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ABSTRACT OF THE DISSERTATION 

 

Electromagnetic Analysis of Nanostructure Dispersion in Polymer Matrices 

 

By  

Steven Charles Pfeifer 

Doctor of Philosophy in Materials Science and Engineering 

University of California, San Diego, 2012 

Professor Prabhakar R. Bandaru, Chair 

  

A method is proposed for determining electrical percolation thresholds in 

carbon nanotube (CNT) networks when CNT lengths vary randomly. The random 

distribution in CNT lengths, commonly observed in practical processing and 

dispersion, was confirmed to be of the Weibull type. Nanocomposites consisting of 

both single- and multi-walled CNTs dispersed in reactive ethylene terpolymer were 

synthesized and the projected theoretical CNT volume concentrations required for 

electrical percolation were shown to closely correspond to the experimentally 

determined values. 

A metric for quantifying the degree of dispersion of nanostructures in 

polymers, based on information theory, is also suggested. The uniform dispersion of 

nanoparticles in polymer-based composites enhances material properties such as 
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structural reinforcement, electromagnetic interference shielding, etc. The proposed 

measure of dispersion uses a quadrat-based sampling algorithm and the average 

Kullback-Leibler divergence is used to correlate randomness to the dispersion. This 

allows a quantitative comparison of cross-sectional images of nanostructure networks 

with different degrees of dispersion in a polymer. 

Finally, the complex electrical impedances of the nanocomposites were 

evaluated at different CNT aspect ratios and volume fractions in the 80 MHz – 500 

MHz frequency range. The electrical impedances were fit to an equivalent-series 

resistance (ESR) circuit model, and compared with distributed electrical models such 

as an RC network and constant phase element representations. Dielectric permittivity 

measurements demonstrate that the constant phase element model, which corresponds 

to a distribution/dispersion of relaxation times, best fits the electrical response of the 

composites. 
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Chapter 1. Introduction 

 

Nanocomposites (NCs) consisting of carbon nanotubes (CNTs) dispersed in a 

polymer have exhibited novel electrical characteristics including enhanced 

electromagnetic shielding,[2]  heightened infrared photoresponse,[3]  and low 

electrical percolation thresholds.[4]  Nanoparticle-polymer NCs also have been 

identified with superior breakdown strength and very high density charge storage 

superior to that afforded by using micrometer particles with the same material 

composition.[5]  

These properties arise from the nanometric size of the minority phase and the 

uniformity of the nanostructures’ dispersal within the polymer matrix. Properties of 

CNT-based NCs of technological interest arise from the high CNT aspect ratio AR = 

          

            
. Chapter 2 of this thesis shows how a large CNT aspect ratio results in 

electrical percolation at low CNT volume fractions. Many key NC properties also 

depend on the uniformity of their dispersal within the polymer matrix. Chapter 3 of 

this thesis provides an algorithm for characterizing the degree of dispersion of a 

minority phase in a majority phase. This algorithm also can be adapted to compare 

color or greyscale images for stereological, medical, or other applications. Chapter 4 

develops an electrical impedance circuit model using permittivity measurements of 
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functionalized, multi-walled CNTs ester bonded to reactive ethylene terpolymer. It 

was determined that the electrical impedance fit a constant phase element. 

1.1 Interphase 

Nanoparticles can interact with the majority phase creating a new phase that 

extends in a zone ~10 – 20 nm from each nanoparticle. This new phase, called 

interphase, has material properties different from the constituent phases. The exact 

nature of this interaction volume is the subject of ongoing study but its properties are 

measurably different from either constituent. The properties of interphase depend on 

how the nanoparticle interacts with the majority phase. An example: dielectric 

constants for some NCs have been measured that exceed constituent permittivities: 

        
  <          

   <    
 . This is outside the         

  <           
   <          

  

bounds predicted by permittivity mixing equations such as those from Maxwell, 

Lichtenecker, etc. This finding is attributed to changes in space charge distribution in 

the interphase volume.[6] Chemical bonding between the polymer and nanostructures 

has been found to lower    
  in some cases, where the polymer chains become 

tethered and confined by the adjacent nanostructures. High electric breakdown 

strength and density charge storage also have been attributed to interphase where 

charge carrier scattering and changes in space charge distribution have been observed 

in the interaction zone between polymer and nanoparticle.[7] Most of the NC is 

interphase even at low inclusion volume fractions so the interphase properties can 

dominate the properties of the NC. Engineering the interphase to create new materials 

is of particular technological and scientific interest since. 
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Both nanoparticles and micron size inclusion have the same interphase volume 

of interaction extending in a zone ~10 – 20 nm from each inclusion. With micron size 

inclusions the total volume fraction of interphase is a small part of the total composite 

volume because each micron inclusion is much larger than the interphase volume 

around the inclusion. In a composite with many such large inclusions, most of the 

volume is simply the phase of the majority constituent. This same 10 – 20nm zone of 

interaction exists around each of the nanostructures in a NC. But in this case, the small 

size of the nanoparticles creates a large total volume fraction interphase. Even at low 

nanoparticle loadings, most of the NC volume is interphase because of the nanometer 

scale dimensions of the minority phase.  This concept is illustrated in figure 1-1.  

1.2 Percolation Threshold with Random CNT Lengths 

Interphase and low percolation thresholds depend on complete dispersion of 

the nanoinclusions. High van der Waals forces cause the nanostructures to “stick” 

together in clusters. Dispersion techniques such as ultrasonification can damage 

nanostructures and also lower CNT aspect ratio by destructively fracturing the CNTs. 

Lowered aspect ratios in turn increase the number of CNTs required to achieve 

electrical percolation. A lower CNT volume fraction is desirable to reduce cost and 

maintain NC flexibility, as polymer NCs can become brittle at high CNT loadings. 
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Figure 1-1 (not to scale): Interphase for micron size particles and nanometric 

particles. The dashed lines in blue font represent a ~10 – 20 nm zone of interaction 

between inclusions shown as black circles and the adjacent polymer. Large (micron-

size) inclusions interact with the polymer to make an interphase volume that comprises 

a small volume fraction of the total composite volume. With micron-size inclusions, 

most of the composite volume remains the polymer majority phase. The same 10 – 20 

nm zone of interaction between nanometric inclusions is shown to the right of figure 

1-1. The polymer results in a large volume fraction interphase that occupies most of 

the nanocomposite volume – even at low nanoparticle volume fractions.[8] 

 

Chapter two uses an excluded volume approach to develop an equation for 

determining the minimum CNT volume fraction required to achieve electrical 

percolation when the CNT lengths vary randomly. The excluded volume (area) is the 

volume (area) around a CNT where the center of another CNT cannot enter without 
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overlapping.[9] Figure 1-2 illustrates the excluded volume concept using two 

dimensional views of the excluded area for various sized objects. In our study, CNTs 

are modeled as capped cylinders (spherocylinders) to simulate a cylinder of carbon 

molecules capped at either end by hemispherical buckyballs. The excluded volume for 

two CNTs modeled as capped cylinders is a capped parallelepiped (figure 1-2c). 

Our theoretical equation for the percolation threshold considers a network of CNTs 

dispersed in a polymer/insulating matrix of unit volume. At the percolation threshold, 

the probability of not selecting any CNT (corresponding to a point in the matrix) is 1 – 

  , where    is the critical CNT volume at percolation. Chapter two uses this result 

with the probability chain rule to relate    to the expected value (ensemble average) 

of the CNT volume and CNT excluded volume. Monte Carlo simulations show that 

the product of the CNT excluded volume with the number of CNTs at the percolation 

threshold is estimated as 1.4. This is an upper bound when the CNT lengths vary 

randomly, as the expected value of the excluded volume should be weighted to favor 

the longer CNTs. Substitution of the excluded volume for a capped parallelepiped 

gives the final result, for CNTs of diameter “D” and random length L,   

  ( ) = 
   

  

 
         [ ]  

 

 
  [  ]

 (
 

 
    + 

 

 
    E[ ]) 
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Figure 1-2 (not to scale): This figure illustrates the concept of an excluded volume 

using a two-dimensional view. The excluded area is the region enclosed by the center 

of one object (black font) contacting and moving around the periphery of another 

similar object (blue font). The excluded area is enclosed by the red dashed lines for 

various object shapes. The objects shown in (c) represent a two-dimensional view of 

CNTs. The excluded volume is the three-dimensional zone enclosed by the center of 

an object contacting and moving around (but never overlapping with) another similar 

object. For two CNTs modeled as spherocylinders (capped cylinders) the excluded 

volume would be a capped parallelepiped. 

