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Dithering Strategies and Point-Source Photometry

Johan Samsing
DARK-Cosmology Centre, Niels Bohr Institute, Copenhagen, Denmark

Alex G. Kim
Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720

ABSTRACT
The accuracy in the photometry of a point source depends on the point spread function (PSF),

detector pixelization, and observing strategy. The PSF and pixel-response describe the spatial
blurring of the source, the pixel-scale describes the spatial sampling of a single exposure, and the
observing strategy determines the set of dithered exposures with pointing offsets from which the
source flux is inferred. In a wide-field imaging survey, sources of interest are randomly distributed
within the field of view and hence are centered randomly within a pixel. A given hardware
configuration and observing strategy therefore have a distribution of photometric uncertainty for
sources of fixed flux that fall in the field. In this paper we explore the ensemble behavior of
photometric and position accuracies for different PSF’s, pixel scales, and dithering patterns. We
find that the average uncertainty in the flux determination depends slightly on dither strategy,
whereas the position determination can be strongly dependent on the dithering. For cases with
pixels much larger than the PSF, the uncertainty distributions can be non-Gaussian with RMS’s
particularly sensitive to the dither strategy. We also find that for these configurations with
large pixels, pointings dithered by a fractional pixel amount do not always give minimal average
uncertainties: this is in contrast to image reconstruction for which fractional dithers are optimal.
When fractional pixel dithering is favored, a pointing accuracy of better than ∼ 0.15 pixel-width
is required to maintain half the advantage over random dithers.

1. Introduction

Survey imagers are designed to provide accu-
rate measurements of multiple objects in a single
exposure. Given a fixed number of detector pix-
els, the choice of pixel scale determines the field
of view and influences the angular resolution. Op-
timization of the pixelscale trades the multiplex
advantage of simultaneous observation of many
sources with the accuracy of source flux, position,
and shape measurements.

With a space telescope the point spread func-
tion (PSF) can be designed to be stable over mul-
tiple exposures, then the observing strategy can be
used to affect the measurement accuracy. Dither-
ing breaks an observation into a sequence of ex-
posures with subpixel pointing offsets to recover
Nyquist sampling from images that individually

are undersampled. The dithering approach al-
lows having the large field-of-view from angularly-
coarse pixels while still allowing robust point-
source photometry (Lauer 1999a) and the mea-
surement of subpixel spatial structure of extended
objects such as galaxies (Lauer 1999b; Fruchter
& Hook 2002; Bernstein 2002). Subdivision of
a single pointing into multiple exposures can be
done efficiently as long as the short exposures are
not detector read-noise dominated, have relatively
long exposure times compared to readout time,
and do not produce data volumes that exceed data
storage and telemetry constraints.

The WFIRST mission set forward in the As-
tro2010 report is a satellite experiment that re-
quires accurate measurements of many objects
within its field of view. WFIRST measures shapes
and colors of many galaxies to detect shear caused
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by mass inhomogeneities using ∼ 50 galaxies per
square arcminute. WFIRST measures the time-
evolving brightness of stars in dense fields toward
the Galactic bulge to search for planets, and thou-
sands of Type Ia supernovae to map the expansion
history of the universe. The fundamental measure-
ment in these latter two cases is the flux of a point
source.

In this paper we explore how point-source pho-
tometry for an ensemble of sources drives the de-
sign and observing strategy of a space-based mis-
sion. The ensemble behavior is of interest because
sources are randomly distributed in the sky, and
therefore are randomly positioned within a pixel:
this is particularly relevant when the pixel is much
larger than the PSF. The design parameter of in-
terest is the pixel scale, which can be chosen so
that a pixel is smaller, similar, or much larger in
size compared to the PSF. The photometric accu-
racy depends on the number of dither steps and
the dither-pointing grid. Although Nyquist sam-
pling with a uniform dither pattern is optimal for
image reconstruction (Lauer 1999b), this is not
necessarily true for point-source photometry. In
situations where a uniform dither pattern is ad-
vantageous, we determine the pointing accuracy
required to maintain that advantage. We consider
both cases where the point-source position is in-
dependently known or must be derived from the
data.

Our study applies to the photometry of a sin-
gle pointing of a microlensed star or supernova.
In WFIRST, the star and supernova fields are
observed hundreds of times with random sub-
pixel pointings. For supernovae, the underly-
ing host-galaxy structure can be measured to the
Nyquist frequency using data from all visits. Our
treatment operates as if the host-galaxy surface
brightness is determined independently and is sub-
tracted from the images of the visit of interest.
Similarly, the centroid position of stars and super-
novae can be determined from the multiple visits
that constitute the light curves. The position can
be considered to be independently known in the
analysis of any particular image. A rigorous treat-
ment simultaneously fits for the position, back-
ground, and fluxes of all observations.

Our analysis is based on the Fisher Matrix ap-
proach, which is a way to analytically estimate
parameter uncertainties and correlations to first

order without mapping the likelihood surface for
each fit.

