of the motor also wrapped 

around with resin tape; the accelerometer is mounted so that it measures 

accelerations in the radial direction
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can be improved by changing the sampling rate and by taking longer recording 

Studies in Large Induction Motors 

Experiment Setup 

e motor used in this study is a three-phase 200 horse power (hp) 

alternating current (AC) motor running at 1800 rpm and a voltage of 460 volts.  

The motor is mounted on a flat metal table.  Three sensors are used 

.  The sensors and data acquisition devices used are as same as 

the ones in small induction motor studies.  The wired sensor (

outside of the stator frame as the wireless sensor (

shows the wireless sensor on a metal plate (

), wrapped around with resin tape attached to the motor inside the 

The accelerometers on the sensors attached to the stator fr

.  Another wireless sensor is attached on to a metal collar

The collar is bolted on the shaft of the motor also wrapped 

around with resin tape; the accelerometer is mounted so that it measures 

the radial direction.   

can be improved by changing the sampling rate and by taking longer recording 

phase 200 horse power (hp) 

rpm and a voltage of 460 volts.  

hree sensors are used – one wired 

.  The sensors and data acquisition devices used are as same as 

) monitors the 

nsor ( ) inside the 

shows the wireless sensor on a metal plate ( 9mm x 5.5mm 

), wrapped around with resin tape attached to the motor inside the 

The accelerometers on the sensors attached to the stator frame are 

Another wireless sensor is attached on to a metal collar 

The collar is bolted on the shaft of the motor also wrapped 

around with resin tape; the accelerometer is mounted so that it measures 
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a)Wireless sensor on Stator Frame 

 

b) Wireless sensor on Shaft 

Fig. 4.11  Wireless Sensors attached to the a) Shaft and b) Stator Frame 

 

Figure 4.12, shows a top view of the experiment set up.  On the top left 

side of Figure 4.12, the wired sensor is connected to a data acquisition (DAQ) 

Fig. 4.12  Top view of the experiment setup for large induction motor feasibility study 
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board.  The DAQ board is connected to a laptop computer.  The two wireless 

sensors communicate with the base station on the bottom right of Figure 4.12. 

4.4.2 Methodology 

The spatial dependence of the wireless communication in this study is 

studied by using three base stations to receive the signal from different directions 

and distances.  Figure 4.12 above shows the three different base stations.  Each 

base station is studied at four different points, 0.5 meters apart from each other.  

The farthest distance between the motor and base station was 2 meters.  The base 

station, MIB510CA was placed at each point for three trials to collect data.  Each 

trial had a time period of three minutes.  A total of 36 trials where performed.  

The packet deliver performance is studied by analyzing the successful reception 

of packets. 

4.4.3 Experimental Results and Discussion 

The following results show the packet delivery performance of the 

wireless communication between the wireless sensors inside the motor and the 

base station.  The packet reception rate of the wireless sensors on all four points 

(P1-P4) from Base One, Two, and Three (B1-B3) for the stator and shaft are 

shown in Figure 4.13 and Figure 4.14, respectively.  Note the symbols B1P1 

represents B1= Base One and P1= Point One.  The height of the green (dark) bars 
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represents the percentage of the packets that were received completely passing 

the CRC check, percentage of normal packets (NNP).  The yellow (light) bars 

represent the damaged packets (i.e., were corrupted), did not pass the CRC check. 

 

Figure 4.13 shows the packet reception rate from the sensor node on the 

stator frame.  The performance of the wireless senor node attached to the stator 

frame did not vary much with distance.  The packet performance based on the 

location had a slight variation; Base Three had the most damaged packets of 4.6% 

CRC.  Overall the sensor node attached to the stator frame received an average 

reception rate of 97.10% of normal packets. 

Fig. 4.13  Spatial Characterization of the Wireless Sensor on the Stator  

(Note: B1P1= B1-Base One P1-Point One) 
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Table 4.1 is a summary of the packet delivery performance of the wireless 

sensor on the stator frame; shows the average of all four points. 

Table 4.1: Average Packet Delivery Performance (Stator Frame) 

 

 

Figure 4.14 shows the packet performance of the wireless sensor on the 

shaft of the motor.  The performance of the sensor attached to the shaft did vary 

based on the location of the base station.  Base One and Three had bad reception 

rate compare to Base Two.  The packet delivery performance of the wireless 

sensor node on the shaft had nearly four times more damaged packets CRC then 

the wireless sensor on the stator frame. 

Base One Base Two Base Three Mean

NNP 97.73% 98.17% 95.40% 97.10%

CRC 2.27% 1.83% 4.60% 2.90%

Fig. 4.14  Spatial Characterization of the Wireless Sensor on the Shaft 
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Table 4.2 is a summary of the packet delivery performance of the wireless 

sensor on the shaft; shows the average of all four points. 

Table 4.2: Average Packet Delivery Performance (Shaft) 

 

 

Figure 4.15 shows the packet delivery performance of the wireless sensor 

on the stator frame and shaft at three distances (P1=0.5m, P2=1m, and P3=5m) on 

Base Two.  This was performed to study the signal transmission at farther 

distances.  The results show that the reception rate of the wireless sensor on the 

stator frame does not vary much at farther distances.  The reception rate from the 

wireless sensor on the shaft however shows a big decline. 

