
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
GUSTO : general architecture design utility and synthesis tool for optimization

Permalink
https://escholarship.org/uc/item/49j6x25v

Author
İrtürk, Ali Umut

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49j6x25v
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

GUSTO: General architecture design Utility and Synthesis Tool for
Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Ali Umut İrtürk

Committee in charge:

Ryan Kastner, Chair
Jung Uk Cho
Bhaskar Rao
Timothy Sherwood
Steven Swanson
Dean Tullsen

2009

Copyright

Ali Umut İrtürk, 2009

All rights reserved.

The dissertation of Ali Umut İrtürk is approved,

and it is acceptable in quality and form for publi-

cation on microfilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

To my family (J̇ale, 0̈mer, Bülent, Topsi)

iv

EPIGRAPH

Let nothing perturb you, nothing frighten you. All things pass.

God does not change. Patience achieves everything.

—Mother Teresa

v

TABLE OF CONTENTS

Signature Page. iii

Dedication . iv

Epigraph . v

Table of Contents. vi

List of Figures . x

List of Tables . xviii

Acknowledgements. xix

Vita and Publications. xxi

Abstract of the Dissertation. xxiii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Research Overview . 3
1.3 Organization of Dissertation 6

Chapter 2 Parallel Platforms for Matrix Computation Algorithms 9
2.1 Graphic Processing Units (GPUs) 11
2.2 Massively Parallel Processor Arrays (MPPAs) 17

2.2.1 Ambric Family Overview 20
2.2.2 Ambric AM2045 Architecture 22

2.3 Field Programmable Gate Arrays (FPGAs) 23
2.3.1 Xilinx Virtex-4 Family Overview 26
2.3.2 Xilinx Virtex-4 Architecture 26

2.4 Learning from Existing Parallel Platforms 27
2.4.1 Comparison of Parallel Platforms 28
2.4.2 Roadmap for the Future Many-Core Platform . . 35

Chapter 3 Overview of Design Tools . 38
3.1 System Generator for DSP 39
3.2 AccelDSP Synthesis Tool 46
3.3 Simulink HDL Coder . 51
3.4 C-based High Level Design Tools 55
3.5 A Case Study for Filter Designs using Domain Specific

High Level Design Tools 62

vi

3.5.1 Filter Design HDL Coder Toolbox 63
3.5.2 Xquasher . 67
3.5.3 Comparison: Filter HDL Toolbox versus Xquasher 71

3.6 Roadmap for the Future Single/Many-Core Platform Gen-
erator Tool . 78

Chapter 4 Matrix Computations: Matrix Multiplication, Matrix Decom-
position and Matrix Inversion 83
4.1 Building Blocks of Matrix Computations 84
4.2 Matrix Decomposition and its Methods 91

4.2.1 QR Decomposition 91
4.2.2 LU Decomposition 93
4.2.3 Cholesky Decomposition 94

4.3 Matrix Inversion and its Methods 96
4.3.1 Matrix Inversion of Triangular Matrices 97
4.3.2 QR Decomposition Based Matrix Inversion 98
4.3.3 LU Decomposition Based Matrix Inversion 98
4.3.4 Cholesky Decomposition Based Matrix Inversion . 99
4.3.5 Matrix Inversion using Analytic Method 100

Chapter 5 GUSTO: General architecture design Utility and Synthesis
Tool for Optimization . 101
5.1 Flow of GUSTO . 103

5.1.1 Error Analysis . 107
5.2 Matrix Decomposition Architectures 110

5.2.1 Inflection Point Analysis 111
5.2.2 Architectural Design Alternatives for Matrix De-

composition Algorithms 113
5.3 Adaptive Weight Calculation Core using QRD-RLS Al-

gorithm . 115
5.3.1 Comparison . 116

5.4 Matrix Inversion Architectures 117
5.4.1 Inflection Point Analysis 118
5.4.2 Architectural Design Alternatives for Matrix In-

version Architectures 124
5.4.3 Comparison . 126

5.5 Conclusion . 127

Chapter 6 GUSTO’s Single Processing Core Architecture 129
6.1 Related Work . 130
6.2 Automatic Generation and Optimization of Matrix Com-

putation Architectures 133
6.2.1 Flow of Operation 134

vii

6.2.2 Designing the General Purpose Processing Core . 135
6.2.3 Designing the Application Specific processing core 137

6.3 Designing a Multi-Core Architecture 145
6.3.1 Partitioning . 147
6.3.2 Generation of the Connectivity Between Cores . . 149

6.4 Conclusion . 150

Chapter 7 Hardware Implementation Trade-offs of Matrix Computation
Architectures using Hierarchical Datapaths 151
7.1 Hierarchical Datapaths Implementation and Heterogeneous

Architecture Generation using GUSTO 154
7.1.1 Hardware Implementation Trade-offs of Matrix Com-

putation Architectures using Hierarchical Datap-
aths . 155

7.1.2 Flow of GUSTO for Multi-Core Designs 157
7.2 Architectural Implementation Results of Different Matrix

Computation Algorithms 164
7.2.1 Matrix Multiplication 166
7.2.2 Matrix Inversion 179

7.3 Conclusion . 186

Chapter 8 FPGA Acceleration of Mean Variance Framework for Optimal
Asset Allocation . 190
8.1 The Mean Variance Framework for Optimal Asset Allo-

cation . 194
8.1.1 Computation of the Required Inputs 195
8.1.2 Mean Variance Framework Step 1: Computation

of the Efficient Frontier 198
8.1.3 Mean Variance Framework Step 2: Computing

the Optimal Allocation 199
8.2 Implementation of the Mean Variance Framework 201

8.2.1 Implementation Motivation 201
8.2.2 Hardware/Software Interface 203
8.2.3 Generation of Required Inputs - Phase 5 205
8.2.4 Hardware Architecture for Mean Variance Frame-

work Step 1 . 205
8.2.5 Hardware Architecture for Mean Variance Frame-

work Step 2 . 208
8.3 Results . 210
8.4 Conclusions . 212

Chapter 9 Future Research Directions . 214

viii

Appendix A Matrix Computations . 215
A.1 Matrix Decomposition Methods 215

A.1.1 QR Decomposition 215
A.1.2 LU Decomposition 226
A.1.3 Cholesky Decomposition 229

Bibliography . 233

ix

LIST OF FIGURES

Figure 1.1: Design Flow of GUSTO. 4
Figure 1.2: Flow of GUSTO’s trimming feature. 5
Figure 1.3: Hardware implementation of matrix multiplication architectures

with different design methods using GUSTO. 6

Figure 2.1: GPU Architecture. 15
Figure 2.2: The design flow using CUDA for NVIDIA GPUs. 16
Figure 2.3: Multi-core CPU architecture. 18
Figure 2.4: Structural object programming model for Ambric Architecture. 19
Figure 2.5: Design Flow of Ambric MPPA and its steps: Structure, Code,

Reuse, Verify, Realize and Test. 20
Figure 2.6: Ambric Architecture. 21
Figure 2.7: An FPGA architecture and its resources: I/O cells, logic blocks

(CLBs) and interconnects. 24
Figure 2.8: Xilinx ISE design flow and its steps: design entry, design syn-

thesis, design implementation and Xilinx device programming.
Design verification occurs at different steps during the design
flow. 25

Figure 3.1: Two simple design examples using System Generator for DSP
are presented: multiply & accumulate and FIR filter. 40

Figure 3.2: Example blocks from System Generators’ library. 42
Figure 3.3: Design and implementation of the Matching Pursuits algorithm

for channel estimation using System Generator. Even a small
change in the architecture affects blocks inside the design and
requires a large amount of manual synchronization efforts. . . . 45

Figure 3.4: The design flow for AccelDSP. 48
Figure 3.5: Comparison of AccelDSP/AccelWare and Hand-Code/Coregen

implementations for various signal processing algorithms: FFT,
10×10 matrix multiplication, FIR filter, CORDIC and Constant
False Alarm Rate (CFAR) [156]. Results are presented in terms
of area and required calculation time. 50

Figure 3.6: C-based high level design tools are divided into 5 different fami-
lies including Open Standard: System-C; tools producing generic
HDL that can target multiple platforms: Catapult-C, Impulse-
C and Mitrion-C; tools producing generic HDL that are opti-
mized for manufacturer’s hardware: DIME-C, Handel-C; tools
that target a specific platform and/or configuration: Carte, SA-
C, Streams-C; tool targeting RISC/FPGA hybrid architectures:
Napa-C. 56

Figure 3.7: Design Flow of Filter Design HDL Coder Toolbox. 64

x

Figure 3.8: An example of page and its lines, dots and BMs. Dots are shown
with ellipses and a circle inside each dot demonstrates the BM
part. 68

Figure 3.9: Xquasher Algorithm. 70
Figure 3.10: Comparison of Xquasher, Spiral and Filter Design HDL Coder

Toolbox architectural results for 20 tap FIR filter designs. Dif-
ferent architectures designed using Design HDL Coder Toolbox
include fully parallel, fully serial, partly serial, cascade serial
and distributed arithmetic. Xquasher performs different num-
ber of term extraction: 2, 3, 4, 6, 8, 10 and infinite terms to
find most suitable extraction method that provides best results
in terms of area and throughput. 73

Figure 3.11: Comparison of Xquasher and Filter Design HDL Coder Tool-
box architectural results for 30 tap FIR filter designs. Different
architectures designed using Design HDL Coder Toolbox in-
clude fully parallel, fully serial, partly serial, cascade serial and
distributed arithmetic. Xquasher performs different number of
term extraction: 2, 3, 4, 6, 8, 10 and infinite terms to find most
suitable extraction method that provides best results in terms
of area and throughput. Spiral cannot generate filter that use
more than 20 taps, therefore its results are not included. 74

Figure 3.12: Comparison of Xquasher and Filter Design HDL Coder Toolbox
architectural results for 20 tap FIR designs. Different architec-
tures designed using Design HDL Coder Toolbox include fully
parallel, fully serial, partly serial, cascade serial and distributed
arithmetic. Xquasher performs different number of term extrac-
tion: 2, 3, 4, 6, 8, 10 and infinite terms to find most suitable
extraction method that provides best results in terms of area
and throughput. Spiral cannot generate filters that use more
than 40 taps, therefore its results are not included. 76

Figure 3.13: Comparison of Xquasher, Spiral and Filter Design HDL Coder
Toolbox architectural results for 20 tap FIR designs that in-
cludes different coefficient multiplier optimization methods for
Filter Design HDL Coder Toolbox. Different architectures de-
signed using Design HDL Coder Toolbox include fully parallel
(with Multipliers, CSD and Factored CSD), fully serial, partly
serial, cascade serial and distributed arithmetic. Xquasher per-
forms different number of term extraction: 2, 3, 4, 6, 8, 10
and infinite terms to find most suitable extraction method that
provides best results in terms of area and throughput. 77

xi

Figure 3.14: Comparison of Xquasher, Spiral and Filter Design HDL Coder
Toolbox architectural results for 20 tap FIR filter designs that
includes an option for use of pipeline registers for Filter De-
sign HDL Coder Toolbox. Different architectures designed us-
ing Design HDL Coder Toolbox include fully parallel (with and
without pipeline registers), fully serial, partly serial (with and
without pipeline registers), cascade serial and distributed arith-
metic (with and without pipeline registers). Xquasher performs
different number of term extraction: 2, 3, 4, 6, 8, 10 and infi-
nite terms to find most suitable extraction method that provides
best results in terms of area and throughput. 78

Figure 4.1: The solution steps of the matrix inversion using QR decompo-
sition. 98

Figure 4.2: The solution steps of the matrix inversion using LU decompo-
sition. 99

Figure 4.3: The solution steps of the matrix inversion using Cholesky de-
composition. 99

Figure 4.4: Matrix Inversion with analytic approach. The calculation of the
first element of cofactor matrix, C11, for a 4 × 4 matrix is shown.100

Figure 5.1: Design Flow of GUSTO. 104
Figure 5.2: General purpose architecture and its datapath. 105
Figure 5.3: An Example for the GUSTO’s trimming feature. 105
Figure 5.4: An Example for the GUSTO’s trimming feature. 106
Figure 5.5: Performing error analysis using GUSTO. 108
Figure 5.6: An error analysis example, mean error, provided by GUSTO

for QR decomposition based 4 × 4 matrix inversion. The user
can select the required number of bit widths for the application
where the increasing number of bits results in high accuracy. . . 109

Figure 5.7: Total number of operations for decomposition methods in log
domain. 112

Figure 5.8: The comparison between different decomposition methods using
sequential execution. 112

Figure 5.9: The comparison between different decomposition methods using
parallel execution. 113

Figure 5.10: The comparison of the general purpose processing element and
application specific processing element architectures in terms of
slices (area) and throughput (performance). 114

xii

Figure 5.11: Area and throughput tradeoffs for different bit width of data:
19, 26 and 32 bits. A user can determine the bitwidth of the
data by the error analysis part of GUSTO. High precision can
be obtained by using more number of bits as bitwidth which
comes at the price of larger area and lower throughput. 115

Figure 5.12: Adaptive Weight Calculation (AWC) using QRD-RLS method
consists of two different parts to calculate the weights, QR de-
composition and back-substitution. 117

Figure 5.13: Three different designs, Implementation A, B, and C, with vary-
ing levels of parallelism (using cofactor calculation cores in par-
allel) to form cofactor matrices. 119

Figure 5.14: The total number of operations for both the QR decomposition
based matrix inversion and the analytic method in log domain. 120

Figure 5.15: The inflection point determination between the QR decompo-
sition based matrix inversion and the analytic method using
sequential execution. 120

Figure 5.16: The inflection point determination between QR decomposition
based matrix inversion and analytic method using parallel exe-
cution. 121

Figure 5.17: The total number of operations for different decomposition based
matrix inversion methods in log domain. 122

Figure 5.18: The comparison between different decomposition based matrix
inversion methods using sequential execution. 123

Figure 5.19: The comparison between different decomposition based matrix
inversion methods using parallel execution. 123

Figure 5.20: Design space exploration for QR decomposition based matrix
inversion architectures using different resource allocation options.124

Figure 5.21: Design space exploration for decomposition based matrix inver-
sion architectures using different bit widths. 125

Figure 5.22: Design space exploration for decomposition based matrix inver-
sion architectures using different matrix sizes. 125

Figure 6.1: Design Flow of GUSTO. 135
Figure 6.2: (a) The instruction scheduler generates scheduled instructions

i.e., assigning operations to the functional resources, performing
scheduling and binding. (b) Each functional resource receives
scheduled instructions and waits for the required operands to
begin execution. 136

Figure 6.3: Detailed Architecture for the Instruction Scheduler. 137

xiii

Figure 6.4: (a) Increasing the number of functional resources results in an
increase in the area (Slices) and the critical path where we as-
sume that the memory has 20 entries. (b) Increasing the size of
the memory entries from 20 to 100 results in an increase in the
area (Slices) and the critical path where we assume that there
are 8 functional resources. 139

Figure 6.5: A comparison between unoptimized (Unopt.) and optimized
(Opt.) instruction scheduler architectures in terms of area (Slices)
and critical path (ns) with the increasing number of functional
resources. 140

Figure 6.6: Detailed Architecture for a Functional Resource. 141
Figure 6.7: (a) shows that controllers in a functional resource consumes

most of the silicon (61%-78%) in order to be able to track the
operands. (b) presents the optimization results for functional
resources using trimming optimizations. 142

Figure 6.8: Detailed Architecture for the Memory Controller. 144
Figure 6.9: Shows the area results for the memory controller and required

clock cycles to execute the given matrix computation algorithm
using different number of functional resources. 145

Figure 6.10: (a) Shows the percentage distribution of arithmetic resources
and controllers for a single core design. 146

Figure 6.11: There are several different ways that one can partition the given
algorithm into different cores. We show three different possibil-
ities: (a), (b), (c), that are examples of designing one core, two
cores and three cores for a given matrix computation algorithm
respectively. 148

Figure 6.12: (a) GUSTO the optimizes general purpose processing elements
to generate application specific processing cores that use a shared
memory. (b) GUSTO partitions the data into individual pro-
cessing cores. The data is classified as local variables, that used
only for that core, and shared variables that are written only
once and used by the next processing core. 150

Figure 7.1: Design space exploration using different resource allocation op-
tions for matrix inversion using QR decomposition. 156

Figure 7.2: Presents hierarchical datapath design for multi-core architecture
using different number/type of application specific processing
elements which execute a specific part of the given algorithm. . 158

Figure 7.3: Flow of GUSTO showing various parameterization options and
output results for multi-core architecture design. 159

Figure 7.4: GUSTO analyzes the instructions that are generated in the in-
struction generation step, and creates a file to be read via graphviz.160

xiv

Figure 7.5: There are several different ways that one can partition the given
algorithm into different cores. We show three different possibil-
ities: (a), (b), (c), that are examples of designing one core, two
core and three core for a given matrix computation algorithm
respectively. 161

Figure 7.6: The general purpose processing element which uses dynamic
scheduling and dynamic memory assignments. This architec-
ture has full connectivity between functional units and controllers.162

Figure 7.7: The application specific processing element which uses static
scheduling and static memory assignments and has only the
required connectivity between functional units and controllers
for specific algorithm/s. 163

Figure 7.8: A 4×4 matrix multiplication example is shown in (a). Example
calculations for the resulting matrix C entries, C11 and C44 are
also shown in (b) and (c). (d) shows a fully parallel architecture
for the matrix multiplication. 165

Figure 7.9: Implementations 1-3 are the application specific architectures
that are generated by GUSTO with different number of func-
tional units. 167

Figure 7.10: Hardware implementation of matrix multiplication architectures
with one PE for entire computation using GUSTO. Implemen-
tation 1-3 employs different number of resources for the compu-
tation of the matrix multiplication algorithm. 167

Figure 7.11: Implementations 4-9 are the application specific architectures
that are generated by GUSTO with different number of PEs. . 168

Figure 7.12: Hardware implementation of matrix multiplication architectures
with different design methods, implementation 1-9, using GUSTO.171

Figure 7.13: Implementations 10-12 are application specific heterogeneous
architectures that are generated by GUSTO with different types
of PEs. 171

Figure 7.14: Hardware implementation of matrix multiplication architectures
with different design methods, implementation 1-12, using GUSTO.173

Figure 7.15: We present some of the important points of matrix multipli-
cation hardware implementation results: 1) finding the opti-
mum hardware to minimize the hardware while maximizing the
throughput, 2) improvement in both area and throughput with
hierarchical datapath compared to single core design. 174

Figure 7.16: An analysis to see the effects in area, required clock cycles to
execute and the throughput of the architectures by generation
of memory controllers with the increasing complexity: A1, A2,
A4, A8 and A16 type of processing elements for 4 × 4 matrix
multiplication. 177

xv

Figure 7.17: Hardware implementation of 4 × 4 matrix multiplication core
with 18 bits of precision using System Generator for DSP design
tool from Xilinx. (a), (b), (c) and (d) are the address genera-
tion logic, input data memory, multiply-accumulate units and
destination data memory respectively. 178

Figure 7.18: The data dependencies and the data flow of QR decomposition
algorithm. 180

Figure 7.19: Heterogeneous matrix inversion architecture for matrix inver-
sion using QR decomposition. 181

Figure 7.20: Heterogeneous matrix inversion architecture for matrix inver-
sion using LU decomposition. 181

Figure 7.21: Heterogeneous matrix inversion architecture for matrix inver-
sion using Cholesky decomposition. 182

Figure 7.22: Total number of operations in log domain for decomposition
based matrix inversion (light) and decompositions only (dark).
Note that the dark bars overlap the light bars. 183

Figure 7.23: Hardware implementation of matrix inversion architectures with
different design methods (using QR, LU and Cholesky decom-
positions) using GUSTO. 184

Figure 7.24: GPU architectures employs large number of ALUs by remov-
ing the scheduling logic to exploit instruction level parallelism
and caches that removes memory latency. Therefore GPUs are
simply very powerful number crunching machines. Thus, the fu-
ture’s high performance parallel computation platform should
have an ALU dominant architecture to employ more resources
for computation by removing as much control logic as possible.
We show that GUSTO generated architectures for matrix de-
composition, multiplication and inversion are all ALU oriented
indeed by consuming 65% - 87% of their silicon into ALUs. . . 187

Figure 8.1: Increasing the number of assets in a portfolio significantly im-
proves the efficient frontier, the efficient allocations of different
assets for different risks. Adding new assets to a portfolio shifts
the frontier to the upper left which gives better return oppor-
tunities with less risk compared to the lower number of assets
portfolios. 192

Figure 8.2: The required steps for optimal asset allocation are shown in
(a), (b) and (c). After the required inputs to the mean variance
are generated in (a), computation of the efficient frontier and
determination of the highest utility portfolio are shown in (b)
and (c) respectively. This figure also presents the inputs and
outputs provided to the user. 194

xvi

Figure 8.3: The procedure to generate required inputs is described. The
numbers 1-5 refers to these computation steps which are ex-
plained in subsections in more detail. 195

Figure 8.4: To determine the computation time of different variables, we
compare number of securities, Ns, versus number of portfolios,
Np, and number of portfolios, Np, versus number of scenarios,
Nm, respectively. By looking at the slopes of these lines in the
figures it can be easily seen that Ns dominates computation time
(has a steeper slope) over Np (a), Np dominates computation
time over Nm (b). 202

Figure 8.5: Identification of the bottlenecks in the computation of the op-
timal asset allocation. We run two different test while holding
all but one variable constant. We determined that generation
of the required input does not consume significant amount of
time. On the other hand, step 1 and 2 of the mean variance
framework consumes significant amount of time. 204

Figure 8.6: Parameterizable serial hardware architecture for the generation
of the required inputs - phase 5. 206

Figure 8.7: Parameterizable fully parallel hardware architecture for the gen-
eration of the required inputs - phase 5. As can be seen from the
parallel architecture, phase 5 has very high potential for the par-
allel implementation, therefore a good candidate for decreasing
the computational time of the optimal asset allocation. 207

Figure 8.8: Parallel optimum allocation calculator IP Cores. 208
Figure 8.9: Parallel parameterizable hardware architecture for Satisfaction

Function Calculator IP Core to be used in the mean variance
framework step 2. 209

Figure 8.10: Parallel parameterizable hardware architecture for the mean
variance framework step 2. The Monte-Carlo block, Utility Cal-
culation Block, and Satisfaction Function Calculator IP core
can be easily parallelized a maximum of Nm, Nm and Np times
respectively. 210

Figure 8.11: Possible speed-ups for ”generation of the required inputs - phase
5” . 212

Figure 8.12: Possible speed-ups for ”Mean Variance Framework Step 2”. . . 213

Figure A.1: Visualizing orthonormalization method. 222
Figure A.2: Visualizing reflection method. 223

xvii

LIST OF TABLES

Table 1.1: Comparisons between our results and previously published pa-
pers. NR denotes not reported. 7

Table 2.1: Specifications of the NVIDIA Tesla S1070 Computing System [105]. 17
Table 2.2: Specifications of the SR and SRD processors. 22
Table 2.3: Specifications of the Xilinx V irtex-4 XC4VSX35 device. 28
Table 2.4: Breaking down the run-times of GPU and CELL BE in terms of

computation and memory accesses [102] 31
Table 2.5: Summary of target platforms [87] 32
Table 2.6: Comparison of random number generation algorithms while im-

plementing on different platforms (top of the Table) and Com-
parison of different platforms (bottom of the Table) [87] 32

Table 2.7: Comparison of explicit finite difference option pricing implemen-
tation using three different platforms: FPGA, GPU and CPU [113]. 34

Table 2.8: Comparison of different platforms, CPU, FPGA and GPU for im-
plementation of polygon based lithography imaging simulations
and 2D-FFT based image convolution [114] 34

Table 2.9: A comparison between FPGAs, GPUs and MPPAs. 37

Table 3.1: Our Specifications for Filter Design HDL Coder Toolbox Gener-
ated Filters. 66

Table 5.1: Comparisons between our results and previously published pa-
pers. NR denotes not reported. 118

Table 5.2: Comparisons between our results and previously published arti-
cles for Matrix Inversion using Analytic Method. NR denotes
not reported. 127

Table 5.3: Comparisons between our results and previously published ar-
ticles for Decomposition based Matrix Inversion Architectures.
NR denotes not reported. 127

Table 7.1: Comparisons between our results with the architectures employ-
ing heterogeneous cores using hierarchical datapaths and previ-
ously published articles for Decomposition based Matrix Inver-
sion Architectures. NR denotes not reported. 188

Table 7.2: Comparisons between our results and previously published ar-
ticles for Matrix Multiplication Architectures. NR denotes not
reported. 189

Table 8.1: Different Investor Objectives: Specific and Generalized Forms . . 197
Table 8.2: Different Utility Functions for Satisfaction Indices 200
Table 8.3: Control Inputs for Different Investor Objectives 205

xviii

ACKNOWLEDGEMENTS

It is a pleasure to thank everybody who made this thesis possible.

It is difficult to overstate my gratitude to my advisor, world famous Pro-

fessor Ryan Kastner. I couldn’t ask for a better advisor; he is hands down the

best. I would like to thank Arash Arfaee, my Main man (mMm), for helping

me get through the difficult times, and for all the emotional support, comradery,

entertainment, and caring he provided.

I also thank to my committee members Professor Timothy Sherwood, Pro-

fessor Steven Swanson, Professor Bhaskar Rao, Professor Dean Tullsen and Doctor

Jung Uk Cho for guiding me through the writing of this thesis, and for all the cor-

rections and revisions made to text that is about to be read. I would like to thank

my mentors, Bora Turan, Gökhan Sarpkaya and Byeong K. Lee for helping me to

find not only a sense of direction, but of purpose too.

I am indebted to my many student colleagues for providing a stimulating

and fun environment in Santa Barbara and San Diego which to learn and grow.

I am especially grateful to Nikolay Pavlovich Laptev, Fırat Kart, Onur Güzey,

Onur Sakarya, Bridget Benson, Ying Li, Deborah Goshorn, Shahnam Mirzaei,

Pouria Bastani, Nick Callegari, Mustafa Arslan, Arda Atalı, Aydın Buluç, Ahmet

Bulut, Burak Över, Önder Güven and Erkan Kiriş, my great housemate Shibin

Parameswaran, brother Shijin Parameswaran and Shikha Mishra.

I am very thankful for the many friends I have had at Bull & Bear: Erin,

James, Jamie, Charles, Ethan, John, Dave; Porters Pub: Stefan, Chris, Kevin,

David, Martin; Jack’s and West. They definitely made my life easier in graduate

school (I might be able graduate faster if I haven’t met them though).

I wish to thank my brothers Cihan Akman and Dog̃an Akman, my cousin

Serkan İrtürk and my best friends Mustafa Ilıkkan, Özen Deniz and Serhat Sarışın

for being with me all these years.

Lastly, and most importantly, I wish to thank my family, J̇ale Sayıl, Ömer

Sayıl, Bülent İrtürk, Topsi and Turkish Navy. They bore me, raised me, supported

me, taught me, and loved me.

I dedicate this thesis to my family, J̇ale and Ömer Sayıl, for teaching me

xix

everything I know about life. They have always supported my dreams and aspira-

tions. I’d like to thank them for all they are, and all they have done for me.

The text of Chapter 3.5.2 is in part a reprint of the material as it appears

in the proceedings of the Design Automation Conference. The dissertation author

was a co-primary researcher and author (with Arash Arfaee) and the other co-

authors listed on this publication [179] directed and supervised the research which

forms the basis for Chapter 3.5.2.

The text of Chapter 5 is in part a reprint of the material as it appears

in the proceedings of the Transactions on Embedded Computing Systems. The

dissertation author was the primary researcher and author and the co-authors

listed on this publication [52–54] directed and supervised the research which forms

the basis for Chapter 5.

The text of Chapter 7 is in part a reprint of the material as it appears in

the proceedings of the International Conference on Wireless Communications and

Networking. The dissertation author was the primary researcher and author and

the co-authors listed on this publication [55] directed and supervised the research

which forms the basis for Chapter 7.

The text of Chapter 8 is in part a reprint of the material as it appears in

the proceedings of the Workshop on High Performance Computational Finance.

The dissertation author was the primary researcher and author and the co-authors

listed on this publication [180] directed and supervised the research which forms

the basis for Chapter 8.

xx

VITA

2004 B. S. in Electrical and Electronics Engineering cum
laude, Turkish Naval Academy, Istanbul

2004 B. A. in Naval Profession, Turkish Naval Academy,
Istanbul

2007 M. S. in Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara

2007 M. A. in Economics, University of California, Santa
Barbara

2009 Ph. D. in Computer Science and Engineering, Univer-
sity of California, San Diego

PUBLICATIONS

Ali Irturk, Jason Oberg, Jeffrey Su and Ryan Kastner, “Simulate and Elimi-
nate: A Methodology to Design Application Specific Multi-Core Architectures
for Matrix Computations”, under review, 16th International Symposium on High-
Performance Computer Architecture (HPCA 16).

Bridget Benson, Ying Li, Ali Irturk, Junguk Cho, Ryan Kastner, Xing Zhang,
“Towards a Low-energy, Reconfigurable Software Defined Acoustic Modem”, under
review, ACM Transactions on Embedded Computing Systems.

Shahnam Mirzaei, Yan Meng, Arash Arfaee, Ali Irturk, Timothy Sherwood, Ryan
Kastner, “An Optimized Algorithm for Leakage Power Reduction of Embedded
Memories on FPGAs Through Location Assignments”, under review, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems.

Arash Arfaee, Ali Irturk, Nikolay Laptev, Ryan Kastner, Farzan Fallah, “Xquasher:
A Tool for Efficient Computation of Multiple Linear Expressions”, In Proceedings
of the Design Automation Conference (DAC 2009), July 2009.

Ali Irturk, Bridget Benson, Shahnam Mirzaei and Ryan Kastner, “GUSTO: An
Automatic Generation and Optimization Tool for Matrix Inversion Architectures”,
In Proceedings of the ACM Transactions on Embedded Computing Systems.

Bridget Benson, Ali Irturk, Junguk Cho, Ryan Kastner, “Energy Benefits of Re-
configurable Hardware for use in Underwater Sensor Nets”, In Proceedings of the
16th Reconfigurable Architectures Workshop (RAW 2009), May 2009.

xxi

Ali Irturk, Bridget Benson, Nikolay Laptev and Ryan Kastner, “Architectural
Optimization of Decomposition Algorithms for Wireless Communication Systems”,
In Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC 2009), April 2009.

Ali Irturk, Bridget Benson, Nikolay Laptev and Ryan Kastner, “FPGA Accelera-
tion of Mean Variance Framework for Optimum Asset Allocation”, In Proceedings
of the Workshop on High Performance Computational Finance at SC08 Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, November 2008.

Ali Irturk, Bridget Benson and Ryan Kastner, “Automatic Generation of Decom-
position based Matrix Inversion Architectures”, In Proceedings of the IEEE Inter-
national Conference on Field-Programmable Technology (ICFPT), December 2008.

Bridget Benson, Ali Irturk, Junguk Cho, and Ryan Kastner, “Survey of Hard-
ware Platforms for an Energy Efficient Implementation of Matching Pursuits Al-
gorithm for Shallow Water Networks”, In Proceedings of the Third ACM Interna-
tional Workshop on UnderWater Networks (WUWNet), in conjunction with ACM
MobiCom 2008, September 2008.

Shahnam Mirzaei, Ali Irturk, Ryan Kastner, Brad T. Weals and Richard E. Ca-
gley, “Design Space Exploration of a Cooperative MIMO Receiver for Reconfig-
urable Architectures”, In Proceedings of the IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP), July 2008.

Ali Irturk, Bridget Benson, Shahnam Mirzaei and Ryan Kastner, “An FPGA De-
sign Space Exploration Tool for Matrix Inversion Architectures”, In Proceedings
of the IEEE Symposium on Application Specific Processors (SASP), June 2008.

Ali Irturk, Bridget Benson, and Ryan Kastner, “An Optimization Methodology
for Matrix Computation Architectures”, UCSD Technical Report, CS2009-0936,
2009.

Ali Irturk, Shahnam Mirzaei and Ryan Kastner, “FPGA Implementation of Adap-
tive Weight Calculation Core Using QRD-RLS Algorithm”, UCSD Technical Re-
port, CS2009-0937, 2009.

Ali Irturk, Shahnam Mirzaei and Ryan Kastner, “An Efficient FPGA Implementa-
tion of Scalable Matrix Inversion Core using QR Decomposition”, UCSD Technical
Report, CS2009-0938, 2009.

Ali Irturk, “Implementation of QR Decomposition Algorithms using FPGAs”, M.S.
Thesis, Department of Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara, June 2007. Advisor: Ryan Kastner.

xxii

ABSTRACT OF THE DISSERTATION

GUSTO: General architecture design Utility and Synthesis Tool for

Optimization

by

Ali Umut İrtürk

Doctor of Philosophy in Computer Science

University of California San Diego, 2009

Ryan Kastner, Chair

Matrix computations lie at the heart of many scientific computational al-

gorithms including signal processing, computer vision and financial computations.

Since matrix computation algorithms are expensive computational tasks, hardware

implementations of these algorithms requires substantial time and effort. There is

an increasing demand for a domain specific tool for matrix computation algorithms

which provides fast and highly efficient hardware production.

This thesis presents GUSTO, a novel hardware design tool that provides a

push-button transition from high level specification for matrix computation algo-

rithms to hardware description language. GUSTO employs a novel top-to-bottom

design methodology to generate correct-by-construction and cycle-accurate appli-

cation specific architectures. The top-to-bottom design methodology provides sim-

plicity (through the use of a simple tool chain and programming model), flexibility

(through the use of different languages, e.g. C/MATLAB, as a high level specifi-

cation and different parameterization options), scalability (through the ability to

handle complex algorithms) and performance (through the use of our novel trim-

ming optimization using a simulate & eliminate method providing results that are

similar to these in commercial tools).

Although matrix computations are inherently parallel, the algorithms and

commercial software tools to exploit parallel processing are still in their infancy.

xxiii

Therefore, GUSTO also provides the ability to divide the given matrix computation

algorithms into smaller processing elements providing architectures that are small

in area and highly optimized for throughput. These processing elements are then

instantiated with hierarchical datapaths in a multi-core fashion.

The different design methods and parameterization options that are pro-

vided by GUSTO enable the user to study area and performance tradeoffs over a

large number of different architectures and find the optimum architecture for the

desired objective. GUSTO provides the ability to prototype hardware systems in

minutes rather than days or weeks.

xxiv

Chapter 1

Introduction

1.1 Motivation

Matrix computations lie at the heart of many scientific computational tasks.

For example, wireless communication systems use matrix inversion in equalization

algorithms to remove the effect of the channel on the signal [4–6], mean variance

framework in financial computation uses matrix inversion to solve a constrained

maximization problem to provide optimum asset allocations for an investor [21],

and the optimal flow computation algorithm in computer vision uses matrix in-

version for motion estimation [22]. There is an increasing demand for a domain

specific tool for matrix computation applications which provides fast and highly

efficient hardware production.

This thesis presents GUSTO (General architecture design Utility and

Synthesis Tool for Optimization), a novel hardware design tool that provides a

push-button transition from high level specification for matrix computation

algorithms to hardware description language. GUSTO employs a novel top-to-

bottom design methodology to generate correct-by-construction and cycle-

accurate application specific architectures. The top-to-bottom design methodol-

ogy provides simplicity (through the use of a simple tool chain and programming

model), flexibility (through the use of different languages, e.g. C/MATLAB,

as a high level specification and different parameterization options), scalability

(through the ability to handle complex algorithms) and performance (through

1

2

the use of our novel trimming optimization using a simulate & eliminate method

providing results that are similar to these in commercial tools). GUSTO also pro-

vides the ability to divide the given matrix computation algorithms into smaller

processing elements results in architectures that are small in area and highly opti-

mized for throughput, then instantiates these PEs with hierarchical datapaths in a

multicore fashion. The different design methods and parameterization options that

are provided by GUSTO enable the user to study area and performance tradeoffs

over a large number of different architectures and find the optimum architecture

for the desired objective. GUSTO provides the ability to prototype hardware sys-

tems in just minutes instead of days or weeks with these capabilities.

The anticipated benefits of this dissertation are:

1) Rapid development of single-core FPGA elements: GUSTO is a design

tool which allows rapid development of complex matrix computation algorithms with

different parameterization options. GUSTO is useful for a wide variety of designs,

providing higher performance computing and faster time to market;

2) Hierarchy Datapath Implementation for multi-core FPGA elements:

GUSTO is capable of dividing the given algorithms into small highly parallelizable

PEs, generate hardware and combine these small PEs with hierarchical datapaths

in a multi-core architecture fashion. Resulting multi-core architecture solutions are

expected to be smaller, cheaper, and lower power than can be achieved using exist-

ing EDA (Electronic Design Automation) tools;

3) An FPGA Engine for MATLAB: MATLAB programs can have excellent

performance for matrix-heavy computations. Therefore, many scientific computa-

tional algorithms such as signal processing, computer vision and financial com-

putations are typically written and tested using MATLAB. GUSTO lets software

engineers to implement hardware out of MATLAB code without knowledge in hard-

ware design;

4) Domain specific: MATLAB is the de facto standard language for many matrix

computation algorithms, and there are a number of tools that translate such algo-

rithms to a hardware description language; however, the majority of these tools

3

attempt to be everything to everyone, and often fail to do anything for anyone.

GUSTO takes a more focused approach, specifically targeting matrix computation

algorithms;

5) Built-in Libraries: GUSTO provides a path to built-in libraries, including

previously implemented matrix computation algorithms, to be used while designing

larger applications;

6) End Platform Independency: GUSTO can target different platforms such

as GPUs (Graphics Processing Units) and CMPs (chip multiprocessors) with the

appropriate changes to the back end of the tool.

1.2 Research Overview

GUSTO receives the algorithm from the user and allows him/her to select

the type and number of arithmetic resources, the data representation (integer and

fractional bit width), and automatically generates optimized application specific

PEs (Figure 1.1). Application specific architectures that are generated by GUSTO

employ the optimal number of resources which maximizes the throughput while

minimizing area. GUSTO also incorporates hierarchical datapaths and heteroge-

neous architecture generation options. By using these features, a user can divide

the given algorithms into small highly parallelizable parts, generate hardware us-

ing GUSTO and combine these small PEs with hierarchical datapaths to perform

multi-core processing.

In the architecture generation step, GUSTO creates a general purpose PE

which exploits instruction level parallelism. GUSTO then simulates the general

purpose PE to collect scheduling information and perform resource trimming to

create an optimized application specific PE while ensuring the correctness of the

solution is maintained. These optimizations are divided into two sections:

1) Static architecture generation: GUSTO generates a general purpose PE

and its datapath by using resource constrained list scheduling after the required

inputs are given. Simulating this architecture helps GUSTO to reveal the assign-

4

Algorithm AnalysisAlgorithm

Instruction Generation

Resource AllocationType and # of
Arithmetic Resources

Design Library

Error Analysis Error Analysis

Architecture GenerationData Representation

Collecting Scheduling Information

Resource Trimming for Hardware Optimization

Area, Latency and
Throughput Results

Simulation
Results

General Purpose
Processing Element

Application Specific
Processing Element

Figure 1.1: Design Flow of GUSTO.

ments done to the arithmetic units and the memory elements during the scheduling

process. Gathering this information and using it to cancel the scheduling process

and dynamic memory assignments results in an optimized architecture with sig-

nificant area and timing savings.

2) Trimming for optimization: GUSTO performs trimming of the unused

resources from the general purpose PE while ensuring that correctness of the so-

lution is maintained. GUSTO simulates the architecture to define the usage of

arithmetic units, multiplexers, register entries and input/output ports and trims

away the unused components with their interconnects. A trimming example is

shown in Figure 1.2(a,b,c and d).

GUSTO provides different design methods and parameterization options

which enables the user to study area and performance tradeoffs over a large num-

5

A

B mem

InB1 InB2 Inmem

OutA

OutB

OutB
Outmem1

InA1

A

InA1 InA2

OutA
(a) Suppose there are two arithmetic units, A, B, and one memory. Arithmetic

Units have 2 inputs, 1 output; Memory unit has 1 input, 2 output ports.

(b) Input/Output ports relationship
between A and A, B, Memory is shown

assuming that every unit is connected to A.

(c) This Input/Output ports
relationship can be described as a 2

× 4 matrix. 1s and 0s represent
used and not-used interconnects.

(d) Trimming is performed using the
optimization matrix.

OutA

Outmem1

OutA
OutB

OutMem1

InA1

InA2

Outmem2

InA2

Outmem2

OutB
Outmem1
Outmem2

OutA

OutMem2

A

OutB

InA1 InA2

Outmem2 Outmem1

OutA

OutA

0 1 0 1

1 0 1 0

Figure 1.2: Flow of GUSTO’s trimming feature.

ber of different architectures and pick the most efficient one in terms of the desired

objective. Figure 1.3 shows the tradeoff between computational throughput and

area for various matrix multiplication architectures. There are three different de-

sign methods:

1) Using one PE for entire matrix multiplication: Implementations 1-3 are

the outputs of GUSTO with different number of functional units;

2) Designing a homogeneous architecture by dividing the given compu-

tation into identical PEs: Implementations 4-9 are the outputs of GUSTO with

different number of PEs;

3) Designing a heterogeneous achitecture with different types of PEs us-

ing hierarchical datapaths: Implementations 10-12 are heterogeneous architec-

tures that are the outputs of GUSTO with different types of PEs using hierarchical

datapaths.

The ability to divide the given algorithm into smaller processing elements

results in architectures that are small in area and highly optimized for throughput.

These different design methods and parameterization options enables the user to

study area and performance tradeoffs over a large number of different architec-

6

798 775 643 9552 597 5024 628 2660 665 1293 1822 1859

1.18
0.86

0.69

8.58

0.54

5.97

0.75

3.71

0.93 1.24
1.72 1.85

0

1

2

3

4

5

6

7

8

9

10

0

2000

4000

6000

8000

10000

12000
Area Throughput

#
of

Sl
ic

es

T
hr

ou
gh

pu
t

Design Method 1:
Matrix multiplication

using 1 PE

Design Method 2:
Matrix multiplication using different

number of PE with hierarchical
datapaths

Design Method 3:
Matrix multiplication
with a heterogeneous

architecture using
different number of

PEs

1 2 3 4 5 6 7 8 9 10 11 12Implementation

Figure 1.3: Hardware implementation of matrix multiplication architectures
with different design methods using GUSTO.

tures. This will result in more detailed design space exploration and more efficient

hardware implementations that enable us to exploit both instruction and task level

parallelism.

The efficiency of hardware implementation using GUSTO is validated with

various matrix computation algorithms and applications that mainly employs ma-

trix computations. For example, we compare our results for QR decomposition

based matrix inversion algorithms to other published work in Table 1.1. It can be

seen that even though the GUSTO algorithms are defined in a convenient high level

manner suitable to rapid design, the resulting hardware is as fast, efficient, and

compact as state of the art hardware designed without the benefit of the GUSTO

high level design tool.

1.3 Organization of Dissertation

This dissertation is organized in the following manner:

CHAPTER 2 introduces existing parallel hardware platforms that are being used

for implementation of matrix computation algorithms: Graphic Processing Units

(GPUs), Massively Parallel Processor Arrays (MPPAs) and Field Programmable

7

Table 1.1: Comparisons between our results and previously published papers. NR
denotes not reported.

[163] GUSTO [160] GUSTO [161] GUSTO
Matrix Dimensions 3 × 3 3 × 3 4 × 4 4 × 4 4 × 4 4 × 4

Bit width 16 16 12 12 20 20
Data type fixed fixed fixed fixed floating fixed

Device type (Virtex) IV IV II II IV IV
Slices 3076 1496 4400 2214 9117 3584

DSP48s 1 6 NR 8 22 12
BRAMs NR 1 NR 1 NR 1

Throughput (106 × s−1) 0.58 0.32 0.28 0.33 0.12 0.26

Gate Arrays (FPGAs), discusses their inherent advantages and disadvantages,

presents a literature survey to compare existing parallel platforms in implementa-

tion of different applications and provides a roadmap for the multi-core hardware

implementation that combines most of the advantages provided by the existing

platforms.

CHAPTER 3 introduces existing design tools that are implemented in academia

and industry, discusses their inherent advantages and disadvantages and presents

a roadmap for a tool specifically targeting matrix computation architectures.

CHAPTER 4 introduces the definitions of matrix comptations and presents differ-

ent matrix computation algorithms that are employed throughout this dissertation:

matrix multiplication, matrix decompositions (QR, LU and Cholesky), decompo-

sition based matrix inversion and analytic method for matrix inversion.

CHAPTER 5 focuses on the basics of GUSTO and its design flow: algorithm analy-

sis, instruction generation, resource allocation, error analysis, architecture genera-

tion, optimizations performed namely static architecture generation and trimming

for optimization. This chapter also presents GUSTO generated architectures for

matrix multiplication, matrix decomposition (QR, LU and Cholesky) and matrix

inversion (QR, LU, Cholesky, Analytic), a case study: Implementation of Adaptive

Weight Calculation Core using QRD-RLS Algorithm and compares these results

with the previously published works. This chapter focuses on instruction level

8

parallelism.

CHAPTER 6 details the general purpose processor architecture that is generated

by GUSTO, discusses design decisions and challenges and optimizations performed

to generate an optimized application specific processor architecture.

CHAPTER 7 focuses on the problem of scalibity of architectures with the com-

plexity of algorithms and introduces hierarchical datapaths and heterogeneous ar-

chitecture generation methodology which provides a more detailed design space

exploration and more efficient hardware implementations. This chapter focuses on

task level parallelism.

CHAPTER 8 presents an application, Mean Variance Framework that is being

used to determine the best allocation for a given investor in financial markets, its

design and analyses using GUSTO.

CHAPTER 9 gives some ideas for future research directions to improve our tool,

GUSTO.

Chapter 2

Parallel Platforms for Matrix

Computation Algorithms

Matrix computations is a topic of great interest in numerical linear algebra.

Since many of these matrix computation algorithms are computationally expensive

and memory demanding tasks, it is an area where there is much interest in parallel

architectures. There has been an extensive research for new architectures that

provide various types of computational cores on a single die. Examples to these

platforms are Chip Multiprocessors (CMPs), Graphical Processor Units (GPUs),

Massively Parallel Processor Arrays (MPPAs) etc. where they have different types

of architectural organizations, processor types, memory management etc. Each of

these architectures has their inherent (dis)advantages, yet all rely heavily on the

ability to expose vast amounts of parallelism.

Since the application market that uses matrix computations is quickly

spreading which reduces the time available for design of individual applications [109],

there is an increasing demand for design tools that can accelerate the mapping pro-

cess, as well as the optimizations of these algorithms, to these particular highly

parallel platforms. Examples of these tools include NVIDIA Compute Unified

Device Architecture (CUDA) for GPUs, aDesigner for MPPA. Using a high level

design tool often comes with its own price, and can be seen as a tradeoff between

time/efficiency and quality of results. How to design a powerful tool for a particular

architecture is still an important area of research.

9

10

If one wants to design and implement a platform that provides large amount

of parallelism, the choice of a computing platform plays an important role. De-

signers need to decide between a hardware or software implementation to exploit

inherent parallelism. The hardware implementation consists of designing an Ap-

plication Specific Integrated Circuit (ASIC), which offers exceptional performance,

but long time to market and high costs for all but the largest production chips.

The software route tends towards the use of Digital Signal Processors (DSPs)

due to the ease of development and fast time to market. However, they lack the

performance for high throughput applications. Field Programmable Gate Arrays

(FPGAs) are prevalent for computationally intensive applications since they can

provide large amount of parallelism. FPGAs play a middle role between ASICs and

DSPs, as they have the programmability of software with performance approach-

ing that of a custom hardware implementation. The reconfigurable hardware, as

in the case of FPGA, was proven efficient to be allowing optimal distribution of

computations [110].

We foresee that reconfigurable architectures, particularly FPGAs, are the

best platforms to test and design future extremely parallel multi-core architectures

due to their flexible architecture that can morph itself to tackle the precise problem

at hand, their ability to handle non-regular memory accesses required by high-level

algorithms, low non-recurring engineering costs (NREs) and their potential path

to application specific integrated circuits (ASICs).

Therefore, the main goal of this chapter is to learn from (dis)advantages

of existing parallel architectures, and propose a roadmap for an architecture that

combines most of these advantages provided by the existing platforms. This chap-

ter provides the following information:

• Architecture, (dis)advantages of the platform, design flow/tools, and an ex-

ample family and/or device with the specifications for Graphic Processing

Units (GPUs), Massively Parallel Processor Arrays (MPPAs) and Field Pro-

grammable Gate Arrays (FPGAs);

• A literature survey to compare existing parallel platforms in implementation

of different computationally intensive applications;

11

• A roadmap for the multi-core hardware implementation using FPGAs that

can combine most of the advantages provided by the existing platforms.

2.1 Graphic Processing Units (GPUs)

This section introduces Graphics Processing Units (GPUs) and advances in

GPUs to delve into the general purpose computation using GPUs (GPGPU). GPUs

traditionally designed to perform computation of the screen images to be displayed

on computer monitors by transforming the input data to pixels on screen in form

of geometry which is known as rendering. Since these devices need to render a

large number of screen pixels, ∼ 30 times per second, they have employed huge

amount of processing power. Therefore they became attractive for high performace

computation.

The rendering process, computation of screen pixels from input data, in the

traditional GPUs performs a classical rendering pipeline using OpenGL (OpenGL

is an Application Programming Interface (API) for GPU programming) which in-

cludes several stages: Vertex, Primitive Assembly, Rasterization, Fragment and

Buffer Operations. We introduce these general steps briefly and more detailed

explanation can be found in [102].

Vertex stage computes all the values that belongs to a vertex, node in a geometry.

The transformation of vertices to view coordinates and attributes (color, texture

etc.) is also processed in this stage.

Primitive assembly stage assembles all the vertices and creates primitives, tri-

angles etc.

Rasterization stage performs sampling on the scene at regular intervals to create

fragments, meta-pixels which are not written to screen yet.

Fragment stage adds textures and performs other calculations like per-fragment

to provide more realistic rendering.

Buffer operations stage perfoms tests on the fragment to determine if it should

be written to the framebuffer, discarded or blended.

The programmable stages of these traditional GPUs are Vertex processor in

12

the Vertex stage and Fragment processor in the Fragment stage. Fragment proces-

sor is the most powerful and more in quantity compared to the Vertex processors

since most of the operations are executed in this type of processors. For example,

ATI Radeon X1900 XTX includes 8 vertex and 48 fragment processors [103].

Even though GPUs are such a powerful computational devices, they don’t

provide the programming flexibility. There exists several different interfaces to

the GPU to abstract away the obscure details that a user needs to program the

GPU [95,96]. These interfaces still require the user to have some knowledge about

the GPU programming and GPU hardware for efficient programming. The tradi-

tional interfaces, graphics APIs: OpenGL [97] and DirectX [98], provide an ease for

programming while rendering graphics. However it is hard to program advanced

rendering techniques and non-graphical algorithms since these APIs only include

some certain functions and it is inefficient and time-consuming to use the em-

bedded functions for non-graphical algorithms. These APIs provide the following

advantages to the vendors and users:

• Simplification of the the high-level programming model since users do not

need to write codes directly to the metal, know some of the complex details

of the GPU architecture and learn the new generation GPU architectures to

be able to program;

• Hardware abstraction from the users lets vendors to change the GPU archi-

tecture as often as desired.

There also exist some high level interfaces to the GPUs which are a lot easier

to program: PeakStream [99], RapidMind [100] and CUDA [101]. These high

level interfaces use C/C++ languages and still requires some insight into the GPU

programming model to be able to write some special code for parallel processing.

Therefore most of the these traditional GPUs have the following disadvan-

tages:

• Most importantly, computer graphics vendors do not disclose the underlying

architecture of GPUs which prevents users to have more control on GPUs.

