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ABSTRACT OF THE THESIS

Fundamental Challenges for Hybrid Electrical/Optical Datacenter
Networks

by

Hamid Hajabdolali Bazzaz

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Amin Vahdat, Chair

Recent research proposals on building hybrid electrical/optical networks as

a way of interconnecting the core layer of a modular datacenter promise reduction

in the cost, deployment complexity as well as energy requirement of large scale

datacenter networks. We summarize our two years of experience in dealing with

such hybrid interconnects. We first show the feasibility of building hybrid networks

under homogeneous environments where one application dominates the workload

through building a completely functional prototype of Helios/c-Through systems.

Then we uncover a number of fundamental challenges and problems, some quite

unexpected, which must be addressed for wide adoption of these proposals in

industry settings under heterogeneous traffic pattern with multi-tenancy. We then

xii



propose a significantly more flexible, fine-grained and responsive way of controlling

such hybrid networks under Observe-Analyze-Act framework which is based on

OpenFlow. Although the complete picture of how to build these networks in

particular the best circuit scheduling algorithm to use is still unclear, but we

show that this framework enables a variety of future solutions to the remaining

challenges.
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Chapter 1

Introduction

The speed of emergence and adoption of diverse Internet services such as

email, search, MapReduce computations, and social networks has been tremendous

over the past few years. Behind-the-scene of a cloud computing service like this is

a datacenter spanned across tens to hundreds of thousands of servers coordinating

together to handle clients requests in a cost-efficient manner. Organizations such

as Google, Facebook and Amazon have already built such huge dateacenters. The

main motivations for building such large-scale cloud computing infrastructures

are for the most efficiency and leveraging economics of scale, i.e., amortizing the

infrastructure cost for running different services over a single cloud computing

infrastructure.

Traditionally, these large datacenter interconnects are built in a three-level

hierarchy of switches (e.g., access, aggregation and core layers). Due to the multi-

ples of 10Gbps upper bound on the speed of traditional Ethernet switch ports as

well as the limited number of ports they have at those high rate, (for instance, at

the time of this writing, Broadcom BCM56840 series has only 64 ports of 10Gbps

[bro10]) the current practice is to introduce an oversubscription ratio at each layer

of this hierarchy [cis07]. In fact, oversubscription ratios as high as 240:1 are not

unheard of in today’s commercial datacenters [GHJ+].

On the other hand, many of the applications running on the cloud need

tremendous concurrent amount of bandwidth to if not all the nodes in the cluster

for sure to considerable portion of them at the same time. For instance, MapRe-

1



2

duce has all-to-all communication pattern in its shuffle phase to move around

the data generated locally on each node to other nodes to prepare for the map

phase. However, given the high oversubscription ratio in current datacenter ar-

chitecture, provision of required bandwidth at such a scale is a significant chal-

lenge. There are quite a few recent research work in networking community to

come up with solutions for this problem. As a result of these efforts, quite a

few SIGCOMM papers proposed new architectures for datacenter using commod-

ity switches which promise full bisection bandwidth across the entire datacenter

[WLL+, AFLV, GHJ+, GWT+, GLL+]. Section 6 overviews these proposals.

However, the huge cost and/or complexity in deployment and maintenance

of these proposals is still a serious barrier for their wide adoption in very large scale

datacenters. For instance, even a relatively small instance of 3456 ports fat-three

needs 6921 long cumbersome cables [FRV09]. Moreover, many consider provision

of full-bisection bandwidth at these scale an overkill because some research studies

show that except for a few outliers, application demands can be generally met by

a slightly oversubscribed network [KPB].

Hence, a reasonable alternative is to provision high bandwidth pipes only

“when” and “where” needed through an additional dynamically reconfigurable

switching fabric. In fact, the modular design of datacenters (also known as Pod-

based design) provides the opportunity to augment the core of the network with

an extra switching infrastructure to connect arbitrary set of Pods to each other

based on the aggregated Pod-level traffic pattern at each time.

Specifically, optical circuit switching is a quite promising technology for

allocating such high speed bandwidth at the scale of a datacenter. The advantage

is that a single optical link can carry multiples of 10Gbps at low monetary cost.

On the other hand, the drawback is that optical switches are circuit-based and

they can not exploit statistical multiplexing similar to electrical packet switches.

Hence, all traffic coming to the optical switch from a certain port are forwarded

over a single output port and there is a “switching delay” for changing the input-

to-output ports mapping of the switch. This circuit switching based forwarding

introduces a new set of challenges specifically on when to change the topology of
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Figure 1.1: The hybrid electrical/optical switch architecture

the circuit switches and how to determine the new topology. In addition to this, as

the rest of the network is built out of packet switches, unifying these two different

technologies to build a hybrid electrical/optical network is also a challenge.

This thesis is a summary of our experience in dealing with these hybrid

networks over a period of almost two years. We describe the problems we faced in

building a fully-functional prototype of these hybrid interconnects as well as the

solutions we came up with and possible future works in this space.

1.1 Hybrid architecture

Figure 1.1 shows a small instance of a hybrid electrical/optical network

which is a two-level multi-rooted tree of Pod and core switches. Core switches

can be either electrical packet switches or optical circuit switches; the idea is

that the strengths of one type of switch compensate for the weaknesses of the

other type. The circuit-switched portion handles baseline, slowly changing inter-

Pod communication whereas the packet-switched portion is best suited for the

bursty portion of inter-Pod communication. The optimal mix is a trade off of cost,

power consumption, complexity, and performance for a given set of workloads. In

Figure 1.1, each Pod has a number of hosts connected to it by short copper links.

The Pod switch contains a number of optical transceivers (labeled T) to connect
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to the core switching array. In this example, half of the uplinks from each Pod

are connected to packet switches, each of which also requires an optical transceiver

whereas no transceiver is required on the circuit switch side which is itself another

advantage of using optical circuit switches. It is important to notice that the

topology of the packet-switched portion of the interconnect is the same and the

flows share the links in a statistical multiplexing fashion. However, the topology of

the circuit-switched part of the network is dynamic in the sense that there needs

to be a controller software to determine the input-to-output ports mapping of each

individual core circuit switch over time based on the workload.

This flexible design comes with a set of challenges which needs to be ad-

dressed to make it a feasible solution. In the next section, we overview some of

these high-level challenges.

1.2 Hybrid networks challenges

Although hybrid networks are promising in reducing cost and energy re-

quirements, there are a set of issues in building these networks. Specifically, the

traditional electrical switches are packet-switched whereas the optical switches are

circuit-switched. This main paradigm difference perhaps is the root of most of the

challenges in unifying these two technologies. In the following we enumerate these

challenges:

• Performance: There is an overhead associated with changing the topology

of a circuit switch. Although theoretically free-space MEMS circuit switches

should be able to achieve switching times as low as a few milliseconds [Edd01],

in practice the current switching time in available circuit switches is in range

of (10,25)ms. For instance, see [gli]. In a datacenter setting where the traffic

workload might change in the aggressive order of a few milliseconds (e.g.,

based on [KSG+09] half of the flows in a datacenter has a duration of as low

as only 10ms), this long circuit switching time results in significantly poor

performance. So, the main challenge here is how to deal with this switching

delay. Also whether this design is well-suited only for stable workloads or
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is there a way to deploy these interconnects under any traffic pattern? To

this end, to use these hybrid networks “in the wild”, the system should not

get stalled in a rapidly changing workload where there is no considerable

stability in the traffic pattern.

• Hardware: Not only the circuit-switched portion of the hybrid network needs

to be configured in the scale of every few milliseconds, depending to the

traffic pattern, but also other underlying hardware components needs to be

reconfigured at such a short time-scale. This in particular includes the Pod

switches which should be notified of the change in the destination of their

circuit uplinks. This change in turn needs to be reflected in Pods forwarding

table quickly.

• Scheduling circuits: A software component needs to be in charge of deter-

mining the circuit switches topology. The underlying scheduling objectives

and algorithms are interesting challenging research problems. Specifically,

when and how to change the topology are the main questions to explore. It

is important for the scheduling algorithm to avoid needless reconfiguration

of the topology due to the performance overhead each reconfiguration event

incurs.

• Applications and the system interaction: Among the challenges in hybrid

networks is the interaction between the applications and the controlling logic

of the hybrid networks. Specifically, it is non-obvious and unstudied how

different applications would perform under such an environment and how

could they effect the scheduling of the system. For instance, what happens

if part of the traffic of an application goes over the high speed circuit links

and the rest over the packet switch network? How would that impact the

progress of different applications? On the other hand, how could different

applications impact the scheduling decisions made by the system? Are there

any applications which could mislead the system to get into “bad scheduling

decisions” and decrease the overall performance of the system?

• Multi-tenancy: How should the system perform when there are multiple
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applications with different quality of service requirements? For instance, one

application might need high speed and better be suited for the circuits path

whereas another might need short latency and better to be forwarded over

the packet network. Specially in a large cloud computing system applications

might have huge differences in performance and QoS requirements. It is

then a significant challenge to differentiate between these applications and

also make scheduling decisions accordingly. We might also want to have the

ability of making scheduling decisions at the granularity of each individual

flow or per applications flows.

1.3 Thesis overview

This thesis is a summary of the experiences we earned over a period of

almost two years in dealing with hybrid networks. In this chapter we gave an

overview of the trends in datacenter networks architectures and explained why we

believe using a hybrid electrical/optical solution is promising in this space. We

then discussed the main challenges in building such an efficient hybrid network. In

the rest of this thesis we give an overview of our first proposal in this space, Helios

[FPR+10]. We also describe a very similar research effort, c-Through [WAK+10]

which was proposed independently though in parallel with Helios. We then perform

a comprehensive evaluation of these two systems under different scenarios. These

evaluations base the rest of our research effort. Specifically, we get to realize

(1) how the design differences in Helios/c-Through make these systems behave

differently (2) what are possible scenarios in which these two systems may fail?

(3) going beyond the last item, we realize what are underlying assumptions that

these systems which might not be always correct (4) we then discuss at a higher

layer and propose a new general framework which we denote as Observe-Analyze-

Act which is better suited for managing hybrid networks (5) we also argue that

a finer-grained control over the forwarding decision at the granularity of flows is

needed to avoid some of the issues we observe in our experimental results (6) we

provide an initial evaluation of our new proposed framework and show that it
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outperforms Helios/c-Through and is more flexible, finer-grained and responsive

for dealing with hybrid networks.

1.4 Organization of the rest of thesis

The rest of this thesis is structured as follows:

• Chapter 2 provides a short overview of the Helios/c-Through research efforts

and a concrete set of evaluation results of different aspects of these systems

such as bisection bandwidth, number of circuit flapping events, etc. We also

provide certain experiment scenarios to pronounce the weakness of these

systems.

• Chapter 3 discusses our evaluation results in detail and argues what are the

main assumptions these systems are taking which lead into these inefficient

behaviors under particular workloads. We then articulate the fundamental

requirements for hybrid interconnects to get around such scenarios. We end

this chapter by proposing an Observe-Analyze-Act framework which satisfies

these requirements.

• Chapter 4 describes in detail the architecture and design of our prototype,

this includes the software components of our system as well as the design

decisions made and the reasons.

• Chapter 5 provides an initial evaluation of OpenFlow based framework to

show the functionalists achievable through this design which are not feasi-

ble in Helios/c-Through systems. We also show the effectiveness of Traffic

Analyzer component which is proposed for handling scheduling problems in

certain workloads.

• Chapter 6 explores related works in particular domains this thesis contributes

to.

• Chapter 7 concludes this thesis by summarizing the lesson earned and po-

tential future research works in this area.
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• Chapter A is an appendix Chapter which shows the results of some related

experiments we performed and some tools we developed throughout this the-

sis. As these are not directly connected to the main story of the thesis, we

decide to present them as an appendix chapter.



Chapter 2

Helios/c-Through overview and

evaluation

Helios and c-Through [FPR+10, WAK+10] are the first research efforts

which propose a hybrid electrical/optical network for modular datacenters which

were published in SIGCOMM’10. In this section, we describe how these systems

work. Our main focus here is the underlying mechanism and control plane. We

then provide a comprehensive evaluation of these systems under different artificial

and real traffic patterns to study their strengths and weaknesses.

