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Abstract

p-permutation equivalences between blocks of finite groups
by

Philipp Perepelitsky

Let G and H be finite groups. Let A be a block of FFG and let B be a block of FH.
A p-permutation equivalence between A and B is an element v in the group of (A, B)-p-
permutation bimodules with twisted diagonal vertices such that v -z v° = [A] and 4° -¢
v = [B]. A p-permutation equivalence lies between a splendid Rickard equivalence and an
isotypy.

We introduce the notion of a ~-Brauer pair, which generalizes the notion of a
Brauer pair for a p-block of a finite group. The v-Brauer pairs satisfy an appropriate Sylow
theorem. Furthermore, each maximal y-Brauer pair identifies the defect groups, fusion
systems and Kiilshammer-Puig classes of A and B. Additionally, the Brauer construction
applied to v induces a p-permutation equivalence at the local level, and a splendid Morita

equivalence between the Brauer correspondents of A and B.

v
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Chapter 1

Introduction

Let G and H be finite groups. A subgroup U of G x H is twisted diagonal if
there are isomorphic subgroups @ of G and R of H and an isomorphism ¢ : R — @ such
that U = {(¢(r),r) : r € R}.

Let A be a block of FG and let B be a block of FH. We denote by T>(A, B)
the Grothendieck group with respect to the direct sum relation of trivial source (A, B)-
bimodules whose indecomposable direct summands have twisted diagonal vertices. Intro-
duced in [3] was the notion of a p-permutation equivalence between A and B, which
is an element v € T (A, B) such that vy ®p 7° = [A] in T?(A, A) and v° ®4 v = [B] in
TA(B, B). It was also shown in [3] that the existence of a splendid Rickard equivalence
(introduced in [12]) between A and B implies the existence of a p-permutation equivalence
between A and B. In this paper, we show that the existence of a p-permutation equivalence
between A and B implies the existence of an isotypy (introduced in [5]) between A and
B (see Theorem 14.5). Moreover, we show that a p-permutation equivalence between A
and B determines an identification between many of the important invariants of A and B,
including their defect groups, fusion systems, and Kiilshammer-Puig classes.

We introduce the notion of a Brauer pair for a virtual trivial source module (see
Definition 10.4), which generalizes the notion of a Brauer pair for a p-block of a finite group
introduced in [1]. We show that applying the Brauer construction to a p-permutation equiv-
alence v between A and B at a y-Brauer pair yields a p-permutation equivalence between
corresponding Brauer correspondents of A and B (see Theorem 12.2). An analogous result
for basic Rickard equivalences was proved in [11], generalizing an earlier result for splendid

Rickard equivalences that was obtained in [12] under certain additional assumptions. We



determine the maximal Brauer pairs of a p-permutation equivalence v between A and B,
and show that they form a G x H-conjugacy class (see Theorem 11.9). This generalizes
the “Sylow theorem” for Brauer pairs of a p-block of a finite group proved in [1]. We show
that a maximal ~-Brauer pair determines an isomorphism between the fusion systems of A
and B respectively (see Theorem 12.1). This generalizes the analogous result for splendid
Rickard equivalences proved in [10], where the result was in fact proved for basic Rickard
equivalences. We also show that the y-Brauer pairs identify the Kiilshammer-Puig classes
of A and B respectively (see Theorem 12.5).

We show that every Brauer pair of an indecomposable (A, B)-bimodule with
nonzero coefficient in v is a 4-Brauer, but that there is a unique indecomposable (A, B)-
bimodule M with nonzero coefficient in v such that every y-Brauer pair is an M-Brauer
pair (see Theorem 12.9). Thus every Brauer pair of every other indecomposable (A, B)-
bimodule with nonzero coefficient in « is an M-Brauer pair, so we call M the maximal
module of v (see Definition 12.8). The coefficient of M in 7 is 1 or —1. In Theorem 12.11,
we show that the “Brauer correspondent” of M induces a splendid Morita equivalence be-
tween the Brauer correspondent of A and the Brauer correspondent of B, thus proving that
the Brauer corresponents are Puig equivalent (see Theorem 12.12) by a result given in [14]
and independently in [10] (see also [8] Theorem 4.1). In Theorem 13.2, we show that there

are only finitely many p-permutation equivalences between A and B.



Chapter 2

Group theoretic preliminaries

Throughout this section, let G and H be finite groups.

Definition 2.1. For g € G, let ¢4 : G — G denote the automorphism of conjugation by
g. For h € G and Q C G, we denote cg(h) = ghg™t by %h and cy(Q) by %K. We denote
by Aut(QG) the automorphism group of G, and we denote by 1g the identity element of
Aut(G). If H is a normal subgroup of G, we denote by Autg(H) the subgroup of Aut(H)
consisting of all automorphisms of the form cq4 for g € G. If H and K are subgroups of
G, we write H <g K if H is G-conjugate to a subgroup of K, and we write H =g K if
H is G-conjugate to K. Similarly, for elements g,k € G, we write g =g k if g and k are
G-conjugate.

Definition 2.2. For a prime p, we denote by G,y the p'-elements of G, which are the

elements of G whose order is not divisible by p.

Definition 2.3. Let I' be a set on which G acts. We denote by I'/ ~qg a complete set
of representatives for the orbits of G on I'. If H < G, we denote by I'" the subset of T’
consisting of the H-fixed points of I.

Definition 2.4. We denote by p1 : G x H — G the projection homomorphism of G x H
onto G and by py : G x H — H the projection homomorphism of G x H onto H. For a
subgroup U of G x H, we denote by ki(U) the normal subgroup {g € G : (g9,1) € U} of
p1(U) and by ko(U) the normal subgroup {h € H : (1,h) € U} of p2(U).

Definition 2.5. We say that a subgroup U of G x H is twisted diagonal if there are
isomorphic subgroups @ of G and R of H and an isomorphism ¢ : R — Q such that U =



{(¢(r),r) : 7 € R}. In this case, we denote the twisted diagonal subgroup U by A(Q, ¢, R).
Note that a subgroup U of G x H is twisted diagonal if and only if k1(U) = ko(U) = 1. For
Q < G, we denote the subgroup A(Q,1g,Q) of G x G by A(Q).

Definition 2.6. Let K be a finite group and let U and V be subgroups of G x H and
H x K respectively. We denote by U° the subgroup of H x G consisting of all elements
(h,g) € HxG such that (g,h) € U. We denote by UxV the subgroup of G x K consisting of
all elements (g, k) € G x K such that there is an h € H such that (g,h) € U and (h,k) € V.

Definition 2.7. Let Q and R be isomorphic subgroup of G and H respectively, and let
¢ : R — Q be an isomorphism. Let Cq(Q) < I < Ng(Q) and let Cy(R) < J < Ng(R).
We denote by N, s 1) the subgroup of J consisting of all elements h € J such that there

exists g € I such that cg 0 p = @ o ¢y as isomorphisms from R to Q.

Lemma 2.8. Let Q be a subgroup of G and let R be a subgroup of H such that there is an
isomorphism ¢ : R — Q.

(1) For (g,h) € G x H, (g’h)A(Q,go,R) = A(QQ,cggoc,:l, "R).

(2) We have that Nexa(A(Q)) = A(NG(Q)(Ca(Q) % 1).

Proof. This is straightforward. O

Lemma 2.9. Let Q be a subgroup of G and let R be a subgroup of H such that there is an
isomorphism ¢ : R — Q. Let Cq(Q) < I < Ng(Q) and let Cy(R) < J < Ny (R).

(1) We have that p1(Nixs(A(Q, p, R))) = N(y-1.1.7) and pa(Nix (A(Q, », R))) = Ny 1)
(2) k1(Nixs(A(Q, ¢, R)))) = Ca(Q) and k2((N1xs(A(Q, ¢, R)))) = Cu(R).

Proof. This follows immediately from lemma 2.8.1. O
Lemma 2.10. For a subgroup X of G x H, X % X° = A(p1(X))(k1(X) x 1).

Proof. Tt is easy to see that A(pi(X))(k1(X) x 1) < X % X°, so it remains to prove that
X * X° < A(p1(X))(k1(X) x 1). Let (g,7) € X x X° There exists h € H such that
(g,h),(r,h) € X, s0 (r~tg,1) € X and hence g € rk;(X). Therefore, (g,7) € (r,7)(k1(X) x
1) C A(p1(X))(k1(X) x 1). This shows that X « X° < A(p1(X))(k1(X) x 1), so the lemma
holds. O

Lemma 2.11. For a subgroup X of G x H and for any p1(X) < I < Ng(k1(X)),
(A(D)(k1(X) x 1))« X = X.



Proof. Tt is easy to see that X < (A(I)(ki(X) x 1)) * X, so it suffices to show that
(A(I)(k1(X) x 1))« X < X. Let (g,5) € (A(I)(k1(X) x 1)) * X, and let r € G such
that (g,) € A()(k1(X) x 1) and (r,5) € X. As (g,7) eA( )(k1(X) X 1),9 € rky(X), 50
(g9,8) € (r,s)(k1(X) x 1) C X. This shows that (A(J)(k1(X) x 1)) * X < X, so the lemma
holds. O

Lemma 2.12. For a subgroup X of G x H, X * X°x X = X.

Proof. By lemma 2.10, X * X° = A(p1(X))(k1(X) x 1), so the result follows from lemma
2.11. O



Chapter 3

Block theoretic preliminaries

The following notation will be used throughout the paper:
Let F be a field. For an F-algebra A, we denote by pi(A) the set of primitive idempotents
of A and we denote by A* the unit group of A. For a set X, we denote by FFX the F-
vector space with basis X. For a finite group G, we denote by F'G the group algebra of
G with coefficients in the field F. For a = Zagg € FG and g = Z bph € FH, let

9€G heH
a":ZaggfleFG, and let a ® = Z agbn(g,h) € F|G x HJ. For Q C FG and
9eG (9,R)EGXH

ACFH let Q°={a°:acQ},and let Q@A ={a®[:acQ,F € A}. We denote by
bli(FG) the set of block idempotents of F'G, and by BI(FG) the set of blocks of FG.

Throughout this section, let F' be a field of characteristic p > 0 and let G be a
finite group.

Definition 3.1. Let H be a normal subgroup of G and let e be a block idempotent of F'H.
The inertial group of FHe in G is the point stabilizer I of the block idempotent e in G
under the conjugation action of G on FH. The inertial quotient of FHe in G is the
factor group I/H.

Definition 3.2. Let P be a p-subgroup of G, and consider the conjugation action of P

on FG. We define the map Brp : (FG)Y — FCg(P) by Zagg — Z aqg. By [6]
9eG 9€Cq(P)
(Proposition 2.2), Brp is a surjective F'-algebra homomorphism. The homomorphism Brp

is called the Brauer homomorphism of FG with respect to P.

Definition 3.3. A Brauer pair of FG is a pair (P, e), where is P is a p-subgroup of G and
e is a block idempotent of FCq(P). We denote by Ng((P,e)) the inertial group of FCq(P)e



in Nq(P). Let (P,e) and (Q, f) be Brauer pairs of FG. Then (Q, f) < (P,e) if Q < P and
for every primitive idempotent i € (FG)F such that Brp(i)e # 0, Brg(i)f = Brg(i). Also,
(Q,f) < (Pe) if (Q,f) < (Pye) and Q < P. Let B = FGep be a block of FG. We say
that a Brauer pair (P,e) of FG is a B-Brauer pair if (1,eg) < (P,e), or equivalently,

Brp(ep)e =e.

Lemma 3.4. (1) For a Brauer pair (P,e) of FG and QQ < P, there is a unique block
idempotent f of FCq(Q) such that (Q, f) < (P,e).

(2) Let B be a block of FG. The maximal B-Brauer pairs are precisely the B-Brauer pairs
(P,e), where P is a defect group of B. Furthermore, all the mazximal B-Brauer pairs are

G-conjugate.
Proof. See [1](Theorem 3.4 and Theorem 3.10) O

Definition 3.5. Let (P,e) be a Brauer pair of FG such that Z(P) is the defect group of
FCg(P)e. Let I be the inertial group of FPCg(P)e in Ng(P) and let I = I/PCq(P) be
the inertial quotient of FPCqg(P)e in Ng(P). By [9] (Theorems 5.8.10 and 5.8.11), P is
the defect group of FPCq(P)e and hence by [9] (Lemma 5.8.12), FPCqg(P)e has a unique
simple module V. It follows that I is the inertial group of V in Ng(P), and hence by [9]
(Theorem 3.5.7), there is a unique 2-cohomology class [0] € H2(I, F*) such that V admits
an FypI-module structure which extends its F PCq(P)-module structure. The 2-cohomology

class [0] is called the Kiilshammer-Puig class associated with (P, e).

Definition 3.6. Let B be a block of FG and let (P,e) be a mazimal B-Brauer pair. For
Q < P, we denote by eq the unique block idempotent of FCq(Q) such that (Q,eq) < (P,e),
which exists by Lemma 3.4.1. We define a category F as follows: The objects of F are the
subgroups of P, and for Q,R < P,Homgz(Q, R) is the set of all group homomorphisms of
the form cg : Q@ — R, where g € G such that Q,eq) < (R,er). By Theorem 3.9 in [6], F
is a (saturated) fusion system. The category F is called the fusion system associated with

(Pe).

Definition 3.7. An interior G-algebra is an F-algebra A endowed with a group homo-
morphism v : G — A*. For g € G and a € A, we denote the element ¥ (g)a of A by ga and
the element a(g) of A by ag. If A and B are interior G-algebras, an interior G-algebra
homomorphism (respectively isomorphism) is an F-algebra homomorphism (respectively

isomorphism) o : A — B such that 0(ga) = go(a) and o(ag) = o(a)g fora € A and g € G.



Definition 3.8. Let B be a block of FG. A source idempotent of B is a primitive
idempotent i of BY such that Brp(i)e = Brp(i) # 0 for some maximal B-Brauer pair (P, e).
We say that the source idempotent i is associated with (P,e). A source algebra of B is
an interior P-algebra of the form iBi endowed with the group homomorphism P — (iBi)*
defined by u +— wi for u € P, where (P,e) is a mazimal B-Brauer pair and i € pi(BY) is a

source idempotent of B associated with (P, e).

Lemma 3.9. For a block B of FG and a source idempotent v of B,B = BiB and B is

Morita equivalent to iBi.

Proof. This holds by Proposition 38.2(a) and Theorem 9.9 in [16]. O



Chapter 4

Module theoretic preliminaries

Throughout this paper, all modules are finitely generated.

Throughout this section, O is a complete discrete valuation ring with maximal
ideal (7) and residue field ' = O/(m) of characteristic p > 0, and G is a finite group. For
a € O, let a* denote the image of o under the canonical O-algebra homomorphism from O

onto F.

For OG-modules M and N, we write M |N if M is isomorphic to a direct summand
of N.

Lemma 4.1. Let H be a subgroup of G, and let e be an idempotent in (OH)Y. For an
OH-module N, Ind$(eN) = eInd%(N).

Proof. This follows from the equality OG ®pg eN = e(OG @py N). O

Definition 4.2. (1) For an OG-module M, the dual module of M, denoted by M?, is
the OG-module consisting of the O-vector space Homo(M, Q) endowed with the G-action
defined by go(m) = o(g~tm) for g € G,m € M, and o € Homo (M, O).

(2) If H is a finite group, X < G x H, and M is an OX-module, we view M° as an OX°-
module by transporting the O X -module structure of M° onto an O X°-module structure via

the isomorphism X° — X defined by (h, g) — (g,h) for (h,g) € X°.

Definition 4.3. For an FG-module M, the head of M, denote by hd(M), is the largest

semisimple quotient of M.



Definition 4.4. The trivial module of OG, denoted by Og, is the OG-module consisting
of the O-module O endowed with the trivial G-action.

Definition 4.5. Let H be a subgroup of G and let M be an OH-module. For g € G, we
denote by IM the O(9H )-module obtained by transporting the OH-module structure of M

along the isomorphism cg_1 :9H — H.

Definition 4.6. Let M be an OG-module and let H be a subgroup of G. We define the
O-linear map trg cMT — MC by m — Z gm for m € M. The map trfl is called the

geG/H
trace map. Note that Z t'rg(MQ) + 7M™ is an ONg(H)-submodule of M™ . We denote
Q<H
by M(H) the FNg(H)-module M" /(Y tr§(M®) +xM*™). The FNg(H)-module M(H)
Q<H

is called the Brauer construction of M with respect to H.

Remark 4.7. Let H be a finite group. For an (OG,OH)-bimodule M, we may view M as
an O[G x H]-module via (g,h)m = gmh~! form € M,g € G and h € H. Conversely, for
an O[G x H]-module M, we may view M as an (OG, OH)-bimodule via gmh = (g,h~1)m
form e M,g € G and h € H. In this way, we identify (OG, OH )-bimodules with O[G x H]-

modules.