The paper is organized as follows. In §2, we
review PSF photometry and the calculation of its
uncertainty. Calculations of the mean and vari-
ance of the photometric uncertainty for different
choices of native PSF, pixelscale, and number of
dithered exposures are given in §3. The effect of
cosmic rays is shown in §4. We summarize with
conclusions in §5.

2. Point Source Photometry and Uncer-
tainties

This section presents our model for the PSF
and pixelized data, and demonstrates how PSF
photometry is performed to estimate flux and po-
sition uncertainties from a fit to the data.

2.1. Point Spread Function and Effective
Point Spread Function

Extragalactic supernovae are sufficiently small
and distant to be considered point-like (i.e. a δ-
function) when its light reaches Earth. The shape
of the supernova signal within the detector (the
PSF) is the convolution of the blur contribu-
tions from atmospheric scattering, spacecraft jit-
ter, telescope diffraction and wavefront error, and
detector diffusion. Furthermore, the detector is
pixelized so the measured signals are a discrete
sampling of the convolution of the PSF and pixel
response function, the effective PSF (ePSF or P ).
For the space-based mission considered in this pa-
per, the main contributions to the PSF are the
diffraction due to the telescope and the charge dif-
fusion within the detector.

The diffraction for a telescope with an unob-
scured circular aperture is an Airy disc described
by the intensity pattern

I(q) = I0

(
2J1(πq)
πq

)2

(1)

where J1 is the Bessel function of the first kind of
order one and q the distance in units of (lfocλ/D)
on the chip from the centroid. Here lfoc is the
telescope focal length, D the diameter of the tele-
scope mirror and λ the wavelength of observation.
Detector diffusion of the fully-depleted detectors
under consideration is described by a Gaussian
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profile N with width, σdiff . (In our formalism,
the charge diffusion term can represent all sources
of Gaussian blur.) The ePSF accounts for the pix-
elization by convolving the PSF with the pixel re-
sponse function as predetermined by calibration.
In our calculations we take the pixel response to
be a 2-dimensional boxcar function Π, although in
general the response could have intrapixel varia-
tion. The ePSF is P = I ⊗N ⊗Π.

We assume that the ePSF is derived from field
objects and extensive pre- and in-flight calibration
and contributes negligible statistical uncertainty
to the PSF photometry. This translates into an ex-
perimental requirement for the amount of calibra-
tion data needed to model the ePSF: a challenging
but feasible task considering the stability of the
space platform and the surface density of point
sources on each image. The ePSF calibration in-
cludes contributions from possible intra-pixel vari-
ation.

2.2. The Data

The data for a single visit are the counts from
each pixel of each of the exposures in the dither
sequence. For a d× d dither grid there are a total
of d2 exposures. To directly compare the relative
performance of different dither sequences, the to-
tal exposure time for each visit is fixed to ttot so
each individual dither position gets an exposure
time ttot/d2.

The data noise is taken to have contributions
from the sky background, the source, and readout
noise. Dark current is not explicitly considered:
for a given pixel scale it can be included with the
sky background. Denoting the sky counts per unit
steradian ns, the side length of a square pixel a,
the flux f , and the readout noise per pixel R, the
variance of the data from pixel β in exposure α
takes the form

σ2
αβ =

ttot
d2

[
ns

(
a

lfoc

)2

+ fPαβ(x, y)

]
+R2 (2)

where P is the ePSF defined in §2.1. We use the
small-angle approximation since the pixel sizes are
much smaller than the focal length. The noise be-
tween different pixels is taken to be uncorrelated.

2.3. PSF Photometry and Uncertainties

Point-source PSF photometry fits data from
pixels, each centered at position x and y, to a
model fP (x − x0, y − y0). The fit parameters
p = {f, x0, y0} include f for the flux in counts
s−1 and x0, y0 for the centroid position. We con-
sider cases where the centroid position is indepen-
dently known or must also be derived from the
fit to the data. The flux and ePSF are assumed
not to evolve in the short interval that the dither
sequence is performed, although generally it can
vary from exposure to exposure.

The most probable values for the vector p are
found by maximizing the likelihood or minimizing
chi-squared when the noise is Gaussian. Working
from the Fisher Information Matrix (FIM) formal-
ism it can be shown that σ2

i ≥
(
F−1

)
ii
; a calcula-

tion of the Fisher elements may give precise infor-
mation of how well parameter i is estimated. In
general the FIM takes the form

Fij =
∂OT

∂pi
C−1 ∂O

∂pj
+

1
2
Tr

(
C−1 ∂C

∂pi
C−1 ∂C

∂pj

)
, (3)

where O is a vector with the observables, C the
corresponding covariance matrix and pi parameter
i. When the noise is not dependent on the param-
eters we fit for, the second term is simply zero.
This is the case for the sky-noise limit but not in
the source-noise limit. We consider only the first
term in equation 3 in our analysis, which is appro-
priate in the source-noise limit when the number
of measured photons is significantly greater than
the number of used pixels. As written in section
2.2 we assume no correlation between our observ-
ables, i.e. we take C to be diagonal. Keeping
only the first term and inserting the observables
(fPαβ) with the corresponding errors (σαβ) the
FIM in our case for a single epoch takes the fol-
lowing form