2.1 Overview

Both Helios/c-Through have a logically centralized potentially physically

distributed controller software component, called Topology Manager, which is in

charge of managing the whole system. We save a thorough software architecture

description for next chapters of this thesis. So, instead at this point we provide

a high level sketch of how these systems work. These systems starts off with an

initialization phase in which the Topology Manager establishes a control connection

to different components in the system for the most Pods and circuit switches. After

this, there is a control loop which is executed forever.

The objective of the control loop is very simple. Given the hybrid network

in Figure 1.1, the goal is to maximize the amount of traffic which gets forwarded

9
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over the circuit network. The intuition behind this is that as reconfiguring the

topology of each of the circuit switches is expensive (e.g., has switching delay),

it is reasonable to use these paths for long-lived aggregated traffic. As such, the

control loop performs a series of operations in each control cycle to handle this

objective. Specifically, the control loop starts by collecting traffic statistics from

Pods/end-hosts (more detail coming). These statistics are then used to build a

Pod-level traffic matrix. Then, both systems use this instantaneous snapshot of

traffic to maximize circuits throughput. That is, given this traffic matrix, what

topology should be used to maximize the traffic for the circuit switches. To this

end, Edmonds matching algorithm [Edm65] is used for finding such an optimal

topology over the next cycle. None of these systems by default incorporate history

or state for sake of this scheduling. Once the next topology is determined, the

Topology Manager communicates with Pods as well as circuit switches and notifies

the new topology to them. And then it iterates over the same loop on and on

possibly after a short period of sleep at the end of each cycle to decrease the

circuit switching rate and hence the overall overhead of circuit switching.

2.1.1 Hardware and topology

We use some of the SEED cluster servers for building our prototype. The

SEED project is an NSF-funded research platform at UC San Diego hosted in the

CallIT2 building (see [SEE] for more information). Our prototype (Figure 2.1)

consists of 24 servers, one Glimmerglass 64-port optical circuit switch, three Ful-

crum Monaco 24-port 10 GigE packet switches, and one Dell 48- port GigE packet

switch for control traffic and out-of-band provisioning (not shown). The 24 hosts

are HP ProLiant DL380 rackmount servers, each with two quad-core Intel Xeon

E5520 Nehalem 2.26 GHz processors, 24 GB of DDR3-1066 RAM, and a Myricom

dual-port 10 GigE NIC. They run Debian Linux with kernel version 2.6.32.8. The

64-port Glimmerglass crossbar optical circuit switch is partitioned into 5 virtual

4-port circuit switches, which are reconfigured at run-time by Topology Manager.

The Monaco packet switch is a programmable Linux PowerPC-based platform uses

an FM4224 ASIC for the fast path. We partitioned two Monaco switches into two
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Figure 2.1: The hardware architecture of our prototype with 24 servers, 5 core
circuit switches and 1 core packet switch

12-port virtual pod switches each, with 6 downlinks to hosts, 1 uplink to a core

packet switch, and 5 uplinks to core circuit switches. We used four ports of a

third Monaco switch as the core packet switch. These virtualizations allowed us

to construct a more balanced prototype with less hardware. Note that our testbed

also has some equipment for supporting wavelength division multiplexing (WDM)

[MG02] technology which allows a single fiber to carry several parallel channels of

10Gbps. However, the WDM discussion is out of scope of this thesis. See [FPR+10]

for related material.

In addition, as our switches do not support traffic-shaping, for slowing down

the core packet switch in some experiments, we dedicate two of the servers in each

Pod to generate a CBR UDP flow of rate 2.5Gbps. This slows the core packet

switch network down to 5Gbps. This is done to introduce bandwidth difference

between an upstream circuit to a certain Pod vs. the core packet switch path to

the same Pod.

2.1.2 Helios vs. c-Through logic

Although Helios and c-Through use the same underlying design. They use

different sources for estimating the network demand. Helios uses Hedera [AFRR+]
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Figure 2.2: A sample illustration of circuit scheduling approach with 4 Pods

demand estimation technique which uses flow counters as observed by the Pods

to estimate the demand whereas c-Through uses the socket buffer occupancy as

observed by individual end-hosts to estimate the demand (more detail in Section

4.6). However, both of these systems after estimating the demand, use identical

algorithm to decide the next topology to configure the core circuit switches as

well as the Pod switches with. Although, it might seem like these two systems

are equivalent or should behave totally the same, it is not the case. We reveal

this through a comprehensive comparison-based evaluation of these systems in

Section 2.2.

2.1.3 Scheduling circuits

Helios and c-Through both use a greedy approach for scheduling the circuit

switches in which the optimization is done based on the instantaneous snapshot of

the traffic matrix. Specifically, after the traffic matrix is built based on the source

of demand in each of these systems, the circuit switches are scheduled in such a

way that the total amount of traffic which traverse the circuits are maximized. We

formulate scheduling each circuit switch as an instance of a matching problem in

a bipartite graph as follows.

We build a bipartite graph with two sets of vertexes; an ingress set and an

egress set. For each Pod, we place a node in each of these sets. We then connect

the nodes in these two sets together with a weighted edge. The weight of each

edge is the minimum of the bandwidth of demand from the ingress Pod (source)

to the egress Pod (destination) and the capacity of the circuit uplinks (which is

10Gbps). The configuration which maximizes the demand through this circuit
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switch corresponds to a maximum matching in this bipartite graph. The reason

for this is that the sum of weights of the edges which are selected as the solution

to the matching problem corresponds to the maximum bandwidth which can be

forwarded over this circuit switch.

Once the optimal mapping for a circuit switch is found. We update the de-

mand matrix by reducing the capacity which is already provisioned in the previous

circuit switch. We then move forward with scheduling the next circuit switch with

the updated traffic matrix. Figure 2.2 shows a step by step run of our scheduling

algorithm over 3 circuit switches for a certain demand matrix.

It is important to realize that we schedule the circuits unidirectionally which

means, if there is a circuit from Pod i to j, there might or might not exist a circuit

from Pod j to i. The reason to perform this unidirectional scheduling is that the

optimal solution is not necessarily bidirectional.

There are different algorithms for solving the maximum weighted matching

problem. We chose Edmonds’s matching algorithm [Edm65] which run in O(V 3)

for general graphs but there might exists faster algorithm for the bipartite graphs.

We decide to not explore this space more as firstly the Edmonds’s algorithm is

fast enough for our prototype which just has four Pods and secondly as we find an

available Edmonds library [edm] which we could use for implementing our circuit

scheduler.

2.2 Helios vs. c-Through evaluation

Although Helios and c-Though use a similar control loop and optimization

objective for scheduling the circuits, they use a completely different approach for

estimating the demand matrix. Helios uses the Hedera demand estimator which

takes as input the observed Pod-level traffic matrix whereas c-Through uses the

buffer occupancy as observed by the end-hosts. We perform a series of experiments

to understand the differences between these two systems and study the pros and

cons of each of these approaches. This section provides a summary of the results

of these experiments.
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2.2.1 Experimental setup

We use four Pods each with three servers resulting in a total of 12 servers.

There is 5 core circuit switches with one pair of links (uplink and downlink) to each

Pod. The performance metric we focus on is the bisection bandwidth which has an

absolute maximum of 120 Gbps if all the circuits get totally utilized. Although as

we see below the maximum ideal bisection bandwidth in practice is less than that

(more on this later). We vary the traffic pattern to be either Pod-level stride or

all-to-all. In the case of Pod-level stride there are 8 different stages where in stage

0 ≤ i ≤ 7 Pod number p sends to Pod number (p+ i+ 1)%4. In the case of all-to-

all pattern, each host sends to any other hosts throughout the entire experiment

period.

We perform three different experiment settings: 1) Helios 2) c-Through 3)

ideal case which is done over a non-blocking Cisco Nexus 520 network that all the

servers are connected to through a separate interface.

In addition to this we vary the α parameter for determining the band-

width of each flow for the case of Helios and study its effect. This parame-

ter determines the damping factor of the Exponentially Weighted Moving Av-

erage (EWMA) [ewm] schema which Helios uses for calculating the rate of flows

based on past history. Specifically, if rf denotes the rate of flow f , then rnewf =

αrmeasured
f + (1−α)roldf . Thus, the smaller the damping factor α is the more value

is given to the past rate of the flow in estimating its future rate. The default is to

set α = 1 which takes into account no history.

For the case of c-Through one parameter of interest is the socket buffer size

which we vary on all of the servers from the default value (4MB) to 100MB. In

a Linux operating system the following sysctl (Figure 2.3) can be used for this

purpose:

 

/sbin/sysctl -w net.core.wmem_max=100000000
/sbin/sysctl -w net.core.wmem_default=100000000
/sbin/sysctl -w net.ipv4.tcp_wmem="4096 100000000 100000000"

 
 
 

Figure 2.3: Sysctl to change the socket buffer size for c-Through
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Figure 2.4: Bisection bandwidth of Helios, c-Through and ideal case with Pod-
level stride traffic pattern. In this case, the average bisection bandwidth for Helios,
c-Through and ideal case is 87Gbps, 89Gbps, 107Gbps, respectively.

2.2.2 Results for the Pod-level stride traffic

Figures 2.4 shows the bisection bandwidth for Helios, c-Through and the

ideal case for the Pod-level stride overlaid on a single graph. The ideal bisec-

tion bandwidth over time corresponds to the performance of a non-blocking Cisco

switch to which all of our servers are connected through a separate interface. We

make a few observations. Although the maximum ideal bisection bandwidth is

120Gbps (12 servers each sending at 10Gps), however the achieved performance

over the Cisco switch is always less 110Gbps. This is due to TCP congestion control

algorithm which changes the rate of each flow individually and dynamically result-

ing in not completely utilizing the available bandwidth of the links. As seen in

the figure, Helios and c-Through perform quite similar in terms of bisection band-

width in this case and both compared to the ideal case are off by around 15Gbps
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on average. The deep gaps in the graphs associate with the circuit reconfiguration

events. This also explains why the maximum bisection bandwidth during these

events is 40Gbps. The reason for this is that once the circuits are being reconfig-

ured the only available paths across Pods are those of the core circuit switch which

has one 10Gbps link to each of the Pods; resulting in a total of 40Gbps bisection

bandwidth. Another point to notice is that the bisection bandwidth achieved at

each different stage of the Pod-level traffic pattern is different. This is due to the

hashing effect. At each stage different set of flows are hashed over different up-

stream circuit uplinks resulting in different bisection bandwidth. So, this in fact

is an instance of problems with hashing which we discuss in Section 2.5.

2.2.3 Results for the all-to-all traffic pattern

Figure 2.5 depicts the bisection bandwidth over time for Helios, c-Though

and the ideal case for the all-to-all traffic pattern. There are a few interesting points

to notice. First that the ideal case performs very similar to the case of Pod-level

traffic which is reasonable given the non-blocking nature of the Cisco switch. On

the other hand, c-Through achieved bisection bandwidth is fairly stable (around

82Gbps on average). The reason for this is that as there is traffic from each Pod to

every other Pods, the aggregated Pod level socket buffer occupancy across different

Pods is very similar, as a result the number of circuit reconfiguration events is very

low (a total of 14 in this case). On the other hand, Helios which uses the momentary

flow rates as the source of demand estimation ends up changing the circuits too

often (128 times) resulting in a significantly low bisection bandwidth. The reason

is that the instantaneous flows rate is changing rapidly at the short period scale

of the control loop (around 200ms). However, if flows rate is estimated over a

longer time period they would seem more stable. This is exactly what happens

when we use different α values for estimating the flows rate. Figure 2.6 shows the

bisection bandwidth for α being 1, 0.8 and 0.6, respectively. It is observed that

as α decreases (the past rate of the flow is more valued in estimating its rate)

the oscillation in the bisection bandwidth reduces as well. To this end, α = 0.6

completely smooths out the unnecessary flapping events and achieves a bisection
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Figure 2.5: Helios, c-Through and ideal bisection bandwidth over time with all-
to-all traffic pattern. c-Through and ideal case achieve a fairly stable bisection
bandwidth of around 82Gbps and 112Gbps, respectively whereas Helios reconfig-
ures the topology too often getting only an average of 61Gbps.

bandwidth of 110Gbps which is completely close to the ideal case.