Base One Base Two Base Three Mean

NNP 84.90% 93.14% 85.73% 87.93%

CRC 15.10% 6.86% 14.27% 12.07%

Fig. 4.15  Packet Delivery Performance at 5 meters 
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Table 4.1 and 4.2, shows the average packet delivery performance of the 

wireless sensor on the stator frame and shaft respectively, both show Base One 

and Three having bad reception rate compare to Base Two. Recall that the 

wireless sensor on the stator frame had a slight variation based on location 

whereas the wireless sensor on the shaft had more than twice the damaged 

packets on Base One and Three.  The wireless sensor on the shaft was positioned 

to measure the acceleration in the radial direction, Base One and Three are 

parallel in this direction whereas Base Two is perpendicular. The wireless sensor 

on the shaft was exposed to a dynamic field, rotating at nearly 1800rpms, and 

electromagnetic field.   

Figure 4.16 shows the packet delivery performance of the wireless sensor 

on the shaft, when the motor is OFF and ON.  This was performed to study the 

signal transmission being exposed to an electromagnetic field while running at 

1800rpms in radial direction.  The data was taken on Base One (B1), points one 

through four (P1-P4).  Each point was 0.5 meters apart. 

When the motor was OFF the reception rate had an average of 98%.  

Figure 4.16 shows the signal transmission performing poorly at farther distances 

when the motor was ON compared to when it was OFF. The packet delivery 

performance when the motor was ON had a low reception rate of 73.8% at the 
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farthest point and an average of 84.9% from all four points.  On Figure 4.15, the 

wireless sensor on the shaft did have a big decline on the reception rate at 

farthest distance compared to the wireless senor on the stator frame.  The 

wireless sensor on the shaft had more damaged packets at farther distances being 

exposed to a different environment (dynamic and electromagnetic field) than the 

wireless sensor on the stator frame. 

 

Variations of the received power are usually caused by the change in the 

transmission medium or paths of the wireless signals [73].  Fading effects can be 

caused by the interference between multiple versions of the transmitted signal 

which arrive at the receiver at slightly different times [73].  There are three 

different propagation effects that can occur in the motor environment i) 

Fig. 4.16  Packet Delivery Performance when motor is OFF and ON 
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Reflection when an electromagnetic signal encounters a surface that is large 

relative to the wavelength of the signal. ii) Diffraction when a radio wave 

encounters an edge, wave propagates in different directions, iii) Scattering occurs 

when the size of the obstacle is on the order of the wavelength of the signal or 

less, and an incoming signal is scattered into several weaker outgoing signals [73, 

88].  Considering the geometric structure inside an AC motor, electromagnetic 

waves encounter a lot of fading effects.  These effects just mentioned could cause 

the wireless signal to propagate through different paths arriving at the antenna 

of the receiver with different amplitude, phase, and time [73]. 

For data fidelity study, the same wired sensor and data acquisition system 

are used to analyze the fidelity of the wireless sensor attached on the stator frame. 

Figure 4.17 shows the vibration frequency analysis of the a) wireless and b) 

wired sensor on the stator frame. 

The accelerometer on the wired and wireless sensor has a sampling rate of 

100 Hz.  The motor is running at 1800 rpm, hence 30 Hz is the main frequency 

peak.  The frequency spectra of the wired and wireless sensor have prominent 

frequency peaks at 30 Hz.  The frequency spectrum of the wireless sensor has 

other frequency peaks at 12 Hz, 13 Hz, and 47 Hz.  The frequency spectrum of 

the wired sensor has additional frequency peaks at 10 Hz, 11 Hz, and 20 Hz.  
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Further investigation is required to see the cause of these frequencies and 

difference between the wireless and wired sensor results. One factor to help 

distinguish the results is to consider the method the wireless and wired sensor 

were attached. The wired sensor was attached using double-sided tape whereas 

the wireless sensor was attached on a metal plate. 

 

Base One 

 

 

Base Two 

 

 

Base Three 

 

a) Wireless  b) Wired 

Fig. 4.17  Vibration analysis on stator frame for a) Wireless b) Wired sensor 

(Wireless data collected from Base One, Two, Three) 

 

Data was taken with the wireless sensor attached with double sided tape. 

Comparing the wireless sensor and wired sensor with double-sided tape, peaks 
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at 10 Hz, 20 Hz, and 30 Hz did match.  The remaining frequency peaks not 

matching could be due to other factors or due to the micro-sensors themselves.  

4.5 Summary 

In this chapter, we have described results from a collection of vibration 

measurement experiments designed to demonstrate the feasibility of wireless 

sensors for health monitoring in both small and large induction motors. The 

wireless sensor node inside the motor can always send out signals to the base 

station outside in a 0.6m circular region. For totally enclosed motors, the side box 

side has always some parts without metal. At some points even as far as 2.5m, 

the packet delivery performance is also satisfactory. The battery under very high 

transmitting load can last as long as 40 hours. The packet delivery performance 

does not show clear difference along most of the battery lifetime. Due to multi-

path propagation phenomenon, there are some null points where the signal gets 

canceled. The position has to be adjusted to find the position of high reception. 

Vibration data from the wireless sensor shows a promising accuracy of frequency 

spectrum comparable to the more reliable wired sensors. Battery life is a limiting 

factor in the application of wireless sensor technology. As the battery degrades, 

performance deteriorates. The most power-intensive aspect of the operation of 

these nodes is the communication. If communication is reduced by on-board 



96 

processing of the measured data, then the battery life can be lengthened 

considerably.  