13

Therefore considerable amount of time is spent on understanding this under-

lying architecture to be able to map computationally intensive calculations

onto GPU hardware efficiently;

• Most of the GPUs provide single precision floating point which is not IEEE

754 conformant either and result in erronous computations of certain arith-

metic operations;

• Traditional interfaces, graphics APIs: OpenGL [97] and DirectX [98], are

hard to program. High level interfaces for the GPUs: PeakStream [99](ac-

quired by Google in 2007), RapidMind [100] and CUDA [101] use only

C/C++ languages, require some insight into the GPU programming model

and still require the developers to analyze the application to be able to divide

the data into smaller chunks to be distributed into different processors [111];

• There exist some missing hardware implementation in GPUs since these de-

vices are designed for graphic processing [102]. For example, for-loops im-

plementation on processors are truncated to be maximum 25 [108];

• GPUs include a little logic for branch prediction, cache control and instruc-

tion pipelining since these logics are not required to compute screen images.

Branching is very costly on GPUs since if one thread takes a branch, all

of other threads, which didn’t take the branch, need to wait for that single

thread to complete;

• GPUs lack highly efficient caches and use relatively modest cache size (com-

pared to CPUs). Therefore GPUs rely on their fast access to the RAM and

access to the RAM more often compared to CPUs;

• GPUs are power-hungry platforms that require special cooling.

The recent advances in GPUs lead to the various changes in the architec-

tural side of GPUs to correct some of these disadvantages and make them more

appropriate for general purpose computing. Some of these architectural changes

are:

14

• Combination of the two processors, vertex and fragment, that results in a

unified processor architecture: NVIDIA GeForce 8800 GTX has 128 unified

processors [104]. These processors are called stream processors (SPs);

• Modification of overall organization of SPs in the latest generation GPUs

like Tesla S1070 Computing System. In this new architecture, 8 SPs are

combined to form a Stream Multi-processor (SM) where each SM includes a

dedicated L1 cache for better data accesses [105];

• GPU vendors also start to provide GPUs with double precision floating point.

However employing double precision floating point is still very costly com-

pared to single precision or emulation of double precision floating point [106,

107], and it comes around at the price of half of the computational power

compared to single precision. It is also important to note that employing dou-

ble precision does not neccesarrily mean that each processor will be equipped

with a floating point unit. One of the latest GPUs, the NVIDIA Tesla S1070

Computing Systems, includes one double precision floating point unit in each

each Stream Multi-processor(SM).

However, GPUs still have the following disadvantages:

• Being closed architecture;

• High cost and inefficient double precision floatint point units;

• Expensive branching;

• Previous analysis requirement to be able to distribute the given application

among processors;

• High level programming language dependency to specific tools;

• High power consumption.

We show an GPU architecure in Figure 2.1. GPU architecture employs

large number of ALUs, therefore removes scheduling logic needed for exploiting

instruction level parallelism and caches that remove memory latency. Therefore

15

DDR BankDDR Bank DDR Bank DDR Bank

Thread-Aware Scheduler

CPU

Dynamic Arbitration

CPU CPU CPU CPU CPU CPU CPU

Register

Register

Register

Register

ALU

ALU

ALU

ALU

Dynamic
Arbitration

RAM

RAM

RAM

RAM

Figure 2.1: GPU Architecture [87].

GPUs employ thread level parallellism to decrease latency that is introduced by

removing scheduling logic. Each CPU can execute up to 1024 threads at once

where threads execute in batches of 32 threads. These 32 threads are called warps

and they provide SIMD style parallelism which also provides the ability to inde-

pendently enable and disable each thread within a wrap. While using GPUs, it is

important to ensure that:

• Highest number of threads are active within a wrap to achieve a higher level

of parallelism;

• All threads take the same branch of conditional statements;

• The same number of loops are executed in threads.

By far the most popular high level design tool for GPU programmming is NVIDIA

Compute Unified Device Architecture (CUDA), 2006, that is a low-level API that

accesses GPU hardware without going through the graphics API. The design flow

using CUDA for NVIDIA GPUs is shown in Figure 2.2 and explained below.

16

Front-end Preprocessor from
Edison Design Group

(EDG)

C/C++ CUDA
Application

CPU Code

Open64
(An Open-Source C/C++ Compiler)

PTX to Target Translator

PTX (Parallel Thread eXecution)
Code

Target Code for Specific
NVIDIA GPUs

Figure 2.2: The design flow using CUDA for NVIDIA GPUs.

A developer needs to analyze the application, algorithm and data, decides

on the optimal number of threads and blocks which fully utilize the GPU hardware

and expresses the solution in C or C++ using CUDA-speak language (CUDA

extensions and API calls). It is important to note that this requires a manual

effort such that 5,000 concurrent threads are seen as the optimal distribution for

GeForce 8 to keep the GPU occupied [111].

Codes written using CUDA target two different processor architectures: GPU and

CPU. EDG step, which employs a front-end preprocessor from Edison Design

Group, performs the seperation of the souce code for each target architecture and

creates different source files for these architectures.

Open64 step, an open-source C/C++ compiler which is originally designed for

Intel’s Itanium architecture, generates Parallel Thread eXecution (PTX) codes

which can be seen as assembly language. PTX codes are device-driver files that

17

are not specific to any particular NVIDIA GPU.

PTX to Target Translator step translates PTX codes to run on the particular

device.

NVIDIA became the largest independent GPU vendor after ATI is acquired

by AMD in 2006. We show the specifications of one of the newest generation of

GPUs from NVIDIA in Table 2.1. This device is specifically designed for high

performance computing. Other product brands from NVIDIA are Quadro series:

professional graphics workstations, and GeForce series targeting traditional con-

sumer graphics market.

Table 2.1: Specifications of the NVIDIA Tesla S1070 Computing System [105].

Number of Tesla GPUs 4
Number of Streaming Processor Cores 960 (240 per processor)

Frequency of Processor Cores 1.296 to 1.44 GHz
Single Precision Floating Point Performance (peak) 3.73 to 4.14 TFlops
Double Precision Floating Point Performance (peak) 311 to 345 GFlops

Floating Point Precision IEEE 754 single & double
Total Dedicated Memory 16GB

Memory Interface 512-bit
Memory Bandwidth 408GB/sec

Max. Power Consumption 800W
System Interface PCIe ×16 or ×8

Programming Environment CUDA

2.2 Massively Parallel Processor Arrays (MP-

PAs)

Massively Parallel Processor Arrays (MPPAs) employ hundreds of extremely

simple in-order-RISC CPUs to introduce massive parallelism. These simple CPUs

employ small local memories and are instantiated in a regular grid using 2D com-

munication channels between them. MPPAs are different than multi-core or many-

core conventional processors (CMPs), shown in Figure 2.3, since these conventional

18

processors operate the same way as single-processor CPUs by employing only a few

processors with a shared-memory architecture [87] and large control units devoted

to management and scheduling tasks.

Shared Cache

CPU

DDR Memory

Registers

Local Cache

ALU CPU CPU CPU CPU
Task Controller

Figure 2.3: Multi-core CPU architecture.

There are several different MPPA architectures: Ambric from Ambric, Inc.,

picoArray from picoChip and SEAforth from IntellaSys. We consider Ambric

AM2000 family [88] as an example to these type of architectures and we explore

MPPAs in more detail using Ambric architectures since these are the newest and

most advanced type of architectures. These extremely simple CPUs, that are

employed in MPPAs, provide high efficiency in terms of peak performance per

mm2 and power efficiency. However MPPAs introduce significant problems while

• partitioning the given applications onto hundreds of processors;

• efficiently organizing communications over a network that favours local com-

munication over global communication;

• mapping the two different type of processors that are employed in Ambric

chip architectures.

Ambric family MPPAs are programmed using a software development tool suite,

aDesigner, which uses a Structured Object Programming Model (SOPM). This

19

integrated development environment (IDE) is based on Eclipse [89] open develop-

ment platform.

aDesigner enables software engineers to target Ambric MPPAs using a set

of objects and structures. Objects are written in a subset of standard Java or

assembly code and target CPUs inside the Ambric architecture. Software engineers

are also able to load objects from the predefined libraries. Structured objects,

combination of objects, is specified with a text-based structural language or using

a graphical block diagrams [90–92]. A structural object programming model is

shown in Figure 2.4.

5 62

6 74 83

1 9

An object running on
Ambric Processor An composite object Ambric channel

Structure

Figure 2.4: Structural object programming model for Ambric Architecture.

Defined objects execute independently on their own parallel architecture,

no sharing, multi-threading or virtualizing is exploited. Structural objects have

no effect on each other and there is no implicitly shared memory between struc-

tural objects. Data and control token communication between objects and/or

structural objects is accomplished using simple FIFO style parallel structure of

hardware channels which are word-wide, unidirectional, point-to-point from each

other. These hardware channels are self synchronizing at run time.

Ambric MPPA design flow includes the following steps [93]: Structure,

Code, Reuse, Verify, Realize and Test which are shown in Figure 2.5.

Structure step requires the design of the structure of objects for the desired ap-

plication as well as the required control/data-flow between objects/structures.

In Code step, user codes the required structures and objects using Java or assem-

20

5 62

6 74 83

1 9

1. Structure

2. Code Java
Code

Java
Code

Java
Code

Java
Code

Java
Code

3. Reuse Java
Code

Java
Code

Java
Code

Library

4.
Verify

5.
Realize

6.
Test

Ambric
Simulator

Ambric
Device

Figure 2.5: Design Flow of Ambric MPPA and its steps: Structure, Code,
Reuse, Verify, Realize and Test.

bly code.

Reuse step shows that if any of the required structures or objects are predefined,

therefore they are in the library, they can be instantiated from the library and no

coding is required.

Verify step verifies the implementation using Ambric simulator.

Realize step maps and routes the design to the target Ambric device using map-

ping & routing tool.

Test step verifies that the designed architecture works properly.

Next subsections provide more insight about Ambric family as well as

AM2045 architecture.

2.2.1 Ambric Family Overview

Ambric chip architecture, presented in Figure 2.6, employs Compute Units

(CUs) which are a cluster of 4 processors. These processors have two different

types: SRD and SR [94].

• SRD processor is a 32-bit streaming processor with a directly accessible local

21

memory. SRD processor is the main processor type in Ambric architecture

and includes DSP extensions for math-intensive applications with larger reg-

isters and an integer multiply-accumulate unit.

• SR processor is another 32-bit streaming processor which is simpler compared

to SRD processors. The main purpose of these type processors are managing

the generation of complex address streams, controlling the channel traffic and

performing other utiliy tasks to sustain high throughput for SRD processors.

SR SRD SR SRDCU

RAM RAM RAM RAMRU

SR SRD SR SRDCU

RAM RAM RAM RAMRU

SR SRD SR SRDCU

RAM RAM RAM RAMRU

SR SRD SR SRDCU

RAM RAM RAM RAMRU

CU

RU

CU

RU

CU

RU

CU

RU

CU

RU

CU

RU

CU

RU

CU

RU

Figure 2.6: Ambric Architecture.

Ambric chip architecture also emplys the RAM Units (RUs) which are the

main on-chip memories. RUs are responsible for data and address streaming over

communication channels. CPUs connect each other through self-synchronizing uni-

directional FIFOs where source and destination can operate at different clock rates.

CPUs in a bric, the combination of CUs and RUs, connect to RAMs through a

dynamically arbitrating interconnect where CPUs stream data between each other,

22

read and write to the RUs and create a chip-wide 2D channel network. Using this

kind of interconnect lets CPUs to access external resources such as PCI Express,

general purpose I/O and DDR RAMs as well as transfer data to and from CPUs

and RAMs to elsewhere in the device.

The combination of 2 CUs and 2 RUs is called a bric in Ambric architecture

which can be seen as a measure of compute-capacity. Each bric consists of 8 CPUs

and 21 KBytes of SRAM. The Ambric archicture is assembled by stacking up these

brics.

2.2.2 Ambric AM2045 Architecture

Ambric AM2045 employs 336 extremely simple custom RISC (32-bit SR

and SRD) processors with 45 brics in an array. Processors run at 350 Mhz and

access 7.1 Mbits of distributed SRAM. The properties of SR and SRD CPUs for

Ambric AM2045 are shown in Table 2.2. Processors execute with a throughput

and latency of 1 clock cycle due to the standard register usage as long as the

instructions are scheduled in a way that no stall occurs. Other possible reasons for

stalling are conditional jumps and usage of multiply-accumulator. Ambric AM2045

architecture supports 792 gigabit per second bisection interconnect bandwidth, 26

Gbps of off-chip DDR2 memory, PCI Express (8 Gbps each way) and upto 13 Gbps

of parallel general purpose I/0.

Table 2.2: Specifications of the SR and SRD processors.

SR SRD
Instruction width 16 32

Number of Registers 8 20
Local Memory (bytes) 256 1024

ALUs 1 3
Shifter 1-bit multi-bit

Multiply-accumulate no yes

23

2.3 Field Programmable Gate Arrays (FPGAs)

This section concentrates on Field-Programmable Gate Arrays (FPGAs)

and their underlying architecture. We also provide information about the specific

device, V irtex-4 from Xilinx, that is used in our hardware implementations.

FPGAs were invented by Xilinx in 1984. They are structured like the

gate arrays form of Application Specific Integrated Circuits (ASICs). The archi-

tecture of the FPGAs consists of a gate-array-like architecture, with configurable

logic blocks, configurable I/O blocks, and programmable interconnects. Additional

logic resources may include ALUs, memory elements, and decoders. The three ba-

sic types of programmable elements for an FPGA are static RAM, anti-fuses, and

flash EPROM. Segments of metal interconnect can be linked in an arbitrary man-

ner by programmable switches to form the desired signal nets between the cells.

FPGAs can be used in virtually any digital logic system and provide the benefits

of high integration levels without the risks of expenses of semicustom and custom

IC development. An FPGA architecture is presented in figure 2.7.

FPGAs give us the advantage of custom functionality like the Application

Specific Integrated Circuits while avoiding the high development costs and the

inability to make design modifications after production. The FPGAs also add

design flexibility and adaptability with optimal device utilization while conserving

both board space and system power. The gate arrays offer greater device speed

and greater device density. Taking these into consideration, FPGAs are especially

suited for rapid prototyping of circuits, and for production purposes where the

total volume is low. On the other hand, FPGAs have the following disadvantages:

• Increased development time and efforts. There are several different high level

design tools to ease this burden and we will introduce these design tools in

the next chapter. However, architectures that are generated using high level

design tools often lead to low-quality results: under-utilized resources and/or

lower throughput, compared to the hand-tuned designs;

• Higher interconnect delays in complex architectures that result in larger area

and lower clock frequencies compared to ASICs.

24

RAM

RAM

RAM

DSP

DSP

DSP

CLB

CLB

CLB

CLB

CLB

CLB

Input Select

Output Select

LUT

FF

LUT

FF

LUT

FF

LUT

FF

CLB

Figure 2.7: An FPGA architecture and its resources: I/O cells, logic blocks
(CLBs) and interconnects.

FPGA design flow, shown in Figure 2.8, includes the necessary steps [86]: design

entry, design synthesis, design implementation and device programming; as well

as design verification, required to design an FPGA using Verilog HDL.

Design Synthesis process checks code syntax and analyzes the hierar-

chy of the given design in design entry step and provides RTL Schematic and

technology mapping. This step ensures that given design is optimized for the de-

sign architecture that is selected. Created netlist, connectivity of the design, is

saved as an NGC file (for Xilinx Synthesis Technology (XST)) or an EDIF file (for

LeonardoSpectrum, Precision, or Synplify/Synplify Pro) to be used with one of

the following synthesis technology tools:

• Xilinx Synthesis Technology (XST);

• LeonardoSpectrum from Mentor Graphics Inc.;

• Precision from Mentor Graphics Inc.;

25

Design Entry

Design
Synthesis

Design Implementation

Xilinx Device
Programming

FPGA Design Flow

Behavioral
Simulation

Functional
Simulation

Static Timing
Analysis

Timing
Simulation

In-Circuit
Verification

Design Verification

Back
Annotation

Figure 2.8: Xilinx ISE design flow and its steps: design entry, design synthesis,
design implementation and Xilinx device programming. Design verification
occurs at different steps during the design flow.

• Synplify and Synplify Pro from Synplicity Inc.

Design Implementation follows design synthesis and includes the following

steps: translate, map, place and route and programming file generation.Translate

merges the netlists (generated in design synthesis step) and constraints; and cre-

ates a Xilinx design file; Map fits the design into the available resources on the

user defined target device; Place and Route places and routes the design to the

timing constraints; and Programming file generation creates a bitstream file to be

downloaded to the user defined device.

Functional Verification verifies the functionality of the design at different points

in the design flow with behavioral simulation (before synthesis), functional simu-

lation (after translate) and/or in-circuit verification (after device programming).

Timing Verification verifies the timing of the design at different points in the

design flow with static timing (after Map and/or Place & Route) and timing sim-

ulation (after Map and/or Place & Route).

Unlike the two previous architectures, FPGAs do not have any fixed instruction-

26

set architecture. Instead they provide a fine-grain grid of bit-wise functional units,

which can be composed to create any desired circuit or processor. Most of the

FPGA area is actually dedicated to the routing infrastructure, which allows func-

tional units to be connected together at run-time. Modern FPGAs also contain a

number of dedicated functional units, such as DSP blocks containing multipliers,

and RAM blocks.

2.3.1 Xilinx Virtex-4 Family Overview

V irtex-4 family from Xilinx combines advanced silicon modular block ar-

chitecture with a wide variety of flexible features [84]. This enhances programmable

logic design capabilites and makes it a powerful alternative to ASIC technology.

V irtex-4 devices are produced on a state-of-the-art 90-nm copper process using

300-mm wafer technology. There are three different platform families: LX, FX and

SX, for V irtex-4 devices. LX family is for high-performance logic applications so-

lution, SX family is for high performance solution for digital signal processing

applications and FX family is for high-performance, full featured solution for em-

bedded platform application. V irtex-4 hard-IP core blocks includes the PowerPC

processors, tri-mode Ethernet MACs, dedicated DSP slices, 622 Mb/s to 6.5 Gb/s

serial transceivers, high-speed clock management circuitry and source-synchronous

interface blocks.

2.3.2 Xilinx Virtex-4 Architecture

V irtex-4 devices are user-programmable gate arrays. They consist of vari-

ous configurable elements and embedded cores which are optimized for high-density

and high-performance system designs. Functionality of V irtex-4 devices are I/O

blocks, configurable logic blocks (CLBs), block ram modules (BRAMs), embedded

XtremeDSP slices and digital clock manager (DCM) blocks.

I/O blocks provide the interface between internal configurable logic and package

pins. They are enhanced for source-synchronous applications.

IOB registers are either edge-triggered D-type flip-flops or level-sensitive latches.

27

CLBs are the basic logic elements for these devices. They provide combinatorial

logic, synchronous logic and distributed memory. Each CLB resource is made up

of four slices. And each slice is equivalent and contains two function generators

(F&G), two storage elements, arithmetic logic gates, large multiplexers and fast

carry look-ahead chain. The function generators are configurable as 4-input look-

up tables (LUTs). Storage elements are either edge-trigged D-type flip-flops or

level sensitive latches.

Block ram modules provide 18Kbit true dual-port ram blocks which are pro-

grammable from 16K × 1 to 512 × 36. And these modules are cascadable to form

larger memory blocks. Block ram modules contain optional programmable FIFO

logic for increased utilization. Each port in the block ram is totally synchronized

and independent; and offers three read-during-write modes.

Embedded XtremeDSP slices are cascadable and contain 18×18-bit dedicated

2’s complement signed multiplier, adder logic and 48-bit accumulator. Each mul-

tiplier or accumulator can be used independently.

V irtex-4 uses DCM and global-clock multiplexer buffers for global clocking. DCM

block provides self-calibrating, fully digital solutions for clock distribution de-

lay compensation, coarse/fine-grained clock phase shifting and clock multiplica-

tion/division. There are up to twenty DCM blocks available.

The general routing matrix (GRM) provides an array of routing switches

between components. Programmable elements are tied to a switch matrix which

allows multiple connections to the general routing matrix. All components in de-

vices use the same interconnect scheme and the same access to the global routing

matrix. The device utilization for V irtex-4 XC4VSX35 is shown in Table 2.5.

2.4 Learning from Existing Parallel Platforms

This section concentrates on two different questions that are natural interest

to many researchers:

• What are the advantages and disadvantages of existing parallel platforms:

ASICs, DSPs, CMPs, GPUs, MPPAs and FPGAs for a given application

28

Table 2.3: Specifications of the Xilinx V irtex-4 XC4VSX35 device.

Configurable Logic Blocks (CLBs)

Array (Row × Col) 96 × 40
Logic Cells 34,560

Slices 15,360
Max. Distributed RAM (Kb) 240

XtremeDSP Slices 192

Block RAM
18 Kb Blocks 192

Max. Block RAM (Kb) 3,456
DCMs 8

PMCDs 4
Total I/O Banks 1
Max. User I/O 448

since applications typically exhibit vastly different performance characteris-

tics depending on the platform? This subsection provides a literature survey

that compares these existing parallel platforms in implementation of different

computationally intensive applications;

• What is the roadmap to design and implementation of a multi/many-core

platform using FPGAs that combines the advantages of these existing parallel

platforms: CMPs, GPUs, MPPAs and FPGAs?

2.4.1 Comparison of Parallel Platforms

Applications typically exhibit vastly different performance characteristics

depending on the platform. This is an inherent problem attributable to architec-

tural design, middleware support and programming style of the target platform.

For the best application-to-platform mapping, factors such as programmability,

performance, programming cost and sources of overhead in the design flows must

be all taken into consideration.

In general, FPGAs provide the best expectation of performance, flexibil-

ity and low overhead, while GPUs and MPPAs tend to be easier to program and

require fewer hardware resources. FPGAs are highly customizable, while MPPAs

and GPUs provide massive parallel execution resources and high memory band-

29

width. These devices are specific purpose processors and can be used to assist pur-

pose processor in performing complex and intensive computations of applications

as accelerators. Three extreme endpoints in the spectrum of possible platforms:

FPGAs, MPPAs and GPUs can often achieve better performance than CPUs on

certain workloads [75]. They can process tasks loaded off the CPU and send the

results back upon completion or FPGAs can be stand alone. The vast comput-

ing resources and friendly programming environments of the FPGAs, MPPAs and

GPUs make them good fits to accelerate intensive computation.

The dataflow of an application is exploited in FPGAs through parallelism

and pipelining. Since CPUs have limited potential for parallelism, FPGAs have

one to two orders of magnitude greater throughput rate than CPUs [76–79]. GPUs

utilize a graphics pipeline designed for efficient independent processing of pixel

data [80]. Multiple pipelines are used to exploit system level parallelism in the

GPUs. An an example, GPUs outperform the CPUs by one to two orders of

magnitude [81–83] for image processing applications with low numbers of memory

accesses, and which are well matched to the instruction set.

NVIDIA’s CUDA and RapidMind, and Ambric’s aDesigner are high level

design language APIs and development environments for programming GPUs and

MPPAs respectively. Domain specific parallel libraries can be used as building

blocks to ease parallel programming on these platforms. On the other hand, FPGA

applications are mostly programmed using hardware description languages such as

VHDL and Verilog HDL. Recently there has been a growing trend to use high level

languages based on MATLAB or variations of C such as SystemC and Handel-

C which aim to raise FPGA programming from gate-level to a high-level. But

there are still many limitations for these languages such as control on hardware

generation, parallelism limitations, data types and floating point operations.

If a design is well matched to the instruction set of the GPUs or MPPAs,

we would expect their implementation to be advantageous. In case of memory

access, an application requiring random memory accesses would not be suited to

the GPUs with their limited memory on chip and caches or MPPAs with their

small local memories. Low memory usage in a regular manner is well suited to the

30

GPUs and MPPAs. FPGA designs can be implemented in such a way to make

efficient use of on-chip memory. This overcomes many of the limitations of the

GPUs and MPPAs and makes the FPGAs a more attractive solution.

Here, we present a literature survey that provides different comparisons of

architectural platforms while implementing computationally intensive algorithms.

Brodtkorb et. al [102] compared three different hardware platforms: CMP (In-

tel Core 2 Duo 2.4 GHz processor with 4MB cache, 4 GB system memory),

GPU (NVIDIA GeForce 8800 GTX with 768 MB graphics memory) and Cell BE

(PlayStation 3 with 3.2GHz processor and 256 MB system memory) through im-

plementation of four different algorithms: solving the heat equation with a finite

difference method, inpainting missing pixels using the heat equation, computing the

Mandelbrot set and MJPEG movie compression. These four examples represent

different characteristics for computational and memory access properties and can

be examples for a wide variety of highly parallel real-world problems. Solving the

heat equation and inpainting computation require streaming process with regu-

lar and irregular memory accesses; computation of Mandelbrot set and MJPEG

movie compression require large number of computations with uniformly and non-

uniformly distribution respectively:

• Solving the heat equation provides a comparison for how effective each plat-

form is at streaming data;

• Inpainting missing pixels provides a comparison for how effective each plat-

form is at streaming data, executing conditionals and computing on a subset

of the data;

• Computing the Mandelbrot set provides a comparison for how effective each

platform is with dynamic workloads and performing floating point operations;

• MJPEG movie compression provides a comparison for how effective each

platform is with a typical data flow, where the computational intensive part

of the code run on an accelerator.

Authors quantify the run-times of computation and memory accesses com-

pared to the total run-times for GPU and CELL BE which is shown in Table 2.4.

31

Table 2.4: Breaking down the run-times of GPU and CELL BE in terms of com-
putation and memory accesses [102]

Heat Inpainting Mandelbrot MJPEG

GPU
Memory 75% 55% 0% 80%

Computation 25% 45% 100% 20%

CELL BE
Memory 10% 10% 0% 5%

Computation 90% 90% 100% 95%

• Solving the heat equation: GPU suffers from the read-backs as can be seen

from the frequency of memory reads, therefore GPU barely provides better

results from CMP. Cell BE provides better results for this computation;

• Inpainting computation: Since GPU keeps a subset of the data in graphics

memory, the memory access frequency decreases and brings its performance

closer to Cell BE implementation and more better than CMP implementa-

tion;

• Computing the Mandelbrot set: GPU performs better than Cell BE and CMP

due to the computationally intensive calculations;

• MJPEG movie compression: GPU again performs better than CELL BE and

CMP.

Another computationally intensive computation is the random number gen-

eration that is required in most of the financial computations. Random number

generation is crucial for embrassingly parallel Monte-Carlo simulations. To under-

stand how these parallel architectures can be used for Monte-Carlo simulations,

one needs to understand how to efficiently implement random number generators.

Thomas et. al [87] compared different platforms: CPUs (Pentium 4 Core2), GPUs

(NVidia GTX 200), FPGAs (Xilinx Virtex-5) and MPPAs (Ambric AM2000) for

random number generation. The summary of target platforms is shown in Ta-

ble 2.5.

32

Table 2.5: Summary of target platforms [87]

Platform Device Model
Process Die Size Transistors Max. Power Clock Freq. Parallelism

(nm) (mm2) (Millions) (Watts) (GHz) (Threads)

CPU Intel P4 Core2 QX9650 45 214 820 170 3.00 4

GPU NVIDIA GTX 280 65 574 1400 178 1.30 960

MPPA Ambric AM2045 130 ? ? 14 0.35 336

FPGA Xilinx XC5VLX330 65 600 ? 30 0.22 N/A

The authors determined the most suitable random number generation al-

gorithm for each platform. Furthermore, they compared the results for different

platforms in terms of absolute performance of each platform and estimated power

efficiency. These results are shown in Table 2.6. Estimated power efficiency is

calculated using the peak power consumption of each device while ignoring the

supporting infrastructure: RAM, hard disks etc.

Table 2.6: Comparison of random number generation algorithms while implement-
ing on different platforms (top of the Table) and Comparison of different platforms
(bottom of the Table) [87]

Performance (GSample/s) Efficiency (MSample/joule)
CPU GPU MPPA FPGA CPU GPU MPPA FPGA

Uniform 4.26 16.88 8.40 259.07 15.20 140.69 600.00 8653.73
Gaussian 0.89 12.90 0.86 12.10 3.17 107.52 61.48 403.20

Exponential 0.75 11.92 1.29 26.88 2.69 99.36 91.87 896.00
Geo. Mean 1.42 13.75 2.10 43.84 5.07 114.55 150.21 1461.20

Relative Mean Performance Relative Mean Efficiency
CPU GPU MPPA FPGA CPU GPU MPPA FPGA

CPU 1.00 9.69 1.48 30.91 1.00 9.26 18.00 175.14
GPU 0.10 1.00 0.15 3.19 0.11 1.00 1.95 18.92

MPPA 0.67 6.54 1.00 20.85 0.06 0.51 1.00 9.73
FPGA 0.03 0.31 0.05 1.00 0.006 0.05 0.10 1.00

As can be seen from the Table 2.6, FPGAs provide the highest perfor-

mance ratio, 3×, 21× and 31× relative mean performance improvement compared

to GPU, MPPA and CPU respectively (it is imporant to note that Xilinx Virtex-5

is more expensive than NVidia GTX 200). GPU provides 9.7× and 6.5× improve-

ment compared to CPU and MPPA respectively. MPPA provides 1.48× perfor-

33

mance improvement compared to CMP. These values follow the same trend for

relative mean efficiency where FPGA results are more efficient in terms of power

consumption.

Explicit finite difference option pricing is another area where high per-

formance computing is required due to the computationally intensive calcula-

tions [112]. Luk et. al compared implementation of explicit finite difference pricing

model using FPGAs (Virtex 4 xc4vlx160) with single and double precision, GPUs

(Geforce 8600GT with 256 MB on-board RAM and Tesla C1060 with 4 GB on-

board RAM) and CPU (Intel Pentium4 with 4GB of RAM) [113]. The area,

performance and power consumption comparison is provided in Table 2.7 for Eu-

ropean option pricing problem based on 6K×30K grids. Area values are provided

for FPGA implementation, both single and double precision architectures employ

reasonably low area in terms of CLBs; the utilization values for BRAMs and DSPs

are around 12%−23% and 12%−50% respectively. The performance results show

that implementing 1 core in an FPGA provides 1.6× and 1.2× acceleration com-

pared to CPU for single and double precision respectively. On the other hand if one

replicates more cores on an FPGA such as 8 cores for single and 3 cores for dou-

ble precision, single precision provides higher acceleration, 12.2×, than GeForce

8600 GT, 9.6×, compared to CPU implementation. On the other hand, the lat-

est generation of GPUs, Tesla C1060, provides 43.9× and 26.6× acceleration with

significantly higher power consumption, 187 Watt, compared to FPGA implemen-

tation, 5.8 Watts for single and 9.1 Watts for double precision. As can be seen

from efficiency values, even though Tesla series GPUs provide higher acceleration

compared to FPGAs, their power efficiency are significantly lower.

Yet another application requiring high performance computing is lithogra-

phy simulations that simulate the imaging process or the whole lithography process.

These computations are crucial for printing circuit patterns onto wafers and require

high computation time. Cong et. al [114] presented a hardware implementation

for accelerating polygon based lithography imaging simulations on FPGA platform

(Xtremedata’s XD1000 development system [117]) and compared their results with

CPU (AMD Opteron 248 2.2 GHz with 4 GB DDR memory) and GPU acceleration

34

Table 2.7: Comparison of explicit finite difference option pricing implementation
using three different platforms: FPGA, GPU and CPU [113].

FPGA GPU CPU

Virtex 4 xc4vlx160 GeForce 8600GT Tesla C1060 Intel Pentium 4

Number Format single double single single double double

Slices 5228 (7%) 8460 (12%) - - - -
FFs 4253 (3%) 6271 (4%) - - - -

LUTs 5780 (4%) 9891 (7%) - - - -
BRAMs 37 (12%) 69 (23%) - - - -
DSPs 12 (12%) 48 (50%) - - - -

Clock Rate 106MHz 82.9MHz 1.35GHz 1.3GHz 3.6GHz

Processing Speed (M values/sec) 106 82.9 673 3057 1851 69.7

Replication (cores/chip) 8 3 32 240 1

Acceleration (1 core) 1.6× 1.2× - - - 1×

Acceleration (replicated cores) 12.2× 3.6× 9.6× 43.9× 26.6× 1×

Max. Power (W) 5.8 9.1 43 187 115

Efficiency (M values/Joule) 146 27.7 15.6 16.3 9.9 0.6

(NVidia 8800 GTS) for different layout densities, N . Since there is no previous

work comparing these platfroms, authors also presented 2D-FFT based image con-

volution (another method for imaging process) results for an FPGA (Virtex-4)

and GPU (NVidia G80). As can be seen from Table 2.8, 2D-FFT based method

provides better performance rates for GPU implementation, however this trend is

shifted to FPGAs for polygon based simulations.

Table 2.8: Comparison of different platforms, CPU, FPGA and GPU for imple-
mentation of polygon based lithography imaging simulations and 2D-FFT based
image convolution [114]

N Polygon Polygon Polygon 2-D FFT 2D-FFT [115] 2D-FFT [116]
Software FPGA GPU Software FPGA GPU

10 8.0 44.4 32.4 0.2 1.1 3.4
50 1.6 24.5 10.8 0.2 1.1 3.4
100 0.8 12.4 6.7 0.2 1.1 3.4

We conclude this subsection with Table 2.9 that provides advantages and

disadvantages of FPGAs, GPUs and MPPAs.

35

2.4.2 Roadmap for the Future Many-Core Platform

There has been extensive research for the design of a platform that can

process the same amount of data in a smaller amount of time or handle a larger

amount of data in the same amount of time. Due to the decrease in the clock

frequency of processors, the new trend is to design a larger number of cores in

platforms such as GPUs, MPPAs and CMPs with varying type and composition.

We believe this trend will continue and the future’s high performance parallel

computation platforms will have many/multi CPUs in their chip architectures.

However, the problem is to determine what type/s of CPUs to employ

and what kind of connectivity is required between these CPUs. As an example,

GPUs and MPPAs employ 960 cores (NVIDIA Tesla S1070) and 336 cores (Ambric

AM2045) in their architectures respectively. This large number of cores provides

massive parallelism, but it is also very hard to partition the given algorithm onto

hundreds of processors. Thus, low utilization results in inefficient performance with

a waste of resources. This is a very important fact considering that a GeForce

8600GT GPU consumes 43 Watts power whereas FPGA power consumption is

between 5.8 and 9.1 Watts with a higher acceleration for the given application

(option pricing algorithm implementation in financial computation [112]). A nat-

ural question that comes to mind is why allow so many processors that cannot be

employed? Wouldn’t be more efficient if we were capable of employing the required

number of processors in our platforms rather than too many, to improve on area,

performance and power?

These parallel platforms also provide full connectivity between their CPUs.

For example MPPA CPUs are instantiated in a regular grid using 2D communica-

tion channels between them. Wouldn’t it be more efficient if there was a way to

provide required connectivity between CPUs instead of full connectivity? There-

fore one could save and use more silicon for memory, more functional CPUs etc.

The type of the processor is another important topic that needs special con-

sideration. As an example, MPPA architecture employs two types of processors:

SRD for main computation and SR for managing the data/address provided for

SRD. Therefore, the user needs to map the given algorithm onto these two dif-

36

ferent types of processors which introduces increased complexity for mapping and

possibly decreased efficiency in performance. GPUs employed vertex and fragment

processors previously, and these are combined for a more efficient solution. We be-

lieve that combining these processors into one will lead to more efficient hardware

platforms and less design complexity.

GPU architectures employs large number of ALUs by removing the schedul-

ing logic to exploit instruction level parallelism and caches that remove memory

latency. Therefore GPUs are simply very powerful number crunching machines.

Thus, the future’s high performance parallel computation platform should have an

ALU dominant architecture to employ more resources for computation by removing

as much control logic as possible.

GPU architectures employ a small amount of caches (to be able to put

more ALUs inside) and MPPA architectures employ local small memories which

results in large memory access latencies. The future’s high performance parallel

computation platform should have many/multi core processors employed with their

own local memories like MPPAs, however memory should not be distributed onto

CPUs uniformly.

We foresee a parallel platform where a user can define the number as well

as the types of the processors where each processor employs required connectivity

internally depending on the assigned part of the algorithm. It should be possible to

employ a different amount of memory resources for each processor and the overall

platform should only have the required connectivity between CPUs. These CPUs

should be simple processors like MPPAs but also ALU oriented like GPUs. FPGAs

are perfect platforms for these type of parallel processing architectures since they

provide reconfigurability and a path to ASIC design. We therefore believe that it is

crucial to have a design tool which can create these type of platforms automatically

for a given algorithm and a set of user decisions.

37

T
ab

le
2.

9:
A

co
m

p
ar

is
on

b
et

w
ee

n
F
P

G
A

s,
G

P
U

s
an

d
M

P
P
A

s.

D
e
v
ic

e
A

d
v
a
n
ta

g
e
s

D
is

a
d
v
a
n
ta

g
e
s

-
G

o
o
d

fi
t

fo
r

ap
p
li
ca

ti
on

s
th

at
in

vo
lv

e
a

lo
t

of
d
et

ai
le

d
lo

w
-l
ev

el
h
ar

d
w

ar
e

co
n
tr

ol
op

er
at

io
n
s

an
d

h
av

e
a

lo
t

of
m

em
or

y
ac

ce
ss

es
;

-
P
o
or

fi
t
fo

r
ap

p
li
ca

ti
on

s
th

at
re

q
u
ir

e
a

lo
t
of

co
m

p
le

x
it
y

in
th

e
lo

gi
c

an
d

d
at

a
fl
ow

;

F
P

G
A

s
-
H

ig
h

d
en

si
ty

ar
ra

y
s
of

u
n
co

m
m

it
te

d
lo

gi
c

an
d

ve
ry

h
ig

h
fl
ex

ib
il
it
y
;

-
N

ot
ea

sy
h
ar

d
w

ar
e

d
es

cr
ip

ti
on

la
n
gu

ag
e

(V
er

il
og

an
d

V
H

D
L
);

-
A

p
p
ro

x
im

at
io

n
of

a
cu

st
om

ch
ip

,
i.
e.

A
S
IC

;
-

In
cr

ea
se

d
d
ev

el
op

m
en

t
ti

m
e

an
d

eff
or

ts
.

-
L
ow

p
ow

er
co

n
su

m
p
ti

on
.

-
G

o
o
d

fi
t

fo
r

ap
p
li
ca

ti
on

s
th

at
h
av

e
n
o

in
te

r-
d
ep

en
d
en

ce
s

in
th

e
d
at

a
fl
ow

an
d

co
n
si

st
of

th
e

co
m

-
p
u
ta

ti
on

s
ca

n
b
e

d
on

e
in

p
ar

al
le

l;

-
P
o
or

fi
t

fo
r

ap
p
li
ca

ti
on

s
th

at
h
av

e
a

lo
t

of
m

em
or

y
ac

ce
ss

es
an

d
h
av

e
li
m

it
ed

p
ar

al
le

li
sm

;

G
P

U
s

-
H

ig
h

m
em

or
y

b
an

d
w

id
th

an
d

a
la

rg
e

n
u
m

b
er

of
p
ro

-
gr

am
m

ab
le

co
re

s
w

it
h

th
ou

sa
n
d
s

of
h
ar

d
w

ar
e

th
re

ad
co

n
te

st
s;

-
C

on
st

ra
in

ed
d
es

ig
n

an
d

im
p
le

m
en

ta
ti

on
b
as

ed
on

su
p
-

p
li
ed

h
ig

h
le

ve
l
la

n
gu

ag
es

/t
o
ol

s
an

d
A

P
Is

;

-
F
le

x
ib

le
an

d
ea

sy
to

p
ro

gr
am

u
si

n
g

h
ig

h
le

ve
l

la
n
-

gu
ag

es
/t

o
ol

s
an

d
A

P
Is

;
-

H
ig

h
p
ow

er
co

n
su

m
p
ti

on
;

-
R

el
at

iv
e

sh
or

t
d
es

ig
n

ti
m

e
an

d
eff

or
ts

.
-
H

ig
h

co
st

an
d

in
effi

ci
en

t
d
ou

b
le

p
re

ci
si

on
fl
oa

ti
n
g

p
oi

n
t

u
n
it

s;
-

E
x
p
en

si
ve

b
ra

n
ch

in
g.

-
G

o
o
d

fi
t

fo
r

ap
p
li
ca

ti
on

s
th

at
h
av

e
n
o

in
te

r-
d
ep

en
d
en

ce
s

in
th

e
d
at

a
fl
ow

an
d

co
n
si

st
of

th
e

co
m

-
p
u
ta

ti
on

s
ca

n
b
e

d
on

e
in

p
ar

al
le

l;

-
H

ar
d

to
effi

ci
en

tl
y

or
ga

n
iz

e
co

m
m

u
n
ic

at
io

n
s
ov

er
a

n
et

-
w

or
k

th
at

fa
vo

u
rs

lo
ca

l
co

m
m

u
n
ic

at
io

n
ov

er
lo

ca
l
co

m
-

m
u
n
ic

at
io

n
;

M
P

P
A

s
-

L
ow

p
ow

er
co

n
su

m
p
ti

on
;

-
H

ar
d

to
p
ar

ti
ti

on
gi

ve
n

ap
p
li
ca

ti
on

s
on

to
h
u
n
d
re

d
s

of
si

m
p
le

p
ro

ce
ss

or
s;

-
E

as
y

to
p
ro

gr
am

u
si

n
g

aD
es

ig
n
er

d
es

ig
n

to
ol

an
d

R
el

-
at

iv
e

sh
or

t
d
es

ig
n

ti
m

e
an

d
eff

or
ts

.
-
H

ar
d

to
m

ap
th

e
tw

o
d
iff

er
en

t
ty

p
es

of
p
ro

ce
ss

or
s

em
-

p
lo

ye
d

in
th

e
ch

ip
ar

ch
it

ec
tu

re
.

Chapter 3

Overview of Design Tools

Field-Programmable Gate Arrays (FPGAs) consist of configurable logic

blocks (CLBs) that can be reprogrammed to perform different functions in a mat-

ter of seconds. This is the major advantage of FPGAs over Application Specific

Integrated Circuits (ASICs). With the increasing on die resources (configurable

logic block, memory, embedded multipliers, etc.), FPGAs become attractive to

the scientific computing community. However, reconfigurability of FPGAs is both

a blessing and a curse since it provides great flexibility in terms of the design

of an application with increasing programming complexity. Therefore there is a

desperate need for high level fast prototyping systems that can aid designers.

The major goal in the development of the fast prototyping system for real-

time matrix computations are better design tools and an easy-to-use, highly inte-

grated prototyping system. There is a desperate need for domain specific design

tools. A major step in the right direction is a tool that eases the mapping from

algorithm to hardware. Matrix computation algorithms are typically written and

tested using MATLAB code or Simulink model based environment, and there are

a number of tools that translate such algorithms to a hardware description lan-

guage such as System Generator for DSP and AccelDSP from Xilinx, Simulink

HDL Coder from Mathworks and Synplify DSP from Synplicity. Synplify DSP is

not considered in this Thesis since it provides very similar functionality to Sys-

tem Generator for DSP but allows the user to target devices from several different

vendors that would be very useful for a user who wants to compare devices from

38

39

different vendors.

Therefore, the main goal of this chapter is to learn from (dis)advantages of

existing high level design tools, and propose a roadmap for a tool that combines

most of advantages provided by these existing design tools. This chapter provides

the following information:

• Overview, design flow, (dis)advantages of existing high level design tools:

model based tools (System Generator and Simulink HDL Coder), MAT-

LAB code based (AccelDSP) and C/C++ code based (System-C, Catapult-

C, Impulse-C, Mitrion-C, DIME-C, Handel-C, Carte, SA-C, Streams-C and

Napa-C);

• A case study for comparison of Filter Design HDL Coder Toolbox with a

tool designed by us, Xquasher, for filter architecture implementations;

• A roadmap for a design tool that can combine the advantages provided by

the existing high level design tools.

3.1 System Generator for DSP

System Generator [120] is a high level design tool specifically designed for

Digital Signal Processing (DSP) applications. System Generator is designed by Xil-

inx to be used in model-based design environment, Simulink from Mathworks [119],

for modelling and implementing systems in FPGAs. Simulink provides a power-

ful component based computing model including several different blocks to be

connected together by the user for designing and simulating functional systems.

System Generator provides similar blocks which are used and connected the same

way Simulink blocks does but target FPGA architectures to design discrete time

systems which can be synchronous to a single or more clocks. The simulation re-

sults of the designed systems are bit and cycle accurate which means simulation

(through Simulink) and hardware (through System Generator) results are exactly

match together. We present two simple design examples, multiply & accumulate

and FIR filter, in Figure 3.1 that are designed using System Generator for DSP.

40

Sine Wave 1

Sine Wave

Scope

Mult

a b
(a

b
)z-1

Gateway Out

 Out

Gateway In

 In

Delay

z-1

Constant

1

AddSub

a

b
a + b

System
Generator

Mult

a

b
(ab)z-3

Gateway Out

 Out

Gateway In 2

 In

Gateway In 1

 In

Gateway In

 In

Accumulator

b

rst
q

System
Generator

(a) Simple Multiply & Accumulate Design (b) Simple FIR Filter Design

Figure 3.1: Two simple design examples using System Generator for DSP are
presented: multiply & accumulate and FIR filter.

System Generator can be used in several different ways:

• Algorithm exploration to get an idea for the design problems with a little

translation into hardware;

• Implemeting part of a larger design through a HDL wrapper that represents

the entire design and uses the design part generated by System Generator as

a component;

• Implementing a complete design with automatically generated HDL files

describing the design, a clock wrapper producing the clock; and clock

enable signals and testbench to test and debug the design using Simulink

simulations.

There are several different compilation types that System Generator provides:

• Netlists, HDL Netlist (used more often) and NGC Netlist, which are collec-

tion of HDL nad EDIF files;

• Bitstream that is ready to run on an FPGA platform where a user can specify

a wide variety of different platforms;

• EDK Export Tool to export the design to the Xilinx Embedded Development

Kit (EDK);

41

• Timing analysis which is the timing report of the design.

System Generator for DSP is also capable of using Synplify, Synplify Pro and Xilinx

XST to synthesize the design and producing Verilog HDL or VHDL as netlist of

the design. The Xilinx blockset includes the following building blocks to design

digital systems in Simulink environment:

• Basic Element Blocks: Addressable shift registers, inverters, muxes, coun-

ters, delays etc.;

• Communication Blocks: Convolution encoder, Reed-Solomon decoder, Viterbi

decoder etc.;

• Control Logic Blocks: Constant, EDK processor, logical, Picoblaze micro-

controller etc.;

• Data Type Blocks: parallel to serial, serial to parallel, convert, shift etc.;

• DSP Blocks: DSP48s, FFT, DAFIR, FIR, linear feedback shift register etc.;

• Math Blocks: Accumulator, addsub, mult, negate, sinecosine etc.;

• Memory Blocks: Addressable shift register, single port RAM, dual port RAM

etc.;

• Shared Memory Blocks: Shared memory, from FIFO, to FIFO etc.;

• Tool Blocks: ChipScope, Clock probe, FDATool, Modelsim, WaveScope, Re-

source estimator etc.

System Generator for DSP also provides composite blocks that are specifically

needed in particular applications such as communication, digital signal processing,

imaging and math. We present some example blocks in Figure 3.2. A block in

Systems Generators’ library operates on Boolean or arbitrary precision fixed-point

values which is different than Simulink providing floating-point values. Therefore

Simulink and System Generator blocks are connected to each other with a gateway

block (gateway in/out) which converts floating point precision to the given fixed

42

WaveScope

Wave Scope

Single Port RAM

addr

data

we

z-1

Register

d qz-1

PicoBlaze
Microcontroller

in_port

brk

rst

instr

out _port
port _id

rs
ws

addr

Mux

sel

d0

d1

ModelSim

ModelSim

Gateway Out

 Out

Gateway In
 In

FDATool

FDATool

Delay

z-1

Counter

out

ChipScope

trig0

trig1

data 0

Black BoxAddressable Shift Register

d

addr
q

System
Generator

Figure 3.2: Example blocks from System Generators’ library.

point precision or vice versa using sampling. It is important to note that most of

the Xilinx blocks are polymorphic, capable of determining the appropriate output

type. A user can define full precision or a user defined precision in the blocks of the

design as well as how the quantization overflow will be handled and it is possible

to design multi-rate systems.

Advantages of System Generator are:

• Users do not need to be experienced in Xilinx FPGAs or Register Transfer

Level (RTL) design methodologies to be able to use System Generator since

System Generator enables a ”push a button” transition from specification

to implementation and FPGA implementation steps, including synthesis and

place & route are automatically performed, [118] reports a 10:1 improvement

productivity improvement (time) while designing SDR waveforms compared

to traditional RTL design approaches;

43

• Xilinx blocks are optimized architectures since these are generated by Xilinx

IP core generators (coregen);

• System Generator for DSP is used in Simulink which is a user friendly visual

environment with Xilinx specific blockset;

• System resource estimator block is a specific block that is provided to quickly

estimate the area of the design in terms of slices, lookup tables, flip-flops,

block RAMs, DSP48s, I/O blocks before place&route and provides a general

idea about the design to the user without going through the real hardware

implementation steps;

• System Generator for DSP provides an integration platform that a user can

combine RTL through black box block, Simulink, MATLAB through MCode

block, and C/C++ through MicroBlaze embedded processor components of a

system, simulate and implement the design;

• Hardware co-simulation that is provided by System Generator is considerably

faster than traditional HDL simulators [121];

• Since System Generator for DSP works in Simulink environment, it is possible

to compare the results of the System Generator design which realizes into

fixed point architecture with floating point results and determine the required

bit width for the FPGA implementations;

• MCode blocks to interpret a MATLAB (.m) code providing an efficient solu-

tion to generate control logic and finite state machines.

Disadvantages of System Generator are:

• There is no implicit synchronization mechanism provided in System Gener-

ator, therefore it is the users’ responsibility to satisfy synchronization ex-

plicitly. Even though System generator provides several blocks that can be

employed for synchronization such as the blocks that have the capability to

provide a valid signal when the sample is valid (such as FFT, FIR, Viterbi),

44

manual synchronization requires a huge effort. For example, System Gener-

ator creates a seperate clock wrapper to control a block to make the HDL

flexible. And its users’ responsibility to generate clock and clock enables

when this block is added to a larger design.