We also study the impact of the socket buffer size on the performance of

c-Through. Figures 2.7 shows the bisection bandwidth for c-Through when the

buffer size is set to 4MB and 100MB (overlaid). In these cases, as seen in the

figure the achieved bisection bandwidth match up closely and we don’t see much

differences in the bisection bandwidth (82Gbps vs. 81Gbps). However, we realize

that the number of circuit flapping events reduces from 14 to 5 as we increase the

buffer size. The reason for this is that as the socket buffer size increases there is

more stability in the Pod-level traffic matrix which in turn reduces the number of

circuit flapping events.
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Figure 2.6: Helios bisection bandwidth over time with all-to-all traffic pattern
with three different EWMA α parameter (1, 0.8, and 0.6) for flows rate estimation.

2.2.4 Summary of the comparison experiments results

Tables 2.1 and 2.2 summarize the results of the Pod-level and all-to-all

traffic patterns for Helios, c-Through as well as the ideal case. Largely speaking

Helios and c-Through perform very similar in terms of achieved bisection band-

width. However, c-Through is more stable by nature and does less unnecessary

circuit flapping. We however observe that using EWMA technique for estimat-

ing the rate of individual flows is quite promising for Helios/Hedera system. In

particular, it stablizes the demand estimation and reduces the number of circuit

reconfiguration events.
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Figure 2.7: c-Through bisection bandwidth over time with all-to-all traffic pattern
for the TCP socket buffer occupancy size of 4MB and 100MB

2.3 Mixed workload (TritonSort plus background

traffic)

We next consider using a mixed workload which consists of TritonSort

[RPC+11] plus some background traffic over Helios network. There are multi-

ple reasons to pick TritonSort as the main application in this case. First it can

drive network bandwidth much faster than what other applications such as Hadoop

Sort job does over our testbed (See Appendix A.1). Second, it is a balanced system

and it makes progress only at the speed of its lowest flow. Due to this allocating

circuits with higher bandwidth to only some of its flows, will not improve the over-

all performance as TritonSort would be bottlenecked by the slower flows which

are being forwarded over the packet network. This results in a situation where

circuits extra bandwidth are wasted. Specifically, we would like to study such a
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Table 2.1: Average bisection bandwidth and number of circuit reconfiguration

events for the Pod-level traffic pattern experiments

Experiment Avg. bisection bandwidth # Circuit change events

Helios α = 1 87Gbps 23

c-Through 4MB 89Gbps 15

ideal 107Gbps –

Table 2.2: Average bisection bandwidth and number of circuit reconfiguration

events for the all-to-all traffic pattern experiments

Experiment Avg. bisection bandwidth # Circuit change events

Helios α = 1 61Gbps 128

Helios α = 0.8 98Gbps 36

Helios α = 0.6 110Gbps 5

c-Through 4MB 82Gbps 14

c-Through 100MB 81Gbps 5

ideal 112Gbps –

scenario and see how is the performance of the application over the Helios network

compared to that of a non-blocking switch.

The experiment setting is that there is one core packet switch with 5Gbps

links and a core circuit switch with 10Gbps links. TritonSort is run over three Pods,

specifically Pod0, Pod2 and Pod3. We also run a long lived background TCP flow

from a host in Pod1 to another in Pod2 (different from hosts running TritonSort).

This TCP flow competes with TritonSort for the only circuit link available from

Pod1 to Pod2 and the output of the scheduler is such that it gives the circuit to

this flow in case of ties. Figure 2.8 shows the duration of completion time of this

experiment for three different scenarios: (1) over a non-blocking 10Gbps switch

(2) over Helios network without any background traffic (3) over Helios network

with this background TCP flow. It is observed that the first and second cases

are mostly identical and TritonSort performs well over Helios network without any

background traffic. However, in the presence of a background competing flow the
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Figure 2.8: The duration of a 900GB sort over ideal nonblocking switch, Helios
and Helios with a background flow

duration of the sort is much longer. In fact, in this case the duration can increase

by as high as 69 percent of the ideal case. This is due to the balanced nature of the

TritonSort system. As such, although circuits are allocated to part of its traffic,

because the rest is forwarded over the slower packet network, the entire system is

slowed down.

This experiment makes the case for the necessity of a more complex schedul-

ing mechanism in such hybrid networks. In particular, the only way to not get

stuck into such a sub-optimal circuit scheduling solution in mixed workloads like

this is that the scheduling procedure would figure out the dependencies across flows

in the system and assign circuits such that either all dependent flows are forwarded

over circuit paths or all over the packet network. We discuss this in more detail in

Section 3.

2.4 Demand estimation challenges

Estimating demand at a scale of a datacenter is a really challenging prob-

lem. Alfares et al. propose Hedera system [AFRR+] which generally improves

the bisection bandwidth through estimating the actual demand (as opposed to the
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observed traffic matrix) of each individual server in the cluster. Helios uses this ap-

proach for estimating Pod-level demand but as we see in this section, applying this

technique in such a hybrid network might lead into suboptimal circuit scheduling

decisions.

The main idea behind Hedera is to figure out the maximum bandwidth

each flow could saturate if it was routed over a path with infinite capacity and

then to schedule flows over the available paths with objective of increasing the

bisection bandwidth. As Hedera assumes that the bottleneck in the bandwidth

is the network not the application (i.e., an application is willing to send as fast

as the NIC rate), it might overestimate the rate of a flow. The drawback of this

overestimation in hybrid interconnects like Helios/c-Through is that if that flow

is a bursty traffic with an on-off pattern, it could potentially lead to frequent

reconfiguration events as the estimated demand is the major input for the circuit

scheduling component.

Consider the following experiment setup. There is one circuit switch and

one packet switch. Suppose the traffic load for Pod1 consists of a long lasting

flow to Pod0 and a bursty traffic with certain on and off period to Pod2. Each of

these two flows in Pod1 are sourcing from a separate node. In this case, Hedera

estimates the rate of each follow to be 10Gbps which is the rate of the end-hosts

NIC. However in practice a bursty follow with an on/off pattern doesn’t necessarily

take up to 10Gbps. By overestimating the rate of the bursty flow to 10Gbps, the

long lasting flow and the bursty one compete in getting the only single circuit of

Pod1. And if the on/off period of the bursty flow is short, the circuit could get

reconfigured forever. In the following we discuss the results for this experiment

with and without Hedera demand estimator.

Figure 2.9 shows the throughput of Pod1 circuit and packet switch when

the observed traffic matrix is used for the input into the scheduling algorithm. This

graph is generated with the Monaco ports logger script (see Section 2.6.1 for the

description of this script). In this experiment, the bursty flow has an on period of

10ms and an off period of 2sec. In addition, the long lasting flow is an iperf TCP

flow and the bursty flow is generated using the bursty load generator (Section 2.6.2
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Figure 2.9: The throughput of Pod0 packet switch and circuit switch links when
natural demand is used for scheduling the circuits.

describes this tool). As seen in the graph, the circuit link is completely utilized

and there is no flapping event. The bandwidth ticks over the packet switch link

corresponds to the bursty traffic and the steady traffic over the circuit link is for

the long lasting flow. On the other hand, Figure 2.10 shows the throughput Hedera

achieves for the same experiment. Here, the bursty traffic demand is estimated to

10Gbps which then competes for getting the circuit. In this case, there is 67 circuit

flapping events whereas using the observed traffic as the source of scheduling does

not change the circuits at all. We realize through increasing the on period of the

bursty traffic that the same trend continues to happen till on periods of around

60ms. Once the on period is bigger than 60ms even using observed traffic matrix

results in some circuit flapping. The reason for this is that in this case sometimes

the observed rate of the bursty traffic is close to the rate of the long lasting flow

which would result in circuit flapping (Note that the experiment scenario is built
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Figure 2.10: The throughput of Pod0 packet switch and circuit switch links when
Hedera is used for scheduling the circuits.

in such a way that the scheduler assigns the circuit to the bursty flow in case of

ties). As the on period of the bursty traffic increases the number of circuit flapping

events increases dramatically, resulting in much worse performance. For instance,

Figure 2.11 shows the throughput for cases where on period equals to 80ms and

1sec. There is 18 circuit flapping events in the first case and 54 in the later. The

reason that there is so many circuit flapping in the later case is that the bursty

traffic is getting totally competitive rates to that of the long lasting flow. As the

flows rate oscillate up/down each other too many circuit flapping events occurs.

Figure 2.12, 2.13 and 2.14 show a summary of the impact of the bursty traffic

for Helios and c-Through for different on period of the bursty flow from 1ms up to

2000ms. Specifically, Figure 2.12 depicts the normalized number of circuit flapping

events as the on period of the bursty flow increases. It is interesting that c-Through

is less sensitive to bursts of on period of less than 40ms. The reason for this is that
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(a) (b)

Figure 2.11: The throughput of the Pod1 circuit and packet switch links when
natural demand is used for scheduling with a background burst flow with on period
of (a) 80ms (b) 1sec.

c-Through uses socket buffer occupancy information to make scheduling decisions

and for short on periods the socket buffer occupancy value is quite negligible if not

zero. Overall, the impact is more pronounced in the Helios due to using the Hedera

demand estimator. It is also obvious that increasing the on period, augments the

number of circuit flapping events as both the rate of the flow and socket buffer

occupancy values would get increased.

Figure 2.13 shows the average throughput the long lasting flow can get under

different values of the on period. Apparently, increasing the on period decreases

the throughput the long lasting flow gets due to circuit being stolen by the bursty

flow. Moreover, all the variation in the rate the flow faces over each circuit flapping

event is another reason for this decreasing trend. Ideally the throughput that this

flow can get at each time is either close to 10Gbps if being routed over the circuit

link or 5Gbps if being forwarded over the packet switch link. This explains why

the throughput of the flow changes from 10Gbps to 5Gbps as the burst duration

increases.

Moreover, Figure 2.14 shows the throughput of the circuit link in both

systems. As the duration of the bursty traffic increases the utilization of the circuit

initially decreases. However, the utilization starts to increase at burst duration of
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Figure 2.12: Number of circuit reconfiguration events for different burst duration

1000ms. The reason for the initial decreasing trend is that the circuit is assigned

to the burst traffic which can not utilize it completely. Furthermore, circuits get

reconfigured only after every completion of the control loop cycle. As such, bursts

smaller than the control loop will cause the circuit to be under utilized for that

part of the control loop cycle. As the duration of the bursty traffic increases, it

sends more traffic over the circuit allocated for it and the overall utilization of the

circuit increases as well.

2.5 Hashing effects

Multi-path routing is being increasingly used in datacenter networks for re-

liability and performance reasons. When there are several equal-cost paths avail-

able, the upstream port for each flow is determined by hashing different fields of

the flow header. This hashing which is implemented in either hardware or software

is done to ensure that the packets of each flow take the same end-to-end path to
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Figure 2.13: The average throughput the long lasting flow gets as the duration
of the background bursty flow increases.

avoid TCP re-ordering issues. Although, this hash-based loadbalancing approach

has shown to work well when the number of flows is large, but there is no guar-

antee of fairness or optimal performance under all workloads. Here we present a

few experiments to present the hashing issues we have observed over the course of

building Helios prototype. Specifically, in a workload where most of the flows are

mice (small) with only a few elephant flows, hashing uniformly across the entire

set of flows can result in elephants flow receiving too little bandwidth. We study

this setting through the following experiments scenario.

There are 4 circuits from Pod0 to Pod1 and 4 hosts in Pod0 are sending

traffic to 4 hosts in Pod1. Specifically, each host in Pod0 has a number of flows

to one of the hosts in Pod1. We increase the number of flows and measure the

throughput of the circuits. Figure 2.15 shows the throughput gained on the hosts

in an experiment where there is 1 flow between every pair of hosts. As seen in
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Figure 2.14: The throughput of the circuit link

the figure, two of the hosts get unlucky and their flows are hashed into the same

output port and as a result each can on-average send only at 5Gbps, i.e., at half of

the two other flows rate. This results in both low performance and lack of fairness.