 

 

 

NC samples were tested at various CNT volume fractions. One set of NC 

samples used single-walled CNTs and another used multi-walled CNTs. All CNTs 

were functionalized so they would ester bond to the reactive ethylene terpolymer.  

DC conductivity was measured on high resistivity (resistance > 1 G𝝮) NC 

samples using an Agilent B1500A semiconductor device analyzer with triaxial probes. 
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The data was fit to a power law to experimentally determine the critical percolation 

threshold (see figure 1-3). At the critical percolation threshold   , a jump in DC 

conductivity is evident and the data fits a percolation power law near and above   . 

The expected values of the random CNT lengths were established either using sample 

statistics or by fitting CNT lengths after ultrasonification to a Weibull probability 

distribution.  

 

Figure 1-3 (based on figure 32 in [9]) Example of a percolation power law curve 

showing a sudden jump in DC conductivity at the critical CNT volume fraction    

demarcating the creation of a CNT percolation network. The percolating CNT network 

causes the increase in DC conductivity[10]. 
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Chapter two shows that our percolation equation closely agreed with our 

experimental measurements of the electrical percolation threshold. Our single-walled 

CNT NC had a theoretical percolation threshold of    ~0.00073 which agrees with the 

experimentally measured threshold    ~0.011. Our multi-walled CNT NC had a 

theoretical percolation threshold of    ~0.0193 which compares well to the 

experimental threshold    ~0.0147. 

1.3 Characterizing CNT Dispersion in Nanocomposites 

Chapter three presents our algorithm for characterizing CNT dispersion in 

NCs. This algorithm is flexible in that transmission/scanning electron microscopy 

(TEM / SEM) images of a composite cross-section can be compared either to another 

image or to a probability distribution. Our algorithm superimposes 10,000 randomly-

placed squares called quadrats over the micrograph. The large number of quadrat 

sampling allows the algorithm to be used with very large images. The number of 

pixels corresponding to CNTs within each quadrat are counted. The counts form a 

distribution which can be mathematically compared to another preferred (ideal) image 

or to a probability distribution. 

The equation used for dispersion characterization measures the “distance” 

between the distribution corresponding to the image and another distribution. The 

equation is based on information theory, which is a foundation for modern digital 

image processing. Any image can be reconstructed using computer source code. The 



9 

 

 

smallest number of lines of binary source code required to reconstruct the image have 

been found to relate to the complexity of the image. One example: a snowflake or 

crystal is a fractal with a repeating base image and little randomness. Reconstruction 

of such an image requires a small number of lines of source code. Another example: 

very few lines of code are required to display π = 3.1415… to an arbitrary number of 

significant digits.  But additional lines of code are required to reconstruct a random 

number to the same number of significant digits. As any image becomes less 

deterministic and instead exhibits more randomness, the minimum number of lines of 

binary computer code required to reconstruct the image increases.  This concept is 

called a Kolmogorov complexity: any image’s complexity can be described by the 

smallest number of lines of binary computer source code needed to characterize the 

object. The Kolmogorov complexity is approximately equal to information entropy, 

which is the expected value (ensemble average) of –log [p(X)], where p(X) is a 

probability mass function.  It is surprising that the smallest number of lines of 

computer code is related to a probability, but it seems to follow from the viewpoint 

that a computer is a type of data decompressor.[11] 

The distance between two distributions can be gauged by subtracting the 

informational entropy of “p” with probabilities    from another distribution “q” 

estimated using probabilities   :   – [ 



n

i

ii

n

i

ii qppp
1

2

1

2 )(log])(log    D(p||q). 

D(p||q) does not always equal D(q||p). Ideally a true dispersion metric should 

behave like a Euclidean distance. It should give the same distance when comparing 
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distribution “p” to distribution “q” as when comparing “q” to “p”. But D(p||q) lacks 

this type of symmetry since the order of the comparison usually changes the value of 

D(p||q). We corrected this asymmetry by using the relation d(p||q)   D(p||q) – D(q||p) 

as our dispersion equation. The “d-metric” d(p||q) provides the desired symmetry of a 

true distance metric in that d(p||q) = d(q||p) always holds when d(p||q) and d(q||p) are 

well-defined. 

Our algorithm used d(p||q) to successfully distinguish between published 

images known to be severe tests of a dispersion algorithm.  This is described in detail 

in chapter three of this thesis. Our algorithm also successfully detected single pixel 

deviations in a 1678 pixel X 1070 pixel size image (see figure 1-4 and table 1-1). The 

images were compared to a uniform probability distribution and the results presented 

in table 1-1. 

 

Figure 1-4: An example of the use of the proposed d-metric to study the 

evolution in contrast. The progressive increase in the number of white pixels (in the 

legend Ix, x indicates the number of white pixels) results in an increase in the value of 

the d-metric (see table 1-1), which can be used as a measure of the deviation from a 

standard uniform probability distribution. The images indicate a magnified (800X) 

view of a part of a 1678 pixel X 1070 pixel size image.  
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Table 1-1. The evolution of the d-metric with incremental, single-pixel departures 

from a uniform distribution. In the pattern legend, Ix, x indicates the number of white 

pixels, and d(UNIFORM || I0) = 0 

Pattern 
No. of Light 

Pixels 

<d(UNIFORM || Pattern Name > Standard 

Deviation 

I0 0 0.0000 0 

I1 1 1.95 • 10
-10

 6.64 • 10
-11

 

I2 2 8.07 • 10
-10

 2.48 • 10
-10

 

I3 3 1.75 • 10
-9

 5.53 • 10
-10

 

I4 4 2.88 • 10
-9

 8.94 • 10
-10

 

I5 5 4.65 • 10
-9

 1.91 • 10
-9

 

I6 6 7.67 • 10
-9

 1.70 • 10
-9

 

I7 7 9.79 • 10
-9

 3.06 • 10
-9

 

I8 8 1.12 • 10
-8

 3.43 • 10
-9

 

I9 9 1.55 • 10
-8

 3.17 • 10
-9

 

I10 10 1.82 • 10
-8

 3.47 • 10
-9

 

I11 11 2.32 • 10
-8

 4.90 • 10
-9

 

 

1.4 Modeling the Electrical Impedance of a Nanocomposite 

Chapter four describes an equivalent electrical impedance circuit model for our 

NCs fabricated using functionalized, multi-walled CNTs dispersed in reactive ethylene 

terpolymer. A circuit model is of interest since such a model can account for lossy and 

nonideal NC characteristics, predict NC impedances at different CNT volume fractions 

Ø or aspect ratios, and aid in circuit analysis. However, a universal /suitable circuit 

model for NCs may be difficult to develop for high frequencies, as passive circuit 
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element parameters idealized as frequency independent can vary with frequency due to 

skin effect, eddy currents, polarization losses and other factors.  

Three electrical circuit impedance models were considered in our study: a 

constant phase element model (CPE), a two dimensional circuit model consisting of 

randomly-positioned resistors and capacitors (2D RC), and an equivalent series 

resistor model (ESR). Each model is associated with an equation for the complex 

electrical impedance. Each model also can be described with a resistor – capacitor 

passive element circuit model as shown in chapter four.  

The CPE model has a constant electrical impedance phase angle = arctan ( 

                   

              
) over a wide range of frequencies. Jonscher’s universal power law 

for the complex permittivity also shows a constant phase angle behavior for the 

complex electrical susceptibility. CPE was selected due to the constant phase angle. 

CPE has two possible electrical impedance equations and either can be used at high 

frequency. The two alternate expressions for a CPE impedance arise from difficulties 

in understanding a physical interpretation for CPE.[12] 

The ESR model consists of a frequency dependent resistor,  a frequency 

independent resistor in parallel with an ideal capacitor; and an equivalent series 

inductor. The frequency dependent resistor is in series with the capacitor to represent 

frequency dependent resistances due to skin effect at the electrode leads or capacitor 

pads. This resistor also represents energy losses transformed as heat within the 

dielectric NC. The frequency independent resistor in parallel with the capacitor 
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represents a DC or low frequency percolation path(s) caused by the CNTs forming a 

network from the high side electrode to the low side electrode. This path is highly 

resistive compared to the capacitively coupled reactance and can be ignored in the 

model. The series inductance represents lead inductance from the measuring 

instrument’s electrodes. Measuring equipment inductance is “tared out” during the 

compensation (calibration) procedure and is disregarded in our modeling. 