Definition 4.8. An OG-module M is called a trivial source module if M is isomorphic

to a direct summand of a permutation module.

Lemma 4.9. For an OG-module M, the following are equivalent:
(1) M is a trivial source module
(2) The trivial module is the source of every indecomposable direct summand of M

(8) For every p-subgroup P of G, Res%(M) is a permutation module.
Proof. See [4] ((0.4)). O

Lemma 4.10. (1) If M and N are trivial source OG-modules, then M & N and M @ N
are trivial source OG-modules.

(2) If M is a trivial source OG-module, then so is M°.

(3) If M is a trivial source OG-module, then M /7w M s a trivial source FG-module.

(4) If H is a subgroup of G and M ‘s a trivial source OG-module, then Resg (M) is a trivial

source OH -module.

10



(5) If H is a subgroup of G and M is a trivial source OH-module, then IM is a trivial

source O(9H)-module and Ind$ (M) is a trivial source OG-module.

Proof. This follows easily from lemma 4.9. O

Lemma 4.11. Let M be a trivial source OG-module, let P be a p-subgroup of M, and let
X be a P-invariant O-basis of M, which exists by lemma 4.9. Define the O-linear map

Brx : M — FXT by Z QT Z asx. The FNg(P)-module M(P) is isomorphic to
zeX zeXP
the F Ng(P)-module consisting of the F-vector space FXT endowed with the Ng(P)-action

defined by g - x = Brx(gx) for x € X¥ and g € Ng(P).
Proof. See [16] (Proposition 27.6(a)). O

Lemma 4.12. Let M be a trivial source OG-module and let P be a p-subgroup of G.
(1) We have that M (P) = (M/wM)(P) as FNg(P)-modules.
(2) We have that M°(P) = (M(P))° as FNg(P)-modules.

Proof. Note that (1) follows immediately from lemma 4.11. For (2), see the proof to lemma
(2.4) in [4]. O

Lemma 4.13. For an indecomposable trivial source OG-module M and a normal p-subgroup

Q of G,Q s contained in a vertex of M if and only if Q) acts trivially on M.

Proof. If @ acts trivially on M, then @ is contained in the vertex of M by [9] (Theorem
4.7.8). Conversely, suppose that @ is contained in a vertex P of M. As M is an indecom-
posable trivial source OG-module with vertex P, M|I nd]GD(Op), so the result follows from
the Mackey formula. O

Lemma 4.14. Let M be a trivial source FG-module and let P be a p-subgroup of G. By
the Krull-Schmidt theorem, there exist unique FNg(P)-modules L and N such that P acts
trivially on L, P does not act trivially on any indecomposable direct summand of N, and

Res%G(P)(M) ~ L@ N. We have that M(P) = L as FNg(P)-modules.

Proof. As P acts trivially on L, L(P) = L by lemma 4.11. As P does not act trivially
on any indecomposable direct summand of N, no indecomposable direct summand of N
has vertex containing P by lemma 4.13, and hence N(P) = 0 by [4] ((1.3)). Thus as

M(P) = (Res](\;,a( py(M))(P) = L(P) & N(P), the lemma holds. O

11



Lemma 4.15. (1) Let M be an indecomposable trivial source OG-module with vertex P, and
let Q be a subgroup of P. The FNg(Q)-module M(Q) is a trivial source module and every
vertez of every indecomposable direct summand of M (Q) is contained in a G-conjugate of
P.

(2) Let H be a finite group and let M be an indecomposable trivial source (OG,OH)-
bimodule with twisted diagonal vertex. For any subgroup U of G x H contained in a vertex of
M, M(U) is a trivial source F NGy g (U)-module and every indecomposable direct summand

of M(U) has twisted diagonal vertex.

Proof. 1t suffices to prove (1), as then (2) follows. As M is an indecomposable trivial source
OG-module with vertex P, M|Ind%(Op), so by the Mackey formula,

Res%G(Q) (M/7M)| @ Ind%f(%)(FNtP(Q)). Now as M (Q) = (M /7 M)(Q) by lemma

teNG(Q\G/P "
4.12, M(Q) is a direct summand of Reng(Q)(M/WM) by lemma 4.14, so the lemma fol-

lows. O

Lemma 4.16. For an indecomposable trivial source FG-module M with vertex P, M (P) is

the Green correspondent of M.
Proof. This is an immediate consequence of lemma 4.13 and lemma 4.14. 0

Lemma 4.17. Let Q be a p-subgroup of G and let R be a p-subgroup of Ng(Q). For a
trivial source OG-module M, (M(Q))(R) = M(QR) as F(Ng(Q) N Ng(R))-modules.

Proof. This follows from lemma 4.11. O

Lemma 4.18. Let M be a trivial source FG-module, let Q be a p-subgroup of G, and let i
be an idempotent in (FG)?. If iM = M, then Brg(i)M(Q) = M(Q).

Proof. This is well-known and it is straightforward. O

Lemma 4.19. Let H be a finite group and let A(Q, ¢, R) be a twisted diagonal p-subgroup
of G x H such that Q<G and RIH. If A(D, ¢, E) is a twisted diagonal p-subgroup of G x
H containing A(Q, ¢, R) and M is an indecomposable trivial source ONgxu(A(Q, ¢, R))-
module with twisted diagonal vertex containing A(Q, ¢, R), then

(Ind3sE A0y M)A, ¢, E)) = M(A(D, ¢, E)) as FNaxu(A(D, ¢, E))-modules.

12



Proof. By applying the Mackey formula to the restriction of
IndﬁéfH(A(Q%R))(M) to Naxu(A(D, ¢, E)), it suffices to show that if (¢,h) € G x H

N X (A(D7907E)) h
such that (Ind > GPNYA(D, o, E 0, then (g,h) €
( NGXH(A(D’SDaE))m(g’h)NGXH(A(Q7§0)R))( ))( ( SD )) # (g )
Nexu(A(Q, ¢, R)).

As IndNGxH(A(D,<P,E)) @GPAVYA D, o, E 0. it follows that
( NGXH(A(D:%E))”(g’h)NGxH(A(QM,R))( NAD, ¢, B)) 7

A(D, ¢, E) is contained in a vertex of (@M1, and hence A(Q, p, R) is contained in a vertex
of @MM. Thus as @MM has twisted diagonal vertex containing (g’h)A(Q, ¢, R), it follows
that (g,h) € Naxu(A(Q, ¢, R)), so the lemma holds. O

Lemma 4.20. For a trivial source FG-module M, there is a unique trivial source OG-

module N such that N/TtN = M as FG-modules.
Proof. This holds by [9] (Theorem 4.8.9(iii)). O

Definition 4.21. Let M be a trivial source FG-module. We denote by M© the unique
trivial source OG-module such that M/t M© = M as FG-modules. If O has characteristic
zero and K is the field of fractions of O, we denote the KG-module K @0 M© by M*X.

Lemma 4.22. Let M and N be trivial source FG-modules.
(1) We have that dimp(Hompg(M, N)) = dimo(Homog(M©, N©)).
(2) The FG-module M is indecomposable if and only if the OG-module M© is indecompos-

able, and in this case, M and M© have the same vertes.
Proof. This holds by [9] (Theorem 4.8.9 and Theorem 1.11.12) O

For the following lemma, we assume that O has characteristic zero and contains a

primitive |G| root of unity.

Lemma 4.23. Let B = FGep be a block of FG with defect group P such that P < Z(G).
For any subgroup @ of P, there is a unique indecomposable trivial source B-module with

vertez Q.

Proof. Let G = G/Q. By the Green correspondence, it suffices to show that there is a
unique projective indecomposable B-module. By [9] (Theorem 5.8.10 and Theorem 5.8.11),
B is a block of FG with defect group P, so as P < Z(G), we may assume that @ = 1. Thus
the lemma holds as B has a unique projective indecomposable module by [16] (Proposition

39.2(b)). O
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Chapter 5

Blocks with normal defect groups

Throughout this section, let F' be an algebraically closed field of characteristic
p > 0, and let G be a finite group. Let B = F'Gep be a block of FFG with maximal
B-Brauer (P, e) such that P <G, and let I be the inertial group of FCq(P)e in Ng(P).

Lemma 5.1. Let i be a primitive idempotent of FCg(P)e. Then i is a source idempotent

of B and Fle and iFGi = iBi = iFIi.

Proof. By Proposition 2.3 in [6], ker(Brp) is a nilpotent ideal of BY, so as i = Brp(i) is a
primitive idempotent of Brp(BY) = FCg(P)Brp(ep),i is a primitive idempotent of BF,
and hence i is a source idempotent of B. Thus as (P, e) is a maximal F'Ie-Brauer pair and
P <1,iis a source idempotent of Fle. As i € B,iFGi = iBi. To show that iFGi = iFI1,
note that for g € G — I,igi = i%g = 0 as i and % lie in the distinct blocks FCg(P)e and
FCg(P)% of FCq(P) respectively. O

Lemma 5.2. Let Cq(P) < S <1 and let i be a primitive idempotent of FCq(P)e.

(1) Any block of the S-algebra F'Se has defect group S N P.

(2) The (FSe,iFSti)-bimodule FSi induces a Morita equivalence between the F-algebras
FSe and iFSi.

(3) If P < S, then F'Se is a block of F'S with defect group P and i is a source idempotent
of FSe.

Proof. (1) Let A be a block of FSe and let D be a defect group of A. Then as SN P <

S,SNP < D.Nowas e € FCq(P) C FS and S < I, it follows that FIe = (5 F[StS]e
teS\I/S
as (F'S, F'S)-bimodules, and hence F'Se is an (F'S, F'S)-bimodule direct summand of FTe.
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Thus as A is a block of F'Se, A is an (F'S, F'S)-bimodule direct summand of F'Ie. Therefore,
as A(D) is a vertex of the indecomposable (F'S, F'S)-bimodule A and A(P) is a vertex of
the indecomposable (FI, FI)-bimodule Fle, A(D) <rx1 A(P), so D < SN P and hence
D = SN P. Thus (1) holds.

(2) As (Z(P),e) is a maximal FCg(P)e-Brauer pair by (1), 7 is a source idempotent of
FCg(P)e by lemma 5.1. Therefore, e € (FCq(P)e)i(FCq(P)e) C (FSe)i(FSe) by lemma
3.9, so F'Se = (F'Se)i(FSe) and hence (2) holds.

(3) As P < S, any block idempotent of F'S must lie in FCg(P). Thus as FCq(P)e is a
block of FCq(P), FSe is a block of F'S. By (1), P is the defect group of F'Se, so (3) holds
by lemma 5.1. 0
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Chapter 6

Brauer pairs for trivial source

modules

Throughout this section, O is a complete discrete valuation ring with maximal

ideal () and residue field F' = O/(r) of characteristic p > 0, and G is a finite group.

Definition 6.1. For a trivial source OG-module M, an M -Brauer pair is a Brauer pair

(P,e) of FG such that eM (P) # 0.

Remark 6.2. Let B be a block of FG. The B-Brauer pairs are precisely the Brauer pairs
of the form (P,e) such that (A(P),e ® €°) is a B-Brauer pair of the indecomposable trivial
source F|G x G]-module B.

Lemma 6.3. Let M be a trivial source OG-module. The set of M -Brauer pairs is closed

under inclusion and G-conjugation.

Proof. If (P, e) is an M-Brauer pair and g € G, then %M (9P) = YeM(P)) as FNg((9P, %))
modules, so as eM(P) # 0, %eM(9P) # 0 and hence (9P, %) is an M-Brauer pair. This

shows that the set of M-Brauer pairs is closed under G-conjugation, so it remains to show

that it is closed under inclusion.

It suffices to show that if (P,e) be an M-Brauer pair and (Q, f) is a Brauer pair
of F'G such that (@, f) <(P,e), then (Q, f) is an M-Brauer pair. Assume the contrary. Let
I be the inertial group of FCq(Q)f in Ng(Q). As P is a subgroup of I by [16] (Theorem
40.4(b)), we may apply the Brauer construction at P to the F'I-module fM(Q). As (Q, f) is
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not an M-Brauer pair, fM(Q) = 0, and hence as (fM(Q))(P) = Brp(f)M(P) as FCq(P)-
modules by lemma 4.17 and lemma 4.18, Brp(f)M(P) = 0. Thus as eBrp(f) = e by [16]
(Theorem 40.4(b)), eM(P) = 0, which is a contradiction as (P,e) is an M-Brauer pair.
Thus the lemma holds. O

The next lemma is a generalization of lemma 3.4.2 to M-Brauer pairs for an

indecomposable trivial source F'G-module M.

Lemma 6.4. Let M be an indecomposable trivial source OG-module. The maximal M -
Brauer pairs are precisely the M -Brauer pairs (P, e), where P is a vertex of M. Furthermore,

all mazimal M -Brauer pairs are G-conjugate.

Proof. This is a consequence of Theorem 2.5 in [15], but we shall give an independent proof.

By lemma 4.12 and lemma 4.22.2, we may assume that O = F. First we show that
the M-Brauer pairs of the form (P, e), where P is a vertex of M, are all G-conjugate. As
the vertices of M are all G-conjugate, it suffices to show that if P is a vertex of M, then
the M-Brauer pairs of the form (P, e) are all Ng(P)-conjugate. By lemma 4.16, M (P) is
the Green correspondent of M, and hence is an indecomposable F'Ng(P)-module. Thus by
[9] (Lemma 5.5.4), for a block idempotent e of FCg(P), (P,e) is an M-Brauer pair if and
only if FCqg(P)e is covered by the block of FNg(P) to which M (P) belongs, so we obtain
the desired result by [9] (Lemma 5.5.3). Therefore, it suffices to show that if (Q, f) is an
M-Brauer pair, then (Q, f) is contained in an M-Brauer pair of the form (P,e), where P
is a vertex of M.

As (@, f) is an M-Brauer pair, M (Q) # 0, and hence @ is contained in a vertex of
M by [4] ((1.3)). Thus we may proceed by induction on the index of ) in a vertex of M that
contains @. Let I be the inertial group of FCq(Q)f in Ng(Q). As (Q, f) is an M-Brauer
pair, fM(Q) # 0, and hence there is an indecomposable direct summand N of M(Q)
such that fN ## 0. Assume that the FI-module fN has vertex Q. As fN\ReséVG(Q)(N)
and N = IndéVG(Q)(fN) by [9] (Lemma 5.5.4), it follows that N has vertex (). Thus as
N]M(Q)]Res%G(Q)(M) by lemma 4.14, M has vertex @) by the Burry-Carlsson-Puig the-
orem, and hence the result holds in this case. Thus we may assume that fN has vertex
R properly containing Q. As R is a vertex of fN,(fN)(R) # 0 by lemma 4.16, so as
FNIFM(Q), (FM(Q))(R) # 0. Thus as (FM(Q))(R) = Bry(f)M(R) as FCq(R)-modules
by lemma 4.17 and 4.18, Brr(f)M(R) # 0, and hence there is a block idempotent e of
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FCg(R) such that eBrg(f) = eand eM(R) # 0. As R < I and eBrr(f) =e,(Q, f)<J(R,e)
by [16] (Theorem 40.4(b)), and as eM (R) # 0, (R, e) is an M-Brauer pair, so as @ is properly

contained in R, the result follows from our inductive hypothesis. O

Lemma 6.5. Let M and N be indecomposable trivial source OG-modules with a common
mazximal Brauer pair (P, e), and let I be the inertial group of FCq(P)e in Ng(P). Then
M = N if and only if eM(P) = eN(P) as Fle-modules.

Proof. By lemma 4.12 and lemma 4.20, we may assume that O = F. By lemma 6.4, P
is a common vertex of M and N, so by lemma 4.16, M(P) and N(P) are the Green
correspondents of M and N respectively, and hence M (P) = N(P) as FNg(P)-modules
if and only if M = N. Let C = (FCg(P)e)N¢(P) be the block of FNg(P) that covers
FCg(P)e. The (FNg(P),FI)-bimodule FN¢(P)e induces a Morita equivalence between
C and Fle, so as M (P) and N(P) belong to C, M (P) = N(P) as F'Ng(P)-modules if and
only if eM(P) = eN(P) as FI-modules, so the lemma holds.

O

18



Chapter 7

A tensor product of modules

Throughout this section, let G, H and K be finite groups and let O be a commu-

tative ring.

Lemma 7.1. Let X andY be subgroups of G x H and H x K respectively, let M be an OX -
module and let N be an OY -module. The (Ok1(X), Oka(Y'))-bimodule M @0 (1, (x)rk, (v)) NV
may be endowed with an O(X *Y)-module structure which extends its O(k1(X) x k2(Y))-
module structure as follows: For (g,k) € X *Y,m € M, and n € N, let (g,k)(m ® n) =
(g,h)m @ (h,k)n, for any h € H such that (g,h) € X and (h,k) € Y.