One attractive aspect of the wireless nodes is that they can accept 

measurements from several sensors. They can also perform local computations 

and signal processing. This feature further reduces the transmission load and 

extends the life of the battery. Finally, wireless sensors are low power devices 

and can be powered by energy scavenging methods from available 

environmental sources such as vibrations and magnetic fields. 

 

  



97 

 

CHAPTER 5 

MULTI-FAULT ANALYSIS IN INDUCTION MOTORS USING WIRELESS 

SENSORS 

 

This chapter describes a wireless health monitoring and fault classification 

system for drive connected three-phase induction motors.  The wireless sensor 

nodes are developed based on commercially available programming modules 

and sensor boards.  A two stage hierarchical classification system is designed for 

the fault diagnosis.  Based on the wired sensor experiments, the HHT features of 

vibration sensor and the FFT features of flux (current) and acoustic sensors are 

selected as features for the classification.  The first stage contains five categories 

and the second stage contains 3 subclasses for each fault category.  The results 

demonstrate the effectiveness of the system. 

5.1 Overview of Wireless Sensor Network for Motor Condition Monitoring 

Wireless Sensor Networks (WSN) provide an effective platform to gather 

and analyze data without human intervention[15].  The unique characteristics of 

the IEEE 802.15.4 [89] standard such as the flexibility, inherent intelligence, fault 

tolerance, low cost, and rapid deployment make WSN the ideal structure for 
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low-cost motor monitoring system for industrial plants.  Typically, a sensor 

network consists of autonomous wireless sensing nodes that are organized to 

form an adhoc network that relays the sensor data to a specified destination for 

processing.  Each node is equipped with sensors, embedded processing unit, 

short-range radio communication module, and power supply.   

 

Cable 

Wireless network 

Internet 

Base station 

Fig. 5.1  Three-layer Wireless Condition Monitoring System Framework.  

Reproduced from Xue et al (2007) 
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A typical three layer motor monitoring system [90] is illustrated in Figure 

5.1.  The first layer is the data acquisition layer which is composed of integrated 

sensor nodes.  In the second layer, a base station board collects the data from 

different wireless sensor nodes.  The base station is connected to a server 

computer through a serial port cable.  A laptop can be used as a server computer 

as well.  All the data collected is saved in the database and the signals can be 

processed by using various signal processing techniques.  The decision for 

maintenance thus can be made based on the wider view of the information.  

Different sensors can provide compensating information using sensor fusion 

techniques for helping the decision making.  The third layer provides a 

connection for human user interfaces to the system.  The user can catch the 

global view of the machine and the condition monitoring can be carried out 

remotely.   

5.2 Wireless Sensor Node 

In this study, an Imote2 [91] sensor node is used instead of MICA2DOT 

described in the previous chapter.  Imote2 is the newest version of wireless 

sensor module which is designed for demanding applications requiring high 

CPU and wireless link performance and reliability. 
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5.2.1 Hardware 

The Imote2 sensor node designed by Intel is comprised of a sensor module 

(also called sensor mote) and a sensor board. Figure 5.2 clearly depicts the top 

and bottom view of the sensor mote.  This platform is built around a low power 

XScale processor, PXA271.  It integrates an 802.15.4 radio (ChipCon 2420) and a 

built-in 2.4 GHz antenna. The processor can operate in a low voltage (0.85V) and 

a low frequency (13 MHz) mode, hence enabling low power operation.  The 

frequency can be scaled to 104 MHz at the lowest voltage level, and can be 

increased up to 416 MHz with dynamic voltage scaling.  The radio chip (CC2420) 

supports a 250 kb/s data rate with 16 channels in the 2.4 GHz band.  The 

integrated antenna enables the sensor mote to provide a nominal range of about 

30 meters.  This sensor mote supports a variety of operation system options. The 

open source Tiny Operating System (TinyOS) is installed for this study.  This 

operating system executes programs independently written in the  programming 

language nesC [85].  Other operating system such as Linux, .Net Micro 

Framework can also be installed for different applications.   
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To supply the processor with all the required voltage domains, the sensor 

mote includes a power management chip (PMIC).  This PMIC supplies nine 

voltage domains to the processor in addition to the dynamic voltage scaling 

capability.  It also includes a battery charging option and battery voltage 

monitoring.  Two of the PMIC voltage regulators (1.8 V & 3.0 V) are used to 

supply the sensor boards with the desired regulated supplies at a maximum 

current of 200 mA.  The platform was designed to support primary and 

rechargeable battery options in addition to being powered via USB. 

Imote2 is a modular stackable platform and can be stacked with sensor 

boards to customize the system to a specific application, along with a “power 

board” to supply power to the system.  Figure 5.3 shows the compatible sensor 

Fig. 5.2  Top view and bottom view of Imote2 sensor mote. 

Source: University of Washington, research wiki 
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board commercially available from Crossbow Technology, Inc.  It contains a 

three-axis accelerometer (squared in Figure 5.3 (a)) and a 4 channel 12-bit Analog 

to Digital Converter (ADC).  Additional sensors with analog input can be 

directly connected to this sensor board through the analog sensor interface 

connector shown in the left part of Figure 5.3 (a).   