We present relatively a more complex design example in Figure 3.3, imple-

mentation of the Matching Pursuits algorithm for channel estimation, that

is designed and implemented by us using System Generator for DSP. Even a

small change in the architecture affects blocks inside the design and requires

a large amount of manual synchronization efforts. Architectural changes re-

quiring a large amount of time includes but not limited to bitwidth changes

to achieve different precision levels, adding additional resources for higher

throughput values and removing resources for hardware simplification;

• System Generator designs often result in inefficient performance values since

designed IP cores are treated as black boxes by current synthesis tools and

therefore synthesis tools do not perform optimization that cross module

boundaries. On the other hand, RTL designs provide more independency

to the synthesis tools to perform better optimizations;

• Not all the blocks from Simulink are available in Xilinx blockset. Therefore,

a user needs to design his/her own blocks (with the same Simulink block

functionality) using existing basic Xilinx blocks;

• Determination of bit-width and the place of binary point are required for ev-

ery block output as well as constant blocks in System Generator implemen-

tations since the resulting architecture is realized in fixed-point arithmetic;

• Since synchronization requires manual effort, the control units that controls

the design gets more complicated in more complicated architectures like ar-

chitectures that use resource sharing;

• High level abstraction that is provided with the MCode blocks come at a cost

of inefficiency in hardware realization in most of the cases (depending on

the complexity of the given code). MCode blocks supports a limited subset

45

clock

load
din
rst
en

out

To_be_replaced _with
FromRegEnable

1

To Register
<< 'Enable' >>

din

en
dout

Shared Memory
<< 'rv _real' >>

addr
din
we

dout

Shared Memory
<< 'rv _imag' >>

addr
din
we

dout

Q_gen

Q0
G0R
G0I
Q1
G1R
G1I
Q2
G2R
G2I
Q3
G3R
G3I
Nf
smallqE
rst

q

Fr

Fi

NfCounter

rst

en
out

MCode

clock

counter

q

Nf_in

enable

RAM _add

VE

GE

QE

FE

M1Sel

M2Sel

M3Sel

M4Sel

CountE

smallqE

NfE

load _clock

rst

done

control 2

FilterAndCancel 3

RAM_addr
VE
GE
QE
FE
M1Sel
M2Sel
M3Sel
M4Sel
Rr
Ri
Fr
Fi
Rst

Qk

GR

GI

FilterAndCancel 2

RAM_addr
VE
GE
QE
FE
M1Sel
M2Sel
M3Sel
M4Sel
Rr
Ri
Fr
Fi
Rst

Qk

GR

GI

FilterAndCancel 1

RAM_addr
VE
GE
QE
FE
M1Sel
M2Sel
M3Sel
M4Sel
Rr
Ri
Fr
Fi
Rst

Qk

GR

GI

FilterAndCancel

RAM_addr
VE
GE
QE
FE
M1Sel
M2Sel
M3Sel
M4Sel
Rr
Ri
Fr
Fi
RST

Qk

GR

GI

Counter

rst

en
out

Convert 9
cast

Convert 8
cast

Convert 7
cast

Convert 6
cast

Convert 5
cast

Convert 4
cast

Convert 3
cast

Convert 2

cast

Convert 16 ca
st

Convert 15
cast

Convert 14
cast

Convert 13
cast

Convert 12
cast

Convert 11
cast

Convert 10
cast

Convert 1
cast

Constant 3

0

Constant 2

13

Constant 1

0

Constant

0

System
Generator

Fi
3

Fr
2

q
1

q2

d rs
t

en
q

z-1

q1

d
rst
en

qz-1

q0

d
rst
en

qz-1

Relational 1

a
b
a=b
z-1

Relational

a
b
a=b
z-1

Mux1

sel

d0

d1

d2

d3

Mux

sel

d0

d1

d2

d3MCode

q0
q1
Qx0
Qx1
Qx2
Qx3

qQ_calc 4

Expression 1

a
b

a & b

Expression

a
b

a & b

Convert 10 ca
st

Constant 1
1

Constant
0

rst
15

smallqE
14

Nf
13

G3I
12

G3R
11

Q3
10

G2I
9

G2R
8

Q2
7

G1I
6

G1R
5

Q1
4

G0I
3

G0R
2

Q0
1

GI
3

GR
2

Qk
1

f_real

d
rst
en

qz-1

f_imag

d
rst
en

qz-1

dummy

1

Vk_real

d
rst
en

qz-1

Vk_imag

d
rst
en

qz-1

Subtract 2

a

b
a - b

Subtract 1

a

b
a - b

Register3

dqz-1

Register2

d qz-1

Register1

d qz-1

RAM

addr

data

we

z-1

Q

d
rst
en

qz-1

MuxOut

Mux8

sel
d0
d1

Mux7

sel
d0
d1

Mux6

sel
d0
d1

Mux5

sel
d0
d1

Mux 4

sel
d0
d1
d2
d3

Mux 3

sel
d0
d1
d2
d3

Mux 2

sel
d0
d1
d2

Mux 1

sel
d0
d1
d2

Mult 2

a

b
(ab)z-3

Mult 1

a

b
(ab)z-3

Gk_real

d
rst
en

qz-1

Gk_imag

d
rst
en

qz-1

Gateway Out 2
 Out

Constant

0

Adder

a

b
a + b

Accumulator 2

b

rst
q

Accumulator 1

b

rst
q

Rst
14

Fi
13

Fr
12

Ri
11

Rr
10

M4Sel
9M3Sel

8

M2Sel
7

M1Sel
6

FE
5

QE
4

GE
3

VE
2

RAM_addr
1

Figure 3.3: Design and implementation of the Matching Pursuits algorithm
for channel estimation using System Generator. Even a small change in the
architecture affects blocks inside the design and requires a large amount of
manual synchronization efforts.

of the MATLAB language: assignment statements, simple and compound

if/else/elseif end statements, switch statements, arithmetic expressions that

involve only addition and subtraction, addition, subtraction, multiplication

and division by a power of two where all inputs and outputs should be fixed-

point value.

We see System Generator as the best tool provided for MATLAB code

environment because of its ”push a button” transition from specification to imple-

mentation, its provided libraries to design optimized architectures faster and its

ability to compare fixed point and floating point results for any part of the design.

However a user needs to satisfy synchronization explicitly in their designs through

46

control units which gets more and more complicated in larger designs. System Gen-

erator provides a solution for this problem, MCode blocks, that are suitable for this

particular usage. However these blocks come at a cost of inefficiency in hardware

realization and do not support a wide variety of MATLAB language constructs.

Because of these reasons, Xilinx designed another tool, AccelDSP Synthesis Tool,

specifically for hardware generation from a given MATLAB (.m) code which we

introduce this design tool in the next section.

3.2 AccelDSP Synthesis Tool

AccelDSP Synthesis Tool [122] is another high level tool specifically designed

for Digital Signal Processing (DSP) applications. AccelChip (founded in 2000) is

acquired by Xilinx in 2006 and became a part of XtremeDSP solutions with its new

name: AccelDSP. The purpose of AccelDSP is to transform a MATLAB floating-

point design into a hardware implementation that targets FPGAs. AccelDSP

provides an easy-to-use Graphical User Interface (GUI) to design MATLAB code

and to control design tools (various industry-standard HDL simulators and logic

synthesizers) in an integrated environment. AccelDSP automatically generates

bit-true and cycle-accurate HDL codes which are ready to synthesize, implement

and map onto an FPGA hardware.

AccelDSPs’ design flow is shown in Figure 3.4 and includes the following

steps:

• Analysis of the given input MATLAB floating-point design. This step per-

forms the compatibility verification of the given MATLAB code to the Ac-

celDSP coding sytle guidelines;

AccelDSP generates architectures that work with streaming data. The stream-

ing model to simulate the infinite stream of data entering and leaving the

design is defined in MATLAB using a script-file. The script-file is a top

level design that calls a function-file, the main program, in a streaming

loop. AccelDSP synthesizes the main program and its subfunctions into the

hardware.

47

• Verification of the Floating-Point Design. This step creates reference/golden

results using floating-point arithmetic. And a user can verify the correctness

of the code and compare floating-point results with the fixed-point results

generated in the next steps;

• Transformation of floating-point design into fixed-point design. This step

includes the analysis performed by the AccelDSP to determine the types and

shapes of variables and generation of a fixed-point model of the design;

Since C++ simulations run faster, AccelDSP uses C++ to generate the fixed

point design by default (there is also an option to choose MATLAB for this

simulation).

• Verification of the fixed-point design through MATLAB simulations. This

step provides information to the user to compare fixed-point results with

floating-point results and ensure the correctness of the design;

If the required precision is not enough or more than desired, a user can

redefine the bitwidths for variables and rerun this analysis.

• Generation of RTL HDL code for the design. This step generates HDL code

(Verilog or VHDL) as well as a TestBench for verification of the design;

• Verification of the RTL model. This step verifies the RTL model on a HDL

Simulator (Modelsim or Riviera) using the automatically generated Test-

Bench unit and compares the simulation results with the MATLAB fixed-

point simulation results;

• Synthesize the design. This step performs synthesis using a RTL synthesis

tool (XST from Xilinx or Synplify Pro from Synplicity);

• Implement the design. This step implements the design using ISE (from

Xilinx) implementation tools;

• Verify the gate level design. This step ensures that the implemented design

is bit-true with the original fixed-point MATLAB design.

AccelDSP design tool provides the following synthesis flow:

48

Analysis of the
input MATLAB design

Verification of the
Floating-Point Design

Transformation of
floating point design into

fixed point design

Verification of the fixed
point design through

MATLAB simulations

Generation of RTL HDL
code for the design

Verification of the RTL
model

Synthesis,
Implementation and

Verification of the model

MATLAB
files

Figure 3.4: The design flow for AccelDSP.

• ISE Synthesis implements the project using ISE software and verifies the

design using HDL gate-level simulations;

• System Generator includes converting the design into an System Generator

block that can be used in larger System Generator designs;

• HW Co-Sim implements the project using ISE software like ISE Synthesis

flow, but simulates in a hardware like platform. Available platforms are

Virtex-5 on an ML506 Platform, Spartan 3-A DSP 1800A Starter Platform

and Virtex-4 on an ML402 Platform. This synthesis flow provides two main

benefits: lower simulation time and a proff that the design works properly in

49

the target platform or not.

The advantages of AccelDSP design tool are;

• AccelDSP is particularly beneficial for user who prefers to use MATLAB (.m)

code to realize hardware;

• AccelDSP designed streaming applications in mind. Whether generated de-

signs will be a part of a larger design or not, AccelDSP generates a hand-

shaking protocol for the design which controls the flow of data in and out of

the design;

• AccelDSP is capable of generating a System Generator Block that can be

used in a larger design;

• AccelDSP provides built-in reference design library, AccelWare [125], that

includes a library of synthesizable MATLAB equivalent functions like sine;

• AccelDSP provides a detailed analysis for floating-point to fixed-point con-

version. Therefore a user can decide if the precision enough; and if not,

AccelDSP lets user to manually adjust the model to reduce quantization

error and increase the fidelity of the output;

• AccelDSP is capable of providing a high level design space exploration to

determine design trade-offs by giving capabilities: unrolling a loop and in-

serting pipeline stages, to the user.

The disadvantages of AccelDSP design tool are;

• AccelDSP generated designs result in inefficient architectures in terms of area

and timing compared to hand-coded results;

Nissbrandt et al. [156] compared AccelDSP/AccelWare and Hand-Code/

Coregen implementations for various signal processing algorithms including

FFT, 10×10 matrix multiplication, FIR filter, CORDIC and Constant False

Alarm Rate (CFAR). We presented their results in Figure 3.5 in terms of area

and required calculation time. The authors concluded that AccelDSP should

50

AccelWare COREGEN AccelDSP Hand-
Coded AccelWare Hand-

Coded AccelDSP Hand-
Coded AccelDSP Hand-

Coded

FFT Matrix Multiplication FIR Filter CORDIC CFAR
Slices 2564 1575 3797 194 301 304 454 287 4141 2099
Registers 4915 3465 4404 720 1065 606 838 708 3654 2490
LUTs 7479 2689 5576 12 62 464 981 727 4850 2680
DSP48s 40 40 100 140 16 16 0 0 0 0
BRAMs 44 3 0 0 0 0 0 0 0 0
Max. Freq. 151.1 373.5 50.5 242.8 196.7 213 259.9 358.2 67 50
Calculation Time 47.45 8.53 445 11.18 344 422 34.2 25.2 577 125

0

100

200

300

400

500

600

700

0

1000

2000

3000

4000

5000

6000

7000

8000

C
al

cu
la

tio
n

T
im

e

R
es

ou
rc

e
U

til
iz

at
io

n

Figure 3.5: Comparison of AccelDSP/AccelWare and Hand-Code/Coregen
implementations for various signal processing algorithms: FFT, 10 × 10 ma-
trix multiplication, FIR filter, CORDIC and Constant False Alarm Rate
(CFAR) [156]. Results are presented in terms of area and required calcula-
tion time.

be used as a method for platform decision since the drawbacks of AccelDSP

generated designs: performance, reliability of the description, readability and

the problems of maintaning the source, are more important than the reduced

design time.

• AccelDSP design tool requires the input MATLAB file to be written in a

very specific format. This includes generation of a script file with streaming

loop that requires the designer to think in a very different way than usual

and this code modification can take considerably large amount of time;

• Even though AccelWare library provides some reference designs, many built-

51

in functions, operators and shapes are not supported [124];

• Users do not have much control on the architectures that are generated such

as how many arithmetic resources are used, how they are resource shared

and binded etc.;

• The inputs to the main program should be a scalar, a row vector or a column

vector. Other argument types are not supported like matrices;

• AccelDSP allows maximum of 53 bits as bitwidth, and automatically quan-

tizes a number to the fixed-point. However if a number cannot be exactly

represented with a specific bitwidth, AccelDSP employs largest number of

bitwidth, 53, for that particular variable. This can drastically effect the qual-

ity of the design, therefore it is users’ responsibility to recognize it from the

provided reports and trim back to a reasonable number of bits.

We recommend to use AccelDSP Synthesis Tool for generation of small and

less complex building blocks where used algorithms employ AccelDSP supported

built-in MATLAB functions (or easy to rewrite) and are easy to change to stream-

ing behaviour. These small blocks can be employed in a larger system using System

Generator for DSP.

3.3 Simulink HDL Coder

Simulink HDL Coder [126] is another high level design tool which generates

HDL code from Simulink [119] models and Stateflow [127] finite state machines.

Simulink HDL coder also provides interfaces to combine manually-written HDL

codes, HDL Cosimulation blocks and RAM blocks in its environment.

A user uses Simulink HDL Coder via the following steps:

• A user creates a Simulink design to simulate a desired application;

• If the simulation requirements are met, user runs the Simulink HDL Coder

compatibility checker for the designs’ suitability for HDL code generation;

52

• User cosimulates the design within Simulink using EDA Simulink Link MQ,

EDA Simulator Link IN or EDA Simulator Link DS softwares;

• If simulink design is compatible to generate HDL code, user runs Simulink

HDL coder to generate HDL files for the design as well as a testbench in

either Verilog or VHDL which are bit-true and cycle accurate;

• User uses testbench and HDL simulation tools to test the generated design;

• If the user is satisfied with the design, he/she can export HDL codes to

synthesis and layout tools for real hardware implementation. Simulink HDL

coder also generates required scripts for the Synplify family of synthesis tools

and ModelSim from Mentor Graphics.

The supported blocks in Simulink HDL Coder design tool are;

• Simulink built-in blocks;

• Stateflow chart;

• Signal Processing Blockset tools;

• Embedded MATLAB Function block;

• HDL-specific block implementation library including FFT, RAMs, bitwise

operators etc.

• User-selectable optimized block implementations provided for commonly used

blocks;

• EDA Simulator Link MQ HDL Cosimulation block;

• EDA Simulator Link IN HDL Cosimulation block;

• EDA Simulator Link DS HDL Cosimulation block.

Simulink HDL Coder design tool generates the required interfaces for the following

environments;

53

• Black box subsystem implementation;

• Cosimulation using Mentor Graphics Modelsim HDL simulator via EDA Sim-

ulator Link MQ;

• Cosimulation using Cadence Incisive HDL Simulator via EDA Simulator Link

IN;

• Cosimulation using Synopsis Discovery VCS HDL simulator via EDA Simu-

lator Link DS.

Code Generation Control Files give more control to the user over the overall or

some part of the design by specifying some of the properties of certain blocks in the

beginning, saving them in persistent form and reusing them if desired in the future

designs. A code generation control file is simply MATLAB (.m) file and currently

supports selection and action statements. A user selects a group of blocks within

a model, block type and location need to be defined, with selection commands.

An example is choosing all of the delay blocks. Then user applies transformations

to the the selected model components with action statements. Some examples

are choosing different implementation methods for the blocks which might include

optimization for speed and/or area and specifying the stages for generation of

output pipeline stages. A code generation control file is attached to the design

and executed when code generation process is invoked. If no specifications are

provided, a default code generation file is created.

Simulink HDL coder provides a detailed code generation report which eases

the tracebility of hundred lines of codes generated automatically. Simulink HDL

coder provides two types of linkage between the model and generated HDL code.

Code-to-model and Model-to-code are hyperlinks let user to view the blocks or

subsystems from which the code was generated and generated code for any block in

the model respectively. Model-to-code tracing is supported for subsytems, simulink

blocks, embedded MATLAB blocks and stateflow charts. Simulink HDL coder also

lets user to add text annotations to generated code by directly entering text on the

block diagram as Simulink annotations and placing DocBlock and entering text

comments at the desired level of the model.

54

Simulink HDL coder is supported by Stateflow HDL Code Generator from

MathWorks. Stateflow can be embedded into Simulink HDL coder designs to de-

scribe complex system behaviour via Finite State Machines (FSM) theory, state-

transition diagrams and flow diagram notions. Stateflow is described using a chart:

Classic (default), Mealy and Moore, to model a FSM or a complex control algo-

rithm which also supports hierarchy: states containing other states, parallelism:

simultaneously active multiple states and truth tables. There are some limita-

tions to Stateflow HDL code generation such as multi-dimensional arrays are not

supported in charts, MATLAB functions other than min and max ; MATLAB

workspace data and C math functions are not supported in the imported code.

The coder also does not support recursion through graphical functions.

Simulink HDL Coder also provides Embedded MATLAB Function Block

which automatically generates HDL code from a MATLAB (.m) file as well as a

list of design patters which are collection of different examples including counters,

shift registers, adders, comparators etc. Embedded MATLAB Function Block also

employs fixed-point arithmetic via fi function that is in Fixed-Point Toolbox. This

block can be used for generation of control logic and simple finite state machines.

As an example, a user uses M-function equivalent of operators such as A + B and

AB are defined as plus(A,B) and mpower(A,B).

The advantages of Simulink HDL Coder design tool are:

• Simulink HDL coder lets users to realize hardware directly from Simulink

designs and stateflow charts;

• Simulink HDL coder provides Code Generation Control Files options that

a user can specify the properties of certain blocks including different imple-

mentation methods and pipeline stages, save and reuse these control files;

• Simulink HDL coder provides a detailed code generation report from code-

to-model and model-to-code and lets user to add text annotations in different

ways;

• Simulink HDL coder lets user to insert distributed pipeline using Embedded

MATLAB Function Blocks and Stateflow charts. Inserting pipeline lets user

55

to gain higher clock rates using pipeline registers with the price of increasing

latency;

• Simulink HDL Coder employs Embedded MATLAB Function Block to au-

tomatically generate HDL code from a MATLAB (.m) file. This Block also

provides a set of examples which are ready to use called design patterns.

The disadvantages of Simulink HDL Coder design tool are;

• Not all the Simulink built-in blocks are supported. Code Generation Control

Files are under development, therefore provides access to some certain blocks

with certain capabilities.

• Embedded MATLAB Function Block has its own limitations and do not

support all the operations such as nested functions and use of multiple values

in the left side of an expression. HDL compatibility checker that provided is

only capable of processing a basic compatibility check on this block.

3.4 C-based High Level Design Tools

Even though MATLAB is the de facto standard language for many com-

puter vision, signal processing, and scientific computing researchers, there are also

a large number of C-based high level design tools. These design tools are used

for automatic hardware generation providing a faster path to hardware with the

cost of relatively inefficient use of hardware resources. C-based high level design

tools express parallelism through variations in C (pseudo-C) or compiler or both.

Ideally, it is best to use pure ANSI-C without any variation in C and exploit par-

allelism through compiler that ports C code into hardware; therefore a user does

not need to learn a new language. On the other hand, if parallelism is expressed

through variations in C code (pseudo-C code), it is important to note that there

is no standard language and each tool uses its own language constructs requiring

a user to learn that specific language to be able to use the high level design tool.

Most of the C-based high level design tools have the following characteris-

tics:

56

• Proprietary ANSI C-based language which do not support all ANSI C fea-

tures;

• Usage of extra pragmas for corresponding compilers to generate hardware for

the given C code;

• Additional libraries of functions/macros for extensions that are required with

the given code;

• Requirement of specific programming style to achieve maximum optimization

in terms of area, throughput, power consumption etc.;

• Capability of generating both hardware units and I/O interfaces for external

resources.

Open Standard

C-based High Level Design Tools

Generic HDL
(Multiple Platforms)

Generic HDL
(Optimized for Manufacturer’s

Hardware)

Targets a Specific
Platform/Configuration

RISC/FPGA Hybrid
Only

System-C Catapult-C

Impulse-C

Mitrion-C

DIME-C

Handel-C

Carte

SA-C

Streams-C

Napa-C

Figure 3.6: C-based high level design tools are divided into 5 different fami-
lies including Open Standard: System-C; tools producing generic HDL that
can target multiple platforms: Catapult-C, Impulse-C and Mitrion-C; tools
producing generic HDL that are optimized for manufacturer’s hardware:
DIME-C, Handel-C; tools that target a specific platform and/or configu-
ration: Carte, SA-C, Streams-C; tool targeting RISC/FPGA hybrid archi-
tectures: Napa-C [136].

C-based design tools can be divided into 5 different families as shown in

Figure 3.6 with the corresponding design tools [136] :

• Open Standard: System-C [145], [146];

57

• Tools producing generic HDL that can target multiple platforms: Catapult-

C [153], [154], Impulse-C [151] and Mitrion-C [138];

• Tools producing generic HDL that are optimized for manufacturer’s hardware:

DIME-C [141], Handel-C [140];

• Tools that target a specific platform and/or configuration: Carte [142], SA-

C [147], Streams-C [149];

• Tool targeting RISC/FPGA hybrid architectures: Napa-C [155].

We further investigate these high level design tools in more detail in the following

paragraphs:

Mitrion-C [138]:

• is a pseudo-C FPGA programming language that is developed by Mitri-

onics [137] where a user can specify hundreds/thousands of interdependent

processes while Mitrion-C hides the synchronization between these various

processes from the user;

• uses the Mitrion Software Development Kit which compiles Mitrion-C pro-

grams and configures a Mitrion Virtual Processor optimized for the chosen

FPGA platform (without any support for place&route process);

• generates generic HDL files which can target multiple platforms;

• provides an abstraction for the user by automatically connecting required

memory units and external devices that also comes with a price of restricted

clock speed (the main weakness of this tool);

• some central concepts of the Mitrion-C language are rather different from

ANSI-C programming such as no support for pointers; Mitrion-C concen-

trates on parallelism and data-dependencies while traditional languages are

sequential and center on order-of-execution;

• most statements are assignments in Mitrion-C where all clauses are expres-

sions except declaration and watch statements. Therefore, if, for and while

58

statements of other C-languages are represented as expressions where they

all return a result value;

• types specify the kind of value to be stored (e.g. boolean or integer) as well

as the precision of the data, i.e. the bit-width of that data. User should

define the exact number of bits required for the data explicitly and there is

only a single base kind for each type;

• type options include scalar-type: integer, unsigned, or positive integer, boolean

variable, bits, floating point value or a type used as a value; collection-type:

lists, vectors and streams; and explicit type declaration for a tuple where the

elements in the tuple can be of different types;

• supports floating point data types with arbitrary width.

Handel-C [140]:

• is a pseudo-C FPGA programming language that is developed by Celox-

ica [139]. A user can write sequential programs (using seq command) as well

as parallel programs to gain maximum benefit in performance from the tar-

get hardware with parallel constructs (using par command) where parallel

processes can communicate using channels: a point-to-point link between

two processes;

• is a mature language therefore provides a larger set of libraries compared to

some other C-based high level design languages like Mitrion-C;

• requires more programming effort since Handel-C does not provide a virtual

processor like Mitrion-C that automatically generates interfaces with external

resources and memory; therefore a user is required to define interfaces using

available constructs;

• provides many options to perform low level optimizations to the generated

architecture;

59

• supports ANSI-C types except float, double and long double; a user can still

use floating point through a set of macros where he/she should specify the

minimum width required to minimize hardware usage for these types;

• no support of automatic type conversion;

• each statement should take one clock cycle therefore a statement can only

contain a single assignment or an increment/decrement (such as for state-

ments’ initialization and iteration steps are written as statements rather than

expressions); therefore complex statements in ANSI-C requires to be rewrit-

ten as multiple single statements;

• generates generic HDL files which can target multiple platforms but opti-

mized for manufacturer’s hardware.

Impulse-C [151]:

• is based on standard ANSI-C and developed by Impulse Accelerated Tech-

nologies [150];

• targets multiple platfroms by generic HDL generation through multi-process

partitioning;

• supports standard C development tools including standard C debugging

tools;

• is accompanied with a software-to-hardware compiler, CoDeveloper, to opti-

mize C code for parallelism and generate hardware/software interfaces;

• supports parallelism in both the application level and the individual process

level by providing loop unrolling, pipelining and instruction scheduling that

achieves parallelism at the C statement level;

• programming model consists of communicating processes which support dataflow

and message-based communications and data streams are implemented through

buffered communication channels;

60

• enables easy partitioning of the given application between the embedded

processor and FPGA device;

• implements each independent, potentially concurrent, processes as seperate

state machines;

• requires different C coding techniques to increase the performance of the

implementation and/or reduce the size of the given C code;

• supports fixed-point arithmetic (three fixed-point bit widths: 8, 16, and 32

bits) in the form of macros and datatypes which let a user to express fixed-

point operations in ANSI-C language and to perform computations either as

software (using embedded CPU) or as hardware modules (using FPGAs).

Catapult-C [153] [154]:

• is based on pure, untimed, industry-standard ANSI C++ and developed by

Mentor Graphics [152];

• uses object oriented programming model properties: levels of IP generation

and reuse and templates to generate correct-by-construction RTL of a given

algorithm without the use of any extensions or pragmas;

• employs algorithmic C data types which supports arbitrary-length (scaling

to any size while uniformly preserving the semantic) bit-accurate integer and

fixed-point data types allowing users to easily model bit-accurate behavior

in the architecture implementation;

• provides built-in quantization and overflow modes to the user;

• enables application of various high-level constraints into the design including

loop unrolling and pipelining, loop merging, RAM, ROM, or FIFO array

mapping, resource allocation and sharing, memory resources merging and

memory bit-width re-sizing;

• automatically synthesizes interfaces to the external hardware including stream-

ing, single/dual-port RAM, handshaking, FIFO etc.;

61

• provides an intuitive graphical user interface such as displaying design bottle-

necks and inefficiencies in the hierarchical Gantt charts and micro-architecture

what if analyses;

• allows technology independence such as support for ASIC and FPGA imple-

mentations;

• creates cycle-accurate RTL netlists in either VHDL, Verilog, or System C

as well as simulation and synthesis scripts for Design Compiler, Precision

Synthesis and ModelSim;

• provides technology specific libraries [154] to infer specific hardware instances

from a given C code. However these code modifications consumes a significant

amount of development time [64];

• applicable to a small code size where the biggest line of code is 480 and no

other study reported on the C code size [65].

DIME-C and Carte exploit parallelism through compiler and receives a

subset of ANSI-C as input. DIME-C is based on a subset of ANSI-C, developed by

Nallatech [141] and provides a GUI, DIMEtalk, enabling a user to create a network

of hardware components visually. DIME-C does not require a user to learn the

syntax and semantics of a new language; and can be compiled and debugged using

standard C compiler. However a user needs to know the elements of the supported

subset of ANSI-C. DIME-C generates VHDL codes with poor cycle accuracy. On

the other hand Carte is specifically targets a specific platform. Carte is based on

a subset of ANSI-C or Fortran, developed by SRC Computers [142] and integrates

the computational power of MAP processors [143] and microprocessors where it

automatically controls the flow between the MAP processors and microprocessor

in a way that the most appropriate resource is applied to the code at the optimal

time [144].

Both SA-C and Streams-C targets a specific platform and/or configuration.

SA-C is a pseudo-C FPGA programming language that is developed at the Com-

puter Science Department at Colorado State University [147] specifically for image

62

and signal processing applications. SA-C provides additional features to C com-

pensating and exploiting features of FPGAs. SA-C is a single assignment language

and its additonal features include true multidimensional array usage to be able to

use pointers that index large arrays of data, variable bit-precision data types as well

as fixed-point data types and allowing variable names to be reused. Streams-C is

developed at Los Alamos National Laboratory which is a stream-oriented sequen-

tial process modeling following the Communicating Sequential Processes (CSP)

parallel programming model [148] where different objects are defined as processes,

streams and signals [149].

3.5 A Case Study for Filter Designs using Do-

main Specific High Level Design Tools

We believe that the majority of these tools, that are introduced in the

previous sections, attempt to be everything to everyone. We present particular

disadvantages of these tools, and show that they often fail to provide results that

are close to the hand-coded designs. Therefore, it is important to take a more

focused approach by targeting specific algorithms. This chapter presents different

tools for designing filters that typically require deeply pipelined, streaming archi-

tectures: Filter Design HDL Coder Toolbox from Mathworks and Xquasher that

is designed by us, compares these filter design tools and shows that these domain

specific tools that are designed specifically for filter generation can provide results

close to the optimal (the results of a hand-coded design). The next subsections

introduce these tools and compare them via FIR filter design using different design

methods and number of taps.

We also compared these results with another domain specific design tool, Fi-

nite/Infinite Impulse Response Filter Generator from Spiral team [135] at Carnegie

Mellon University. This tool generates a Transposed Direct Form implementation

of a Finite Impulse Response (FIR) filter (or an Infinite Impulse Response (IIR)

filter) from a given standard difference equation. The multiplier blocks inside the

design are generated using the Spiral Multiplier Block Generator. Spiral results

63

are seen as the optimal results for an FIR filter design, however the specified filter

tap cannot be larger than 20 which is a major drawback for Spirals’ design tool.

In the following two subsections, we introduce the design tools: Filter De-

sign HDL Coder Toolbox and Xquasher.

3.5.1 Filter Design HDL Coder Toolbox

Filter Design HDL Coder Toolbox is specifically designed for automatic

hardware generation (Verilog or VHDL) of FIR (antisymmetric, transposed, sym-

metric etc.) and IIR (SOS IIR direct form I, II etc.) filters using GUI or MATLAB

command-line interface [133]. Filter Design HDL Coder Toolbox is also capable of

multirate filter structures and cascade filters (multirate and discrete-time). Since

the tool generates Simulink HDL Cosimulation block(s), a user can cosimulate

the generated filter design via EDA Simulator Link MQ, EDA Simulator Link IN

and EDA Simulator Link DS. It is important to note that if the target language

is Verilog, generation of a cosimulation model is not supported and a user can

only use single-rate filters. Filter Design HDL Coder Toolbox also generates script

files to support third-party design tools (Mentor Graphics ModelSim SE/PE HDL

simulator and The Synplify family of synthesis tools) to compile, simulate and/or

synthesize generated HDL code.

The design flow for Filter Design HDL Coder Toolbox is shown in Figure 3.7

and introduced below:

• Design of the filter;

• Quantification of the filter before HDL code generation to test the effects of

different setting with a goal of optimizing the quantized filter’s performance

and accuracy;

• Customization of the HDL properties: Filter Design HDL Coder Toolbox

offers various ways to optimize the generated HDL files such as optimizing

coefficient multipliers, optimizing the final summation method (FIR filters),

choosing serial or distributed architectures (FIR filters), and use of pipeline

registers. We summarized these options below:

64

Design Filter

Quantize Filter

Customize HDL
Properties

Filter Generation

Verification of the RTL
model

Design HDL and
TestBench Files

Filter Design Toolbox GUIs
(FDA Tool or filterbuilder)

Filter Design Toolbox or
Signal Processing Toolbox

Design Tool

Filter Design Toolbox

Filter Design Toolbox

Figure 3.7: Design Flow of Filter Design HDL Coder Toolbox.

– Optimizing coefficient multipliers: User can replace multiplier op-

erations with additions of partial products produced by canonical signed

digit (CSD) or factored CSD techniques which results in a decrease in

the area in terms of slices and increase in the clock speed by employ-

ing dedicated multipliers (DSP48s). (This option is not available for

multirate filters.)

– Final summation method (FIR filters): Final summation tech-

nique is linear adder summation by default. However, a user can use

tree or pipeline final summation instead. Tree summation architec-

ture performs pair-wise addition on successive products and executes in

65

parallel. Pipeline summation architecture employs a stage of pipeline

registers after processing each level of the tree.

– Choosing serial or distributed architectures (FIR filters):

∗ Fully Parallel: This is the default option and results in the largest

area since it employs a dedicated multiplier and adder for each filter

tap and all taps execute in parallel.

∗ Fully Serial: This architecture uses a multiply/accumulate opera-

tion once for each tap and results in the smallest architecture at

the cost of some speed loss and higher power consumption.

∗ Partly Serial: Partly serial option provides a user defined architec-

ture that lies between fully parallel and fully serial. User defines the

number of partitions and the number of the taps for each partition

where taps within each partition execute serially and the partitions

execute in parallel with respect to one another. As the last step,

the outputs of the partitions are summed at the final output.

∗ Cascade Serial: This option applies a small modification to the

partly serial implementation option that the accumulated output

of each partition is cascaded to the accumulator of the previous

partition which is called accumulator reuse. Since there is no need

for a final adder, the resulting area will be low, however requires

an additional clock cycle to complete the final summation to the

output.

∗ Distributed Arithmetic: This option lets user to implement sum-of-

products computations without the use of multipliers which pro-

vides high computational efficiency by distributing multiply and

accumulate operations across shifters, lookup tables (LUTs) and

adders.

– Use of pipeline registers: This option optimizes the maximum clock

frequency by the usage of pipeline registers at the cost of an increase in

latency and area.

66

We would like to note that Filter Design HDL Coder Toolbox provides a

clean HDL coding style, lets user to specify the architecture as serial (fully, partly

or cascade) or distributed arithmetic, provides scripts for third-party simulation

and synthesis tools and creates a MATLAB (.m) file that captures all non-default

settings for HDL and testbench generation. However the support for complex

coefficients and inputs are limited to some filter types and structures.

To compare Filter Design HDL Coder Toolbox with our tool (Xquasher), we

implemented various FIR filters using different design options provided by Filter

Design HDL Coder Toolbox such as architectures that are fully parallel, fully

serial, partly serial, cascade serial and distributed arithmetic and that uses pipeline

registers with different taps: 20, 30 and 40. The detailed specifications of FIR filters

that are specified in design filter step are presented in Table 3.1. We introduce our

tool, Xquasher, in the following subsection.

Table 3.1: Our Specifications for Filter Design HDL Coder Toolbox Generated
Filters.

Option Value
Filter Response Lowpass

Impulse Response Response FIR
Filter Type Single Rate

Design Method Equiripple
Structure Direct-form FIR

Arithmetic
Fixed-Point

(Signed, wordlength = 16, fraction length = 15)
FIR Adder Style Linear
Coefficient Source internal

Wpass 1
Wstop 1

Stopband Shape Flat
Stopband Decay 0

Fpass .45
Fstop .55

67

3.5.2 Xquasher

Digital signal processing applications often require the computation of lin-

ear systems. These computations can be considerably expensive and require op-

timizations for lower power consumption, higher throughput, and faster response

time. Unfortunately, system designers do not have the necessary tools to take

advantage of the wide flexibility in ways to evaluate these expressions. Therefore,

we address the problem of efficiently computing a set of linear systems through

a tool, Xquasher, that is developed by us to enable elimination of large common

subexpressions (CSs) from expressions with an arbitrary number of terms [179].

Xquasher provides a methodology for efficient computation of both single and

multiple linear expressions. We also introduce the concept of power set encoding

which provides an effective optimization method and helps us to achieve significant

improvement over previously published work.

Xquasher can effectively find and eliminate arbitrary number of common

subexpression terms. Our tool provides enormous area reductions at the cost of

increasing the critical path; 22% reduction in area with the cost of 40% increase in

delay. However, we can easily add registers to our design which yields 15% decrease

in area and a minor increase in delay (3%) compared to registered version of the

non-optimized design that uses registers. By using registers at the end of each

adder tree to save the results by replacing all expressions with registers instead

of wires, we compromised partial area saving to gain less delay. The reason for

the increase in the delay is that extensive CSE will significantly reduce the area

but also increase the critical path. Since we have a significant area reduction,

and linear systems are typically throughput driven, we can add register to the

adder tree. This will slightly increase the area, but effectively eliminates the huge

increase in delay that we occur from CSE.

Xquasher takes a matrix of coefficients as input and then uses our method-

ology to generate a new set of expressions. Xquasher also generates an HDL code

based on these expressions. First we illustrate the cost of the computation with a

three-dimensional space in Figure 3.8 and define some basic terms: dot, line, page

and space that are used in our methodology for ease of understanding.

68

• Canonical Signed digits (CSD) is radix-2 signed digit representation with

digit set of -1,0,1 where there is no adjacent non-zero digit in the represen-

tation [132].

• Bit-Magnitude (BM) is an integer with the magnitude of ±2R. It can be

described as a CSD number with exactly one non-zero digit.

• Dot is an appearance of an input variable in our expression with a relative

magnitude of BM. In hardware, this corresponds to rewiring an input to

specific point in the circuit with possible some shifts to the right.

• Line is summation of multiple copies of one variable multiplied by a vector

of BMs.

• Page is formed by a summation of a set of lines.

• Space can be created by union of a set of pages.

+8×x1 +4×x1 -1×x1

+8×x2 +4×x2 -1×x2

+8×x3 +4×x3 -1×x3

Lines

Line x0

Line x1

+8×x0 +4×x0 -1×x0

Line x2

Line x3

Dots
Bit-Magnitudes

(BM)

Page0 = y0

Figure 3.8: An example of page and its lines, dots and BMs. Dots are shown
with ellipses and a circle inside each dot demonstrates the BM part.

The best hand coded optimization for many common linear systems requires

the elimination of common subexpressions with large set of dots. Previous works

are not able to handle such elimination due to the exponential increase in the cost

of considering such common subexpressions. Although our methodology is not able

69

to eliminate all possible large common subexpressions because of the increase in

the cost, it is still capable of covering large common subexpressions when common

subexpressions’ dots are focused inside one or two lines. In this section, we first

introduce Power Set Encoding (PSE). This encoding let us work with arbitrarily

large common subexpressions. Then we show how it is employed in our tool.

Power Set Encoding

To convert an integer to PSE, we follow this procedure:

• CSD Encode an integer, I, to a CSD minimum hamming weight format.

For example: I = 98 =⇒ ICSD = 0101̄00010

• Rewrite the CSD encoded number as a series of integer addition where each

number has exactly one of the non-zero digits of the original number.

For example:

0101̄00010 = 010000000 + 0001̄00000 + 000000010 = 128 - 32 + 2

• Generate power set from step 2’s result set.

For example:

2{128,−32+2} = {{∅}, {2}, {−32}, {128}, {2,−32}, {2, 128}, {−32, 128}, {−2, 32,

128}}

• Ignore the null set and generate a new set from the result of step 3 where

each element is the sum of numbers inside the related set.

For example: {2, -32, 128, -30, 130, 96, 98}

• Rewrite each number from the result of 4th step as 2k × p, where p is an odd

integer, and store these numbers in the following format:

(p, k, number of non-zero digit in CSD format)

For example:

{[1, 1, 1], [-1, 5, 1], [1, 7, 1], [-15, 1, 2], [65, 1, 2], [3, 5, 2], [49, 1, 3]}

The reason we separate 2k factors from all numbers is that this part can be im-

plemented with shifting the result to the right. If p parts of two numbers in PSE

70

representation are equal, both can be calculated with the same circuit. Value of

a PSE is not unique. We can select any 2k × p in the result set as the value. We

call each of value of a PSE number a Power Set Dot (PSD). By using PSE to

encode a constant multiplication, unlike previous works [128–131] that work with

a set of single dots (where common subexpressions are exactly two or three dots),

we perform CSE where common subexpressions are made of a set of sets of dots

(PSD).

Xquasher Algorithm

Here, we present the Xquasher algorithm in Figure 3.9 and describe it below.

After encoding all input constants to PSE (1), Xquasher searches for a CS that

has highest number of relevant dots in all appearance of that CS (3-8). Xquasher

limits the CS to two PSDs (4-5) and performs CSE for the chosen CS (9), where

it updates the related pages to the CS and appends a new page, representing the

eliminated CS (10). These steps continue in a loop until there is no more CSE left

to be eliminated (2).

1
2
3
4
5
6
7
8
9
10

Figure 3.9: Xquasher Algorithm.

In the following subsection, we compare our tool, Xquasher, which is specif-

ically designed for filter design with Filter HDL Toolbox from Mathworks to show

that domain-specific design tools provide better results than design tools that are

general.

71

3.5.3 Comparison: Filter HDL Toolbox versus Xquasher

We compare our results from Xquasher with the Filter Design HDL Coder

Toolbox from Mathworks and Finite/Infinite Impulse Response Filter Generator

from Spiral team in terms of area and throughput. Area and performance results

are presented in terms of slices, LUTs, FFs and DSP48s; and throughput respec-

tively. Throughput is calculated by dividing the maximum clock frequency (MHz)

by the number of clock cycles to perform FIR filtering. All of the designs are

written in Verilog and synthesized using Xilinx ISE 9.2. Resource utilization and

design frequency are post place and route values obtained using a Virtex 4 SX35

FPGA. It is important to note that Finite/Infinite Impulse Response Filter Gen-

erator [135] which provides optimum results for FIR filter designs cannot provide

filter designs that are larger than 20 taps.

While comparing these these tool, we use different parameterizations op-

tions in our analyses that include:

• Different number of filter taps: 20, 30 and 40 (applied both Xquasher and

Filter Design HDL Coder Toolbox, Spiral cannot generate filters with taps

larger than 20);

• Different architectural design options: fully parallel, fully serial, partly se-

rial, cascade serial and distributed arithmetic (applied to Filter Design HDL

Coder Toolbox since Xquasher and Spiral designs use canonical signed digit

(CSD) for optimizing coefficient multipliers and generates fully parallel ar-

chitectures which use distributed arithmetic);

• Different optimization options are chosen for Filter Design HDL Coder Tool-

box implementations such as canonical signed digit (CSD) and factored CSD

techniques to optimize coefficient multipliers and use of pipeline registers to

optimize the maximum clock frequency of the design;

• Different number of term extraction (applied to Xquasher to search for the

design space to find most suitable number of terms for extraction).

72

Figure 3.10 compares Xquasher, Spiral and Filter Design HDL Coder Tool-

box architectural results for 20 tap FIR filter designs. We present different archi-

tectural designs provided by Filter Design HDL Coder Toolbox: fully parallel, fully

serial, partly serial, cascade serial and distributed arithmetic. We also perform dif-

ferent number of term extraction using Xquasher: 2, 3, 4, 6, 8, 10 and infinite to

find best results in terms of area and throughput. As can be seen from Figure 3.10,

combining the results of these three domain specific design tools provide a very

detailed design space for a user.

• Filter Design HDL Coder Toolbox results : Fully parallel architecture results

in the smallest area in terms of slices and largest, 20, in terms of the number

of embedded multipliers usage compared to the other architectural implemen-

tations. Employing highly optimized embedded multipliers in its architecture

provides the highest throughput results among the Filter Design HDL Coder

Toolbox designs. Fully serial architecture results in the smallest architec-

ture in terms of slices and DSP48s with the price of the lowest throughput.

Partly serial and cascade serial options bridges the gap between fully par-

allel and fully serial architectures. Distributed arithmetic architecture uses

sum-of-products computations without the use of multipliers which results

in no DSP48 usage, however this architecture has the highest area among the

architectures that are generated using Filter Design HDL Coder Toolbox.

• Spiral: Architectures that are generated using Finite/Infinite Impulse Re-

sponse Filter Generator from Spiral are fully parallel and employ distributed

arithmetic instead of multipliers. Their results are the best in terms of

throughput compared to the other design tools.

• Xquasher: Xquasher creates architectures that are fully parallel and uses

distributed arithmetic like Spiral generated architectures. Xquasher performs

extraction with variable number of terms to search for design methods that

are the best in terms of both area and throughput. As can be seen from

Figure 3.10, 2 terms extraction provides the best results compared to the

other term extraction options.

73

Fully
Parallel Fully Serial Partly

Serial
Cascade

Serial
Distributed
Arithmetic Spiral 2 terms 3 terms 4 terms 6 terms 8 terms 10 terms inf. terms

Slices 245 331 383 452 476 406 742 936 1,037 1,022 1,152 1,042 1,110

LUTs 132 256 365 451 642 796 1,073 1,492 1,676 1,668 1,909 1,709 1,843

FFs 353 432 478 471 286 319 1,341 1,361 1,398 1,195 1,134 1,048 1,047

DSP48 20 1 2 2 0 0 0 0 0 0 0 0 0

Throughput 22.57 4.15 9.52 8.39 7.17 402.09 275.86 142.49 153.23 119.20 105.78 84.17 77.56

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0

500

1000

1500

2000

2500

T
hr

ou
gh

pu
t

A
re

a
(S

lic
es

)

Figure 3.10: Comparison of Xquasher, Spiral and Filter Design HDL Coder
Toolbox architectural results for 20 tap FIR filter designs. Different architec-
tures designed using Design HDL Coder Toolbox include fully parallel, fully
serial, partly serial, cascade serial and distributed arithmetic. Xquasher per-
forms different number of term extraction: 2, 3, 4, 6, 8, 10 and infinite terms
to find most suitable extraction method that provides best results in terms
of area and throughput.

Figure 3.11 compares Xquasher and Filter Design HDL Coder Toolbox ar-

chitectural results for 30 tap FIR designs. We present different architectural de-

signs provided by Filter Design HDL Coder Toolbox: fully parallel, fully serial,

partly serial, cascade serial and distributed arithmetic. We also perform different

number of term extraction using Xquasher: 2, 3, 4, 6, 8, 10 and infinite to find

best results in terms of area and throughput. Figure 3.11 does not include Spiral

results since this tool cannot generate architectures for filters that have more than

20 taps. The area results of 30 tap FIR filter designs increase while the throughput

74

results decrease compared to 20 tap FIR filter designs due to its increasing com-

putational complexity. It is important to see the increase in the number of DSP48

with the increasing filter taps. Furthermore, Xquasher provides an architecture us-

ing 2 terms extraction that provides the highest throughput. On the other hand,

the smallest architecture in terms of area is achieved using 3 terms extraction.

Fully
Parallel Fully Serial Partly Serial Cascade

Serial
Distributed
Arithmetic 2 terms 3 terms 4 terms 6 terms 8 terms 10 terms inf. terms

Slices 327 495 487 517 596 1,094 1,003 1,149 1,258 1,368 1,415 1,388

LUTs 134 387 397 399 914 1,593 1,449 1,718 1,964 2,186 2,289 2,242

FFs 513 608 643 642 250 1,904 1,657 1,643 1,547 1,446 1,355 1,301

DSP48 30 1 2 2 0 0 0 0 0 0 0 0

Throughput 16.04 3.28 6.21 5.35 6.57 254.32 200.76 172.68 117.34 88.19 80.39 70.60

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0

500

1000

1500

2000

2500

T
hr

ou
gh

pu
t

A
re

a
(S

lic
es

)

Figure 3.11: Comparison of Xquasher, Spiral and Filter Design HDL Coder
Toolbox architectural results for 30 tap FIR filter designs. Different architec-
tures designed using Design HDL Coder Toolbox include fully parallel, fully
serial, partly serial, cascade serial and distributed arithmetic. Xquasher per-
forms different number of term extraction: 2, 3, 4, 6, 8, 10 and infinite terms
to find most suitable extraction method that provides best results in terms
of area and throughput. Spiral cannot generate filters that use more than 20
taps, therefore its results are not included.

Figure 3.12 compares Xquasher and Filter Design HDL Coder Toolbox ar-

chitectural results for 40 tap FIR filter designs. We present different architectural

75

designs provided by Filter Design HDL Coder Toolbox: fully parallel, fully serial,

partly serial, cascade serial and distributed arithmetic. We also perform different

number of term extraction using Xquasher: 2, 3, 4, 6, 8, 10 and infinite to find the

best results in terms of area and throughput. Figure 3.12 does not include Spiral

results since this tool cannot generate architectures for filters that have more than

20 taps. The area results of 40 tap FIR designs increase while the throughput re-

sults decrease compared to 20 and 30 tap FIR filter designs. It is important to see

the increase in number of DSP48 with the increasing filter taps: 20 and 40 DSP48s

for 20 tap and 40 tap FIR filters respectively. Furthermore, the best architecture

that is provided by Xquasher uses 2 terms extraction that results in the smallest

area with the highest throughput.

Figure 3.13 compares Xquasher, Spiral and Filter Design HDL Coder Tool-

box architectural results for 20 tap FIR designs where fully parallel designs from

Filter Design HDL Coder Toolbox employ different methods to optimize coefficient

multipliers. Canonical signed digit and factored CSD both replace embedded mul-

tipliers with additions of partial products that result in an increase in throughput

with the price of an increase in the area as well. We also present different architec-

tural designs provided by Filter Design HDL Coder Toolbox: fully parallel, fully

serial, partly serial, cascade serial and distributed arithmetic where only fully par-

allel architecture has an option to optimize coefficient multipliers. We also present

different number of term extraction using Xquasher: 2, 3, 4, 6, 8, 10 and infinite to

find best results in terms of area and throughput. We see that replacing multipliers

to increase the throughput of the design results in a larger area compared to both

Spiral and Xquasher area results. Optimizing the coefficient multipliers increases

the throughput of Filter Design HDL Coder Toolbox results, however these results

are far worse than both Xquasher and Spirals’ throughput results.

Figure 3.14 compares Xquasher, Spiral and Filter Design HDL Coder Tool-

box architectural results for 20 tap FIR designs where fully parallel, partly serial

and distributed arithmetic designs from Filter Design HDL Coder Toolbox have

an option to use of pipeline registers. Use of pipeline registers option optimizes

the maximum clock frequency by the usage of pipeline registers at the cost of an

76

Fully Parallel Fully Serial Partly Serial Cascade
Serial

Distributed
Arithmetic 2 terms 3 terms 4 terms 6 terms 8 terms 10 terms

Slices 407 613 713 755 738 1,332 1,489 1,517 1,770 1,839 1,739

LUTs 138 482 699 725 1,153 1,848 2,200 2,292 2,797 2,932 2,731

FFs 674 761 805 801 298 2,389 2,404 2,247 2,112 1,946 1,833

DSP48 40 1 2 2 0 0 0 0 0 0 0

Throughput 12.19 2.08 4.42 3.54 5.47 268.10 184.37 125.06 122.80 93.60 70.35

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t

A
re

a
(S

lic
es

)

Figure 3.12: Comparison of Xquasher and Filter Design HDL Coder Toolbox
architectural results for 20 tap FIR designs. Different architectures designed
using Design HDL Coder Toolbox include fully parallel, fully serial, partly
serial, cascade serial and distributed arithmetic. Xquasher performs differ-
ent number of term extraction: 2, 3, 4, 6, 8, 10 and infinite terms to find
most suitable extraction method that provides best results in terms of area
and throughput. Spiral cannot generate filters that use more than 40 taps,
therefore its results are not included.

increase in latency and area. There is a tradeoff when employing pipeline registers

since there is a positive effect on maximum clock frequency, on the other hand a

negative effect on latency. Filter Design HDL Coder Toolbox provides this option

for fully parallel, fully serial and distributed arithmetic architectures. We also

present different number of term extraction using Xquasher: 2, 3, 4, 6, 8, 10 and

infinite to find best results in terms of area and throughput. We see that em-

ploying pipeline registers increases throughput of the designs in fully parallel and

77

Multipliers CSD Factored -
CSD

No option No option No option No option 2 terms 3 terms 4 terms 6 terms 8 terms 10 terms inf. terms

Fully Parallel Fully Serial Partly Serial Cascade
Serial

Distributed
Arithmetic

Spiral Xquasher

Slices 245 1,545 1,623 331 383 452 476 406 742 936 1,037 1,022 1152 1,042 1,110

LUTs 132 2,713 2,879 256 365 451 642 796 1,073 1,492 1,676 1,668 1909 1,709 1,843

FFs 353 353 353 432 478 471 286 319 1,341 1361 1398 1195 1134 1048 1047

DSP48 20 0 0 1 2 2 0 0 0 0 0 0 0 0 0

Throughput 22.57 31.63 28.55 4.15 9.52 8.39 7.17 402.09 275.86 142.49 153.23 119.20 105.78 84.17 77.56

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t

A
re

a
(S

lic
es

)

Figure 3.13: Comparison of Xquasher, Spiral and Filter Design HDL Coder
Toolbox architectural results for 20 tap FIR designs that includes different
coefficient multiplier optimization methods for Filter Design HDL Coder
Toolbox. Different architectures designed using Design HDL Coder Toolbox
include fully parallel (with Multipliers, CSD and Factored CSD), fully serial,
partly serial, cascade serial and distributed arithmetic. Xquasher performs
different number of term extraction: 2, 3, 4, 6, 8, 10 and infinite terms to
find most suitable extraction method that provides best results in terms of
area and throughput.

distributed arithmetic architectures with an area which is still smaller than both

Spiral and Xquasher area results. However throughput results of Filter Design

HDL Coder Toolbox architectures with pipeline registers are not even close to the

throughput values provided by Xquasher and Spiral tools.