Proof. This is a straightforward verification. O

Lemma 7.2. Let S < X < GxH, letY < HxK, let V be an OS-module and let W an OY -
module. If p2(X) < p1(Y), then Indg (V) R0y (x)nk v )W = IndE5E (V@0 (ks (8)0k1 (v)) W)
as O(X xY)-modules.

Proof. The map « : Ind (V) RO (ko (X)Nkr (V) W — IndXxY (v ®O(ks($)nky (v)) W) defined
by ((9,h) @ v) @ w — (g,k) ® (v & (h,k)"tw) for (¢9,h) € X,v € V and w € W, where
k € K such that (h,k) € Y is a well-defined O(X * Y)-module isomorphism with inverse
B Ind3y (Vo) (v) W) — Indg (V) @0 (ky(x)rky (v)) W defined by (g, k)@ (v@w)
((g,h)®@v)® (h, k)w for (g,k) € X«Y,v € V and w € W, where h € H such that (g,h) € X
and (h, k) € Y. O

Lemma 7.3. Let X < GxH,letT <Y < HXK, let V be an OX-module and W an OT -
module. If p1(Y) < pa(X), then V®(’)(k2(X)mk1(Y))Ind¥(W) = Ind§I}T/(V®O(k2(X)mk1(T))W)
as O(X *Y)-modules.
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Proof. The map a : V @0k, (x)nk: (V) Inds (W) — Ind$iX(V @O (ks (X)nkr (1)) W) de-
fined by v ® ((h,k) ® w) — (g,k) @ ((g,h) v @ w) for (h, k) € Y,v € V and w € W,
where g € G such that (¢g,h) € X is an O(X * Y)-module isomorphism with inverse
CE Ind§:}/(V®@(k2(x)mk1(T))W) — V®O(k2(x)mk1(y))lnd¥(W) defined by (g, k)@ (v@w) —
(g, P)v@((h,k)@w) for (9,k) € X*Y,v € V, and w € W, where h € H such that (g,h) € X
and (h, k) €Y. O

For the remainder of the section we assume that O is a complete discrete valuation

ring with maximal ideal (7) and residue field F' = O/(7) of characteristic p > 0.

Lemma 7.4. Let X be a subgroup of G X H and let'Y be a subgroup of H x K.

(1) If M is a trivial source OX -module and N is a trivial source OY -module, then

M @0k, (x)nki (v)) N is either the zero module or a trivial source O(X *Y)-module.

(2) If M is an indecomposable OX -module with twisted diagonal vertex and N is an in-
decomposable OY -module with twisted diagonal vertex, then every indecomposable direct

summand of the O(X xY)-module M QO (ke (X)nk1 (v)) IV has twisted diagonal vertex.

Proof. (1) Let X' = py ' (p1(Y))NX. As X'xY = XY and ko(X)Nk1(Y) = ko(X') Nk (Y),
it follows that Res<, (M) RO(ka (X)W1 (V) N = M @0y (x)nkr (v)) N as O(X * Y')-modules.
Thus as Resy, (M) is a trivial source module by lemma 4.10.4, we may assume that
p2(X) < pi1(Y). We may also assume that M = Ind¥(Og) for some subgroup S of
X. Thus by lemma 7.2, M ®o,(x)nk, (v)) NV = Ind3Y (Og RO(ka(S)nk (v)) V), s0 by
lemma 4.10.5, it suffices to show that Os @0k, (s)nk (v)) NV s a trivial source O(S * Y')-
module. Arguing as above, we may assume that p1(Y) < p2(S). We may also assume that
N = Ind¥.(Or) for some subgroup T of Y. Thus by lemma 7.3, Og QO (ks (S)Nk1 (V) N =
Ind3:Y(0s ®O(ka(S)nkr (1)) OT) = Ind3:¥(Og.r), so (1) holds.

(2) By the same argument as given in the proof of (1), we may assume that pa(X) <
p1(Y). As M has twisted diagonal vertex, we may assume that M = Inda (V) for some
twisted diagonal subgroup S of X and some FS-module V. Therefore, by lemma 7.2,
M ®oky(x)nky(v)) N = Indé(**}/(v QO (ka(S)Nk1(Y)) N), and hence it suffices to show that
every indecomposable direct summand of the O(S * Y)-module V' @0k, (s)rk; (v)) N has
twisted diagonal vertex. Arguing as in the proof of (1), we may assume that p1(Y) < pa(.5).
As N has twisted diagonal vertex, we may assume that N = Ind}.(W) for some twisted di-

agonal subgroup 7" of Y and some FT-module W. Thus by lemma 7.3, V®o 1, (s)nk, (v)) V =
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Ind3:X(V ®O(ks($)nk1 (1)) W)- Therefore, V- @0y (s)k (vy) N is (S * T')-projective, and as
S and T are twisted diagonal, S x T is twisted diagonal, so the lemma holds. O

Lemma 7.5. Let (Q,e) and (U,€) be Brauer pairs of FG and FK respectively such that
there is an isomorphism o : U — @, let Cq(Q) < S < Ng((Q,e)), and let Cx(U) < T <
Nk ((Uy€)). Let T' denote the set of ordered quadruples (R, f,¢,1), such that (R, f) is a
Brauer pair of FH and ¢ : R — Q and ¥ : U — R are isomorphisms such that ¢ o =
a. Note that Ny (A(Q, o, U)) x H acts by conjugation on T via (GEM(R [ o ) =
("R, "f, copcp—1,cptpeg-1) for (R, f,o,90) € I',(g,k) € Naxx(A(Q,a,U)), and h € H. Let
M be a trivial source (OG, OH)-bimodule such that every indecomposable direct summand
of M has twisted diagonal vertex, and let N be a trivial source (OH, OK)-bimodule such
that every indecomposable direct summand of N has twisted diagonal vertez.
(1) We have that e((M @0 N)(A(Q,a,U)))e =

P eMAWQ. 0, R)f @rcyr) FN(ARY,U))e
(R.f )€l /~u
as (FCq(Q)e, FCk(U)e)-bimodules.
(2) We have that e((M @op N)(A(Q,a,U)))e =

)

NSXT(A(Q7047U)
D Ind NS (@) e® fo)) s Niser (AR, foeey) (€M (A(Q, @, R)) f

(RS 0)EL /N g (A(Qon ) X H
Qrcyr) FN(AR, P, U))e) as FNsx7(A(Q, a,U))(e ® €%))-modules.

Proof. As M ®op N is a trivial source (OG, OK)-bimodule by lemma 7.4, we may assume
that O = F by lemma 4.12. By Theorem 3.3 of [2], the map

o D eMAQ ¢ R)fOroyr) fN(ARY,U))e — e(M@ruN)(A(Q, a,U)))e
(Raf7¢7w)eF/NH
defined by m®@n — m @ n for (R, f,p,¢) € '/ ~g,m € MAQeER) andn e NAEDU) g an

isomorphism of (FCg(Q)e, FCk (U )e)-bimodules, so (1) holds. Furthermore, by transport-
ing the FNgx7(A(Q, a,U))(e®¢e))-module structure of e((M @y N)(A(Q, a,U)))e along
the isomorphism o, we see that for (R, f,¢,v¢) € I'/ ~p, (s,t)(eM(A(Q, ¢, R))f @Fcy(r)
VAR, $,0))e) = M(ACQs o, R Sy IR, g1, U))'e for

(s,t) € Nox1(A(Q,a,U)), and that the F(Ngx g ((A(Q, ¢, R),e®f°))xNyx1((A(R, ¥, U), f®
€%)))-module structure of eM (A(Q, ¢, R))f @pcy(ry FN(A(R,,U))e is the one obtained
by applying the construction given in lemma 7.1. Thus (2) follows. O

Lemma 7.6. Let (Q,e) be a Brauer pair of FG and let Cq(Q) < S < Ng((Q,e)). Let

21



I’ denote the set of ordered triples (R, f,p) such that (R, f) is a Brauer pair of FH
and ¢ : R — @Q is an isomorphism. Note that S x H acts by conjugation on I' via
(g’h)(R, f.o) = ("R, M, cgpcp-1) for (g,h) € S x H and (R, f,¢) € T. Let M be a triv-
ial source (OG, OH)-bimodule such that every indecomposable direct summand of M has
twisted diagonal vertex, and let N be a trivial source (OH,OG)-bimodule such that every
indecomposable direct summand of N has twisted diagonal vertex.
(1) e((M on N)(A(Q)))e =

P eMAQ¢.R)f @rcur FINAR, ¢, Q)))e
(R.f )T /~H
as (FCq(Q)e, FCq(Q)e)-bimodules.
(2) (M ©on N)(AQ))e =

Nsxs(A(Q))
@ IndA?N(i_l’s’J))(CG(Q)X1)(G(M(A(Qa ¢, R))f ®rcy(r)
(R,f7@)€F/NS><H
IN(AR, 71 Q)))e) as FNsxs(A(Q))(e ® €°)-modules, where J is the inertial group of

FCr(R)f in Nu(R).

Proof. The hypothesis of the lemma is the special case of the hypothesis of lemma 7.5 with
G = K,(Q,e) = (Uye),S = T and « the identity automorphism of . Thus (1) follows
immediately from (1) of lemma 7.5, and hence it remains to show that (2) is a consequence
of (2) of lemma 7.5.

As Ca(Q) < S < Ng(Q), Noxs(A(Q)) = A(S)(Ca(Q) x 1) by lemma 2.8.2. Thus
as Cg(Q) x 1 acts trivially on T" and for s € S and (R, f,¢) € T, (S’S)(R, fio) = AR, [, ),
the Ngxs(A(Q))-orbits of I' are precisely the S-orbits of I'. Let (R, f,¢) € I', and let J be
the inertial of FCy(R)f in Ng(R). Then Ngx g ((A(Q, ¢, R),e® f°)) = Noxj(A(Q, ¢, R)),
50 N it (A(Q, ¢, ), e ® £2)) % Nips (AR, 971, Q), £ & ) = A(Npor 5.7) (Ca(Q) x 1)
by lemma 2.9 and lemma 2.10. Thus (2) follows from (2) of lemma 7.5. O
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Chapter 8

Adjointness of ® and Hom

Throughout this section, let F' be a field and let G and H be finite groups. Let
X < GxH,let U be an FX-module, let V be an F'X°-module, and let W be an F'(X *X°)-

module.

Lemma 8.1. (1) Hompy, (x)(U, W) is an FX°-module via

((h,9)o)(u) = (9,9)0((g,h)"u) for (h,g) € X°,0 € Hompy, x)(U,W), and u € U.

(2) Hompy,(x)(V,W) is an FX-module via ((g,h)o)(v) = (g,9)o((h,g)""v) for (9,h) €
X,0 € Hompy, (x)(V,W), and v € V.

Proof. This is a straightforward verification. O

By viewing Fki(X) as an F(X % X°)-module via left and right multiplication,
Hompy, (x)(U, Fk1(X)) acquires an F' X °-module structure and Hom gy, (x)(V, Fk1(X)) ac-

quires an F'X-module structure as in lemma 8.1.

Lemma 8.2. (1) U° = Hompy, (x)(U, Fk1(X)) as FX°-modules.
(2) V° = Hompy, (x)(V, Fki1(X)) as FX-modules.

Proof. (1) The map a : U° — Hompy, (x)(U, F'k1(X)) defined by a(o)(u) = Z o(g  u)g
g€k1(X)
for 0 € U° and u € U is an F' X°-module isomorphism with inverse

B+ Hompy, x)(U, Fk1(X)) — U° defined by the condition that 3(7)(u) is the 1-coefficient
of 7(u) for 7 € Hompy, (x)(U, Fk1(X)) and v € U.
(2) This is analogous to (1). O
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Lemma 8.3. (1) Homp(xx0)(U ®@ppyx) Vi W) = Hompxo(V, Hompy, (x)(U,W)) as F-
spaces.

(2) Homp(x.x0)(U @ppyxy V, W) = Hompx (U, Hompy, (x)(V,W)) as F-spaces.

Proof. (1) The map o : Homp(x.xo)(U @ppy(xy Vo W) — Hompxe(V, Hompy, (x)(U,W))
defined by (a(0)(v))(u) = o(u®v) for 0 € Homp(x.xo) (U @ppyx)V,W),v € V,and u € U
is an F- isomorphism with inverse 3 : Hompxo(V, Hompy, (x)(U,W)) —

Homp(xyx0)(U @pry(x) V, W) defined by B(7)(u ® v) = 7(v)(u) for

7€ Hompxo(V, Hompy, (x)(U,W)),u € U, and v € V.

(2) This is analogous to (1). O

Lemma 8.4. (1) If U is a projective Fki(X)-module, then

Hompy, (x)(U,W) = Hompy, (x)(U, Fk1(X)) @pr,(x) W as FX-modules.
(2) If V is a projective Fky(X)-module, then

Hompy, x)(V,W) 2 W @py, (x) Hompy, (x)(V, Fki1(X)) as FX-modules.

Proof. (1) By [13](the beginning of section 2.2.2), the map

a: Hompy, (x)(U, Fki1(X))®pk, x)W — Hompy, (x)(U, W) defined by a(r@w)(u) = 7(u)w
for 7 € Hompy, (x)(U, Fk1(X)),w € W, and u € U, is an (Fka(X), Fk1(X))-bimodule
isomorphism, so it only remains to show that « is an F X°-module homomorphism, which
is a straightforward verification.

(2) This is analogous to (1). O

Lemma 8.5. (1) If U is a projective Fki(X)-module, then
Homp(x«xo) (U @ppyx) Vi W) = Hompxo(V,U° @py, (x) W) as F-spaces.
(2) If V is a projective Fky(X)-module, then

Homp(x.xo) (U @ppyx) Vi W) = Hompx (U, W ®py, (x) V) as F-spaces.

Proof. This follows from lemma 8.2, lemma 8.3, and lemma 8.4. O

Lemma 8.6. Let Q and R be isomorphic subgroups of G and H respectively and let ¢ :
R — @ be an isomorphism. Let Cq(Q) < I < Ng(Q) and let Cyg(R) < J < Nu(R).
Let M and N be FNiyxj(A(Q, e, R))-modules such that N is projective as an FCg(Q)-
module, and let V. and W be FNrx(A(Q))-modules. Then Hompy,, . (a@)(V @Frcq(q)
T332 i@y (M @rcymy N, W) =

Hompn,, ;a@er)(V @rco@ MW ®rcg) N) as F-spaces.
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Proof. By lemma 2.9, k1 (Nrxj(A(Q, ¢, R))) = Ca(Q), and p1(Nrxs(A(Q, ¢, R))) =
N(g-1,1,7), 80 by lemma 2.10, N1« j(A(Q, p, R)) * (N1xs(A(Q, ¢, R)))° =
A(Np-1.1,17)(Ca(Q) x 1), so as ka(Nrxs(A(Q, ¢, R))) = Cu(R), we may view M @pcy, (r)
N as an FA(N(,-11,7))(Ca(Q) x 1)-module. Note that Nyx;(A(Q)) = (Nrxr(A(Q)))°,
so by lemma 2.8.2 and lemma 2.10, N7x7(A(Q)) * Nrx1(A(Q)) = Nixr(A(Q)). Thus as
k2(N1x1(A(Q))) = Ca(Q) by lemma 2.8.2, we may view

V ®pcs(Q) Indgbx\f(ﬁfi)‘)’))(CG(Q)xl)(M @rcy(r) N°) as an FN1x1(A(Q))-module by lemma
7.1. This shows that the F-vector space on the left hand side of the isomorphism in the
statement of the lemma makes sense.

By lemma 2.9.2, k1 (N7« (A(Q, ¢, R))) = Ca(Q), so as N1« 1(A(Q)) =
A(I)(Ce(Q) x 1) by lemma 2.8.2, it follows that N7x1(A(Q)) * Nrxj(A(Q, ¢, R)) =
Nixj(A(Q, ¢, R)) by lemma 2.11. Thus it follows from lemma 7.1, that V ®p¢, @) M and
W ®rc (@) N may be viewed as FNry7(A(Q, ¢, R))-modules, so the F-vector space on the
right hand side of the isomorphism in the statement of the lemma makes sense.