We repeat the same experiment setting increasing the number of flows to

16 in total (each host sourcing 4 flows). Figure 2.16 shows the throughput over

each of the 4 circuits across the two Pods. From these 16 flows, 4 are hashed into

circuit0 and 4 into circuit1. However, 5 flows get hashed into circuit2 and only 3

to circuit3. And because each flow is rate-limited by the end-host link to 2.5Gbps,

this scenario leads to a very unfair situation. Although, both circuit0 and circuit1

are fully utilized to 10Gbps but circuit3 is only utilized by around 7.5Gbps and

circuit2 oscillates too much above and below 9Gbps. This undesirable differences

in utilization of circuit links comes down to the unpredictability and randomness

of the hashing function.
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Figure 2.15: Throughput of 4 flows which are hashed over 4 circuit uplinks. Two
of the flows are hashed over the same circuit, each only getting 5Gbps.

We then increase the number of flows to 64 in total (16 flow from each

host). Figure 2.17 shows the circuits throughput in this case. The hashing effect

is less pronounced and all the 4 circuits are being used almost at their maximum

rate. This is expected because as we add more flows, the flows are more uniformly

distributed from a statistical perspective and this should remove the drawbacks of

imbalanced hashing.

2.6 Auxiliary components

This section provides a short document on some of the major tools which

we developed throughout the duration of this thesis for the purpose of running and

debugging experiments.

2.6.1 Monaco ports logger

The Monaco ports logger script is a tool which logs the TX/RX rate of each

of the ports of the Monaco switches in a file throughout the duration of an ex-

periment. This is used for capturing the throughput of Pods links and generating

graphs such as Figure 2.11. For doing this the script pulls the TX/RX counters of

each of the ports of the Monaco switches every certain milliseconds by a remote
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Figure 2.16: Hashing effects for 4 circuit uplinks that 16 flows are hashed over.
Due to randomness of the hashing function the circuits are not utilized fairly.

procedure call and calculates the traffic rate (the difference between the new coun-

ters and last ones divided by the time interval associated with each counter) over

each of the Moncao ports.

This tool which is written in Python was developed to observe the traffic

rate over the optical fiber links, however as each of the end hosts are also connected

to the Monaco switches we could also capture the end hosts traffic rate using this

tool. Another tools was written to parse the log file of this script and generate

different graphs of end hosts and circuit switches TX/RX. Figure 2.18 shows the

usage of this script.
 
 

Usage: log_monaco_ports_rate.py <superman config> <log dir> [options]
Options:
  -h, --help
    Show this help message and exit.
  -p PERIOD, --period=PERIOD
    The period of logging in msec. The default is every 200 msec.
  -d DURATION, --duration=DURATION
    The duration of running the script in sec. The default is to run forever.
  -w, --wait
    Waits for a signal on port 5000 to start logging.
  -v, --verbose
    Show verbose output.

 
 Figure 2.18: The Monaco port logger script
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Figure 2.17: Hashing effect is less pronounced when 64 flows are hashed over 4
circuit uplinks. The figure shows the throughput of each of the circuits which is
almost 10Gbps.

2.6.2 Bursty load generator

The bursty load generator tool is a typical TCP client-server socket program

written in C which is used in different experiments such as the one in Section 2.4.

This tool generates background bursty traffic of desired on and off period. The

server should be running before the client and then the client should get started

by passing the IP address of the server. The client once started makes a TCP

connection to the server. Then the server starts a timer to switch between on

and off periods. Over the on cycles the server side sends data over the established

socket channel which the client side acknowledges. Over the off periods no data is

being transmitted. Figure 2.19 shows the usage of the bursty load generator tool.

 

Usage: bursty-loadgen
Options include:
  -c <server ip> for the client mode
  -s to run in the server mode (default)
  -d to set the duration in seconds (the default is to run forever)
  -n to set the on duration in mseconds (the default is 500)
  -f to set the off duration in mseconds (the default is 500)
  -v to set verbosity level [0,3]

 
 
 

Figure 2.19: The bursty load generator tool



Chapter 3

Discussion; the

Observe-Analyze-Act framework

In this chapter we first discuss about the origin of the problems we ob-

served in Helios/c-Through evaluation in Chapter 2. In particular, we articulate

three separate lists which summarize our experiences: (1) deep assumptions that

Helios/c-Through systems in particular hold which cause them to end-up in a

sub-optimal solution in certain workloads. (2) fundamental challenges in build-

ing hybrid networks in general (3) software-engineering challenges in our specific

prototype. We then argue for some fundamental design decisions to avoid these

drawbacks. To this end, we also propose an Observe-Act-Analyze framework which

accommodates such design decisions and promises a more fine-grained and flexible

control loop for hybrid networks.

3.1 Helios/c-Through underlying assumptions

By looking into the evaluations results presented in Chapter 2, we realize

that the reason Helios/c-Through get into some sub-optimal scheduling decisions

in certain cases comes down to some deep underlying assumptions these systems

make. Specifically, these proposals make five overly restrictive assumptions about

the traffic on the hybrid network as follows:

32
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• Flows are independent and uncorrelated: Assigning circuits between two

Pods will not affect the bandwidth desired by other flows in the system.

Reality: Many flows depend on the progress of other flows, such as TritonSort

flows.

• All flows have same priority: Helios and c-Through schedule optical circuits

without taking into account any application or flow level traffic prioritization.

Reality: Datacenter traffic has a rich mix of priorities and fair sharing desires

within and between applications.

• Flows will not underutilize the circuits: Once flows are assigned to circuits,

they will continue to use the same (or more) bandwidth as their predicted

demand indicated until the control process reassigns that circuit elsewhere

(which might not happen for hundreds of milliseconds or more).

Reality: Perfectly predicting future traffic demand without taking explicit

feedback from the application, if not impossible is certainly not as easy as

this assumption.

• Randomly hashing flows to optical circuits is effective: Given a set of N

10Gbps circuits between two Pods, we can create a single superlink of 10N

Gbps capacity using random hashing, in which flows are randomly hashed

across the set of available circuits.

Reality: Random hashing is not always effective in leveraging 10N Gbps

superlink capacity due to hash collisions. Moreover, random hashing cannot

support flexible distribution of circuit bandwidth that maximizes application

performance.

• All flows that can use a circuit should use that circuit: There is no cost to

using an optical circuit when it is available, or to switching flows between

the electrical and optical circuits. The Helios design made this assumption

because of switch software limitations—traffic could not be scheduled on

a per-flow basis to the electrical or optical network. The c-Through design

made the same assumption to keep its optical/electrical selection tables small

using only per-destination entries.
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Reality: There are cases where keeping some lower-bandwidth, latency-sensitive

flows on the packet switch reduces latency and variance for some applications.

3.2 Hybrid networks challenges

Besides the specific assumptions Helios/c-Through has made which lead to

undesired behavior in certain situations. There are some fundamental challenges

which make integration of electrical and optical networks hard. In the following,

we provide a set of high-level challenges which needs to be addressed to make wide

adoption of these networks feasible.

• Scheduling: Both Helios and c-Through use a simple greedy approach based

on the instantaneous Pod-level traffic matrix to decide the next topology.

That means the only objective in these systems is to maximize the momen-

tary traffic which traverses the circuit switches. This although at the first

glance seems like a reasonable objective but has some side effects. For the

most, the instantaneous best topology might be a local-maxima not a global

maximum in terms of maximizing the total bisection bandwidth. This would

hurt the system overall performance considering a longer period of time. In

addition, using the raw measured traffic matrix without any processing might

result into wrong scheduling decisions. For instance, as shown in Section 2.4

a bursty background traffic can easily disturb this circuit scheduling policy,

resulting in continuous circuit flapping which in turn leads to significantly

poor performance. Moreover, it is critical to consider the effect of correlated

flows into the scheduling mechanism. Assigning circuits to only part of some

tightly correlated flows may decrease the overall performance of the system

as opposed to increasing it as studied in detail in Section 2.3. These are

only a few example of type of circumstances which might happen due to a

naive circuit scheduling policy. Thus, we argue that the circuit scheduling is

a significant challenge in hybrid networks.

• Hashing: Many of the existing commercial switches today including the

Fulcrum Monaco Pod switches we deployed in our prototype, use layer two
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Link Aggregation (LAG) or IEEE 802.1AX standard [LAG08] for combining

multiple physical links between two switches into one logical link for loadbal-

ancing across these links. Specifically, a LAG is created for each destination

Pod and the ports which are connected to that Pod are added into that LAG

(this set changes dynamically over time based on the circuit configuration).

Then, forwarding decision for each individual flow is done by matching it

against a LAG and for determining the actual port to forward the flow over

in the set of ports which belong to the matched LAG, hashing over layer 2,

3 and 4 headers of the flow is used.

This although being simple has shown to be unfair, inefficient and prob-

lematic in some aspects: 1) The hashing function might not lead to a fair

distribution of flows across the available links resulting in unfairness as well

as poor utilization of circuits available bandwidth. We studied this in Sec-

tion 2.5 in detail. 2) There is absolutely no fine-grained control over the path

each individual flow is forwarded over when there are several upstream paths

as this is completely handled by the switch hardware/software hash function.

This is a significant limitation because this prevents any fine-grained control

at the granularity of flows. In addition, this is a barrier to provide QoS or

similar services.

• Hardware: There are a few hardware hurdles to achieving fast and efficient

network reconfiguration in hybrid networks. The major problem is that cur-

rent optical components are not designed to support rapid reconfiguration

due to their original requirements in the telecom industry, and thus there

has been a lack of demand to develop faster optical control planes.

The switching time of current optical switches are still far from their ideal

limits. The best switching time is still around 10 to 25 ms for commercially

available optical switches [gli]. However, free-space MEMS switches should

be able to achieve switching times as low as a few milliseconds [Edd01]. An-

other hardware issue comes from the design of optical transceivers. Currently

available transceivers do not re-sync fast enough after a network reconfigu-

ration. The issue is that the time between light hitting the photoreceptor



36

in the transceiver, until the time that an actual data path is established

is needlessly too long–as long as several seconds in practice [FRV09]. The

underlying transceiver hardware can theoretically support latencies as low

as a few nanoseconds. Beyond the physical limitations, much of the control

plane performance limitations are due to the electrical control aspects of the

design, including the implementation of the switch software controller.

The improvement in both optical transceivers and switching components is

crucial in accelerating the adoption of hybrid networks in the cloud. Non-

MEMS optical components show promise in delivering switching times in

the microsecond range. This is small enough to hide the physical network

reconfiguration from a large class of upper layer protocols and applications

which will significantly improve the performance of hybrid networks.

3.3 Helios prototype specific challenges

In addition to the previous lists which were general to hybrid networks, over

the course of implementing a completely functional prototype of Helios, we faced

a series of software-engineering issues which we summarize below.

• One of the problem is again with hashing which is particular to our Monaco

switches hardware. Specifically, the hashing doesn’t take place over both

circuit switch and packet switch paths. In other words, once there is a circuit

established across a pair of Pods, it is impossible to forward any flows over

the packet switch network. Although the packet switch network is better

suited for bursty traffic as well as the delay-sensitive one, we wouldn’t be

able to forward over both packet and circuit paths concurrently due to this

limit of our switching hardware.

• In our Helios proposal, using the Fulcrum SDK we developed a customized

software to control the Pod switches. For the most, the software exposes an

API for the Topology Manager to control the forwarding tables of the Pods.

This not only was not a pleasant experience but also was a very complicated
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procedure with diverse software engineering challenges to address. Moreover,

for wide adoption of Helios in an industry setting, this literally means that for

every switch vendor such a customized software needs to be developed using

the specific SDK for that particular hardware, which is completely infeasible.

This alone completely argues for a more general approach such as building

our prototype on top of OpenFlow [MAB+08] which is supported by many

vendors already [Ope].

• The Topology Manager software which is the heart of Helios over time turned

into a relatively large and complex software with many different components.

As a result, it has became really hard to add and try out new scheduling

algorithm. To get around this software engineering issue, we re-factor our

Topology Manager to have a pluggable module which is in charge of decision

making parts (more detail in Section 4.6).

3.4 Design requirements for hybrid networks

Having learned from the previous subsections the main challenges in design-

ing/building hybrid networks, we now provide a set of reasonable requirements to

build effective hybrid interconnects. Specifically, an optical circuit controller should

be able to meet four key requirements:

• Tolerate inaccurate demand information: It is difficult for a controller

to have precise knowledge about all application’s traffic demands and per-

formance requirements. Existing systems infer these demands from counters

in the network, but as we have shown, these heuristics can result in flapping

circuits and sub-optimal network performance. A good circuit allocation

mechanism must be robust to inaccurate measurement of application traffic

demands.