The 2D RC model is a mixture of resistors and capacitors placed randomly and 

connected together within a square network. It has been determined that the total 

number of passive elements can be changed from 170, 512, or 2024 RC components 

without any significant change in the AC response.[13] We showed in chapter four 

that the proportion of resistors in the 2D RC circuit model is related to the loss tangent 

which was measured during our experiments. It was found that such a network gives 

the same electrical impedance characteristics as a three dimensional cubic network of 

resistors and capacitors.[14] This model was selected because a three dimensional 

circuit cubic network simulates a random mixture of microcapacitors and resistors. 

Such a system can describe an NC’s internal mesoscopic geometry, where adjacent 

CNTs separated by a polymer dielectric form microcapacitors that couple capacitively; 

and dielectric losses and conducting CNTs represent resistors. An equation relating the 

loss tangent to the number of resistors in the 2D RC model is presented in chapter 

four. 

The real and imaginary relative permittivities (  
  and   

   respectively) were 

measured for two average aspect ratio multi-walled CNTs (32 and 344) at varying 
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CNT volume fractions. The permittivities were measured from 80 MHz to 500 MHz 

using an Agilent E4991A material analyzer. The NC sample contacts upper and lower 

(parallel) electrodes on a model 16453A test fixture that attaches in a parallel plate 

arrangement to the material analyzer.  

The real and imaginary electrical impedances (  and     respectively) for each 

NC sample were calculated using the relative permittivity measurements, where        

   = 
  

  

                   
, and     = 

    
 

                   
. These equations follow from the 

definition of the complex capacitance.  

  and     were fit to the aforementioned impedance model equations using 

OriginLab’s data analysis software application. Goodness of fit was gauged using the 

squared correlation coefficient. The correlation coefficient indicates whether the data 

fits the impedance model without indicating which model is preferred. The 2D RC 

model has two fit parameters whereas the other models have one fit parameter. The 

empirical data is more likely to fit the 2D RC model since it has the greatest number of 

fit parameters. But the model with the most fit parameters may not be the most 

accurate representation of the physical problem under study. It is important to identify 

the best model since that model may provide insight into the NC’s electrical 

characteristics and internal mesoscopic geometry. We used the Akaike Information 

Criterion numbers (AIC) to determine which model is preferred. AIC uses a statistical 

analysis to gauge the distance between the experimental impedance data and the 

impedance models under consideration. The model with the lowest AIC number has 

the shortest distance to the distribution representing the experimental data and so is the 
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preferred model. AIC does not indicate whether the experimental impedance data fits 

the preferred model. The correlation coefficient is used to determine whether the 

preferred model actually fits the experimental impedance data. 

The CPE model was the preferred electrical impedance model for our NCs. 

The CPE and the 2D RC models had high squared correlation coefficient (> 0.999) 

that exceeded that for the ESR model. This correlation coefficient is sufficiently large 

to show that all three models fit the experimental data. CPE had the lowest AIC 

number of the three models because CPE only requires one fit parameter whereas 2D 

RC requires two fit parameters. CPE was the preferred electrical impedance model for 

our NCs. 
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Chapter 2. Analysis of electrical percolation thresholds in 

carbon nanotube networks, using the Weibull probability 

distribution 

 

2.1 Introduction 

It is of scientific and technological interest to analyze the minimal 

concentration of carbon nanotubes (CNTs) necessary to form a percolating network. 

From a practical perspective, CNT networks have been proposed as constituents of 

thin film transistors[15] for electronics and biosensors[16], polymer composites for 

electromagnetic interference shielding[17], etc., While variability in device 

characteristics was considered[18], the widespread unpredictability in the intrinsic 

geometry, e.g., the length (L) of the CNTs, has not yet been modeled. Such issues with 

predictability of the geometry are typical of nanostructure synthesis processes and 

could strongly influence the electrical characteristics and device properties.  The 

prediction of a threshold is also pertinent in the synthesis of CNT based composites, 

where the cost of the nanostructures is a major factor.  

 

2.2 The Stochastic Percolation Model 

In this paper, we first use an excluded volume percolation theory based 
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model[19], [20] to estimate the theoretical critical volume percolation threshold,c of 

the CNTs, as a function of L. For this, we assume that the i
th

 CNT has a volume, vi, in 

a polymer/insulating matrix of unit volume. Now, if the percolation threshold 

corresponds to the connectivity of Nc CNTs, then the odds of not selecting any CNT 

(corresponding to a point in the matrix) would be: 

(1-c) = 
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implying that 

 c = Nc E[v]    (1) 

E[v] denotes the expected value or ensemble average of the CNT volume. It is to be 

noted that equation (1) is distinct compared to the critical percolation threshold extant 

in literature, which assumes that the percolating objects are penetrable, i.e., hitherto 

applied to pores in rock etc. In deriving equation (1), we have assumed that the CNTs 

were impenetrable. We then use the identity, )
][

(
][

][
][

cex

cex

N

vE

VE

NVE
vE  , where Vex is 

defined as the excluded volume[21]: the space circumscribed around the CNT by the 

center of another CNT, whereby both CNTs contact each other but do not overlap. For 

isotropically oriented, spherically capped stick like objects of diameter “D”and random 

length “L”, which we take to be akin to CNTs, 

][
2

][2
3

4
][ 223 LDELEDDVE ex





 . Also, for the CNT modeled as a capped 

cylinder, E[v] ][
46

23 LEDD


 . Note that the CNT diameter is assumed to be 
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constant. For infinitely thin cylinders of deterministic length, Monte-Carlo simulations 

were used
6
 to estimate cex NVE ][  as ~ 1.4. This is an upper bound when the lengths 

vary randomly, as E[Vex] should be weighted to favor the longer CNTs. For a given D, 

the theoreticalc would be: 

])[
46

(

][
2

][2
3

4

][
)( 23

223
LEDD

LDELEDD

NVE
L cex

c






 



    (2) 

For a deterministic L, the variation of c as a function of the aspect ratio (= L/D) is 

shown in Figure 2-1. Such a depiction necessarily implies that a definitive c is 

obtained at a given L. However, it is commonly observed both in our experiments
3
 and 

in other examples from literature[22] that L is not a deterministic constant but should 

properly be considered a random variable, i.e., as L , that could have considerable 

variation. For example, we have measured subsequent to ultrasonication – a procedure 

necessary
3
 for dispersion of the CNTs into polymer matrices, that single walled CNTs 

(SWCNTs) have lengths ranging from 2.2 – 7.8 µm while multiwalled carbon 

nanotubes (MWCNTs) vary in length from 3.0 – 8.4 µm. In another instance[23], a 

batch of SWCNTs synthesized through arc-based methods had L in the 0.7 – 4.3 µm 

range.  Such large variability clearly makes c a function of L and would lead to 

uncertainties in obtaining an accurate percolation threshold.  
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Figure 2-1 The theoretical variation of the critical percolation threshold (c) plotted as 

a function of the CNT aspect ratio (= L/D) assuming a deterministic length and 

diameter. 

 

 

The above issues also imply that a suitable stochastic model is necessary to 

evaluate the c, e.g., for a CNT/polymer composite[24] or a CNT network 

transistor[25], as c(L) is not equal to the c evaluated at the average CNT ensemble 

length, i.e., c (E[L]). A proper expression for c would account for variations in L  

and could be expressed through the correlation, i.e., E[L
2
]. The stochastic approach 

would then provide a theoretical value, i.e., a c(L) that accounts for the mean and 
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variance of L. A theoretical value for c can be found from equation (2) where the 

average CNT length is now E[L] with a variance, VAR[L] = E[(L - E[L])
2
] = E[L

2
] – 

(E[L])
2
. Both E[L] and E[L

2
] can be evaluated by fitting empirical CNT length data to 

a probability density (p.d.f.). As the p.d.f. cannot be a priori determined, we use the 

sample mean length L and sample variance 
2
Ls as unbiased estimates of the population 

mean and variance[26].     

 

2.3 Experimental 

For the practical application of the above principles and experimental 

verification, we first dispersed carboxyl (-COOH) group functionalized SWCNTs and 

MWCNTs into a polymer. A reactive ethylene terpolymer (RET: Elvaloy 4170) 

constituted of an epoxide functional group was chosen for a polymer/insulating matrix, 

with the underlying rationale that the epoxide ring rupture[27] on the RET would be 

facilitated by the –COOH groups on the functionalized CNTs. The bonding between 

the -COOH and the epoxide group could help in the uniform dispersion. The exact 

location of the functional groups would depend on the defect density on the CNTs and 

can be manipulated[28]. However, if the defects are considered to be randomly 

dispersed, isotropic bonding of the CNTs with the polymer matrix is implied and 

yields uniform mixing. More details regarding the fabrication procedure and 

characterization of the composites have been reported elsewhere [29],
 
[30]. 