78

No Yes No Yes No Yes No
option

No
option 2 terms 3 terms 4 terms 6 terms 8 terms 10 terms inf. terms

Fully Parallel Partly Serial Distributed
Arithmetic

Fully
Serial

Cascade
Serial Spiral Xquasher

Slices 245 513 383 383 476 451 331 452 406 742 936 1,037 1,022 1152 1,042 1,110

LUTs 132 365 365 365 642 632 256 451 796 1,073 1,492 1,676 1,668 1909 1,709 1,843

FFs 353 1,003 478 478 286 314 432 471 319 1,341 1361 1398 1195 1134 1048 1047

DSP48 20 20 2 2 0 0 1 2 0 0 0 0 0 0 0 0

Throughput 22.57 125.53 9.52 9.53 7.17 12.19 4.15 8.39 402.09 275.86 142.49 153.23 119.20 105.78 84.17 77.56

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0

500

1000

1500

2000

2500

T
hr

ou
gh

pu
t

A
re

a
(S

lic
es

)

Figure 3.14: Comparison of Xquasher, Spiral and Filter Design HDL Coder
Toolbox architectural results for 20 tap FIR filter designs that includes an
option for use of pipeline registers for Filter Design HDL Coder Toolbox.
Different architectures designed using Design HDL Coder Toolbox include
fully parallel (with and without pipeline registers), fully serial, partly serial
(with and without pipeline registers), cascade serial and distributed arith-
metic (with and without pipeline registers). Xquasher performs different
number of term extraction: 2, 3, 4, 6, 8, 10 and infinite terms to find most
suitable extraction method that provides best results in terms of area and
throughput.

3.6 Roadmap for the Future Single/Many-Core

Platform Generator Tool

In this chapter, we introduced several high level design tools either based

on MATLAB or C programming languages. MATLAB based design tools include

model based tools: System Generator for DSP, Synplify DSP, and Simulink HDL

79

Coder and MATLAB (.m) code based tool: AccelDSP. C-code based design

tools include System-C, Catapult-C, Impulse-C, Mitrion-C, DIME-C, Handel-C,

Carte, SA-C, Streams-C and Napa-C.

Each tool has its own inherent advantages and disadvantages. Such as

System Generator for DSP from Xilinx, Simulink HDL Coder from Mathworks and

Synplify DSP from Synplicity that are designed to translate model based designs

from Simulink environment to HDL code to target various different platforms.

With these design tools, a user does not need to be experienced in FPGAs or

Register Transfer Level (RTL) design methodologies since they provide a user

friendly visual environment with specific library units. Significant problems

with these tools are the generation of control units (synchronization

between resources) and the lack of built-in block support that are ready

to use.

The solution to the synchronization problem is to use AccelDSP from Xilinx

which provides a MATLAB code, .m, to HDL conversion automatically. Therefore

a user can design controller units and/or undefined blocks using AccelDSP easily.

Even though, this tool generates poor results while generating architec-

tures, it can still be used as a complement to the model-based design

tools.

Recommendation: For MATLAB based design tools, the best solution is

to combine System Generator for DSP in model based design environment with

AccelDSP supporting for control units as well as blocks that are not supported

by the built-in library and Stateflow for finite state machine optimization that

can also be used as control logic. If a user plans to target an FPGA different than

Xilinx series, System Generator for DSP should be replaced with Synplify

DSP.

There are also a large number of C-based design tools that are introduced

through this chapter in detail. C-based high level design tools are divided into

5 different families including Open Standard: System-C; tools producing generic

HDL that can target multiple platforms: Catapult-C, Impulse-C and Mitrion-

C; tools producing generic HDL that are optimized for manufacturer’s hardware:

80

DIME-C, Handel-C; tools that target a specific platform and/or configuration:

Carte, SA-C, Streams-C; tool targeting RISC/FPGA hybrid architectures: Napa-

C [136].

Again, all of these tools come with different advantages and disadvantages.

C-based high level design tools express parallelism through variations in C (pseudo-

C) or compiler or both. Ideally, it is best to use pure ANSI-C without any variation

in C and exploit parallelism through compiler that ports C code into hardware;

therefore a user does not need to learn a new language. On the other hand, if par-

allelism is expressed through variations in C code (pseudo-C code), it is important

to note that there is no standard language and each tool uses its own language

constructs requiring a user to learn that specific language to be able to use the

high level design tool. A user is required to know and perform specific program-

ming styles to achieve maximum optimization in terms of area, throughput, power

consumption etc. Most of these tools such as Behaviour Synthesizer Cyber [62],

Catapult-C [153] and Cynthesizer [167] perform simultaneous architecture gener-

ation for the data path and the controller. To the best of our knowledge, these

design tools are applicable to a small code size.

All of these C-based design tool design the datapath on the fly; and their

architecture generation and its results depend on the controller generation where

most of them employ finite state machines (FSM) as controllers. Since FSM com-

plexity increases dramatically with the increasing application complexity, [62,167]

provide different optimization procedures such as FSM partitioning and hierarchi-

cal FSM generation.

Recommendation: Among these different C-based design tools, Catapult-

C is the most powerful tool for C/C++ code to HDL conversion so far. The other

established design tools are Impulse-C and Handel-C.

However, the majority of these tools attempt to be everything to everyone,

and often fail to do anything for anyone. In subsection 3.5, we present a case study

comparing two different domain-specific design tools: Filter Design HDL Coder

Toolbox and Xquasher, and show that their results in terms of area, latency etc.

are better than general purpose design tools. Thus, we believe that it is important

81

to take a more focused approach, therefore we should design a tool specifically

targeting matrix computation algorithms rather than a tool for everything.

We conclude this chapter by proposing the following properties that our

design tool should have:

• Domain-specific design tool specifically targeting a set of algorithms like

matrix computations;

• Abstracting intricate details of hardware generation from the user by

providing a user friendly environment. Therefore a user does not need to be

experienced in FPGA design and RTL design methodologies by enabling a

”push a button” transition from specification to implementation;

• Time and cycle accurate design methodology that leads to a correct-

by-construction architecture exploiting large amount of parallelism if de-

sired;

• Capability of targeting multiple platforms, also providing an ability

for further optimization to a specific platform;

• Capability of specifying the resources in generated architecture

such as number of resources, number of bits used and optimization level (a

general purpose or application specific architecture);

• Automatic design space exploration, what if analyses, for being able

to eliminate results that are not pareto-optimum in terms of desired objective;

• Capability of distributing control units in hierarchical finite state ma-

chines as well as logic units;

• Automatic generation of synchronization between individual hard-

ware units, control units;

• Built-in libraries to provide synthesizable and optimized MATLAB equiv-

alant functions without requiring any modification from the user side;

82

• Support for various data representation methods such as fixed-point

arithmetic, floating point arithmetic etc.;

• Error analysis and its visualization is essential to achieve optimum re-

sults for architectures that employ fixed point arithmetic by determination

of bit-width and the place of the binary point providing similar accuracy to

floating point implementation;

• Visual data flow graph and its visualization is essential, therefore a user

can evaluate the quality of the MATLAB .m code provided to the tool as

input. This visualization should also help user to achieve maximum optimiza-

tion in terms of desired objective such as low area usage and high throughput

by showing instruction scheduling, loop unrooling/merging, resource sharing

and binding options;

• Generation of a design block to be used in model based environment

along with System Generator for DSP, Simulink HDL Coder and Synplify

DSP built-in blocks. Since most of the generated single/multi-core architec-

tures can be a part of a larger design in the future, it is important to provide

a block for the user.

The text of Chapter 3.5.2 is in part a reprint of the material as it appears

in the proceedings of the Design Automation Conference. The dissertation author

was a co-primary researcher and author (with Arash Arfaee) and the other co-

authors listed on this publication [179] directed and supervised the research which

forms the basis for Chapter 3.5.2.

Chapter 4

Matrix Computations: Matrix

Multiplication, Matrix

Decomposition and Matrix

Inversion

Matrix computations lie at the heart of many scientific computational al-

gorithms such as signal processing, computer vision and financial computations.

In order to determine the effectiveness of our tool, we consider some of the most

important matrix computation tasks: matrix multiplication, decomposition and

inversion and implement various architectures, single core and multi-core, using

our tool, GUSTO, and present their results in the following chapters. These com-

putations are building blocks for larger matrix computation algorithms. Therefore,

we believe that effective implementation of these computations provide us a clue

for a better design tool and a way to evaluate GUSTO. This chapter provides an

overview for these computations including their characteristics, different solution

methods and algorithms. It is important to note that there are several different

ways to implement these algorithms which may result in different architectural

designs due to their different data dependencies, memory accesses and parallelism

levels.

83

84

The following sections are organized as follows: Section 4.1 introduces the

building blocks of matrix computations: addition, scalar-matrix multiplication

and matrix-matrix multiplication and provides algorithms for matrix-vector mul-

tiplication and matrix-matrix multiplication. Section 4.1 also details the matrix

notations with different examples. Section 4.2 looks into different decomposition

methods: QR, LU and Cholesky, presents their algorithms, resulting matrices and

solution methods. Section 4.3 focuses on different matrix inversion methods: ana-

lytic and decomposition based approaches. Decomposition based matrix inversion

algorithms employ QR, LU or Cholesky decompositions. We also provide a de-

tailed presentation for matrix decomposition algorithms in the Appendix at the

end of this thesis.

4.1 Building Blocks of Matrix Computations

Matrix multiplication is the foremost important computation since it has

been used frequently in matrix computation algorithms. The mathematical solu-

tion to the matrix multiplication problem is relatively easy, however it is rich in

computational point of view which affects the efficiency of results. The different

ways to compute matrix multiplication stems from the fact that it is possible to

exploit the given matrix structures. Such that if the given matrix is symmetric,

it can be stored in half the space as a general matrix or if it is a matrix-vector

multiplication, there are ways to decrease the computation time due to the fact

that vector matrix can be seen as a matrix with some zero entries. Before in-

troducing the algorithms for matrix multiplication algorithm, we introduce some

concepts and definitions that makes this as well as the following sections easier to

understand.

Matrix computations can be seen as the combination of many linear alge-

braic operations in hierarchy. Some examples are [13]:

• Dot products are scalar operations: addition and multiplication;

• Matrix - vector multiplication is series of dot products;

85

• Matrix - matrix multiplication is a collection of matrix - vector products.

The vector space of all m-by-n real matrices R
m×n is shown as:

A ∈ R
m×n ⇔ A = (Aij) =

⎡
⎢⎢⎣

A11 . . . A1n

...
. . .

...

Am1 . . . Amn

⎤
⎥⎥⎦ aij ∈ R

A matrix is a rectangular array of numbers. If the array has m rows and

n columns then it is said to be an m × n matrix. The element in the ith row and

jth column of the matrix A is denoted by Aij. The building blocks for the matrix

computations are:

• Addition(Rm×n × R
m×n → R

m×n)

C = A + B ⇒ cij = aij + bij (4.1)

• Scalar-matrix multiplication (R × R
m×n → R

m×n)

C = αA ⇒ cij = αaij (4.2)

• Matrix-matrix multiplication (Rm×r × R
r×n → R

m×n)

C = AB ⇒ cij =
r∑

k=1

aikbkj (4.3)

We present Matrix-Matrix multiplication with two different parts: Matrix-

Vector Multiplication and Matrix-Matrix Multiplication.

Matrix-Vector Multiplication: Two different Algorithms, 1 and 2, for Matrix-

Vector multiplications, Row and Column versions respectively, are shown

below. Both algorithms uses A, x and z as input matrix, input vector and

resulting matrix respectively. (2) in both algorithms determines the matrix

dimensions, m and n as number of rows and columns respectively. Algo-

rithm 1 accesses A row by row, and multiplies each row of the input matrix,

A, with the vector elements and acculumates the result number of column

86

Algorithm 1 Matrix-Vector Multiplication: Row version

Require: A ∈ R
m×n and x ∈ R

n

1: Function z = mat vec row(A, x)

2: m = rows(A); n = cols(A)

3: z(1 : m) = 0

4: for i = 1 : m do

5: for j = 1 : n do

6: z(i) = z(i) + A(i, j) x(j)

7: end for

8: end for

9: end mat vec row

times, n (6). Algorithm 2 accesses A column by column, and multiplies

each element in a column of the input matrix, A, with the same vector ele-

ments and updates the resulting matrix row elements. Acculumation of these

multiplications result in the matrix multiplication (6).

Algorithm 2 Matrix-Vector Multiplication: Column version

Require: A ∈ R
m×n and x ∈ R

n

1: Function z = mat vec col(A, x)

2: m = rows(A); n = cols(A)

3: z(1 : m) = 0

4: for j = 1 : n do

5: for i = 1 : m do

6: z(i) = z(i) + x(j) A(i, j)

7: end for

8: end for

9: end mat vec col

Matrix-Matrix Multiplication: The most widely used matrix-matrix multi-

plication algorithms are dot product matrix multiply, gaxpy matrix multiply

87

and outer product matrix multiply which are presented in detail in [13]. We

consider dot product matrix multiply as our algorithm. Assume that one

wants to compute C = AB where A ∈ R
m×r and B ∈ R

r×n. This computa-

tion is shown with as example below for a 2 × 2 matrices:

[
1 2

3 4

] [
5 6

7 8

]
=

[
1 · 5 + 2 · 7 1 · 6 + 2 · 8
3 · 5 + 4 · 7 3 · 6 + 4 · 8

]
=

[
19 22

43 50

]

The algorithm for dot product matrix multiply is shown in Algorithm 3. The

resulting matrix C, is assumed to be an array of dot products that its entries

are computed one at a time in left to right, top to bottom order (7).

Algorithm 3 Matrix-Matrix Multiplication: Dot Product

Require: A ∈ R
m×r and x ∈ R

r×n

1: Function C = mat mat mul(A, B)

2: m = rows(A); r = cols(A); n = cols(B)

3: C(1 : m, 1 : n) = 0

4: for i = 1 : m do

5: for j = 1 : n do

6: for k = 1 : r do

7: C(i, j) = C(i, j) + A(i, j) B(k, j)

8: end for

9: end for

10: end for

11: end mat mat mul

Here, we continue with some basic definitions for matrix notations.

Definition 1 - Square matrix is a matrix which has the same number of

rows as columns. ⎡
⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎦

88

Definition 2 - Column vector is a matrix with one column and row vector

is a matrix with one row.

Column Vector:

⎡
⎢⎢⎣

A1

A2

A3

⎤
⎥⎥⎦

Row Vector:
[

A1 A2 A3

]

Definition 3 - Diagonal of the square matrix is the top-left to bottom-right

diagonal. A square matrix is diagonal matrix if all the elements off the diagonal

are zero which can be shown as Aij = 0 if i 	= j.

Diagonal Matrix:

⎡
⎢⎢⎣

A11 0 0

0 A22 0

0 0 A33

⎤
⎥⎥⎦

Definition 4 - A square matrix is upper triangular if all elements below

the diagonal are zero. A square matrix is lower triangular if all elements above the

diagonal are zero.

Upper Triangular Matrix:

⎡
⎢⎢⎣

A11 A12 A13

0 A22 A23

0 0 A33

⎤
⎥⎥⎦

Lower Triangular Matrix:

⎡
⎢⎢⎣

A11 0 0

A21 A22 0

A31 A32 A33

⎤
⎥⎥⎦

Definition 5 - Transpose of a matrix A is another matrix which is created

by writing the rows of A as the columns of transpose matrix or writing the columns

of A as the rows of transpose matrix. Transpose of matrix A is written as AT .

89

A =

⎡
⎢⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎥⎦ , AT =

⎡
⎢⎢⎣

1 4 7

2 5 8

3 6 9

⎤
⎥⎥⎦

Definition 6 - A square matrix is symmetric if it equals to its own trans-

pose, A = AT and its elements are symmetric about the diagonal where Aij = Aji

for all i and j. ⎡
⎢⎢⎣

1 4 7

4 3 2

7 2 5

⎤
⎥⎥⎦

Definition 7 - An identity matrix is the diagonal square matrix with 1s

down its diagonal. Identity matrix is written as I.⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

Definition 8 - A zero matrix is the matrix which has all its elements zero.⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦

Definition 9 - Complex conjugate of a complex number is written by

changing the sign of the imaginary part. If the complex number is y, the complex

conjugate of the complex number can be written as ȳ.

y = a + ib, ȳ = a − ib (4.4)

Definition 10 - Complex conjugate transpose of a complex matrix is cre-

ated by taking the transpose of the matrix and then taking the complex conjugate

of each entry. If the matrix is represented by A, complex conjugate transpose of

matrix A is written as A∗.

90

A =

[
1 + 2i 3i

4 + 5i 6

]
, A∗ =

[
1 − 2i 4 − 5i

−3i 6

]

Definition 11 - A hermitian matrix is a complex matrix and it equals to

its own complex conjugate transpose, A = AH .

Definition 12 Matrix inverse of square matrix A is A−1 such that A ×
A−1 = I where I is the identity matrix.[

A11 A12

A21 A22

]
×

[
A−1

11 A−1
12

A−1
21 A−1

22

]
=

[
1 0

0 1

]

Definition 13 - An orthogonal matrix is a real matrix and the inverse of

the matrix equals to its transpose, that is Q × QT = QT × Q = I.

Definition 14 - A complex matrix U is a unitary matrix if the inverse of

U equals the complex conjugate transpose of U, U−1 = UH , that is U × UH =

UH × U = I.

Definition 15 - Determinant of a matrix is a function which depends on

the matrix size and it is calculated by combining all the elements of the matrix.

It is only defined for square matrices and denoted as det (A) or |A|. For a 2 × 2

matrix, it can be shown as∣∣∣∣∣
[

A11 A12

A21 A22

]∣∣∣∣∣ = (A11 × A22) − (A12 × A21)

Definition 16 - A matrix is singular if its determinant is 0 and as a result

it doesn’t have a matrix inverse. Nonsingular matrix is the matrix which is not

singular.

Definition 17 - In a matrix, if a row or column is a multiple of one

another, they are not independent and its determinant is zero. Maximum number

of independent rows or equivalently columns specifies the rank of a matrix.

91

4.2 Matrix Decomposition and its Methods

• QR: Given A ∈ R
m×n with rank(A) = n, QR factorization exists as A =

Q × R where Q ∈ R
m×n has orthonormal columns and R ∈ R

n×n is upper

triangular.

• LU: Given A ∈ R
n×n with det(A(1:k, 1:k)) 	= 0 for k = 1 : n-1, LU decom-

position exists as A = L × U . If LU decomposition exists and the given

matrix, A, is nonsingular, then the decomposition is unique and det(A) =

u11...unn.

• Cholesky: Given a symmetric positive definite matrix, A ∈ R
n×n, Cholesky

decomposition exists as A = G × GT where G ∈ R
n×n is a unique lower

triangular matrix with positive diagonal entries.

where a matrix A ∈ R
n×n is positive definite if xT Ax > 0 for x ∈ R

n and x 	= 0

and if it is symmetric positive definite matrix then AT = A. A positive definite

matrix is always nonsingular and its determinant is always positive.

Below we describe three known decomposition methods to perform matrix

inversion: QR, LU, and Cholesky decomposition methods [13]. Note that Cholesky

and LU decompositions work only with positive definite and nonsingular diagonally

dominant square matrices, respectively. QR decomposition, on the other hand, is

more general and can be applied to any matrix. For square matrices, n denotes

the size of the matrix such that n = 4 for 4×4 matrices. For rectangular matrices,

m and n denote the number of rows and columns in the matrix respectively such

that m = 3, n = 4 for 3 × 4 matrices.

4.2.1 QR Decomposition

QR decomposition is an elementary operation, which decomposes a matrix

into an orthogonal and a triangular matrix. QR decomposition of a matrix A is

shown as A = Q × R, where Q is an orthogonal matrix, QT × Q = Q × QT = I,

Q−1 = QT , and R is an upper triangular matrix (as shown below for 4×4 matrices).

92

Q =

⎡
⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

⎤
⎥⎥⎥⎥⎥⎦ ; R =

⎡
⎢⎢⎢⎢⎢⎣

R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44

⎤
⎥⎥⎥⎥⎥⎦

There are three different QR decomposition methods: Gram-Schmidt orthogo-

normalization (Classical or Modified), Givens Rotations (GR) and Householder

reflections. Applying slight modifications to the Classical Gram-Schmidt (CGS)

algorithm gives the Modified Gram-Schmidt (MGS) algorithm [13].

QRD-MGS is numerically more accurate and stable than QRD-CGS and

it is numerically equivalent to the Givens Rotations solution [14–16] (the solution

that has been the focus of previously published hardware implementations because

of its stability and accuracy). Also, if the input matrix, A, is well-conditioned and

non-singular, the resulting matrices, Q and R, satisfy their required matrix char-

acteristics and QRD-MGS is accurate to floating-point machine precision [16]. We

therefore present the QRD-MGS algorithm in Algorithm 4 and describe it below.

A, Q, R and X are the input, orthogonal, upper triangular and intermediate matri-

ces, respectively. The intermediate matrix is the updated input matrix throughout

the solution steps. Matrices with only one index as Ai or Xj represent the columns

of the matrix and matrices with two indices like Rij represent the entry at the in-

tersection of ith row with jth column of the matrix where 1 ≤ i, j ≤ n.

In Algorithm 4 we show that we start every decomposition by transferring

the input, 4 × 4, matrix columns, Ai, into the memory elements (3). Diagonal

entries of the R matrix are the Euclidean norm of the intermediate matrix columns

which is shown as (6). The Q matrix columns are calculated by the division of the

intermediate matrix columns by the Euclidean norm of the intermediate matrix

column, which is the diagonal element of R (7). Non-diagonal entries of the R

matrix are computed by projecting the Q matrix columns onto the intermediate

matrix columns one by one (9) such that after the solution of Q2, it is projected

onto X3 and X4 to compute R23 and R24. Lastly, the intermediate matrix columns

93

Algorithm 4 QRD-MGS Algorithm

1: Function (Q, R) = QRD MGS(A)

2: for i = 1 : n do

3: Xi = Ai

4: end for

5: for i = 1 : n do

6: Rii = ‖Xi‖
7: Qi = Xi

Rii

8: for j = i + 1 : n do

9: Rij =< Qi, Xj >

10: Xj = Xj − RijQi

11: end for

12: end for

13: end QRD MGS

are updated by (10).

4.2.2 LU Decomposition

If A is a square matrix and its leading principal submatrices are all non-

singular, matrix A can be decomposed into unique lower triangular and upper

triangular matrices. LU decomposition of a matrix A is shown as A = L × U ,

where L and U are the lower and upper triangular matrices respectively (as shown

below for 4 × 4 matrices).

L =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

L21 1 0 0

L31 L32 0 0

L41 L42 L43 0

⎤
⎥⎥⎥⎥⎥⎦ ; U =

⎡
⎢⎢⎢⎢⎢⎣

U11 U12 U13 U14

0 U22 U23 U24

0 0 U33 U34

0 0 0 U44

⎤
⎥⎥⎥⎥⎥⎦

The LU algorithm is shown in Algorithm 5. It writes lower and upper

triangular matrices onto the A matrix entries. Then it updates the values of the A

94

Algorithm 5 LU Algorithm

1: Function (L, U) = LU(A)

2: for j = 1 : n do

3: for k = 1 : j − 1 do

4: for i = k + 1 : j − 1 do

5: Aij = Aij − Aik × Akj

6: end for

7: end for

8: for k = 1 : j − 1 do

9: for i = j : n do

10: Aij = Aij − Aik × Akj

11: end for

12: end for

13: for k = j + 1 : n do

14: Akj =
Akj

Ajj

15: end for

16: end for

17: end LU

matrix column by column ((5) and (10)). The final values are computed by the

division of each column entry by the diagonal entry of that column (14).

4.2.3 Cholesky Decomposition

Cholesky decomposition is another elementary operation, which decom-

poses a symmetric positive definite matrix into a unique lower triangular matrix

with positive diagonal entries. Cholesky decomposition of a matrix A is shown

as A = G × GT , where G is a unique lower triangular matrix, Cholesky triangle,

and GT is the transpose of this lower triangular matrix (as shown below for 4 × 4

matrices).

95

G =

⎡
⎢⎢⎢⎢⎢⎣

G11 0 0 0

G21 G22 0 0

G31 G32 G33 0

G41 G42 G43 G44

⎤
⎥⎥⎥⎥⎥⎦ ; GT =

⎡
⎢⎢⎢⎢⎢⎣

G11 G21 G31 G41

0 G22 G32 G42

0 0 G33 G43

0 0 0 G44

⎤
⎥⎥⎥⎥⎥⎦

Algorithm 6 Cholesky Algorithm

1: Function (G, GT) = Cho(A)

2: for k = 1 : n do

3: Gkk =
√

Akk

4: for i = k + 1 : n do

5: Gik = Aik

Akk

6: end for

7: for j = k + 1 : n do

8: for t = j : n do

9: Atj = Atj − GtkGjk

10: end for

11: end for

12: end for

13: end Cho

Algorithm 6 shows the Cholesky decomposition algorithm. We start de-

composition by transferring the input matrix, A, into the memory elements. The

diagonal entries of lower triangular matrix, G, are the square root of the diagonal

entries of the given matrix (3). We calculate the entries below the diagonal en-

tries by dividing the corresponding element of the given matrix by the belonging

column diagonal element (5). The algorithm works column by column and after

the computation of the first column of the diagonal matrix with the given matrix

entries, the elements in the next columns are updated (9). For example after the

computation of G11 by (3), G21, G31, G41 by (5), second column: A22, A32, A42,

third column: A33, A43, and fourth column: A44 are updated by (9).

96

4.3 Matrix Inversion and its Methods

Matrix inversion algorithms lie at the heart of most scientific computational

tasks. Matrix inversion is frequently used to solve linear systems of equations in

many fields such as wireless communication. For example, in wireless communi-

cation, MIMO-OFDM systems use matrix inversion in equalization algorithms to

remove the effect of the channel on the signal [4–6], minimum mean square er-

ror algorithms for pre-coding in spatial multiplexing [7] and detection-estimation

algorithms in space-time coding [8]. These systems often use a small number of

antennas (2 to 8) which results in small matrices to be decomposed and/or in-

verted. For example the 802.11n standard [11] specifies a maximum of 4 antennas

on the transmit/receive sides and the 802.16 [12] standard specifies a maximum of

16 antennas at a base station and 2 antennas at a remote station.

Explicit matrix inversion of a full matrix is a computationally intensive

method and for example it requires the solution of 9 equations (i.e. A11x11 +

A12x21A13x31 = 1, A11x12 +A12x22 +A13x32 = 0 and A11x13 +A12x23 +A13x33 = 0)

to determine the inverse for a 3 × 3 matrix which is shown below.⎡
⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

If the inversion is encountered, one should consider converting this problem into an

easy decomposition problem which will result in analytic simplicity and computa-

tional convenience. Decomposition methods are generally viewed as the preferred

methods for matrix inversion because they scale well for large matrix dimensions

while the complexity of the analytic method increases dramatically as the matrix

dimensions grow. However, for small matrices, the analytic method, which can ex-

ploit a significant amount of parallelism, outperforms the decomposition methods.

Also note that Cholesky and LU decompositions work only with positive definite

and nonsingular diagonally dominant square matrices, respectively. QR decompo-

sition, on the other hand, is more general and can be applied to any matrix. We

further explain these different matrix inversion methods, their characteristics and

97

algorithms, the resulting matrices, and the solution steps for matrix inversion in

the next subsections.

4.3.1 Matrix Inversion of Triangular Matrices

Triangular matrix inversion is used in all of the decomposition based (QR,

LU and Cholesky) matrix inversion architectures described above and we use this

subsection to describe why this inversion is relatively simple and therefore not

a dominant calculation in any of these methods. Primarily, triangular matrix

inversion requires fewer calculations compared to full matrix inversion because

of its zero entries. The algorithm for triangular matrix inversion is shown in

Algorithm 7 and described below.

Algorithm 7 Matrix Inversion of Upper Triangular Matrices

1: Function (R−1) = MI(R)

2: R−1 = 0

3: for j = 1 : n do

4: for i = 1 : j − 1 do

5: for k = 1 : j − 1 do

6: R−1
ij = R−1

ij + R−1
ik Rkj

7: end for

8: end for

9: for k = 1 : j − 1 do

10: R−1
kj = −R−1

kj

Rjj

11: end for

12: R−1
jj = 1

Rjj

13: end for

14: end MI

Upper triangular matrix inversion is performed column by column. Calcu-

lating the diagonal entries of the R−1 matrix consists of simply dividing 1 by the

diagonal entry of the R matrix (12) and the rest of the column entries introduce

multiplication and addition iteratively (6) which is then divided by the diagonal

98

R matrix entry (10).

4.3.2 QR Decomposition Based Matrix Inversion

The solution for the inversion of matrix A, A−1, using QR decomposition

is shown as follows:

A−1 = R−1 × QT (4.5)

This solution consists of three different parts: QR decomposition, matrix

inversion for the upper triangular matrix and matrix multiplication (Figure 4.1).

QR decomposition is the dominant calculation where the next two parts are rela-

tively simple due to the upper triangular structure of R (as described in section A

above).

QR Decomposition Simple Matrix
Inversion

Matrix
MultiplicationA

R

I

R-1

A-1

QT

Figure 4.1: The solution steps of the matrix inversion using QR
decomposition.

4.3.3 LU Decomposition Based Matrix Inversion

The solution for the inversion of a matrix A, A−1, using LU decomposition

is shown as follows:

A−1 = U−1 × L−1 (4.6)

This solution consists of four different parts: LU decomposition of the given

matrix, matrix inversion for the lower triangular matrix, matrix inversion of the

upper triangular matrix and matrix multiplication (Figure 4.2). LU decomposition

99

is the dominant calculation where the next three parts are relatively simple due to

the triangular structure of the matrices.

LU
Decomposition

Simple Matrix
Inversion

Matrix
MultiplicationA

U

A-1

Simple Matrix
InversionL

U-1

L-1

Figure 4.2: The solution steps of the matrix inversion using LU decomposition.

4.3.4 Cholesky Decomposition Based Matrix Inversion

The solution for the inversion of a matrix, A−1, using Cholesky decomposi-

tion is shown as follows:

A−1 = G−1 × GT−1
(4.7)

This solution consists of four different parts: Cholesky decomposition, ma-

trix inversion for the transpose of the lower triangular matrix, matrix inversion

of the lower triangular matrix and matrix multiplication (Figure 4.3). Cholesky

decomposition is the dominant calculation where the next three parts are relatively

simple due to the triangular structure of the matrices.

Cholesky
Decomposition

Simple Matrix
Inversion

Matrix
MultiplicationA

GT

A-1

Simple Matrix
InversionG

(GT)-1

G-1

Figure 4.3: The solution steps of the matrix inversion using Cholesky
decomposition.

100

4.3.5 Matrix Inversion using Analytic Method

Another method for inverting an input matrix A is the analytic method

which uses the adjoint matrix, Adj(A), and determinant, det A. This calculation

is given by

A−1 =
1

detA
× Adj(A) (4.8)

The adjoint matrix is the transpose of the cofactor matrix where the cofactor

matrix is formed by using determinants of the input matrix with signs depending

on its position. It is formed in three stages. First, we find the transpose of the

input matrix, A, by interchanging the rows with the columns. Next, the matrix of

minors is formed by covering up the elements in its row and column and finding the

determinant of the remaining matrix. Finally, the cofactor of any element is found

by placing a sign in front of the matrix of minors by calculating (-1)(i+j). These

calculations are shown in Figure 4.4 for the first entry in the cofactor matrix, C11.

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

A22
A33 A34

A43 A44
(-1)1+1 A23

A32 A34

A42 A44
+(-1)1+2 A24

A32 A33

A42 A43
+(-1)1+3

Figure 4.4: Matrix Inversion with analytic approach. The calculation of the
first element of cofactor matrix, C11, for a 4 × 4 matrix is shown.

The calculation of the first entry in the cofactor matrix, C11 is repeated 16

times for a 4 × 4 matrix to form the 4 × 4 cofactor matrix which has 16 entries.

After the calculation of the adjoint matrix, the determinant is calculated using a

row or a column. The last stage is the division between the adjoint matrix and

the determinant which gives the inverted matrix.

Chapter 5

GUSTO: General architecture

design Utility and Synthesis Tool

for Optimization

Since matrix computation algorithms are expensive computational tasks,

we designed an easy to use tool, GUSTO (”General architecture design Utility

and Synthesis Tool for Optimization”) [52–55] for automatic generation and opti-

mization of application specific processing elements (PEs) for matrix computation

algorithms. GUSTO is the first tool of its kind to provide automatic generation

and optimization of a variety of general purpose processing elements (PEs) with

different parameterization options. It also optimizes the general purpose process-

ing element to improve its area results and design quality with an outcome of an

optimized application specific processing element. GUSTO receives the algorithm

from the user and allows her to select the type and number of arithmetic resources,

the data representation (integer and fractional bit width), and the different modes

of operation for general purpose or application specific processing elements. The

ability to choose different parameters allows the designer to explore different design

methods and pick the most efficient one in terms of the desired objective.

GUSTO is capable of producing two different processor architectures in

its design flow. Through it steps, GUSTO first creates a general purpose pro-

cessing element and its datapath for given set of inputs. Furthermore, it opti-

101

102

mizes/customizes this general purpose processing element to improve its area re-

sults and design quality by trimming/removing the unused resources and creating

an optimized application specific processing element while ensuring that correct-

ness of the solution is maintained. GUSTO also creates required HDL files which

are ready to simulate, synthesize and map.

The major contributions of this chapter are:

1) Design of an easy-to-use matrix computation core generator for efficient design

space exploration for single core designs with reconfigurable bit widths, resource

allocation, processor architecture types and methods which can generate and/or

optimize the design;

2) Determination of inflection points, in terms of matrix dimensions and bit widths,

between decomposition methods and inversion methods including analytic method;

3) A study of the area, timing and throughput tradeoffs using different design space

decisions for different matrix computations such as matrix decomposition using

QR, LU and Cholesky, matrix inversion using decomposition methods (QR, LU,

Cholesky) and analytic method as well as a case study: Adaptive Weight Calcula-

tion (AWC) Core design.

The rest of this chapter is organized as follows: Section 5.1 introduces

the flow of GUSTO: algorithm analysis, instruction generation, resource alloca-

tion, error analysis, processor architecture generation and optimization. Section

5.2 validates our methodology and effectiveness of our tool through the hardware

development of matrix decomposition architectures. Section 5.3 presents a case

study: Implementation of Adaptive Weight Calculation Core using QRD-RLS al-

gorithm. Section 5.4 presents architectural result for different matrix inversion

algorithms. Section 5.2, 5.3 and 5.4 also introduce FPGA resources, discuss design

decisions and challenges, present implementation results in terms of area and per-

formance, and compare our results with other published FPGA implementations.

We conclude in Section 5.5.

103

5.1 Flow of GUSTO

There are several different architectural design alternatives for a matrix

computation algorithm. For example, one can use QR, LU or Cholesky for matrix

decomposition. Thus, it is important to study tradeoffs between these alternatives

and find the most suitable solution for desired results such as most time efficient or

most area efficient design. Performing design space exploration is a time consum-

ing process where there is an increasing demand for higher productivity. High level

design tools offer great convenience by easing this burden and giving us the op-

portunity to test different alternatives in a reasonable amount of time. Therefore,

designing a high level tool for fast prototyping is essential.

GUSTO, ”General architecture design Utility and Synthesis Tool for

Optimization,” is such a high level design tool that is the first of its kind to provide

design space exploration across different matrix computation architectures. As

shown in Figure 5.1, GUSTO allows the user to select the matrix computation

method (As an example, a user can select QR, LU, Cholesky decompositions or

analytic method for matrix inversion), the type and number of arithmetic resources,

the data representation (the integer and fractional bit width), and the type of

processor element architecture.

After the required inputs are given, GUSTO generates a general purpose

processing element and its datapath by using resource constrained list scheduling.

The general purpose processing element is used for area and timing analysis for

a general non-optimized solution. The advantage of generating a general purpose

processing element is that it can be used to explore other algorithms, so long as

these algorithms require the same resource library and memory resources. However,

general purpose processing elements generally do not lead to high-performance

results. Therefore optimizing/customizing these architectures to improve their

area results is another essential step to enhance design quality.

GUSTO creates a general purpose processing element architecture which

can be seen in Figure 5.2. The created architecture works at the instruction

level where the instructions define the required calculations for the given matrix

computation algorithm. For better performance results, instruction level paral-

104

Algorithm AnalysisAlgorithm

Instruction Generation

Resource AllocationType and # of
Arithmetic Resources

Design Library

Error Analysis Error Analysis

Architecture GenerationData Representation

Collecting Scheduling Information

Resource Trimming for Hardware Optimization

Area, Latency and
Throughput Results

Simulation
Results

General Purpose
Processing Element

Application Specific
Processing Element

Figure 5.1: Design Flow of GUSTO.

lelism is exploited. The dependencies between the instructions limit the amount

of parallelism that exists within a group of computations. Our proposed design

consists of controller units and arithmetic units. The arithmetic units are capa-

ble of computing different matrix computation algorithms by employing adders,

subtractors, multipliers, dividers, square root units, etc. that are needed where

their type and number are defined by the user. In this architecture, controller

units track the operands to determine whether they are available and assign a

free arithmetic unit for the desired calculation. Every arithmetic unit fetches and

buffers an operand as soon as the operand is ready. As the next step, GUSTO

performs trimming/removing the unused resources from the general purpose pro-

cessing element and creates an optimized application specific processing element

while ensuring that correctness of the solution is maintained. GUSTO simulates

105

Task
Controller

Arithmetic Units

Memory
Controller

Adders

Multipliers

Controllers

Figure 5.2: General purpose architecture and its datapath.

the architecture to define the usage of arithmetic units, multiplexers, register en-

tries and input/output ports and trims away the unused components with their

interconnects.

A

B mem

InB1 InB2 Inmem

OutA

OutB

OutB
Outmem1

InA1

A

InA1 InA2

OutA
(a) Suppose there are two arithmetic units, A, B, and one memory. Arithmetic

Units have 2 inputs, 1 output; Memory unit has 1 input, 2 output ports.

(b) Input/Output ports relationship
between A and A, B, Memory is shown

assuming that every unit is connected to A.

(c) This Input/Output ports
relationship can be described as a 2

× 4 matrix. 1s and 0s represent
used and not-used interconnects.

(d) Trimming is performed using the
optimization matrix.

OutA

Outmem1

OutA
OutB

OutMem1

InA1

InA2

Outmem2

InA2

Outmem2

OutB
Outmem1
Outmem2

OutA

OutMem2

A

OutB

InA1 InA2

Outmem2 Outmem1

OutA

OutA

0 1 0 1

1 0 1 0

Figure 5.3: An Example for the GUSTO’s trimming feature.

We present 2 different trimming examples:

106

1) There are 2 arithmetic units with 2 inputs/1 output each and one mem-

ory with 1 input/2 outputs in Figure 5.3(a). Input / output port relationships

between arithmetic unit A and the other units are shown in a block diagram in

(b). Although OutA, OutB, Outmem1, and Outmem2 are all inputs to InA1 and InA2,

not all the inputs may be used during computation. We can represent whether an

input/output port is used or not during simulation in a matrix such as the one

shown in (c). As the simulation runs, the matrix is filled with 1s and 0s represent-

ing the used and unused ports respectively. GUSTO uses these matrices to remove

the unused resources (d). In this example, two inputs, OutA, Outmem1 to InA1 and

another two inputs, OutB, Outmem2 to InA2 are removed.

A

B

C

InB1

InB2

InC1

InC2

OutA

OutB

OutC

OutB

OutB

OutC

OutC

Mem

Mem

InA1

InA2

A

InA1

InA2
OutA

A OutA

InA1

InA2

(a) Suppose there are three arithmetic
units, A, B, C, and one memory with 2

inputs and 1 output ports each.

(b) Input/Output ports relationship between A
and B,C, Memory is shown assuming that every

unit is connected to A.

(c) This Input/Output ports relationship can be
described as a 2 × 4 matrix. 1s and 0s represent used and

not-used interconnects.

(d) Trimming is performed using the optimization
matrix.

OutA

OutA

OutA OutB OutC Mem

InA1

InA2

0 0 0 0

0 0 0 0

Figure 5.4: An Example for the GUSTO’s trimming feature.

2) There are 3 arithmetic units and one memory with 2 inputs and 1 output

each in Figure 5.4(a). Input / output port relationships between arithmetic unit

A and the other units are shown in a block diagram in (b). Although OutA, OutB,

107

Mem, and OutC are all inputs to InA1 and InA2, not all the inputs may be used

during simulation. We again represent whether an input/output port is used or

not during simulation in a matrix such as the one shown in (c). As the simulation

runs, the matrix is filled with 1s and 0s representing the used and unused ports

respectively. In this example, none of the possible inputs are used and arithmetic

units is removed with its interconnects(d).

GUSTO defines an optimization matrix for each arithmetic unit em-

ployed in the processing element that shows the connections with respect to other

arithmetic units. These optimization matrices are used to trim away unused re-

sources therefore leads to a processing element which has only the required connec-

tivity internally for the given algorithm. In order to achieve highly efficient silicon

implementations of matrix computation algorithms, GUSTO employs fixed point

arithmetic in generated architectures. GUSTO performs error analysis to find a

fixed point representation which provides results with the accuracy similar to that

of a floating point implementation which we introduce in the following subsection.

5.1.1 Error Analysis

There are two different types of approximations for real numbers: fixed-

point and floating-point arithmetic systems. Floating-point arithmetic represents

a large range of numbers with some constant relative accuracy. Fixed-point arith-

metic represents a reduced range of numbers with a constant absolute accuracy.

Usage of floating point arithmetic is expensive in terms for hardware and leads

to inefficient designs especially for FPGA implementation. On the other hand,

fixed point arithmetic results in efficient hardware designs with the possibility of

introducing calculation error.

We use two’s complement fixed point arithmetic in our implementations as

it results in faster and smaller functional units. The data lines used in our imple-

mentations for fixed point arithmetic consist of an integer part, a fractional part

and a sign bit. Fixed-point arithmetic reduces accuracy and consequently intro-

duces two types of errors: round-off and truncation errors. Round-off error occurs

when the result requires more bits than the reserved bit width after a computation.

108

Truncation error occurs due to the limited number of bits to represent numbers.

These issues must be handled carefully to prevent incorrect or low accuracy results.

Thus, error analysis is a crucial step to determine how many bits are required to

satisfy accuracy requirements.

GUSTO

User Defined
Input Data

Error Analysis metrics:
1) Mean Error
2) Standard Deviation of Error
3) Peak Error
4) Mean Percentage Error

MATLAB

Floating Point Arithmetic
Results

(Single/Double precision)

Fixed Point Arithmetic
Results

(using variable bit width)

Figure 5.5: Performing error analysis using GUSTO.

GUSTO performs error analysis after the resource allocation step (shown in

Figure 5.1) to find an appropriate fixed point representation which provides results

with the accuracy similar to that of a floating point implementation. GUSTO takes

the sample input data which is generated by the user. The matrix computation is

performed using single or double precision floating point arithmetic and these are

referred as the actual results. The same calculations are performed using different

bit widths of fixed point representations to determine the error, the difference be-

tween the actual and the computed result. GUSTO provides four different metrics

to the user to determine if the accuracy is enough for the application: mean error,

standard deviation of error, peak error, and mean percentage error as shown in

Figure 5.5.

109

The first metric, mean error, is computed by finding the error for all result-

ing matrix entries and then dividing the sum of these errors by the total number

of entries. This calculation can be seen as:

m∑
i=1

|yi − ŷi|

m
(5.1)

where y , ŷ and m are the actual results, the computed results and the number

of entries which are used in the computation (16 for a 4 × 4 matrix), respectively.

Mean error is an important metric for error analysis however it does not include

the information about outlier errors. This is the case where a small number of

entries have very high error but the majority of entries have very small error.

To calculate the dispersion from the mean error, the standard deviation of error

and the peak error, are introduced in our tool. Mean error sometimes leads to

misleading conclusions if the range of the input data is small. Therefore the fourth

metric, mean percentage error, makes more sense if the relative error is considered.

This metric is defined as

m∑
i=1

|yi − ŷi

yi

|

m
(5.2)

Number of bits used
16 22 28 34 40 46 52 58 64

10-15

10-10

10-5

100

A
ve

ra
ge

E
rr

or

Figure 5.6: An error analysis example, mean error, provided by GUSTO
for QR decomposition based 4 × 4 matrix inversion. The user can select
the required number of bit widths for the application where the increasing
number of bits results in high accuracy.

As an example, we perform an error analysis for QR decomposition based

110

matrix inversion. We generate uniformly distributed pseudorandom numbers, [0,

1], for a 4 × 4 matrix. The mean error results, provided by GUSTO, are shown

in Figure 5.6 in log domain where mean error decreases with the increase in the

number of bits used as bit width. Therefore, the user can determine how many

bits are required for the desired accuracy. It is important to note that the tool

also provides standard deviation of error, peak error and mean percentage error.

The following section presents the effectiveness of our tool, GUSTO, by

showing its different design space exploration examples for matrix decomposition

architectures. We present area results in terms of slices and performance results

in terms of throughput. Throughput is calculated by dividing the maximum clock

frequency (MHz) by the number of clock cycles to perform particular matrix com-

putation. All designs are generated in Verilog and synthesized using Xilinx ISE

9.2. Resource utilization and design frequency are post place and route values

obtained using a Virtex 4 SX35 FPGA.

All functional units are implemented using the Xilinx Coregen toolset. The

addition and subtraction units are implemented with SLICES, the multiplications

use XtremeDSP blocks, the divider core uses a circuit for fixed-point division

based on radix-2 non-restoring division and the square root unit uses a CORDIC

core. We use Block RAMs available on Xilinx FPGAs as memory storage space

for instructions. The Block RAM modules provide flexible 18Kbit dual-port RAM,

that are cascadable to form larger memory blocks. Embedded XtremeDSP SLICES

with 18 × 18 bit dedicated multipliers and a 48-bit accumulator provide flexible

resources to implement multipliers to achieve high performance. Furthermore, the

Xilinx Coregen toolset implements these cores very efficiently since it uses special

mapping and place & route algorithms allowing for high performance design.

5.2 Matrix Decomposition Architectures

Matrix decompositions are essential computations for simplifying and re-

ducing the computational complexity of various algorithms used in wireless com-

munication. For example, decomposition methods are used for simplifying matrix

111

inversion which are used in MIMO-OFDM systems’ minimum mean square error

algorithms for pre-coding in spatial multiplexing [7], equalization algorithms to re-

move the effect of the channel on the signal [4] and detection-estimation algorithms

in space-time coding [8].

We divided this section into two parts: inflection point analysis and ar-

chitectural design alternatives analysis. Inflection point analysis presents timing

results of decomposition methods in terms of clock cycles for different executions

(sequential and parallel), matrix sizes and bit-widths. Inflection point analysis

answers at what matrix size does an inflection point occur and how does vary-

ing bit width and degree of parallelism change the inflection point for a specific

decomposition method? Architectural design alternatives analysis presents area

and performance results of different decomposition architectures using different

parameterizations. Area and performance results are presented in terms of slices

and throughput respectively. This analysis also shows how GUSTO finds the op-

timal hardware by moving from general purpose to application specific processing

element for different decomposition methods. Throughput is calculated by divid-

ing the maximum clock frequency (MHz) by the number of clock cycles to perform

matrix decomposition. Our designs are generated in Verilog and synthesized using

Xilinx ISE 9.2. Resource utilization and design frequency are post place and route

values obtained using a Virtex 4 SX35 FPGA.

5.2.1 Inflection Point Analysis

We present three different analyses for comparison of decomposition meth-

ods in Figure 5.7, 5.8 and 5.9. The total number of operations for different

decomposition methods is shown in Figure 5.7 in log domain. We compare se-

quential and parallel execution of different decomposition methods for different bit

widths (16, 32 and 64 bits) and matrix sizes in Figure 5.8 and 5.9 respectively.

QR, LU and Cholesky decomposition methods are shown with square, spade and

triangle respectively. 16, 32 and 64 bits of bit widths are shown with smaller

dashed, dashed and solid lines respectively. We show inflection points between

these decomposition methods by balloons.

112

1

10

100

1000

10000

2 2 3 3 4 4 5 5 6 6 7 7 8 8

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

Matrix Size

QR
LU
Cholesky

Matrix Size
2×2 3×3 4×4 5×5 6×6 7×7 8×8

T
ot

al
 N

um
be

r
of

 O
pe

ra
tio

ns

10,000

1,000

100

10

1

Figure 5.7: Total number of operations for decomposition methods in log
domain.

0

1000

2000

3000

4000

5000

6000

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s (
se

qu
en

tia
l)

Matrix Size
2×2 3×3 4×4 5×5 6×6 7×7 8×8

Matrix Size

16 bit
32 bit
64 bit

QR
LU
Cholesky

#
of

C
lo

ck
C

yc
le

s(
se

qu
en

tia
l) 6,000

5,000

4,000

3,000

2,000

1,000

0

Figure 5.8: The comparison between different decomposition methods using
sequential execution.

The total number of operations, Figure 5.7, shows that QR decomposition

requires significantly higher number of operations compared to LU and Cholesky

decompositions. LU and Cholesky decompositions require a close number of op-

erations where LU decomposition requires more operations than Cholesky decom-

position after 4× 4 matrices. The sequential execution of decomposition methods,

Figure 5.8, show that QR decomposition requires more clock cycles than the other

decomposition methods for all bit widths. Execution of 16 bit QR decomposi-

113

0

200

400

600

800

1000

1200

1400

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s (
pa

ra
lle

l)

Matrix SizeMatrix Size
2×2 3×3 4×4 5×5 6×6 7×7 8×8

16 bit
32 bit
64 bit

QR
LU
Cholesky

#
of

C
lo

ck
C

yc
le

s(
pa

ra
lle

l)

1,400

1,200

1,000

800

600

400

200

0

Figure 5.9: The comparison between different decomposition methods using
parallel execution.

tion requires the same number of clock cycles with the 64 bit LU decomposition.

Cholesky decomposition requires more clock cycles than LU decomposition because

of its square root operations; however the difference between LU and Cholesky be-

comes smaller for smaller number of bit widths.

The parallel execution of decomposition methods, Figure 5.9, shows that LU

decomposition performs better than other methods. 64 bit implementation of LU

decomposition performs almost the same as the 32 bit Cholesky decomposition

and also the 32 bit LU decomposition performs almost the same as the 16 bit

implementation of Cholesky decomposition.

5.2.2 Architectural Design Alternatives for Matrix Decom-

position Algorithms

We present two different analyses for comparison of decomposition meth-

ods in terms of architectural design alternatives in Figure 5.10 and 5.11 for 4× 4

matrices. The general purpose and application specific processing element architec-

tural results are compared in Figure 5.10 in terms of slices (area) and throughput

(performance). We compare area and throughput results of different bit width

114

implementations of decomposition methods in Figure 5.11.