 

An additional sound board is designed for this sensor board since there is 

no microphone sensor included in this sensor board.  The sound board circuit 

diagram is shown in Figure 5.4.  The microphone signal is first pass a high pass 

filter to get rid of DC components.  The dynamic signal is then amplified.  To 

avoid aliasing, a low pass filter is used before the signal goes to the ADC.   

Fig. 5.3  Wireless sensor board (a) sensor board with accelerometer 

(b) additional sound board and hall-effect sensor 

(a) sensor board with 

accelerometer sensor 

(b) additional sound board 

and hall-effect sensor 

Analog sensor interface connector 
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The hall-effect sensor from Allegro MicroSystem, Inc. is directly connected 

to the analog sensor interface connector.  No additional signal conditioning 

circuit is required.  The sound and the hall-effect sensor output are tuned to be a 

voltage range from 0 to 3V. The resolution depends on the 12-bit ADC.  The 

sampling rate of the sound and hall-effect sensors can achieve 5.186 kHz which 

depends on the scanning speed of the ADC channel.   

5.2.2 Operation 

The sensor nodes collect data at a sampling frequency as programmed.  

The vibration data is collected for 4 seconds continuously; the flux and sound are 

collected for 2 seconds continuously.  The data is stored in a buffer is transmitted 

Fig. 5.4  Sound sensor board circuit diagram 
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from the sensor node to the receiver in the form of packets when the buffer is full.  

When all the packets are sent out, the sensor node starts to collect data again.  

Each measurement data uses 2 bytes of memory.  For each packet, the sensor 

node ID and the packet ID number are used for data process. In the data area, 

114 bytes is used for collected data, 1 additional byte is used to mark the Cyclic 

Redundancy Check (CRC) code.  The detail of packets and CRC checking process 

are introduced in chapter 4.   

5.3 Method 

5.3.1 Overview of Wireless Motor Health Monitoring System 

In this study, a wireless motor health monitoring system is built based on 

the same set of experiments described in the wired sensor system in chapter 2.  

Figure 5.5 shows the process of wireless motor health monitoring and fault 

classification.  Wireless sensor nodes acquire vibration, sound and flux data from 

the motor and send the data to the receiver—the base station.  The base station 

collects the data and saves it to the server database.  The server computer then 

processes the signal and classifies the features.  

The two-stage classification scheme is implemented as same as the wired 

sensor system shown in Figure 3.6.  The feature vector is first used in the 5-
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category classifier.  If the 5-category classifier classifies it as the normal condition, 

then no action will be made until the next feature vector is acquired.  If it is not 

classified as the normal condition, the feature vector will be used again in the 

corresponding subclass classifier based on the result of the 5-category classifier.  

After the subclass classifier finishes the computing, a certain faulty condition will 

then be sent to the operator.  A new set of monitoring and fault classification 

process will start again based on the pre-determined monitoring interval. 
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5.3.2 Experiment Setup 

(a) Equipment and Instrumentation 

Figure 5.6 shows the experiment setup for this study.  A three-phase 

induction motor drives a DC generator through a pulley mechanism.  The motor 

used here is a 1hp 8-pole AC motor rated at 230V line voltage and 5.2A line 

current.  It is connected to an adjustable speed drive to control the speed.  The 

Wireless Sensor 

Data Acquisition 

Base Station  

Data Collection 

Signal Processing & 

Feature Extraction 

5-Category 

Classification 

Normal 

Condition? 

Normal 

Condition 

Certain Faulty 

Condition 

Subclass 

Classification Yes No 

Fig. 5.5  Wireless motor health monitoring and fault classification process 

Notify the 

Operator 
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running speed of the motor with no load is 900 rpm which corresponds to 15 

revolutions per second (15 Hz).  The running speed of the motor with load will 

vary but will typically be less than 900 rpm.  A laser tachometer is used to 

measure the running speed.  The DC generator is a 1hp DC motor rated at 180 V 

output DC voltage and 5A output DC current.  The rated running speed of the 

DC generator is 1800 rpm thus the pitch diameter of the pulley on the motor 

shaft is two times of the pulley installed on the generator shaft.  Four power 

resistors are connected in serial to load the DC generator.  The resistance of the 

resistors used for load is 100  Ω , 150  Ω  and 200  Ω , which corresponds to 

approximately 333 W, 209 W, and 154 W respectively.  Under these load 

conditions, the motor running speed will change to approximately 887.8 rpm, 

889.8 rpm, and 891.6 rpm with the slip of 0.0136, 0.0113, and 0.0093 (equation 2.2) 

respectively corresponding to 333 W, 209 W, and 154 W. 

 

3-phase 

Induction 

Motor 

DC Generator 

Speed 

Drive 

 

Resistors pack 

Pulley 

V-belt 

Terminal box 

Power 

Terminal box 
1a 1b 

2a 

2b 

3a 

3b 

1a: wired accelerometer 

1b: wireless accelerometer 

2a: wired microphone 

2b: wireless microphone 

3a: current probe 

3b: wireless hall-effect sensor 

 
Fig. 5.6  Experiment setup : photo and block diagram 

Load 
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As shown in the diagram (Figure 5.6), three pairs of wired and wireless 

sensors are installed in this setup.  The wired accelerometer is commercially 

available from Crossbow Tech, Inc.  The output is a voltage and the sensitivity is 

0.506V/g, where g, the earth’s gravitational acceleration, is approximately 9.8 

m/s2.  The sampling rate of the wired accelerometer using the company’s 

hardware and software is 160 Hz.  The wireless accelerometer is programmed 

with the sampling rate of 250 Hz.  The battery case is separated from the sensor 

node as shown in Figure 5.7(a).  A double sided tape is used to install the flat 

sensor node on the terminal box.  The wired accelerometer is installed beside the 

wireless one using also the double sided tape.   