The lengths of the CNTs in several composite samples were first measured 
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using a scanning electron microscope (SEM: Phillips XL30). In the case of SWCNTs, 

while the bundle diameters (D) were noted to be ~ 4.8 nm using atomic force 

microscopy (AFM), the length variation did not fit Gaussian, exponential, Rayleigh, 

log-normal, or Weibull - Figure 2-2 (a), distributions. The poor fit is attributed to a 

mixture of different probability densities of the SWCNT lengths within the composite. 

We then used our mean sample SWCNT length (L ~ 4.28 µm) as an estimate of E[L]  

and the sample variance of 2

Ls
 
~ 1.364 µm

2
 for estimating E[L

2
] (= VAR[L] + E[L]

2
 ~ 

2

Ls  + L
2
). Using the upper bound of Nc E[Vex], ~ 1.4, and substituting sample statistics, 

L and
2
Ls in equation (1) yields a theoretical percolation threshold of c (L) = 0.00073.   

On the other hand, for the case of MWCNT bundles (with D ~ 188 nm) the 

lengths were fit very satisfactorily to a Weibull distribution - Figure 2-2(b). For 

example, the value of the correlation coefficient for the MWCNT lengths, r
2
 (= 

0.9833), exceeds the tenth percentile of r
2
 (= 0.85) established from Monte Carlo 

simulations using random numbers known to fit a Weibull distribution[31]. We also 

considered published literature from other groups on MWCNT length data[32],  where 

again a satisfactory fit to a Weibull distribution was obtained - Figure 2-2(c). 
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Figure 2-2 The lengths of (a) SWCNTs, and (b) MWCNTs dispersed into the polymer 

matrix in the present study, and (c) MWCNTs from another study in literature [33]  

(Yu et al, Science, 287, 637 – 640, 2000), plotted on Weibull probability paper.  

Nonlinearities in (a) indicate a poor fit to a Weibull probability density while excellent 

fits were obtained for (b) and (c).   
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Generally, the n
th

 moment for a Weibull distribution is given by E[L
n
], where 

                                  E[L
n
] = 𝛳n

 Γ(
 

 
  +1)    (3) 

Γ denotes the Gamma function.
 
A two parameter Weibull p.d.f. is then completely 

described by a shape parameter, β and the scale parameter .  For Figure 2-2(b), β = 

3.97 and  = 6.3525 were calculated from the slope and intercept and were then used 

to find the statistical moments, e.g., mean, correlation, skewness, kurtosis etc., of the 

Weibull distribution[34]. To interpret these numbers, it is noted that for β = 3.6, the 

distribution of lengths would be symmetrical about the mean. A β > 3.6 implies a left-

hand skewness of the MWCNT length probability density, i.e., more CNTs are shorter 

rather than longer, while a β < 3.6 suggests the MWCNT lengths have a right-hand 

skewed distribution. Furthermore,  denotes the value below which ~63% of the NT 

lengths are smaller, i.e., ~63% of the CNT lengths are less than 6.3525 µm. 

Additionally, a high r
2 

on a Weibull plot suggests that the length distributions arise 

from a single probability density instead of a mixture of different probability densities.  

An r
2
 of ~ 0.9833, in Figure 2-2(b), then suggests that a single, particular mechanism 

could determine the length distribution, e.g., a uniform mode of fracture at particular 

defects, due to the CNT processing. A poor fit, as with the SWCNT lengths in Figure 

2-2(a), would indicate that the length distribution arises from a mixture of two or more 

distributions where each distribution is the outcome or consequence of a different 

event, e.g., CNT fracture could occur at both defect-prone and defect-free sites, or 

could be mediated through multiple varieties of defects.  

From the calculation of the moments, we determined for the case of Figure 2-
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2(b) with MWCNTs, that L = 5.756 µm and 
2
Ls = 2.643 µm

2
. The substitution of 

these L and
2
Ls values into equation (2) then yields a theoretical c (L) = 0.0193.  

To experimentally analyze and correlate the influence of statistical variation on 

electrical percolation thresholds, we measured the electrical conductivity;  A four-

point probe was used to measure the electrical resistance, R, for composites with R < 1 

GΩ, using the Keithley 487 picoammeter and the Keithley 2400 Sourcemeter. For 

higher resistance (> 1 GΩ) composites, two point measurements using the Agilent 

B1500A semiconductor device analyzer with triaxial probes were employed. For these 

measurements, samples with sputtered gold contacts were used. The experimental c 

for electrical percolation was then determined by fitting the measured σ of the CNT 

dispersed composites to the conductivity power law equation[35], σ = σ0 (- c)
t
. 

Subsequently, for the SWCNT samples – Figure 2-3(a), we obtained from the fit to the 

σ variation, a c of 0.0011 which is quite close to the theoretical mean (~ 0.00073).  In 

the case of MWCNT dispersed polymers, the c was found to be 0.0147 which, is 

again close to the theoretical mean of ~0.0193, predicted from stochastic theory.  
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Figure 2-3 The variation of the DC electrical conductivity (DC) with volume fraction 

() for (a) SWCNTs and (b) MWCNTs dispersed in a polymer matrix, was used to 

determine the percolation threshold (c). The inset in (b) indicates the fit of DC to an 

expression of the form DC ~ σ0 (- c)
t
 for >c. 

 

2.4 Conclusion 

We conclude by positing that statistical analysis using a stochastic approach 

can be used to describe the impact of random CNT lengths on the electrical 

percolation thresholds. Such modeling could be used to a priori determine the 

thresholds while accounting for realistic process variability. The proposed 

methodology can be extended to other mutable CNT characteristics such as diameter, 

agglomeration, curvature, etc.  
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Chapter 2, in full, has been published in the Journal of Applied Physics, 108 

024305 (2010) “Analysis of electrical percolation thresholds in carbon nanotube 

networks using the Weibull probability distribution” by S. Pfeifer, S. H. Park, and P. 

R. Bandaru.  

This paper was selected for republication in the Virtual Journal of Nanoscale 

Science & Technology, (July, 2010).  
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Chapter 3. A method for quantitatively characterizing the 

dispersion of nanostructures in polymers 

 

3.1 Introduction 

It is often necessary to quantitatively measure the degree of dispersion of 

microscopic and nanoscopic entities in a macroscopic polymer matrix.  As an example 

for illustrating the applicability of such a notion, composites constituted of carbon 

nanotubes (CNTs) placed in a polymer[36]
,
[37] have been widely proposed for 

electromagnetic interference (EMI) shielding[38]
,
[39]

,
[40],    in high sensitivity 

infrared sensors[41], structural applications[42],[43] etc. It has been generally 

accepted that the composite properties would be optimal when the CNTs are uniformly 

dispersed within the polymer matrix[44]. The uniform dispersal and bonding of CNTs 

in a polymer may confer unique properties to the composite, e.g., through the 

postulated, formation of an interphase region[45], enhanced charge carrier 

scattering[46], etc. Similar considerations also apply to the dispersion of other 

structures such as nanoparticles[47], e.g., used in polymer composite foams[48] where 

aggregation and bundling can lead to poor interfacial bonding of the structures with 

the polymer matrix. Bundling is not unexpected due to the strong van der Waals 

bonding prevalent in such structures. This in turn can cause variable and diminished 

properties in the composite. While single walled CNT (SWNT) and multi-walled CNT 

(MWNT) based composites have been reported[49]
, 

[50]
, 

[51]  to have enhanced 
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elastic modulus and ultimate tensile strength, it has been frequently seen that beyond a 

certain loading fillers can be deleterious (e.g. ~ 0.6 

vol % in phenol/SWCNT composites[52] or polypropylene/SWCNT composites[53]), 

presumably due to bundling of the CNTs. In our own studies, we  have seen a decrease 

in the work of fracture of a SWNT-RET (reactive ethylene terpolymer) composite at ~ 

0.1 vol % loading fraction of the nanotubes.[54]  

It was also proposed that the nanostructure surfaces and interfaces could be 

functionalized through the use of suitable coupling agents[55], [56] and made to 

interact more homogeneously with the polymer matrix. However, it is practically 

difficult to uniformly disperse nanostructures as the very same characteristics that 

confer their unique properties (e.g., high specific surface area) also encourage mutual 

attraction. It has also been shown[57] that commonly used homogenization techniques 

such as ultrasonification/blending could destructively reduce CNT length to diameter 

aspect ratio. While maintaining uniformity in dispersion is difficult and is presently an 

active research topic, it would nevertheless be pertinent to understand quantitatively or 

define more definitively the degree of dispersion of nanostructures, such as CNTs, 

within a polymer. This paper sets out to provide such a metric suitable for quantifying 

the dispersion allowing a comparison of the given distribution to a preferred 

distribution or pattern. We also suggest that our technique can be used for describing 

the dispersal of any minority phase within a majority phase. 