General Purpose
Processing Element

QR LU Cholesky

Application Specific
Processing Element

QR LU Cholesky
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

o
f S

lic
es

Decrease in Area (Percentage)
83% 94% 86%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Th
ro

ug
hp

ut

Increase in Throughput (Percentage)
68%

16%

14%

Figure 5.10: The comparison of the general purpose processing element and
application specific processing element architectures in terms of slices (area)
and throughput (performance).

The general purpose architecture is able to perform different decomposition

methods with a selection input. However, it is possible to provide better area and

throughput results by optimizing the general purpose architecture and creating an

application specific architecture for a specific decomposition method. As can be

seen in Figure 5.10, by creating an application specific architecture which uses the

optimal number of resources, we can decrease the area by 83%, 94% and 86% for

QR, LU and Cholesky decompositions respectively. Optimizing the architecture

also provides higher clock frequencies and leads 16%, 68% and 14% increase in

throughput for QR, LU and Cholesky decompositions respectively.

We also present area and throughput results for different bitwidths of data:

19, 26 and 32 bits in Figure 5.11. The user can determine the bitwidth of the

data by the error analysis part of our tool. High precision can be obtained by

using a larger number of bits but this comes at the price of larger area and lower

throughput. As can be seen in Figure 5.11, LU decomposition provides the smallest

area and highest throughput for all bit widths. Also, it is important to see that

there is an inflection point between QR and Cholesky decompositions at 25 bits

in terms of area where Cholesky decomposition requires more area for bit widths

115

Number of bits

N
um

be
ro

fS
lic

es Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

19 bits 26 bits 32 bits

QR Decomposition
LU Decomposition
Cholesky Decomposition
Slices
Throughput

Figure 5.11: Area and throughput tradeoffs for different bit width of data:
19, 26 and 32 bits. A user can determine the bitwidth of the data by the
error analysis part of GUSTO. High precision can be obtained by using more
number of bits as bitwidth which comes at the price of larger area and lower
throughput.

larger than 25 bits. On the other hand, Cholesky decomposition provides higher

throughput compared to QR decomposition for all bit widths due to the fact that

Cholesky decomposition requires less clock cycles.

In the next section, we present a case study: Implementation of Adap-

tive Weight Calculation Core, using our matrix computation core generator tool,

GUSTO.

5.3 Adaptive Weight Calculation Core using QRD-

RLS Algorithm

Adaptive weight calculation (AWC) is required in many wireless commu-

nication applications including adaptive beamforming, equalization, predistortion

and multiple-input multiple-output (MIMO) systems [9]. These applications in-

116

volve solving systems of equations in many cases which can be seen as:

a11x1 + a12x2 · · · + a1mxm = b1 + e1 (5.3)

a21x1 + a22x2 · · · + a2mxm = b2 + e2 (5.4)
... (5.5)

an1x1 + an2x2 · · · + anmxm = bn + en (5.6)

where A is the observations matrix which is assumed to be noisy, b is a known train-

ing sequence and x is the vector to be computed by using least squares method.

This is described more compactly in matrix notation as Ax = b + e. If there is

the same number of equations as there are unknowns, i.e. n = m, this system

of equations has a unique solution, x = A−1b. However, high sampling rate com-

munication applications are often over-determined, i.e. n > m. Introducing the

least squares approach helps to solve the problem by minimizing the residuals:

min
∑

n e2
n.

In general, the least squares approach, e.g. Least Mean Squares (LMS),

Normalized LMS (NLMS) and Recursive Least Squares (RLS), is used to find an

approximate solution to these kinds of system of equations. Among them, RLS

is most commonly used due to its good numerical properties and fast convergence

rate [10]. However, it requires matrix inversion which is not efficient in terms of

precision and hardware implementation. Applying QR decomposition to perform

adaptive weight calculation based on RLS is a better method and leads to more

accurate results and efficient architectures. Therefore, we use our tool, GUSTO, to

implement an adaptive weight calculation (AWC) core that employs QR decompo-

sition in its solution steps. The resulting upper triangular matrix, R, which is the

solution of QR decomposition, is used to find coefficients of the system by back-

substitution after converting b into another column matrix, c, such that Rx = c

(Figure 5.12).

5.3.1 Comparison

We design two architectures with different bitwidthds: 14 and 20 bits and

compare our results with different applications which use decomposition methods

117

QR Decomposition Back Substitution
A

b

R

c
x

AWC

Figure 5.12: Adaptive Weight Calculation (AWC) using QRD-RLS method
consists of two different parts to calculate the weights, QR decomposition
and back-substitution.

in their solution methods in Table 5.1. These related works are hard to compare

with each other since two of them are matrix inversion architectures [18,19], one is

a beamformer design [20], and ours is an adaptive weight calculation design. We

also use fixed point arithmetic and fully used FPGA resources like DSP48 multi-

pliers instead of Look-up Tables (LUTs). Therefore our intention is not to directly

compare these different designs, but to give an idea about our area and through-

put results compared to other implementations that use decomposition methods.

Edman et al. proposed a linear array architecture for inversion of complex valued

matrices [18]. Karkooti et al. presented an implementation of matrix inversion us-

ing the QRD-RLS algorithm along with square GR and folded systolic arrays [19].

Dick et al. considered the architecture, design flow and the verification process of a

real-time beamformer [20] which is most similar to our work since area and timing

results are presented for QR decomposition and back substitution architectures

(clock frequency is assumed as 250 MHz). The advantage of our work compared

to the related work is we give the ability to the designer to study the tradeoffs

between architectures with different design parameters to find an optimal design.

The following section presents the effectiveness of our tool, GUSTO, by

showing its different design space exploration examples for matrix inversion archi-

tectures.

5.4 Matrix Inversion Architectures

Matrix inversion algorithms lie at the heart of most scientific computational

tasks. Matrix inversion is frequently used to solve linear systems of equations in

118

Table 5.1: Comparisons between our results and previously published papers. NR
denotes not reported.

[160] GUSTO [162] GUSTO
Application Inversion Matrix Inv. Beamformer Beamformer

Matrix Dimensions 4 × 4 4 × 4 4 × 4 4 × 4
Bit width 12 12 18 18
Data type fixed fixed fixed fixed

Device type (Virtex) II II IV IV
Slices 4400 2214 3530 2313

DSP48s NR 8 13 8
BRAMs NR 1 6 1

Throughput (106 × s−1) 0.28 0.33 0.19 0.14

many fields such as wireless communication. These systems often use a small

number of antennas (2 to 8) which results in small matrices to be decomposed

and/or inverted. For example the 802.11n standard [11] specifies a maximum of

4 antennas on the transmit/receive sides and the 802.16 [12] standard specifies a

maximum of 16 antennas at a base station and 2 antennas at a remote station. In

this section, we present different design space exploration examples using differ-

ent inputs of GUSTO and compare our results with previously published FPGA

implementations.

For the analytic method, we present three different designs, Implementation

A, B, and C, with varying levels of parallelism (using cofactor calculation cores in

parallel). Cofactor calculation core is a processing core that is designed by GUSTO

to execute instructions to form cofactor matrices which can be seen in Figure 5.13.

Implementation A uses one cofactor calculation core, Implementation B uses two

cofactor calculation cores and Implementation C uses 4 cofactor calculation cores.

Design space exploration can again be divided into two parts: inflection

point analysis and architectural design alternatives analysis.

5.4.1 Inflection Point Analysis

In this subsection, we first compare QR decomposition and analytic method

because they are both applicable to any matrix. Then, we compare different de-

119

×

×

×

×

A33

A44

A34

A44

A43
A32

A34

-

-

×

×

A42

A43

A32

A42

-A33

×

×

×

A22

A23

A24

+

+ C11

Cofactor Calculation Core

Cofactor
Calculation Core

Cofactor
Calculation Core

Cofactor
Calculation Core

Cofactor
Calculation Core

Cofactor
Calculation Core

Cofactor
Calculation Core

Cofactor
Calculation Core

16

8

8

4

4

4

4

Implementation A Implementation B Implementation C

Figure 5.13: Three different designs, Implementation A, B, and C, with vary-
ing levels of parallelism (using cofactor calculation cores in parallel) to form
cofactor matrices.

composition methods (QR, LU, and Cholesky) to benefit from different matrix

characteristics.

Comparison of QR decomposition based matrix inversion and Analytic

Method:

The total number of operations used in these methods is shown in Fig-

ure 5.14 in log domain. It is important to notice that the total number of oper-

ations increases by an order of magnitude for each increase in matrix dimension

for the analytic method making the analytic solution unreasonable for large ma-

trix dimensions. Since the analytic approach does not scale well, there will be an

inflection point where the QR decomposition approach will provide better results.

At what matrix size does this inflection point occur and how does vary-

ing bit width and degree of parallelism change the inflection point? The

comparisons for sequential and parallel executions of QR and analytic methods

120

are shown in Figure 5.15 and 5.16 with different bit widths: 16, 32 and 64. We

used implementation A for the parallel implementation of analytic method. Solid

and dashed lines represent QR decomposition method and analytic method results

respectively. The balloons denote the inflection points between the two methods

for the different bit widths.

1

10

100

1000

10000

100000

1000000

2×2 3×3 4×4 5×5 6×6 7×7 8×8

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

Matrix Size

QR

Analytic

Figure 5.14: The total number of operations for both the QR decomposition
based matrix inversion and the analytic method in log domain.

0

500

1000

1500

2000

2500

3000

3500

2×2 3×3 4×4 5×5

of

 c
lo

ck
 c

yc
le

s
(s

eq
ue

nt
ia

l)

Matrix Size

AnalyticAnalyticcti QRD
64

32

16166

644666

16

32

64

Figure 5.15: The inflection point determination between the QR decom-
position based matrix inversion and the analytic method using sequential
execution.

121

0

200

400

600

800

1000

1200

1400

2×2 3×3 4×4 5×5 6×6

of

 c
lo

ck
 c

yc
le

s
(p

ar
al

le
l)

Matrix Size

16

32

64
Analytic QRD

16

32

64

Figure 5.16: The inflection point determination between QR decomposition
based matrix inversion and analytic method using parallel execution.

The sequential execution results (Figure 5.15) show that the analytic method

offers a practical solution for matrix dimensions ≤ 4 × 4. It also gives the same

performance as the QR decomposition method for 5×5 matrices using 64 bits. The

analytic method result increases dramatically for 6×6 matrices (not shown) where

it needs 12,251 clock cycles (for 16 bits) as opposed to 1,880 clock cycles for QR

decomposition suggesting the analytic method is unsuitable for matrix dimensions

≥ 6 × 6.

The parallel execution results are shown in Figure 5.16. Analytic method

offers a practical solution for matrix dimensions ≤ 4 × 4 and it is preferred for

5× 5 matrix dimension for 32 and 64 bits. The increase in the clock cycle is again

dramatic for matrix dimensions ≥ 6× 6 for the analytic method demanding to use

the QR decomposition method for these larger matrix dimensions.

Comparison of different decomposition based matrix inversion methods:

The total number of operations used in different decomposition methods

based matrix inversion architectures is shown in Figure 5.17 in log domain. It is

122

important to notice that there is an inflection point between LU and Cholesky de-

compositions at 4×4 matrices with a significant difference from QR decomposition.

The comparisons for sequential and parallel executions of QR, LU and Cholesky

decomposition based matrix inversion architectures are shown in (Figure 5.18 and

5.19) respectively with different bit widths: 16, 32 and 64. Square, spade and

triangle represent QR, LU and Cholesky methods respectively. Solid, dashed and

smaller dashed lines represent 64, 32 and 16 bits of bit widths respectively. The

balloons denote the inflection points between these methods for the different bit

widths where an inflection point occurs.

1

10

100

1000

10000

2 2 3 3 4 4 5 5 6 6 7 7 8 8

To
ta

l N
um

be
r

of
 O

pe
ra

tio
ns

Matrix Size

QR
LU
Cholesky
Inflection Point

Matrix Size

2×2 3×3 4×4 5×5 6×6 7×7 8×8

Figure 5.17: The total number of operations for different decomposition based
matrix inversion methods in log domain.

The sequential execution results of decomposition methods based matrix

inversion architectures (Figure 5.18) show that QR takes more clock cycles than

Cholesky and LU where Cholesky takes more cycles than LU. As the bit widths

get smaller, the difference between QR and the others doesn’t change significantly,

however it becomes smaller between Cholesky and LU decomposition based inver-

sions. There is an inflection point between LU and Cholesky decompositions at

7 × 7 matrices for 16 bits.

The parallel execution results of decomposition methods based matrix in-

version (Figure 5.19) show that QR decomposition based matrix inversion archi-

123

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s
(S

eq
u

en
ti

al
)

Matrix SizeMatrix Size
2×2 3×3 4×4 5×5 6×6 7×7 8×8

Figure 5.18: The comparison between different decomposition based matrix
inversion methods using sequential execution.

0

500

1000

1500

2000

2500

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s
(p

ar
al

le
l)

Matrix SizeMatrix Size
2×2 3×3 4×4 5×5 6×6 7×7 8×8

Figure 5.19: The comparison between different decomposition based matrix
inversion methods using parallel execution.

tectures have the highest number of clock cycles for all bit widths where Cholesky

and LU decomposition based matrix inversion architectures have a similar number

of clock cycles for small bit widths. However, LU decomposition uses increasingly

124

fewer clock cycles than Cholesky decomposition with increasing bit widths and

matrix dimensions. LU decomposition with 16 bits performs almost the same as

QR decomposition with 32 bits. Also, 64 bits LU decomposition performs almost

the same as 32 bits QR decomposition in terms of total number of clock cycles.

5.4.2 Architectural Design Alternatives for Matrix Inver-

sion Architectures

These analyses are shown for QR, LU and Cholesky decomposition based

matrix inversion architectures and analytic method based matrix inversion archi-

tectures for 4 × 4 matrices. We present both general purpose and application

specific processing element results in Figure 5.20 to show the improvement in our

results with the optimization feature, and present only application specific pro-

cessing element results in Figure 5.21 and 5.22.

0

0.05

0.1

0.15

0.2

0.25

0.3

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2222 2244 3444 4444
of Adder, Subtractor, Multiplier, Divider

T
hr

ou
gh

pu
t

of

 S
lic

es

Slices (Mode 1)
Slices (Mode 2)
Throughput (Mode 1)
Throughput (Mode 2)

Optimal Resources

Figure 5.20: Design space exploration for QR decomposition based matrix
inversion architectures using different resource allocation options.

We investigate different resource allocations for QR decomposition based

matrix inversion architectures using different processor types that are provided by

GUSTO and present the results in Figure 5.20. As expected from general purpose

processing element, Figure 5.20 shows an increase in area and throughput as the

125

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

1000

2000

3000

4000

5000

6000

7000

19 bits 26 bits 32 bits

T
hr

ou
gh

pu
t

of

 S
li

ce
s

of bits

Figure 5.21: Design space exploration for decomposition based matrix inver-
sion architectures using different bit widths.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

2000

4000

6000

8000

10000

12000

14000

4 6 8

T
hr

ou
gh

pu
t

of

 S
li

ce
s

Matrix Size
4×4 6×6 8×8

Figure 5.22: Design space exploration for decomposition based matrix inver-
sion architectures using different matrix sizes.

number of resources increase up to optimal number of resources. Adding more

than the optimal number of resources decreases throughput while still increasing

area. However, application specific processing element generated by GUSTO finds

the optimal number of resources which maximizes the throughput while minimiz-

126

ing area which is shown in Figure 5.20. Application specific processing element’s

optimized architecture can therefore provide an average of 59% decrease in area

and 3X increase in throughput over general purpose (non optimized) processing

element. Bit width of the data is another important input for the matrix inversion.

The precision of the results is directly dependent on the number of bits used. The

usage of a high number of bits results in high precision at a cost of higher area

and lower throughput. We present 3 different bit widths, 19, 26 and 32 bits in

Figure 5.21 for these three different decomposition based matrix inversion archi-

tectures. Usage of LU decomposition for matrix inversion results in smallest area

and highest throughput compared to the other methods. Cholesky decomposition

offers higher throughput at a cost of larger area compared to QR decomposition.

We also present three different matrix dimensions, 4 × 4, 6 × 6 and 8 × 8,

implementation results in Figure 5.22 showing how the area and performance re-

sults scale with matrix dimension. We again observe that LU decomposition based

matrix inversion architectures offer better area and throughput results compared

to other methods.

5.4.3 Comparison

Comparisons between our results and previously published implementations

for analytic based matrix inversion and decomposition based matrix inversion for

4 × 4 matrices is presented in Table 5.2 and 5.3 respectively. For ease of com-

parison we present all of our implementations with bit width 20 as this is the

largest bit width value used in the related works. Though it is difficult to make

direct comparisons between our designs and those of the related works (because

we used fixed point arithmetic instead of floating point arithmetic and fully used

FPGA resources (like DSP48s) instead of LUTs), we observe that our results are

comparable. The main advantages of our implementation are that, it provides

the designer the ability to study the tradeoffs between architectures with different

design parameters and provides a means to find an optimal design.

127

Table 5.2: Comparisons between our results and previously published articles for
Matrix Inversion using Analytic Method. NR denotes not reported.

GUSTO
Method [17] [17] Impl A Impl B Impl C

Bit width 16 20 20 20 20
Data type floating floating fixed fixed fixed

Device type (Virtex) IV IV IV IV IV
Slices 1561 2094 702 1400 2808

DSP48s 0 0 4 8 16
BRAMs NR NR 0 0 0

Throughput (106 × s−1) 1.04 0.83 0.38 0.72 1.3

Table 5.3: Comparisons between our results and previously published articles for
Decomposition based Matrix Inversion Architectures. NR denotes not reported.

[18] [19] GUSTO
Method QR QR QR LU Cholesky

Bit width 12 20 20 20 20
Data type fixed floating fixed fixed fixed

Device type (Virtex) II IV IV IV IV
Slices 4400 9117 3584 2719 3682

DSP48s NR 22 12 12 12
BRAMs NR NR 1 1 1

Throughput (106 × s−1) 0.28 0.12 0.26 0.33 0.25

5.5 Conclusion

This chapter describes our matrix computation core generator tool, GUSTO,

that we developed to enable easy design space exploration for various matrix com-

putation architectures which targets reconfigurable hardware designs. GUSTO

provides different parameterization options including bit widths and resource al-

locations which enable us to study area and performance tradeoffs over a large

number of different architectures. We present QR, LU, and Cholesky decompo-

sitions, AWC calculation, and decomposition and analytic method based matrix

inversion architectures, to observe the advantages and disadvantages of all of these

different methods in response to varying parameters. GUSTO is the only tool that

allows design space exploration across different matrix computation architectures.

128

Its ability to provide design space exploration, which leads to an optimized appli-

cation specific processing element architecture, makes GUSTO an extremely useful

tool for applications requiring matrix computations.

The text of Chapter 5 is in part a reprint of the material as it appears

in the proceedings of the Transactions on Embedded Computing Systems. The

dissertation author was the primary researcher and author and the co-authors

listed on this publication [52–54] directed and supervised the research which forms

the basis for Chapter 5.

Chapter 6

GUSTO’s Single Processing Core

Architecture

We believe that a general purpose processing core is an ideal starting point

to create an application specific processing core since it provides us with fully con-

nected highly custom architecture to perform efficient design space exploration.

We see that there are substantial opportunities to eliminate unneeded functional-

ity and create an application specific core for executing the assigned part of the

algorithm. Connecting these optimized application specific cores, that each em-

ploys only the required amount of memory resources, can result in highly efficient

multi-core architectures. Since matrix computation algorithms are expensive com-

putational tasks, their hardware implementation requires a significant amount of

time and effort. We believe that it is crucial to have a domain specific design tool

which can automatically create these type of parallel platforms for a given matrix

computation algorithm and a set of user decisions.

Therefore, we design our tool, GUSTO, for automatic multi-core architec-

ture generation for matrix computation algorithms. We utilize FPGAs for these

type of parallel processing architectures since they provide reconfigurability and

let us to cheaply develop a prototype system. GUSTO can also generate ASIC de-

signs. GUSTO receives the matrix computation algorithm from the user, generates

instructions and presents a data flow graph to the user. The user performs par-

titioning to divide the given algorithms into small highly parallelizable processing

129

130

cores. The user also defines the type and number of arithmetic resources and the

data representation (integer and fractional bit width) for each core. GUSTO then

uses these inputs to generate general purpose processing cores and performs simu-

lation & elimination to generate optimized application specific processing cores. It

then connects these small cores to create a multi-core architecture. GUSTO em-

ploys a different amount of memory resources for each core in such a way that the

memory accesses between cores are reduced and the overall platform generated has

only the required connectivity between processing cores. As explained in Section

3, processing cores that are generated by GUSTO are simple but ALU oriented for

high performance computation.

The major contributions of this chapter are:

1) Detailing the properties of the general purpose architectures generated by GUSTO,

and optimizations performed to achieve application specific architectures;

2) A trimming optimization methodology to generate application specific pro-

cessing cores by simulating & eliminating general purpose processing cores

that use dynamic scheduling and binding with out-of-order execution;

The rest of the chapter is organized as follows. In section 2, we present re-

lated work including commercially available design tools to generate hardware, pre-

viously published papers for domain-specific design tools and multi-core platforms.

In section 3, we introduce GUSTO, its design flow and describe the optimizations

performed to generate an application specific core from a user defined general pur-

pose core. Our optimizations include static architecture generation and trimming

for optimization. Section 4 details the multi-core architecture generation by intro-

ducing GUSTO’s steps: partitioning and generation of the connectivity between

cores. We conclude in Section 5.

6.1 Related Work

In this section, we consider 1) multi-core platforms that are specifically

designed to exploit inherent parallelism in the given algorithms and 2) commer-

cially available design tools to generate hardware from a higher level language and

131

previously published papers to advance their technology.

There are different platforms that employ various types of computational

cores on a single die to achieve higher throughput. Some examples to these plat-

forms are Graphical Processor Units (GPUs) and Massively Parallel Processor

Arrays (MPPAs), each of which has a different type of architectural organization,

processor type and memory management. GPUs and MPPAs employ 960 cores

(NVIDIA Tesla S1070) and 336 cores (Ambric AM2045) in their architectures re-

spectively. This large number of cores provides massive parallelism, but it is also

very hard to partition the given algorithm onto hundreds of processors. These

platforms employ general purpose processors with full connectivity and predefined

local memories and cache sizes.

High level design tools are attractive to achieve optimized architectures for

the application at hand while decreasing the design time. There are various differ-

ent design tools that can aid a designer to generate hardware from a higher level

language such as MATLAB and C. Matrix computation algorithms are typically

written and tested using MATLAB code or Simulink, a model based environment,

and there are a number of tools that translate such algorithms to a hardware

description language. Model based design tools include System Generator from

Xilinx, Simulink HDL Coder from Mathworks and Synplify DSP from Synplicity.

The drawbacks of model based design tools are: 1) The generation of control units

requires manual effort and in particular, resource synchronization becomes more

complicated as the application complexity increases, 2) the lack of built-in IP block

support and 3) inefficient performance since designed IP cores are treated as black

boxes by current synthesis tools; therefore current synthesis tools do not perform

optimization that cross module boundaries.

A solution to the synchronization problem and the lack of built-in block sup-

port is to use AccelDSP from Xilinx which provides MATLAB code, .m, to HDL

conversion automatically. Therefore, a user can design controller units and/or

undefined blocks using AccelDSP easily. However, Nissbrandt et al. [156] com-

pared AccelDSP and AccelWare DSP library results with hand-code and Xilinx

Core Generator implementations for various signal processing algorithms. The au-

132

thors concluded that AccelDSP should primarily be used as a method for platform

decision due to inefficiencies in the AccelDSP generated designs; performance, re-

liability of the description, readability and the problems of maintaining the source

are common problems. All of which are more important than the reduced design

time. Furthermore, Xilinx announced that AccelDSP will be discontinued starting

from 2010, thus creating a need for MATLAB code, .m, based design tool [157].

Examples of C-based design tools are Catapult-C, Forte Cynthesizer [167]

and the PICO Project [168]. Catapult-C and Forte Cynthesizer perform simul-

taneous architecture generation for the data path and the controller where the

datapath is built on the fly and affected by the control generation. These tools

generate FSMs as controllers and perform the best on small applications (those

with less code) [169]. PICO generated architectures consist of a EPIC/VLIW pro-

cessor and an optional nonprogrammable accelerator (NPA) subsystem where it

employs only synchronous parallel nearest-neighbor communication. Another ex-

ample is OptimoDE [175] that consists of a VLIW-styled Data Engine architecture

allowing data path configurations and ISA customizations. To generate pipelines

of accelerators from streaming applications, Mahlke et al. proposed an automated

system called Streamroller [177]. However, VLIW datapaths do not scale efficiently

and there has been extensive research on multicluster architecture generation [170].

Our methodology is significantly different than these previous approaches and can

be seen as a custom MPPA design. General purpose processing cores, generated

by GUSTO, are simple RISC CPUs where the user defines the number as well as

the types of the processing cores. After the optimizatons, each processing core em-

ploys required connectivity between its architectural components and only required

amounts of memory resources.

Optimization of a processor by removing unused and/or underutilized re-

sources has also been studied. Fan et al. proposed a method to remove under-

utilized bypass paths to optimize the processor architectures that employ register

bypassing logic [173]. Optimization of a processor by trimming is presented in

[164,165] where the trimming is performed for only unused functional resources or

limited to an architecture style. Gajski et al. presented a methodology for design-

133

ing energy-efficient processing-elements, that use statically scheduled nanocode-

based architectures, by extending trimming method for the optimization of inter-

connects [166]. The drawback of their approach is the large code size of the parallel

nanocoded architecture which is up to four times larger than a RISC processor.

GUSTO’s flow also does not require updating the instruction scheduler due to the

removed functional resources and interconnects and extends trimming optimiza-

tion to multi-core architectures by optimizing the connectivity between processing

cores.

There has been extensive research on efficient partitioning of operations.

Exploiting ILP leads to high performance values while centralized memory be-

comes bottleneck in the architectures. A strategy to eliminate the bottleneck

is to create a decentralized architecture using several smaller register files, each

serving to particular FUs [171]. These types of architectures are known as clus-

tered architecture and their main challenge is the compilation support for efficient

partitioning operations into available resources. Chu et al. presented a method-

ology to solve efficient partitioning based on graph partitioning methods using

a performance-based operation partitioning algorithm [172]. [174] extends their

performance-based approach to another level by effectively balancing cost and per-

formance. [176] proposed a method for synthesizing the local memory architecture

by breaking it into simple sub-problems and solving it with using a phase-ordered

approach. An efficient memory access partitioning method that partitions memory

operations across cores to decrease the memory stall time is presented in [178].

GUSTO generates processing cores that have local memories, however gives parti-

tioning responsibilites to the user.

6.2 Automatic Generation and Optimization of

Matrix Computation Architectures

There are many architectural design choices that need to be made while

implementing the hardware for matrix computation algorithms. These implemen-

tation choices include resource allocation, number of functional units, organization

134

of controllers and interconnects, and bit widths of the data. Not only does gen-

erating the hardware for a given set of requirements involve tedious work, but

performing design space exploration to find the optimum hardware design is also a

time consuming process. Therefore, a high level tool for design space exploration

and fast prototyping is essential.

A general purpose processing core is an ideal starting point to create an

application specific processing core since it provides us with fully connected highly

custom architecture and there are substantial opportunities to eliminate unneeded

functionality. This includes unused registers, register ports, functional units, as

well as the interconnect that have substantial overhead on performance. We use

GUSTO to optimize general purpose processing cores to have only the required

connectivity between its components for a given part of the algorithm. Therefore,

it is not surprising to see that there is large amount of area savings and throughput

increase by moving to application specific processing cores. Even though general

purpose processing cores require substantial overhead in order to maintain the flex-

ibility to execute any application, there are of course many benefits for employing

general purpose processing cores in a multi-core architecture. The main goals of

this chapter are to show GUSTO’s methodology in more detail and provide an idea

to the user about the cost of employing a general purpose processing core in the

multi-core architecture generated by GUSTO.

In this section we present the flow of operation, describe the general purpose

processing cores generated, and discuss optimizations performed in each core by

GUSTO when generating matrix computation architectures. The next section

introduces design flow steps for the multi-core architecture generation in more

detail. To the best of our knowledge we are the first to propose such an automated

design tool.

6.2.1 Flow of Operation

GUSTO is a high level design tool that provides automatic generation and

optimization of a variety of general purpose processing cores with different pa-

rameterization options. It then optimizes the general purpose processing cores to

135

improve area efficiency and design quality which results in an application specific

core. As shown in Figure 6.1, GUSTO first receives the algorithm from the user

and allows him/her to perform partitioning. A user then chooses the type and

number of arithmetic resources and the data representation for each core. GUSTO

automatically generates optimized application specific cores and combines these

small cores to create an architecture for a given matrix computation algorithm.

The application specific architectures that are generated by GUSTO employ the

optimal number of resources which maximizes the throughput while minimizing

area.

Algorithm Analysis

Instruction Generation

Partitioning

Resource Allocation

Error Analysis

Architecture
Generation

Collecting Scheduling
Information

Resource Trimming for
Hardware Optimization

Generation of the Connectivity between Cores

Xilinx ISE ModelSim
Area, Latency and

Throughput Results Simulation Results

Algorithm

Type and # of
Functional Resources

Data Representation

Design Library

Error Analysis

General Purpose
Processing Element

Application Specific
Processing Element

Multi-Core
Architecture

Processing Core 1 Processing
Core 2

Processing
Core N

Figure 6.1: Design Flow of GUSTO.

6.2.2 Designing the General Purpose Processing Core

In the architecture generation step, GUSTO creates a general purpose pro-

cessing core which exploits instruction level parallelism using dynamically sched-

136

uled out-of-order execution. The general purpose processing core consists of an in-

struction scheduler, a memory controller and functional resources. The instruction

scheduler reads instructions that are pre-generated by GUSTO from its instruc-

tion memory. The format of a fetched instruction defines the operation type to

be performed, the destination and two required operands for the calculation. The

main duty of the instruction scheduler is to generate scheduled instructions i.e.,

assigning operations to the functional resources, performing scheduling and bind-

ing. This is achieved by 1) tracking the availability of the functional resources and

2) tracking the functional units that will produce the operand(s) (Figure 6.2(a)).

The instruction scheduler prevents WAR and WAW hazards as well as structural

hazards. Each functional resource receives the scheduled instructions and waits

for the required operands for its execution. The required operands can be received

either from memory through its controller or from functional resources, shown

as interconnect matrix. The memory controller resides the memory, watches for

the data, updates its memory entries and prevents RAW hazards (Figure 6.2(b)).

GUSTO generated architectures can define register files or BRAMs as memory el-

ements which depends on the required number of inputs/outputs for the memory

and the required memory size.

Instruction
Scheduler Functional

Resources

Memory
Controller

Scheduled Instruction

Completion Tag N

Completion Tag 2
Completion Tag 1

Instruction
Scheduler

Functional
Resources

Memory
Controller

Interconnect
Matrix

Operand for FU 1

Operand for FU M

Memory
Out 1

Memory
Out N

Data Out from FU 1

Data Out from FU M

(a) (b)

Figure 6.2: (a) The instruction scheduler generates scheduled instructions i.e.,
assigning operations to the functional resources, performing scheduling and
binding. (b) Each functional resource receives scheduled instructions and
waits for the required operands to begin execution.

137

6.2.3 Designing the Application Specific processing core

GUSTO performs several optimizations on the general purpose architecture

and creates application specific processing cores while ensuring that the correctness

of the solution is maintained. We present details about our optimizations in the

following subsections.

Optimizing the Instruction Scheduler

The instruction scheduler generates scheduled instructions from fetched in-

structions by scheduling and binding the arithmetic operations. The instruction

scheduler prevents WAR and WAW hazards as well as structural hazards through

tracking the availability of functional resources and the operands 6.3. The instruc-

tion scheduler has a crucial role while implementing a dynamic scheduling processor

architecture with out-of-order execution capability, therefore it consumes a lot of

silicon in the overall architecture. However, we show that the dynamic instruction

scheduler can be optimized to create an efficient application specific processing

core.

Operation Destination Operand 1 Operand 2

Generic Instruction Line

Are there any available
resource for this

operation?

Operand Tracking Logic

Update with
the new binding

Binding
Information Operation Destination Operand 1

Scheduled Instruction Line

Operand 2

Updates from other
FUs

T

Figure 6.3: Detailed Architecture for the Instruction Scheduler.

138

There are two variables that have a significant effect on the instruction

scheduler’s silicon usage: number of functional resources (to track the avail-

ability of resources) and number of memory entries (to track the location of

the operands for scheduled instructions that will be produced from one of the

functional resources). We perform two analyses to determine the effect of these

two variables on GUSTO generated general purpose processing cores in terms of

area (Slices) and the critical path (ns). We use FPGAs to perform these analyses

but could also target ASICs. Figure 6.4(a) presents the increase in the area and

critical path with the increasing number of functional resources where we assume

that the memory has 20 entries. Figure 6.4(b) presents the increase in the area

and the critical path while the size of the memory entries increases from 20 to 100,

assuming that there are 8 functional resources in the processor architecture. We

determine that increasing the number of functional resources and memory entries

dramatically affects the area and critical path of the architecture. Therefore, we

concentrate our efforts on removing the dynamic binding process (tracking the

availability of functional resources) and the tracking unit for operands.

We explore two different possible optimization methods for the instruction

scheduler:

• Removing the instruction scheduler by creating a static architecture

(such as finite state machines (FSMs) as controllers) for functional resources

and memory resources. GUSTO is capable of removing the instruction sched-

uler and creating a datapath for execution of the given algorithm through

a set of functional resources, memory resources and FSM controllers. How-

ever, we prefer not to use this method since FSMs usually grow in complexity

as the required number of clock cycles for the execution of the application

increases (especially with the tools that we used);

• By simulating the general purpose processing core with the fetched

instructions and collecting the scheduled instructions, GUSTO can

remove the binding and the operand tracking logic since this information

is already included in the scheduled instructions. What is not included is

the time to send the scheduled instructions to the other resources which

139

A
re

a

C
ritical Path

of Functional Resources # of Memory Entries
(a)

A
re

a

C
ritical Path

(b)

0

5

10

15

20

25

0

2000

4000

6000

8000

10000

12000

4 8 16 24 32 40 48

Area (Slices)

Critical Path (ns)

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

0

1,000

2,000

3,000

4,000

5,000

6,000

20 40 60 80 100

Area (Slices)

Critical Path (ns)

Figure 6.4: (a) Increasing the number of functional resources results in an
increase in the area (Slices) and the critical path where we assume that the
memory has 20 entries. (b) Increasing the size of the memory entries from 20
to 100 results in an increase in the area (Slices) and the critical path where
we assume that there are 8 functional resources.

can easily be performed with the functional resource availability. Therefore,

GUSTO generates a processor architecture that uses static binding and dy-

namic scheduling of resources. This approach gives us the opportunity to

perform various optimizations on the other resources instead of generating a

fully static architecture.

Figure 6.5 presents a comparison between unoptimized (Unopt.) and op-

timized (Opt.) instruction scheduler architectures in terms of area (Slices) and

critical path (ns) with the increasing number of functional resources. As can be

seen from Figure 6.5, we keep the complexity of the instruction scheduler steady

even with the increasing number of functional resources by saving tremendous sil-

icon (83%-97%). We achieve this optimization by avoiding dynamic binding and

operand tracking which are very costly in terms of architectural implementation.

140

0

5

10

15

20

25

0

2000

4000

6000

8000

10000

12000

Unopt. Opt. Unopt. Opt. Unopt. Opt. Unopt. Opt. Unopt. Opt. Unopt. Opt. Unopt. Opt.

4 8 16 24 32 40 48

Area (Slices)

Critical Path (ns)

A
re

a

C
ritical Path

of Functional Resources

83 % 95 % 95 % 97 % 97 % 97 % 97 %

Figure 6.5: A comparison between unoptimized (Unopt.) and optimized
(Opt.) instruction scheduler architectures in terms of area (Slices) and crit-
ical path (ns) with the increasing number of functional resources.

Optimizing the Functional Resources

After the instruction scheduler decodes the fetched instruction and assigns

a free functional resource for the calculation, the scheduled instruction is sent to

every other functional resource. The assigned arithmetic resource receives the

scheduled instruction, starts monitoring the common data bus, and goes into

the execution stage when all the required operands are available. The required

operands can be received from either outputs of a functional resource or memory

element.

Each functional resource consists of an arithmetic calculation unit (adder,

matrix multiplier, etc.) and the controllers to track required operands for the

calculation which is shown in Figure 6.6. Employing a high number of utilized

functional resources in a core provides higher throughput which also increases

the silicon consumption. For better understanding the distribution of the silicon

consumption in arithmetic calculation units and controllers, we investigate their

distribution in terms of area while employing an increasing number of functional

resources as shown in Figure 6.7(a). As can be seen from the Figure, most of the

141

silicon (61%-78%) is consumed as controllers in a functional resource in order to

be able to track the operands.

Is this Calculation
for me?

Look for the Operands

Operation Data 1Operand 1 Operand 2

Data

T

Binding
Information Operation Destination Operand 1

Scheduled Instruction Line

Operand 2

Data 2

Data 1 is ready

Data 2 is ready
+

Interconnect
Matrix

Functional
Resources and

Memory Outputs

Figure 6.6: Detailed Architecture for a Functional Resource.

The possible optimizations to reduce the controller overhead include:

• Generation of a static controller. The complexity of the generated con-

trollers increases dramatically for more complex algorithms, therefore careful

FSM optimizations need to be performed to achieve low area results;

• Trimming for control units. GUSTO simulates the general purpose archi-

tecture to define the usage of arithmetic units, multiplexers, register entries

and input/output ports and trims away the unused components with their

interconnects. GUSTO defines an optimization matrix for each functional

resource employed in the processing core that shows the connections with

respect to other functional resources. These optimization matrices are used

to trim away unused resources with its interconnects and therefore lead to

a processing core which has only the required functional resources and con-

nectivity for the given algorithm.

Figure 6.7(b) presents the optimization results for functional resources using

142

0

200

400

600

800

1000

1200

1400

Vector
Mul.

Matrix
Mul.

Matrix
Mul.

Matrix
Mul.

QR Dec. LU Dec. Cholesky
Dec.

Upper
Triangular

Matrix
Inv.

4 8 12 16 16 8 12 16 16

Area (Slices)

Fully Connected General Purpose
Architecture

A
re

a

of Functional Resources

61 %
72 %

73 %

78 %

of Functional Resources

A
re

a

84 % 89 % 84 % 79 % 76 % 71 % 71 % 70 %

0

200

400

600

800

1000

1200

1400

1600

1800

Overall Control Overall Control Overall Control Overall Control

4 8 16 24

Area (Slices)

(a) (b)

Application Specific Processing Cores

Figure 6.7: (a) shows that controllers in a functional resource consumes most
of the silicon (61%-78%) in order to be able to track the operands. (b)
presents the optimization results for functional resources using trimming
optimizations.

trimming optimizations. The first four bars in the figure show the area results

for unoptimized general purpose functional resources as the number of functional

resources increases. The area of the functional resources increases significantly with

the addition of the new resources into the architecture. The remaining bars show

the area for optimized functional resources using different applications. Trimming

performance depends on the applications’s simplicity and regularity. For example,

vector multiplication is the simplest among our examples. Our results show 84%

area reduction compared to the equivalent general purpose architecture with 16

functional resources. Another example is the matrix multiplication which is more

complex and requires more calculations compared to the vector multiplication. We

use GUSTO to show different area results of matrix multiplication with different

number of functional resources. Results for QR, LU and Cholesky decompositions

and upper triangular matrix inversion are also shown in Figure 6.7(b). Towards

upper triangular matrix inversion algorithm, optimization results drop to 70% and

trimming optimization becomes less effective. The reason behind this is that the

complexity and irregularity of the algorithms increase.

It is important to state one more important feature of the GUSTOs’ trim-

ming optimization. While simulating the general purpose architecture, GUSTO

143

creates different usage frequency graphs for the functional resources and their in-

terconnects: 1) Usage frequency graphs for the functional resources: a user

sees the utilization of the functional resources in order to determine underutilized

resources. As an example, assume that there are 10 adders in a core and one of the

adders is being used just 2 times compared to the rest of the adders (used more

than 20 times each). The user can remove this underutilized adder which will force

dynamic scheduling and the binding process to assign its calculations to another

adder. 2) Usage frequency graphs for the interconnects: a user sees the

utilization of the interconnects in order to determine underutilized interconnects

and performs different scheduling methods to eliminate the underutilized intercon-

nects. The benefit from these binding approaches is to save significant amount of

area from underutilized resources/interconnects and there may be also a decrease

in the throughput of the architecture.

Optimizing the Memory Controller

After receiving the scheduled instruction from the instruction scheduler, the

memory controller checks if the required operands are in the memory entries and

if they are, it sends them to the functional resources. The memory controller also

keeps the destination information from the scheduled instruction, thus it does not

send the data until its execution is completed and the destination is updated with

the new value to prevent RAW hazards (Figure 6.8).

GUSTO creates a static architecture for the memory controller by collect-

ing the memory assignments (inputs and outputs) with the clock cycle. Therefore,

GUSTO uses this information to remove dynamic assignments and create a state-

less Moore FSM to control the memory assignments. We are currently working

on optimizing the FSMs that are generated by GUSTO by finding sequences of

control signal patterns and reducing the area by using counter logic instead of just

linear states. However, these optimizations are not in the scope of this article.

Figure 6.9 shows the area (slices) of the memory controller and required

clock cycles to execute for the given matrix computation algorithm using a dif-

ferent number of functional resources. The first three bars show the dynamic

144

Is Operand 1 valid in
Memory?

T

Binding
Information Operation Destination Operand 1

Scheduled Instruction Line

Operand 2

Interconnect
Matrix

Functional
Resources and

Memory Outputs

Is Operand 2 valid in
Memory?

F

F

Data & Data Tag

Data & Data Tag

T

Figure 6.8: Detailed Architecture for the Memory Controller.

general purpose memory controller area results with a different number of func-

tional resources. The area of the memory controller increases significantly with the

increasing number of functional resources. The required clock cycles for the gen-

eral purpose architecture is not shown since this value is different for each matrix

computation algorithm. We use GUSTO to optimize the memory controller for

different matrix computation algorithms such as vector multiplication, matrix mul-

tiplication, LU decomposition, etc. GUSTO generated static memory controllers

provide large area savings. The required clock cycles to execute the given matrix

computation algorithms directly affects the area of the static architecture. As can

be seen from the Figure 6.9, the area increases while the required clock cycles to

execute increases.

Figure 6.10 shows the area (slices) in the y-axis and percentage inside the

bar describing the distribution of arithmetic resources and controllers for a single

core design. GUSTO provides single core architectures that consumes most of

the area in arithmetic resources such as 87% and 85% for Cholesky decomposi-

tion and upper triangular matrix inversion algorithms respectively. This distribu-

tion changes with the complexity and irregularity of the algorithms such that LU

145

A
re

a

R
equired C

lock C
ycles

0

100

200

300

400

500

600

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Vector
Mul.

Matrix
Mul.

Matrix
Mul.

Matrix
Mul.

LU Dec. Cholesky
Dec.

QR Dec. LU dec.
based

Matrix
Inv.

Cholesky
dec.

based
Matrix

Inv.

8 12 16 16 8 12 16 16

Area (Slices)
Required Clock Cycles

General Purpose
Architecture

of Functional Resources

99% 95% 95% 94%
97%

93%
86%

68%

97%

Figure 6.9: Shows the area results for the memory controller and required
clock cycles to execute the given matrix computation algorithm using differ-
ent number of functional resources.

decomposition and Cholesky decomposition based matrix inversion architectures

consume larger area in the controllers.

6.3 Designing a Multi-Core Architecture

Designing a single processing core for matrix computations does not provide

a complete design space to the user because the user is only capable of changing

the number of functional resources in terms of the organization of the design and

concentrating on the instruction level parallelism without task level parallelism.

Since GUSTO finds the optimal number of resources for a single core, which max-

imizes the throughput while minimizing area, it is not possible to achieve a higher

throughput. Designing a single core for matrix computations also does not scale

well with the complexity of the algorithms typically required to take advantage of

the instruction level parallelism present. The two major reasons for these scalabil-

146

A
re

a

87 % 85 %
80 %

70 %

65 %

55 %

13 %
15 %

20 %

30 %

35 %

45 %

0

500

1000

1500

2000

2500

3000

3500

Cholesky
Decomposition

Upper
Triangular

Matrix Inversion

QR
Decomposition

LU
Decomposition

LU
Decomposition
based Matrix

Inversion

Cholesky
Decomposition
based Matrix

Inversion

Arithmetic Units Controller

Figure 6.10: Shows the percentage distribution of arithmetic resources and
controllers for a single core design.

ity issues are: 1) The internal storage and communication between functional units

becomes dominated by the increasing number of functional resources in terms of

delay, power dissipation, and area [159], 2) Because of the increase in the usage

of functional units, the optimization that is performed by GUSTO, to remove the

unused arithmetic units, multiplexers and input/output ports with their intercon-

nects, becomes less effective.

Even though moving from general purpose processing cores to application

specific processing cores provides tremendous area and throughput improvements

due to the performed optimizations, the complexity of the given algorithm di-

rectly affects these optimization results. For example, a single application specific

processing core design for LU decomposition provides 94% area savings compared

to general purpose processing core implementation. A single application specific

processing core design for a more complex algorithm like LU decomposition based

matrix inversion provides 77% area savings. The effectiveness of the optimiza-

147

tion decreases with the complexity of algorithms. Therefore, instead of creating

one application specific processing core for the entire algorithm, generating multi-

core architectures with homogeneous/heteregenous cores to exploit instruction and

task level parallelism will result in more detailed design space exploration and may

result in a more efficient hardware implementation.

Multi-core architecture generation requires us to introduce the following

steps in more detail:

• Partitioning is the process of dividing the given algorithm into parallelizable

parts to be implemented in different cores;

• Generation of the connectivity between cores is the process to connect the

cores together with the required connectivity.

As shown in Figure 6.1, GUSTO starts with algorithm analysis, instruc-

tion generation and partitioning for multi-core implementation. GUSTO allows

the user to define the desired parallelism in the partitioning step and generates

general purpose processing cores for each part of the algorithm after the user de-

fines the type and number of arithmetic resources and the data representation (the

integer and fractional bit width). After the architecture generation step, GUSTO

performs different optimizations to every core independent from each other and

creates application specific processing cores. The last step is generation of the

connectivity between cores for multi-core architecture. The Partitioning and gen-

eration of the connectivity between cores steps are introduced in more detail in the

following subsections.

6.3.1 Partitioning

Partitioning is one of the most important steps, when designing a multi-

core architecture using GUSTO, to exploit task level parallelism. There are many

different ways to design a multi-core architecture by partitioning the given algo-

rithm into different cores. Examples include 1) design of a platform that employs

large number of cores to achieve a high throughput but large area and 2) design

of a platform that employs small number of cores to achieve a small area but low

148

throughput. The quality of the design also depends on the inherent parallelism

of the given algorithm independent from the user decisions. Our tool provides a

large freedom to the user to create different types of parallel architectures and to

compare them for choosing the one that fits to his/her situation.

(a) Single Core Design (b) 2 Cores Design (c) 3 Cores Design

Core 1

Core 2

Core 2

Core 3
Core 1

Figure 6.11: There are several different ways that one can partition the given
algorithm into different cores. We show three different possibilities: (a), (b),
(c), that are examples of designing one core, two cores and three cores for a
given matrix computation algorithm respectively.

After the algorithm analysis and instruction generation steps, GUSTO pro-

duces a data flow graph representing the data dependencies and the parallelism

options to the user. As a very simple example, consider the data flow graph that is

generated by GUSTO in Figure 6.11. There are several different ways that one can

partition the algorithm into different cores. Therefore we show three different pos-

sibilities in Figure 6.11 where (a) presents 1 core design to execute all instructions

in one core and (a) does not require the execution of generation of the connectivity

between cores step of the GUSTO’s flow. Unlike (a), (b) and (c) show different

ways to exploit the parallelism in the given algorithm using 2 or 3 cores. Even

though (b) is a multi-core architecture, there is no connectivity needed between

cores due to the fact that there are no data dependencies between them. There is

no need to perform the generation of the connectivity between cores for (b). On the

other hand (c) generates a multi-core architecture where there is data dependency

between its core 1 and core 2. Therefore, GUSTO performs the generation of the

connectivity between cores step to make core 2 able to access core 1 to get the data

R4 when it is valid. The generation of the connectivity between cores step will be

149

introduced in more detail in the later subsection of this section.

6.3.2 Generation of the Connectivity Between Cores

GUSTO generates general purpose processing cores with the user-defined

inputs. Furthermore, GUSTO performs several optimizations to generate applica-

tion specific cores where a user can choose to keep some general purpose processing

cores in the architecture. The application specific cores have only the required con-

nectivity internally which is shown in Figure 6.12(a). Each row in the platform

shows the cores that have the data dependency to each other. These cores pro-

cess the data in a streaming fashion. As an example, Application Specific Core,

ASP 1,1, processes the data and another core in its row can start execution upon

the completion of its required inputs. This architecture employs a shared memory

structure where each core has access to the specific parts of the memory, defined as

local and shared variables. Local variables are specific to a core; shared variables

are used between a core and its successors. As an example, ASP 1,1 uses its local

memory to execute given instructions, and puts the data, that are required for

ASP 1,x ’s execution, into the shared memory; therefore ASP 1,x can start its ex-

ecution. Each row in the architecture executes independent from each other since

they have no data dependencies. However, using shared memory is not the most

efficient solution for multi-core architectures since the complexity of the controllers

increases dramatically.

GUSTO partitions the shared memory into each processing core in such a

way that the memory accesses between cores are reduced. In a fully connected

architecture, there are two different types of connectivity: 1) Instruction scheduler

to other cores’s local memory. Scheduled instructions need to be broadcasted in

a way that each core sends the instruction to its predecessors since they may

access data from a predecessors’s shared variables. 2) each shared memory to

every functional resource in its row. There should be full connectivity between each

shared memory and every functional resource in its row. However, full connectivity

might not be required in application specific architectures. Therefore, GUSTO

removes the connections, instruction scheduler to other cores’ memory controller

150

Instr.
Mem.

Instr. Sch.

×

/

Shared M
em

ory

Interconnect
Matrix

M
em

. C
ont.

ASP 1,1

Instr.
Mem.

Instr. Sch..

-

×

Interconnect
Matrix

ASP 1,2

Instr.
Mem.

Instr. Sch.

×

/

Local
Variables

Interconnect
Matrix

Mem.
Cont.

ASP 1,1

Instr.
Mem.

Instr. Sch.

-

×

Interconnect
Matrix

ASP 1,2

(a)

Instr.
Mem.

Instr. Sch.

-

/

Interconnect
Matrix

ASP 1,3

Shared
Variables

Local
Variables

Mem.
Cont.

Shared
Variables

Local
Variables

Mem.
Cont. Shared

Variables
ASP 2,1 ASP 2,2 ASP 2,N

ASP M,1 ASP M,2 APP M,N

ASP 2,1 ASP 2,2 ASP 2,N

ASP M,1 ASP M,2 ASP M,N

(b)

Figure 6.12: (a) GUSTO the optimizes general purpose processing elements
to generate application specific processing cores that use a shared memory.
(b) GUSTO partitions the data into individual processing cores. The data is
classified as local variables, that used only for that core, and shared variables
that are written only once and used by the next processing core.

and shared memory to every functional resource in another core, if there is no data

dependecy between two cores. There also might be a data dependency between

two cores, however not all the interconnects between shared memory and functional

resources is used. GUSTO also removes these unused interconnects resulting in a

platform which has only the required connectivity between processing cores.