• Tolerate ill-behaved applications: As we showed in previous sections,

bursty datacenter applications can cause unnecessary network reconfigura-

tion. Non-malicious but selfish applications could claim to need more ca-
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pacity than they really do. All such ill-behaved applications can reduce the

performance of a hybrid network. The circuit controller must therefore be

robust to their behavior, ensuring that the network’s performance is not

affected by them.

• Support correlated flows: To achieve good application layer performance,

the circuit scheduling module must be able to accommodate flows whose

demand and performance depends on the performance of another flow. The

underlying framework supporting the scheduler must provide fine-grained

control to handle traffic that is on the critical path of an application vs. less

important flows differently. It should also provide a way for the controller

to gather sufficient information to understand the application’s dependence

upon a flow’s performance.

• Support flexible sharing policies among applications: Allocating cir-

cuits among mixed applications is challenging given the diversity of datacen-

ter applications. Particularly in a multi-tenant cloud environment, applica-

tions may have very different traffic patterns and performance requirements.

In addition, the management policies in datacenters could assign applications

different priorities. To share the limited number of optical circuits among

these applications, the circuit scheduler must be able to handle the per-

formance interference among applications and support user-defined sharing

policies among applications.

3.5 Observe-Analyze-Act framework

To achieve the above design requirements, the circuit controller must be

able to obtain a detailed understanding of application semantics and fine-grain

control of flows forwarding policies. As such, we propose a three phase approach

for managing hybrid networks which we call the Observe-Analyze-Act framework.

To get a better understanding of the network dynamics and application het-

erogeneity in the cloud ecosystem, the hybrid scheduler should be able to interact
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Figure 3.1: The control loop of the Observe-Analyze-Act framework

with different components and collect information from them. This information

collected in this Observe phase would include the flow counters and link utilization

from the switches and application status from the cluster job schedulers (e.g., the

Hadoop job Tracker), as well as application priorities and QoS requirements. The

hybrid manager then analyzes the aggregation of this information to infer the most

suitable configuration for the network. The Analyze phase is a key step that helps

the network controller understand the application semantics of traffic demand, de-

tect ill-behaved applications, discover the correlated flows and therefore make the

optimal configurations to support these applications. Finally, in the Act phase, it

communicates this configuration to the other components in the system in order

for the decision to be acted upon. The Act phase requires fine-grain control on the

flow forwarding to support flexible configuration decisions and sharing policies.

Figure 3.1 shows the control loop and the main software components in-

volved. Our framework includes three main components: Topology Manager,

OpenFlow Controller application and Circuit Switch Manager. The Topology

Manager is the heart of the system, coordinating with other components to collect

information for the Observe phase. To collect input from the network, we lever-



40

age the existing OpenFlow API using an OpenFlow Controller system (e.g., NOX,

Ethane, etc). We argue that the Analyze phase logic should be implemented as a

pluggable piece of software in the Topology Manager. We refer to this component

as Brain because it has the algorithms and logic to make circuit scheduling deci-

sions (e.g., “Pluggable TM Brain” in the figure). This allows us to separate policy

from mechanism and evaluate different optimization goals and algorithms. Based

on the output of analysis, during the Act phase, the Topology Manager provides

the new topology to the Circuit Switch Manager to configure the optical links, to

the OpenFlow Controller application, and to the application job scheduler. The

OpenFlow Controller configures the switches to forward traffic over appropriate

links. The job scheduler can potentially use this information to schedule jobs

which can take advantage of the current network topology.

Our experience in using an OpenFlow Controller for this framework has

been positive: it provides sufficiently fine-grained control over flow placement on

the optical links, and it has allowed us to implement different hashing policies and

flow management decisions that achieve better sharing among applications in the

cloud. Our experience meshes well with prior work that used OpenFlow to create

a unified control plane for IP/Ethernet and optical circuit-switched networks for

long-haul backbone networks [DPS+10].

3.6 Contributions of this framework

The main contributions of the Observe-Analyze-Act framework is address-

ing the aforementioned challenges in the previous subsections. Specifically:

• This framework doesn’t focus on certain scheduling algorithm. Instead it

provides a general approach through which any scheduling algorithm can

be plugged in to the Topology Manager and used for the purpose of circuit

scheduling. So, effectively for trying out a new algorithm, just a new Brain

needs to be implemented and plugged in and no other major modification to

the rest of software is needed.

• Given that we use OpenFlow switch controller, this gives us the flexibility of
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making decisions at the granularity of flows. So, the Topology Mananger can

decide to put any flow over any specific circuit or packet switch path. This

resolves the some of undesired issues such as treating all the flow the same

or randomly hashing flows across the set of uplink circuits. The scheduler

could decide to use packet switch path if the flow is bursty or delay-sensitive.

If the flow is better suited for the circuit path, it could then decide which

particular circuit to route the flow over.

• Given the proposed fine-grained controller, it is possible to provide certain

guarantees. For instance, application level fairness or certain QoS policies

can be supported based on any user-defied strategy or policy.

• There is no need to develop a customized software for the Pod switches by

using the OpenFlow API for all sorts of communication with the Pod switches

through an OpenFlow Controller system. As such, the Pod switch only needs

to support OpenFlow API which is the case for many of the today’s switches

from different vendors.



Chapter 4

System architecture, design and

implementation

This section describes different aspects of the software modules which build

our prototype based on the Observe-Analyze-Act framework (Section 3.5). Our

prototype has four independent yet cooperating softwares: Pod Switch Manager,

OpenFlow Controller application (in particular, we use NOX), Glimmerglass Man-

ager and the Topology Manager. Pod Switch Manager and OpenFlow Controller

are in charge of managing Pod switch hardware and providing an abstraction for

the Topology Manager to configure their forwarding behavior. In addition, Glim-

merglass Manager software acts as a driver between the Glimmerglass circuit switch

and Topology Manager to provide an interface for changing the topology of the

Glimmerglass circuit switch. The Topology Manager software is the heart of our

prototype which runs a certain control loop in which it coordinates with other

components to change circuit switches topology dynamically. In the following we

describe each of these softwares and their interactions in more details.

4.1 OpenFlow based Pod Switch Manager

For the Helios research effort we wrote a software to manage Pod switches.

This was a C++ user-level process using Fulcrum’s SDK to communicate with

Moncaco’s FM4224 switch ASIC and Apache Thrift library to communicate with

42
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the Topology Manager. However, in our new prototype we decided to use a pre-

release version of an OpenFlow based module which was provided to us by Ful-

crum. This OpenFlow implementation runs as an application in the Embedded

Linux based environment that runs by default on Monaco switches. To this end, we

have re-architectured our Topology Manager from what is described in [FPR+10]

to interact with a NOX application which in turn interacts with Pod switches

through the OpenFlow API instead of a customized API. As a result of this now

the functionalities that the Pod switch software provides is a subset of those pro-

vided by the OpenFlow abstraction. Specifically, the following functionalities are

expected from the Pod switch software:

• Providing an OpenFlow implementation through which the Topology Man-

ager can effectively configure the forwarding table of the switch at the gran-

ularity of each individual flow

• Maintaining and exposing flows statistics (e.g., byte counters) to the Topol-

ogy Manager through corresponding OpenFlow function call

Switching to OpenFlow API makes our Pod switch hardware/software to

be totally commodity as long as this API is implemented by the switch vendor.

In fact, today many commercial switch vendors such as Arista Networks, Juniper

Networks, Hewlett-Packard, and NEC [Ope] implement and expose OpenFlow API

as a built-in component of their switch softwares. As a significant benefit of this,

any OpenFlow based switch can be used in a plug-and-play fashion as the Pod

switch in our prototype.

4.2 OpenFlow Controller application

We use NOX [GKP+08] system for managing our switches through a log-

ically centralized potentially physically replicated controller. The controller ap-

plication has a complete view of the topology. As such, when a packet reaches a

controlled switch which holds no flow-entry for the description of that packet, it

will be forwarded to NOX application to make decision for. The idea is to construct
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the OpenFlow packet manually, filling out the flow description and the actions and

then send it to the controlled switch to update its forwarding table.

We implement a NOX application which is run over one of our servers.

The IP address of this server over the control network is passed to each of the

Pod OpenFlow software as a command line argument to which they establish a

control connection. In addition, the controller application has a connection to the

Topology Manager through which it sends the flow statistics upon the request of

the Topology Manager and receives the new topology of the network. Then, the

controller updates the forwarding table of each of the Pod switches correspond-

ingly through OpenFlow API. Moreover, the Topology Manager might configure a

particular Pod to change the forwarding path for a certain flow.

Specifically, as in this controller application we need to have a connection

to the Topology Manager, we decide to extend the available NOX messenger com-

ponent as a way of sending commands from Topology Manager to the remotely

running NOX for executing. The advantage of extending the messenger compo-

nent is that the messenger component already has the functionality of listening on

a certain port to receive commands for execution. Hence, we define a new message

type , MSG NOX STR CMD, for sending commands from the Topology Manager

to the NOX messenger component. The command string that we currently support

is one of the following:

• initParams: For initializing the controller with different parameters. Specif-

ically, the number of Pod switches and number of circuit switches. These

are needed for sanity check of number of Pods as well as figuring out the

mapping for each of them.

• getOctetCounters: This is used for requesting the flow counters from the Pod

switches which is used as a raw input for building the traffic matrix in the

Helios system.

• getAllPortsOctetCounters: This command requests for the ports counters of

each individual Pods. This statistic is exposed for the purpose of figuring out

the TX/RX rate of each circuit. This is not only a valuable information to
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collect but also potentially can be used in more complex circuit scheduling

algorithms which would make decisions based on the circuits utilization over

time.

• setUplinkMap: This is used for announcing the new configuration to each of

the Pods. Upon receiving this command, the controller figures out the new

topology for each of the Pods and configures each Pod with corresponding

flow-level forwarding table.

For the purpose of serializing the data sent over the socket between the

NOX controller C++ application and Topology Manager Python code base, we

use Python struct module. This module interprets strings as packed binary data

for performing conversions between Python values and C structs represented as

Python strings.

The NOX component is event based. That is, upon execution of each event

the corresponding registered handler for that event is triggered. Specifically, the

main functionality of the controller application is consists of capturing the following

set of events:

• Msg event: This event is triggered whenever the messenger component re-

ceives a packet through its listen port. In this event handler besides the

command types the messenger component already parses, we look for

MSG NOX STR CMD command sent from the Topology Manager and call

another method which based on the command string dispatches the request

to different functions.

• Datapath join event: This event handler is called upon join of a new switch

to the network. We use this to initialize the switch forwarding table such

that the switch uses the core packet switch path by default. We use a soft-

state approach; thus, switches do not keep much state information. The

only state which is maintained is the last destination of uplink circuit ports

of the switch which is used to update the forwarding table only when the

topology is different (which is an optimization for removing the unnecessary
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reconfiguration of the same topology). So, this minimum state design makes

it easy to replicate the NOX controller for fault-tolerance reasons.

For setting the initial forwarding rules in each Pod, we insert a set of static

rules to each of the switches upon their connection to the NOX Controller

as follows. Because we divide a single Monaco switch to two virtual Pods

(Figure 2.1), the rules should be set such that packets across Pods on the

same physical switch are forwarded over an upstream port to a core switch

not the direct port to the destination host. As in our prototype the number

of hosts is moderate (24), we decide to take a simple approach of inserting

a separate rule for all combination of source and destination hosts in each

of the Monaco switches. Then, on each Pod switch we insert: 1) a set of

intra-Pod rules to forward the packets of the hosts on the same Pod among

each other through forwarding over the output port of the destination host

(6 * 6 = 36 rules on each Pod) and 2) a set of inter-Pod rules to forward

packets to host on other Pods through taking the core packet switch path (6

* 18 = 108 rules on each Pod). An alternative approach is to define different

VLAN ids for intra-Pod vs. inter-Pod traffic and label all the packets with

appropriate VLAN id. Then the forwarding for each packet can be done

based on its VLAN id over the link of the destination host (intra-Pod case)

or the core switch uplink (inter-Pod case).