Fij =
∑
α∈exp

∑
β∈pix

(
ttot
d2

)2 1
σ2
αβ

∂(fPαβ)
∂pi

∂(fPαβ)
∂pj

,

(4)
where σ2

αβ is the variance of the source sig-
nal in each pixel introduced in equation 2 and
Pαβ(x0, y0) the value of the ePSF centered at x0

and y0 at pixel position β in exposure α. The two
summations can be thought of as one summation
over a fine "supergrid" that interlaces all the pixel
positions of all dither exposures.
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To check the validity of the Gaussian assump-
tions inherent in using the FIM for estimating un-
certainties, we perform an explicit calculation of
the likelihood surface for a realization of an ex-
treme configuration. Figure 1 shows the calculated
error contours using a pixel size of 5lfocλ/D and
zero diffusion exposing with a perfect 2× 2 dither
pattern. The source has an expected total inte-
grated counts of 100 and is centered in the middle
of a pixel and between two pixels in the two x-
dithers and a quarter-pixel offset for the y-dithers.
Poisson statistics are applied in the calculation of
the likelihood. We confirm that in this extreme
case the confidence regions for the three permuta-
tions of the f , x0, and y0 parameters are close to
elliptical and that our Gaussian assumptions are
reasonable.

3. Statistical Behavior of Photometric Un-
certainties

We now turn our attention to the photomet-
ric uncertainties of the ensemble of point sources
randomly distributed on the pixel grid. This is of
interest to multiplexed surveys where multiple ob-
jects lie within the imager field-of-view. As seen in
the previous section, PSF-fit parameter uncertain-
ties of a single source depend on the supergrid (the
interlaced pixel grids of all the pointings) and the
source centroid position relative to the grid. Av-
eraging over randomly positioned sources, the dif-
ference in parameter estimation can only be due
to differing dither patterns and number of dithers.
Our interest is to determine which pixel scales and
dither patterns work well for the set of objects as
a whole rather than for an individual object.

The statistics we consider are the mean and
standard deviations of the parameter uncertain-
ties. Clearly low mean uncertainties are bene-
ficial for any survey. However, the importance
of the standard deviation depends on the science
and the survey strategy. Multi-epoch observations
of quiescent objects can be analyzed with all the
dithers of all visits. A large standard deviation
produces large variations in uncertainty between
objects and between different epochs of the same
object. The realized uncertainty depends on the
sub-pixel position of the object meaning that there
is a non-trivial efficiency window-function over the
sky. The standard deviation must be accounted

for in calculating the multiplex efficiency of ob-
serving multiple objects in a pointing. This is par-
ticularly important for time-variable objects; for
example the fit for distance can depend strongly
on which visits happen to have extremely inaccu-
rate measurements.

This section is organized as follows: we first in-
troduce the hardware setups and dither patterns
considered in the analysis, simulation details, no-
tation, and units. First-order results are derived
from analytical expressions for the Fisher elements
in Equation 4. We then show numerical results
from simulations where we scan over pixel sizes
and detector diffusions for different dither pat-
terns.

3.1. Analysis Overview and Technical De-
tails

We calculate distributions of photometric un-
certainties for a range of dither strategies, hard-
ware properties, and priors on the position of the
source of interest. The dithering strategies in-
clude 2 × 2 and 3 × 3 dither pointings (labeled
by "d2" and "d3") each with three different pat-
terns. One pattern has completely random point-
ings ("random" dithering labeled with the sub-
script "R"), the second uses precise dither steps
to give a uniformly spaced supergrid ("perfect"
dithering labeled with the subscript "P"), the
third attempts perfect dithering but with a ran-
dom Gaussian pointing uncertainty ("Gaussian"
dithering labeled with the subscript "G"). Hard-
ware scenarios cover pixel scales a ranging be-
tween (1, 5) and detector diffusions σdiff ranging
between (0, 3), both in 0.2 steps in units of the
diffraction scale lfocλ/D. These ranges include
scenarios where the ePSF is dominated by an Airy
disk, Gaussian, and top-hat functions.

The flux uncertainty of a single observation
is expressed as σ(f) =

√
(F−1)ff ; position un-

certainties affect the final flux uncertainty as F
is not diagonal. Cases where the source posi-
tion is known independently are given by σ(f0) =√

(Fff )−1. Fitting for the flux yields different un-
certainties compared to when both flux and posi-
tion are fit.

The square root of the area of the x–y error
ellipse, as we here denote σ(c), is used to represent
the centroid position uncertainty. In terms of the
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Fig. 1.— Simulated error contours for permutations of f , x0, and y0 for an extreme configuration with a
pixel size of 5lfocλ/D and zero diffusion exposing with a perfect 2 × 2 dither pattern. The contours are
similar to those expected from a Gaussian distribution.
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Fisher matrix, σ(c) is then given as the fourth root
of the determinant of the x–y submatrix of the full
covariance matrix F−1.

Uncertainty results are given relative to that of
the hardware choice of σdiff = 1, a = 2, where
diffraction, diffusion, and pixel response have sim-
ilar contribution to the ePSF.