 

Table 5.1 lists the sampling rate of all wired and wireless sensors. The 

wired microphone is connected to the audio input on the computer.  Sound 

Fig. 5.7  Wireless sensor installation photo (a) accelerometer 

(b) microphone and hall-effect sensor 

(a) wireless accelerometer (b) wireless microphone and hall-effect sensor 
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recording software is used to collect the data.  The sampling rate is set to 44.1 

kHz.  The resulting signal is then down sampled to 8192 Hz.  The wireless 

microphone shown in the left circle in Figure 5.7(b) is connected to the wireless 

sensor node installed inside the motor frame.  The sampling rate is set to 5186 Hz.   

Table 5.1  Sampling rate of wired and wireless sensors 

sensor type sampling rate (Hz) 

vibration 

sensor 

wired accelerometer 160 

wireless accelerometer 250 

current/flux 

sensor 

wired current probe 8192 

wireless hall-effect sensor 5186 

acoustic 

sensor 

wired microphone 8192 

wireless microphone 5186 

 

The current probe is an ac current transformer which gives output of 

1mA/A AC.  The current signal is collected by the data acquisition board from 

National Instruments Corporation using Labview software.  The sampling rate 

for the current probe is set at 8.192 kHz.  The wireless hall-effect sensor is 

attached to the stator winding shown in the right circle in Figure 5.7(b).  It is 

covered by the high temperature resistance tape.  The sampling rate is set to 5186 

Hz.   
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(b) Experimental Design 

The same set of experiments is conducted as described in chapter 3.  The 

experiments for initial training and testing are conducted under thirteen different 

conditions.  These conditions are grouped as five categories as shown in Figure 

3.2 : 1) two-fault condition; 2) unbalanced stator winding resistance; 3) air-gap 

eccentricity; 4) damaged bearings; 5) normal condition.  Except the normal 

condition, each category contains three sub-classes.  The two-fault conditions 

studied are a) damaged bearing with unbalanced stator winding resistance; b) 

damaged bearing with air-gap eccentricity; c) unbalanced stator winding 

resistance with air-gap eccentricity.  Category 2), 3) and 4) are single fault 

conditions.  Three phases of stator winding with bigger resistance 

(approximately 10% larger than the original resistance) are studied as sub-classes.  

The three sub-conditions of air-gap eccentricity are a) one-side tilted type; b) 

two-side parallel type; c) two-side reversed type (see Figure 3.4).  The damaged 

bearing conditions are inner race scratched, outer race scratched and no grease 

condition.   

Any two-fault condition involves unbalanced stator winding resistance 

fault uses an additional resistor for stator phase A winding.  Any two-fault 

condition involves air-gap eccentricity fault uses the one-side tilted type.  The 
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damaged bearing in two-fault condition a) uses an inner race scratched bearing. 

The damaged bearing in two-fault condition b) uses an outer race scratched 

bearing.   

For each condition, the motor is set up three times randomly switched 

from one condition to another with the load resistance of 100 Ω , 150 Ω , and 

200 Ω .  All the data are collected in 2 seconds time spans and send to the base 

station periodically. The flux and sound signals are cut to 1 second time span.  

The sensor data sets are summarized in Table 5.1.  The vibration data are 

collected at a sampling rate of 250 Hz. The flux and sound data are collected at a 

sampling rate of 5.186 kHz.  The flux and sound data frame are set for 1 second 

durations whereas the accelerometer data is gathered for 2 second durations.  For 

each sensor, 60 sets of data are obtained for each condition except for the normal 

condition.  In order to fit in the 5-category classifier, 180 sets of data are obtained 

for normal condition.  Thus each category has equal number of data sets.   

Table 5.2  Data sets summary (wireless sensor) 

Sensor type 
Sampling 

rate (Hz) 

Frame length 

(second) 

No. of 

frames 

Accelerometer 250 2 60 

Flux sensor 5186 1 60 

Microphone 5186 1 60 
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For validation purposes, additional experiments are conducted under two 

conditions randomly selected from these thirteen conditions.  One is a two-fault 

condition of damaged bearing and air-gap eccentricity. The other is an unbalance 

stator winding resistance of phase C condition.  Different setup will be described 

in the results section. 

5.3.3 Data Analysis 

Based on the results of wired sensor experiments, the same signal 

processing and feature extraction procedures are used here.  Due to different 

load conditions, the HHT features for vibration signals and the FFT features for 

flux (corresponding to current) and sound signals are slightly different.  

Vibration data includes an inner race characteristic frequency component 

(equation 2.8) in IMF1.  A pair of stator winding fault characteristic frequency 

components (equation 2.4, � = 1, � = 1) is added to the flux and sound feature 

lists.  The calculation of HHT features is described in chapter 3.1.  The HHT and 

FFT features used here are listed in table 5.2.  Half of the data sets are randomly 

picked from the data sets of each condition as training data.  The training data 

sets are used twice, one for the 5-category classifier, and again for one of the 

subclass classifiers.  The performance is evaluated based on 10 cross validation 

tests. 