By lemma 2.8.2 and lemma 2.11, Nyx;(A(Q)) * A(N-11.0)(Ca(Q) x 1) =
A(N(p-1.1,)(Ca(Q) x 1), s0 as Nix1(A(Q)) * Nrx1(A(Q)) = Nix1(A(Q)) as noted in the

. Nrxr(A
first paragraph, it follows from lemma 7.3 that V®FCG(Q)IndA€NEi7£?i))(CG(Q) «1) (M®pcy, (r)

o ~ N X A o0 . . o
N°) = IndAéNii_gB))(CG(Q)xl)(V Rpce(@) M @pcyr) N°). Thus by Frobenius reciprocity,

Hompn,, (a@)(V Orcaq) 1 ndﬁiivﬁf?i)xc(;(@)xl)(M Drcy(r) N°), W) =

Hompaw,, 1, ,)(Ca@x)(V @rcg@ M @rcyr) N 07Resgézxvl(i%fi)‘)n)(cg(cg)m)(W))' As
noted in the second paragraph, V ®pc, (@) M may be viewed as an F'Nyxj(A(Q, ¢, R))-
module, and as N is projective as an FCg(Q)-module, N° is projective as a right F'Cq(Q)-
module. Thus as N« j(A(Q, ¢, R)) * (Nixs(A(Q, ¢, R)))° = A(N,-1,1,.1)(Ca(Q) x 1) as

was noted in the first paragraph, it follows from lemma 8.5.2 that

o Nrx1(A(Q)) ~
_17,,J))(CG(Q)X1)(V ®rce(@Q) M @rcyr) N ’RQSAENEW_LI’J))(Cg(Q)><1)(W)) =

Hompn,, ,(a@p.r)(V ©rcg@) M, Resgéjx\éiéf?i))(cc;(@)xl)(W) ®rog(@) V) as F-spaces.
But now as p1 (N1« (A(Q, ¢, R))) = N,-1,1,5) by lemma 2.9.1, A(N(,-11,5))(Ca(Q) X 1) *
Nixj(A(Q,p,R)) = Nixj(A(Q, ¢, R)) by lemma 2.11. Thus as

Nrixi(A(Q))*Nix s (A(Q, ¢, R)) = Nixj(A(Q, ¢, R)) as was noted in the second paragraph,

and k2(N1x1(A(Q))) = k2(A(Np-1,1,1))(Ca(Q) x 1)) = k1(N1x s (A(Q, 9, R))) = Ca(Q), it

HomFA(NW

Nrx1(AQ)) ~
follows that ReSAENI((P—I’I’J))(CG(Q)X1)(W)®FCG(Q)N = WRpcy@)N as FN1x(A(Q, ¢, R))-
modules. Thus the lemma holds. O
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Chapter 9

Perfect virtual characters and

iIsometries

Throughout this section, let p be a prime and let (K, O, F') be a p-modular system
with F' algebraically closed and K large enough.

Definition 9.1. For a finite group G, a normal subgroup N of G, and an idempotent e in

(FN)Y, we denote by & be the unique lift of e in (ON)C.

Definition 9.2. For a finite group G, we denote by R(KG) the Grothendieck group
of KG-modules with respect to the relation [[M]] = [[L]] + [[N]] whenever there is a short
exact sequence of 0 — L — M — N — 0 of KG-module homomorphisms, where [[M]]
denotes the image of the KG-module M in R(KG). We denote the K-vector space K ®y
R(KQG) by KR(KG). We identify K R(KG) with the group of K-valued K -linear functions
on KG which are invariant under the conjugation action of G on KG, and we identify
R(KQG) with the character group of G, which is the subgroup of KR(KGQG) generated
by the irreducible K-characters of KG. For a central idempotent e of KG, we denote by
R(KGe) the subgroup of R(KG) generated by the images in R(KQG) of the irreducible KGe-
modules, or equivalently, the subgroup generated by the irreducible K-characters of KGe.
We denote by K R(KGe) the K-subspace of KR(KG) generated by R(KGe). If in addition,
H is a finite group and f is a central idempotent of KH, we denote R(KGe @ KH f°) by
R(KGe,KHf) and we denote KR(KGe ® KH f°) by KR(KGe, KH f).

For the remainder of the section, let G and H be finite groups, let A = FGe4 be
a block of FG, and let B = FHep be a block of F'H.
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We recall the notion of a perfect virtual character, as defined in [5].

Definition 9.3. We say that a virtual character p € R(KG, K H) is perfect if the following
conditions hold:

(1) For g € G and h € H,u(g,h) € |Ca(9)|ON|Cu(h)|O.

(2) For g € G and h € H such that u(g,h) # 0,g is a p'-element if and only if h is a

p’-element.

Definition 9.4. We say that a virtual character p € R(KG,KH) is quasi-perfect if
condition (2) of definition 9.3 holds.

Definition 9.5. Let x be a p-element of G and let e be a central idempotent of FCgq(x).
We define the generalized decomposition map d(Gx’e) : KR(KG) - KR(KCg(x)€é) by
dg’e)(x)(x’) = x(za'e) if ' € Cq(x) is a p'-element and dg’e)(x)(m’) =0 if 2’ € Cg(x) is
not a p’'-element. If e = 1, we denote dg’e) by df.. If x = 1,d¢, is called the decomposition

map and is denoted by dg.

Definition 9.6. For pn € R(KG,KH), we denote by I, : KR(KH) — KR(KG) the K-
linear map defined by x — p Qrg x for x € KR(KH).

Lemma 9.7. Let p € R(KG,KH) and let x € KR(KH). For g € G,1,(x)(g) =
(1/1H1) Y ulg, h)x(h).

heH

Proof. See [5]. O

Lemma 9.8. Let u € R(KG,KH). The following are equivalent:
(1) The virtual character u is quasi-perfect

(2) dgol, =1,0dg as maps from KR(KH) to KR(KG).

(3) dp o 1o = I,0 0 dg as maps from KR(KG) to KR(KH).

Proof. We only show that (1) is equivalent to (2), as the proof that (1) is equivalent
to (3) is analogous. Suppose that (1) holds. Let x € KR(KH) and let g be an el-
ement in G. First suppose that g is not a p’-element. By lemma 9.7, I,(du(x))(g) =

(1/1HY)) Z (g, h)de(x)(h). As g is not a p’-element and p is quasi-perfect, if h is a p/'-
heH
element, then p(g, h) = 0. On the otherhand, if & is not a p’-element, then dg(x)(h) = 0.

Therefore, I,,(dr(x))(9) =0 = da(I.(x))(9) as g is not a p’-element. Thus we may assume
that ¢ is a p’-element. In this case, as p is quasi-perfect, da(I.(x))(9) = L.(x)(g) =
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(/H) > wlg, h)x(h) = (/1H]) D wlg, B)da(x)(h) = Li(du(x))(g) by lemma 9.7.
hEHp/ heH
Thus we have shown that dg o I, = I, o dy, so (1) implies (2).

Now suppose that (2) holds. Let g € G be a p’-element and let h € H such that h
is not a p’-element. Assume that (g, h) # 0. Let x € KR(KH) be the class function such
that for y € H, x(y) = 1 if y is H-conjugate to h, and x(y) = 0 if y is not H-conjugate to h.
As g is a p/-element and by lemma 9.7, da(1,(x))(9) = L.(x)(9) = (1/|Cu(h)|)p(g, k) # 0

as pu(g,h) # 0. However, by lemma 9.7, I,(dx(x))(9) = (1/|H[) > u(g,y)x(y) = 0 by
yEHp/
definition of x and the fact that & is not a p’-element. Therefore, da(1,(x)) # Iu(du(x)),

which is a contradiction to (2). Thus we have shown that if g is a p/-element in G and
h is not a p’-element in H, then u(g,h) = 0, so it suffices to show that if g € G is not a
p/-element and h € H is a p/-element, then u(g,h) = 0.

Assume that p(g,h) # 0. Let x € KR(KH) be the class function such that for
y € H,x(y) = 1if y is H-conjugate to h, and x(y) = 0 if y is not H-conjugate to h. By lemma
9.7 and the definition of x, I,,(dr(x))(9) = (1/|Cu(h)|)p(g, h) # 0, while dg(1,(x))(g) =0
as ¢ is not a p’-element. This shows that de(1,(x)) # Iu(du(x)), which is a contradiction
to (2), so p(g,h) = 0 and hence (1) holds. Thus we have shown that (2) implies (1), so the
lemma holds. O

Definition 9.9. We say that u € R(KGey, KHepg) is an isometry if pnQ@gpp’ = [[KGey)]
in R(KGey, KGey), and p° Qga p = [[KHegl] in
R(KHep, KHeR).

Lemma 9.10. Let u € R(KGey, KHep) be a quasi-perfect virtual character such that there

is a nonempty subset Q of Irr(A) such that p Qg g u° = Z X ® x°. The virtual character
XEN

W18 an isometry.
Proof. The hypothesis of the lemma implies that there is a subset A of Irr(B) such that

1w Qg b = ZC ® ¢°. Thus as p° is quasi-perfect, by symmetry, it suffices to show that
CeA
Q= 1Irr(A). For x,x" € Irr(A), let m,s , € Q denote the Schur inner product of dg(x) with

X’ and let M be the Irr(A) x Irr(A) matrix with (', x)-entry m,s . As M is a symmetric
matrix and m,s, # 0 for all x,x" € Irr(A) such that x has height zero by [9] (Lemma
6.34.ii), it follows that the rows and columns of M cannot be rearranged so as to make M

a block diagonal matrix consisting of more than one block. Thus to complete the proof, it
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suffices to show that for xy € Q and x’ € Irr(A), if my, # 0, then x’ € Q. In other words,
it suffices to show that dg(2) C< Q >k.

Let x € Q. By the hypothesis of the lemma, there is a unique ¢ € A such that
I,,(¢) = x. Thus as p is quasi-perfect, by lemma 9.8, dg(x) = I,(du(()) € I,(KR(KHeg))
C< Q >k . This shows that dg(2) C< Q >k, so the lemma holds. O
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Chapter 10

Grothendieck groups and

p-permutation equivalences

Throughout this section, let F' be an algebraically closed field of characteristic
p > 0.

Definition 10.1. Let G be a finite group and let B be a direct sum of blocks of FG.
We denote by R(B) the Grothendieck group of B-modules with respect to the relation
[[M]] = [[L]] + [[N]] whenever there is a short exact sequence of 0 - L — M — N — 0
of B-module homomorphisms, where [[M]] denotes the image of the B-module M in R(B).
We identify R(B) with the Brauer character group of B, which is the group of virtual

Brauer characters of B.

If G and H are finite groups, A is a direct sum of blocks of F'G, and B is a direct
sum of blocks of F'H, we denote R(A ® B°) by R(A, B).

Definition 10.2. Let G be a finite group and let B be a direct sum of blocks of FG. The
trivial source group of B, denoted by T(B), is the Grothendieck group of trivial source
FG-modules with respect to the relation [M] = [L] 4+ [N] whenever there is a split short
exact sequence 0 — L — M — N — 0 of B-module homomorphisms, where [M] denotes
the image of the B-module M in T(B). For v € T(B) and an indecomposable trivial source
B-module M, we say that M appears in vy if the coefficient of [M] in ~y is nonzero with
respect to the Z-basis of T(B) consisting of indecomposable trivial source B-modules. For

v € T(B), we denote by [y] the image of v under the canonical homomorphism from T(B)
to R(B).
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Lemma 10.3. Let (P, e) be a Brauer pair for FG, let I be the inertial group of FCq(P)e
in Nq(P), and let w € T(FG) such that no indecomposable FG-module appearing in w has
Brauer pair properly containing (P, e). For an indecomposable trivial source FG-module M

such that (P,e) is an M-Brauer pair, M has the same coefficient in w as eM(P) has in
e(w(P)) e T(Fle).

Proof. This follows from lemma 6.5. O

Definition 10.4. For w € T(FG), an w-Brauer pair is a Brauer pair (P,e) of FG such
that ew(P) # 0 in T(FIe), where I is the inertial group of FCq(P)e in Ng(P).

Definition 10.5. Let X be a subgroup of G x H, and let A be a direct sum of blocks of FX.
We denote by T2(A) the subgroup of T(A) spanned by those indecomposable trivial source
A modules that have a twisted diagonal vertex. If A is a direct sum of blocks of FG and B
is a direct sum of blocks of FH, we denote T®(A ® B°) by T*(A, B).

Definition 10.6. Let G and H be finite groups, let A be a direct sum of blocks of FG, and
let B be a direct sum of blocks of FH. We denote by TOA(A, B) the set of all elements of
v of TA(A, B) such that v ®p ¥° = [A] in TA(A, A) and v° ®4 v = [B] in T®(B, B). An

element of T2 (A, B) is called a p-permutation equivalence.
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Chapter 11

Brauer pairs for p-permutation

equivalences

Throughout this section, let p be a prime and let (K, O, F') be a p-modular system
with F' algebraically closed and K large enough. Let G and H be finite groups, let A =
FGey be a direct sum of blocks of F'G and let B = FHep be a direct sum of blocks
of FH. Suppose that A and B are p-permutation equivalent and let v € T2(A, B) be a

p-permutation equivalence.

Lemma 11.1. Let (Q,e) be an A-Brauer pair and let I be the inertial group of FCq(Q)e
in Na(Q).

(1) For an irreducible K N1y 1(A(Q))(€ @ €°)-module V, there is a unique I x H-conjugacy
class of triples (R, f, ) such that (R, f) is a B-Brauer pair, ¢ : R — Q is an isomorphism,
and [[V)] @xcoia) (7A@ R £ 0 in BIEN s (AQu o, R))(E S ), where J is
the inertial group of FCy(R)f in Nu(R). Moreover, [V]] ® oy @) (€7(A(Q, ¢, R)) ) is
plus or minus an irreducible KNy 1(A(Q, ¢, R))(é ® f°)-module.

(2) For an irreducible (KCq(Q)é, KCqg(Q)é)-bimodule V, there is a unique H-conjugacy
class of triples (R, f, ) such that (R, f) is a B-Brauer pair, ¢ : R — Q is an isomor-
phism, and [[V]] ©kcq @) (e7(A(Q, ¢, R)) )X # 0 in R(KCq(Q)e, KCx(R)f). Moreover,
(V] ®kcg) (ev(AQ, v, R)) f)K is plus or minus and irreducible (K Ca(Q)e, KCx(R)f)-

bimodule.

Proof. (1) As eA(A(Q))e = FCg(Q)e as FN1x1(A(Q))-modules and v € T2 (A, B),
[FCa(Q)e] =
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Nixi(A o B ,
> Ind Y i @AQ e R)S @rcur (AR, T Q))e) in
(vavw)EF/NIXH
TA(FN1x1(A(Q))(e ® €°)) by lemma 7.6.2. Therefore, it follows from lemma 4.20 and

lemma 7.4.1 that [[KCg(Q)é]] =

Nrxr(A o -
S maH Y @ (A RN Sy (1 (AR ¢ Q))).
(R.f )l /~1xn
As V is irreducible, dim g (Homgn,, ,(a@)(V @rcg@) KCa(Q)E,V)) =

dimg (Endgn,, ,(a@)(V)) = 1, so it follows from lemma 8.6 that 1 =
> dim i (Endgen,, ,(a@.e.0) (V)] ©kca@ (€1(AQ, ¢, R))F)), where J is

(R.f )l /~1xn
the inertial group of FCy(R)f in Ny(R), and hence (1) holds.

(2) As eA(A(Q))e = FCg(Q)e as (FCq(Q), FCq(Q))-bimodules, and v € T2 (A, B),
[FCa@el= > en(AQ ¢, R)f pcym I1(AR, ¢, Q))e in

(R»fr‘p)GF/NH
TA(FCq(Q)e, FCs(Q)e) by lemma 7.6.1. Therefore, [[KCq(Q)é]] =

Z (ev(A(Q, 0, R HF ®kcpm) (FY(AR, ¢7,Q)))e) . As V is irreducible,
(EvaSD)EF/NH ~ ]
dim g (Homg cq(Q)xce@)(V @kcq@) KCa(Q)E,V)) = dimi (Endk c,@)xca@)(V)) =

1, so it follows from lemma 8.5.2 that

1= Y dimg(Endgcg@yxcnr) (V1] @kca@) €1(AQ, ¢, R)£)F)), and hence
(va’QO)EF/NH
(2) holds. O

Lemma 11.2. Let (Q,e) be an A-Brauer pair and let (R, f) be a B-Brauer pair such
that R is isomorphic to QQ and let ¢ : R — @Q be an isomorphism. Let I be the inertial
group of FCq(Q)e in Ng(Q) and let J be the inertial group of FCr(R)f in Ng(R). Then
(ev(AQ, 0. R)S)E # 0 in RIKN1 s (A(Q. 0, R))(E® f2) if and only if

(ev(AQ, 0. R)S)N # 0 in R(KCa(Q)e, KCu(R)f).

Proof. The “if” part of the statement clearly holds, so it suffices to prove the “only if” part.