As described in the introduction to the section,
we are interested in the average performance from
a given dither pattern and pixel scale rather than
for a particular pointing. The distribution from
which we can find characteristics like the average
and variance is found by generating for each choice
of pixel scale, diffusion, and dithering strategy, 104

random realizations for the initial pointing. To
simplify the notation we express the parameter set
of interest in the vector w = {σ(f), σ(c)} and the
average of a particular parameter w is denoted by
〈w〉 and the square root of the variance stdev(w) ≡√
〈[σ(w)− 〈σ(w)〉]2〉.

3.2. Analytical Average of the Fisher Ele-
ments

Before we consider the results from simulations,
we now present first-order calculations for 〈σ(f)〉
and 〈σ(c)〉. From these, we clearly see the de-
pendence on different pixel scales under different
noise limits. The results help clarify some of the
general features in the simulation plots presented
in the next section.

The first-order results are defined to describe
〈σ(pi)〉 in the limit where the variance of the terms
in Equation 4 is small. In that limit 〈σ(pi)〉 can
be well approximated by 1/

√
〈Fpipi〉, reducing the

problem to a calculation of 〈F 〉 which turns out to
have a relative simple analytical form; The calcu-
lations in the Appendix show that 〈F 〉 is diagonal,
symmetric in x and y, and completely independent
of the dither pattern. The only two unique non-
zero terms (out of 9) in 〈F 〉 are

〈Fff 〉 =
a2t2

d2

∫ +∞

−∞

P 2

σ2
ds (5)

and

〈Fxx〉 =
a2f2t2

d2

∫ +∞

−∞

P 2
,x

σ2
ds, (6)

where 〈Fyy〉 = 〈Fxx〉 by symmetry. Here P,i de-
notes the derivative of P with respect to param-
eter i. In this limit 〈σ(c)〉 equals 〈Fxx〉−1/2. In

general, in an experiment it is of interest to in-
crease the value of 〈Fpipi〉 since this will reduce
the overall fitting uncertainty.

We now discuss first-order scalings of fit uncer-
tainties in different noise limits. Writing out the
noise terms in Equations 5 and 6 shows that 〈Fff 〉
and 〈Fxx〉 in the sky and source noise limits are
both independent of the number of dithers. The
term 〈Fff 〉 in the source noise limit (〈Fff 〉source)
is furthermore independent of the shape of P , i.e.
I(q), σdiff and a.

In general the integrals in Equations 5 and 6
must be calculated numerically, but in some lim-
its analytic results exist. Approximating the Airy
function by a Gaussian with width σtel, the func-
tion P in the well-sampled limit is described by a
Gaussian. Then

∫
P 2ds ∝ 1/σ2

con and
∫
P,x

2ds ∝
1/σ4

con, where σ2
con = σ2

diff+σ2
tel is the total width

of the convolved function P . Then 〈Fff 〉−1/2
sky

scales as σcon
√
ns/(tl2foc), 〈Fff 〉

−1/2
source as

√
f/t,

〈Fxx〉−1/2
sky as σ2

con

√
ns/(tf2l2foc) and 〈Fxx〉−1/2

source

as σcon/
√
ft. When dominated by the pixel,∫

P 2ds = 1/a2 and P,x is ill-defined: 〈Fff 〉−1/2
sky

scales as a/lfoc.

3.3. Simulation Of Different Dither Strate-
gies

This subsection presents numerical calculations
of the photometric uncertainty distributions due
to different dither patterns and pixel scales. Per-
fect dithering has been shown to be optimal for
image reconstruction (Lauer 1999b) but imposes
pointing requirements on the telescope. On the
other hand, a random dithering imposes no point-
ing requirements on the telescope, simplifying the
mission design. We present these dither patterns
as follows: The uncertainty distributions for the
random dither patterns are shown first in §3.3.1.
The differences between prefect and random dither
patterns are given in §3.3.2. Pointing requirements
are drawn from the analysis of §3.3.3, whose dither
pattern includes a pointing error when attempting
perfect dithering.

We consider both cases where the source flux
and position are derived from the data and where
the centroid position is already known based on
other data. The latter situation approximates the
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photometry of a single point on a densely-sampled
light curve, where the star/supernova position is
derived from all other pointings. The read-noise
dominated regime is not considered, as increasing
the number of exposures with dithering is then
clearly disfavored. The average flux uncertain-
ties in the source-noise dominated limit are not
presented since they are neither dependent on the
shape of ePSF nor on the dither pattern, as shown
in §3.2.

3.3.1. Random Dither Pattern

We begin by calculating the average flux and
position uncertainties for random dithers in the
sky- and source-noise dominated limits, and the
fractional differences of those average uncertain-
ties between using a 2× 2 and a 3× 3 dither.

The plots on the left of Figure 2 show from top
to bottom 〈σ(f)R〉sky, 〈σ(c)R〉sky and 〈σ(c)R〉source
as a function of the variables σdiff and a for a 2×2
dither pattern. The right column shows the rel-
ative difference between using a 2 × 2 and 3 × 3
dithering for the same parameter set and order of
noise as 〈wR〉d2 / 〈wR〉d3 − 1.