113 

Table 5.3  Features list for wireless sensor system 

Sensor type Processing Feature components 

vibration HHT 

fr (IMF2) , 2fr (IMF1) , 3fr (IMF1) , fbs (IMF1) , fo 

(IMF1) , fi (IMF1) , IMF1 average envelope 
Total: 7 features 

flux FFT 

PSH , fst pair, f1 , fs+3fr , fs+6fr , fs+7fr , fs+fi , fs-fi , fs+fo , 

fs-fo  
Total: 11 features 

sound FFT 

PSH , fst pair , fs+14fr , fs+13fr , fs+12fr , fs+10fr , fs+2fr , 

fs+3fr , fs+4fr , fs+5fr , fs+6fr , fs+7fr , fs+fo , fs-fo , fs+fi , fs-fi , 

fs , fi , fo , fr 
Total: 21 features 

 

5.4 Results 

Table 5.4 lists the frequency components calculated from the parameters 

of the motor and load conditions.  The Principal Slot Harmonic (PSH) can be 

calculated from equation 2.5.  Since the rotor of the induction motor in this set of 

experiments has 48 bars, the PSH frequency is approximately 710.2 Hz, 711.9 Hz, 

and 713.3 Hz, corresponding to the load conditions of 333 W, 209 W and 154 W.  

The pulley bearing is SKF bearing of series 6306, a deep grove ball bearing.  

There are 8 balls in the bearing.  The contact angle is 0°.  The ball diameter is 

12.304mm and the pitch diameter is 51.994mm.  The inner/outer race fault 

characteristic frequencies are 73.19Hz, 73.36 Hz, 73.51 Hz (equation 2.7) and 

45.18 Hz, 45.28 Hz, 45.37 Hz (equation 2.8) respectively, corresponding to the 
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load conditions of 333 W, 209 W, and 154 W.  The ball spin frequency is 29.52 Hz, 

29.58 Hz, 29.64 Hz (equation 2.9), corresponding to the load conditions of 333 W, 

209 W, and 154 W.  The frequency components of stator winding faults are 

 60 ± 14.80 Hz, 60 ± 14.83 Hz, and 60 ± 14.86 Hz (equation 2.4,  � = 1, � = 1 ), 

corresponding to the load conditions of 333 W, 209 W, and 154 W.  These 

frequency components are used in the feature extraction process and all the 

features are used in various classifiers.  The results are shown below. 

Table 5.4  Fault characteristic frequencies of the motor. 

 
Fault Characteristic Frequency (Hz) Calculated 

From Equation Load 333 W Load 209 W 154 W 

Principle Slot 

Harmonic 
710.2 711.9 713.3 2.5 

Inner Race Fault 

Frequency 
73.19 73.36 73.51 2.7 

Outer Race 

Fault Frequency 
45.18 45.28 45.37 2.8 

Ball Pass 

Frequency 
29.52 29.58 29.64 2.9 

Stator Winding 

Fault Frequency 
60 ± 14.80 60 ± 14.83 60 ± 14.86 2.4 

 

5.4.1 Empirical Mode Decomposition 

Figure 5.8 shows the IMFs and their corresponding spectrum of a typical 

wireless acceleration signal for normal condition and a two-fault condition: 

bearing inner race with scratch and one-side tilted type air-gap eccentricity.  The 
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EMD process works like an adaptive filter that decomposes the signal into a set 

of IMFs with different frequency bands.  The normal condition in Figure 5.8(a) 

captures the ball spin frequency of 29.75 Hz in its first IMF C(1)’s spectrum and 

the rotating frequency 14.75 Hz in its second IMF C(2)’s spectrum.  The two-fault 

condition captures the inner race fault characteristic frequency 73.5 Hz which is 

absent in normal condition C(1)’s spectrum (see the detailed Figure on the right 

side in Figure 5.8).  There is an obvious difference between the magnitude of 

average envelope (equation 3.7) in both of the first IMF C(1).   
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C(4) 

C(1) 

C(2) 

C(3) 

C(5) 
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Fig.5.8  IMFs of wireless acceleration and the corresponding spectrum (a) normal 

condition under load of 154 W (b) two-fault condition: bearing inner race with 

scratch and one-side tilted type air-gap  eccentricity under load of 154 W 

(a) 

(b) 
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5.4.2 Comparison of Wired and Wireless Signals 

Figure 5.9 shows the comparison of wired and wireless acceleration data.  

The original waveform of wired and wireless data looks similar.  The maximum 

values of the acceleration are different due to different resolution and accuracy.  

The spectra of wireless and wired acceleration signals show the same frequency 

components in the lower frequency band. Wireless acceleration signal has lower 

frequency response in the higher frequency band compared to the wired 

acceleration spectrum.   

 

Figure 5.10 shows the hall-effect sensor data and the current probe data 

and their spectra.  The original waveform of the current probe looks noisiy due 

to the effect of pulse width modulation controlled by the speed drive.  The flux 

(b) 

(a) 

Fig. 5.9  Vibration signals and spectra (a) wireless acceleration and its spectrum 

(b) wired acceleration and its spectrum (load condition: 333 W) 
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sensor looks like a sinusoidal wave with the primary frequency of power supply 

frequency.  Both of the spectra show the primary frequency peak at the power 

supply frequency. 