   

3.2 Principles of the Approach 
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A suitable dispersion metric should enable a comparison with either an 

idealized dispersion pattern or alternatively with a desired probability distribution 

(e.g., uniform, Poisson distribution, etc.). From a more quantitative perspective, one 

example of a well-defined metric involves the use of the quadrat approach[58]
,
[59], 

valid at relatively low filler density in a matrix. In such a method, for example, the 

CNTs are located from a visual micrograph – obtained, e.g., through 

transmission/scanning electron microscopy (TEM / SEM) based images of a 

composite cross-section.  The image is then subdivided into several squares/quadrats 

and the number of pixels corresponding to the CNTs within each quadrat counted. A 

perfectly random/uniform arrangement of the dispersants within the matrix would then 

exhibit an equal number of centers in each quadrat, so that deviations may be gauged, 

e.g. by calculating the distance between distributions.  

To this end, we first considered a random variable “X” that takes on discrete 

values, x1,  x2, …, xn  with respective probabilities p1,  p2, …, pn  given by some 

probability mass function, pi. A measure of the randomness of the distribution is then 

= –log2 (pi), and the average randomness of X, could be defined through: 

 H(X) = –


n

i

ii pp
1

2 )(log                    (1) 

H(X) can be used as the basis for quantifying the error (/distance) associated with 

comparing a given distribution “Q” to a different distribution “P”. Let “P” and “Q” 

have probability mass functions pi and qi respectively. From equation (1), the distance 

between these two distributions, D(P||Q), is given by[60]: 



30 

 

 

 

 D(P||Q) = – [ 



n

i

ii

n

i

ii qppp
1

2

1

2 )(log])(log  

             =  0)(log
1

2 


n

i i

i
i

q

p
p                     (2) 

This interpretation of the distance is then illustrated with respect to how a particular 

nanostructure distribution, say corresponding to “Q”, differs from a preferred / 

standard distribution corresponding to “P”, e.g. a Poisson or uniform (square, 

hexagonal lattice, etc.) distribution[61]
,
[62].  A corollary of the previous statement is 

that when a particular distribution “Q” approaches the preferred distribution “P”, the 

distance should approach zero.  Generally, D (P||Q) is not a true distance metric since 

the equality D(P||Q) = D(Q||P) usually does not hold[63]. We postulate using d(P||Q) 

as follows[64]:  

 d (P||Q)   
2

1  [D(P||Q) + D(Q||P)]   0            (3) 

It is apparent that now, d (P||Q) = d (Q||P) and when the distributions are equivalent, 

i.e., d (Q||Q) = 0.  

 

3.3 Implementation of the <d (P||Q)> metric to gauge the 

uniformity of a given CNT distribution within a polymer 

matrix 

We will next outline the methodology for utilizing the above principles in 

quantifying the deviation of a given CNT distribution in a polymer from a standard 

distribution. Initially, an algorithm (implemented in MATLAB
TM

) was used to 
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generate 10,000 randomly positioned quadrats, imposed on a micrograph. Although 

the algorithm could have simply placed a quadrat centered at each pixel within the 

image, the use of such a random sample of quadrats saves computational time when 

evaluating larger micrographs, while providing a satisfactory representation of each 

image. Also, this allows the direct comparison between differently sized micrographs 

since the conventional approach of using a fixed quadrat grid would require a different 

number of quadrats for differently sized micrographs. Additionally, a fixed quadrat 

grid can result in significantly different dispersion metrics depending on where the 

grid is superimposed over the micrograph[65]. We also note that a sufficiently large 

quadrat square should be chosen to adequately characterize the actual CNT 

distribution, e.g., if no CNT lies within a quadrat, the quadrat size should be increased 

until the expanded quadrat contains at least one pixel from a CNT.  This is essential 

for equations (2) and (3) to be well-defined, as both pi and qi appear in the 

denominator and thus must be nonzero in each and every quadrat. Care was then taken 

to have an optimal quadrat size:  larger quadrats can make a clustered distribution look 

uniform since they tend to have nearly the same number of CNTs, while smaller 

quadrats may not contain any CNTs. 

Our program was then configured to yield the area fraction of the CNTs within 

each of the 10,000 quadrats. The CNT distribution probabilities, pi - related to 

probability of finding CNTs within the i
th

 quadrat, were found through using the area 

ai (in units of pixels) of the CNTs within the i
th

 quadrat of area Ai, through: 
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


n
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ii
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Aa

1

/

/
        (4)   

The denominator normalizes the probability over the total number (n) of quadrats, so 

that 


n

i

ip
1

 = 1. Equation (4) can also be used as an estimator of a probability function 

for deterministic patterns, e.g.,   (i) pi = 1/n, for a uniform distribution. However, of 

the five types of two-dimensional Bravais lattices, the hexagonal lattice could be 

considered the most well-dispersed since it has the largest number of equidistant 

nearest neighbors[66]. Consequently, for the purpose of a preferred/standard 

distribution a hexagonal lattice (HEX) was chosen.  It is to be emphasized that our 

proposed approach and algorithm can be applied to any distribution, and we chose the 

HEX distribution only for illustrative purpose. It may also be desirable to change the 

density of the chosen/preferred pattern to represent a higher or lower volume fraction 

of the nanostructure dispersion. In this way, images of nanostructures dispersed in 

polymers can be compared to a preferred point pattern/lattice, using equation (4) as an 

estimator of the probability function. The ai may also be considered a reasonable 

estimator of the CNT volume fraction. 

For calculating the ai, we had to consider carefully from digital 

images/micrographs the pixels that do represent CNTs. Generally, digital images are 

created by a quantization and sampling process which mathematically represents an 

image through a matrix of real numbers. Each matrix element corresponds to a pixel 

which is the smallest element of the image and is identified by its position within the 

image and a numerical value representing the degree of darkness of that pixel[67]. In 
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our processed images, the numerical value (with 8 bit resolution) could range from 0 

(black) to 255 (white). We measured CNT and polymer pixel values within our 

micrographs using the ImageJ application (http://rsbweb.nih.gov/ij/) and determined, 

for our case (see Figure 3-1) that a 150 pixel value threshold could distinguish CNTs 

from the contrasting polymer background. Both MATLAB
TM

 and ImageJ recognize 

pixels by their numerical value, and it is to be expected that other images 

corresponding to those produced by different equipment/imaging conditions may 

require a different threshold. The initial length of each quadrat square was then set to 

be 45 pixels which is approximately 3.5 times the average CNT diameter at 1250 X 

magnification (the exact conversion between pixels and CNT diameter would vary 

with the magnification[68]). Ten measurements of d (P||Q), with respect to the HEX 

pattern, were averaged for any particular image / pattern under test to estimate the 

population average and lower the standard error estimate (as indicated in Table 3-1). 

We then applied the above methodology to test the proposed dispersion metric, 

to both our own pattern images of CNTs dispersed in an epoxy polymer  (reactive 

ethylene terpolymer: RET) as well as those published in literature[69]
,
[70]. The RET 

(Elvaloy 4170) was constituted of (1) polyethylene, (2) a polar methyl-methacrylate 

group, and (3) epoxide functional groups. While (1) and (2) contribute to mechanical 

elastomeric characteristics and corrosion resistance and are critical to the utility of 

RET as a hot-melt adhesive and coating, the epoxide group has high reactivity[71] and 

is amenable for effective anchoring of the constituent ring bonds with functional 

groups (e.g., -OH, -COOH, -NH2 etc.) on the CNTs[72], [73]. As the functional groups 

are associated with defects on the CNTs and are randomly dispersed, isotropic bonding 
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of the nanotubes with the polymer matrix was implied and expected to yield relatively 

uniform CNT dispersion. Both pristine and -COOH functionalized single walled CNTs 

(average diameter of 1.5 nm, length range ~ 5-20 μm), multi-walled CNTs (average 

diameter of 140 nm, length range ~ 5-9 μm), as well as coiled CNTs[74], [75] were 

used. Further details of the dispersal procedure and structural, electrical, and 

electromagnetic characterization have been reported previously[76], [77], [78].   