The plots in the left column show that in the
sky and source-noise limit, the average uncertain-
ties of all the parameters (〈wR〉) becomes smaller
as the pixel size decreases, for a fixed detector dif-
fusion σdiff . On average the fit for the PSF pho-
tometry becomes better as the pixel contributes
less to the ePSF. This is in agreement with intu-
ition and the calculations in §3.2.

The average flux uncertainties 〈σ(f)R〉 in the
sky-noise dominated case are proportional to the
size of the ePSF. (Recall that the source-noise
dominated case is not shown since then the aver-
age flux uncertainties are only weakly dependent
on the ePSF.) On the other hand, the average po-
sition uncertainties 〈σ(c)R〉 depend on the shape
in addition to the size of the ePSF. The position
determination depends on the derivatives of the
ePSF, which has sharp features when dominated
by the pixel. Intuitively, such a degradation in the
position determination is expected since centroid
information within a single image is lost when the
source signal lands in only one pixel. Then dither-
ing can only localize the centroid down to the scale
of the supergrid spacings.

Indeed, the comparison of the 2 × 2 and 3 × 3

dithers in the right column of Figure 2 shows that
increased dithering reduces uncertainties only in
regions where the pixel dominates the ePSF. For
the well-sampled region we see no measurable dif-
ference as expected from the first order estimates.

An interesting conclusion drawn from these cal-
culations is that when fitting for the centroid posi-
tion, degrading the width of the PSF with a Gaus-
sian blur (say by defocusing the telescope) can pro-
duce improved signal-to-noise despite the increase
in sky noise. For pixel sizes above a minimum
threshold, the optimal diffusion width is non-zero.

When the position of the centroid is known the
flux uncertainties decrease. The comparison be-
tween the relative difference in the average flux
uncertainty when and when not fitting for the po-
sition is shown in Figure 3, which shows a plot of
〈σ(f0)R〉 / 〈σ(f)R〉 − 1. The differences are at the
1− 5 percent level and are only appreciable when
the pixel dominates the ePSF.

Having discussed the average, we now turn to
the second moment of the uncertainty distribu-
tions through the statistic stdev(w). Figure 4
shows stdev(w) for flux and uncertainty distribu-
tions when using 2 × 2 and 3 × 3 random dither
patterns.

The variance is small when the PSF is well
sampled, and increases as the pixel dominates the
ePSF. While the variance of the average position
uncertainty directly corresponds to the pixel con-
tribution to the ePSF size, the variance for the av-
erage flux uncertainty also depends on the shape of
the PSF: the variance does not increase as quickly
with larger pixels when the underlying PSF is an
Airy function as opposed to a Gaussian. This is
seen in the v-shaped contours in stdev(σ(f)).

The ratio between the average and width of the
uncertainty distributions is found by comparing
Figures 2 and 4. The flux-uncertainty distribution
is well-localized within 〈σ(f)R〉 /stdev(σ(f)R) ∼
0.08 for 2× 2 dithering and 0.05 for 3× 3. On the
other hand, the position uncertainty is broad as
〈σ(c)R〉 and stdev(σ(c)R) are comparable in size.

The right column in Figure 4 shows that in-
creasing the number of dithers reduces stdev(w);
the width using a 2 × 2 dither grid is at least 50
percent wider than the width when using a 3 × 3
grid. The smaller dispersion is readily apparent
in Figure 5, which shows the full distribution of
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Fig. 2.— Average flux and position uncertainties for the case of random dither patterns. The left column
shows the uncertainties for 2× 2 dithering: 〈σ(f)R〉sky (fig. A), 〈σ(c)R〉sky (fig. C), and 〈σ(c)R〉source (fig.
E). The right column (figs. B, D, F) shows the corresponding relative difference in the average uncertainties
for the 2× 2 and 3× 3 cases as 〈wR〉d2 / 〈wR〉d3 − 1. Each plot in the left column is scaled with its value at
σdiff = 1, a = 2.
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Fig. 3.— The relative difference between the average flux uncertainties when the position of the source is
independently known and when that position is determined in the PSF-photometry fit, 〈σ(f0)R〉 / 〈σ(f)R〉−1.
The left plot (fig. A) is for the 2× 2 dither and the right plot (fig. B) is for the 3× 3 dither.

σ(f)sky for two sample points in the σdiff–a pa-
rameter space.

3.3.2. Random vs. Perfect Dither Pattern

The relative differences between the average pa-
rameter uncertainties when using perfect versus
random dithers, 〈wP 〉 / 〈wR〉−1, are shown in Fig-
ure 6. The dither patterns are equivalent when the
PSF is well-sampled as expected from the discus-
sion in §3.2. When not well-sampled, the differ-
ence in σ(f) when sky-noise dominated is higher
by up to about 2 − 5 percent depending on the
number dithers used, while for the centroid posi-
tion the difference can be up to almost 25 percent.
However, the most interesting observation is that
in some regions perfect dithering has lower aver-
age uncertainties whereas in other regions random
dithering gives lower averages.