• Flow stats in: This is triggered upon receiving a flows statistics response

from any of the switches. In particular, once the controller application re-

ceives a request from the Topology Manager to collect the flows statistics, it

sends a request to each of the Pod switches for their statistics. Once each

Pod switch replies to such a request, this event is triggered. The controller

collects the statistics from all of the Pod switches and sends the aggregated

statistics to the Topology Manager.

• Port stats in: This event is called upon receiving ports statistics from any

of the Pod switches and is similar to the above event. The ports counters

can be used to capture the circuit uplinks throughput and also in Brains for



47

deciding the next topology based on circuit utilization.

4.3 Core packet switches

The core packet switches in our prototype are traditional plug-and-play

layer two/three switches which use switch learning process (based on layer two

mac addresses) to build their forwarding table. As such, they don’t require any

customized software or specialized configuration to run with. However, in a large

deployment it might be more efficient, if not necessary, to configure the switches

forwarding table with the set of mac address of the end-hosts a priori.

4.4 Circuit Switch Manager

As in our prototype we just deal with a single physical circuit switch (i.e.,

the Glimmerglass switch), we choose to implement the Circuit Switch Manager

as a library instead of a standalone software component. So, in our prototype

the Circuit Switch Manager is a library implemented in Python which is exposed

to the Topology Manager to configure the circuit switches to set up new circuits

between specific ports or break up certain existing circuits. To this end, we wrote

a library on top of the TL1 interface that our Glimmerglass circuit switch provides

to interface with the switch. Specifically, as we only have a single circuit switch

hardware, this library provides the notion of virtual circuit switches and makes this

translation transparent to the Topology Manager. The library provides two major

API function calls, one to make a connection from a Pod to another through a cer-

tain circuit switch and another to break an existing connection of a pod through a

specific circuit switch. There are also function calls to do the same functionality for

a group of circuits. This reduces the overhead of Remote Procedure Call (RPC)

as the Glimmerglass has the ability of setting/breaking the circuits in groups.

Moreover, the Glimmerglass provides two different RPCs: synchronous and asyn-

chronous. In the synchronous mode the RPC doesn’t return before the requested

action is completed whereas in the case of asynchronous call the RPC returns as
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soon as the request is received and afterwards the Glimmerglass acknowledges the

completion of the requested action through a so called notification events. In our

implementation we use the synchronous mode as its performance is good enough

for our prototype meanwhile it is easier to deal with and also it makes the exposed

API to the Topolgy Manager simpler to use.

4.5 Topology Manager

The Topology Manger is the heart of the Observe-Analyze-Act framework-

which organizes the coordination among other components. The core of the Topol-

ogy Manager is implemented in Python for ease of development, however it uses

two libraries (i.e., Hedera demand estimator and the scheduler library) which are

implemented in C for the sake of efficiency. For interfacing between C and Python

we use SWIG [swi]. Although in our simple prototype the Topology Manager is

implemented as a central component resulting in a potential single point of failure,

in a large scale deployment, it can be replicated to overcome this problem. In fact,

given the lack of strict consistency and state in the system, it is straightforward

to deploy any replication techniques.

This software is completely configurable through a configuration file which

is passed as the command line argument. We refer to this file by superman config.

The configuration file declares (1) different physical/logical parameters of the sys-

tem such as number of Pods and core circuit/packet switches, the IP/MAC address

of different component of the system including hosts and OpenFlow Controller ap-

plication, the physical port number of the uplinks as well as the hosts on the

Monaco switches, etc (2) different configurable parameters of the logic/algorithms

which are used such as Brain (more later), demand estimator type, scheduler type

and its parameters, etc. In sum, Topology Manager software does the following

tasks:

• It starts off by making connection to each source of demand matrix being

c-Through end-hosts or Helios Pod switches. The implementation is done in

such a way that only minor modification to the existing code is needed for
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introducing a new source of demand or adding a new scheduling algorithm.

We describe this further in Section 4.6.

• Establishes a control TCP connection to the OpenFlow Controller applica-

tion to send command to it. This is different from our Helios prototype where

the Topology Manager would connect to each of the Pod switches directly.

• Establishes a control connection to the Circuit switch to change its topology

dynamically using the library described in Section 4.4.

• After doing the steps above the Topology Manager executes a control loop

continuously which we call the control loop and is described in Section 4.8.

4.6 Pluggable Brain

In Observe-Analyze-Act framework we have refactored the Topology Man-

ager from what implemented in [FPR+10] to make it much modular and easier to

plug new algorithms in. In fact, the Topology Manager control loop doesn’t have

the algorithms to decide how to store the collected demand and how to decide a

new topology; instead the so called Brain component is in charge of these and the

Topology Manager interacts closely with this component through provided API.

Specifically, each Brain must provide an implementation for two methods: One to

store the collected demand information at a certain time and another to decide

the circuit mapping for a specific time. The idea in taking a timestamp is that

generally the Brain decisions could be time-dependent and could take into account

information from past to make future decisions. For instance, as explained in

Section 2.2 there is an 0 ≤ α ≤ 1 parameter in the superman config file which

determines the EWMA damping factor for calculating the rate of flows based on

past history. This is useful in some traffic patterns such as all-to-all to build a more

accurate estimate of the demand. Moreover, using some history in particular for

determining the circuit switches topology is promising in terms of improving the

overall performance of the system. We have currently implemented the following

Brains:
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• Helios Brain: This Brain is mostly identical to our previous work [FPR+10].

The demand sources are the Pod switches which are reached through the

OpenFlow Controller. The circuit scheduling is done using the Edmonds

[Edm65] algorithm. The weight of the edge of the graph from Pod i to Pod

j for the first circuit switch is set to either 10000 (rate of uplink circuit) or

rate of demand from Pod i to j, whichever is smaller as explained in detail

in Section 2.1.3.

• c-Through Brain: This Brain is similar to the [WAK+10] paper. The traffic

demand is pulled from each individual server’s TCP socket buffer occupancy.

In our small size prototype the Topology Manager serially pulls each of the

servers. As this didn’t result in poor performance we decided to use this

simple approach but in practice in a large scale deployment this will most

likely be implemented in parallel across different servers. For the c-Through

Brain we also use the Edmonds algorithm. The selection of the weight of the

edge in this case is tricky as the demand estimation is done through the socket

buffer occupancy which is in number of bytes. So, there is no notation of

time in the estimated demand. We believe the well-known delay-bandwidth-

product metric to some extend is capable of capturing the amount of bytes

which can be forwarded over each circuit for the duration of each control

loop cycle. For this we use the average duration of the cycle as the delay

and 10000 (bandwidth of circuits) as the bandwidth. We again consider the

minimum of this value and the estimated demand as the weight of the edge.

We decide to not explore the underlying scheduling problem for c-Through

more as this approach performs well enough in our prototype but there is

potentially interesting future theory work in this space.

4.7 Traffic Analyzer

The Traffic Analyzer provides a set of simple yet quite useful processing

tasks on a given set of measured flows. It is implemented as a Python library to

be used by different Brains. So, literally this component is an optional part of the
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Algorithm 4.1 updateCounters(Flow f)

1: if f.byteDelta == 0 then

2: f.activeCounter = 0

3: f.idleCounter += 1

4: else

5: f.idleCounter = 0

6: f.activeCounter += 1

7: end if

Algorithm 4.2 isBursty(Flow f)

1: if f.activeCounter ≥ 5 then

2: return False

3: else if f.idleCounter ≥ 3 then

4: reset(f)

5: end if

6: return True

Algorithm 4.3 reset(Flow f)

1: f.activeCounter = 0

2: f.idleCouner = 0
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Brain. The functionalities that this library provides are as follows:

• Given the list of observed flows, filtering out the bursty ones and returning

the non-bursty flows. This is done through considering an idle and an active

counter for each flow to represent the number of cycles the flow has been

active and idle, respectively. Over the cycles the flow is sending data (the

TX byte counter for the flow is positive) the active counter is incremented

and the idle counter is reset to zero. Similarly, if the flow is not sending

any data over a cycle the idle counter is incremented and the active counter

is reset to zero (Algorithm 4.1). Then, based on our bursty flow detection

algorithm, a flow is non-bursty if its active counter is greater than a certain

constant number (Algorithm 4.2). If a flow has been idle for more than

specific number of control cycles, we reset both of the counters for the flow

to zero (Algorithm 4.3) in order to account for changing nature of flow; e.g.,

when a previously bursty flow becomes stable or vise verse.

• Given the list of observed flows, removing out any traffic which should not

be considered in determining the next topology. This includes the UDP

background traffic that we use to slow down the packet switch network (see

Section 2.1.1).

4.8 Control loop

The control loop of our current prototype is a subset of the Observe-

Analyze-Act framework described in Section 3.5. Specifically, the Topology Man-

ager interacts closely with the Brain to decide the best topology and then configures

the Pod and circuit switches with that topology. To this end, Topology Manager

collects the required information and pass them to the Brain and then the Brain

decides the next topology. After this the Topology Manager performs the required

configuration actions for setting up the new topology in place. So, in a sense

Topology Manager is the worker for the Brain which has the logic/algorithm to

decide the right topology at each time. This is done periodically in the Topology
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Manager control loop which is summarized in Fig 4.1. Note that in our current

prototype we don’t have algorithms which use job scheduler’s data or end-hosts

application’s semantics for deciding the next topology. This explains the difference

between this figure and Fig 3.1 which is the more general approach we propose in

Observe-Analyze-Act framework. We also identify the Traffic Analyzer component

as a part of the Brain. In sum, the control loop of our prototype consists of the

following actions:
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Figure 4.1: The control loop of our prototype

• Collecting the demand matrix from the Brain’s specified demand source.

The demand source is specified in the superman config. The currently im-

plemented source of demand can be Pod switches for the Helios Brain and

end-hosts for the case of c-Through Brain.

• Passing the collected demand information with corresponding timestamp to

the Brain to estimate the traffic matrix. It is then up to the Brain how to

process and store this information (if it wants to use it in future at all).

• Inquiring the Brain for the next topology passing it the current timestamp.

As explained earlier, the idea behind using the timestamp is for the case

Brain uses some sorts of history and has a time-dependent algorithm for

choosing the topology.
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• If the topology needs to be changed, the Topology Manager sends a command

to the OpenFlow Controller informing it of the new topology. The Open-

Flow Controller then configures the Pod switches forwarding table through

OpenFlow API. The Topology Manager also configures the circuit switches

with the new topology.



Chapter 5

Initial evaluation of OpenFlow

based framework and Traffic

Analyzer component

This chapter presents the initial evaluation of the OpenFlow based frame-

work we proposed in Chapter 3. In particular, we show its feasibility and supe-

riority compared to our previous work, i.e., Helios. Although we don’t yet have

a concrete answer to some of the challenges in building hybrid networks, for in-

stance, the best circuit scheduling algorithms and how to detect dependent flows

in mixed workloads, but we show that this framework is promising for solving the

problems we described in Chapter 3. In fact, we believe that the modularity and

fine-granularity control of this framework makes it easier to propose and try out

future algorithms just by implementing new Brains.

5.1 OpenFlow implementation

The OpenFlow Controller approach provides the Topology Manager with a

fine-grained control over the path of each individual flow in the network. This is

specially useful to get around the problems we illustrated in Section 2.5 due to ran-

domness of the hashing approach. To this end, when there are multiple uplinks for

a particular Pod to another, using the proposed framework the Topology Manager

55
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can determine which circuit each flow gets forwarded over as opposed to relying

on a random hash function to make such an important decision. In addition, this

fine-grained control makes it possible to provide certain performance guarantees

at the application level. For instance, a scheduler could provide application-based

fairness. We construct the following simple case study experiment to illustrates

these benefits.

We run two applications: application A with 18 TCP flows and application

B with only 2 TCP flows. These applications are being run across two Pods which

are connected through two circuits to each other. In this scenario, we observe that

over the Helios network (or c-Through), application A only gets 18
20

of total 20Gbps

bandwidth which is around 18Gbps and application B gets the rest of available

bandwidth which is around 2
20

= 2Gbps. This is because flows are uniformly

hashed over the uplinks. Thus, this approach can provide only flow level fairness

as in this case all the flows are treated the same each getting 1Gbps as its share of

bandwidth. However, this flow level fairness is not always desirable and depending

to the importance and type of the applications the network administrator might

want to allocate the same amount of bandwidth to each of application A and B.