Suppose (e7(A(Q. o, R)f)X # 0in RUE N7/ (A(Q. . B))(€0%)). As [KCa(Q)ell@ xcwio)
(ev(AQ, v, R)) /) = (ev(A(Q, p, R))f)X # 0, there is an irreducible K N7y 1(A(Q))(€ ®

e®)-module V such that [[V]] @ ke, (q) (e7(A(Q, ¢, R)) f)* # 0, and hence by lemma 11.1.1,

[V]] ®kce(@) (ev(A(Q, 9, R))f)¥ is plus or minus an irreducible K N7, j(A(Q, ¢, R))(€ ®

f°))-module. Therefore,

[Respbmetoy (V)] ©xca@) Reselipmenin (1 (AQ, ¢, R)K) =

N (?A)(XQCG(I%)) Ca(Q)xCu(R)
ResIEd 8 Qe (17106 0 (3(A(Qu 0, R)F)) # 0, and hence (ex(A(Q, p, B)) )X #
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0in R(KCq(Q)é, KCx(R)f), so the lemma holds. O

Lemma 11.3. (1) If (Q,e) is an A-Brauer pair, (R, f) is a B-Brauer pair, and ¢ : R — Q
is an isomorphism such that (ey(A(Q,p, R))f)® # 0 in R(KCq(Q)é, KCx(R)f), then
(ev(A(Q, p, R))f)X is an isometry and

[ev(A(Q, ¢, R))f] # 0 in R(FCq(Q)e, FCH(R)f).

(2) For an A-Brauer pair (Q, e), there is a unique H-conjugacy class of triples (R, f, v) such
that (R, f) is a B-Brauer pair, ¢ : R — Q is an isomorphism, and (ey(A(Q, ¢, R))f)® #0
in R(KCq(Q)é, KCu(R)f).

(3) For a B-Brauer pair (R, f), there is a unique G-conjugacy class of triples (Q, e, @) such
that (Q, €) is an A-Brauer pair, ¢ : R — Q is an isomorphism, and (ey(A(Q, ¢, R))f)® #0
in R(KCq(Q)é, KCu(R)f).

Proof. As (2) and (3) follow from (1) and lemma 11.1.2, it suffices to prove (1). By lemma
11.1.2, [[V]] ®kcp() (e7(A(Q, ¢, R)) f) is either zero or plus or minus and irreducible

(KCq(Q)é, KCy(R) f)-bimodule for any irreducible (KCq(Q)é, KCg(Q)é)-bimodule V,
and [[W]] @kcyr) (e7(A(Q, ¢, R))f)°)X is either zero or plus or minus an irreducible
(KCu(R )f Ca(Q)é)-bimodule for any irreducible (KCy(R)f, KCg(R)f)-bimodule W.
Thus as (ey(A(Q, ¢, R))f)X is a perfect virtual character by [5](Theorem 1.5(2)), it fol-

lows that (ey(A(Q, ¢, R))f)X is an isometry by lemma 9.10. Let pu = (ey(A(Q, ¢, R))f)¥.
As pu is a perfect, [ng(Q)xCH(R)(#) odcyr) = Iuodeyr) = dog(@) © I as maps from
KR(KCy(R)f) to KR(KCG(Q)é) by lemma 9.8.2. As g is an isometry, de(g) © I # 0,
o [ev(A(Q, ¢, R))f] = dcg @ xon(r) (1) # 0, and hence (1) holds. O

Lemma 11.4. Let (D, e) be an A-Brauer, and let (E, f) be a B-Brauer such that there is an
isomorphism ¢ : E — D. Let R < E, let Q = ¢(R), let 0 € bli(FCq(Q)) such that (Q,0) <
(D,e) and let 7 € bli(FCy(R)) such that (R,7) < (E, f). If (ey(A(D, ¢, E))f)X # 0 in
R(KCg(D)é, KC(E)f), then (07(A(Q, ¢, R)T)X # 0 in R(KCa(Q)5, KCr(R)T).

Proof. Arguing by induction on [D : @], we may assume that @ < D and D/Q is a cyclic
group. Thus there exists x € D such that D = Q < = > . Let y = ¢ !(z), and note
that £ = R < y > . Assume that (ov(A(Q, ¢, R))7)X =0 in R(KCs(Q)5, KCx(R)7). By
lemma 11.2, (67(A(Q, , R))T)® = 0in R(K N1« j(A(Q, ¢, R)))(6®7°)), so by lemma 4.17

and lemma 4.18,
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[Brp(o)v(A(D, ¢, E)Bre(r)] = [(07(AQ; ¢, R)T)(< (2,y) >)] =
Ay A owry (CV(A(Q, 0, R)T)E) = 0. Thus as eBrp(o) = e and fBrp(r) = f,
[ev(A(D, ¢, E))f] = 0, which is a contradiction to lemma 11.3 as (ey(A(D, ¢, E))f)¥ # 0,

so the lemma holds. ]

Lemma 11.5. Let (Q,e) be an A-Brauer pair and let (R, f) be a B-Brauer pair such that
there is an isomorphism ¢ : R — Q. If there is an indecomposable A ® B°-module M that
appears in y such that (A(Q, p, R),e® f°) is an M-Brauer pair, then (ey(A(Q, ¢, R))f)K #

0 in R(KC&(Q)é, KCx(R)f).

Proof. Let I be the inertial group of FCg(Q)e in Ng(Q) and let J be the inertial group of
FCyg(R)f in Ng(R). By lemma 11.4, we may assume that (A(Q, ¢, R),e® f°) is a maximal
A ® B°-Brauer pair subject to the condition that (A(Q, ¢, R),e ® f°) is an M-Brauer pair
for some indecomposable A ® B°-module appearing in 7. It follows that for any indecom-
posable A ® B°-module M that appears in v such that (A(Q, ¢, R),e® f°) is an M-Brauer
pair, (A(Q, ¢, R),e® f°) is a maximal M-Brauer pair, and hence e M (A(Q, ¢, R)) f is a pro-
jective indecomposable F'Nyy j(A(Q, ¢, R))/A(Q, ¢, R)-module by lemma 4.16 and lemma
6.4. Therefore, ey(A(Q, ¢, R))f is a virtual projective
N i(A(Q, ¢, R))/A(Q, ¢, R)-module. By our hypothesis, there is an indecomposable A ®
B°-module M that appears in vy such that (A(Q, ¢, R), e® f°) is an M-Brauer pair, so by the
maximality of (A(Q, ¢, R),e® f°) and lemma 10.3, the indecomposable F N, ;(A(Q, ¢, R))-
module eM (A(Q, ¢, R)) f has nonzero coefficient in ey(A(Q, ¢, R))f, so ey(A(Q, ¢, R))f #
0 in T2(F N7 (A(Q, ¢, R))). Thus as ey(A(Q, o, R))f is a virtual projective
FN7(A(Q, ¢, R))/A(Q, ¢, R)-module, (ev(A(Q, ¢, R)) f)* # 0in R(K N1y (A(Q, ¢, R)))
by the injectivity of the adjoint to the decomposition map. Therefore, (ey(A(Q, ¢, R))f)X #
]

0in R(KCq(Q)é, KCx(R)f) by lemma 11.2, so the lemma holds.

Lemma 11.6. Let (Q,e) be an A-Brauer pair and let (R, f) be a B-Brauer pair such that
there is an isomorphism ¢ : R — Q. Let I be the inertial group of FCg(Q)e in Ng(Q) and
let J be the inertial group of FCy(R)f in Ng(R). The following are equivalent:

(1) The A ® B°-Brauer pair (A(Q, ¢, R),e ® f°) is a y-Brauer pair.

(2) x(A@, 0, ) £ 0 in TA(FCa(Q)e, FCu(R)f).

(3) (1(A(Q 0, R) K £ 0 in RUE N/ (AQ, ¢, R)(E® f2)).

(4) (ev(A(Q, 9, R) /) #0 in R(KC(Q)E, KCy(R)f).
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(5) [ev(A(Q, ¢, R)) f] # 0 in R(F N1 (A(Q, ¢, R))(e @ f7)).

(6) [ev(A(Q, ¢, R)) f] # 0 in R(FCq(Q)e, FCH(R)[).

Proof. Clearly each of conditions (2)-(6) implies (1) and (6) implies each of conditions (2)-
(5), so it suffices to show that (1) implies (6). Now (1) implies (4) by lemma 11.5, and (4)
implies (6) by lemma 11.3, so the lemma holds. O

Lemma 11.7. (1) For every A-Brauer pair (Q,e), there is a unique H -conjugacy class of
triples (R, f, ) such that (R, f) is a B-Brauer pair and ¢ : R — Q is an isomorphism such
that (A(Q, ¢, R),e ® f°) is a y-Brauer pair.

(2) For every B-Brauer pair (R, f), there is a unique G-conjugacy class of triples (Q, e, ¢)
such that (Q,e) is an A-Brauer pair and ¢ : R — @ 1is an isomorphism such that

(A(Q,p,R),e® f°) is a y-Brauer pair.
Proof. This follows from lemma 11.3 and lemma 11.6 ]

Lemma 11.8. For each block direct summand A’ = FGenr of A, there is a unique block
direct summand B' = FHep: of B such that earyep: # 0, and for each block direct summand
B’ = FHep of B, there is a unique block direct summand A’ = FGey of A such that
eaxver # 0. Furthermore, if A’ = FGenr is a block direct summand of A and B' = FHep
is a block direct summand of B such that eqyepr # 0, then eqryep is a p-permutation

equivalence.

Proof. The first statement follows from lemma 11.7 with @ the trivial subgroup of G and
R the trivial subgroup of H. The last statement follows from the first and the fact that ~

is a p-permutation equivalence. O

Now suppose that A is a block of F'G and B is a block of F'H.

Theorem 11.9. The set of v-Brauer pairs is closed under inclusion and G X H -conjugation.
The mazimal ~y-Brauer pairs are precisely the v-Brauer pairs of the form (A(D, ¢, E), e®f°),
where (D, e) is a maximal A-Brauver pair, (E, f) is a mazimal B-Brauer pair, and ¢ : E —

D is an isomorphism. Furthermore, the mazximal v-Brauer pairs are all G x H-conjugate.

Proof. The set of v-Brauer pairs is easily seen to be closed under G x H-conjugation, and
it is closed under inclusion by lemma 11.4 and lemma 11.6. The second statement follows
from lemma 11.3, lemma 11.4 and lemma 11.6. The final statement holds by lemma 11.3

and the fact that G acts transitively by conjugation on the maximal A-Brauer pairs. O
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Chapter 12

Invariants preserved by

p-permutation equivalences

Throughout this section, let p be a prime and let (K, O, F') be a p-modular system
with F' algebraically closed and K large enough. Let G and H be finite groups, let A =
FGey and B = FHep be p-permutation equivalent blocks of F'G and F'H respectively, and
let v € T2(A, B) be a p-permutation equivalence.

Theorem 12.1. Let (A(D,p, E),e ® f°) be a mazximal ~v-Brauer pair, where (D,e) is
a mazimal A-Brauer pair, (E, f) is a mazximal B-Brauer pair, and ¢ : E — D is an
isomorphism. Let A be the fusion system associated with (D,e) and let B be the fusion
system associated with (E, f). The isomorphism ¢ : E — D is an isomorphism between B

and A.

Proof. We need to show that if R and R’ are subgroups of E,Q = ¢(R), and Q' = p(R'),
then ¢! o Hom(Q', Q) o ¢ = Homg(R', R). By symmetry, it suffices to show that ¢! o
Homa(Q',Q) oo C Homp(R', R). Thus by Alperin’s fusion theorem we may assume that
Q@ = Q'. Let o be the unique block idempotent of FCg(Q) such that (Q,0) < (D, e) and let
7 be the unique block idempotent of F'Cgr(R) such that (R, 7) < (E, f). Let I be the inertial
group of FCq(Q)o in Ng(Q) and let J be the inertial group of FCy(R)7 in Ny(R). Let
g€l As (A(Q,p,R),0 ®7°) is a y-Brauer pair by lemma 11.9, (A(Q, cqp, R), 0 ® 7°) =
(g’l)(A(Q, v, R),0 ® 7°) is a y-Brauer pair, so by lemma 11.7, there exists h € H such that
(R, T,cqp) = "R, 7, 0) = ("R, ", ¢c, '), and hence h € J and ¢~ locyop = ¢; '. This shows
that ¢! o Aut;(Q) o ¢ C Aut;(R), so as Aut4(Q) = Aut;(Q) and Autg(R) = Aut;(R),
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the lemma holds. O

Theorem 12.2. Let (A(Q,p, R),e® f°) be a vy-Brauer pair, where (Q,e) is an A-Brauer,

(R, f) is a B-Brauer pair and ¢ : R — @ 1is an isomorphism. Let I be the inertial group of
FCg(Q)e in Na(Q), and let J be the inertial group of FCu(R)f in Nu(R).

(1) 0 J/Cu(R) o ™" = 1/Ce(Q).

(2) Let Ca(Q) < S < I and let Cy(R) < T < J such that poT/Cy(R) oo™t = S/Ca(Q).

The element IndNXTT(A(Q oR) (ev(A(Q, ¢, R))f) € TA(FSe, FTf) is a p-permutation equiv-

alence.

Proof. Note that (1) holds by lemma 11.9 and lemma 12.1, so it suffices to prove (2). By
lemma 11.7, if (R, f/, ¢) is a triple such that (R', f’) is a B-Brauer pair and ¢’ : R — @Q is
an isomorphism and (R/, f', ¢) is not H-conjugate to (R, f, ), then ey(A(Q, ¢, R))f =0
in T2 (N7 7 (AQ, ', R))(e®(f)°)), where J' is the inertial group of FCy(R)f' in Ny (R').
Thus as eA(A(Q))e = FCq(Q)e as FNgys(A(Q))-modules, it follows from lemma 7.6.2

that [FCg(Q)e] = ev(A(Q, ¢, R))f @rcy (r) f1°(AR, 971, Q))e in T2 (FNsxs(A(Q)) (e @
e?)). Thus it follows from lemma 7.2 and lemma 7.3 that [IndSXS (A(Q))(FCg(Q)e)] =

InszTT(A(Q o,R)) (ev(AQ, ¢, R))f) ®FTInd1]\ﬂ,;fS(A(RW*1’Q))(f’Y (A(R,¢7",Q))e). Now as
Ca(Q) is a transitive Ngxs(A(Q))-set and A(S) is the point stabilizer of the identity el-
ement, FCG(Q) = Indy 5" P (Facs)), so by lemma 4.1, Ind55_ o (FCa(Q)e) =
eIndA(S)(FA(S))e = F'Se as (F'Se, F'Se)-bimodules. Therefore, [F'Se] =

Ind3" a0y @(AQ, 0, R) H@rr(Indy T (6 0.1 (€1(A(Qs 0, R)) f))°, and by sym-
metry, [FTf] =

(Ind%i;zT( (Q@R ( ( (Qa@a ))f)) ®FSIndNS T( (Qch ( ( (Qﬁoa ))f),SO (2) holds.
O

Lemma 12.3. Let (A(D, ¢, E),e® f°) be a maximal v-Brauer pair, where (D, e) is a mazi-
mal A-Brauer, (E, f) is a maximal B-Brauer pair and ¢ : E — D is an isomorphism. Let A
and B denote the fusion systems associated with (D,e) and (E, f) respectively. For Q < D
and R < E, let eq denote the unique block idempotent of FCq(Q) such that (Q,eq) < (D, e)
and let fr denote the unique block idempotent of FCr(R) such that (R, fr) < (E, f). Let
R < E and let Q = p(R). Let I be the inertial group of FCq(Q)eq in Ng(Q), and let J be
the inertial group of FCx(R)fr in Ng(R).

(1) The FCq(Q)eq @ FCu(R) fg-Braver pair (A(Cp(Q), ¢, Ce(R)), eqcy, @) @ fI%CE(R)) is
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a mazimal eQY(A(Q, ¢, R)) fr-Brauver pair if and only if Q is fully A-centralized. In par-
ticular, (A(Z(Q), v, Z(R)),eq ® fg) is a mazimal

eQV(A(Q, ¢, R)) fr-Brauer pair if and only if Q is A-centric.

(2) The Fleq ® FJ f§-Brauer pair (A(Np(Q),», Ne(R)), enp @) @ fX/E(R)) is a maximal

IndfvxliJ(A(QMR))(ley(A(Q, ©, R)) fr)-Brauer pair if and only if Q is fully A-normalized.

Proof. (1) If (A(Cp(Q), ¢, Ce(R)), eqcp Q) ® fECE(R)) is a maximal

eQV(A(Q, ¢, R)) fr-Brauer pair, then as egv(A(Q, ¢, R)) fr is a p-permutation equivalence
by lemma 12.2, Cp(Q) is a defect group of FCg(Q)eg by lemma 11.9 and hence @ is fully
A-centralized by [6] (Theorem 3.11). Conversely, suppose that @ is fully .A-centralized. As
eQcp (@) (€QV(A(Q, ¢, R)) frR)(A(CD(Q), ¢, CE(R))) frew(R) =

eqop(@)V(A(QRCD(Q), ¢, RCE(R))) frey(r) in

T2(FCa(QCD(Q))eqop(@) FCn(RCE(R)) frop(r)) and

(A(QCD(Q), p, RCE(R)), eqcy, (@) @ f}%CE(R)) is a «-Brauer pair by lemma 11.9, it follows
that (A(Cp(Q), v, Ce(R)), eqcp @) ®f§cE(R)) is an egY(A(Q, ¢, R)) fr-Brauer pair. As Q
is fully A-centralized, Cp(Q) is a defect group of FCq(Q)eq by [6] (Theorem 3.11), and
hence (A(Cp(Q), v, Ce(R)),eqep @) @ fIO%CE(R)) is a maximal egy(A(Q, ¢, R)) fr-Brauer
pair by lemma 11.9, so (1) holds.