6.4 Conclusion

This chapter details the automatic multi-core architecture generation and

optimization methods for matrix computation algorithms. Our tool, GUSTO, is

developed to enable easy design space exploration by providing different design

methods and parameterization options which enable us to study area and perfor-

mance tradeoffs over a large number of different architectures.

Chapter 7

Hardware Implementation

Trade-offs of Matrix Computation

Architectures using Hierarchical

Datapaths

Matrix computations is a topic of great interest in numerical linear algebra.

Since many of these matrix computation algorithms are computationally expen-

sive and memory demanding tasks, it is an area where there is much interest in

parallel architectures. There has been extensive research for the design of a plat-

form that can process the same amount of data in a smaller amount of time or

handle a larger amount of data in the same amount of time. Due to the decrease

in the clock frequency of processors, the new trend is to provide various types

of computational cores on a single die. Examples to these platforms are Chip

Multiprocessors (CMPs), Graphical Processor Units (GPUs), Massively Parallel

Processor Arrays (MPPAs) etc. where they have different types of architectural

organizations, processor types, memory management etc.

Single core generation using GUSTO for a given application provides the

following advantages:

• Automization process is a lot simpler from the tool development side since

151

152

tool does not need to have to generate connections between different number

and types of cores;

• Partitioning process is simpler since an user does not need to worry about

dividing the given algorithms onto different number and types of processors

efficiently.

However if a user wants to design and implement a platform that exploits large

amount of parallelism that leads to very high throughput implementation of algo-

rithms, generation of multi-core architectures is essential, especially while imple-

menting highly parallelizable matrix computation algorithms in hardware (which

is the main topic of this thesis). Furthermore, there are several disadvantages for

single core design for a given application:

• The datapaths of the processing elements that are generated by GUSTO

are based on a single memory which is shared by all functional units. The

functional units, with the number and type specified by the user, are em-

ployed for the computation of the given algorithm using resource sharing.

Unfortunately this simple organization of the architecture does not provide

a complete design space to the user for exploring better design alternatives

since the user is only capable of changing the number of functional resources

and number of instructions executed in a clock cycle in terms of the organi-

zation of the design.

• This simple organization also does not scale well with the complexity of

the algorithms and focuses primarily on instruction level parallelism even

with the implementation of superscalar PEs that can execute more than

one instruction during a clock cycle by simultaneously dispatching multiple

instructions to redundant functional units on the processing element. There

are two major reasons for these scalability issues:

– As the number of functional units increases, internal storage and com-

munication between functional units quickly becomes the bottleneck in

terms of delay, power dissipation, and area [23]. It has been shown that

153

for N functional units connected to a register file, the area of the register

file grows as N, the delay as N3/2, and power dissipation as N3 [24];

– The optimization performed by GUSTO to remove the unused arith-

metic units, multiplexers and input/output ports with their intercon-

nects becomes less effective due to the increased usage of functional

units.

Therefore, we take our design tool, GUSTO, to another level by enabling

multi-core architecture generation where a user can define the number as well

as the type of the processors with required connectivity in processor architec-

ture level as well as the platform level by incorporating the following options into

GUSTO:

• Hierarchical datapaths implementation for multi-core architecture genera-

tion;

• Heterogeneous architecture generation to be capable of designing different

type of cores in one platform.

GUSTO employs a different amount of memory resources for each processor in a

way that the memory accesses between cores are reduced and the overall platform

generated by GUSTO has only the required connectivity between processors. As

explained in Chapter 6, processor architectures that are generated by GUSTO are

simple but ALU oriented for high performance computation. By using these

new features, a user can divide the given algorithms into small highly

parallelizable parts, generate hardware cores for each specific part of

the algorithm and combine these small PEs with hierarchical datapaths

using GUSTO to create a multi-core architecture. This provides us

a more detailed design space exploration and more efficient hardware

implementations; and enables us to exploit both instruction and task

level parallelism for achieving higher performance/throughput.

The major contributions of this chapter are:

1) Automatic generation and optimization of matrix computation architectures with

154

parameterized bit widths, resource allocation and architecture types which also sup-

port hierarchical datapaths for multi-core architecture generation;

2) Implementation of heterogeneous architectures to enlarge our design space explo-

ration thereby giving the user more options to produce efficient and highly optimized

designs;

3) Comparison of different matrix computations architectures such as matrix mul-

tiplication and inversion using various GUSTO parameters and design methods.

The rest of this chapter is organized as follows. In section 7.1, we introduce

our tool as well as explain incorporating hierarchical datapaths for multi-core archi-

tecture generation and heterogeneous architecture generation. Section 7.2 presents

our implementation results of matrix multiplication and inversion architectures in

terms of area and throughput and compares our results with previously published

work. We conclude in Section 7.3.

7.1 Hierarchical Datapaths Implementation and

Heterogeneous Architecture Generation us-

ing GUSTO

There are many architectural design choices that need to be made while

implementing the hardware for applications employing computationally intensive

matrix computations such as in signal processing, computer vision and financial

computations. These implementation choices include resource allocation, number

of functional units, organization of controllers and interconnects, which is con-

strained by hardware design to offer time or area efficiency, and bit widths of the

data which specify precision required. Not only is generating the hardware for given

set of requirements involves tedious work, but performing design space exploration

to find the optimum hardware design is also a time consuming process. There-

fore, a high level tool for design space exploration and fast prototyping is essential

and required. As introduced in the previous chapters, we designed a tool, GUSTO

(”General architecture design Utility and Synthesis Tool for Optimization”), that

155

provides automatic generation and optimization of a variety of general purpose

PEs with different parameterization options. It also optimizes the general purpose

PEs to improve area efficiency and design quality which results in an optimized

application specific PE.

In this section, we present the required modifications to the flow of op-

eration in GUSTO to be capable of designing multi-core architectures, then we

describe the optimizations performed by our tool when generating hardware ar-

chitectures. We further present the implementation of hierarchical datapaths and

heterogeneous architectures using GUSTO. Therefore our tool allows the user to

explore wider design choices and make better decisions with regards to design space

and performance. To the best of our knowledge we are the first to propose such

automated design tool.

7.1.1 Hardware Implementation Trade-offs of Matrix Com-

putation Architectures using Hierarchical Datapaths

The organization of the architectures, that are generated by GUSTO, do

not provide a complete design space to the user because the user is only capable

of changing the number of functional resources in terms of the organization of the

design. We show the application specific architecture results of matrix inversion

algorithm using QR decomposition in Figure 7.1 with regards to increasing func-

tional units. As can be seen from the figure, the area and throughput increase up

to the optimal number of resources as the number of resources increase. However,

adding more than the optimal number of resources decreases throughput while still

increasing area. GUSTO finds the optimal number of resources which maximizes

the throughput while minimizing the area while designing a core for the given al-

gorithm. Therefore, it is not possible to achieve a higher throughput, smaller area,

or to find the middle points of these design results using single core generation.

Designing multi-core architectures using hierarchical datapaths provides opportu-

nites to achieve smaller area results, higher throughput results and even better

results in terms of both area and throughput compared to single core generation.

The application specific single core architectures, that are generated by

156

0

0.05

0.1

0.15

0.2

0.25

0.3

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2222 2244 3444 4444
of Adder, Subtractor, Multiplier, Divider

T
hr

ou
gh

pu
t

of

 S
lic

es

Slices (Mode 1)
Slices (Mode 2)
Throughput (Mode 1)
Throughput (Mode 2)

Optimal Resources

Figure 7.1: Design space exploration using different resource allocation op-
tions for matrix inversion using QR decomposition.

GUSTO, also do not scale well with the complexity of the algorithms and focus

primarily on instruction level parallelism. The two major reasons for these scala-

bility issues are:

• The internal storage and communication between functional units become

dominated by the increasing number of functional resources in terms of delay,

power dissipation, and area [23];

• Because of the increase in usage of functional units, the optimization that is

performed by GUSTO, to remove the unused arithmetic units, multiplexers

and input/output ports with their interconnects, becomes less effective.

Even though moving from general purpose PEs to application specific PEs

provides tremendous area and throughput improvements due to performed op-

timizations, the complexity of the given algorithm and the organization of the

architecture directly affect these optimization results. For example, sole decom-

position methods: QR, LU and Cholesky, application specific PEs provide 83%,

94% and 86% area savings and 16%, 68% and 14% throughput increase respec-

tively compared to general purpose PEs. However, such as for matrix inversion

using decomposition methods provide 69%, 77% and 68% area savings by moving

157

to application specific PEs which is less area savings compared to decomposition

algorithms due to matrix inversion algorithms’ higher complexity which requires

larger finite state machines in memory controller unit and more resource usage

that may lead to ineffective trimming results.

Therefore, instead of creating one application specific core for the entire

algorithm, we can divide the algorithm into different segments and create a homo-

geneous/heterogeneous architecture which includes smaller parallelizable PEs for

each segment connected with hierarchical datapaths (Figure 7.2). An homogeneous

architecture employs the same type of PEs whereas a heterogeneous architecture

employs the same type of PEs along with different type of PEs. A homogeneous

architecture provides simplicity in terms of organization for communication and

distribution of the given algorithm since the algorithm is mapped onto identical

PEs. A heterogeneous architecture, on the other hand, employs different type of

PEs in its architectures that enlarges the design space provided with the price of

more complex communication and algorithm mapping. As an example if there is

a fully parallel architecture that processing time of the one type PE is larger com-

pared the other PEs, the throughput of the architecture is determined with the PE

that has the largest execution time as bottleneck. A heterogeneous architecture is

an efficient or required solution for creating hardware for not highly parallelizable

algorithms where a user cannot or do not want to employ identical PEs in the

architecture. Thus, different design methods provided by GUSTO result in more

detailed design space exploration and more efficient hardware implementations

that enable us to exploit both instruction and task level parallelism.

7.1.2 Flow of GUSTO for Multi-Core Designs

Multi-core architecture generation requires us to introduce the following

steps in more detail:

• Partitioning is the process of dividing the given algorithm into parallelizable

parts to be implemented in different cores;

• Generation of the connectivity between cores is the process to connect the

158

Application
Specific PE

(Type B)

Application
Specific PE

(Type A)Task
Controller

Arithmetic
Units

Memory
Controller

Units
Adders

Multipliers

Application Specific
Processing Element

Application
Specific PE

(Type A)

Application
Specific PE

(Type C)

Application
Specific PE

(Type B)

Figure 7.2: Presents hierarchical datapath design for multi-core architecture
using different number/type of application specific processing elements which
execute a specific part of the given algorithm.

cores together with the required connectivity.

As shown in Figure 7.3, GUSTO starts with algorithm analysis, instruction

generation and partitioning for multi-core implementation. GUSTO allows the

user to define the desired parallelism in partitioning step and generates general

purpose processing elements for each part of the algorithm after user defines the

type and number of arithmetic resources and the data representation (the integer

and fractional bit width). After the architecture generation step, GUSTO performs

different optimization to the every PE independent from each other, and creates

application specific PEs. The last step is generation of the required connections

between cores for multi-core architectures.

Partitioning is one of the most important steps while designing a multi-

core architecture using GUSTO since the choices made determines the quality of

the results. There are many different ways to design an multi-core architecture

159

Algorithm Analysis

Instruction Generation

Partitioning

Resource Allocation

Error Analysis

Architecture
Generation

Collecting Scheduling
Information

Resource Trimming for
Hardware Optimization

Resource Allocation Resource Allocation

Error Analysis Error Analysis

Architecture
Generation

Collecting Scheduling
Information

Collecting Scheduling
Information

Resource Trimming for
Hardware Optimization

Resource Trimming for
Hardware Optimization

Architecture
Generation

Generation of the Connectivity Between Cores

Xilinx ISE ModelSim
Area, Latency and

Throughput Results Simulation Results

Core 1

Core 2

Core 3

I
C

M
C

I
C

M
C

I
C

M
C

Core 1 Core 2 Core 3

I
C

M
C

I
C

M
C

I
C

M
C

Core 1 Core 2 Core 3

+
*

*

+

+

+

Determine the best Precision for Each Core
and Specify Bitwidths

I
C

M
C

I
C

M
C

I
C

M
C

Core 1 Core 2 Core 3

+
*

*

+

+

+

I
C

M
C

I
C

M
C

I
C

M
C

Core 1 Core 2 Core 3

+
* +

+

+

I
C

M
C

I
C

M
C

I
C

M
C

Core 1 Core 2

Core 3

+
*

+

+

+

Figure 7.3: Flow of GUSTO showing various parameterization options and
output results for multi-core architecture design.

by dividing the given algorithm such that achieving a high throughput by large

number of cores with a price of large area and achieving a lower area by combining

some of the cores and decreasing the number of cores in the platform results in

a lower throughput. The quality of the design also depends on the parallelism

level of the given algorithm independent from the user decisions. We provide a

large freedom to the user to create different type of parallel architectures and to

compare them for choosing the one that fits to her situation.

As a very simple example, consider the following instruction that are gen-

erated by GUSTO after the algorithm analysis and instruction generation:

R1 = R3 + R2

R4 = R1 + R2

160

R5 = R9 + R7

R6 = R5 + R6

R13 = R4 + R6

R12 = R10 + R11

GUSTO uses graphviz [134] which is an open source graph visualization software

to represent structural information as diagrams of abstract graphs and networks.

The Graphviz graph visualization software receives descriptions of graphs in a

simple text language, and makes diagrams in several useful formats such as im-

ages, postscript for inclusion in PDF or displays in an interactive graph browser.

GUSTO analyzes the instructions that are generated in the instuction generation

step, and creates a file to be read via graphviz. The generated data flow graph

provides data dependencies as well as parallelism options to the user. Instructions

above generates the following graph in Figure 7.4 using graphviz.

Figure 7.4: GUSTO analyzes the instructions that are generated in the in-
struction generation step, and creates a file to be read via graphviz.

As can be seen from Figure 7.4, there are several different ways that one

can partition the algorithm into different cores. Therefore we show three different

possibilities in Figure 7.5 where (a) presents 1 processor core design to perform all

161

instruction in one core and (a) does not require the execution of generation of the

required inputs step of the GUSTOs’ flow. Unlike (a), (b) and (c) show different

ways to exploit the parallelism in the given algorithm using 2 or 3 cores. Even

though (b) has a multi-core architecture, there is no connectivity needed between

cores due to the fact that there are no data dependencies between cores. There is

no need to perform generation of the required inputs step of the flow for (b). On the

other hand (c) generates a multi-core architecture where there is data dependency

between its Core 1 and Core 2. Therefore, GUSTO performs generation of the

required inputs step to make Core 2 be able to access Core 1 to get the data R4.

It is important to note that GUSTO provides this visual information for user to

see the data dependencies and different ways to design a multi-core architecture.

Thus, the resources are never shared between instructions in this visualization and

there is no relation between the number of arithmetic resources and the GUSTO

generated architectures.

(a) 1 Core Design (b) 2 Core Design (c) 3 Core Design

Core 1

Core 2

Core 2

Core 3
Core 1

Figure 7.5: There are several different ways that one can partition the given
algorithm into different cores. We show three different possibilities: (a), (b),
(c), that are examples of designing one core, two core and three core for a
given matrix computation algorithm respectively.

After a user inputs the number and type of arithmetic resources as well

as the data reprentation, GUSTO creates a general purpose PE which can be

seen in Figure 7.6 where the proposed processor architecture consists of controller

units: instruction and memory controllers and desired arithmetic units: adders,

subtractors, multipliers, dividers and square root units etc with full connectivity.

162

We introduced the details of our processor architecture in Chapter 6, therefore we

do not provide further information in this chapter.

Task
Controller

Arithmetic Units

Memory
Controller

Adders

Multipliers

Controllers

Dynamic
Scheduling

Dynamic
Memory

Assignments

Full Connectivity between
Functional Units and Controllers

Figure 7.6: The general purpose processing element which uses dynamic
scheduling and dynamic memory assignments. This architecture has full
connectivity between functional units and controllers.

With the architecture generation step, GUSTO designs a general purpose

processor for each specific part of the given algorithm. Furthermore GUSTO per-

forms several optimizations to create an optimized application specific PE while

ensuring the correctness of the solution is maintained (Figure 7.7). We divided

these optimizations into two sections: static architecture generation and trimming

for optimization. These optimization are introduced in more detail in Chapter 6,

and we summarized these below:

Static architecture generation: In the architecture generation step, GUSTO

generates a general purpose PE and its datapath by using resource constrained list

scheduling after the required inputs, type and number of resources and data repre-

sentation, are given. This architecture employs a dynamic scheduling mechanism

which is considered as a complex architecture since instruction controller makes

decisions on the fly by decoding the instructions. GUSTO simulates this general

purpose architecture and simulations help GUSTO to reveal the assignments done

163

to the arithmetic units and the memory elements during the scheduling process.

Gathering this information and using it to cancel the scheduling process and dy-

namic memory assignments results in a static architecture with significant area

and timing savings.

Trimming for optimization: GUSTO performs trimming/removing the un-

used resources from the general purpose PE while ensuring that correctness of the

solution is maintained. GUSTO simulates the architecture to define the usage of

arithmetic units, multiplexers, register entries and input/output ports, creates a

optimization matrix for each resource and trims away the unused components with

their interconnects. GUSTO also provides the usage frequency of the resources,

therefore a user can perform resource binding by basically removing the under uti-

lized resources, and GUSTO binds the required instructions to another resource

with higher utilization.

Task
Controller

Arithmetic Units

AdderAdder

AdderAdder

Memory
Controller

Adders

Multipliers

Controllers

Static
Scheduling

Static
Memory

Assignments

Required Connectivity between
Functional Units and Controllers

Figure 7.7: The application specific processing element which uses static
scheduling and static memory assignments and has only the required con-
nectivity between functional units and controllers for specific algorithm/s.

164

7.2 Architectural Implementation Results of Dif-

ferent Matrix Computation Algorithms

In this section, we present different design space exploration results using

different features of GUSTO, general purpose PE design, application specific PE

design as well as hierarchical datapath design using homogeneous/heterogeneous

cores; and compare our results with previously published FPGA implementations.

We concentrate on two different examples of matrix computations:

• matrix multiplication;

• matrix inversion algorithms using decomposition methods.

Matrix multiplication is also employed in matrix inversion and it is highly paral-

lelizable since each entry calculation is independent from each other as shown in

Figure 7.8(b), (c) and (d) for 4 × 4 matrices, A × B = C (a). This kind of matrix

computation represents a class of algorithms that it is possible to generate a plat-

form with there is no data dependencies/data accesses between cores, therefore

generation of the required connections between cores step in GUSTO’s flow do not

need to be executed. These kind of algorithms result in a family of architectures

that more silicon, designing more number of cores in a platform, will result in

higher throughput since there is no timing overhead that is wasted by accessing

the data in other cores.

On the other hand, matrix inversion algorithms using decomposition meth-

ods (QR, LU and Cholesky) and triangular matrix inversion inherent less paral-

lelism compared to the matrix multiplication since there is only one way to avoid

data accesses between cores which is designing a single core for the given algo-

rithm. A user needs to pay a particular attention to the data accesses between

cores. It is important to remember that dividing a particular part of the algorithm

with many data dependencies into two different cores, will introduce high data

access latencies, therefore the silicon wasted for more resources to exploit higher

parallelism will not be able to provide higher throughput results.

165

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

×

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

=

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

(a) Matrix Multiplication of 4 × 4 Matrices

(b) Calculation of C11 (c) Calculation of C44

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

=

(d) Calculation of Entire C matrix

Figure 7.8: A 4×4 matrix multiplication example is shown in (a). Example cal-
culations for the resulting matrix C entries, C11 and C44 are also shown in (b)
and (c). (d) shows a fully parallel architecture for the matrix multiplication.

In this section we present our various different architectural designs us-

ing the hierarchical datapath implementations and heterogeneous core designs for

matrix multiplication and matrix inversion algorithms. We present area results

in terms of slices and performance results in terms of throughput. Throughput

is calculated by dividing the maximum clock frequency (MHz) by the number of

clock cycles to perform matrix multiplication/inversion. All designs are generated

in Verilog and synthesized using Xilinx ISE 9.2. Resource utilization and design

frequency are post place and route values are obtained using a Virtex 4 SX35

FPGA.

166

7.2.1 Matrix Multiplication

We consider multiplication of two 4 × 4 matrices using 19 bits of precision

for our experiments. We investigate three different design methods:

• Using one PE for entire matrix multiplication procedure;

• Dividing the computation into small homogeneous PEs;

• Designing a heterogeneous architecture with different types of PEs.

1) Matrix multiplication using 1 PE: GUSTO creates one processing element

for the computation of the matrix multiplication. These implementations are the

application specific architectures that are generated by GUSTO without using hi-

erarchical datapaths. The design flow for these architectures follow the simple

GUSTO flow which is presented in Figure 7.3. The parameter that an user can

change to create a design space is the number of resources (assuming that the data

representation is given as is 19 bits). Therefore, we show three different implemen-

tations with different number of functional units in Figure 7.9: Implementations

1-3.

• Implementation 1 employs 4 adders and 4 multipliers;

• Implementation 2 employs 2 adders and 4 multipliers;

• Implementation 3 employs 2 adders and 2 multipliers.

In this design method, a user is only capable of changing the number of func-

tional units. GUSTO finds the optimal number of resources which maximizes

the throughput while minimizing area by trimming the unused resources. As the

number of resources, adders and multipliers, decrease, the area as well as the

throughput decreases. Adding more resources than Implementation 1 cannot in-

crease the throughput due to the fact that the resources are not being used, and

trimmed away by GUSTO. This design method provide a limited design space for

possible architecture implementation of matrix multiplication algorithm, since the

designer cannot generate multi-core architectures to achieve smaller area or higher

throughput (Figure 7.10).

167

Task
Controller

Arithmetic Units
Adder

Memory
Controller

Multiplier

Controllers

Multiplier

Adder

Adder
Adder

Multiplier
Multiplier

Task
Controller

Arithmetic Units

Memory
ControllerMultiplier

Controllers

Multiplier
Adder
Adder

Multiplier
Multiplier

Task
Controller

Arithmetic Units

Memory
ControllerMultiplier

Controllers

Multiplier
Adder
Adder

Implementation 1 (Core A) Implementation 2 Implementation 3

Figure 7.9: Implementations 1-3 are the application specific architectures that
are generated by GUSTO with different number of functional units.

#
of

Sl
ic

es

T
hr

ou
gh

pu
t

1 2 3Implementation

798 775

6431.18

0.86

0.69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

100

200

300

400

500

600

700

800

900
Area Throughput

Figure 7.10: Hardware implementation of matrix multiplication architectures
with one PE for entire computation using GUSTO. Implementation 1-3 em-
ploys different number of resources for the computation of the matrix mul-
tiplication algorithm.

It is important to note that we name initial Implementation 1 general pur-

pose architecture, which has 4 adders and 4 multipliers, as Core A, because we

use this implementation in other design methods.

2) Matrix multiplication using different number of homogeneous PEs:

We use Core A architecture to create small PEs by dividing the matrix multipli-

cation algorithm into small and parallelizable parts and optimizing Core A for

168

the assigned instructions. Core A1 is a type of a core which means Core A is

optimized for the calculation of one entry in the resulting matrix like C11. The

required calculations for C11 is shown in Figure 7.8(b) and the instructions for this

calculation put in Core A’s instruction memory in partitioning step of GUSTO’s

flow. Core A2 is another type of core which means Core A architecture is as-

signed instructions to calculate two different entries of the resulting matrix, such

as C11 and C44 that are shown in Figure 7.8(b) and (c) in partitioning step of

GUSTOs’ flow.

We present 6 different implementations in Figure 7.11: implementations 4-9, to

demonstrate the effectiveness of multi-core architecture generation using homoge-

neous PEs.

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A1

Core
A2

Core
A2

Core
A2

Core
A2

Core
A2

Core
A2

Core
A2

Core
A2

Core
A4

Core
A4

Core
A4

Core
A4

Core
A2

Core
A4

16 8 4

Implementation 4

Imp. 5

Imp. 6

Imp. 7 Imp. 8 Imp. 9

Figure 7.11: Implementations 4-9 are the application specific architectures
that are generated by GUSTO with different number of PEs.

• Implementation 4 employs 16 (sixteen) homogeneous A1 type of PEs where

each PE computes one entry of the resulting C matrix (a given matrix can

be represented as rectangular table of entries, for example in our example

there are 16 entries in a 4 × 4 matrix). This architecture can receive all A

and B matrices in the same clock cycle, place the data in the particular cores

such as A11, B11, A12, B21, A13, B31, A14 and B41 in one core, and compute

the respective entry, C11, of the resulting matrix. Each core runs in parallel

and generates the resulting matrix with the highest throughput.

• Implementation 5 employs 1 (one) A1 type of PE in its architecture. This

core is scheduled 16 times to calculate all 16 entries of the resulting matrix

for the 4 × 4 matrix which is shown with an arrow around the core. This

169

core receives only the elements required for one entry calculation such as A11,

B11, A12, B21, A13, B31, A14 and B41 to compute the respective entry, C11.

After the completion of the calculation of C11, the required elements of A

and B matrices for the next entry calculation, C, are received. Therefore,

the instructions that reside in its instruction memory are the same, but the

data inside in its data memory changes and the architecture executes the

same instructions for the calculation of different entries using different data.

• Implementation 6 employs 8 (eight) homogeneous A2 type of PEs where

each PE computes two entries of the resulting C. As an example, a core has

the required instructions for the calculation of C11 and C44 that are shown in

Figure 7.8(b) and (c) respectively. Each core resides the same instruction sets

for calculation of the matrix multiplication and executes these instruction in

parallel with the other cores using different data. Like Implementation 4,

this architecture can receive all A and B matrix entries in one clock cycle

and compute the respective entries in each core in parallel.

• Implementation 7 employs 1 (one) A2 type of PE in its architecture where

A2 type of PE is optimized for the calculation of two different entries in

the resulting matrix C, therefore scheduled 8 times to compute whole 4 × 4

matrix multiplication. This core receives the required data for the calculation

of the two entries; and after the completion of the calculation, it receives the

required data for the calculation of another two entries.

• Implementation 8 employs 4 (four) homogeneous A4 type of PEs in its ar-

chitectures. Each A4 type PEs calculate different 4 entries such that one PE

calculates C11, C12, C13 and C14 while another one calculates C21, C22, C23

and C24 in parallel. This core like Implementation 4 and 6 receives all the

required data in once, calculates resulting matrix entries in parallel.

• Implementation 9 employs 1 (one) A4 type of PE in its architecture where

A4 type PE can calculate 4 different entries in the resulting matrix such

as C11, C12, C13 and C14. Upon the completion of the calculation of these

170

entries, this core receives required data for other 4 entries, therefore this core

is scheduled 4 times to compute all entries of the resulting matrix.

Implementation 4, 6 and 8 are examples of fully parallel architectures that

employ different homogeneous type PEs in their architecture to exploit task level

parallelism. The difference between A1, A2 and A4 is the complexity of the archi-

tecture where A1 is the simplest. There is a tradeoff between the simplicity of the

PEs and the number of PEs employed in one platform since a platform with A1

type of PEs required to employ more number of PEs in the platform compared

to a platform that employs A2 type of cores. One would expect Implementation

4 to provide the highest throughput with the price of highest area results, and

Implementation 8 to provide the smaller throughput compared to Implementation

4 with a smaller area. Hardware implementation results of these fully parallel

architectures can be seen in Figure 7.12 where Implementation 4 provides the

highest throughput with the largest area. Moving to Implementation 6 and 8, the

throughput as well as the area of the platform decreases which creates a design

space for user to choose. In general, these architectures are for users who wants to

achieve high throughput values with different area results.

Implementation 5, 7 and 9 are examples of architectures that do not exploit

task level parallelism and employs scheduling of the cores to be capable of achieving

smaller area results in the design space. Since only one PE, A1, A2 or A4, is

employed in these architectures, the increasing complexity of the PEs does not

have large impact on the area results. Complexity increases in the architectures,

such as moving from A1 to A4, stems from the fact that there are larger finite

state machines in the memory controller unit, more number of instructions in the

instruction memory, and more arithmetic resource usage which may result in less

trimming optimization. Since the 4× 4 matrix multiplication is an algorithm with

less complexity compared to matrix inversion algorithms, we see a slight increase

in terms of area while moving from Implementation 5 to 9 with a slight increase

in throughput as can be seen from Figure 7.12.

3) Matrix multiplication with a heterogeneous architecture using

different types of PEs: We used GUSTO to generate different type of PEs

171

#
of

Sl
ic

es

T
hr

ou
gh

pu
t

1 2 3 4 5 6 7 8 9Implementation
798 775 643 9552 597 5024 628 2660 665

1.18
0.86

0.69

8.58

0.54

5.97

0.75

3.71

0.93

0

1

2

3

4

5

6

7

8

9

10

0

2000

4000

6000

8000

10000

12000
Area Throughput

Design Method 1:
Matrix multiplication

using 1 PE

Design Method 2:
Matrix multiplication using different

number of PE with hierarchical
datapaths

Figure 7.12: Hardware implementation of matrix multiplication architectures
with different design methods, implementation 1-9, using GUSTO.

to create heterogeneous architectures. Different type of PEs in a platform let us

to exploit different architectural implementations that previous design methods

cannot provide and enlarge our design space even more.

There are many different ways to combine these different type of PEs in a platform,

here we present 3 different implementations in Figure 7.13: implementations 10-12.

Core
A4

2 Core
A1

4

Core
A1

4

Implementation 12

Core
A4

3

Core
A2

2

Implementation 10
Core

A2

3 Core
A1

5

Core
A1

5

Implementation 11

Figure 7.13: Implementations 10-12 are application specific heterogeneous
architectures that are generated by GUSTO with different types of PEs.

• Implementation 10 employs 2 (two) PEs which have different types, A4 and

A2. A4 and A2 type of PEs compute 4 different entries and 2 different entries

172

in the resulting matrix respectively. Each PE, A4 or A2, is scheduled 3 times

and 2 times respectively and computes different entries with the required

input data. It is important to note that the time that data provided to the

PEs is different for each PE since A4 type of PE requires more processing time

than A2 type of PE (A4 computes 4 entries where A2 computes 2 entries).

Therefore, A4 type PE runs 3 times to calculate 12 entries and A2 type of

PE runs 2 times to calculate 4 entries of the resulting matrix.

• Implementation 11 employs three PEs with 2 different types: one A2 and

two A1 type of PEs. A2 type of PE is scheduled 3 times to calculate 6 entries

and each A1 type of PEs are scheduled 5 times to calculate 5 entries of the

resulting matrix.

• Implementation 12 employs three PEs with 2 different types: one A4 and

two A1 type of PEs. A4 type of PE is scheduled 2 times to calculate 8 entries

and each A1 type of PEs are scheduled 4 times to calculate 4 entries of the

resulting matrix.

Implementation of heterogeneous architectures lets a user to find middle

points between previous design method results by incorporating mix type of PEs

in one platform. The complexity of these architectures is that the execution time

of each core such as A1 and A2 are different than each other which requires user

to provide new data upon the completion of the calculation of each PE in different

times. We present the architectural results for Implementation 10, 11 and 12 in

Figure 7.14. Implementation 10 has the smallest area among the three implemen-

tation by employing 2 different PEs. The area and throughput increases by em-

ploying more PEs in a platform like in Implementation 11. The difference between

Implementation 11 and 12 is that Implementation 12 employs more complex PEs

(A4) which requires less scheduling, therefore area results of Implementation 12

increases with the complexity of the PE, and throughput of the platform increases

as well with less scheduling.

Each design method: matrix multiplication using 1 PE, Matrix multiplica-

tion using different number of homogeneous PEs and Matrix multiplication with

173

798 775 643 9552 597 5024 628 2660 665 1293 1822 1859

1.18
0.86

0.69

8.58

0.54

5.97

0.75

3.71

0.93 1.24
1.72 1.85

0

1

2

3

4

5

6

7

8

9

10

0

2000

4000

6000

8000

10000

12000
Area Throughput

#
of

Sl
ic

es

T
hr

ou
gh

pu
t

Design Method 1:
Matrix multiplication

using 1 PE

Design Method 2:
Matrix multiplication using different

number of PE with hierarchical
datapaths

Design Method 3:
Matrix multiplication
with a heterogeneous

architecture using
different number of

PEs

1 2 3 4 5 6 7 8 9 10 11 12Implementation

Figure 7.14: Hardware implementation of matrix multiplication architectures
with different design methods, implementation 1-12, using GUSTO.

a heterogeneous architecture using different types of PEs increases the number of

possible implementations and provides a very large design space that a designer

can choose depending on his/her needs. We present some of the important findings

in our results in Figure 7.15.

To present GUSTO’s optimization efficiency, we compared two different 1

PE designs for matrix multiplication. We implemented another architecture, Im-

plementation 13, using 1 PE with 8 multipliers and 8 adders and compared its

results with the Implementation 1 which employs 4 multipliers and 4 adders. One

can expect a higher throughput by employing more resources assuming that all of

the arithmetic units are used in the computation. However this is not the case

and additional resources may not be used. The additional resources, which are

not used, still increases the area of the platform while decreasing the throughput

due to the decreasing clock frequency of the device. As can seen from Figure 7.15,

GUSTO trims away the unused resources from Implementation 13 since addi-

tional resources are not utilized, and generates an architecture with same area and

throughput result of Implementation 1. This case shows that GUSTO minimizes

the area by removing unused resources from architecture while maximizing the

throughput. Providing more design methods such as Matrix multiplication using

174

798 798
775

665
643 628

1.18 1.18

0.86
0.93

0.69
0.75

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0

100

200

300

400

500

600

700

800

900

T
hr

ou
gh

pu
t

of

 S
lic

es

1 13 2 9 3 7Implementation

(a) (b) (c)

Figure 7.15: We present some of the important points of matrix multiplica-
tion hardware implementation results: 1) finding the optimum hardware to
minimize the hardware while maximizing the throughput, 2) improvement
in both area and throughput with hierarchical datapath compared to single
core design.

different number of homogeneous PEs and Matrix multiplication with a heteroge-

neous architecture using different types of PEs enlarge our design space and may

lead to better results in terms of both area and throughput compared to 1 PE de-

signs. We present two different examples where we achieve better results compared

to 1 PE designs :

• Figure 7.15 (b) shows that Implementation 9 provides better results com-

pared to Implementation 2 in terms of both area and throughput. Therefore

every user should prefer Implementation 9 to Implementation 2.

• Figure 7.15 (c) shows that Implementation 7 provides better results com-

175

pared to Implementation 3 in terms of both area and throughput. Therefore

every user should prefer Implementation 7 to Implementation 3.

As the number of instructions executed in a processor increases, the com-

plexity of memory controller increases as well which results in a higher area

usage with a lower clock frequency for the controller. After the optimization of the

general purpose processing element, the memory controller becomes static. Thus,

memory controller resides a stateless Moore finite state machine that includes the

controls to send data to the functional units or receive data from functional units

(and update the memory entries) in each clock cycle which is introduced in more

detail in Chapter 6. One processing element design requires to put this informa-

tion into one memory controller which requires longer finite state machines in the

memory controller that requires larger area. Large number of states lower the

maximum clock frequency of the memory controller, and executing the given algo-

rithm with a single instruction in each clock cycle architecture requires more clock

cycles to execute given application that decreases the throughput. Therefore, we

perform an analysis to see the effects in area, required clock cycles to execute and

the throughput of the architecture in Figure 7.16 by generation of different mem-

ory controllers for A1, A2, A4, A8 and A16 type of processing elements for 4 × 4

matrix multiplication.

• A1 type of processor computes one entry of the resulting matrix. A fully par-

allel architecture that employs 16 A1 processors is shown in Implementation

4 in Figure 7.11.

• A2 type of processor computes two entries of the resulting matrix. A fully

parallel architecture that employs 8 A2 processors is shown in Implementation

6 in Figure 7.11.

• A4 type of processor computes four entries of the resulting matrix. A fully

parallel architecture that employs 4 A4 processors is shown in Implementation

9 in Figure 7.11.

• A8 type of processor computes eight entries of the resulting matrix. A fully

parallel architecture employs 2 A8 processors.

176

• A16 type of processor computes all of the entries of the resulting matrix. This

is one PE design for matrix multiplication and can be seen in Implementation

1 in Figure 7.9.

As expected, the complexity increases while moving from the simplest mem-

ory controller: A1 to the most complex memory controller: A16 for 4 × 4 matrix

multiplication as can be seen from the increase in area (slices). Increasing number

of states requires more LUTs to be used and more number of clock cycles to be

executed to calculate more entries for the resulting matrix. However it is impor-

tant to see that the increase in the area is not double between A1 and A2; and A2

and A4 etc. Therefore employing 16 A1 type processor memory units in one archi-

tecture requires a larger area than employing 8 A2 type processor memory units.

Therefore one can say that the best architecture in terms of the area is the one PE

design which is Implementation 1 in Figure 7.9 with the memory controller results

shown for A16 in Figure 7.16. However, to achieve a higher throughput which

requires high clock frequencies and low number of clock cycles while executing a

given algorithm is possible by dividing the given algorithm into different number

of processing elements. As can be seen from Figure 7.16, while the complexity

increases, the throughput of the architecture decreases significantly (A1 type of

processor offers a throughput value of 20.45 while A16 type of processor offers

1.89).

Comparison: We also compared our matrix multiplication implementation

results with a hand coded design which is implemented using System Generator

model based design tool from Xilinx as well as the previously published work.

The architectural implementation using System Generator design tool is shown in

Figure 7.17 for a 4 × 4 matrix multiplication using 18 bits of data as precision.

This design includes an address generation logic (a) which is used to calculate the

address to be read from the input data memory (b). This implementation assumes

that the input data, matrices A and B, are already in the input data memory.

After reading the required inputs from input data memory, these data are sent

to the multiply-accumulate block (c) to calculate respective matrix entry. After

calculation of each resulting matrix entry, data is written to the result data memory

177

A_1 A_2 A_4 A_8 A_16
Slices 28 31 43 76 139
LUTs 56 60 77 127 243
FFs 41 41 45 56 62
of Clock Cycles 16 23 37 65 121
Throughput 20.45 13.52 9.53 5.18 1.89

0

20

40

60

80

100

120

140

0

50

100

150

200

250

300

Th
ro

ug
hp

ut

Nu
m

be
r o

f S
lic

es

Figure 7.16: An analysis to see the effects in area, required clock cycles to
execute and the throughput of the architectures by generation of memory
controllers with the increasing complexity: A1, A2, A4, A8 and A16 type of
processing elements for 4 × 4 matrix multiplication.

(d) using the address calculated by address generation logic. This design is an

example of existing design tool and their usage in matrix computation algorithms.

Design of a 4 × 4 matrix multiplication core using System Generator took around

a week.

We also compared our results with the previously published articles in Ta-

ble 7.2. El-Atfy et. al [25] proposed an architecture for 8×8 matrix multiplication

with 16-bit fixed point arithmetic on a Virtex-4 device. The architecture is based

on a parallel model of the matrix multiplication sequence where an array of pro-

cessing elements (PEs) are employed in fully parallel fashion to calculate each

elements of the resulting matrix. The authors are also utilized BRAM and DSP48

blocks in their design. Mencer et. al [26] implemented 4× 4 matrix multiplication

using Booth encoding with bit-serial multipliers on the Xilinx-4 device. Amira et.

178

__
rstrst

__
enen

__
we

n
we

n

__
sg

Ad
drC

sg
Ad

drC

__
sg

Ad
drB

sg
Ad

drB

__
sg

Ad
drA

sg
Ad

drA

__
mm

Va
l

mm
Va

l

Sli
ce[a:
b]

Sin
gle

 P
ort

 R
AM

ad
dr

da
ta

we

z-1
Sh

ift
2

X
<<

 2
z-0

Sh
ift

1

X
>>

 2
z-0

Re
lat

ion
al

1

a ba=
b

z-0

Re
lat

ion
al

a ba=
b

z-0

Re
gis

terd rst
q

z-1

Mu
lt

a b
(ab

)
z-3

Lo
gic

al
2

or z-0

Lo
gic

al
1

xo
r

z-0

Lo
gic

al

an
d

z-0

Inv
ert

er
no

t

Ga
tew

ay
 O

ut

Du
al

Po
rt R

AM

ad
dra

din
a

we
a

ad
drb

din
b

we
b

A B

De
lay

3
z-1

De
lay

2
z-1

De
lay

1
z-1

De
layz-4

Co
un

ter
2

en
ou

t

Co
un

ter
1

rst en
ou

t

Co
un

ter

en
ou

t

Co
ns

tan
t4

15

Co
ns

tan
t31

Co
ns

tan
t23

Co
ns

tan
t10

Co
ns

tan
t

0
Ad

dS
ub

2

a b
a +

 b

Ad
dS

ub
1

a b
a +

 b

Ad
dS

ub

a b
a +

 b

(a
)

(b
)

(c
)

(d
)

Figure 7.17: Hardware implementation of 4×4 matrix multiplication core with
18 bits of precision using System Generator for DSP design tool from Xilinx.
(a), (b), (c) and (d) are the address generation logic, input data memory,
multiply-accumulate units and destination data memory respectively.

179

al [27] improved [26] using modified Booth-encoder multiplication with Wallace

tree addition on a Xilinx XCV1000E device. Prasanna et. al [28] provided the

theoretical lower bound in latency for a matrix multiplication design that is based

on a linear array providing design trade-offs between the number of registers and

the latency. These results are improved in Jang et. al [29] by developing new

algorithms and architectures for matrix multiplication.

7.2.2 Matrix Inversion

For matrix inversion, we consider all three matrix inversion methods (with

QR, LU and Cholesky decompositions) which are explained in Chapter 4 in de-

tail. There are many different ways to divide matrix inversion algorithms since

its higher complexity and parallelism. Matrix inversion algorithms include matrix

decomposition, upper triangular matrix inversion and matrix multiplication. Ma-

trix multiplication inherents high level of parallelism as presented in the previous

subsection. Unlike matrix multiplication, matrix decomposition and upper trian-

gular matrix inversion algorithms present many data dependencies which makes

their multi-core hardware implementation harder. As an example, consider the

QR decomposition algorithm given in Algorithm 4 for a 4 × 4 matrices. The data

dependencies and the data flow of QR decomposition algorithm is shown in Fig-

ure 7.18. There are four different stages in QR decomposition algorithm which

are presented as stage 1-4 in respective boxes. Each of these stages, computes

different entries of upper triangular matrix, R, and Orthogonal matrix, Q: Stage

1-4 produces diagonal entries of upper triangular matrix, columns of orthogonal

matrix, non-diagonal upper triangular matrix entries and intermediate entries of

the orthogonal matrix respectively. Stage 2 creates one column for orthogonal

matrix in each iteration where Stage 1 and 3 creates one row of upper triangular

matrix in each iteration. Therefore in the first iteration, one column (first column)

of matrix Q, Q1, and one row (first row) of matrix R, R1, are computed and the

the rest of the columns of Q matrix are updated which are seen as intermediate,

X, values. The next iteration starts after updating the columns of Q matrix in

every Stage 4, therefore we cannot parallellize its computation over columns. This

180

is the similar case for other decomposition methods.

×

×

×

×

X11

X31

X21X22

X12

X32X33

X23

X13

X34

X24

X14

X41X42X43X44

X11X12X13X14

X21X22X23X24
X31X32X33X34

X41X42X43X44

R44, R33, R22, R11

+

+

+ √

Diagonal
Elements of

Upper Triangular
Matrix, R

/

/

/

/

X11

X21X22

X12

X23

X13

X24

X14

X31X32X33X34

X41X42X43X44

Q42

Q22

Q12

Q32

Q43

Q33

Q23

Q13

Q44

Q34

Q24

Q14 Q11

Q41

Q31

Q21

R11R22R33R44

R11R22R33R44

R11R22R33R44

R11R22R33R44

Elements of
Orthogonal Matrix, Q

×

×

×

×

Q11

X32

Q21

Q11

X33X34

Q21

Q11

X42X43X44

X12X13X14

X22X23X24
Q31Q31Q31

Q41Q41Q41

R14, R13, R12

+

+

+

Non-diagonal
Elements of

Upper Triangular
Matrix, RQ21Q22

Q12

X33X34

Q22

Q12

X43X44

X13X14

X23X24
Q32Q32

Q42Q42

R24, R23

X34

Q23

Q13

X44

X14

X24
Q33

Q43

R34

Stage 2

×

×

×

×

Updates
R12

R12

R12

R12

Q11

Q21

Q31

Q41

R13

R13

R13

R13

R14

R14

R14

R14

Q11Q11

Q21Q21

Q31Q31

Q41Q41

R23

R23

R23

R23

Q12

Q22

Q32

R24

R24

R24

R24

Q12

Q22

Q32

Q42Q42

R34

R34

R34

R34

Q13

Q23

Q33

Q43

-

-

-

-

X12
X22
X32
X42

X13
X23
X33
X43

X14
X24
X34
X44

X13
X23
X33
X43

X14
X24
X34
X44

X14
X24
X34
X44

X12

X22

X32

X42

X13

X23

X33

X43

X14

X24

X34

X44

X13

X23

X33

X43

X14

X24

X34

X44

X14

X24

X34

X44

Stage 1

Stage 3 Stage 4

LINE 6
LINE 7

LINE 9
LINE 10

Figure 7.18: The data dependencies and the data flow of QR decomposition
algorithm.

Therefore, we used GUSTO to generate heterogeneous architectures by di-

viding the matrix inversion steps into different PEs. Each heterogeneous archi-

tecture includes a decomposition PE, one/two matrix inversion PE for the upper

triangular matrix and a matrix multiplication PE.

• Matrix inversion using QR decomposition: We divided matrix inversion into

three different PEs including one PE for QR decomposition to generate upper

triangular matrix, R, and orthogonal matrix, Q; one PE for upper triangular

matrix inversion using upper triangular matrix, R, entries with an identity

matrix, I, already residing its memory units and one PE for matrix multi-

plication for multiplication of inverted upper triangular matrix entries, R−1,

with transpose of orthogonal matrix, QT . Transpose of matrix Q is another

matrix which is created by writing the rows of Q as the columns of transpose

181

matrix or writing the columns of Q as the rows of transpose matrix and do

not require any computation. GUSTO generates and assigns required in-

structions into to Instruction Controller of matrix multiplication PE to read

values in transposed order. The proposed architecture for matrix inversion

using QR decomposition can be seen in Figure 7.19.

QR
Decomposition

Simple Matrix
Inversion

PE

Matrix
Multiplication

PE

A
R

I

R-1
A-1

QT

Figure 7.19: Heterogeneous matrix inversion architecture for matrix inversion
using QR decomposition.

• Matrix inversion using LU decomposition: We divided matrix inversion into

four different PEs including one PE for LU decomposition that generates

lower and upper triangular matrices, L and U respectively; two PEs for

inversion of triangular matrices generating inverted triangular matrices, U−1

and L−1; and one PE for multiplication of upper triangular matrices. LU

decomposition generates its outputs column by column; since zero entries in

triangular matrices are already known, upper triangular matrix inversion can

start its computation after accessing the required first column. We employed

two triangular matrix inversion PEs in parallel to be able to compute their

inversion in parallel. The proposed architecture for matrix inversion using

LU decomposition can be seen in Figure 7.20.

LU
Decomposition

PE

Simple
Matrix

Inversion
PE Matrix

Multiplication
PE

U
A-1

Simple
Matrix

Inversion
PE

L

U-1

L-1

A

Figure 7.20: Heterogeneous matrix inversion architecture for matrix inversion
using LU decomposition.

182

• Matrix inversin using Cholesky decomposition: We divided matrix inversion

into four different PEs like LU decomposition based matrix inversion archi-

tecture including one PE for Cholesky decomposition generating Cholesky

triangle; two PEs for triangular matrix inversion where each uses Cholesky

triangle, G, and transpose of the Cholesky triangle, GT , respectively gener-

ating inverted triangular matrices, G−1 and (GT)−1; and one PE for matrix

multiplication of the inverted triangular matrices. Cholesky decomposition

PE generates Cholesky triangle and transpose of the matrix is provided by

register renaming embedded in the instructions of matrix inversion PE In-

struction Controller. The proposed architecture for matrix inversion using

LU decomposition can be seen in Figure 7.21.

Cholesky
Decomposition

PE

Simple Matrix
Inversion

PE Matrix
Multiplication

PE

A

GT

A-1

Simple Matrix
Inversion

PEG

(GT)-1

G-1

Figure 7.21: Heterogeneous matrix inversion architecture for matrix inversion
using Cholesky decomposition.

We first investigate the total number of operations used in different decom-

position methods which is shown in Figure 7.22 in log domain. Decomposition

methods for the given matrices, QR, LU and Cholesky, are always the dominant

calculation while inverting the matrix (except 2×2 matrix inversion using LU due

to its low complexity). If one is indifferent between differen decomposition meth-

ods, it is important to notice that there is an inflection point between LU and

Cholesky decompositions at 4 × 4 matrices with a significant difference from QR

decomposition. Furthermore, this inflection point is shifted to 5 × 5 matrices for

matrix inversion implementations where LU and Cholesky have more significant

differences in terms of total number of operations; besides the difference between

QR and the other decomposition methods increases. Since decomposition methods

are highly serial computations, one would expect benefit from the overlapping com-

putations between cores to hide latency while designing a heterogeneous matrix

183

inversion architecture.

×

1

10

100

1000

10000

L
U

C
h

ol
es

k
y

Q
R

L
U

C
h

ol
es

k
y

Q
R

L
U

C
h

ol
es

k
y

Q
R

L
U

C
h

ol
es

k
y

Q
R

L
U

C
h

ol
es

k
y

Q
R

L
U

C
h

ol
es

k
y

Q
R

L
U

C
h

ol
es

k
y

Q
R

2 2 3 3 4 4 5 5 6 6 7 7 8 8

T
ot

al
 N

u
m

b
er

 o
f

O
p

er
at

io
n

s Decomposition Based Matrix Inversion

Decomposition Only

× × × ×

×

× ×

Figure 7.22: Total number of operations in log domain for decomposition
based matrix inversion (light) and decompositions only (dark). Note that
the dark bars overlap the light bars.

Therefore, we presented and compared heterogeneous matrix inversion ar-

chitecture with the single PE design for matrix inversion in Figure 7.23 in terms of

area and throughput. Even though the matrix multiplication algorithm is highly

parallelizable and can provide efficient implementation through multi-core archi-

tecture generation, the other parts of the matrix inversion algorithm, decomposi-

tion and upper triangular matrix inversion, do not provide the same parallelism.

Therefore, the area results of the architecture increase since the most complex

part of the matrix inversion algorithms is the decomposition calculation, and addi-

tional simple computations do not decrease the optimization and trimming efforts

significantly. In more detail, the additional calculations require low number of

instructions compared to decomposition as can be seen in Figure 7.22 which do

not increase the complexity of the memory controller as well as the task controller

significantly. On the other hand, the throughput increases with heterogeneous

184

multi-core architecture generation for matrix inversion algorithms. This is due

to reason that the cores are capable of hiding latencies between each other and

decreasing the required clock cycles to compute given matrix inversion. Such as

matrix multiplication PE starts its computation after receiving the last row of R−1

and first column of QT to compute A−1
41 and does not need to stall until all input

entries are received.

of

 S
lic

es

T
hroughput

3407 4259 2025 3002 3318 3894

0.27

0.30

0.26

0.30

0.26

0.29

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0
500

1000
1500
2000
2500
3000
3500
4000
4500

QR QR H LU LUH CHO CHO H

Area Throughut

Inversion
(QR)

Inversion
(QR)

Hierarchical

Inversion
(LU)

Inversion
(LU)

Hierarchical

Inversion
(Cholesky)

Inversion
(Cholesky)

Hierarchical

Figure 7.23: Hardware implementation of matrix inversion architectures with
different design methods (using QR, LU and Cholesky decompositions) using
GUSTO.