Generally, considerable clumping reflective of CNT agglomeration was 

observed when unfunctionalized CNTs (to the left in Figure 3-1) were mixed into the 

polymer. We then observed that the general strategy of employing mutual chemical 

reaction between functional groups on the CNT and the polymer through covalent 

functionalization of the nanotube surface[79], [80] resulted in a relatively more 

uniform dispersion of SWCNTs in the polymer over a wide range of nanotube volume 

fractions, i.e., from 0.2 vol % to 4.5 vol% (for functionalized coiled nanotubes and 

multi-walled nanotubes, in the center and to the right of Figure 3-1, respectively). 

We now characterize the extent of uniformity in the CNT dispersed RET 

polymer through the <d(P||Q)> metric, as applied to SEM images of the distribution of 

unfunctionalized and functionalized CNTs in the polymer (Figure 3-1).  It is to be 

noted that the contrast between the CNTs and RET polymer matrix was enhanced 

using ImageJ prior to the implementation of the algorithm which enhances the 

sensitivity of CNT detection. Localized image areas may exhibit lower subject contrast 

between the CNTs and the polymer due to composite surface topology, electron 

backscatter at angular fracture surfaces, etc. The use of ImageJ visibly improved 

image contrast when the CNT and polymer pixel values were close to the 150 pixel 
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value threshold. Table 3-1 shows the <d (Image || HEX)> metric comparing each 

image in Figure 3-1 to a standard hexagonal pattern. Table 3-1 then shows the d-metric 

could be a quantitative measure of the extent of dispersion, yielding progressively 

larger values for images that exhibit greater clustering/poor dispersion and deviating 

more from the chosen hexagonal lattice standard. The numerical values are indicative 

of the number of bits representing the difference/distance between the given and the 

standard distribution[81]. 

We also compared the utility of the d(P||Q) metric with other results from 

literature (Figure 3-2 – taken from[82] and Figure 3-3 – taken from[83]).  In the 

former case, the importance of reducing particle size to increase the degree of 

matrix/polymer reinforcement was discussed[84]. In the paper by Khare and 

Burris[85], a metric termed the free-space length, Lf  correlates to the “characteristic 

size of the unreinforced polymer domains” and was defined as the “width of the 

largest randomly placed square for which the most probable number of intersecting 

particles is zero.” Figure 3-2, taken from this paper, shows nanoparticle dispersions 

categorized using such a method. This approach is equivalent to measuring the mean 

length of the largest quadrat square likely to contain zero particles, and has a potential 

drawback in that a large Lf could be indicated for low volume fraction CNTs and that it 

does not compare images to a desired pattern/distribution. Consequently, we analyzed 

the micrographs in Figure 3-2 using our d-metric approach, and the obtained results 

are indicated in Table 3-2. The comparison is now to a uniform distribution, with an 

implicit assumption that this is the desired distribution. The steadily increasing d-

metric values from the top to the bottom, in the order (a) < (b) < (c) < (d), are in 
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accordance with the easily observed diminished uniformity of dispersion and now 

indicate a quantifiable measures of the degree of dispersion. 

In yet another study taken from literature, the dispersion of alumina 

nanoparticles in a polyethylene terephthalate (PET) polymer matrix was 

investigated[86] through sample cross-sections taken from the composite (as given in 

Figure 3-3). The authors’ analysis of the degree of dispersion was considered 

inadequate, as there was no obvious discrimination between single nanoparticles vs. an 

agglomeration of contiguous nanoparticles and in addition, no comparison was made 

to a standard/preferred pattern. We then applied our d-metric based approach to Figure 

3-3, with the results indicated in Table 3-3. The comparison is again to a hexagonal 

pattern. The steadily increasing d-metric values from the top to the bottom, for both 

columns, now indicate definitive and well founded values for the degree of dispersion 

for published images. 

Our methodology may also be adapted for three-dimensional images. Cross-

sections of two-dimensional section scans at varying depths can be combined into a 

collage and our algorithm applied without modification. Alternatively, each cross-

section can be evaluated individually and the d-metric dispersions evaluated at 

increasing cross-sectional depths. Such an evaluation can be easily accomplished, for 

example, by plotting the d-metric on statistical control charts[87]. The algorithm also 

can be adapted to three-dimensional imaging techniques through replacing quadrats 

with cuboids and area fractions with volume fractions. 
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3.4 Conclusion  

We have shown conclusively that the d-metric, based on equation (3), can be 

used to satisfactorily describe nanostructure dispersion in polymer composites.  The 

metric was applied to micrographs of CNT-polymer composites, taken from our own 

studies as well as nanoparticle-polymer composites from other studies in literature, 

and yields a measure of the degree of uniformity relative to a preferred/standard 

distribution. The proposed measure incorporates a firm mathematical basis and has the 

advantage that the deviation of a given distribution from a standard distribution can be 

quantitatively gauged.  

 

 

 

 

 

 

 

Chapter 3, in full, has been submitted for publication in Nanotechnology “A 

method for quantitatively characterizing the dispersion of nanostructures in polymer 

composites” by S. Pfeifer and P. R. Bandaru.  
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Figure 3-1 The uniformity of dispersion of carbon nanotubes (CNTs) dispersed in a 

RET polymer matrix, decreases from the top to the bottom in these Scanning Electron 

Microscope (SEM) micrographs and a quantitative measure can be obtained through a 

d-metric analysis - Table 3-1. Left column: Increasingly poor dispersion of 

unfunctionalized CNTs (increasing from the top, UNF-A to the bottom, i.e., UNF-D). 

Center column: Increasingly poor dispersion of coiled CNTs (increasing from the top, 

COIL-A to the bottom, i.e., COIL-D). Right column: Increasingly poor dispersion of 

multi-walled CNTs, (increasing from the top, MWNT-A to the bottom, i.e., MWNT-

D)  
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[Figure 3-2 was omitted from this dissertation but can be reviewed as figure 5 in the 

paper by Khare and Burris, Polymer, 51, 719, 2010] 

 

 

Figure 3-2 (Image taken from the paper by Khare and Burris, Polymer, 51, 719, 2010)  

Our proposed d-metric can be used to analyze the dispersion of nanoparticles, as well 

and indicates steadily decreasing uniformity from (a) to (d) – Table 3-2.  
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[Figure 3-3 was omitted from this dissertation but can be reviewed as columns 2 and 4, 

figure 1 (A to D) in the paper by Kim, Lee, Barry and Mead, Microscopy Research 

and Technique, 70, 539, 2007] 

 

 

Figure 3-3 Another example of the application of the d-metric to the dispersion of 

alumina nanoparticles in PET polymer through the analysis of a TEM (transmission 

electron microscope) image from literature (Image taken from the paper by Kim, Lee, 

Barry and Mead, Microscopy Research and Technique, 70, 539, 2007). The non-

uniformity of dispersion increases from A1 – D1 and A2 – D2. The dispersion metric 

results are presented in Table 3-3. 
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Table 3-1 The d-metric for the images of Figure 3-1, indicate a quantification of the 

degree/uniformity of dispersion. While the numbers in bold indicate the d-metric 

values, the standard deviation from ten measurements is indicated in the brackets.  

 

<d(HEX || Pattern)> <d(HEX || Pattern)> <d(HEX || Pattern)> 

<d(HEX || UNF-A)> = 

5.805 (0.007) 

<d(HEX || COIL-A)> = 

0.858 (0.004) 

<d(HEX || MWNT-A)> = 

0.275 (0.001) 

<d(HEX || UNF-B)> = 

5.815 (0.009) 

<d(HEX || COIL-B)> = 

1.259 (0.011) 

<d(HEX || MWNT-B)> = 

0.623 (0.004) 

<d(HEX || UNF-C)> = 

6.092 (0.011) 

<d(HEX || COIL-C)> = 

1.721(0.015) 

<d(HEX || MWNT-C)> = 

3.040 (0.002) 

<d(HEX || UNF-D)> = 

6.577 (0.009) 

<d(HEX || COIL-D)> = 

2.831 (0.007) 

<d(HEX || MWNT-D)> = 

4.690 (0.007) 
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Table 3-2 The d-metric for the images in Figure 3-2, indicate a quantification of the 

degree/uniformity of dispersion. While the numbers in bold indicate the d-metric 

values, the standard deviation from ten measurements is indicated in the brackets.  