(2) If (A(ND(Q), ¢, NE(R)), enp(Q) @ fJ?IE(R)) is a maximal

IndeXI‘X]J(A(Q%R))(er(A(Q, ¢, R)) fr)-Brauer pair, then Np(Q) is a defect group of Fleg
by lemma 11.9, and hence @ is fully .A-normalized by [6] (Theorem 3.11). Conversely, sup-
pose that @ is fully A-normalized. By lemma 11.9 and [6] (Theorem 3.11), it suffices to show
that (A(ND(Q): ¢, Ne(R)). exp(@) © fapy) i an a1 o 0 (o (AQ o B)) fr)-
Brauer pair. By lemma 4.19,

eNp(@ IndN | A0 ory) (€@V(A(Q, 0. R)) [R))(AND(Q), @, NE(R))) v p(r)

= en,(V(AND(Q), v, NE(R)) fnu(r), 50 (2) follows as

(A(ND(Q),», NE(R)), enp(Q) ® fl(ifE(R)) is a y-Brauer pair by lemma 11.9. O

Lemma 12.4. Let (A(Q,p, R),e ® f°) be a ~y-Brauer pair, where (Q,e) is an A-Brauer
pair, (R, f) is a B-Brauer pair, and ¢ : R — Q is an isomorphism.

(1)The block FCq(Q)e has defect group Z(Q) if and only if the block FCy(R)f has defect
group Z(R).

(2) Suppose that FCq(Q)e has defect group Z(Q).

(a) The element ey(A(Q, ¢, R))f € TA(FCq(Q)e, FCx(R)f) is plus or minus the unique
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indecomposable trivial source (FCq(Q)e, FCg(R) f)-bimodule with vertex A(Z(Q), ¢, Z(R)).
(b) Defgg(( ):gg(( ))/(Z(Q)XI)(e’y( (Q,¢,R))[) is plus or minus the unique irreducible
(FCe(Q)e, FCu(R)f)- bzmodule
Nrx R
(¢) The element (DefNIIXj AO, :: ))))/( 2(Q)x (6 (A(Q, ¢, R)))F € )
R(KNrxj(A(Q, ¢, R))) is plus or minus an zrreduczble KNrxj(AQ, ¢, R))(E® f°))-module.
N, X A th gl
(d) The element [Def ;Xj((A((g,; ))))/(Z(Q)xl)(e% (@, R))f)] €
R(FNywj(A(Q, ¢, R))) is plus or minus an irreducible F Ny j(A(Q, ¢, R))(e® f°)-module.

Proof. (1) By lemma 11.9, there is a maximal A-Brauer pair (D,o) and a maximal B-
Brauer pair (E,7) such that ¢ : R — @ extends to an isomorphism ¢ : E — D and
(A(D,¢,E),c ® 7°) is a maximal y-Brauer pair. Now by lemma 12.1, @ is centric in
the fusion system associated with (D, o) if and only of R is centric in the fusion system
associated with (E,7), so (1) holds by [6] (Theorem 3.11).

(2) As Z(Q) is the defect group of FCg(Q)e, it follows from [9] (Theorem 5.8.10 and
Theorem 5.8.11) that F(Cg(Q)/Z(Q))e is a block of F(Cq(Q)/Z(Q)) of defect zero, so it
follows that K(Cq(Q)/Z(Q ))é is an irreducible (KCg(Q)é, KCq(Q)é)-bimodule. Thus by
lemma 11.3 and 11.6, DefeS& < CH ) o (ev(AQ, ¢, R) ) =
[[K(Ca(Q)/Z(Q))e]]l @kcg(q) (ev(A (Q,cp, R))f)X is plus or minus an irreducible
(KCg(Q)é, KCr(R) f)-bimodule. Let M be an (FCg(Q), FC(R))-bimodule appearing in
eY(A(Q, v, R))f. As A(Q, ¢, R) acts trivially on every module appearing in ey(A(Q, ¢, R)) f
viewed as an element of T2(F(N7x1(A(Q, ¢, R)))(e® ), A(Z(Q), ¢, Z(R)) acts trivially
on M and hence is contained in any vertex U of M. On the otherhand, U is a twisted
diagonal subgroup of Cq(Q) x Cy(R) with p1(U) < Z(Q) as Z(Q) is the defect group
of FCg(Q)e. Therefore, U = A(Z(Q),p, Z(R)) is the vertex of M. Thus we may view
eY(A(Q, ¢, R)) f as virtual projective F(Cq(Q) x Cu(R)/A(Z(Q), ¢, Z(R)))-module, and
Defe et 0y E1(AQ 9, R)S) as a virtual (FCa(Q)/Z(Q), FCu(R)/Z(R))-
bimodule belonging to the block F(Cq(Q)/Z(Q))e @ F(Cu(R)/Z(R))f° of defect zero.

Thus as (DefCG g)):gg(( ))/(Z(Q)Xl)(efy(A(Q, ¢, R))f))X is plus or minus an irreducible

(KCG(Q)e KCy(R)f)-bimodule, hd(ey(A(Q, ¢, R))f) =

(Q)xCH(R)
DefgSiaicnin

(FC'(;(Q)e,FCH(R)f) bimodule, and hence ey(A(Q, ¢, R))f is plus or minus the unique
projective indecomposable F(Cq(Q) x Cy(R)/A(Z(Q), ¢, Z(R)))-module, so (a) and (b)
hold.

(Z2(Q)x1) ( Y(A(Q, ¢, R))f) is plus or minus the unique irreducible
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As (Def St 2@y V(A Q. R) F)X # 0in RIKC(Q), KCu(R) ),
R))f )

[K(Ca(@)/Z2(Q))ell ®xca) (GV(A(Q,%
(Def /(o) 2o (€VAQ, 0, R)HE £ 0 in RUK Ny (A(Q, ¢, R))), s0 as
K(Cg(Q)/Z(Q))e is irredicible as an (KCg(Q)é, KCq(Q)é)-bimodule and hence as a
KN (A(Q))(é ® e°)-module, (c) holds by lemma 11.1.1.
To prove (d), we may assume without loss of generality that
(De fN;:j(ﬁ((g”i’ ))))/(Z(Q)XI)(efy(A(Q, @, R))f))X is an irreducible KNy ;(A(Q, ¢, R))(é ®
)-

fo)-module by (c

NIXJ (&(Que, ))))/( @ )Xl)(e'y( (Q, ¥, R))f)] has positive coefficient, so as

Therefore, every module appearing in

o ”((AA((SSDR»/( LQX1) py, s M@ )
X s X X , . . .
[Resg' "/ XCHf R/(z@x1) De fN[IXj QiR))/( 2@)x1)(€V(A(Q, ¢, R))f)] is the irreducible
(R)f)- blmodule by (b), it follows that

(FC ( Je, FCy
[De

]]ijxxj(ﬁ((g”i’ ))))/(Z(Q)Xl)(ev( (Q, ¢, R))f)] is an irreducible F' Ny ;(A(Q, ¢, R))-module,
o (d) holds. O

Theorem 12.5. Let (A(Q,p, R),e® f°) be a vy-Brauer pair, where (Q,e) is an A-Brauer
pair, (R, f) is a B-Brauer pair, and ¢ : R — @Q is an isomorphism. Let I be the inertial
group of FCq(Q)e in Ng(Q) and let J be the inertial group of FCg(R)f in Ny (R). Suppose
that the defect group of FCq(Q)e is Z(Q) so that the defect group of FCy(R)f is Z(R)
by lemma 12.4.1. Let [a] € H*(I/QCq(Q), FX) be the Kiilshammer-Puig class associated
with (Q,e), and let [] € H*(J/RCy(R),F*) be the Kiilshammer-Puig class associated
with (R, f). Let ¥ : Aut(R) — Aut(Q) be the isomorphism defined by o — @ o g o~ for
o € Aut(R). As ¢(R) = Q,Y(RCy(R)/Cu(R)) = QCc(Q)/Ca(Q), and by lemma 12.1,
P(J/Ch(R)) = I/Ca(Q), so ¢ induces an isomorphism v : J/RCy(R) — I/QCq(Q).
Furthermore, we have that [a o (¢ x ¥)] = [B] in H*(J/RCy(R), F*).

Proof. We only need to prove the last statement. Let M be the unique irreducible FQCqx(Q)e-
module and let N be the unique irreducible FRCy (R)f°-module. By definition 3.5, there
is an FyI-module V' and an Fjg-1J-module W such that ReSéCG(Q)(V) = M and
ReséCH(R)(W) >~ N. By lemma 12.4.2(b) and lemma 12.4.2(d), there is an irreducible
FNiyj(A(Q, ¢, R))-module L such that Re g”(é()é(cgf’]?))(lz) is the unique irreducible
Nrxs(AQue, : Lo
(FCe(Q)e, FCy(R)f)-bimodule. Therefore, ResAEQJ;’ ()6(2 v (C)Q))XC’H(R))(L) is the unique ir-

reducible FA(Q, ¢, R)(Ca(Q) x Cg(R))(e ® f°)-module, and hence

N s (AQup.R) QC6(Q)x RO (R) -

Res n (Gl r) (Ca(@x () (L) = RESX (G Ry (Co(@yxcn iy M © NQ )C ?h)usRiS (‘;)‘X’ W is an
IxJ X

Fop-1(IxJ)-module and ResNid, | oo @yxcnmy (VEW) = Resy( G 6ol o )y (M@
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N),af~1 is cohomologous to the trivial Ny, 7(A(Q, ¢, R))/A(Q, ¢, R)(Ca(Q) x Cu(R)) 2-
cocycle by [9](Theorem 3.5.7.(iii)). Thus by viewing N7« 7(A(Q, ¢, R))/A(Q, ¢, R)(Ca(Q) X
Cu(R)) = A(I/QCs(Q), %, J/RCH(R)) as a subgroup of I/QCq(Q) x J/RCyg(R), we find
that @@~ is cohomologous to the trivial A(I/QCq(Q), 1, J/RCx(R)) 2-cocyle, and hence
the lemma holds. O

Lemma 12.6. Let (A(D,p,E),e ® f°) be a mazimal ~y-Brauer pair, where (D,e) is a
mazximal A-Brauer pair, (E, f) is a mazximal B-Brauer pair, and ¢ : E — D is an iso-
morphism. Let I be the inertial group of FCq(D)e in Ng(D) and let J be the inertial
group of FCy(E)f in Ng(FE). The virtual module ey(A(D, ¢, E))f is plus or minus an
indecomposable trivial source FNryj(A(D, ¢, E))(e ® f°)-module with vertex A(D, ¢, E),
and DefNIX' Do, B) (ev(A(D, ¢, E))f) is plus or minus an irreducible

Nixg(A(D,p,E))/(Z(D)x1)
FN1w i (A(D, ¢, E))(e @ f°)-module.

Proof. By Theorem 3.11.ii in [6], (A(D, ¢, E))(Z(D) x 1) is the defect group of
FN[XJ(A(D,QO,E))( ®f0)7 and hence FN[XJ(A(D7907 ))/A( 2 )(Z(D) X 1)(é®
Nrxs(A(Dyp,E )
f°) is a semisimple F-algebra. Thus as [DefNIIX;A((DjE))))/(Z(D)XI)( Y(A(D, ¢, E))f)] is
plus or minus an irreducible FNyx(A(D, ¢, E))/A(D, ¢, E)(Z(D) x 1)(e ® f°)-module
Nixs(A(Dp, . . .
by lemma 12.4.2(d), De fN,IX:]] A((D,ZE))))/(Z(D)xl)(€7<A(i)7 ¢, E))f) is plus or minus an irre-
ducible F N7« j(A(D, p, E))/A(D, ¢, E)(Z(D)x1)(e® f°)-module. Thus as ey(A(D, ¢, E)) f
may be Viewed as a virtual projective FNi«j(A(D, ¢, E))/A(D, ¢, E)-module and
Nrx 0B

Defu R o) 2oy EAD, ¢, E) f) = hd(ev(A(D, ¢, E)f), ex(A(D, ¢, E))f is

plus or minus an indecomposable trivial source F Nyyj(A(D, ¢, E))(e ® f°)-module with

vertex A(D, p, F), so the lemma holds. O

Lemma 12.7. There is a unique indecomposable (A, B)-bimodule M appearing in ~y such
that M has a vertex of the form A(D, ¢, E), where D is a defect group of A, E is a defect

group of B, and ¢ : E — D is an isomorphism. Moreover, [M] has coefficient 1 or —1 in

.

Proof. By lemma 11.9, there is a maximal A-Brauer pair (D, e), a maximal B-Brauer pair
(E, f), and an isomorphism ¢ : E — D such that ey(A(D,p, E))f # 0 in

TA(FNrxj(A(D, , E))(e® f°)). Thus there is an indecomposable (A, B)-bimodule M that
appears in « such that (A(D, p, F),e ® f°) is an M-Brauer pair. Therefore, A(D, ¢, F) is
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contained in a vertex U of M. On the otherhand, U is twisted diagonal and as M is an (A, B)-
bimodule, p; (U) is contained in a defect group of A, so it follows that A(D, ¢, E) = U, and
hence A(D, ¢, E) is a vertex of M.

Let N be an indecomposable (A, B)-bimodule that appears in « with vertex
A(D', ¢, E"), where D' is a defect group of A, E’ is a defect group of B, and ¢’ : B/ — D’ is
an isomorphism. Let ¢ and f’ be block idempotents of FCg(D’) and FCy(E’) respectively
such that (A(D', ¢/, E'), e’ ® (f')°) is a maximal N-Brauer pair. Then as G is transitive on
the maximal A-Brauer pairs by lemma 3.4.2, we may assume that (D,e) = (D', ¢’). Thus by
lemma 10.3, eN(A(D, @', E"))f" appears in ey(A(D, ¢, E"))f’, so ey(A(D, ¢, E"))f" # 0.
Therefore, by lemma 11.7, (E', f',¢') is H-conjugate to (E, f, ), and hence we may as-
sume that (E', f,¢') = (E, f,¢). Thus as ey(A(D,p,E))f is plus or minus an inde-
composable F Ny ;(A(D, ¢, E))(e ® f°)-module by lemma 12.6 and eM (A(D, ¢, E))f and
eN(A(D, ¢, E))f appear in ex(A(D, o, B))/,
eM(A(D,p,E))f =eN(A(D,p,E))f, and hence M = N by lemma 6.5.

This shows that M is the unique indecomposable (A, B)-bimodule that appears in
~ with vertex of the form given in the statement of the lemma. Furthermore, by lemma 12.6,
the coefficient of eM (A(D, ¢, E))f in ey(A(D, ¢, E)) f is plus or minus 1, so the coefficient
of M in + is plus or minus 1 by lemma 10.3. Thus the lemma holds. O

Definition 12.8. The indecomposable (A, B)-bimodule M of lemma 12.7 is called the maz-

tmal module of ~.

Theorem 12.9. (1) For every indecomposable (A, B)-bimodule M that appears in vy, every
M Brauer pair is a y-Brauer pair.

(2) Let M be the maximal module of .

(a) The set of M-Brauer pairs is equal to the set of v-Brauer pairs.

(b) The (A, B)-bimodule M is the unique indecomposable (A, B)-bimodule that appears in

v such that every ~v-Brauer pair is an M -Brauer pair.

Proof. Note that (1) holds by lemma 11.5 and lemma 11.6, so it suffices to prove (2). By
lemma 6.4 and lemma 11.9, to prove (a) it suffices to show that the set of maximal M-
Brauer pairs is equal to the set of maximal v-Brauer pairs, which is clearly the case from
(1), the definition of M, and lemma 11.9, so (a) holds. Now note that (b) holds by (a),

lemma 11.9, and lemma 12.7. O
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Lemma 12.10. Let (A(D, ¢, E),e ® f°) be a mazimal vy-Brauer pair, where (D,e) is a
mazximal A-Braver pair, (E, f) is a mazimal B-Brauer pair, and ¢ : E — D is an iso-
morphism. Let I be the inertial group of FCq(D)e in Ng(D) and let J be the inertial
group of FCy(E)f in Ng(E). Let Cq(Q) < S < I and let Cy(E) < T < J such that
o o Autg(D) o ¢ = Autr(E), and let M be the maximal module of vy. The (FSe, FTf)-
bimodule

IndSXT +(A(Do, E))(eM(A(D, 0, E))f) induces a Morita equivalence between F'Se and FTf.
Proof. This follows from lemma 12.2.2 and lemma 12.7. O

Theorem 12.11. Let D be a defect group of A, let E be a defect group of B, and let
¢ : E — D be an isomorphism such that v(A(D,p, E)) # 0. Let a € BI(FNg(D)) and
b € BI(FNg(E)) be the Brauer correspondents of A and B respectively, and let M be

N (D)x Ny (E) (M(A(D, ¢, E))) induces

the mazimal module of 7. The (a,b)-bimodule IndNGxH(A(DSDE))

a Morita equivalence between a and b.