We next provide this application-based guarantee by using the OpenFlow based

approach. To this end, we configure the Pods such that application A’s flows are

routed over one of the two circuits and application B’s flows on the other circuit

(we insert an OpenFlow forwarding rule for each flow). By doing so, we observe

that both of the applications can utilize corresponding circuit link and receive

10Gbps bandwidth.

To visualize this application-based fairness issue we use Jain’s fairness index

[JCH84]. Figure 5.1 shows this fairness metric for this scenario for Helios network

vs. OpenFlow based approach. As it is seen in the graph, the fairness is signif-

icantly increased from 0.6 in Helios to 1 (which is the maximum) for OpenFlow

based approach.
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Figure 5.1: Application-based fairness in (a) Helios/c-Through vs. (b) the Open-
Flow based approach

5.2 Traffic Analyzer component evaluation

Demand estimation is a major challenge in Helios and c-Through systems.

In facts, as we discussed in the previous sections, even a single bursty flow may

disturb these systems to the extend where they per from very poorly. We here run

a case study to show the effectiveness of our Traffic Analyzer component which

detects and removes bursty flows from the measured demand to avoid the unneces-

sary circuit flapping we observe in Section 2.4 due to the background bursty flow.

We however note that we are not yet aware of any approach or traffic engineering

work to completely detect the flows dependency at the granularity of few millisec-

onds in a datacenter workload. As such our focus here is on removing the bursty

traffic and detecting the correlation between flows is a remaining future work.

We perform a similar experiment as that of Section 2.4 albeit with the

Traffic Analyzer component being activated. In particular, the workload consists

of a long lasting flow and a bursty flow. These two flows are sourced from different

Pods but send data to the same destination Pod. There is only a single circuit

links for which these two flows are competing against each other. We discussed

in Figure 2.11(b) that in this case each time the bursty flow is sending data it

takes over the circuit and the system ends up oscillating between two different

topology. Thus, the overall performance is significantly poor. On the other hand,
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Figure 5.2: The throughput of the packet and circuit links for a bursty traffic of
100ms when the Traffic Analyzer component is used. The bursty flow is detected
and not used in circuit scheduling decisions and hence no circuit flapping event is
observed.

Figure 5.2 shows the throughput of the links for burst duration of 100ms when

the Traffic Analyzer component is being used. There is no circuit flapping as

the bursty flow is detected and removed by the Traffic Analyzer and hence is not

being considered for circuit scheduling decisions. This shows that the simple Traffic

Analyzer component we proposed is quite effective in handling unnecessary circuit

reconfiguration events due to bursty flows.

As we reduce the duration of the bursty flow, we observe the same trend.

However, once the bursty duration gets larger some circuit flapping is observed

because the flow passes through the Traffic Analyzer filter and is not considered

bursty any more. This introduces a trade-off between responsiveness of the system

vs. tolerance of the system against the bursty flows. However, still overall the

number of circuit flapping events is less when using the Traffic Analyzer component.
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For instance, for the burst duration of 300ms, there is only 2 circuit flapping events

whereas without using this component there is 54 of such event observed.



Chapter 6

Related work

We divide the related work into different categories: recent datacenter net-

works architectures, using optical networks in datacenters and centralized control

mechanisms for enterprise and datacenter network.

There are quite a few SIGCOMM papers from the past couple years propos-

ing new datacenter architectures with different characteristics such as full bisection

bandwidth, low cost and power efficient [WLL+, AFLV, GHJ+, GWT+, GLL+].

Among these is [AFLV] which suggests building a scalable fat-tree based hierarchy

of commodity Ethernet switches for provision of full bisection bandwidth though

with lower cost than the traditional multi-level hierarchies which is being used in

building today’s datacenters. VL2 [GHJ+] extends the fat-tree structure by using

10Gbps Ethernet to form its switching backbone.

DCell [GWT+] is another proposal which uses the servers each with multiple

network interface for forwarding the packets across the network. DCell has the the

following properties: (1) there is no single-point-of-failure and hence the overall

architecture is very resilient even in the presence of severe link or node failures. (2)

it is exponentially scalable as the degree of the nodes increase. (3) it provides higher

overall network capacity than existing multi-level architecture. BCube [GLL+] is

another recent work done by the same group which is built on top of DCell. The

main idea is to also incorporate switches for faster processing and active probing for

load-balancing. Another more closely related work to Helios and c-Through which

also is a follow up on BCube and DCell papers is MDCube [WLL+]. The objective
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in this work is to interconnect modular shipping-container based datacenters. Their

main idea is to use the BCube containers as the building blocks and also put the

routing and fault-tolerance functionalities inside the end-hosts.

Recent works propose promising approaches for using optical networks for

designing datacenter interconnects [FPR+10, WAK+10]. We covered these hybrid

electrical/optical architectures in detail in Section 1. However, the idea of using

circuit switching and packet switching together as the building block of the Internet

network has been around at least for a decade. For instance, the idea in [NML98]

is to use ATM hardware for forwarding long lived flows over circuit paths and

traditional packet switches for forwarding the short flows over the IP network.

They implement IP directly on top of ATM hardware to preserve the connectionless

model of IP and not incurring overhead of circuit establishment. So, the gain is

to use ATM forwarding technique (which was faster than IP packet-switching at

the time) to improve the performance. Helios is different from this work in that

first it is focused on the datacenter area and more importantly today the speed

of forwarding in IP vs. circuit based techniques is comparable. As such the main

incentive in using optical circuit switching is to reduce the cost and power.

[BBH+05] is another closely related work with similar properties of cheaper

and more power-efficient design. The main differences between this work and

Helios/c-Through proposals are that first it is in the space of high performance

computing and that they look at the traffic stability at the level of individual end-

hosts whereas later deal with aggregated Pod-level traffic stability. Another closely

related work is [KPB]. The similarity comes from the fact that both proposals con-

sider provision of full-bisection bandwidth a needless overkill given realistic data-

center traffic patterns. The difference between the works come from the approach

to handle the almost stable yet with random hotspots traffic pattern observed in

datacenters. Flyways main proposal is to use wireless links to augment bandwidth

where and when needed whereas Helios and c-Through use optical circuit switches.

Another line of related works is recent proposals to control datacenter

networks with a software controller with global view of the topology [GHM+05,

CCS05, CGA+06, MFP+07, GKP+08, Ng10]. The idea is to provide a high level
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logically centralized (potentially physically replicated) software component to ob-

serve and control a network. The main advantages of this is flexibility as the net-

work programs/protocols would be written as if the entire network were present

on a single decision element as opposed to requiring a new distributed algorithm

across all network switching elements. Also that programs may be written in terms

of high-level abstractions such as users, host names, not low level configuration pa-

rameters (e.g., IP and MAC addresses). We briefly overview some of these systems

in the following.

Among the initial such systems was 4D [GHM+05]. The objective in that

system is to control the forwarding decisions of the networking elements. Hence,

the network view only includes network infrastructure. Later, the SANE [CGA+06]

and Ethane [MFP+07] proposals moved beyond this by adding a namespace for

users and nodes in the network view. In addition to this they provisioned a finer

granularity forwarding control compared to 4D (e.g., per-flow vs. forwarding table

based). Maestro [Ng10] is another OpenFlow Controller system which objective

is to avoid making the controller the bottleneck through exploiting parallelism in

every possible way.

We chose to build our system on top of current state of the art Open-

Flow Controller called NOX [GKP+08] which enhanced the general programmatic

control of the network. NOX is an operating system for network which lever-

ages OpenFlow abstraction as the communication protocol with the networking

devices. NOX software runs on one or some of the servers in the network which

largely is several different controller processes and a single network view. NOX ap-

plications use this network view to make management decisions. Specifically, they

may manipulate path of network traffic at granularity of flow level. This is done

through registering different event handlers which are triggered upon execution of

certain events such as switch join, switch leave, packet received, flow initiations,

etc. Section 4.2 is dedicated to detail of our NOX application.



Chapter 7

Conclusion and future work

Hybrid electrical/optical networks promise significant reduction in cost, de-

ployment complexity and energy consumption of large scale datacenter intercon-

nects. In this thesis we summarize our experiences in constructing such hybrid

networks over the past two years through building a functional moderate size pro-

totype. To this end, we first propose Helios as a simple yet efficient starting point

which maximizes the bisection bandwidth over the circuit switches. Then to move

beyond this we evaluate this system and another similar proposal, c-Through, un-

der heterogeneous workload and encounter a number of challenges, some quite

unexpected. For the most, we often observe circuit scheduling decisions that lead

to unnecessary circuit flapping and significantly low circuit utilization which is due

to treating flows as interchangeable and undistinguished from each other as done

in Helios/c-Through. We then articulate a set of assumptions and challenges which

produce these undesired situations.

Based on these, we then enumerate the design requirements of hybrid inter-

connects and a meta solution to these challenges under an Observe-Analyze-Act

framework. The framework collects traffic statistics and network status infor-

mation from various source of information such as switches, hosts, job scheduler

(such as Hadoop Job Tracker node). It then analyzes the collected information

to estimate traffic demand and decide the next topology for the circuit switches.

Then, the framework configures this topology into different elements in the system

including Pod and circuit switches.
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Although we don’t yet have a final answer to some of the challenges for

the most the “best” scheduling algorithm for hybrid networks but we believe this

framework is promising with a fine-grained control to implement and evaluate any

desired algorithm. In short, the contributions of this thesis are the following:

• A fully functional prototype of Helios/c-Through proposals

• A comprehensive evaluation of Helios/c-Through under different workloads

and against each other

• A taxonomy of non-trivial challenges which arise under heterogeneous work-

loads and the underlying assumptions that Helios/c-Through make which

lead to undesired circuit flapping events

• A high-level outline of the features of a feasible solution space for these issues

• A general Observe-Analyze-Act framework and its initial evaluation

7.1 Future work

In this thesis, the focus has been on summarizing our experience in dealing

with hybrid networks, the challenges we faced and proposing a general framework

which the hybrid datacenter network planner can use for managing her network.

The idea is that she can plug any desired circuit scheduling algorithm in. The

current scheduling algorithm we use is Edmonds weighted matching with objective

of maximizing the bisection bandwidth. Exploring this space from a more theory-

based prospective and in particular proposing history/state based scheduling al-

gorithms which take into account priorities as well as sharing policies is necessary

and very promising in making better scheduling decisions and provision of differ-

ent QoS policies inside and across applications. The circuit scheduling algorithm

should be able to make reasonable decisions for the topology of the network and

the placement of each individual flow over the packet or circuit switches under an

any arbitrary workload.
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Moreover, there is certainly opportunities to study some of the challenges

in this work from a traffic-engineering perspective. In particular, identifying flow

correlations and dependencies across a dynamically changing set of flows is a very

critical future work to avoid some of the undesired situations. The challenge here

is to do so under a constant number of control loop cycles. Because exploring all

possible combinations of scheduling the flows for such a huge dynamic set in linear

time complexity does not seem promising given the dynamic nature of these sys-

tems at aggressive timescales of milliseconds. A completely different approach to

pursue is devising a cluster-wide abstraction through which applications commu-

nicate with Topology Manager and provide such information. However, this has

its own drawbacks such as the need to modify applications. Another aspect which

was covered in this thesis is a simple heuristic for identifying bursty flows, extend-

ing this effort and detecting any ill-behaved flows such as those which disturb the

overall network performance is also an interesting follow up.
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Appendix A

Supplementary material

This Chapter is dedicated to some additional effort which are supplementary

work done along with the thesis.

A.1 Hadoop experiments results

We use Hadoop as a typical real datacenter application to study its workload

and traffic pattern. In this section, we present a short summary of some of the

Hadoop results.