 

 

<d(Uniform || Pattern > 

<d(Uniform || a > = 0.021 (0.001) 

<d(Uniform || b > = 0.066 (0.001) 

<d(Uniform || c> = 0.153 (0.003) 

<d(Uniform || d > = 1.354 (0.007) 

 

 

 

 

 

 

 

 

 

 



43 

 

 

 

Table 3-3 The d-metric for the images in Figure 3-3, indicate a quantification of the 

degree/uniformity of dispersion. While the numbers in bold indicate the d-metric 

values, the standard deviation from ten measurements is indicated in the brackets.  

 

<d(HEX || Pattern)> <d(HEX || Pattern)> 

<d(HEX || A-1)> = 0.293 (0.002) <d(HEX || A-2)> = 0.306 (0.001) 

<d(HEX || B-1)> = 0.468 (0.002) <d(HEX || B-2)> = 0.322 (0.001) 

<d(HEX || C-1)> = 0.710 (0.005) <d(HEX || C-2)> = 0.630 (0.002) 

<d(HEX || D-1)> = 0.717 (0.002) <d(HEX || D-2)> = 1.282 (0.004) 

 

 

 

 

Chapter 3, in full, has been submitted for publication in Nanotechnology “A 

method for quantitatively characterizing the dispersion of nanostructures in polymer 

composites” by S. Pfeifer and P. R. Bandaru. Figure 3-2 was omitted from this 

dissertation but can be viewed as figure 5 in the paper by Khare and Burris, Polymer, 

51, 719, 2010. Figure 3-3 was omitted from this dissertation but can be viewed as 

figure 1 in the paper by Kim, Lee, Barry and Mead, Microscopy Research and 

Technique, 70, 539, 2007. 

 

 



 

 

 44 

 

Chapter 4. Modeling the relative dielectric permittivity and 

impedance of carbon nanotube constituted polymer 

composites 

 

4.1 Introduction 

The determination and modeling of the electromagnetic (EM) characteristics of 

carbon nanotube (CNT) containing polymer composites is of interest, with the 

objectives of obtaining (a) fundamental understanding of the influence of large aspect 

ratio electrical conductors, as well as for (b) practical applications. A large length to 

diameter aspect ratio, which could be as much as 10
6 

 (for a nanotube 1 mm length and 

1 nm diameter) enables pertinent electrical characteristics to be obtained at much 

lower volume fractions,  e.g.,  at < 0.01% nanotube filler concentrations[88]. In the 

context of applications, CNT containing composites have been advocated for a wide 

variety of uses, e.g., EM interference shielding[89], thermal management[90], energy 

conversion[91], and electronic packaging applications[92],  etc., in which detailed 

characterization and understanding of the EM properties would be important. 

 In this paper, we report on the measurement, modeling, and interpretation of 

the relative dielectric permittivity (r*) of multi-walled CNT (MWCNT) – polymer 

composites at frequencies (f) less than 500 MHz. The real and imaginary parts of r* 

were then fit to real and imaginary electrical impedances and compared to lumped and 

distributed models of the resistance (R) and capacitance (C) of the nanotube – polymer 
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composite. At the very outset, a CNT – polymer composite was modeled to be of three 

constituents, i.e.,  (1) an electrically conducting CNT (as is typical to MWCNTs) 

phase, (2) a relatively insulating polymer matrix, and additionally (3) an 

interphase[93] component.  A relevant circuit model would then consist of equivalent 

electrical R and C. The inductive response of the measurement instrumentation and the 

composite sample was negligible (the relative magnetic permeability, r, of the sample 

was measured[94] to be ~ 1), and could be subtracted out through calibration at the 

considered frequencies. 

 

4.2 Experimental Procedure 

We incorporated various filler fractions (in the range of 0 – 10 volume %) of 

acid-functionalized MWCNTs into reactive ethylene terpolymer (RET) based 

polymers through procedures that have been previously reported[95].Samples of 

MWCNTs, with constituent diameters of ~ 20 nm, and average length of ~ 6.8 μm, 

yielding an aspect ratio of ~ 340, were used. The geometrical parameters were 

determined, by scanning electron microscopy (SEM), through subjecting the 

MWCNTs to similar processing conditions as were used for their dispersion into the 

polymer.  RET (Elvaloy 4170 from DuPont) constituted from (1) polyethylene, (2) a 

polar methyl-methacrylate, and (3) epoxide functional groups was seen to possess 

superior mechanical characteristics and corrosion resistance, while the epoxy group 

has high reactivity[96] and is amenable for effective anchoring of the epoxide ring 

bonds with functional groups (e.g., -OH, COOH, -NH2 etc.) on the CNTs, as was 

verified through Fourier transform infrared spectroscopy[97]. The uniformity of the 
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dispersion was gauged by considering scanning electron microscopy (SEM) 

micrographs at different length scales, i.e., 1 m to 200 m, and the extensive use of 

image processing software and algorithms[98].  The permittivity was measured and 

modeled (over a frequency range of 80 MHz – 500 MHz, as used for line-of-sight 

communications[99]) using a RF Impedance/Material Analyzer (Agilent E4991A), 

with the composite sample contacting the upper and lower electrodes in the test fixture 

(Agilent 16453A). Prior instrumental calibration, using known Teflon® and silica 

glass standards, was used to validate the experimental setup. Additionally, the 

electrode and instrument inductances were compensated, through standard instrument 

testing protocols[100] with connected / open electrodes.   

The complex permittivity, *, is related to the real (r´) and imaginary (r´´) 

components through * = o (r´– jr´´), where o is the permittivity of free space 

(=8.854·10
–12

 F/m) and j = 1 . Representative experimental measurements are 

indicated in Figure 4-1. The electrical impedance, Z* = Z´+ j Z´´, constituted of real 

(Z´) and imaginary (Z´´) components was then calculated from the complex 

capacitance )(* SC  where =2f), is the angular frequency 

)
*

1)(
(

*
*

oo

S
r

CZjC

C




  , and Co = 

L

Ao , with  A  as the electrode area and L the 

distance between the electrodes. Consequently, Z´= 
)( 

2''2'
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rro
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
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C 






. Plots for the frequency dispersion of Z´and Z´´ were calculated from 

r´ and r´´, and have been indicated in Figure 4-2.  
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Figure 4-1. The variation of the real (r´) and imaginary (r´´) dielectric permittivity 

with (a) frequency () (with 3 vol % CNT fillers) and (b) CNT filler concentrations 

(at 100 MHz). In (a) the fit lines to the data (points) followed a power law relation, 

with r´(= a-t + b) and r´´ (= d-t) varying as ~-t (a, b, d, and t are fitting 

parameters). (c) The variation of the power law exponent, t, with CNT filler 

concentration. 
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Figure 4-2. The variation of the real (Z´and imaginary (Z´´) parts of the electrical 

impedance (Z*) with frequency (with 3 vol % CNT fillers), as obtained from r´ and 

r´´.   
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Figure 4-3. Circuit models for (a) an equivalent series resistance (ESR) model, and (b) 

a two-dimensional random network of resistors and capacitors (2D RC) model, were 

used to fit the Z* variation (from Figure 4-2) of the nanotube-polymer composites. 
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4.3 Electrical Impedance Models 

We compared electrical circuit models (see Figure 4-3) to characterize the Z* 

(and r*) variation in the nanotube – polymer composite, using using (i) an equivalent 

series resistance (ESR) model, (ii) a two-dimensional random network of resistors and 

capacitors (2D RC) model[101], and a derivative (iii) constant phase element (CPE) 

model[102]. The idea behind such various representations was to investigate whether 

the net impedance, in terms of the resistance and capacitance of the composite, could 

be considered in terms of lumped or distributed elements, and estimate the number of 

minimum needed fitting parameters. In the represented ESR model, of Figure 4-3 (a), 

RESRembodies the frequency dependent dielectric polarization losses and Rp 

accounts for the leakage currents in the capacitor. We could neglect Rp, compared to 

the capacitive impedance Xc (=1/C) at volume fractions above the percolation 

threshold (c), which was measured to be ~ 0.17 vol% for composites using nanotubes 

of aspect ratio ~ 340. For example, at a CNT volume concentration of 2.6%, the Rp 

was estimated to be 10
8
 times larger than the Xc at 1 GHz. Then, Z 

*
= RESRjC 

= [tan() j] C, where 
"

'

)tan(
Z

Z


'

''

r

r




  is the loss-tangent defined in terms of 

the real and imaginary components of the impedance/dielectric permittivity. 