Proof. Asv(A(D, ¢, E)) # 0, there exists block idempotents e of FCq(D) and f of FCy(FE)
such that ey(A(D, ¢, E))f # 0. Let I be the inertial group of FCg(D)e in Ng(D) and let
J be the inertial group of FCy(F) in Ng(F). By lemma 12.10, the (F'Ie, F'J f)-bimodule
Indf\,lX I(A(D%E))(GM(A(D, @, E))f) induces a Morita equivalence between Fle and FJf.
Thus as the (a, F'Ie)-bimodule F'Ng(D)e induces a Morita equivalence between a and Fle,
and the (FJf,b)-bimodule fFNy(E) induces a Morita equivalence between F'.Jf and b,
it follows that the (a, b)-bimodule F'Ng(D)e @p; IndNIx L(A(D.o, E))(eM(A(D7 0, E))f)®py
fFNg(FE) induces a Morita equivalence between a and b. Thus as

FNg(D)e @pr Indy” \p o py(eM(A(D, ¢, E)f) ©py fFNp(E) =

Indyo B T (eM(A(D, o, E))f) =

Nrx J(A(DﬁovE))

Ng(D)x Ny (E) Nexu(A(D,p,E))
In ng H(A(S‘PE))IndNIGXj{(A(D s;DE) (eM(A(D; ¢, E))f)

)
~ N Ny (FE
= Indy ¢ E L) (M(A(D, ¢, E))), the lemma holds. O

Theorem 12.12. Let (A(D,p,E),e ® f°) be a mazximal ~y-Brauer pair, where (D,e) is
a mazimal A-Brauer pair, (E, f) is a mazimal B-Brauer pair, and ¢ : E — D is an
isomorphism. Let I be the inertial group of FCg(D)e in Ng(D) and let J be the inertial
group of FCy(E)f in Ng(E). Let a € BI(FNg(D)) be the Brauer correspondent of A and
let b€ BI(FNu(E)) be the Brauer correspondent of B.

(1) Let DCg(D) < S < I and ECy(E) <T < J such that o' o Autg(D) o p = Autr(E),
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let i be a source idempotent of F'Se associated with (D, e) and let j be a source idempotent of
FTf associated with (E, f). The source algebras iF'Si and jFT7j are isomorphic as interior
E-algebras, where we view 1F'Si as an interior E-algebra via the isomorphism ¢ : E — D.

(2) Let Cq(D) < S < I and let Cy(E) < T < J such that o~ to Autg(D)op = Auty(E), let
i € pi(FCg(D)e), and let j € pi(FCH(E)f). The algebras iF'Si and jFTj are isomorphic as
interior ENT-algebras, where we view iF'Si as an interior ENT -algebra via the isomorphism
p:ENT —SnND.

(3) Let i be a source idempotent of a associated with (D,e) and j is a source idempotent of
b associated with (E, f). The source algebras iai of a and jbj of b are isomorphic as interior

FE-algebras.

Proof. By lemma 5.1 and lemma 5.2.3, it suffices to prove (2). Let M be the maximal mod-
ule of vy, and let V = IndfvjiJ(A(D’%E))(eM(A(D, 0, E))f). As V induces a Morita equiv-
alence between Fle and FJf by lemma 12.10 and V(A(D, ¢, E)) = eM(A(D,p,E))f
by lemma 4.19, V is indecomposable and A(D, ¢, F) is a vertex of V. Thus as V is a
trivial source module, V|Fle @ F.Jf° QFA(Dp,E) FA(D,p,E)- Now by viewing Fle as an
(Fle, FE)-bimodule via the isomorphism ¢ : EF — D, we may view Fle Qpp FJf as
(Fle, FJf)-bimodule. Furthermore, Fle @pgp FJf = Fle ® FJf° QFA(D,p,E) FADp,E)
as (Fle, FJf)-bimdules, and hence V|Fle @ pg FJf. Thus as V is indecomposable, there
exists primitive idempotents i’ € FCq(D)e and j' € FCy(F)f such that V|FIi' @ pg j'FJ.
As the blocks FCg(D)e and FCy(FE)f each have a unique projective indecomposable mod-
ule, i is conjugate to i’ in FCg(D) and j is conjugate to j in FCy(E). Thus it fol-
lows that FIi = FIi' as (FI, FE)-bimodules and jFJ = j'F.J as (FE, FJ)-bimodules.
Therefore, V|FIi @ g jFJ, and hence Vj = FIi as (FI, FE)-bimodules by [8](Theorem
11). As V(A(D, 9, E)) = eM(A(D, ¢, E))f, (eM(A(D, 0, E))j = V(A(D, ¢, E))j =
Vi(A(D,p,E)) = FLi(A(D,p,E)) =2 FCg(D)i as FNgxg(A(D,p, E))-modules. Let
W = Ind3" A (ppmy€M(A(D, ¢, E))f). As (eM(A(D, ¢, E))f)j = FCG(D)i as

. C~ 7. SX(ENT ,
FNgyr(A(D, ¢, E'))-modules, it follows that Wj = IndNZiE?A%D%E))((eM(A(D, v, E))f)j)

~ Sx(ENT N A ) C . .
= IndNZiETAzD,%E))(FCG(D)Z) = F'Si, and hence Wj = FSi as (F'S, F(ENT))-bimodules.
Thus as W induces a Morita equivalence between FSe and FT f by lemma 12.10, it follows
that jJFTj = (Endrpsx1(Wj))° = (Endpsxi(FS1))° = iF'Si as interior E N T-algebras, so

the lemma holds. O

Lemma 12.13. Let (A(D, ¢, E),e® f°) be a mazimal y-Brauer pair, where (D, e) is a max-
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imal A-Brauer, (E, f) is a mazimal B-Brauer pair and ¢ : E — D is an isomorphism. Let
A and B denote the fusion systems associated with (D, e) and (E, f) respectively. For Q < D
and R < E, let eq denote the unique block idempotent of FCq(Q) such that (Q,eq) < (D, e)
and let fr denote the unique block idempotent of FCr(R) such that (R, fr) < (E, f). Let
R < E and let Q = p(R). Let I be the inertial group of FCq(Q)eq in Ng(Q), and let J be
the inertial group of FCr(R)fr in Nu(R).

(1) Suppose that Q is fully A-centralized, let Ca(QCp(Q)) < S <
Neg@((Cp(Q)eqep (@) and let Cy(RCE(R)) < T < Neyr)((Ce(R), frop(r))) such
that ¢! o Auts(Cp(Q)) o ¢ = Auty(Cgr(R)). The element

Ind3 Ao €Qen@1(AQCD(Q), ¢, RCE(R)) frep(r)) €

TA(FSGQCD(Q), FT froy(r)) 8 plus or minus an indecomposable

(FSeqep @), FT frop(r))-bimodule that induces a Morita equivalence between FSeqc,,(q)
and F'T frop(R)-

(2) Suppose that Q is fully A-normalized. Let Cq(Np(Q)) < S < Ni((Np(@),enp,@)))
and let Cy(Np(R)) < T < Nj((Ne(R), fnyr)) such that o~' o Auts(Np(Q)) o ¢ =
Autp(Ng(R)). The element
Indisz(A(ND(Q)%NE(R)))(GND(Q)'Y(A(ND(Q)u‘PaNE(R)))fNE(R)) €

TA(FSeND(Q), FT fn,(r)) is plus or minus an indecomposable (FSen,, 0y, F'T fn,(r))-bimodule

which induces a Morita equivalence between FSey, gy and FT fy,(r)-

Proof. Note that (1) holds by lemma 12.3.1, lemma 12.10, and lemma 4.17, and (2) holds
by lemma 12.3.2, lemma 12.10, and lemma 4.19. ]
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Chapter 13

Finiteness of the set T2(A, B)

Throughout this section, let p be a prime and let (K, O, F') be a p-modular system
with F' algebraically closed and K large enough. Let G and H be finite groups and let
A = FGey and B = FHep be blocks of FG and FH respectively. Let S®(A, B) denote
the poset of A ® B°-Brauer pairs of the form (A(Q, ¢, R),e ® f°), where (Q,e) is an A-
Brauer pair, (R, f) is a B-Brauer pair, and ¢ : R — @ is an isomorphism, and let S*(A, B)
denote the set of G x H-conjugacy classes of S®(A, B).

Let (A(Q, ¢, R), e ® f°) € SA(A, B), let I be the inertial group of FCg(Q)e in
N¢g(Q) and let J be the inertial group of FCy(R)f in Ng(R). Define the group homomor-
phism
V(A R)eofe) i TH(A,B) — Hom(R(K N (A(Q))(€® €°)), RIK N (A(Q, 0, R))(¢®
7o) by atmmeors (M) = [M]] €xcoi@) (1 (AQ. ¢, R)AK for 4 € TA(4, B)
and a M a KNj»(A(Q))(é ® e°)-module.

Let
V= @ V(A R)enre) T2 (A, B) —
(A(Q,p,R),e®f°)ESA(A,B) )
& Hom(R(K N1 1(A(Q))(€ ® €°)), R(K N1y s (A(Q, ¢, R)(E® f°))).

(A(Q,p,R),e®f°)ESA(A,B)

Lemma 13.1. The group homomorphism V is injective.

Proof. 1f (X,0),(Y,7) € S®(A, B) such that (X,0) £gxn (Y,7), and M is an indecom-
posable trivial source (A, B)-bimodule such that (Y, 7) is a maximal M-Brauer pair, then
V(x,0)([M]) = 0 by lemma 6.4. Thus by an upper triangular matrix argument, it suffices to
show that for (A(Q, ¢, R),e® f°) € SA(A, B) and v € T?(A, B) such that every indecom-
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posable (A, B)-bimodule that appears in v has maximal Brauer pair (A(Q, ¢, R),e ® f°),

if \II(A(R,%Q)’e@Jco)(y) =0, then v = 0. As ‘I’(A(R,w,Q),ee@fO)(’Y) =0, (e7(A(Q, ¢, R))f)K =

[[KCa(Q)]] ®kcu) (ev(A(Q, ¢, R))f) = 0. Let I be the inertial group of FCg(Q)e
in Ng(Q) and let J be the inertial group of FCyx(R)f in Ng(R). As ey(A(Q, ¢, R))f
is a virtual projective F N7y (A(Q, 9, R))/A(Q, e, R)-module and (ey(A(Q, ¢, R))f)K =
0,ev(A(Q, ¢, R))f =0in TA(FNrxs(A(Q, ¢, R))(e® f°)) by the injectivity of the decom-
position map, and hence v = 0 by lemma 10.3. Thus the lemma holds. ]

Theorem 13.2. T2(A, B) is a finite set and T (A, A) is a finite group.

Proof. Tt follows from lemma 11.1.1 that U(T2(A, B)) is finite, so as ¥ is injective by lemma
13.1, T2 (A, B) is finite. O
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Chapter 14

Isotypies

Throughout this section, let p be a prime and let (K, O, F') be a p-modular system
with F' algebraically closed and K large enough. Let G and H be finite groups, let A =
FGey be a block of FG, and let B = FHep be a block of FH.

We recall the notion of an isotypy, which was defined in [5](Définition 4.6 and

Remarque 2 following it.)

Definition 14.1. An isotypy is a tuple I = (D,e,p, E, f,(ur)r<E) satisfying the follow-
mg:

(1) (D, e) is a mazimal A-Brauer pair, (E, f) is a maximal B-Brauer pair and ¢ : E — D is
an isomorphism. Let A be the fusion system associated with (D,e) and let B be the fusion
system associated with (E, f). For Q < D, let eq denote the unique block idempotent of
FCq(Q) such that (Q,eq) < (D,e) and for R < E, let fr denote the unique block idempo-
tent of FCg(R) such that (R, fr) < (E, f).

(2) The isomorphism ¢ : E — D is an isomorphism between B and A.

(3) For R < E,ug is a perfect isometry between FCpg(R)fr and FCq(Q)eq, where Q =
@(R). We denote by I : KR(KCx(R)fr) — KR(KCg(Q)eg) the K-linear map defined
by X — 1t @k ey (r) X for x € KR(KCH(R)fR).

(4) Let R < E and let Q = ¢(R). For g € G and h € H such that c; € Hom4(Q, D) and
cn € Homp(R, E) such that c, = ¢ ' ocgo ¢ in Homp(R, E),

IhR = (g’h)IR, where 9MI 5 denotes the K -linear map cg 0 Ip o cp-1.

(5) Let R < E, let Q = p(R), let y € Cg(R) and let © = p(y) € Cp(Q). The equality

(z.eQ<r>) ¥ fr<y>)
dCGe(%j "l olp =1IRcys o dCyH gg)w holds.
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Lemma 14.2. For a tuple [ = (D,e, ¢, E, f,(1ur)r<k) such that I satisfies conditions (1)-
(4) of definition 14.1, I is an isotypy if and only if the equation in condition (5) of definition
14.1 is satisfied for all R < E such that R is fully B-centralized and for all y € Cg(R).

Proof. We adopt the notation of definition 14.1. Suppose that I satisfies conditions (1)-
(4) of definition 14.1 and that the equation in condition (5) of definition 14.1 is satisfied
for all R < E such that R is fully B-centralized and for all y € Cg(R). Let R < E, let

Q = ¢(R), let y € Cp(R) and let x = p(y) € Cp(Q). We need to show that d\&ea<e>)

Ca(Q)
Ir = Ip<y> o dgﬁlf(fg”). By the extension axiom for fusion systems and the fact that every

fully B-normalized subgroup of E is fully B-centralized by [7](Proposition 2.5), there is
an h € H such that "R is a fully B-centralized subgroup of F and ¢, € H omp(R <
y >,E). Thus as ¢ is an isomorphism between B and A, there exists ¢ € G such that

cg € Homa(Q < x >,D) and ¢, = ¢ Locyo¢ in Homp(R < y >,E;L). Therefore,
(9z, ) ("y.fn )

€g h,
g,
Q< x> o I [ R< My> by

_ g h - : .

(M) = %, so as "R is fully B-centralized, dCG(gQ) - P hys © ch("R)

our hypothesis. As I satisfies condition (4) of definition 14.1, IhR = (@M1, and IhR< hy> =

(9’h)IR<y>. As cg € Homy(Q <z >,D) and ¢, € Homp(R < y >,E),egQ<gw> = %eQ<a>
) h

(9z,e9 ) g ("y,fh
_ h Q< 9z>’ (z.eQ<z>) R<hy>" (Y, frR<y>)
and th< hy> T fR<y>7 S0 ng(gQ) - dC’G(Q) and ch(hR) ! - dC’H(R)y

) . @7 (e, )
(,h) — Q< x> _
o W Iy = ca(Q) Ing)

—1
g 9z e
g
( ’ Q< 9>

Ca("Q)
) (g,:h)~1

(:D,EQ<Z>) _
Therefore, dCG(Q) olp =

(gvh)71 (

ho_h h
(IhR< hy>odCH(hI§)< vy = ((g’h)IR<y>o d(cyl;f(lgw)) _ IR<y>odg’I;f(§<)y>), <o the

lemma holds. O
Lemma 14.3. Let [ = (D,e,p, E, f,(r)r<E) be a tuple such that I satisfies conditions
(1)-(3) of definition 14.1. Adopt the notation of definition 14.1. The tuple I is an isotypy
if and only if I satisfies the following conditions:

(1) Let R < E, let Q = ¢(R), let h € H such that ¢, € Homp(R, E), and let g € G such
that ¢, € Homa(Q, D) and ¢, = ¢~ ' o cyo ¢ in Homp(R, E). The equality fohg, = @hup
holds.

(2) Let R < E such that R is fully B-centralized, and let QQ = p(R).