The differences between using different patterns
are more pronouncedly manifest in the variances.
Figure 7 shows the logarithm of the ratio between
stdev(wP ) and stdev(wR): the width of the w
distributions are reduced by up to several orders
of magnitude by shifting from random to perfect
dithering.

The full distributions of the parameter uncer-
tainties exhibit the non-Gaussian behavior when
there are coarse pixel scales and/or perfect dither-
ing. Distributions of flux uncertainties σ(f)sky
over random initial pointings are shown in Fig-
ure 5. Shown are two detector diffusion – pixel
scale pairs with similar average flux uncertainty:
(σdiff = 0, a = 4.1) whose ePSF is strongly
dominated by the pixel and (σdiff = 0.83, a =

3.2) that has comparable contributions from each
source of blur. For (0.83, 3.2), the distributions
resemble Gaussians and perfect dithering gives a
low average flux uncertainty with little scatter.
For (0, 4.1), random dithering has lowest aver-
age flux uncertainty and asymmetric distributions;
the perfect dithering case in particular has sharp
edges in the σ(f) distribution with peaks at the
extremes of the range responsible for the narrower
distribution.

A perfect dither pattern has only one inde-
pendent pointing, all pointings are offset by fixed
amounts relative to the first. The random pat-
tern has d × d independent pointings. The larger
possible range of supergrids generated from ran-
dom dithers yields broader distributions for the
Fisher-matrix elements and parameter uncertain-
ties. In addition, the correlated pointings of the
perfect pattern lead to interesting features when
the ePSF is pixel-dominated. Figure 8 shows P 2,
P 2
,x , PP,x and P,xP,y when the ePSF approxi-

mates a top-hat function. The function P 2
,x has

two peaks separated by a pixel length: if a single
pointing in a perfect dither grid happens to have
a non-zero value of ∂(fPαβ)

∂x , the other pointings
are guaranteed to have zero value. This leads to
highly peaked non-Gaussian distributions drawn
from the partial derivatives of the ePSF. On the
other hand, the pointings of a random dither grid
sample the function with no such restriction and
give then smoother distributions.

Moving to a finer dither pattern by going from
2 × 2 to 3 × 3 dithers doesn’t alter the low-
uncertainty side of the distribution, but rather
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Fig. 4.— Square root of the variance of the flux and position uncertainty distributions for the case of random
dither patterns. The left column shows from the top stdev(w) for the 2 × 2 dither: stdev(σ(f)R)sky (fig.
A), stdev(σ(c)R)sky (fig. C), and stdev(σ(c)R)source (fig. E). The right column (figs. B, D, F) shows the
corresponding relative difference in stdev(w) for the 2× 2 and 3× 3 cases as stdev(wR)d2/stdev(wR)d3 − 1.
The plots in the left column are individually scaled with the same factor as in figure 2.
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Fig. 5.— Distributions of σ(f)sky for the two
points in the diffusion–pixel scale space, (0, 4.1)
in the left column (A,C) and (0.83, 3.2) in the
right (B,D). The ePSF is pixel-dominated for the
first point, and has comparable diffraction, diffu-
sion, and pixel contributions for the second point.
The red curve is the distribution when using a
perfect dither pattern and the black is when us-
ing a random pattern. The upper row is for 2× 2
dithering and the lower row is for 3 × 3 dither-
ing. The histograms are based on 105 randomly
realized pointings.

compresses the high-uncertainty side to lower val-
ues. The shifts in the mode and average of the
distributions are subtle, the benefit of going to a
higher number of dither positions comes in exclud-
ing the possibility of extremely poor flux measure-
ments.

3.3.3. “Perfect” Dithering with Gaussian Point-
ing Accuracy

In §3.3.2, it was shown that a perfect dither
pattern outperforms a random pattern in certain
configurations. Practically, a perfect dither grid is
impossible to obtain due to imprecisions in tele-
scope pointing. It is therefore useful to consider a
grid whose pointings are random realizations of an
attempt to target a perfect grid. In the following
analysis the pointing error is taken to be Gaussian-
distributed with standard deviation sG. We ex-
plore how sG degrades perfect dithering up to the
point where pointing error is comparable to the
pixel size and the dither grid effectively becomes
random. Despite the pointing error, the realized
pointings are assumed to be well-determined from
astrometric calibration.

There are at least two ways to model telescope
pointing errors. The first is to have independent
errors for each pointing. The second has each
pointing error applied relative to the previously
realized pointing, as would occur if the grid is re-
alized by applying a series of relative offsets. We
have explored both cases and find that they give
similar results: the following analysis is based on
independent pointing errors.

The degradation in the average measurement
uncertainties from pointing errors are shown in
Figure 9. The figure shows the ratio (〈wG〉 −
〈wP 〉)/(〈wR〉 − 〈wP 〉) as a function of the Gaus-
sian pointing error sG at the noise limits we con-
sider for a 2×2 dither pattern (left column) and a
3×3 dither pattern (right column). It shows those
pixel scales and diffusions where perfect dithering
is better than random: 〈wP 〉 / 〈wR〉 − 1 < −0.01.