The 2D RC model considers the composite with dispersed nanotubes and the 

intervening polymer to form a distributed electrical network of resistors and capacitors 

(e.g., constituted of the dielectric between the conductors/nanotubes). It has been 

previously shown that a three dimensional dispersion may adequately be represented 

through a two-dimensional network model[103]. The complex impedance was then 
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derived to be: Z* 











)
2

sin( )
2

cos(
 )(  )( 

1 
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

j
RCA

LR

CjA

LR
 , and fitted to our 

experimental data. The 2D RC model is displayed, in Figure 4-3(b), with 194 

capacitors and 6 resistors corresponding to a β = 0.97 (=194/200), obtained through 

the fits. 

While the ESR model considered a frequency dependent resistance, the CPE 

based representation invokes a distribution/dispersion of relaxation times, )( . While 

such models have been extensively used to parameterize the frequency response of 

solid electrolytes[104] and solid-solid interfaces[105], the present work is the first to 

utilize the CPE construct for the description of the electrical behavior of CNT  

polymer composites.  From a physical point of view, the influences of non-uniform 

potential and current distribution, roughness, composition variations, etc., are some of 

the parameters[106] that could be described through such a model. The underlying 

idea of the CPE is to fit the impedance data, say that obtained through the distributed 

RC type model, over a defined frequency range. The constraint of a frequency range 

then implies that the electrical impedance, 







 )

2
sin( )

2
cos(

)(

1
*



 
j

Q
Z , with    

Q as the only fitting parameter, and which can be reduced to resistive (), 

inductive (), or capacitive () behaviors. The CPE aspect is manifested 

through the 
'

"

Z

Z
ratio, from which the magnitude of the phase  is 𝜔-independent. 
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4.4 Discussion 

As a result of the data fitting, detailed statistical analysis indicated that the 

coefficient of determination[107] (i.e., the r
2
 value) was larger for the distributed 

models (2D RC and CPE) compared to the lumped (ESR based) model. Another 

important metric to describe the goodness of fit between competing models uses the 

Akaike Information Criterion (AIC)[108]. The underlying idea behind the AIC is that 

it incorporates a penalty for increasing the number of fitting parameters and 

consequently, a model with the minimum number of fitting parameters is preferred and 

given a low AIC number. We have then generally found a lower AIC number for the 

CPE and the 2D RC models, e.g., for a 1 vol% (and 3 vol%) nanotube filler 

percentages, the AIC numbers were 239 (58) and 241 (60). The corresponding 

numbers for the ESR model were 523 and 379 respectively.  We thus conclude that 

distributed models may more accurately determine nanotube – polymer composite 

properties.   

From considering the *  (= jo [r´ jr´´]) for the composite and the 

polymer and assuming that 
*

N for the nanotube is purely real, we obtained a 

functional relation for the frequency dispersion of the composite dielectric constants, 

both for  r´ as well as r´´ to be varying as p–1
. We have then fitted our experimental 

data  see Figure 4-1(c), to the forms r´ = a–t
 + b, and r´´ = d–t

, where a, b, d, 

and t are fitting parameters. It would then be expected that as the contribution from the 

polymer decreases (i.e., p decreases) due to increasing the nanotube fillers, that t 

should increase. However, an opposite trend was observed as indicated in Figure 4-
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1(c).  We then hypothesize that the original assumption, i.e., that  *

N  is purely real, 

may not be correct and a complex conductivity, proportional to  should be 

considered. Consequently, the frequency dispersion of the composite for r´ as well as 

r´´ would vary as p+n–1
. If the decrease in p is lower than the increase in n, the 

correct trend in t could be obtained.      

We justify the frequency dispersion of the nanotube fillers on the basis that its 

constituent electromagnetic properties could change depending on the environment, 

e.g., the formation of an interphase[109] region could considerably modify the relative 

contributions of the filler and the polymer matrix. We have seen, for example, a 

smaller variation of the exponent, t, when lower aspect ratio nanotubes were used. It 

was also noted, from Figure 4-1(c), that the t tends to (p1), as p decreases[110], 

which may indicate increasing contribution from the nanotubes.  The t values were 

similar to those reported earlier[111] for multiwall MWCNT/poly-vinylidene fluoride 

(PVDF) composites. However, unlike this earlier study, we have not observed a drastic 

increase in the dielectric constants at the electrical conductivity percolation threshold 

(c), due to the higher frequencies.   

 

4.5 Conclusion 

In summary, we have shown that the electromagnetic characteristics of 

nanotube-RET polymer composites could be best modeled by considering a constant 

phase element (CPE) based approach with frequency dependent resistances and 

capacitances.   
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Chapter 4, in full, has been submitted to the Journal of Applied Physics “A 

comparison of models for determining the relative permittivity of nanotube constituted 

polymer composites” by S. Pfeifer, S. H. Park, and P. R. Bandaru. (2012). 
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Chapter 5. Summary of the Dissertation 

 

Our research resolves three extant problems in nanocomposite research. First: 

we developed an equation that gives the critical volume fraction of CNTs required to 

achieve percolation when the CNT lengths vary randomly. This equation also 

establishes CNT percolation thresholds when the CNT lengths are deterministic. 

Second: our dispersion algorithm provides a single metric describing the degree of 

dispersion of any minority phase in a majority phase. This algorithm can be adapted to 

three dimensional, greyscale, or colorized images. The algorithm has sufficient 

versatility to compare an image to either another image or to a probability distribution. 

Third: a constant phase element electrical complex impedance model was described 

and validated experimentally for the nanocomposites under study.  

In the electrical percolation threshold study, we have observed that electrical 

percolation can be achieved at very low CNT volume fractions (e.g. <10
-3

 critical 

volume fraction for ~1000 CNT aspect ratio). Electrical percolation can be critical to 

achieving a conductive surface. Material applications include radar absorption or 

electro-magnetic shielding. The fabrication and processing of nanocomposites 

necessarily involves homogenizing operations that can alter and randomize the CNT 

lengths. The impact of random CNT lengths was successfully described by our 

percolation equation using a stochastic approach.  

The nanometric sizes of the minority phase in nanocomposite research can 

yield novel materials properties. Concurrently the nanoscale size also brings a real 



56 

 

 

 

problem associated with achieving the correct level of dispersion to achieve those 

novel properties. It is difficult to disperse nanostructures as van der Waals forces tend 

to cause particle clustering and agglomeration. Homogenization techniques can 

damage the nanostructures and add time and cost to the fabrication process. Our 

dispersion algorithm provides an objective way to categorize the level of dispersion 

evident after nanocomposite fabrication.  

The dispersion algorithm has considerable versatility. Three dimensional scans 

only require the substitution of cuboids (replacing quadrats) and inclusion volume 

fraction tallies (replacing inclusion area fraction counts). The algorithm also can be 

adapted to categorize greyscale or color images. In the nanocomposite study we used a 

pixel value threshold number to demarcate and distinguish the minority phase from the 

majority phase. For a greyscale or color image, this threshold would be replaced with 

bins. The bins would span a range of pixel values representing colors of interest. Pixel 

counts would be tallied for each bin and the d-metric used to compare the image to a 

desired, idealized pattern / image. 

Our dispersion algorithm distinguished patterns from the literature that are 

considered to be severe tests of a dispersion metric. The underlying foundation for the 

d-metric is based on sound and proven principles of information theory. We also 

categorized SEM scans of cross-sections of our CNT / RET nanocomposite samples 

and successfully grouped these samples in order of dispersion. 

The dispersion algorithm has the flexibility to compare an image to a desired 

probability distribution (i.e. uniform, Poisson, etc.) as well as to another image. The 

ideal image standard used for comparison can use different minority phase area 
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fractions to represent different desired volume fractions. (Stereologists have proven 

that particle area fractions measured from cross-sectional images are reliable 

estimators of volume fractions) [112]. 

In the study of high frequency complex permittivities and complex electrical 

impedances, we have described the fit of our nanocomposites to Jonscher’s universal 

power law. The permittivities were used to calculate the complex electrical impedance 

from  80 MHz – 500 MHz. Three electrical circuit models were provided for three 

impedance equations (CPE, ESR, and 2D RC). While all three models fit the electrical 

impedance experimental data, the CPE model was shown to be the preferred model.  

The permittivity research showed that a CPE model can be used to predict high 

frequency electrical behavior, including capacitive energy storage and dielectric 

losses. Ongoing research indicates that the exponent appearing in the equation for the 

CPE impedance could be related to the volume fraction dielectric at higher CNT 

volume fractions (Lichtenecker’s permittivity mixing equation for an isotropic 

NC)[113]. Further research on this topic could provide added insight into the physical 

meaning behind the power law coefficient appearing in Joncher’s universal 

permittivity power law. 
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