In chapter 2, we stated that GPU architectures employs large number of

ALUs by removing the scheduling logic to exploit instruction level parallelism and

caches that remove memory latency. Therefore GPUs are simply very powerful

number crunching machines. Thus, the future’s high performance parallel com-

putation platform should have an ALU dominant architecture to employ more

resources for computation by removing as much control logic as possible. To cre-

ate an ALU dominant architecture, we perform different optimizations to GUSTO

generated general purpose architectures: static architecture generation and trim-

ming for optimization. We further investigate our results for matrix decomposition,

multiplication and inversion architectures to see if our architectures are ALU ori-

185

ented. We present our analysis in Figure 7.24. Each section, (a) - (g), includes 4

small boxes: total area results for the processor, and the individual units of the

processor including instruction controller, arithmetic units and memory controller.

For example (a) shows results for a QR decomposition PE including total area for

the processor following the individual results for instruction controller, arithmetic

units and memory controller. Our designs include:

• (a): 1 PE design for QR decomposition algorithm. As can be seen from the

distribution of the area, our processor architecture is ALU oriented by using

87 and 317 slices for the controller units whereas arithmetic units consume

1562 slices, 80% of the total area usage.

• (b): 1 PE design for matrix inversion architecture that uses LU decompo-

sition. This architecture consumes 65% of its silicon to the arithmetic units

where control units consumes only 5% and 30% for instruction controller and

memory controller respectively.

• (c): 1 PE design for LU decomposition algorithm. This architecture also

consumes significant portion, 70%, of its silicon into arithmetic units where

control units consume 30% of the processor area.

• (d): 1 PE design for matrix inversion architecture that uses Cholesky decom-

position. The processor consumes 55% of the silicon into arithmetic units

where control units consume a total of 45% of the silicon.

• (e): 1 PE design for Cholesky decomposition algorithm. This architecture

consumes 87% of silicon into arithmetic units which is the highest precentage

among all decomposition methods.

• (f): 1 PE design for upper triangular matrix inversion algorithm. This is

another architecture that consumes very high percentage, 85%, of its silicon

into arithmetic units.

• (g): 1 PE design for matrix multiplication algorithm. This architecture con-

sumes 73% of its silicon into arithmetic units where controller units consume

27% of the total silicon.

186

As can be seen from the Figure 7.24, GUSTO generated architectures for matrix

decomposition, multiplication and inversion are all ALU oriented indeed. It is also

important to see that while the silicon consumed to the arithmetic units is 55%

for one PE design of Cholesky decomposition based matrix inversion (d), heteroge-

neous matrix inversion architecture for Cholesky decomposition which consists of

decomposition, upper triangular matrix inversion and matrix multiplication units

consumes 87%, 85% and 73% of their silicon into arithmetic units. This is the

similar case for LU and QR decomposition based matrix inversion architectures.

Therefore, multi-core architecture implementations provide architectures that con-

sumes higher percentage of their silicon into ALU compared to the one PE designs.

This is another benefit of multi-core architecture implementation option provided

by GUSTO.

Comparison: We provide a comparison between our results with the archi-

tectures employing heterogeneous cores using hierarchical datapaths and previously

published implementations for 4 × 4 matrices in Table 1. We present all of our

implementations with bit width of 20 as this is the largest bit width value used

in the related works. Though it is difficult to make direct comparisons between

our designs and those of the related works (because we used fixed point arithmetic

instead of floating point arithmetic and fully used FPGA resources (like DSP48s)

instead of LUTs), we observe that our results are comparable. The main advan-

tages of our implementation are that it provides the designer the ability to study

the tradeoffs between architectures with different design parameters and design

methods, and provides a means to find an optimal design.

7.3 Conclusion

This chapter presents automatic generation and optimization of matrix

computation architectures using hierarchical datapaths through a generator tool,

GUSTO, that is developed to enable easy design space exploration. GUSTO pro-

vides different design methods and parameterization options which enable us to

study area and performance tradeoffs over a large number of different architec-

187

QR

De
c.

Ta
sk

Co

nt.

Ar
th.

Un

its
M

em
.

Co
nt.

LU

In
v.

Ta
sk

Co

nt.

Ar
th.

Un

its
M

em
.

Co
nt.

LU

De
c.

Ta
sk

Co

nt.

Ar
th.

Un

its
M

em
.

Co
nt.

Ch
ole

s
ky

 In
v.

Ta
sk

Co

nt.

Ar
th.

Un

its
M

em
.

Co
nt.

Ch
ole

s
ky

De

c.

Ta
sk

Co

nt.

Ar
th.

Un

its
M

em
.

Co
nt.

Up
pe

r
M

atr
ix

In
v.

Ta
sk

Co

nt.

Ar
th.

Un

its
M

em
.

Co
nt.

M
atr

ix
M

ul.
Ta

sk

Co
nt.

Ar

th.

Un
its

M
em

.
Co

nt.

Sli
ce

s
19

66
87

15
62

31
7

20
25

99
13

18
60

8
70

9
99

48
9

12
1

33
18

87
18

11
1,4

20
16

01
87

13
91

12
3

14
95

87
12

76
13

2
79

8
75

58
4

13
9

LU
Ts

32
44

16
2

25
23

55
9

33
63

19
3

21
65

10
05

99
8

19
3

60
7

19
8

38
43

16
2

28
45

83
6

24
66

16
2

21
00

20
4

23
98

16
2

20
13

22
3

82
9

14
3

44
3

24
3

FF
s

17
54

44
16

04
10

6
13

80
45

12
00

13
5

65
0

45
53

0
75

19
73

44
18

09
12

0
16

38
44

15
21

73
13

05
44

11
84

77
77

7
43

67
2

62

DS
P4

8s
4

0
4

0
12

0
12

0
4

0
4

0
12

0
12

0
4

0
4

0
4

0
4

0
4

0
0

0

BR
AM

s
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
4

0

Fr
eq

.
17

3.4
91

16
6

25
2.4

62
12

8
17

0.3
58

0.1
23

29
14

2

o
f C

loc
k C

yc
les

33
3

47
3

14
2

49
7

18
4

14
1

12
1

Th
ro

ug
hp

ut
0.5

2
0.3

5
1.7

8
0.2

6
0.9

3
0.8

7
1.1

7

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

1.2
0

1.4
0

1.6
0

1.8
0

2.0
0

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

4%

80
%

16
%

5%

65
%

30
%

13
%70

%

17
%

3%

55
%

42
%

5%

87
%

8%
6%

85
%

9%
9%

73
%

18
%

of Slices

Throughput

(a)
(b

)
(c)

(d
)

(e)

(f)
(g)

Figure 7.24: GPU architectures employs large number of ALUs by removing
the scheduling logic to exploit instruction level parallelism and caches that
removes memory latency. Therefore GPUs are simply very powerful number
crunching machines. Thus, the future’s high performance parallel compu-
tation platform should have an ALU dominant architecture to employ more
resources for computation by removing as much control logic as possible. We
show that GUSTO generated architectures for matrix decomposition, multi-
plication and inversion are all ALU oriented indeed by consuming 65% - 87%
of their silicon into ALUs.

188

Table 7.1: Comparisons between our results with the architectures employing het-
erogeneous cores using hierarchical datapaths and previously published articles for
Decomposition based Matrix Inversion Architectures. NR denotes not reported.

[18] [19] GUSTO
Method QR QR QR LU Cholesky

Bit width 12 20 20 20 20
Data type fixed floating fixed fixed fixed

Device type (Virtex) II IV IV IV IV
Slices 4400 9117 4259 3002 3894

DSP48s NR 22 12 12 12
BRAMs NR NR 3 3 3

Throughput (106 × s−1) 0.28 0.12 0.3 0.3 0.29

tures. In this chapter, we specifically concentrate on matrix multiplication and

matrix inversion methods to observe the advantages and disadvantages of differ-

ent design methods in response to varying parameters. We show that employing

hierarchical datapaths results in more detailed design space exploration and more

efficient hardware implementation.

The text of Chapter 7 is in part a reprint of the material as it appears in

the proceedings of the International Conference on Wireless Communications and

Networking. The dissertation author was the primary researcher and author and

the co-authors listed on this publication [55] directed and supervised the research

which forms the basis for Chapter 7.

189

T
ab

le
7.

2:
C

om
p
ar

is
on

s
b
et

w
ee

n
ou

r
re

su
lt

s
an

d
p
re

v
io

u
sl

y
p
u
b
li
sh

ed
ar

ti
cl

es
fo

r
M

at
ri

x
M

u
lt

ip
li
ca

ti
on

A
rc

h
it

ec
tu

re
s.

N
R

d
en

ot
es

n
ot

re
p
or

te
d
.

G
U

S
T

O

D
e
si

g
n

Im
p
.

4
Im

p
.

6
Im

p
.

8
Im

p
.

1
2

Im
p
.

1
1

Im
p
.

1
0

Im
p
.

1
Im

p
.

9
Im

p
.

7
Im

p
.

5
H

a
n
d
-C

o
d
e
d

[2
5
]

[2
6
]

[2
7
]

[2
8
]

[2
9
]

B
it

w
id

t
h

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

1
8

1
6

1
6

1
6

1
6

1
6

D
a
t
a

t
y
p
e

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

fi
x
e
d

D
e
v
ic

e
t
y
p
e

(
V

ir
t
e
x
)

IV
IV

IV
IV

IV
IV

IV
IV

IV
IV

IV
IV

IV
X

C
V

1
0
0
0
E

II
II

S
li
c
e
s

9
5
5
2

5
0
2
4

2
6
6
0

1
8
5
9

1
8
2
2

1
2
9
3

7
9
8

6
6
5

6
2
8

5
9
7

9
3

6
6
8

3
8
1
6

1
1
8
4

6
2
0

5
6
0

D
S
P

4
8
s

6
4

3
2

1
6

1
2

1
2

8
4

4
4

4
1

6
4

0
0

0
0

B
R

A
M

s
0

0
0

0
0

0
0

0
0

0
2

2
4

0
0

0
0

T
h
r
o
u
g
h
p
u
t

8
.5

8
5
.9

7
3
.7

1
1
.8

5
1
.7

2
1
.2

4
1
.1

8
0
.9

3
0
.7

5
0
.5

4
1
.2

7
4
0

1
.7

3
N

R
6
.6

4
6
.6

4

Chapter 8

FPGA Acceleration of Mean

Variance Framework for Optimal

Asset Allocation

With the increasing on die resources, FPGAs become attractive to the sci-

entific computing community. In this chapter, we investigate potential speed-ups

for a computationally intensive financial application, the mean variance framework

for optimal asset allocation, using simulations of the hardware architectures. The

mean variance framework’s inherent parallelism in its solution steps (due to many

matrix computations and its use of Monte Carlo simulations) and its need for repro-

gramability (to allow for modifications based on different investor characteristics)

make the framework an ideal candidate for an FPGA implementation. However,

reconfigurability of FPGAs is both a blessing and a curse since it provides great

flexibility in terms of the design of an application with increasing programming

complexity. This study proves the need for automatic generation of multi-core

architectures on FPGAs for acceleration of financial computations.

Asset allocation is the core part of portfolio management. With asset allo-

cation, an investor distributes his wealth across different asset classes which include

different securities such as bonds, equities, investment funds, derivatives, etc. in a

given market to form a portfolio. Because each asset class responds differently to

shifts in financial markets, an investor can minimize the risk of loss and maximize

190

191

the return of his portfolio by diversifying his assets. The goal of the portfolio man-

ager in a financial institution is to provide the asset allocation with the greatest

return for some level of risk for investors [30,31].

A portfolio manager needs to include two pieces of information to determine

the best allocation for a given investor: the investor’s profile and the market data.

The investor profile includes the current asset allocation of the investor, the budget,

the investment time horizon, and the investor’s objectives and satisfaction indices

to be able to evaluate the portfolio’s performance. The market data include the

joint distribution of the prices at the investment horizon and the implementation

costs for trading these securities.

Determining the best allocation for a given investor requires solving a con-

strained optimization problem [32–34]. Convex programming problems represent

a broad class of constrained optimization problems which can be solved numeri-

cally [35]; however an optimal asset allocation problem includes a large number

of variables that need to be processed which requires a long computation time.

Therefore, using an approximation method for the allocation optimization is cru-

cial.

The most popular approximation approach for optimal asset allocation is

Markowitz’s mean variance framework [21]. In this framework, the investor tries

to maximize the portfolio’s expected return for a given risk and investment con-

straints. Mean variance framework is a two-step approach which approximates

the solution of the optimal asset allocation problem as a tractable problem. The

first step of the mean variance optimization selects efficient allocations for different

risks among all the possible combinations of assets to form the efficient frontier;

and the second step searches for the best allocation among all efficient allocations

found in the first step.

Increasing the number of assets in a portfolio significantly improves the ef-

ficient frontier as shown in Figure 8.1. Adding new diversified assets to a portfolio

shifts the frontier to the upper left which gives better return opportunities with

less risk compared to the lower number asset portfolios. An efficient way to find an

optimal allocation for small investors is to use commercially available asset alloca-

192

tion software: World Markets [36], Allocation Master [37], Encorr [38], PACO [39],

Expert Allocator [40], Horizon [41] and Power Optimizer [42]. However finan-

cial institutions which make larger investments or control large individual investor

portfolios face more complicated problems to obtain the optimal asset allocation.

Their higher number of assets and more complex diversification require significant

computation that currently only high performance computing can provide.

0 5 10 15 20 25 30
106

108

110

112

114

116

118

120

122

124

Standard Deviation

E
xp

ec
te

d
V

al
ue

2 Assets
10 Assets

50 Assets
80 Assets

100 Assets

E
xp

ec
te

d
R

et
ur

n

Standard Deviation (i.e. RISK)

Figure 8.1: Increasing the number of assets in a portfolio significantly im-
proves the efficient frontier, the efficient allocations of different assets for
different risks. Adding new assets to a portfolio shifts the frontier to the
upper left which gives better return opportunities with less risk compared
to the lower number of assets portfolios.

There is an increasing interest for FPGAs from high performance comput-

ing (HPC) community since conventional microprocessors are struggling to keep up

with the Moore’s law that degrades the performance gains with increasing power

requirements. The addition of FPGAs to the existing high performance computers

can boost the application performance and design flexibility. The advantages of

FPGAs over conventional compute clusters are less power consumption, increased

compute density and significant performance improvement for highly parallel appli-

cations. The mean variance framework’s inherent parallelism and its need for repro-

gramability make the framework an ideal candidate for an FPGA implementation.

193

There are some previous works which consider the hardware acceleration of differ-

ent financial problems, mainly concentrated on Monte-Carlo simulations [43–49].

Zhang et al. [43] and Morris et al. [44] focused on single option pricing where

Kaganov et al. [49] considered credit derivative pricing. Also interest rates and

Value-at-Risk simulations are being considered by Thomas et al. in [45, 46]. To

the best of our knowledge, we are the first to propose hardware acceleration of the

mean variance framework for optimal asset allocation using FPGAs.

The major contributions of this chapter are:

1) A detailed description of the mean variance framework for optimal asset allo-

cation, incorporating investor objectives and satisfaction indices used in practical

implementations;

2) Identification of bottlenecks for the mean variance framework which can be

adapted to work in hardware;

3) Design of the proposed hardware for the FPGA implementation of the mean

variance framework;

4) A study of potential performance improvements through simulations of the hard-

ware architectures and a comparison between a software implementation running

on two 2.4 Ghz Pentium-4 CPUs, and an FPGA architecture, showing potential

performance ratios of 9.6 × and 221 × for different steps. This study proves the

need for automatic generation of multi-core architectures on FPGAs for accelera-

tion of financial computations.

The rest of this chapter is organized as follows: In section 8.1, we describe

the steps of the mean variance framework used for optimal asset allocation. In sec-

tion 8.2, we present our proposed implementation of the mean variance framework.

Section 8.3 presents our results in terms of timing and throughput and compares

these results with a purely software implementation. We conclude in section 8.4.

194

8.1 The Mean Variance Framework for Optimal

Asset Allocation

In this section, we present the mean variance framework for optimal asset

allocation. The framework is a popular two-step approach used in all practical asset

allocation applications. Step 1 selects efficient allocations among all the possible

combinations of assets and computes the efficient frontier. Step 2 performs a search

for the best among the efficient allocations using Monte-Carlo simulations. We

divide our discussion of the framework into three sections (shown in Figure 8.2):

A. The computation of inputs required for Step 1 of the mean variance framework,

B. Step 1 of the mean variance framework,

C. Step 2 of the mean variance framework.

Note that all equations listed in the following subsections are found in [30] unless

otherwise specified.

Computation of Required
Inputs

of
Securities

Horizon

Prices Covariance

Publicly Available Data

Computation of
the Required Inputs

Current Prices

Expected Prices,
E{M}

Computation of the
Efficient Frontier

of
Portfolios

Allocations

STEP 1

Determination of the
Highest Utility Portfolio

Optimal
Allocation

of
Portfolios

of
Scenarios

STEP 2
MEAN-VARIANCE FRAMEWORK

Satisfaction Index
(ζ, γ)

Efficient
Frontier

E
xp

ec
te

d
R

et
ur

n

Standard Deviation (RISK)

Highest Utility
Portfolio

E
xp

ec
te

d
R

et
ur

n

Standard Deviation (RISK)

(a) (b)

of
Securities

of
Securities

Expected
Covariances, Cov{M}

(c)

Reference
Allocation β

Investor
Objective

Current
Prices

Budget

Figure 8.2: The required steps for optimal asset allocation are shown in (a),
(b) and (c). After the required inputs to the mean variance are generated
in (a), computation of the efficient frontier and determination of the high-
est utility portfolio are shown in (b) and (c) respectively. This figure also
presents the inputs and outputs provided to the user.

195

8.1.1 Computation of the Required Inputs

The expected values of the market vector E{M} and the respective covari-

ance matrix Cov{M} are needed as inputs to the mean variance framework. Cal-

culating these inputs requires the use of already known publically available data:

prices, standard deviation, and covariances plus the investor’s objective, number of

securities, Ns, reference allocation and horizon τ (as shown in Figure 8.2(a)). Cal-

culating E{M} and Cov{M} using these investor and market parameters requires

the 5 stage procedure (shown in Figure 8.3) explained in detail below [30].

Known data
The time that

investment made, T

Investment horizon, τ

Estimation
interval, τ CT+τ, τ

CT+τ, τ Characteristic
Function

1 & 2

Ct, τ

3

3

4

E{PT+τ} Cov{PT+τ,PT+τ}
(n) (n)(m)

5

E{M} Cov{M}

Figure 8.3: The procedure to generate required inputs is described. The num-
bers 1-5 refers to these computation steps which are explained in subsections
in more detail.

1. Detection of the invariants, Xt,τ̃

Invariants are identical repetitions in the market within a given estimation interval,

τ̃ . The estimation interval, τ̃ , is different than the horizon τ , which was mentioned

before. The estimation interval, τ̃ , refers to the time which we suspect a repetition

in data, where investment horizon, τ , refers to the time the investor plans to

invest. Detection of the invariants is an essential step and linear return of stocks

Lt,τ̃ = Pt

Pt−τ
− 1, or compounded return of stocks Ct,τ = ln (Pt

Pt−τ
) can be used as

invariants for the market. We chose to use compounded return of stocks.

2. Determination of the distribution of the invariants

196

We can determine the distribution of the invariants based on estimators (maximum

likelihood estimators, nonparametric estimators etc.) based on current market in-

formation. As an example, we assume that the invariants Xt,τ̃ = Ct,τ̃ are multivari-

ate normal distribution with N(μ̂, Σ̂) where μ̂ and Σ̂ are vectors of sample mean

and covariance matrix respectively.

3. Projection of the invariants Xt,τ̃ to the investment horizon to obtain the

distribution of XT+τ,τ

After the determination of the distribution of the invariants Xt,τ̃ in an estima-

tion interval, τ̃ , we project them to the investment horizon XT+τ,τ ∼ N(τ
τ̃
μ̂, τ

τ̃
Σ̂).

Furthermore we use this distribution to determine the distribution of the market

prices, PT+τ .

4. Computation of the expected return E{PT+τ}, and the covariance matrix

Cov{PT+τ} from the distribution of the market prices

We use the characteristic function of the compounded returns to formulize the

expected returns as

E{P (n)
T+τ} = P

(n)
T e

τ
τ̃
(μ̂n+ Σ̂nn

2
) (8.1)

and covariance matrix of the market as:

Cov{P (m)
T+τ , P

(n)
T+τ} = P

(m)
T P

(n)
T e

τ
τ̂
(μ̂m+μ̂n)e

1τ
2τ̂

(Σ̂mm+Σ̂nn)(e
τ
τ̂
(Σ̂mn) − 1) (8.2)

5. Computation of the expected return E{M}, and the covariance matrix Cov{M}
of the market vector

An investor objective is a function for which every investor desires the largest

value as an output of that function. There are different objectives such as absolute

wealth, relative wealth and net profits [30]. An absolute wealth investor tries to

maximize the value of the portfolio in the investment horizon. A relative wealth

investor tries to achieve better portfolio return compared to a reference portfolio

where the reference portfolio is denoted as β with γ as a normalization factor. A

net profits investor always tries to increase the value of the portfolio compared

to the value of the portfolio today. The specific forms of the equations for these

objectives are shown in Table 8.1(a).

These different objectives can be seen as a linear function of the investor’s

197

Table 8.1: Different Investor Objectives: Specific and Generalized Forms

Standard Investor Objectives

Absolute Wealth Relative Wealth Net Profits

(a) Specific Form ψα = WT+τ (α) ψα = WT+τ (α)− γ(α)WT+τ (β) ψα = WT+τ (α)− wT (α)

(b) Generalized Form a ≡ 0, B ≡ IN a ≡ 0, B ≡ K a ≡ −pT , B ≡ IN

ψα = α
′
PT+τ ψα = α

′
KPT+τ ψα = α

′
(PT+τ − pT)

allocation α, and the market vector M , shown as follows:

ψα = αM (8.3)

M is a transformation of the market prices at the investment horizon as:

M ≡ a + BPT+τ (8.4)

where a and B are a suitable conformable vector and an invertible matrix re-

spectively. These generalized forms of investor objectives are also shown in Ta-

ble 8.1(b) with different a and B values where γ(α) ≡ wT (α)
wT (β)

(Normalization factor),

K ≡ IN − pT β
′

β′pT
and IN is identity matrix. Computation of the market vector com-

bines the expected returns and covariance matrix with the investor objectives using

different a and B values for different investor objectives which is shown as:

E{M} = a + BE{PT+τ} (8.5)

Cov{M} = BCov{PT+τ}B′
(8.6)

Notice that each step requires the financial analyst to make assumptions

(such as what type of invariant distribution to assume, and what estimation inter-

val to use). Each assumption affects the outcome of the computation and hence

each of the five steps described is a broad research area in economics. For our pur-

poses we use the following assumptions with the knowledge these could be easily

changed: we use the past 3 years of the data with 1 week estimation interval. We

use compounded returns of stocks as market invariants and assume that they are

multivariate random variables. We assume our estimation horizon is 1 year.

198

8.1.2 Mean Variance Framework Step 1: Computation of

the Efficient Frontier

Computing the efficient frontier, the efficient allocations of different assets

for different risks, is the first step of the mean variance framework (Figure 8.2(b)).

The inputs to this step are current prices (already known), expected prices, E{M},
and expected covariance matrix, Cov{M},(which are calculated as described in

8.1.1), number of portfolios, Np, number of securities, Ns and investor’s budget.

This step calculates Np amount of efficient portfolios. These different portfolios

create the curve in Figure 8.2(b) which is called the efficient frontier.

Assume an investor who purchases αn units of the n − th security in a

market of N securities at time T (the time that the investment is made). If P
(n)
T

and α denote the price of the n − th security at the time T and the allocation at

the time the decision is made respectively, the value of the portfolio is calculated

as:

WT (α) ≡ αPT (8.7)

However, the market prices of the securities are multivariate random variables at

the investment horizon, therefore the portfolio is a random variable which can be

seen as:

WT+τ (α) ≡ α
′
PT+τ (8.8)

where α
′

refers to the allocation at the horizon. Because the portfolio’s value is

a random value since the market prices are unknown, the expected prices at the

investment horizon E{PT+τ} and the covariance matrix Cov{PT+τ} need to be

computed and then investor objective function needs to be included to give us

E{M} and Cov{M} (These calculations are shown in the previous section). The

efficient frontier is then found by maximizing the investor objective value by a

constrained variance. This computation can be seen as :

α(v) ≡ arg max
α∈C,α′Cov{M}α=v

α
′
E{M}, v ≥ 0 (8.9)

199

where an investor’s objective value and variance is calculated as follows:

E{ψα} = α
′
E{M} (8.10)

V ar{ψα} = α
′
Cov{M}α (8.11)

With the efficient frontier depending on how much risk an investor wants to

face, there is a corresponding expected return. The region which is below the black

curve (the shaded region in Figure 8.2(b)) corresponds to the achievable risk-return

space for the specific frontier which includes at least one portfolio constructible

from the investments that has the risk and return corresponding to that point.

The upper region is the unachievable risk-return space. The black curve running

along the top of the achievable region is the efficient frontier. The portfolios that

correspond to points on that curve are optimal according to Equation 8.9.

8.1.3 Mean Variance Framework Step 2: Computing the

Optimal Allocation

Now that we have generated the inputs for the mean variance framework

and used these inputs to compute the efficient frontier, we have to consider satis-

faction indices to determine which point along the efficient frontier represents the

optimal allocation for the given investor. The required inputs to this step are the

allocations computed in step 1, current prices, number of portfolios, Np, number of

securities, Ns, number of scenarios, Nm, and investor satisfaction index (as shown

in Figure 8.2(c)).

The investor objective function produces one value. However this value

is random since the market prices at the investment horizon are stochastic and

therefore the market vector, M, contains random variables. Therefore, using the

investor function alone does not allow us to select the optimal allocation because

we have no way of determining which random value output is better for the investor

than another. Therefore we need to compute the expected value of the investor

objective value by introducing satisfaction indices [30]. Satisfaction indices repre-

sent all the features of a given allocation with one single number and quantify the

investor’s satisfaction. Therefore, an investor prefers an allocation to the other if

200

it provides more satisfaction. There are mainly three different classes of indices

being used to model the investor’s satisfaction: certainty-equivalent, quantile and

coherent indices. We use certainty-equivalent indices because they are based on a

concave function and promote diversification [30].

Certainty-equivalent indices are represented by the investor’s utility func-

tion and objective. A utility function u(ψ) is defined for an investor to explain his

enjoyment. There are different utility functions which we can use to represent an

investor’s satisfaction such as exponential, quadratic etc. Even though this func-

tion is specific for every investor, it is possible to investigate the most commonly

used functions and generalize them [30]. We show these different utility functions

in Table 8.2. To generalize the creation of utility functions, we use Hyperbolic

Absolute Risk Aversion (HARA) class of utility functions which are specific forms

of the Arrow-Pratt risk aversion model and defined in [30,50] as

A(ψ) ≡ ψ

γψ2 + ζψ + η
(8.12)

where η ≡ 0. The HARA class of utility functions gives us most of the utility

functions by varying the constants, ζ and γ as shown in Table 8.2.

Table 8.2: Different Utility Functions for Satisfaction Indices

Utility Functions

Exponential Utility Quadratic Utility Power Utility Logarithmic Utility Linear Utility

(ζ > 0 and γ ≡ 0) (ζ > 0 and γ ≡ −1) (ζ ≡ 0 and γ ≥ 1) (limγ→1γ) (limγ→∞γ)

u(ψ) = −e
1
ζ

ψ
u(ψ) = ψ − 1

2ζ
ψ2 u(ψ)

1− 1
γ u(ψ) = ln ψ u(ψ) = ψ

Therefore, an investor compares different allocations using the index of

satisfaction and chooses the maximum value as the optimal asset allocation. Com-

puting the optimal allocation is a maximization problem using different market

scenarios since market values are uncertain and its analytical solution is not pos-

sible in many practical implementations [30]. Therefore approximation methods

are employed for finding the best allocation on the efficient frontier. To solve this

problem with approximations, a large number of market scenarios are simulated

through Monte-Carlo simulations.

201

8.2 Implementation of the Mean Variance Frame-

work

Now that we have described how optimal asset allocation works, we now

discuss our proposed implementation of the mean variance framework. We first

present a series of figures to provide the motivation for our implementation and de-

termine the bottlenecks of optimal asset allocation. We then describe the proposed

architectures and possible ways to benefit from their inherent parallelism.

8.2.1 Implementation Motivation

As previously shown in Figure 8.1, increasing the number of securities in a

portfolio allows the investor to achieve better investment opportunities, thus our

goal is to allow for a large number of diversified securities in a portfolio. But how

much computation time does increasing the number of securities add to

the computation of the optimal asset allocation? To address this question

we looked at how varying the number of securities affected the computation time

in relation to number of portfolios and number of scenarios, two other important

parameters that affect computation time (an increase in the number of portfolios

increases the number of points on the efficient frontier and increasing the number

of scenarios increases the number of runs of the Monte-Carlo simulation). Fig-

ure 8.4(a), 8.4(b) and 8.4(c) compare number of securities, Ns, versus number of

portfolios, Np; number of portfolios, Np, versus number of scenarios, Nm; number

of securities, Ns, versus number of scenarios, Nm, respectively. By looking at the

slopes of the lines in the figures it can be easily seen that Ns dominates computa-

tion time (has a steeper slope) over Np (a), and Np dominates computation time

over Nm (b). These results suggest that the number of securities is the most com-

putationally time sensitive input to the optimal asset allocation problem, thus if

a large number of securities are to be allowed as input to the framework, a faster

implementation must be developed.

To identify the bottlenecks of the computation of the optimal asset alloca-

tion, we look at the runtime of each solution step (1. generation of the required

202

1
1.01

1.02
1.03

1.04

x 105

50
60

70
80

90
0

100

200

300

400

Number of SenariosNumber of Securities

E
x
e
c
u

t
io

n
 T

im
e
 i

n
 S

e
c
o
n

d
s

50 100 150 200 250 300

50
60

70
80

90

50
60

70
80

90
0

100
200
300
400
500
600
700
800

Number of PortfoliosNumber of Securities

E
x
e
c
u

t
io

n
 T

im
e
 i

n
 S

e
c
o
n

d
s

100 200 300 400 500 600

1
1.01

1.02
1.03

1.04

x 105

50
60

70
80

90
0

300

600

900

1200

1500

Number of SenariosNumber of Portfolios

E
x
e
c
u

t
io

n
 T

im
e
 i

n
 S

e
c
o
n

d
s

200 400 600 800 1000 1200100 200 300 400 500 600

0
100

E
xe

cu
tio

n
T

im
e

in
Se

co
nd

s

200
300
400
500
600
700
800

200 400 800600 1000 1200

Number of Securities Number of Portfolios
50

60
70

80
90

50
60

70
80

90

Number of Portfolios
50

60
70

80
90

0

300

600

900

1200

1500

1.01
1.02

1.03
1.04

×105

Number of Securities Number of Scenarios
50

60
70

80
90
0

100

200

300

400

1
1.01

1.02
1.03

1.04

×105

50 100 150 200 250 300
E

xe
cu

tio
n

T
im

e
in

Se
co

nd
s

E
xe

cu
tio

n
T

im
e

in
Se

co
nd

s

(a) Number of Scenarios = 100,000 (b) Number of Securities = 100

(c) Number of Portfolios = 100

Number of Scenarios1

Figure 8.4: To determine the computation time of different variables, we com-
pare number of securities, Ns, versus number of portfolios, Np, and number
of portfolios, Np, versus number of scenarios, Nm, respectively. By looking
at the slopes of these lines in the figures it can be easily seen that Ns dom-
inates computation time (has a steeper slope) over Np (a), Np dominates
computation time over Nm (b).

inputs, 2. Step 1 of the mean variance framework, and 3. Step 2 of the mean vari-

ance framework) with respect to varying the number of securities (Figure 8.5(a)),

203

number of portfolios (Figure 8.5(b)) and number of Monte-Carlo simulations (Fig-

ure 8.5(c)). As can be seen from Figure 8.5(a), the generation of the required

inputs does not consume a significant amount of time, thus it is best to keep this

implementation step in software if the computation cannot be parallelized. On the

other hand, step 1 and 2 of the mean-variance framework consume a significant

amount of time providing the motivation for an alternative implementation. It is

also important to note there is a cutoff point between step 1 and 2, showing that

the computational time for step 1 becomes more significant after 60 securities. In

Figure 8.5(b), we only compare step 1 and 2 for different number of portfolios

(because we already determine that the computational time for the generation of

required steps is not significant), and we conclude that most time consuming part

is step 1. Figure 8.5(c) shows the increase in the timing with varying number of

scenarios.

8.2.2 Hardware/Software Interface

As determined in 8.2.1, Step 1 and Step 2 of the mean variance framework

are the bottlenecks for computing the optimal asset allocation. FPGA imple-

mentations can provide a substantial performance improvement for processes that

can be easily parallelized. Fortunately, finding the maximum return for different

risk values to create the efficient frontier (Step 1) and implementing Monte-Carlo

simulations to apply different market scenarios (Step 2) can be easily parallelized

making them good candidates for hardware implementations. Although the gen-

eration of required inputs is not a bottleneck for optimal asset allocation, further

performance improvement can be gained by implementing phase 5 of this step

(computation of E{M} and Cov{M}) which includes parallizable matrix compu-

tations in hardware. Thus, our implementation combines software (a Host PC) to

compute phases 1-4 of the generation of required inputs and hardware (FPGA) to

compute phase 5 of the generation of required inputs and step 1 and step 2 of the

mean variance framework to obtain maximal performance gain.

Because our implementation combines hardware and software, we must pay

particular attention to the hardware/software interface, especially to the data that

204

1

10

100

10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (
S

e
c
)

Number of Portfolios

Mean Variance Framework Step 1
Mean Variance Framework Step 2

1

10

100

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

S
e
c
)

Number of Scenarios

Mean Variance Framework Step 2

Np = 100
Nm = 100,000

Ns = 100
Nm = 100,000

Ns = 100
Np = 100

0.001

0.01

0.1

1

10

20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c
)

Number of Securities

Generation of the Required Inputs
Mean Variance Framework Step 1
Mean Variance Framework Step 2

(a) (b)

(c)

Figure 8.5: Identification of the bottlenecks in the computation of the optimal
asset allocation. We run two different test while holding all but one variable
constant. We determined that generation of the required input does not
consume significant amount of time. On the other hand, step 1 and 2 of the
mean variance framework consumes significant amount of time.

needs to be transferred, to insure we do not lose the performance gain we added

through the hardware software separation. The information that needs to be trans-

ferred between the software and hardware are current prices, expected prices, and

expected covariances which are of the dimensions Ns × 1, Ns × 1 and Ns × Ns

respectively. In the following subsections, we present our architectural design and

205

parallelization possibilities for the generation of the required inputs phase 5, mean

variance framework step 1 and 2.

8.2.3 Generation of Required Inputs - Phase 5

We implement ”Market Vectors Calculator IP Core” for the calculation

of phase 5 in the generation of the required inputs (Figure 8.6). This IP Core

can compute three different objectives: absolute wealth, relative wealth and net

profits or any combination of these which are described in 8.1.1. This IP Core

includes the K building block which computes the constant matrix K and used if

the investor’s objective is relative wealth. The required inputs to this hardware

are current prices, PT , reference allocation, β
′
, identity matrix, IN , and expected

returns, PT+τ . We use two control inputs: cntrl a and cntrl b to select the desired

investor profile. These control relationships are described in Table 8.3.

After these control units are given, E{M}, the market vectors at the investment

Table 8.3: Control Inputs for Different Investor Objectives

Control Inputs
Investor Objective cntrl a cntrl b
Absolute Wealth 0 0
Relative Wealth 1 0

Net Profits 0 1

horizon, is calculated. Figure 8.7 shows how the Market Vectors Calculator IP Core

can be easily parallelized. Cov{M}, computed by Equation 8.6 is only needed

when the investor objective is relative wealth. Because it also includes many

matrix multiplications and accumulations, a similar parallelized hardware can be

implemented.

8.2.4 Hardware Architecture for Mean Variance Frame-

work Step 1

Mean variance framework step 1 is a constrained maximization problem

which is shown in Equation 8.9. This step receives market vectors, E{M} and

206

×

×

pT

pT

β'
/ -

IN

×

PT+τ

KPT+τ

or
PT+τ

-

K Building Block

K

cntrl_a

cntrl_b
pT

Market Prices at the
Investment Horizon

Market Vectors
Calculator IP Core

0
1

1
0 M

Figure 8.6: Parameterizable serial hardware architecture for the generation
of the required inputs - phase 5.

Cov{M} as inputs and maximizes the expected return for a specific standard

deviation (risk) to find the efficient portfolio. This maximization problem needs

to be solved for different risks number of portfolios, Np, times. A simple example

of this maximization problem can be seen as:

α(v) ≡ arg max
α′Cov{M}α=v

α
′
E{M}, v ≥ 0 (8.13)

where two possibly important constraints: the budget of the investor and
∑Ns

i=1 αi =

1 are not added the for ease of understanding.

A popular approach to solve constrained maximization problems is to use

the Lagrangian multiplier method [51] which introduces an additional variable, λ,

to equalize the number of equations and number of unknowns. The equations for

the solution of the Equation 8.13 for 2 securities can be seen as:

207

×

×

×

p1

β1
p2

β1

pN

β1

×

×

×

p1

β1
p2

β2

pN

βN

acc

First Row of the
Result Matrix

Second Row of the
Result Matrix

Nth Row of the
Result Matrix

/

/

/

/

/

-

-

-

-

-

I11

I12

I1N

I21

IN1

K Building Block

×

×

×

×

×

P1

P2

PN

P1

P1

acc

acc

acc

cntrl_a

-

-

-

p1

p2

pN

cntrl_b

M

Market Vectors
Calculator IP Core

Figure 8.7: Parameterizable fully parallel hardware architecture for the gen-
eration of the required inputs - phase 5. As can be seen from the parallel
architecture, phase 5 has very high potential for the parallel implementa-
tion, therefore a good candidate for decreasing the computational time of
the optimal asset allocation.

L = α
′
E{M} + λ(v − α

′
Cov{M}α) (8.14)

L = [α1α2]

[
P1

P2

]
+ λ(v − [α1α2]

[
Cov11 Cov12

Cov21 Cov22

] [
α1

α2

]
) (8.15)

∂L
∂α1

= P1 − λ[2α1Cov11 + α2(Cov21 + Cov12)] = 0 (8.16)

∂L
∂α2

= P2 − λ[2α2Cov22 + α1(Cov21 + Cov12)] = 0 (8.17)

∂L
∂λ

= α2
1Cov11 + α1α2(Cov21 + Cov12) + α2

2Cov22 = v (8.18)

By solving three equations for three unknowns, α1, α2, λ, one can derive

the optimal α1 and α2 values where calculation of these values can be written

208

as functions of the known constants such as v(Risk), P1 and Cov22. A number

of securities, Ns, amount of functions need to be computed for determination of

the efficient allocation for a given risk. These equations will be the same for

different risks and hence can be easily parallelized (as shown in Figure 8.8). There

are different α calculator blocks in every core. This core can be used serially by

applying different variances as inputs or can be parallelized since the equations

these cores include are the same.

α1
α2

αNs

α1
α2

αNs

α1
α2

αNs

1.core

2.core

Np.core

E{M}
Cov{M}

v1

v2

vNp

Figure 8.8: Parallel optimum allocation calculator IP Cores.

8.2.5 Hardware Architecture for Mean Variance Frame-

work Step 2

After computing the efficient frontier, we determine the highest utility al-

location (optimal allocation) among these different allocations using satisfaction

209

indices. Computing the optimal allocation is a maximization problem by simu-

lating a large amount of market scenarios through Monte-Carlo simulations. The

Satisfaction Function Calculator IP core (Figure 8.9) has required inputs of the

investor objective function values ψ, and the constants ζ and γ which are defined

in Equation 8.12. The Satisfaction Function Calculator IP core can evaluate lin-

ear, logarithmic, exponential, quadratic, and power utility functions. The control

input, cntrl c, defines which utility to use.

Power Utility

Linear Utility

Logarithmic Utility

Exponential Utility

Quadratic Utility

ζ

cntrl_c

Optimum
Allocation

000

001

010

011

100

Monte-Carlo Block

Random Number
Generator

×

×

×

ln(ψ)

1

ζ

1

ζ
ψ

1

2ζ
ψ2 ψ 1

2ζ
ψ2

1
ζ

Ψ)(
-e

1
1
γ

γ (1 1
γ)

ψ

MaxNc

ψ1
=[ψ11, ψ12,..,ψ1Ns]

Ns multiplications

These blocks run Nm times for
a portfolio

Utility Calculation Block

Figure 8.9: Parallel parameterizable hardware architecture for the mean vari-
ance framework step 2.

For the determination of the highest utility allocation, the Monte-Carlo

block and the Utility Calculation Block (as part of the Satisfaction Function Cal-

culator block) are run number of simulations, Nm, times. The whole Satisfaction

Function Calculator IP core is then run number of portfolios, Np, times. There-

fore, the Monte-Carlo block, Utility Calculation Block, and Satisfaction Function

Calculator IP core can be easily parallelized a maximum of Nm, Nm and Np times

respectively as shown in Figure 8.10.

210

ψ1

ψ2

ψNp

Satisfaction Function
Calculator Blocks

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

Parallel (Ns)
Multipliers

Parallel (Nm) Monte
Carlo Blocks

Parallel (Nm) Utility
Calculation Blocks

Parallel (Np)
Satisfaction Function

Calculation Blocks

Figure 8.10: Parallel parameterizable hardware architecture for the mean vari-
ance framework step 2. The Monte-Carlo block, Utility Calculation Block,
and Satisfaction Function Calculator IP core can be easily parallelized a max-
imum of Nm, Nm and Np times respectively.

8.3 Results

In this section, we investigate potential speed-ups for the mean variance

framework using simulations of the hardware architectures we described in 8.2.

We concentrate on ”Generation of the required inputs - Phase 5” and ”the mean

variance framework - step 2.” We consider serial and different level of parallel imple-

mentations of these steps and compare our results with a software implementation

running on two 2.4 Ghz Pentium-4 CPUs (every test is run 1000 times and average

runtime is presented). We use 32 bit fixed-point arithmetic for our implementa-

211

tions and assume that our clock frequency achieves 200 MHz. The complexity of

the mean variance framework step 1 increases dramatically with increased secu-

rities, and hence its potential runtime cannot be determined until we investigate

alternative parallelism methods (such as employing Monte-Carlo simulations) and

hence is not presented.

As can be seen from Figure 8.6 and 8.7, the market vector calculator IP

Core can be implemented with different levels of parallelism levels where we are

bound by hardware resources rather than by the parallelism that this step offers.

The serial implementation of this step (no parallelism exploited) performs poorly

compared to the software implementation. The parallel implementation uses a

reasonable parallelism level by employing Ns number of arithmetic resources in

parallel: for 50 securities there are 50 multipliers, dividers, subtractors etc. This

level of parallelism achieves a potential performance ratio between 6 × and 9.6 ×
compared to the software implementation. A fully parallel implementation which

might not be realistic due to hardware limitations, presents a best potential bound

offering a performance ratio 629 × (for 50 securities). This comparison is shown

in Figure 8.11.

We investigate the difference in timing for mean variance framework step

2 in Figure 8.12. We use 100,000 scenarios, Nm, for Monte-Carlo simulations

and 50 portfolios, Np, to evaluate. We present two parallel architectures, parallel

1 employs 10 Satisfaction Function Calculator blocks where each consists of 1

Monte-Carlo block with 10 multipliers and 10 Utility Function Calculator blocks.

Parallel 2 employs 10 Satisfaction Function Calculator blocks where each consists

of 1 Monte-Carlo block with 20 multipliers and 20 Utility Function Calculator

blocks. Parallel 1 and Parallel 2 offer a potential performance ratio between 151

× and 221 × and between 302 × and 442 ×.

As can be seen from the potential performance ratios, both ”Generation

of the required inputs - phase 5” and ”mean variance framework - step 2” offer

significant speed-up when parallelized and implemented in hardware.

212

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
50 60 70 80 90 100

C
om

p
u

ta
ti

on
al

 T
im

e
(s

ec
)

Number of Securities

Software Serial Parallel Fully Parallel

Figure 8.11: Possible speed-ups for ”generation of the required inputs - phase
5”

8.4 Conclusions

The addition of FPGAs to the existing high performance computers can

boost an application’s performance and design flexibility. The mean variance

framework’s inherent parallelism in its solution steps (due to many matrix compu-

tations and its use of Monte Carlo simulations) and its need for reprogramability

(to allow for modifications based on different investor characteristics) make the

framework an ideal candidate for an FPGA implementation. In this work, we are

the first to propose hardware acceleration of optimal asset allocation through an

FPGA implementation of Markowitz’ mean variance framework. We concentrate

on ”Generation of the required inputs - Phase 5” and ”Mean-variance Framework

- Step 2” in this work and present a study of potential performance improvements

through simulations of the hardware architectures. We provide a comparison be-

tween a software implementation running on two Pentium-4 CPUs, and an FPGA

architecture, showing potential performance gains of 9.6 × for Phase 5 and 221

213

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e
 (

se
c
)

Number of Securities

Software Parallel 1 Parallel 2

Figure 8.12: Possible speed-ups for ”Mean Variance Framework Step 2”.

× for Step 2. This study proves the need for automatic generation of multi-core

architectures on FPGAs for acceleration of financial computations.

The text of Chapter 8 is in part a reprint of the material as it appears in

the proceedings of the Workshop on High Performance Computational Finance.

The dissertation author was the primary researcher and author and the co-authors

listed on this publication [180] directed and supervised the research which forms

the basis for Chapter 8.

Chapter 9

Future Research Directions

There are many possible directions for future research. I will touch on a

few directions that could be explored using and improving my tool, GUSTO.

Vector Processing Unit Designs: Techniques for improving optimization re-

sults by automatic generation of vector processing elements with hierarchical dat-

apaths.

Study of Trimming Effects for Different Scheduling Algorithms: GUSTO

currently uses list scheduling. Different scheduling algorithms will provide us dif-

ferent results in terms of area, timing and throughput. Customization of matrix

computation algorithms by exploiting instruction scheduling algorithms that have

different effects on optimizations performed.

Supporting Conditional Statements: GUSTO currently doesnt support con-

ditional statements in algorithms. Supporting conditional statements will improve

GUSTO’s capabilities.

Study of Effects on Architectural Result with Different Arithmetic Sys-

tems: Hardware implementation trade-offs for standard fixed-point and floating

point arithmetic as well as non-standard arithmetic such as logarithmic number

systems.

214

Appendix A

Matrix Computations

A.1 Matrix Decomposition Methods

A.1.1 QR Decomposition

QR decomposition is one of the most important operations in linear algebra.

It can be used to find matrix inversion, to solve a set of simulations equations or in

numerous applications in scientific computing. It represents one of the relatively

small numbers of matrix operation primitive from which a wide range of algorithms

can be realized.

QR decomposition is an elementary operation, which decomposes a matrix

into an orthogonal and a triangular matrix. QR decomposition of a real square

matrix A is a decomposition of A as A = Q×R, where Q is an orthogonal matrix

(QT × Q = I) and R is an upper triangular matrix. And we can factor m × n

matrices (with m ≥ n) of full rank as the product of an m × n orthogonal matrix

where QT × Q = I and an n × n upper triangular matrix.

There are different methods which can be used to compute QR decomposi-

tion. The techniques for QR decomposition are Gram-Schmidt orthonormalization

method, Householder reflections, and the Givens rotations. Each decomposition

method has a number of advantages and disadvantages because of their specific

solution process. Each of these techniques are discussed in detail in the following

sections.

215

216

1. Gram-Schmidt Orthonormalization Method

Gram-Schmidt method is a formulation for the orthonormalization of a linearly

independent set. QR decomposition states that if there is an A matrix where

A ∈ R
n×n, there exists an orthogonal matrix, Q, and an upper triangular matrix,

R such that A = Q × R, is the most important result of this orthonormalization.

This method is used as algorithm to implement QR decomposition.

This decomposition can be seen as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 . . . A1m

A21 A22 A23 . . . A2m

A31 A32 A33 . . . A3m

...
...

...
. . .

...

An1 An2 An3 . . . Anm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 . . . Q1m

Q21 Q22 Q23 . . . Q2m

Q31 Q32 Q33 . . . Q3m

...
...

...
. . .

...

Qn1 Qn2 Qn3 . . . Qnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 R12 R13 . . . R1m

0 R22 R23 . . . R2m

0 0 R33 . . . R3m

...
...

...
. . .

...

0 0 0 . . . Rnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can use another representation for simplification that is shown below:[
a1 a2 a3 . . . am

]
=

[
Q1 Q2 Q3 . . . Qm

]
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 . . . r1m

0 r22 r23 . . . r2m

0 0 r33 . . . r3m

...
...

...
. . .

...

0 0 0 . . . rnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In order to illustrate the decomposition process, we supposed a set of column

vectors Q1, Q2, Q3, . . ., Qk ∈ R
n which constructs the Q matrix as:

217

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 . . . Q1m

Q21 Q22 Q23 . . . Q2m

Q31 Q32 Q33 . . . Q3m

...
...

...
. . .

...

Qn1 Qn2 Qn3 . . . Qnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

Q1 Q2 Q3 . . . Qn

]

These column vectors can be orthonormal if the vectors are pairwise orthogonal

and each vector has euclidean norm of 1 [13]. In other words, Q is an orthogonal

matrix where Q ∈ R
n×n if and only if its columns form an orthonormal set which

is the result of Q × QT = I.

If we look at the result of the multiplication between Q and its transpose:

Q × QT =
[

Q1 Q2 Q3 . . . Qn

]
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

QT
1

QT
2

QT
3

...

QT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1Q
T
1 Q2Q

T
1 Q3Q

T
1 . . . QnQ

T
1

Q1Q
T
2 Q2Q

T
2 Q3Q

T
2 . . . QnQ

T
2

Q1Q
T
3 Q2Q

T
3 Q3Q

T
3 . . . QnQ

T
3

...
...

...
. . .

...

Q1Q
T
n Q2Q

T
n Q3Q

T
n . . . QnQ

T
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We see that the entries of (Q×QT) matrix are the inner products of the (Qi, Qj).Thus,

Q × QT will be equal to I, identity matrix, if and only if the columns of the Q

matrix form an orthonormal set. This can be shown as

(Qi, Qj) =

{
0 if i 	= j

1 if i = j
which results as Q × QT = I

Definition 1 - Given two vectors x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T

in R
n, we can define the inner product of x and y by

(x, y) =
n∑

i=1

xiyi (A.1)

218

denotes as (x, y). It is important to note that the inner product has the following

properties [13]:

(x, y) = (y, x) (A.2)

(α1x1 + α2x2, y) = α1(x1, y) + α2(x2, y) (A.3)

(x, α1y1 + α2y2) = α1(x, y1) + α2(x, y2) (A.4)

for all x, x1, x2, y, y1, y2 ∈ R
n and α1, α2 ∈ R.

Definition 2 - The Euclidean norm can be shown as ‖x‖2 =
√

(x, x). There is

an important relationship between inner product and Euclidean norm definitions.

To understand the decomposition process, we looked at the subspaces of

R
n since we are working with columns of the matrices. Assume that there is a

nonempty subset, �, which is a subspace of R
n and this subset is closed under ad-

dition and scalar multiplication which is basically the result of inner product. That

is, � is a subspace of R
n if and only if whenever a, w ∈ � and c ∈ R, then a +w ∈ �

and ca ∈ �. Given vectors a1, a2, . . . , am ∈ R, a linear combination of a1, a2, . . . , am

is a vector of the form c1a1+c2a2+· · ·+cmam, where c1, c2, . . . , cm ∈ R. We can call

the numbers c1, c2, . . . , cm as the coefficients of the linear combination. In sigma

notation a linear combination looks like
∑m

k=1 ckak. The span of a1, a2, . . . , am

is the set of all linear combinations of a1, a2, . . . , am and the notation for span

is 〈a1, a2, . . . , am〉. In particular 〈a〉 denotes the set of all scalar multiples of a.