For some configurations with 〈wP 〉 / 〈wR〉−1 <
−0.01 there are regions of pointing error where the
curves become negative: slight Gaussian disper-
sion around the perfect dither grid reduces aver-
age parameter uncertainties relative to both per-
fect and random dithering.

For flux and both position uncertainties, a
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Fig. 6.— Relative difference between perfect and random dither patterns in the average parameter uncer-
tainties given by 〈wP 〉 / 〈wR〉 − 1. The three rows from the top correspond to the flux uncertainties in the
sky-noise limit, and position uncertainties in the sky- and source-noise limits: σ(f)sky (figs. A, B), σ(c)sky
(figs. C, D) and σ(c)source (figs. E, F). The left column plots are for the 2 × 2 dither and the right for the
3× 3 dither.
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Fig. 7.— The comparison between the square root of the variances from perfect and random dither pat-
terns. The three rows from the top correspond to the flux uncertainties in the sky-noise limit, and po-
sition uncertainties in the sky- and source-noise limits: log10 (stdev(σ(f)P )/stdev(σ(f)R))sky (figs. A, B),
log10 (stdev(σ(c)P )/stdev(σ(c)R))sky (figs. C, D) and log10 (stdev(σ(c)P )/stdev(σ(c)R))source (figs. E, F).
The left column plots are for the 2× 2 dither and the right for the 3× 3 dither.
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Fig. 8.— Surfaces of four different combinations of ∂(fPαβ)
∂pi

∂(fPαβ)
∂pj

for a = 5 and σdiff = 0. These functions
are sampled by the supergrid in the determination of the Fisher matrix elements using Equation 4. The
combinations in terms of (pi, pj) are A = (f, f), B = (x, x), C = (x, y) and D = (x, f). The equivalent
functions when the ePSF is not pixel-dominated are smooth without sharp peaks.
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Fig. 9.— A comparison of the average parameter determinations between a perfect dither grid and the same
perfect grid with Gaussian pointing errors. Each column shows from the top the ratio (〈wG〉−〈wP 〉)/(〈wR〉−
〈wP 〉), as a function of the Gaussian pointing error sG in units of pixel size: σ(f)sky (figs. A, B), σ(c)sky
(figs. C, D) and σ(c)source (figs. E, F). The left column is for a 2× 2 dither pattern and the right is for 3× 3.
The lines in all the plots are for diffusions and pixel scales where perfect dithering gives average uncertainties
better than 1% versus random dithering.
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pointing precision better than ∼ 0.15a is required
to reduce 〈w〉 to get half of the advantage of a
perfect dither pattern for both 2 × 2 and 3 × 3
dithering.

4. Cosmic Rays

The data from destructive reads from a pixel
that is hit by a cosmic ray in an exposure is ren-
dered useless, resulting in a loss of information and
reducing the accuracy of PSF photometry. This
occurs for two reasons: the integration time of the
contaminated exposure is lost and the loss of a
pixel diminishes the spatial sampling of the source.

Dithering reduces sensitivity to cosmics since
the probability a pixel has a cosmic-ray hit in a
readout falls with the shortened exposure time.
In the low cosmic-flux limit, with low odds that
an individual pixel is hit by multiple cosmic rays,
the hit rate reduces by factor of d × d for each
point in the supergrid. Dithering also increases
the number of pixels that sample the source, so
that subpixel structure can be resolved from the
other pointings.

We introduce a probability pCR that a cosmic
ray hits a pixel using a 1×1 pattern in the total ex-
posure time ttot. Incorporating cosmic-ray hits re-
quires removing random elements in the sum over
pixels in the calculation of the Fisher elements in
Equation 4. (For simplicity, we assume only one
pixel is affected by a cosmic ray.) If exposure times
were the only effect, 〈F 〉 would scale by the proba-
bility that the pixel is not hit pd = 1−pCR/(d×d)
so 〈wCR〉 ≈ 〈w〉 /

√
pd. Deviations from this scal-

ing are due to the loss of spatial information in
fitting the data to the ePSF.

Figure 10 shows a plot of 〈wR,CR〉 / 〈wR〉 − 1
with pCR = 0.1 for 2 × 2 and 3 × 3 dithering.
The first order estimates 1/

√
pd2 − 1 = 0.013 and

1/
√
pd3 − 1 = 0.006 describe the results when the

pixels critically sample the PSF. In this case the
conclusions based on Figures such as 6 and 9 are
still valid, but stdev(w) and 〈w〉 increase. When
undersampled, however, there is a clear degrada-
tion in the average measurements beyond that ac-
counted for by the loss in total exposure time, par-
ticularly in the 2× 2 dither case. When the ePSF
is pixel-dominated, only a small number of pixels
inform the fit (in the extreme case four pixels for
a 2 × 2 dither) so there is a limited draw for the

distribution of realized uncertainties.

5. Conclusions

We have calculated distributions of flux and po-
sition uncertainties of randomly positioned point
sources for a range of ePSF’s and dither strategies.