 

Figure 5.11 shows the sound data collected from the wired and the 

wireless microphones.  The sound data collected from the wired microphone 

shows a wider frequency response range.  The wireless sound waveform has less 

high frequency noise.  Both of the spectra show the primary frequency peak at 

the power supply frequency. 

(b) 

(a) 

Fig. 5.10  Flux and current signals and their spectra (a) wireless flux data and its 

spectrum (b) wired current signal and its spectrum (load condition: 333 W) 
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5.4.3 Classification Results 

Table 5.3 shows the 5-category classifier results using all the features listed 

in Table 5.2.  All three classifiers achieve the correct classification rate above 90%.  

The highest performance is 97.6% correct classification rate using the ANN 

classifier.  The performance is an average of 10 cross validation testing results 

since the training data sets are randomly selected from each condition of the 

initial training and testing data sets.  Figure 5.12 shows one simulation test 

results of the 1st stage 5-category classification in a confusion matrix using the 

ANN classifier.   

 

 

(a) 

(b) 

Fig. 5.11  Sound signals and spectra (a) wireless sound data and its spectrum (b) 

wired sound signal and its spectrum (load condition: 333 W) 
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Table 5.5  5-category classification results 

Classifier NB KNN ANN 

Correct Classification 

Rate (%) 
91.7 94.4 97.6 

 

This confusion matrix contains information about targeted and predicted 

classifications done by the ANN classifier.  Each class has 90 testing trials. Class 1 

to 5 represents two-fault condition, unbalanced stator winding resistance, air-gap 

eccentricity, damaged bearings and normal condition respectively.  To read it 

vertically, for example, there are 87 trials are correctly classified as class 1, 2 trials 

of class 1 are wrongly classified as class 3 and one trial of class 1 is wrongly 

classified as class 4.  To read it horizontally, 3 trials of class 3 are wrongly 

Fig. 5.12  Confusion matrix of ANN 5-category classification results 
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classified as class 1.  2 trials of class 4 are wrongly classified as class 1.  The last 

row shows the correct classification rate of each category in the 1st stage. The total 

of 450 testing trials in the 1st stage classification has the final performance of 97.1% 

correct classification rate.   

In the 2nd stage, all the training trials are used again in the subclass 

classifier.  Only the correct classified testing trials are evaluated in the subclass 

classifiers because it has no chance to be correctly classified if the category of this 

testing trial has already be mislabeled.  Table 5.4 lists the results of the test 

finished for both the 1st and 2nd stage classification.  The classifiers used in the 2nd 

stage subclass classifications are NB classifiers.  Most of the 2nd stage 

classification performance of this test has 100% correct classification rate.  The 

final performance is about the same as the 1st stage performance.   

Table 5.6.  Final performance of all conditions using wireless sensors 

 
two-fault 

condition 

unbalanced 

stator winding 

resistance 

air-gap 

eccentricity 

damaged 

bearing 
normal 

1st stage 

CRC 
96.7 98.9 95.6 96.7 97.8 

2nd stage 

CRC 
96.7 100 100 100 100 100 93.3 100 100 100 96.7 100  

final 

perfor-

mance 

93.5 96.7 96.7 98.9 98.9 98.9 89.2 95.6 95.6 96.7 93.5 96.7 97.8 

*CRC: Correct Classification Rate 
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5.4.4 Validation Tests 

In the wireless sensor system, the experiments are conducted in the noisy 

environment of DC generator and the fan cooler for the power resistors due to 

the load setup.  Thus the validation tests are conducted in (1) quiet lab 

environment; (2) load music playing environment.  No additional machine noise 

is included.  Two conditions, which were not used for training, are randomly 

chosen from the various possible conditions and two sets of data are collected for 

each condition to validate the classification system.   

The experiments conducted for validation are (a) unbalanced resistance in 

phase C, (b) damaged bearing and unbalanced stator winding resistance.  In the 

experiments for training and testing above, the resistance of phase C winding is 

10% larger than the original resistance but in validation test condition (a) the 

resistance of phase C winding is 8% larger than the original resistance; The 

resistance of phase A winding is 10% larger than the original resistance in the 

two-fault condition of damaged bearing and unbalanced stator winding 

resistance but in validation test condition (b) the phase C winding is 10% larger 

than the original resistance instead of the phase A.  The data are collected using 

the same wireless sensor nodes and base station for each set.  All the data are 
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used as testing samples, no training involved.  20 frames are gathered to perform 

the testing using the classifier trained above.   

The validation test results are shown in table 5.5.  The first stage classifier 

is ANN classifier and the second stage is still NB classifier.  Table 5.5 lists the 

testing results in lab quiet environment and load music playing environment.  

Only 1 trial is failed to be correctly classified in the first stage for both conditions 

in lab quiet environment.  The total performance is 95% correct classification rate.  

The performance of the first stage classification in music playing environment is 

reduced by more than 10%.  The second stage classification of unbalanced 

resistance condition is perfect probably because the significant features are not 

the sound features.  The final performances of all validation tests are above 70% 

correct classification rate. 