The experiment scenario that we focus on is for the case there is a single

master node (Hadoop NameNode and JobTracker) and 38 slave nodes (Hadoop

DataNode and TaskTracker). All the nodes are connected to each other through

the same physical switch with 10Gbps network interfaces. The configuration files

for each of the nodes are generated with the Hadoop tools we have developed which

is explained in Section A.2.1. In particular, 7 disks on each node were used for

data storage, one was used to collect logs from Hadoop itself, and 8 disks were

used as intermediate disks by the map/reduce layer. No particular parameter

tuning was performed on Hadoop itself. We first run a Hadoop “Randomwriter”

job to generate the data for sorting in which each node generates 100GB of data

into Hadoop Distributed File System (HDFS). Then we run a Hadoop “Sorter”

job to sort all this data, 3800GB in total. We vary the number of simultaneous

map/reduce tasks per node and provide the Sorter job results in the following.
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public class DNS {

  /**
   * Returns the hostname associated with the specified IP address by the
   * provided nameserver.
   *
   * @param hostIp
   *            The address to reverse lookup
   * @param ns
   *            The host name of a reachable DNS server
   * @return The host name associated with the provided IP
   * @throws NamingException
   *             If a NamingException is encountered
   */
  public static String reverseDns(InetAddress hostIp, String ns)
    throws NamingException {
    //
    // Builds the reverse IP lookup form
    // This is formed by reversing the IP numbers and appending in-addr.arpa
    //
    String[] parts = hostIp.getHostAddress().split("\\.");

    // Modified for the SEED cluster
    if(parts[0].equals("192") && parts[1].equals("168"))
    {
        return new String("dcswitch" + parts[3] + "-eth" + parts[2]);
    }

    String reverseIP = parts[3] + "." + parts[2] + "." + parts[1] + "."
      + parts[0] + ".in-addr.arpa";

    DirContext ictx = new InitialDirContext();
    Attributes attribute =
      ictx.getAttributes("dns://"               // Use "dns:///" if the default
                         + ((ns == null) ? "" : ns) +
                         // nameserver is to be used
                         "/" + reverseIP, new String[] { "PTR" });
    ictx.close();
    
    return attribute.get("PTR").get().toString();
  }

  /**
   * Returns all the IPs associated with the provided interface, if any, in
   * textual form.
   *
   * @param strInterface
   *            The name of the network interface to query (e.g. eth0)
   * @return A string vector of all the IPs associated with the provided
   *         interface
   * @throws UnknownHostException
   *             If an UnknownHostException is encountered in querying the
   *             default interface
   *

~/Documents/thesis/hamid/figs/eval/hadoop/thesis... file:///home/hamid/Documents/thesis/hamid/figs/eva...

1 of 4 04/26/2011 04:03 PM

Figure A.1: The Hadoop 0.20.2 org.apache.hadoop.net.DNS class source code
where the Reverse-DNS deamon reports eth0 address to the JobTracker as oppsed
to the 10Gbps interface. The if block is the ad-hoc fix we devised for solving this
bug for the SEED cluster.

Before going over the results of these experiments, it is interesting to point

to one of the initial problems we faced when running Hadoop version 0.20.2, the

most recent version at the time of running these experiment over the SEED cluster.

The issue was that although we had configured Hadoop to run over eth5 (10Gbps)

network, we realized it is still sending part of the map/reduce traffic over eth0

(1Gbps) network. This was due to a bug in the Hadoop source code in which the

map/reduce daemons were hard-coded to listen on eth0. Furthermore, the reverse-

DNS daemons were communicating the address of eth0 back to the JobTracker

node. We did an ad-hoc fix to get around this issue and have the daemons report

back the eth5 IPs instead. Figure A.1 shows our fix for this problem. Also,

Figure A.2 shows the traffic over eth0 before fixing the bug and once the bug is
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(a) (b)

Figure A.2: The traffic over the eth0 NIC of one of the Hadoop slave nodes (a)
before fixing the bug (b) after fixing the bug

(a) (b)

Figure A.3: The duration of the Hadoop map/reduce jobs over time for one of
the slave nodes (a) for 16 maps/16 reduces (b) for 12 maps/4 reduces

fixed which confirms the issue is indeed resolved after applying or patch to the

Hadoop source code.

We also process the Hadoop log files to capture different statistics to study

how Hadoop performs under a full-bisection network. Figure A.3 shows the dura-

tion of Hadoop map/reduce tasks. The X-axes is the time and in the Y-axes we

have the tasks. The blue horizontal bars correspond to map tasks whereas the red

ones correspond to the reduce tasks. Each bar indicates when corresponding task

is started and ended. We realize that overall it takes longer for the Hadoop Sort

job to finish when the number of reduce tasks are fewer. This is because no reduce

tasks can get completed before all maps are finished. Also as can be observed

in Figure A.4, Hadoop can not drive the network more than 2Gbps per node at
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(a) (b)

Figure A.4: The traffic over eth5 interface during the period of Sort job for one
of the slave nodes (a) for 16 maps/16 reduces (b) for 12 maps/4 reduces

maximum.

The motivation for running these experiments has been to get a sense on

the upper bound on the improvement we could potentially achieve in the Hadoop

performance through optimizing its shuffle phase. Specifically, through having

the Hadoop JobTracker coordinate with Topology Manager software for setting

up the circuits across the Pods based on Hadoop jobs duration. Unfortunately,

the Hadoop logs didn’t contain enough information to construct a full traffic ma-

trix, because it only logs the destination of the shuffle operations, not the source-

destination pair but its all-to-all communication pattern over the entire experi-

ment, doesn’t leave much interest for circuit scheduling related studies. Moreover,

the low rate of Hadoop over each node over our specific setting with limited num-

ber of nodes, made it even less interesting to be used for the sake of this project

because overall traffic was not big enough to drive all the circuits. As such we

decided to use TritonSort instead moving forward.

A.2 Auxiliary tools

This section documents some additional tools we developed throughout the

duration of this thesis for the purpose of running Hadoop experiments and also a

tool based on TCPProbe to capture different parameters of TCP connections.



70

A.2.1 Hadoop tools

For running Hadoop [SKRC07] over a cluster of around 100 servers (similar

to the experiments settings in Section A.1), certain settings and configuration

files needed on each of the servers. However, configuring each of the servers and

generating these required files manually on a server-basis is not only a complete

hassle but also an error-prone process. Specifically, each server might have different

number of hard disks mounted under its own label. As a result various parameters

in the Hadoop configuration files are dependent to the server hardware/software

configuration and should be set differently across the servers.

To get around these challenges, we have developed a set of tools which au-

tomatically initialize the environment for running Hadoop over set of servers in

a certain project in the SEED cluster. Specifically, the tools initialize the envi-

ronment for running Hadoop by (1) configuring given network interface of servers

with a specific network address which is then used in the Hadoop configuration

files. Hadoop uses these addresses for the sake of different communication, (2) con-

figuring disks on the servers as the storage space for Hadoop and (3) generating

Hadoop configuration files in the right place for each individual server. Moreover,

there are two other tools to easily start and stop a certain Hadoop job over the

cluster.

For more detail you may check the document available at

https://sites.google.com/site/ucsdseedproject/documentation/hadoop-support. Fig-

ure A.5 shows usage of the tools for running a Hadoop Sort job. Note that by using

these tools running a Sort job is as easy as issuing just a few bash commands.

https://sites.google.com/site/ucsdseedproject/documentation/hadoop-support
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(a) (b)

Figure A.6: Sample graphs generated with the TCPProbe tools. (a) The con-
gestion window of the TCP connection over time in segments (b) The transmitted
sequence number of the segments over time.

 

init_hadoop.sh <project> <interface> <hadoop conf dir>
 
start_hadoop_remote.sh <hadoop conf dir>
 
cd <hadoop dir>
 
bin/hadoop --config <hadoop conf dir> jar hadoop-*-examples.jar randomwriter
-Dtest.randomwrite.bytes_per_map=1073741824 -Dtest.randomwriter.maps_per_host=50 
rand
 
bin/hadoop --config <hadoop conf dir> jar hadoop-*-examples.jar sort rand rand-sort
 
stop_hadoop_remote.sh <hadoop conf dir>

 
 Figure A.5: Hadoop tools

A.2.2 TCPProbe tools

This section is an optional reading dedicated to an overview on some tools

we built for the SEED cluster to enhance the debugging capabilities when running

into issues during diverse experiments.

The flow-level trace of what’s happening in a distributed networking sys-

tem can be quite beneficial in troubleshooting performance and other problems.

Specifically, being able to observe different parameters of each TCP connection

such as throughput, congestion window size or sent sequence number diagram over

time, number of timeout, etc could be a great source of information. TCPProbe
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kernel module [TPr] is one of the tools which can be used to obtain such informa-

tion. This module is automatically installed when the kprobe is enabled during

the kernel compile process. After inserting the kernel module, it creates the file

/proc/net/tcpprobe in which it logs a line for each incoming TCP packet. The log

line includes a timestamp and a set of parameters related to that TCP connec-

tion. It is also possible to modify the kernel source file linux/net/ipv4/tcp probe.c

and recompile the kernel module to change the set of captured parameters. The

way TCPProbe works is that it inserts a hook in the method tcp rcv established()

which is called whenever a TCP packet is received.

We have developed a set of scripts to use TCPProbe over the SEED testbed.

The SEED testbed works around the idea of supporting different projects. So, the

way the tools are designed to work is to specify a project name (+tag) then (1)

have the TCPProbe started on all the specified nodes of the project, (2) capture

the logs and stop once the experiment is over (3) and finally generate the graphs

for each TCP connection over these nodes. There are three scripts each of which

does one of these actions. For more detail you may check the documentation page

available at

https://sites.google.com/site/ucsdseedproject/documentation/tcp-probe-support.

Figure A.7 shows how to use these tools.
 
 

pssh_start_tcpprobe_logging.sh <project> <log dir> [TCPProbe args]
pssh_stop_tcpprobe_logging.sh <project> <log dir> <output dir>
generate_tcpprobe_graphs.sh <out dir> [param config file]

 
Figure A.7: TCPProbe tools

Figure A.6 shows two graphs which are generated with these tools for a

Reno TCP connection which corresponds to uploading a file through scp command

(sender side). The figure (a) is the TCP congestion window size (snd cwnd) in

TCP segments over time and the graph in (b) shows the sequence number of the

segments sent over time for this connection. Below is a complete list of the TCP

parameters that the tool generates by default:

• ssthred: This is the slow start threshold value as used in some TCP conges-

https://sites.google.com/site/ucsdseedproject/documentation/tcp-probe-support
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Figure A.8: The overlaid graph of snd cwnd, snd wnd, and ssthred all captured
in segments for a TCP connection

tion control algorithms such as Reno to terminate the slow start phase and

move to the congestion avoidance phase.

• snd wnd: This is the receiver’s advertised window and is reported in bytes

instead of segments. However, one might modify tcpprobe sprint() function

in the TCPProbe source code to divide this variable by mss field of the logged

packet to get this value in number of segments.

• snd cwnd: This is the congestion window size in segments. It is important

to realize that the rate at which the TCP sends is the minimum of this

parameter and snd wnd in segments. Figure A.8 overlays this parameter

with snd wnd (captured in segments with the hack explained above) as well

as ssthred. Figure A.9(a) shows the number of in-flight packets corresponding

to this TCP connection over time (this is packets out parameter in tcp log

kernel structure used in the TCPProbe). Then, figure A.9(b) shows the
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(a) (b)

Figure A.9: The number of in-flight packets of a TCP connection as captured
by (a) packets out (b) by the real transmission window of the TCP which is
min(snd cwnd, snd wnd) as shown in figure A.8. This Figure shows how these
values match up.

real window size of this connection by plotting min(snd wnd, snd cwnd) over

time. As seen in this figure the number of in-flight packets matches up closely

with the real window size as calculated this way.

• length: This is the length of the received packet in bytes. Note that if you

run TCPProbe on the receiver side of a server-client type TCP connection,

most likely the length would be as small as 20 bytes which is the size of TCP

header without any data.

• snd nxt: The sequence number of the next segment to be transmitted.

• snd una: The first unacknowledged sequence number.

• srtt: This is the smoothed RTT value corresponding to this connection as

calculated by the RTT estimation algorithm of the TCP [Pax00].

A more detailed discussion on the Linux implementation of different TCP

congestion control algorithm and other related issues is certainly out of the scope

of this thesis (look [SK02] for a good reference).
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