The flux uncertainties in the sky-noise limit are
dependent on the size of the ePSF. The position
uncertainties in the sky- and source-noise limits
are also dependent on the PSF size but suffer fur-
ther degradation when the PSF is undersampled.
Increased dithering reduces uncertainties only in
regions where the pixel dominates the ePSF, by
only a few percent for flux but sometimes signifi-
cantly for position. Dithering has negligible effect
when the ePSF is over- or critically-sampled.

The variance of the flux uncertainty distribu-
tion is small and constant when the pixel size is
relatively small and increases as the pixel increas-
ingly dominates the ePSF. The increase in vari-
ance is stronger when the PSF is dominated by
diffusion (a Gaussian) as compared to diffraction
dominated (Airy disk). Finer dithering decreases
the overall level of dispersion but maintains the
same relative dependence on pixel size and diffu-
sion width.

Perfect and random dither patterns yield small
differences in the mean of the uncertainty dis-
tributions but can have very different variance.
The full σ(f) distributions for random and perfect
dithering and for undersampled and oversampled
regimes show that random pointings give broad
distributions with a single peak whereas the dis-
tributions for perfect dithering are much narrower,
have multiple peaks, and have sharp edges. The
perfect dithering case produces less variance with-
out the large flux uncertainty realizations that ran-
dom dithering does, but its asymmetric distribu-
tions can have a higher mean. Unlike with image
reconstruction, a uniform dither grid is not neces-
sarily optimal when the pixel dominates the PSF

When a perfect dither pattern gives smaller av-
erage uncertainties, the telescope pointing accu-
racy must be better than ∼ 0.15 the pixel size to
maintain half of its advantage.

For a fixed total exposure time, a large number
of dither pointings reduces the sensitivity to cos-
mic rays by increasing the number of independent
pixel data measurements and reducing the proba-
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bility of a cosmic-hit in each. Additional improve-
ment occurs when the ePSF is pixel-dominated,
as the better sampling of the ePSF also influences
the PSF photometry.
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Fig. 10.— The comparison between the average parameter uncertainties with and without cosmic rays.
The cosmic ray rate corresponds to a 10% chance that a pixel is hit within the total exposure time. The
three rows correspond to the flux uncertainties in the sky-noise limit, and position uncertainties in the sky-
and source-noise limits: 〈wR,CR〉 / 〈wR〉 − 1 respectively for σ(f)sky (figs. A, B), σ(c)sky (figs. C, D) and
σ(c)source (figs. E, F). The left column plots are for the 2× 2 dither and the right for the 3× 3 dither.
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A. Calculation of 〈F 〉

The pixels of an imaging detector map onto a grid of sky positions. The absolute position of the grid
changes with different telescope pointings, though the relative position of the grid points remains the same.
A Fisher matrix element for the PSF photometry of a single visit (Equation 4) is the sum of a function ζ
evaluated at the pixel grid positions for all dither pointings. The absolute pointing of a single exposure,
relative to fiducial position x0, is defined by the offset to the first pointing h and the relative offset g set by
the dither strategy. The Fisher element can be thus written as

F =
∑

α∈{Pointings}

∑
i∈{Pixels}

ζ(xi + h + gα − x0). (A1)

The mean estimate for F over all observations is given by

〈F 〉 =
∫
H(h)dh

∑
α∈{Pointings}

∫
Gα(g)dg

∑
i∈{Pixels}

ζ(xi + h + g − x0) (A2)

H(h) is the PDF for the starting location. Gα(g) are the PDFs of the relative dither positions; for perfect
dithering they are delta functions centered at the dither offset, for the Gaussian pointing uncertainties they
are Gaussian distributions, for random dithers they are a constant.

Due to the periodicity of the (infinite) supergrid and the fact that we take the starting point to be random,
H(h) can be taken as a normalized tophat with area a2. The spacing between pixels is a. Therefore, the
sum over pixels and integral can be combined so that

〈F 〉 =
1
a2

∑
α∈{Pointings}

∫
Gα(g)dg

∫
dxζ(x + g − x0) (A3)

which simplifies to

〈F 〉 =
(
d

a

)2 ∫
dyζ(y) (A4)

for a d×d dither pattern with d2 pointings. The average value of each Fisher matrix element is independent
of the dither pattern G.

Because of symmetry in the setup we have that 〈Ffx〉 = 〈Fxf 〉 = 〈Ffy〉 = 〈Fyf 〉, 〈Fyx〉 = 〈Fxy〉 and
〈Fxx〉 = 〈Fyy〉, this results in four different terms (out of 9)

〈Fff 〉 =
a2t2

d2

∫
P 2

σ2
dx (A5)

〈Fxx〉 =
a2f2t2

d2

∫
P 2
,x

σ2
dx (A6)

〈Fxf 〉 =
fa2t2

d2

∫
PP,x
σ2

dx = 0 (A7)

〈Fxy〉 =
a2f2t2

d2

∫
P,xP,y
σ2

dx = 0 (A8)

where P,i indicates the derivative of P with respect to variable i. The last two terms are zero because we
integrate over the product of an odd and even function. Therefore 〈F 〉 is diagonal with only two different
nonzero terms, which gives a simple expression for the inverse 〈F 〉−1 = 1/ 〈F 〉.
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