Table 5.7  Validation test performance (wireless sensor system) 

Condition unbalanced stator winding resistance 
damaged bearing and unbalanced 

stator winding resistance 

Environment Lab quiet Music Lab quiet Music 

First stage 

classification 
95%(19/20) 90.0%(18/20) 95%(19/20) 80%(16/20) 

Second stage 

classification 
100%(19/19) 100%(18/18) 94.7%(18/19) 93.8%(14/16) 

Final testing 

performance 
95% 90.0% 90.0% 70% 
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5.5 Summary 

This chapter described a wireless motor health monitoring and fault 

classification system.  A two stage hierarchical classification system is designed 

for the fault diagnosis.  The first stage contains five categories and the second 

stage contains 3 subclasses for each faulty category.  Based on the results of 

wired sensor experiments, the HHT features of vibration sensor and the FFT 

features of flux and sound sensors are used for classification.   

The same set of experiments is conducted for initial training and testing as 

the wireless experimental studies.  Three branches of single fault conditions are 

studied 1) unbalanced stator winding resistance 2) air-gap eccentricity 3) 

damaged bearing.  Three two-fault conditions are studied 1) damaged bearing 

and unbalanced winding resistance 2) damaged bearing and air-gap eccentricity 

3) air-gap eccentricity and unbalanced winding resistance.  Two validation 

conditions using separate experiment data prove the effectiveness of the system 

even in a noisy environment. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

This chapter presents conclusions and possible future directions in 

developing wireless condition monitoring systems. 

6.1 Summary and Conclusions 

In this dissertation, a complete methodology of applying wireless sensor 

networks technology into health monitoring and fault classification of induction 

motors is proposed. 

Chapter 1 has introduced the background information of condition 

monitoring, condition monitoring for motors and the sensor technology for 

induction machines. 

Chapter 2 has introduced the basic construction of an induction motor and 

the principle of its operation.  Previous studies of different motor failures and 

their diagnosis are briefly reviewed in with emphasis on the fault characteristic 

frequencies in current, vibration, sound and flux waveforms. These fault 

characteristic frequencies are of great concern to be used as features for fault 

detection and classification. 
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To facilitate the development of wireless sensor systems, a wired 

monitoring system is designed and implemented for feature selection purposes.  

Chapter 3 introduced the signal processing procedures and feature selection 

based on the experimental results of wired sensor system using multiple wired 

sensors.  The experiments are conducted under no-fault, single fault and multiple 

faults condition.  The results demonstrate the effectiveness of using intrinsic 

mode functions in Hilbert-Huang transform to construct vibration sensor 

features for classification.  However, no single sensor was able to achieve a high 

enough classification accuracy.  Multiple sensors were required to enable reliable 

classification.   

Due to the large number of classes, a two stage classification system is 

designed to solve the problem.  Both HHT features of vibration sensor and FFT 

features of current and microphone sensors are selected as final features for 

classification.  The first stage contains five categories and the second stage 

contains 3 subclasses for each faulty category.  High classification accuracy is 

achieved by using multiple sensors and both HHT and FFT features.  Two 

validation conditions using separate experiment data prove the effectiveness of 

the system even in a noisy environment.  These features thus will be used in the 

study of fault diagnosis using wireless sensors. 
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In order to identify the reliability of wireless sensors for induction motor 

monitoring, chapter 4 addresses a feasibility study of wireless sensors in small 

and large induction motors.  Experimental studies on the packet delivery 

performance and data fidelity of wireless sensors used inside a 1 hp AC motor as 

well as a 200hp AC motor are presented.  Vibration data from the wireless sensor 

shows a promising accuracy of frequency spectrum comparable to the more 

reliable wired sensors. 

Wireless sensor monitoring system is then constructed based on the 

experimental results of the wired sensor system.  Chapter 5 describes a low-cost 

wireless sensor network designed for motor health monitoring and fault 

classification.  The wireless sensor nodes with an accelerometer sensor, a 

microphone, and a hall-effect sensor are developed and implemented in the 

wireless health monitoring system for induction motors. The same set of 

experiments is conducted for initial training and testing. The validation results 

demonstrate the effectiveness and generalizability of the wireless system for 

motor health monitoring and fault classification. 

6.2 Future Directions 

This system can be easily extended by including additional category or 

sub-classes. In this study, only three combinations of two-fault conditions are 
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trained in the system. More combinations can be studied and the three-fault 

condition can be included as an additional category in the future.  The limitation 

of this system is the requirement of numerous experiments for each fault type.  

Furthermore, the experiments were conducted in discrete steps. For example, 

three discrete types of air-gap eccentricity are simulated and validated. Motor 

faults usually occur gradually and thus, further experiments that can simulate 

continuous development of faults such as air-gap eccentricity are needed to 

verify the generalizability of the algorithms to intermediate stages of fault 

development.  This system is based on the experimental results of one induction 

motor.  It is in an initial stage of research.  More motors should be tested which 

can make the system more generalizable. 

The wireless sensor system only minimally exploits the local processing 

and storage capabilities of the wireless sensor nodes.  More sophisticated signal 

and data processing algorithms can be employed on the sensor nodes. In 

addition, local communication networks can be set up within the motor to enable 

collaboration among the sensor nodes.  Collaboration can also be set up between 

several motors in a large facility.  Multi-hop mesh networking protocol may be 

needed to achieve more sophisticated sensor fusion algorithms.  
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