(a) Let y € Cg(R) and let x = ¢(y) € Cp(Q). For 2’ a p'-element in Cq(Q < x >) and ¢’
a p'-element in Cy(R <y >), pr(23'égers ® yy’ﬂ%:;) = fir<y>((2', "))

(b) Let (< x >,0) be an FCq(Q)eq-Brauer pair and let (< y >,7) be an FCy(R)fr-
Brauer pair, where x is a p-element of Cq(Q) and y is a p-element of Cy(R). If there exist
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p'-elements ' € Cq(Q < x >) and y' € Cy(R < y >) such that ug(z2's @ yy'r°) # 0,
then there exists z € Cg(R) such that (y,T) is Cg(R)-conjugate to (z, fr<z>) and (z,0) is
CG(Q)’ConjUQGte to (Sp(z)aeQ<<p(z)>)'

Proof. Clearly condition (4) of definition 14.1 is equivalent to condition (1), so by lemma
14.2, it suffices to show that if I satisfies condition (4) of definition 14.1, then I satisfies
condition (2) if and only if for R < E such that R is fully B-centralized and for y € Cg(R)
the equality in condition (5) of definition 14.1 is satisfied. Let R < E such that R is fully
B-centralized. As ¢ is an isomorphism between B and A, we also have that @ is fully A-
centralized. Thus by [6](Theorem 3.11), (Cp(Q), eqgcyy()) is @ maximal F'Cq(Q)eq-Brauer
pair and (Cg(R), frey(r)) is @ maximal F'Cy(R)fg-Brauer pair, so the lemma holds by
[5](Proposition 4.7). O

Lemma 14.4. Let I = (D,e,p, E, f,(tr)r<E) be a tuple such that I satisfies conditions
(1)-(3) of definition 14.1. Adopt the notation of definition 14.1. The tuple I is an isotypy
if and only if I satisfies the following conditions:

(1) Let R < E, let Q = p(R), let h € H such that ¢, € Homp(R, E), and let g € G such
that ¢, € Homa(Q, D) and ¢, = ¢! o cyo ¢ in Homp(R, E). The equality [, = @hup
holds.

(2) Let R < FE and let Q = ¢(R).

(a) Let y € Cg(R) and let x = ¢(y) € Cp(Q). For 2’ a p'-element in Cq(Q < x >) and v’
a p'-element in Cyr(R <y >), pr(r2'égors @ yy’ﬁ;;) = pr<y>((2',Y)).

(b) Let (< x >,0) be an FCq(Q)eq-Brauer pair and let (< y >,7) be an FCy(R)fr-
Brauer pair, where x is a p-element of Ca(Q) and y is a p-element of Cy(R). If there exist
p'-elements ' € Cq(Q <z >) andy' € Cx(R <y >) such that pr(x2'c @ yy'T°) # 0, then
there exist elements g € G and h € H such that ¢, € HomA(Q, D), cy, € Homp(R, E),cp, =
¢ loc,0p in Homg(R, E), and there exists z € Cp("R) such that "y, 1) = (=, th<Z>)

and x,0) = (90(2)769Q<<p(z)>)'

Proof. By lemma 14.3, it suffices to show that if I satisfies condition (1), then I satisfies
condition (2) if and only if I satisfies condition (2) of lemma 14.3. Suppose that I satisfies
condition (1).

Suppose that I satisfies condition (2) of the lemma. Clearly, I satisfies con-

dition (2)(a) of lemma 14.3, so it suffices to show that I satisfies condition (2)(b) of
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lemma 14.3. Let R < FE such that R is fully B-centralized and let @ = @(R). Let
(< z>,0) be an FCg(Q)eg-Brauer pair and let (< y >,7) be an FCy(R) fg-Brauer pair,
where x is a p-element of C;(Q) and y is a p-element of Cy(R). Suppose there exist p'-
elements ' € Cq(Q < z >) and y € Cy(R < y >) such that ur(zz'c @ yy'°) # 0.
As R is fully B-centralized, (Cg(R), froy(r)) is @ maximal FCp(R)fr-Brauer pair by
[6](Theorem 3.11). Therefore, by lemma 3.4.2, (< y >,7) is Cy(R)-conjugate to a sub-
pair of (Cg(R), frop(r))- Thus we may assume that y € Cp(R) and 7 = fr<y>. As
condition (2) of the lemma holds, there exist elements ¢ € G and h € H such that
cg € Homa(Q,D),cy, € Homp(R,E),cp, = ¢ ' ocgop in Homp(R, E), and there exists
z € Cp("R) such that h(y,fR<y>) = (z, fn

R<z>
Y >, freys) = ("R < 2 >, th<Z>), cn € Homg(R <y >, F), so as ¢ is an isomorphism be-

h
) and Yz,0) = (0(2); €99y )- As (R <

tween B and A, there exists s € G such that cs € Hom4(Q < ¢(y) >, D) and ¢, = ¢ locsop
in Homg(R < y >, E). Therefore, “o(y) = o("y) = ¢(z) = %, so ¢ %p(y) = z. As

-1 -1
cs € Homa(Q < ¢(y) >, D), eqep(y)> = €99<p(z)>r 50 ¢ eQepy)> = ¢ €99 o) = O

Yocgop = ¢, = plocsop in Homp(R, E),

Therefore, g_ls(cp(y), eQ<p(y)>) = (7,0) and as ¢~
it follows that g~'s € C(Q), so condition (2)(b) of lemma 14.3 holds.

Now suppose that I satisfies condition (2) of lemma 14.3. First we show that [
satisfies condition (2)(a). Let R < F and let Q = ¢(R). Let y € Cg(R), let z = ¢(y) €
Cp(Q), let 2’ be a p'-element in Cq(Q < x >) and let 3 be a p’-element in Cy(R <y >).
Let h € H such that "R is fully B-centralized and ¢, € Homg(R < y >,E). As ¢ is
an isomorphism between B and A, there exists ¢ € G such that ¢; € Homy(Q < z >

1

;D) and ¢, = ¢~  ocgop in Homp(R < y >, E). Thus as I satisfies condition (1) and

g,/—\_/ h/ - o
$69Q<gl,> ® hy nyR<hy>) -

) = tR<y>(2',y'), so I satisfies condition (2)(a). Thus it remains to show

(2) of lemma 14.3, pg(r2'égrs ® yy’f§<y>) = ,uhR(ga:

h
lu’hR< h,y>(gl'/7 y/

that I satisfies condition (2)(b).

Let (< z >,0) be an F'Cg(Q)eg-Brauer pair and let (< y >,7) be an FCy(R) fr-
Brauer pair, where z is a p-element of C(Q) and vy is a p-element of C'iy(R). Suppose there
exist p/-elements 2’/ € Cq(Q < x >) and y' € Cy(R < y >) such that up(r2'c @ yy'r°) # 0.
As [ satisfies condition (1), we may assume that R is fully B-centralized. Thus as I satisfies
condition (2)(b) of lemma 14.3, it follows that I satisfies condition (2)(b), so the lemma
holds. O

Theorem 14.5. Suppose that A and B are p-permutation equivalent and let v € TOA (A, B)
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be a p-permutation equivalence. Let (A(D,p, E),e® f°) be a mazimal v-Brauer pair where
(D, e) is a mazimal A-Brauer pair, (E, f) is a mazimal B-Brauer pair, and ¢ : E — D s
an isomorphism. Adopt the notation of definition 14.1. The tuple

I=(D,e,0,B. f,((eamyV(Ale(R), . R)) fr)" )r<E) is an isotypy.

Proof. The tuple I satisfies condition (1) of definition 14.1 by construction, and condition
(2) is satisfied by lemma 12.1. Next note that for R < FE, every module that appears
in e, (r)Y(A(p(R), ¢, R))fr has twisted diagonal vertex and hence is projective as a left
FCg(p(R))-module and as a right F'C(R)-module, so I satisfies condition (3) of definition
14.1 by lemma 12.2.2 and [5](Theorem 1.5(2)). Thus by lemma 14.4, it suffices to show that
I satisfies conditions (1) and (2) of lemma 14.4.

Let R < E, let Q@ = ¢(R), let h € H such that ¢, € Homp(R, E), and let
g € G such that ¢; € Homa(Q,D) and ¢, = ¢ 1 ocyo0 ¢ in Homg(R,E). As fng, =
(espV(ACQ, @, "R)) )" = (%e@(A(9Q, cgpen-1, "R)) "fr)* =
(g’h)((er(A(Q, 0, R) fr)¥) = @Mpup, I satisfies condition (1) of lemma 14.4.

Let R < E, let @ = ¢(R), let y € Cg(R), let z = ¢(y) € Cp(Q), let 2’ be a
pl-element in Cg(Q < = >) and let ¢’ be a p/-element in O (R < y >). As pr(22/égops @
v Tcys) = (V(AQu 9, R) )" (22 eqZaz@yy Fi o) = ((eV(A(Qu 0, R FR)(< (2,) >
N @'éqzes © Y feys) =
(eqeast(AQ < & >0, R < y ) freys) < (#,4)) = fneys (@', y')), 50 T satisfies condi-
tion (2)(a) of lemma 14.4.

Let R < E, let Q = p(R), let (< z >,0) be an FCg(Q)eg-Brauer pair and let
(< y >,7) be an FCy(R)fr-Brauer pair, where z is a p-element of C(Q) and y is a
p-element of C'y(R). Suppose there exist p’-elements 2/ € Cq(Q < x >) and ¢ € Cy(R <
y >) such that pur(r2'c @ yy't) # 0. As pr(22'5 @yy't°) = (egV(A(Q, ¢, R)) fr) K (22'5 ®
') = (en(A@ 0, R)R)(< (@) >)K (5 @ y7) = (1(AQ¢,R) < (w,y) >
)T)E((2', ), it follows that ov(A(Q,p, R) < (z,y) >)7 # 0, and hence (A(Q, ¢, R) <
(z,y) >,0®7°) is a y-Brauer pair. Thus by lemma 11.9, there exists g € G and h € H such
that (A(Q, ¢, R) < (2,y) >,0 ® 7°) < (A(D, cypcp-1, "E), % @ "f°). Therefore, 9 =
6971Q<g*1x> and "7 = fh71R<h’1y>
(< y>,7)is an FCg(R)fr-Brauer pair, (Q,eq) < (@ <z >,0) and (R, fr) < (R <y >
7), 80 g_l(Q,eQ) <9 Q<zr>0)=(9"Q< 9 > €,-1 . ), and "R, fr) <

Q<9I >
-1 € Homy(Q, D) and

. As (< x >,0) is an FCg(Q)eqg-Brauer pair and

h71 _ h*l h1
(R<y>71)=("R< Yy >,fh71R<h_ly>). Therefore, ¢,
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¢p-1 € Homp(R, E). Furthermore, as A(Q, ¢, R) < (z,y) >< A(YD, cypcp—1, "E), it follows
that c,-1 = ¢~ toc,-100 in Homp(R, E) and ¢( "'y) = 9" 'z Thus it follows that I satisfies
condition (2)(b) of lemma 14.4, so the lemma holds. O
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Chapter 15

A character-theoretic criterion for

p-permutation equivalences

Throughout this section, let p be a prime and let (K, O, F') be a p-modular system
with F' algebraically closed and K large enough. Let G and H be finite groups, let A =
FGey be a block of FG and let B = FHepg be a block of FH.

Lemma 15.1. Let (D, e) be a mazimal A-Brauer pair and let (E, f) be a mazimal B-Brauer
pair such that there is an isomorphism ¢ : E — D such that ¢ induces an isomorphism
between the fusion system B associated with (E,f) and the fusion system A associated
with (D,e). For Q < D, let eq denote the unique block idempotent of FCq(Q) such that
(Q,eq) < (D,e), and for R < E, let fr denote the unique block idempotent of FC(R)
such that (R, fr) < (E, f). Let @ < D and let R = ¢~1(Q). The triple (R, fr,p) lies in
the unique H-conjugacy class of triples (R', f',¢’) such that (R', f') is a B-Brauer pair,
¢+ R — Q is an isomorphism, and (A(Q, ¢, R'),eq ® (f)°) <axu (A(D,¢,E),e® f°).

Proof. We need to show that if (R’, f’, ¢') is a triple such that (A(Q, ¢', R'), eq®(f")°) <axu
(A(D,p,E),e® f°), then (R, fr,p) and (R, f',¢') are H-conjugate. By hypothesis there
exists (g,h) € G x H such that (A(9Q, cy¢'c;, "R, %eq @ "(f1)°) < (A(D, ¢, E),e® f°).
As (Q,eq), (Q, %q) < (D,e),cg_1 19 — Q € A, soas ¢ 1 E — D is an isomorphism
between B and A, w‘lcglgp : "R' — R € B. Thus there exists y € H such that yh(R’, =
(R, fr) and c;lgo = ¢y as homomorphisms from "R to Q. As A(gQ,cggo’cgl, hR’) <
A(D,p,E),A(Q,¢',R') = A(Q,cg_lcpch,R’). Therefore, (R, f',¢’) =

(R, flocy oen) = (R fopem) = YR, frog), so (R, fry@) and (R, f',¢') are H-
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conjugate and hence the lemma holds. O

Lemma 15.2. Let v € T?(A, B) such that the mazimal v-Brauer pairs form a G x H-
conjugacy class consisting of A ® B°-Brauer pairs of the form (A(D, ¢, E),e ® f°), where
(D,e) is a mazimal A-Brauver, (E, f) is a maximal B-Brauer pair, and ¢ : E — D is an
isomorphism of groups that induces an isomorphism between the fusion systems associated
with (E, f) and (D, e) respectively. The element ~ is a p-permutation equivalence between
A and B if and only if (ex(A(Q, 0 RDNX @ ey (€1(A@, 0, RS = [KCo(Q)]
in T*(KNi1x1(A(Q))(€® €2)) and ((ev(A(Q, ¢, R) [)°)F ®kceq) (eV(AQ, ¢, R) )X =
[[KCH(R)f]] in TA(K Ny (A(R))(f®f°)) for any A® B°-Brauer pair (A(Q, ¢, R), e® f°)
contained in a mazximal v-Brauer pair, where I is the inertial group of FCq(Q)e in Ng(Q)
and J is the inertial group of FCy(R)f in Ny (R).

Proof. We have seen in the proof of lemma 12.2.2 that if v is a p-permutation equivalence,
then (e4(A(Q, 2, R)HX @xccniy (1(AQu 0, BN = [[KCo(Q)d] in
TA(K N1 (AQ)(E © @) and ((ev(A(@: 0, R) )X Sxccni@) (1(AQ, 0, R) K =
[[KCy(R)f]] in TA(K Ny s(A(R))(f® f°)) for any A® B°-Brauer pair (A(Q, ¢, R), e® f°)
contained in a maximal y-Brauer pair, where I is the inertial group of FCq(Q)e in Ng(Q)
and J is the inertial group of FCx(R)f in Ny (R), so it remains to prove the converse. By
symmetry, it suffices to show that v @ pp 7° = [A] in T2 (A, A).

As the group homomorphism V¥ of lemma 13.1 is injective, it suffices to show that
for any A-Brauer pair (Q, ), (e(y®rmy°)(A(Q))e)* = [[KCq(Q)e]] in T (K Nrx1(A(Q)) (€
e°)), and that for any A ® A°-Brauer pair of the form (A(Q,«,U), e® €°), where (Q,e) and
(U, €) are A-Brauer pairs and o : U — @Q is an isomorphism, if (e(Y® rg7°) (A(Q, o, U))e) K #
0 in TA(KNix(AQ,a,U)) (€ @ €°)), then (A(Q,,U),e ® €°) is G x G-conjugate to
(A(Q),e ® €°), where I is the inertial group of FCg(Q)e in Ng(Q) and L is the inertial
group of FCq(U)e in Ng(Q).

Let (Q,e) be an A-Brauer pair and let I be the inertial group of FCg(Q)e in

®

Ng(Q). Tt follows from our hypothesis and from lemma 15.1 that there is a unique H-
conjugacy class of triples (R, f,¢) such that (R, f) is a B-Brauer pair, ¢ : R — @ is an
isomorphism, and (A(Q, ¢, R),e® f°) is a y-Brauer pair. Thus by lemma 7.6.2 and our hy-
pothesis, (e(y@rm71°)(A(Q))e)" = (ev(A(Q, ¢, R) /) @Ky (r) ((ev(A(Q, ¢, R)) f)) =
[KCa(Q)e]] in

TA(KNix1(A(Q))(E® €)).
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Now suppose that (A(Q,a,U),e ® €°) is an A @ A°-Brauer pair, where (Q,e)
and (U,e) are A-Brauer pairs and a : U — @ is an isomorphism and that (e(y @rn
YNA(Q, o, U))e)E # 0 in TA(K Ny (A(Q, o, U))(€ ® €°)), where I is the inertial group
of FCz(Q)e in Ng(Q) and L is the inertial group of FCq(U)e in Ng(U). By lemma 7.5.2,
there exists a quadruple (R, f,p,1), where (R, f) is a B-Brauer pair and ¢ : R — Q
and ¢ : U — R is are isomorphisms such that o = ¢ o9 and (A(R,¢~ 1, Q), f @ €°)
and (A(R,¢,U), f ® €°) are y°-Brauer pairs. Thus by our hypothesis and lemma 15.1,
there exists g € G such that YU, e,v) = (Q,e, o7 1). Therefore, a = %L oy = ¢, s0
(1’9)(A(Q, a,U),e®e€%) = (A(Q),e ® e°), and hence the lemma holds. O
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