It is important to note that 〈a1, a2, . . . , am〉 is closed under addition and scalar

multiplication; that is, it is a subspace of R
n [13].

If � be a subspace of R
n, and a1, a2, . . . , am ∈ �, as a result 〈a1, a2, . . . , am〉 ⊆

�. We can say v1, v2, . . . , vm span � if 〈a1, a2, . . . , am〉. This means that every

member of � can be expressed as a linear combination of a1, a2, . . . , am. In this

case we say that a1, a2, . . . , am form a spanning set for �. Every subspace of R
n has

a basis, and any two bases of � have the same number of elements. This number

is called the dimension of the subspace. Thus, for example, if a1, a2, . . . , am are

independent, then 〈a1, a2, . . . , am〉 has dimension m.

The Gram-Schmidt process is an algorithm that produces orthonormal

bases. Let � be a subspace of R
n, and let a1, a2, . . . , am be a basis of �. The

Gram-Schmidt process uses a1, a2, . . . , am to produce Q1, Q2, . . . , Qm that form a

219

basis of �. Thus � = 〈a1, a2, . . . , am〉 = 〈Q1, Q2, . . . , Qm〉. And the column vectors

Q1, Q2, . . . , Qm also satisfy

〈Q1〉 = 〈a1〉 (A.5)

〈Q1, Q2〉 = 〈a1, a2〉 (A.6)
... (A.7)

〈Q1, Q2, . . . , Qm〉 = 〈a1, a2, . . . , am〉 (A.8)

We are given linearly independent vectors a1, a2, . . . , am ∈ R
n, and we seek or-

thonormal Q1, Q2, . . . , Qm satisfying the Equation A.8.

In order to satisfy 〈Q1〉 = 〈a1〉, we must choose Q1 to be a multiple of a1.

Since we also require Euclidean form of, ‖Q1‖ = 1, we define

Q1 =

(
1

r11

)
a1, where r11 = ‖a1‖2 (A.9)

We know that r11 	= 0 which causes divide by 0 hazard, because a1, a2, , am

are linearly independent, so a1 	= 0. The equation Q1 =
(

1
r11

)
a1 implies that

Q1 ∈ 〈a1〉; hence 〈Q1〉 ⊆ 〈a1〉. Conversely the equation Q1r11 = a1 implies that

a1 ∈ 〈Q1〉, and therefore 〈a1〉 ⊆ 〈Q1〉. Thus 〈Q1〉 ⊆ 〈a1〉.
The second step of the algorithm is to find Q2 such that Q2 is orthogonal

to Q1, ‖Q2‖ = 1, and 〈Q1, Q2〉 = 〈a1, a2〉. We can produce a vector Q̃2 that lies

in the plane and is orthogonal to Q1 by subtracting just the right multiple of Q1

from a2. We can then obtain Q2 by scaling Q̃2. Thus let

Q̃2 = a2 − r12Q1 (A.10)

where the scalar r12 is to be determined. We must choose r12 so that (Q̃2, Q1) = 0.

This equation implies 0 = (a2 − r12Q1, Q1) = (a2, Q1) − r12(Q1, Q1), and since

(Q1, Q1) = 0:

r12 = (a2, Q1) (A.11)

On the other hand, this choice of r12 guarantees that (Q̃2, Q1) = 0.

220

We can find orthogonal Q matrix by satisfying Equation A.8. And suppose

that we have found orthonormal vectors Q1, Q2, . . . , Qk−1 such that 〈Q1, Q2, . . . , Qi〉 =

〈a1, a2, . . . , ai〉, for i = 1, . . . , k − 1 by repeating the same process. Now, we can

determine Qk, which is a general formula for the solution and very useful for us.

We seek Q̃k of the form

Q̃k = ak −
k−1∑
j=1

rjkQj (A.12)

where Q̃k is orthogonal to Q1, Q2, . . . , Qk−1.

The equations (Q̃k, Qi) = 0, i = 1, . . . , k − 1, imply that

(ak, Qi) −
k−1∑
j=1

rjk(Qj, Qi) = 0 i = 1, 2, . . . , k-1 (A.13)

Since (Qi, Qj) = 0 when i 	= j, and (Qi, Qi) = 1, these equations reduce to

rik = (ak, Qi) i = 1, 2, . . . , k-1 (A.14)

If rik are defined by the equation above, then Q̃k is orthogonal to Q1, Q2, . . . , Qk−1.

Let

rkk = ‖Q̃k‖2 	= 0 (A.15)

And define

Qk =
1

rkk

Q̃k (A.16)

Then clearly ‖Q̃k‖2 = 1 and (Qi, Qk) = 0, i = 1, 2, . . . , k − 1. Combining these

equations:

ak = Q̃k +
k−1∑
j=1

rjkQj (A.17)

And using this:

Q̃k = Qkrkk (A.18)

And combining these equations, ak = Qkrkk +
∑k−1

j=1 rjkQj There are actually m

such equations, one for each value k. Writing out these equations, we have

221

a1 = Q1r11 (A.19)

a2 = Q1r12 + Q2r22 (A.20)

a3 = Q1r13 + Q2r23 + Q3r33 (A.21)

a4 = Q1r14 + Q2r24 + Q3r34 + Q4r44 (A.22)
...
... (A.23)

am = Q1r1m + Q2r2m + Q3r3m + . . . + Qmrmm (A.24)

These can be seen in a single matrix equation[
a1 a2 a3 . . . am

]
=

[
Q1 Q2 Q3 . . . Qm

]
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 . . . r1m

0 r22 r23 . . . r2m

0 0 r33 . . . r3m

...
...

...
. . .

...

0 0 0 . . . rmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Defining

A =
[

a1 a2 a3 . . . am

]
∈ R

n×m

Q =
[

Q1 Q2 Q3 . . . Qm

]
∈ R

n×m

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 . . . r1m

0 r22 r23 . . . r2m

0 0 r33 . . . r3m

...
...

...
. . .

...

0 0 0 . . . rmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m

Equations A.12, A.14, A.15 and A.16 are used to implement the kth step of classical

Gram-Schmidt algorithm. After performing this step for k = 1, 2, . . . , m, we have

the desired Q1, Q2, . . . , Qm and R1, R2, . . . , Rm.

Unfortunately the classical Gram-Schmidt process is numerically unstable

since its algorithm updates only the nearest columns and this increases the round-

off errors. These small round-off errors sometimes cause the computed vectors to

222

be far from orthogonal. However, a slight modification of the algorithm suffices

to make it stable. In the classical Gram-Schmidt algorithm, Q1 is taken to be

multiple of v1. Then the appropriate multiple of Q1 is subtracted from v2 to

obtain a vector that is orthogonal to Q1. The modified Gram-Schmidt procedure

calculates Q1 just as before. It then subtracts multiples of Q1 not just from v2,

but from v3, v4, . . . , vm as well, so that the resulting vectors v
(1)
2 , v

(1)
3 , . . . , v

(1)
m are

all orthogonal to Q1. This is the method that we used in our implementation and

it is shown in Figure A.1.

11 vQ � 2121 ,, vvQQ �

321321 ,,,, vvvQQQ �

Figure A.1: Visualizing orthonormalization method.

The next two sections are devoted to the general solutions of the other two

QR decomposition methods.

223

2. Householder Reflections

Householder reflections (transformations) is another method to decompose a ma-

trix, A, into Q and R matrices. To describe this method, we chose to use a matrix

of size 2. If we choose a line, l, in R
2 which passing through the origin, a linear

transformation can be described as reflecting any vector in R
2 through the line l

using an operator. We can describe this operator as a matrix with size 2. Suppose

a vector, v, which is on the l, and another vector which is orthogonal to the v,

named u. We can say that u, v is a basis for R
2. Then choose any vector in R

2 to

reflect on the line l. Assume that there is a vector x that can be expressed as the

linear combination of u and v vectors as x = αu + βv. The reflection of x to the

line l is −αu + βv as show in Figure A.2.

�

vux �� ��

vu �� ��

Figure A.2: Visualizing reflection method.

We define the reflection operator, Q, and Q must satisfy the equation:

Q(αu + βv) = −αu + βv (A.25)

for all α and β. It is important to note that the value α and β can change, and the

graph can be drawn differently, however this wouldn’t change our general results.

Using this result, we find that

224

Qαu + Qβv = −αu + βv (A.26)

Qu = −u; Qv = v (A.27)

We need to find a Q matrix satisfying these conditions. Let Q = I − 2P , where u

is a unit vector and P = uuT . Discussing on obtaining Q matrix as the reflector is

beyond the scope of this part. However it can be proven that this equation satisfies

the conditions:

Qu = u − 2Pu = −u (A.28)

Qv = v − 2Pv = v (A.29)

As a result, we found a Q matrix which reflects vectors through the line l and the

equation for Q can be written as Q = I − 2uuT . However, if we choose not to take

u as a unit matrix, we can define Q matrix as

Q = I − γuuT where γ =
2

‖u‖2
2

(A.30)

The only unexplained variable is the unit vector u. u is described as a − y, where

a represents one of the columns in our matrix and y is a column vector which can

be described as a = [σ, 0, 0, 0, 0]T where σ = ‖x‖2.

After finding the first Q matrix which can be denoted as Q1, we calculate

Q1A which is equal to QT
1 A since Q1 is symmetric. The expected result is to be R

matrix which is upper triangular. If not, same process continues to find Q2 till we

find a resulting R matrix.

3. Givens Rotations

Definition 3 - If there are two nonzero vectors, x and y, in a plane, the angle, θ,

between them can be formulized as:

cos θ =
(x, y)

‖x‖2‖y‖2

(A.31)

This formula can be extended to n vectors.

Definition 4 - The angle, θ, can be defined as:

θ = arccos
(x, y)

‖x‖2‖y‖2

(A.32)

225

These two vectors are orthogonal if θ = π
2

radians where x or y equals to 0.

Using Givens Rotation method, we find an operator which rotates each

vector through a fixed angle, θ, and this operator can be represented as a matrix.

If we use a 2 × 2 matrix, this operator can be described as:

Q =

[
Q11 Q12

Q21 Q22

]

This Q matrix can be determined by using two column vectors:

[
1

0

]
and

[
0

1

]
. The result of the multiplications between these column vectors and the Q

matrix are the columns of the Q matrix.

Thus, we can write the operator Q as:

Q =

[
cos θ − sin θ

sin θ cos θ

]
for 2 × 2 matrices

We solve the A = Q × R, so this can be written as QT × A = R. And we know

that R is an upper triangular matrix. Let there be a matrix, A =

[
A11 A12

A21 A22

]
,

this can be seen as:[
cos θ sin θ

− sin θ cos θ

] [
A11 A12

A21 A22

]
=

[
R11 R12

0 R22

]

It can be easily seen that:

(− sin θA11 + cos θA21) = 0 (A.33)

cos θA21 = sin θA11 (A.34)
sin θ

cos θ
=

A21

A11

= tan θ (A.35)

θ = arctan

(
A21

A11

)
(A.36)

After determining θ, we can determine Q matrix. To determine R matrix, we need

to work column by column:

226

QT

[
A11

A21

]
=

[
R11

0

]
to solve for the first column of R matrix

QT

[
A12

A22

]
=

[
R12

R22

]
to solve for the second column of R matrix

For n × n matrices, the 2 × 2 representation of Q matrix can be generalized. The

decomposition process stays the same.

A.1.2 LU Decomposition

If A is an n − by − n matrix and its leading principal submatrices are all

nonsingular, we can decompose A into unique unit lower triangular and upper

triangular matrices [13] as shown below:

A = L × U (A.37)

where L is unit lower triangle and U is upper triangular matrix. Consider the

equation A = L × U in detail for 4 × 4 matrix:⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1

⎤
⎥⎥⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎢⎣

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

⎤
⎥⎥⎥⎥⎥⎦

The goal is the find the value for the entries which are not 0. The first row

of L matrix is completely known and there is only one non-zero element. If we

multiply the first row of L matrix by the jth column of the U matrix, we find

A11 = u11, A12 = u12, A13 = u13, and A14 = u14 (A.38)

which can be described as A1j = u1j in general which means that the first row of U

matrix can be uniquely determined. Thus, the assumption that A is a nonsingular

matrix gives us a U matrix which is nonsingular too. We will continue to determine

U matrix entries as shown previously.

227

One can see that if we know the first row of U matrix that means that we

already know the first column of the U matrix too. And the first column of the

U matrix has only one non-zero element. If we multiply the first column of the U

matrix by the rows of the L matrix, we find

A21 = l21 × u11, A31 = l31 × u11, and A41 = l41 × u11 (A.39)

can be written as

Ai1 = li1 × u11 (A.40)

At this point, we know the values for Ai1, u11 and using the assumption that U is

a nonsingular matrix (uij 	= 0), we don’t have a problem of dividing by zero. This

leads to

li1 =
Ai1

u11

, i = 2, 3, 4 (A.41)

We uniquely determined the first row of U and the first column of L using these

steps. This is the way we determined L matrix entries. If we continue to solve for

U matrix

A22 = l21 × u12 + 1 × u22 (A.42)

A23 = l21 × u13 + 1 × u23 (A.43)

A24 = l21 × u14 + 1 × u24 (A.44)

where we know the values except for u22, u23 and u24

u22 = A22 − l21 × u12 (A.45)

u23 = A23 − l21 × u13 (A.46)

u24 = A24 − l21 × u14 (A.47)

For L matrix

A32 = u12 × l31 + u22 × l32 (A.48)

A42 = u12 × l41 + u22 × l42 (A.49)

228

where we know the values except for l32 and l42

l32 =
A32 − l31 × u12

u22

(A.50)

l42 =
A42 − l41 × u12

u22

(A.51)

For U matrix:

A33 = l31 × u13 + l32 × u23 + u33 (A.52)

A34 = l31 × u14 + l32 × u24 + u34 (A.53)

where we know the values except for u33 and u34

u33 = A33 − l31 × u13 − l32 × u23 (A.54)

u34 = A34 − l31 × u14 − l32 × u24 (A.55)

For L matrix

A43 = l41 × u13 + l42 × u23 + l43 × u33 (A.56)

where we know the values except for l43

l43 =
A43 − l41 × u13 − l42 × u23

u33

(A.57)

Lastly,

A44 = l41 × u14 + l42 × u24 + l43 × u34 + u44 (A.58)

u44 = A44 − l41 × u14 − l42 × u24 − l43 × u34 (A.59)

As a result, if we look at the equations for L and U matrix entries, we can

come up with two general equations which define the non-zero entries of the two

matrices:

229

lij =
Aij −

∑j−1
t=1 lit × utj

ujj

(A.60)

uij = aij −
i−1∑
t=1

lit × utj (A.61)

These general equations uniquely determine L and U matrices if they are applied

in the correct order.

A.1.3 Cholesky Decomposition

Cholesky decomposition is another elementary operation, which decom-

poses a symmetric positive definite matrix into a unique lower triangular matrix

with positive diagonal entries [13]. Cholesky decomposition of a matrix A is shown

as A = G × GT , where G is a unique lower triangular matrix, Cholesky triangle,

and GT is the transpose of this lower triangular matrix (as shown below for 4 × 4

matrices).

G =

⎡
⎢⎢⎢⎢⎢⎣

G11 0 0 0

G21 G22 0 0

G31 G32 G33 0

G41 G42 G43 G44

⎤
⎥⎥⎥⎥⎥⎦ ; GT =

⎡
⎢⎢⎢⎢⎢⎣

G11 G21 G31 G41

0 G22 G32 G42

0 0 G33 G43

0 0 0 G44

⎤
⎥⎥⎥⎥⎥⎦

The given matrix should be symmetric. If A ∈ R
n×n is symmetric then it

has a LU decomposition which results in a unit lower tirangular matrix, L, and a

diagonal matrix D = diag(D11, ..., Dnn) such that A = LDLT which can be seen

as:

A =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44

⎤
⎥⎥⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎢⎣

D11 0 0 0

0 D22 0 0

0 0 D33 0

0 0 0 D44

⎤
⎥⎥⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎢⎣

L11 L21 L31 L41

0 L22 L32 L42

0 0 L33 L43

0 0 0 L44

⎤
⎥⎥⎥⎥⎥⎦

230

The given matrix also should be positive definite. A matrix A ∈ R
n×n is

positive definite if xT Ax > 0 for x ∈ R
n and x 	= 0 and if it is symmetric positive

definite matrix then AT = A. A positive definite matrix is always nonsingular and

its determinant is always positive. Since a unit lower triangular matrix, L, and a

diagonal matrix, D = diag(D11, d22, ..., Dnn), exist such that A = LDLT ; and Ds

are all positive, there exists a real lower triangular matrix with positive diagonal

entries such that G = Ldiag
√

D11, ...,
√

Dnn and satisfies A = G × GT . Consider

A = LDLT which can be seen as follows for a 2 × 2 matrix:

A =

[
A11 A12

A21 A22

]
=

[
L11 0

L21 L22

]
×

[
D11 0

0 D22

]
×

[
L11 L21

0 L22

]
=

[
L11D11 0

L21D11 L22D22

]
×

[
L11 L21

0 L22

]
=

[
L2

11D11 L11L21D11

L21L11D11 L2
21D11 + L2

22D22

]

We can see A = G × GT as follows for a 2 × 2 matrix:

A =

[
L11

√
D11 0

L21

√
D11 L22

√
D22

]
×

[
L11

√
D11 L21

√
D11

0 L22

√
D22

]
=

[
L2

11D11 L11L21D11

L21L11D11 L2
21D11 + L2

22D22

]

where

G =

[
L11 0

L21 L22

]
×

[√
D11 0

0
√

D22

]

As can be seen both approaches result in the same matrix A. As an example,

assume a matrix A is given as follows:

A =

[
2 −2

−2 5

]

The Cholesky triangle is equal to the following matrix as shown previously:

G =

[
L11

√
D11 0

L21

√
D11 L22

√
D22

]

231

where the values for D11, L21 and D22 are not known (the lower triangular matrix

diagonal elements are all 1s, L11 and L22 respectively, since it is a unit triangle) so

we can rewrite it as:

G =

[√
D11 0

L21

√
D11

√
D22

]

If we go back to equation A = LDLT which can be rewritten as the following with

the values on the diagonal of lower triangular matrix are all 1’s:

A =

[
A11 A12

A21 A22

]
=

[
1 0

L21 1

]
×

[
D11 0

0 D22

]
×

[
1 L21

0 1

]

where D11, L21 and D22 can be computed. If we multiply these matrices, we find

that:

A =

[
A11 A12

A21 A22

]
=

[
D11 D11L21

D11L21 L2
21D11 + D22

]

which shows that

D11 = A11 (A.62)

and

L21 =
A12

D11

(A.63)

and

D22 = A22 − L2
21D11 (A.64)

And if we place these equations, D11, L21 and D22, into the Cholesky triangle:

G =

[√
A11 0

A12

D11

√
A11

√
A22 − L2

21D11

]

For the given example, the resulting the Cholesky triangle becomes:

G =

[√
2 0

−2
2

√
2

√
5 − (−1)22

]
=

[√
2 0

−√
2

√
3

]

232

The following equations uniquely determine matrix G for a 2 × 2 matrix if they

are applied in the correct order:

G11 =
√

A11 (A.65)

G21 =
A12

D11

√
A11 (A.66)

G22 =
√

A22 − L2
21D11 (A.67)

Bibliography

[1] Y. Meng, A.P. Brown, R. A. Iltis, T. Sherwood, H. Lee, R. Kastner, ”MP core:
algorithm and design techniques for efficient channel estimation in wireless
applications,” Proceedings of the Design Automation Conference, pp. 297-302,
2005.

[2] R. A. Iltis, S. Mirzaei, R. Kastner, R. E. Cagley,B. T. Weals, ”Carrier Offset and
Channel Estimation for Cooperative MIMO Sensor Networks,” Proceedings of
the Global Telecommunications Conference, pp. 1-5, 2006.

[3] R. E. Cagley, B. T. Weals, S. A. McNally, R. A. Iltis, S. Mirzaei, R. Kast-
ner, ”Implementation of the Alamouti OSTBC to a Distributed Set of Single-
Antenna Wireless Nodes,” Proceedings of the Wireless Communications and
Networking Conference, pp. 577-581, 2007.

[4] L. Zhou, L. Qiu, J. Zhu, ”A novel adaptive equalization algorithm for MIMO
communication system”, Proceedings of the Vehicular Technology Conference,
pp. 2408-2412, 2005.

[5] T. Abe, S. Tomisato,T. Matsumoto, ”A MIMO turbo equalizer for frequency-
selective channels with unknown interference”, IEEE Transactions on Vehicular
Technology, Volume 52, Issue 3, pp. 476-482, 2003.

[6] T. Abe and T. Matsumoto, ”Space-time turbo equalization in frequency selec-
tive MIMO channels,” IEEE Transactions on Vehicular Technology, pp. 469-
475, 2003.

[7] K. Kusume, M. Joham, W. Utschick, G. Bauch, ”Efficient Tomlinson-
Harashima precoding for spatial multiplexing on flat MIMO channel,” Pro-
ceedings of the International Conference on Communications, pp. 2021-2025,
2005.

[8] C. Hangjun, D. Xinmin, A. Haimovich, ”Layered turbo space-time coded
MIMO-OFDM systems for time varying channels,” Proceedings of the Global

233

234

Telecommunications Conference, pp. 1831-1836, 2003.

[9] S. Haykin, ”Adaptive Filter Theory,” Prentice Hall, Fourth Edition.

[10] J. Ma, K.K. Parhi, E.F. Deprettere, ”Annihilation-reordering lookahead
pipelined CORDIC-based RLS adaptive filters and their application to adaptive
beamforming,” IEEE Transactions on Signal Processing, 2000.

[11] ”IEEE 802.11 LAN/MAN Wireless LANS,” IEEE Standards Association,
http://standards.ieee.org/getieee802/802.11.html.

[12] ”IEEE 802.16 LAN/MAN Broadband Wireless LANS,” IEEE Standards As-
sociation, http://standards.ieee.org/getieee802/802.16.html.

[13] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed. Baltimore, MD:
John Hopkins University Press.

[14] A. Björck, C. Paige, ”Loss and recapture of orthogonality in the modified
Gram-Schmidt algorithm,” SIAM J. Matrix Anal. Appl., vol. 13 (1), pp 176-
190, 1992.

[15] A. Björck, ”Numerics of Gram-Schmidt orthogonalization,” Linear Algebra
and Its Applications, vol. 198, pp. 297-316, 1994.

[16] C. K. Singh, S.H. Prasad, P.T. Balsara, ”VLSI Architecture for Matrix Inver-
sion using Modified Gram-Schmidt based QR Decomposition”, Proceedings of
the International Conference on VLSI Design, pp. 836-841, 2007.

[17] J. Eilert, D. Wu, D. Liu, ”Efficient Complex Matrix Inversion for MIMO Soft-
ware Defined Radio”, Proceedings of the International Symposium on Circuits
and Systems, pp. 2610-2613, 2007.

[18] F. Edman, V. Öwall, ”A Scalable Pipelined Complex Valued Matrix Inversion
Architecture”, Proceedings of the International Symposium on Circuits and
Systems, pp. 4489-4492, 2005.

[19] M. Karkooti, J.R. Cavallaro, C. Dick, ”FPGA Implementation of Matrix In-
version Using QRD-RLS Algorithm”, Proceedings of the Asilomar Conference
on Signals, Systems and Computers, pp. 1625-1629, 2005.

[20] C. Dick, F. Harris, M. Pajic, D. Vuletic, ”Real-Time QRD-Based Beamform-
ing on an FPGA Platform”, Fortieth Asilomar Conference on Signals, Systems
and Computers, 2006. ACSSC ’06.

235

[21] H. M. Markowitz, ”Portfolio Selection: Efficient Diversification of Invest-
ments”, 2nd Edition, 1991.

[22] S. Maya-Rueda and M. Arias-Estrada, ”FPGA Processor for Real-Time Opti-
cal Flow Computation,” Lecture Notes in Computer Science. v2778. 1016-1103.

[23] M. F. Jacome, G. de Veciana, V. Lapinskii, ”Exploring Performance Tradeoffs
for Clustered VLIW ASIPS,” Proceedings of the International Conference on
Computer-Aided Design, 2000.

[24] S. Rixner, W. Dally, B. Khailany, P.Mattson, U. Kapasi, and J. Owens,
”Register Organization for Media Processing,” Proceedings of the International
Symposium on High-Performance Computer Architecture, May 1999.

[25] R. El-Atfy, M.A. Dessouky, H. El-Ghitani, ”Accelerating Matrix Multiplica-
tion on FPGAs,” Proceedings of the International Design and Test Workshop,
2007, Pages 203-204, 2007.

[26] O. Mencer, M. Morf, M. Flynn, ”PAM-Blox: High Performance FPGA Design
for Adaptive Computing,” Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, Pages 167-174, 1998.

[27] A. Amira, A. Bouridane, P. Milligan, ”Accelerating Matrix Product on Re-
configurable Hardware for Signal Processing,” Proceedings of the International
Conference on Field-Programmable Logic and Applications, Pages 101-111,
2001.

[28] V.K. Prasanna and Y. Tsai, ”On Synthesizing Optimal Family of Linear Sys-
tolic Arrays for Matrix Multiplication,” IEEE Transactions on Computers, Vol.
40, no. 6, 1991.

[29] J. Jang, S. Choi, V.K.K. Prasanna, ”Area and Time Efficient Implementations
of Matrix Multiplication on FPGAs,” Proceedings of the IEEE International
Conference on Field-Programmable Technology, Pages 93-100, 2002.

[30] A. Meucci, ”Risk and Asset Allocation,” Springer Finance Press, 2005.

[31] F. Fabozzi, ”Handbook of Portfolio Management,” Frank J. Fabozzi Asso-
ciates, New Hope, Pennsylvania, 1998.

[32] M. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, ” Applications of second
order cone programming,” Linear Algebra and its Applications, Special Issue
on Linear Algebra in Control, Signals and Image Processing 284, pp. 193-228,

236

1998.

[33] A. Ben-Tal and A. Nemirovski, ”Optimal Design of Engineering Structures,”
Optima pp. 4-9.

[34] S. Boyd and L. Vandenberghe, ”Convex Optimization”, Cambridge University
Press, 2004.

[35] Y. Nesterov, and A. Nemitovski, ”Interor-Point Polynomial Algorithms in
Convex Programming”, Society for Industrial and Applied Mathemetics, 1995.

[36] http://www.barra.com

[37] http://www.sungard.com/AllocationMaster/

[38] http://www.ibbotson.com

[39] http://www.northinfo.com

[40] http://invest-tech.com/allocator.html

[41] http://www.wilshire.com

[42] http://wilsonintl.com

[43] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.-U. Lee,
R.C.C. Cheung, W. Luk, ”Reconfigurable acceleration for Monte Carlo based
financial simulation,” Proceedings of the International Conference on Field-
Programmable Technology, pp. 215-222, 2005.

[44] G.W. Morris, M. Aubury, ”Design Space Exploration of the European Option
Benchmark using Hyperstreams,” Proceedings of the International Conference
on Field Programmable Logic and Applications, pp.5-10, 2007.

[45] D.B. Thomas, J.A. Bower, W. Luk, ”Automatic Generation and Optimisa-
tion of Reconfigurable Financial Monte-Carlo Simulations,” Proceedings of the
International Conference on Application-specific Systems, Architectures and
Processors, pp.168-173, 2007.

[46] D.B. Thomas, W. Luk, ”Sampling from the Multivariate Gaussian Distribu-
tion using Reconfigurable Hardware,” Proceedings of the Symposium on Field-
Programmable Custom Computing Machines, pp.3-12, 2007.

237

[47] D.B. Thomas, W. Luk, ”Credit Risk Modelling using Hardware Accelerated
Monte-Carlo Simulation,” Proceedings of Field-Programmable Custom Com-
puting Machines, 2008.

[48] N. A. Woods, and T. VanCourt, ”FPGA Acceleration of Quasi-Monte Carlo
in Finance,” accepted for publication in Proceedings of Field Programmable
Logic and Applications, 2008.

[49] A. Kaganov, A. Lakhany and P. Chow, ”FPGA Acceleration of Monte-Carlo
Based Credit Derivative Pricing,” accepted for publication in Proceedings of
Field Programmable Logic and Applications, 2008.

[50] M. LiCalzi and A. Sorato, ”The Pearson system of utility functions,” Game
Theory and Information 0311002, EconWPA 2003.

[51] W. Nicholson, ”Microeconomic Theory: Basic Principles and Extensions,”
South Western Educational Publishing, 2004.

[52] A. Irturk, B. Benson, S. Mirzaei, and R. Kastner, ”GUSTO: An Automatic
Generation and Optimization Tool for Matrix Inversion Architectures,” Trans-
actions on Embedded Computing Systems.

[53] A. Irturk, B. Benson, and R. Kastner, ”Automatic Generation of Decompo-
sition based Matrix Inversion Architectures,” Proceedings of the International
Conference on Field-Programmable Technology, 2008.

[54] A. Irturk, B. Benson, S. Mirzaei and R. Kastner, ”An FPGA Design Space
Exploration Tool for Matrix Inversion Architectures,” Proceedings of the Sym-
posium on Application Specific Processors, 2008.

[55] A. Irturk, B. Benson, N. Laptev and R. Kastner, ”Architectural Optimization
of Decomposition Algorithms for Wireless Communication Systems,” Proceed-
ings of the International Conference on Wireless Communications and Net-
working, 2009.

[56] Tensilica: Xtensa LX http : //www.tensilica.com/products/xtensa LX.htm,
2005.

[57] Automated Configurable Processor Design Flow, White Paper, Tensilica, Inc.
http : //www.tensilica.com/pdf/Tools white paper final − 1.pdf , January
2005.

[58] Diamond Standard Processor Core Family Architecture, White Paper, Ten-

238

silica, Inc. http : //www.tensilica.com/pdf/Diamond WP.pdf , October 2006.

[59] D. Goodwin and D. Petkov, ”Automatic Generation of Application Specific
Processors,” Proceedings of the International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems, 2003.

[60] Stretch. Inc.: S5000 Software-Configurable Processors,
http : //www.stretchinc.com/products/devices.php.

[61] Forte Design System Cynthesizer,
http : //www.forteds.com/products/cynthesizer.asp, 2008

[62] NEC CyberWorkBench,
http : //www.necst.co.jp/product/cwb/english/index.html, 2008.

[63] Mentor Graphics Technical Publications: Designing High Performance DSP
Hardware using Catapult C Synthesis and the Altera Accelerated Libraries,
http : //www.mentor.com/techpapers/fulfillment/upload/mentorpaper
36558.pdf , 2008.

[64] Mentor Graphics Technical Publications: Alcatel Conquers the Next Frontier
of Design Space Exploration using Catapult C Synthesis,
http : //www.mentor.com/techpapers/fulfillment/upload/mentorpaper
22739.pdf , 2008.

[65] Mentor Graphics Technical Publications,
http : //www.mentor.com/training and services/tech pubs.cfm, 2008.

[66] K. Wakabayashi, ”C-based synthesis experiences with a behavior synthesizer,
Cyber,” Proceedings of the conference on Design, Automation and Test in
Europe, page 83, 1999.

[67] B. Landwehr, P. Marwedel, and R. Dömer, ”OSCAR: Optimum Simultane-
ous Scheduling, Allocation and Resource Binding Based on Integer Program-
ming,” Proceedings of the European Design Automation Conference, pages
9095, Grenoble, France, 1994.

[68] P. Paulin and J. Knight, ”Force-directed scheduling for the behavioral syn-
thesis of ASICs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, June 1989.

[69] S. Devadas and R. Newton, ”Algorithms for hardware allocation in data path
synthesis,” IEEE Transactions on Computer-Aided Design, July 1989.

239

[70] P. Gutberlet, J. Müller, H. Krämer, and W. Rosenstiel, ”Automatic module
allocation in high level synthesis,” Proceedings of the Conference on European
Design Automation (EURO-DAC 92), pages 328333, 1992.

[71] C. Tseng and D. Seiwiorek, ”Automated synthesis of data paths in digital
systems,” IEEE Transactions on Computer-Aided Design, 1986.

[72] F.-S. Tsai and Y.-C. Hsu, ”STAR: An automatic data path allocator,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2(9):10531064, September 1992.

[73] F. Brewer and D. Gajski. Chippe, ”A system for constraint driven behavioral
synthesis,” IEEE Transactions on Computer-Aided Design, July 1990.

[74] P. Marwedel, ”The MIMOLA system: Detailed description of the system
software,” Proceedings of Design Automation Conference, June 1993.

[75] S. Che, J. Li, J.W. Sheaffer, K. Skadron, J. Lach, ”Accelerating Compute-
Intensive Applications with GPUs and FPGAs,” In Proceedings of Symposium
on Application Specific Processors, Pages 101-107, 2008.

[76] S.D. Haynes, J. Stone, P.Y.K. Cheung, W. Luk, ”Video Image Processing
with the SONIC Architecture” Computer Magazine, Pages 50-57, 2000.

[77] N. P. Sedcole, P.Y.K. Cheung, G.A. Constantinides, W. Luk, ”A Reconfig-
urable Platform for Real-Time Embedded Video Image Processing,” In Pro-
ceedings of Field-Programmable Logic and Applications, LNCS 2778, Pages
606-615, 2003.

[78] F. Bensaali and A. Amira, ”Design & Efficient FPGA Implementation of
an RGB to YCbCr Colour Space Converter Using Distributed Arithmetic,” In
Proceedings of Field-Programmable Logic and Applications, LNCS 3203, Pages
991-995, 2004.

[79] H. Styles and W. Luk, ”Customising Graphics Applications: Techniques and
Programming Interface,” In Proceedings of Symposium on Field-Programmable
Custom Computing Machines, Pages 77-87, 2000.

[80] R. Fernando and M. Kilgard, ”Cg: The Cg Tutorial”, Addison Wesley, 2003.

[81] P. Colantoni, N. Boukala, J. D. Rugna, ”Fast and Accurate Color Image Pro-
cessing Using 3D Graphics Cards”, Proc. of Vison, Modeling and Visualization,
Pages 1-9, 2003.

240

[82] R. Strzodka and C. Garbe, ”Real-Time Motion Estimation and Visualization
on Graphics Cards”, Proceedings of Visualisation, Pages 545-552, 2004.

[83] C. Bruyns and B. Feldman, ”Image Processing on the GPU: a Canonical
Example”, Project at Berkeley, 2003.

[84] Xilinx Product Specification ”Virtex-4 Family Overview” (2007).
http : //www.xilinx.com/support/documentation/data sheets/ds112.pdf

[85] Ali Irturk, ”Implementation of QR Decomposition Algorithms using FPGAs,”
M.S. Thesis, Department of Electrical and Computer Engineering, University
of California, Santa Barbara, June 2007.

[86] FPGA Design Flow Overview,
http : //www.xilinx.com/itp/xilinx8/help/iseguide/html/ise fpga design
flow overview.htm

[87] D. Thomas, L. Howes, W. Luk, ”A Comparison of CPUs, GPUs, FPGAs, and
Massively Parallel Processor Arrays for Random Number Generation,” Pro-
ceedings of the International Symposium on Field Programmable Gate Arrays,
Pages 63-72, 2009.

[88] Ambric, Inc. Am2000 Family Architecture Reference, May 2008.

[89] Eclipse Foundation, http : //www.eclipse.org

[90] M. Butts, A.M. Jones, P. Wasson, ”A Structural Object Programming Model,
Architecture, Chip and Tools for Reconfigurable Computing,” Proceedings of
the International Symposium on Field-Configurable Custom Computing Ma-
chines, Pages 55-64, 2007.

[91] M. Butts, ”Synchronization through Communication in a Massively Parallel
Processor Array,” Proceedings of the International Symposium on Microarchi-
tecture, Pages 32-40, 2007.

[92] A.M.Jones, M. Butts, ”TeraOPS Hardware: A New Massively-Parallel MIMD
Computing Fabric IC,” Proceedings of the Symposium on High Performance
Chips, 2006.

[93] Ambric, Inc. Ambric Technology Backgrounder,
http : //www.ambric.com/technology/technology − overview.php

[94] Ambric, Inc. Am2000 Family Instruction Set Reference, January 2008.

241

[95] J.D.Owens, D. Luebke, N. Govindaraju, M. Harris, J.Krüger, A.E.Lefohn,
T.J.Purcell, ”A Survey of General-Purpose Computation on Graphics Hard-
ware,” Proceedings of Eurographics 2005, State of the Art Reports, Pages
21-51, 2005.

[96] J.D.Owens, D. Luebke, N. Govindaraju, M. Harris, J.Krüger, A.E.Lefohn,
T.J.Purcell, ”A Survey of General-Purpose Computation on Graphics Hard-
ware,” Proceedings of the Computer Graphics Forum, Pages 80-113, 2007.

[97] Khronos Group. Open GL - The Industry’s Foundation for High Performance
Graphics. http : //www.opengl.org, 2007.

[98] Microsoft Corporation, Microsoft DirectX.
http : //www.microsoft.com/directx, 2007.

[99] PeakStream, The PeakStream Platform: High Productivity Software Devel-
opment for Multi-core Processors.
http : //peakstreaminc.com/reference/peakstream platform technote.pdf ,
2006.

[100] M.D.McCool and B.D’Amora, ”Programming using RapidMind on the Cell
BE,” Proceedings of the ACM/IEEE Conference on Supercomputing, Page 222,
2006.

[101] NVIDIA Corporation, CUDA Programming Guide Version 0.8.1.
http : //developer.download.nvidia.com/compute/cuda/0 81/NV IDIA
CUDA Programming Guide 0.8.1.pdf , 2007.

[102] A. R. Brodtkorb, ”A MATLAB Interface to the GPU”, Master’s thesis, De-
partment of Informatics, Faculty of Mathematics and Natural Sciences, Uni-
versity of Oslo, 2007.

[103] Advanced Micro Devices Inc. Radeon X1900 Graphics Technology - GPU
Specification.
http : //ati.de/companyinfo/researcher/documents/ATI CTM Guide.pdf ,
2006.

[104] NVIDIA Corporation, Geforce 8800.
http : //www.nvidia.com/page/geforce 8800.html, 2007.

[105] NVIDIA Corporation, Tesla S1070 Specifications.
http : //www.nvidia.com/object/product tesla s1070 us.html, 2009.

242

[106] D. Göddeke, R. Strzodka, S. Turek, ”Accelerating Double Precision FEM
Simulation with GPUs,” Peoceedings of the Symposium on Simulation Tech-
nique, Pages 139-144, 2005.

[107] D. Göddeke, R. Strzodka, S. Turek, ”Performance and Accuracy of
Hardware-Oriented, Native-Emulated and Mixed-Precision Solvers in FEM
Simulations,” Proceedings of International Journal of Parallel, Emergent and
Distributed Systems, 2007.

[108] C. Jiang and M. Snir, ”Automatic Tuning Matrix Maltiplication Performance
on Graphics Hardware,” Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques, Pages 185 - 196, 2005.

[109] B. Kovar, J. Kloub, J. Schier, A. Hermanek, P. Zemcik, A. Herout, ”Rapid
Prototyping Platform for Reconfigurable Image Processing,” Proceedings of
Mezinarodni Conference Technical Computing Program, 2008.

[110] Z. Pavel, F. Otto, R. Miroslav, V. Pavel, ”Imaging Algorithm Speedup Using
Co-Design,” In Summaries Volume Process Control, Strbske Pleso, Pages 96-
97, 2001.

[111] T. Halfhill, ”Parallel Processing with CUDA,” The Insider’s Guide to Mi-
croprocesssor Hardware, 2008.

[112] J. Hull, Options, Futures and Other Derivatives, 6th ed. Prentice Hall, 2005.

[113] Q. Jin, D. B. Thomas, W. Luk, ”Exploring Reconfigurable Architectures for
Explicit Finite Difference Option Pricing Models,” In Proceedings of Interna-
tional Conference on Field Programmable Technology.

[114] J. Cong and Y. Zou, ”FPGA-Based Hardware Acceleration of Lithographic
Aerial Image Simulation”, to appear at ACM Transactions on Reconfigurable
Technology and Systems.

[115] O. Mencer and R. G. Clapp, ”Accelerating 2d FFTs and Convolutions for
Seismic Processing,” Brief Notes by Maxeler Technologies, 2007.

[116] V. Podlozhnyuk, FFT based 2D Convolution, NVIDIA white paper, 2007.

[117] Xtremedata, http : //www.xtremedatainc.com, XD1000 Development Sys-
tem, 2007.

[118] D. Haessig, J. Hwang, S. Gallagher, M. Uhm, ”Case-Study of a Xilinx System

243

Generator Design Flow for Rapid Development of SDR Waveforms,” Proceed-
ings of the SDR 05 Technical Conference and Product Exposition, 2005.

[119] Mathworks Inc., Simulink Documentation,
http : //www.mathworks.com/access/helpdesk/help/toolbox/simulink
/index.html?/access/helpdesk/help/toolbox/simulink/

[120] Xilinx Inc., System Generator User Guide,
http : //www.xilinx.com/support/documentation/sw manuals/
sysgen bklist.pdf

[121] Xilinx Inc., Put Hardware in the Loop with Xilinx System Generator for
DSP, http : //www.xilinx.com/publications/xcellonline/xcell 47/xc pdf/
xc sysgen47.pdf , Xcell Journal Archives, 2003.

[122] Xilinx Inc., AccelDSP Synthesis Tool, User Guide,
http : //www.xilinx.com/support/sw manuals/acceldsp user.pdf , 2008.

[123] K. Lindberg and K. Nissbrandt, ”An evaluation of methods for FPGA im-
plementation from a Matlab description,” Master’s Degree Project, Stockholm,
Sweden 2008.

[124] Xilinx Inc., MATLAB for Synthesis, Style Guide,
http : //www.xilinx.com/support/sw manuals/acceldsp style.pdf , 2008.

[125] Xilinx Inc., AccelWare Reference Designs, User Guide,
http : //www.xilinx.com/support/sw manuals/accelware user.pdf , 2008.

[126] Mathworks Inc., Simulink HDL Coder, User’s Guide,
http : //www.mathworks.com/access/helpdesk/help/pdf doc/slhdlcoder/
slhdlcoder ug.pdf

[127] Mathworks Inc., Stateflow and Stateflow Coder 7,
http : //www.mathworks.com/access/helpdesk/help/pdf doc/stateflow/
sf ug.pdf

[128] R. Pasko, P. Schaumont, V. Derudder, V. Vernalde, and D. Durackova, ”A
new algorithm for elimination of common subexpressions,” IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, 1999.

[129] H. Safiri, M. Ahmadi, G.A. Jullien, and W.C. Miller, ”A New Algorithm
for the Elimination of Common Subexpressions in Hardware Implementation
of Digital Filters by Using Genetic Programming,” Proceedings of the IEEE

244

International Conference on Application-Specific Systems, Architectures and
Processors (ASAP), 2000.

[130] A. Hosangadi, F. Fallah, and R. Kastner, ”Common subexpression elimina-
tion involving multiple variables linear DSP synthesis,” Proceedings of the 15th
IEEE International Conference on Application-Specific Systems, Architectures
and Processors, Pages 202-12, 2004.

[131] A. Hosangadi, F. Farzan, and R. Kastner, ”Optimizing high speed arithmetic
circuits using three-term extraction,” Proceedings of the Design, Automation
and Test in Europe, Pages 6, 2006.

[132] A. Azivienis, ”Signed-Digit Number Representations for fast Parallel Arith-
metic”, IRE Trans. Elect. Comp., EC- 10, Pages 389-400, Sept. 1961.

[133] Mathworks Inc., Filter Design HDL Coder, User’s Guide,
http : //www.mathworks.com/access/helpdesk/help/pdf doc/hdlfilter/
hdlfilter.pdf

[134] Graphviz, Graph Visualization Software, http : //www.graphviz.org/

[135] Spiral, Software/Hardware Generation for DSP Algorithms,
Finite/Infinite Impulse Response Filter Generator, http :
//www.spiral.net/hardware/filter.html.

[136] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, and A. George,
”Survey of C-based Application Mapping Tools for Reconfigurable Comput-
ing,” Proceedings of 8th International Conference on Military and Aerospace
Programmable Logic Devices (MAPLD), Washington, DC, September 7-9,
2005.

[137] Mitrionics AB, Inc., http : //www.mitrionics.com/.

[138] Mitrionics AB, Inc., Mitrion Users’ Guide,
http : //forum.mitrionics.com/uploads/Mitrion/ Users/ Guide.pdf .

[139] Celoxica, Inc., http : //www.celoxica.com/.

[140] Celoxica, Inc., Handel-C Language Reference Manual,
http : //www28.cs.kobe − u.ac.jp/ kawapy/class/proj/proj07/HandelC.pdf .

[141] Nallatech, Inc., http : //www.nallatech.com/?node id = 1.1.

245

[142] SRC Computers, LLC., http : //www.srccomp.com/index.asp.

[143] SRC Computers, LLC., MAP Processors,
http : //www.srccomp.com/techpubs/map.asp.

[144] SRC Computers, LLC., Carte Programming Environment, http :
//www.srccomp.com/techpubs/carte.asp.

[145] Open SystemC Initiative (OSCI), http : //www.systemc.org/home.

[146] Open SystemC Initiative (OSCI), Defining and Advancing SystemC Stan-
dards, http : //www.systemc.org/downloads/standards/

[147] Cameron Project, Computer Science Department at Colorado State Univer-
sity,
http : //www.cs.colostate.edu/cameron/index.html.

[148] C.A.R. Hoare, Communicating Sequential Processes, Communications of the
ACM, 21(8):666-677, August 1978.

[149] M. Gokhale, J. Stone, J. Arnold, M. Kalinowski,”Stream-oriented FPGA
computing in the Streams-C high level language,” In Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines, Pages 49-
56, 2000.

[150] Impulse Accelerated Technologies, Inc., http :
//www.impulseaccelerated.com/.

[151] Impulse Accelerated Technologies, Inc., http :
//www.impulseaccelerated.com/supportappnotes.htm.

[152] Mentor Graphics Corp., http : //www.mentor.com/.

[153] Mentor Graphics Corp., Electronic System Level Design,
http : //www.mentor.com/products/esl/high level synthesis/catapult syn−
thesis/

[154] T. Bollaert, ”Catapult Synthesis: A Practical Introduction to Interactive C
Synthesis,” SpringerLink Book Chapter, Pages 29-52, ISBN 978-1-4020-8587-1.

[155] M.B. Gokhale, J.M. Stone, ”NAPA C: compiling for a hybrid RISC/FPGA
architecture,” In Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, Pages: 126 - 135, 1998.

246

[156] K. Lindberg and K. Nissbrandt, ”An evaluation of methods for FPGA im-
plementation from a Matlab description,” Master’s Degree Project, Stockholm,
Sweden 2008.

[157] Xilinx Inc., Product Discontinuation Notice, AccelDSP Synthesis Tool, http :
//www.xilinx.com/support/documentation/customer notices/xcn09018.pdf

[158] Ali Irturk, Bridget Benson, Shahnam Mirzaei and Ryan Kastner, ”GUSTO:
An Automatic Generation and Optimization Tool for Matrix Inversion Archi-
tectures,” ACM Transactions on Embedded Computing Systems.

[159] M. F. Jacome, G. de Veciana, V. Lapinskii, ”Exploring Performance Trade-
offs for Clustered VLIW ASIPS,” IEEE/ACM International Conference on
Computer-Aided Design, 2000.

[160] F. Edman, V. Öwall, ”A Scalable Pipelined Complex Valued Matrix Inver-
sion Architecture,” IEEE International Symposium on Circuits and Systems.
(2005) 4489 - 4492.

[161] Karkooti, J.R. Cavallaro, C. Dick, ”FPGA Implementation of Matrix In-
version Using QRD-RLS Algorithm,” Thirty-Ninth Asilomar Conference on
Signals, Systems and Computers (2005) 1625 - 162.

[162] C. Dick, F. Harris, M. Pajic, D. Vuletic, ”Real-Time QRD-Based Beamform-
ing on an FPGA Platform,” Fortieth Asilomar Conference on Signals, Systems
and Computers, 2006.

[163] R. Uribe, T. Cesear, ”Implementing Matrix Inversions in Fixed-Point Hard-
ware” http : //www.dspdesignline.com/howto/193104965, 2006.

[164] O. Hebert, I. Kraljic, Y. Savaria, ”A Method to Derive Application-
Specific Embedded Processing Cores,” Eighth International Workshop on Hard-
ware/Software Codesign (CODES), 2000.

[165] M. Pflanz, H. Viehaus, ”Generating Reliable Embedded Processors,” IEEE
Micro, 1998.

[166] B. Gorjiara, D. Gajski, ”Automatic Architecture Refinement Techniques for
Customizing Processing Elements,” 45th ACM/IEEE Design Automation Con-
ference (DAC), 2008.

[167] Forte Design System Cynthesizer, http :
//www.forteds.com/products/cynthesizer.asp, 2008

247

[168] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D.C. Cronquist,
M. Sivaraman, ”PICO: Automatically Designing Custom Computers,” Com-
puter, 2002.

[169] J. Trajkovic, D. Gajski, ”Custom Processor Core Construction from C
Code,” Symposium on Application Specific Processors (SASP), 2008.

[170] H. Zhong, K. Fan, S. Mahlke, M. Schlansker, ”A Distributed Control Path
Architecture for VLIW Processors,” 14th Intl. Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2005.

[171] J. Fisher, ”Very long instruction word architectures and the ELI-52”, 10th
Annual International Symposium on Computer Architecture (ISCA), 1983.

[172] M. Chu, K. Fan, and S. Mahlke, ”Region-based Hierarchical Operation Par-
titioning for Multicluster Processors,” ACM SIGPLAN 2003 Conference on
Programming Languages Design and Implementation (PLDI), 2003.

[173] K. Fan, N. Clark, M. Chu, K.V. Manjunath, R. Ravindran, M. Smelyanskiy,
and S. Mahlke, ”Systematic Register Bypass Customization for Application-
Specific Processors,” IEEE 14th Intl. Conference on Application-Specific Sys-
tems, Architectures and Processors (ASAP), 2003.

[174] M. L. Chu, K. C. Fan, R. A. Ravindran and S. A. Mahlke, ”Cost-Sensitive
Operation Partitioning for Synthesizing Custom Multicluster Datapath Archi-
tectures,” 2nd Workshop on Application Specific Processors (WASP), 2003.

[175] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, and K. V. Nieuwen-
hove, ”OptimoDE: Programmable Accelerator Engines Through Retargetable
Customization,” Hot Chips 16, 2004.

[176] M. Kudlur, K. Fan, M.Chu, and S. Mahlke, ”Automatic Synthesis of Cus-
tomized Local Memories for Multicluster Application Accelerators,” 15th Intl.
Conference on Application-Specific Systems, Architectures and Processors
(ASAP), 2004.

[177] M. Kudlur, K. Fan, and S. Mahlke, ”Streamroller: Automatic Synthesis of
Prescribed Throughput Accelerator Pipelines,” Proc. 2006 Intl. Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2006.

[178] M. Chu, R.Ravindran, and S. Mahlke, ”Data Access Partitioning for Fine-
grain Parallelism on Multicore Architectures,” Proc. 40th Intl. Symposium on
Microarchitecture (MICRO), 2007.

248

[179] A. Arfaee, A. Irturk, N. Laptev, R. Kastner, F. Fallah, ”Xquasher: A Tool
for Efficient Computation of Multiple Linear Expressions,” Proc. of the Design
Automation Conference (DAC 2009), July 2009.

[180] A. Irturk, B. Benson, N. Laptev and R. Kastner, ”FPGA Acceleration of
Mean Variance Framework for Optimum Asset Allocation.” Proc. of the Work-
shop on High Performance Computational Finance at SC08 International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
November 2008.

