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Abstract

p-permutation equivalences between blocks of finite groups

by

Philipp Perepelitsky

Let G and H be finite groups. Let A be a block of FG and let B be a block of FH.

A p-permutation equivalence between A and B is an element γ in the group of (A,B)-p-

permutation bimodules with twisted diagonal vertices such that γ ·H γ◦ = [A] and γ◦ ·G
γ = [B]. A p-permutation equivalence lies between a splendid Rickard equivalence and an

isotypy.

We introduce the notion of a γ-Brauer pair, which generalizes the notion of a

Brauer pair for a p-block of a finite group. The γ-Brauer pairs satisfy an appropriate Sylow

theorem. Furthermore, each maximal γ-Brauer pair identifies the defect groups, fusion

systems and Külshammer-Puig classes of A and B. Additionally, the Brauer construction

applied to γ induces a p-permutation equivalence at the local level, and a splendid Morita

equivalence between the Brauer correspondents of A and B.
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Chapter 1

Introduction

Let G and H be finite groups. A subgroup U of G × H is twisted diagonal if

there are isomorphic subgroups Q of G and R of H and an isomorphism ϕ : R → Q such

that U = {(ϕ(r), r) : r ∈ R}.
Let A be a block of FG and let B be a block of FH. We denote by T∆(A,B)

the Grothendieck group with respect to the direct sum relation of trivial source (A,B)-

bimodules whose indecomposable direct summands have twisted diagonal vertices. Intro-

duced in [3] was the notion of a p-permutation equivalence between A and B, which

is an element γ ∈ T∆(A,B) such that γ ⊗B γo = [A] in T∆(A,A) and γo ⊗A γ = [B] in

T∆(B,B). It was also shown in [3] that the existence of a splendid Rickard equivalence

(introduced in [12]) between A and B implies the existence of a p-permutation equivalence

between A and B. In this paper, we show that the existence of a p-permutation equivalence

between A and B implies the existence of an isotypy (introduced in [5]) between A and

B (see Theorem 14.5). Moreover, we show that a p-permutation equivalence between A

and B determines an identification between many of the important invariants of A and B,

including their defect groups, fusion systems, and Külshammer-Puig classes.

We introduce the notion of a Brauer pair for a virtual trivial source module (see

Definition 10.4), which generalizes the notion of a Brauer pair for a p-block of a finite group

introduced in [1]. We show that applying the Brauer construction to a p-permutation equiv-

alence γ between A and B at a γ-Brauer pair yields a p-permutation equivalence between

corresponding Brauer correspondents of A and B (see Theorem 12.2). An analogous result

for basic Rickard equivalences was proved in [11], generalizing an earlier result for splendid

Rickard equivalences that was obtained in [12] under certain additional assumptions. We

1



determine the maximal Brauer pairs of a p-permutation equivalence γ between A and B,

and show that they form a G × H-conjugacy class (see Theorem 11.9). This generalizes

the “Sylow theorem” for Brauer pairs of a p-block of a finite group proved in [1]. We show

that a maximal γ-Brauer pair determines an isomorphism between the fusion systems of A

and B respectively (see Theorem 12.1). This generalizes the analogous result for splendid

Rickard equivalences proved in [10], where the result was in fact proved for basic Rickard

equivalences. We also show that the γ-Brauer pairs identify the Külshammer-Puig classes

of A and B respectively (see Theorem 12.5).

We show that every Brauer pair of an indecomposable (A,B)-bimodule with

nonzero coefficient in γ is a γ-Brauer, but that there is a unique indecomposable (A,B)-

bimodule M with nonzero coefficient in γ such that every γ-Brauer pair is an M -Brauer

pair (see Theorem 12.9). Thus every Brauer pair of every other indecomposable (A,B)-

bimodule with nonzero coefficient in γ is an M -Brauer pair, so we call M the maximal

module of γ (see Definition 12.8). The coefficient of M in γ is 1 or −1. In Theorem 12.11,

we show that the “Brauer correspondent” of M induces a splendid Morita equivalence be-

tween the Brauer correspondent of A and the Brauer correspondent of B, thus proving that

the Brauer corresponents are Puig equivalent (see Theorem 12.12) by a result given in [14]

and independently in [10] (see also [8] Theorem 4.1). In Theorem 13.2, we show that there

are only finitely many p-permutation equivalences between A and B.
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Chapter 2

Group theoretic preliminaries

Throughout this section, let G and H be finite groups.

Definition 2.1. For g ∈ G, let cg : G → G denote the automorphism of conjugation by

g. For h ∈ G and Ω ⊆ G, we denote cg(h) = ghg−1 by gh and cg(Ω) by gΩ. We denote

by Aut(G) the automorphism group of G, and we denote by 1G the identity element of

Aut(G). If H is a normal subgroup of G, we denote by AutG(H) the subgroup of Aut(H)

consisting of all automorphisms of the form cg for g ∈ G. If H and K are subgroups of

G, we write H ≤G K if H is G-conjugate to a subgroup of K, and we write H =G K if

H is G-conjugate to K. Similarly, for elements g, k ∈ G, we write g =G k if g and k are

G-conjugate.

Definition 2.2. For a prime p, we denote by Gp′ the p′-elements of G, which are the

elements of G whose order is not divisible by p.

Definition 2.3. Let Γ be a set on which G acts. We denote by Γ/ ∼G a complete set

of representatives for the orbits of G on Γ. If H ≤ G, we denote by ΓH the subset of Γ

consisting of the H-fixed points of Γ.

Definition 2.4. We denote by p1 : G × H → G the projection homomorphism of G × H
onto G and by p2 : G × H → H the projection homomorphism of G × H onto H. For a

subgroup U of G × H, we denote by k1(U) the normal subgroup {g ∈ G : (g, 1) ∈ U} of

p1(U) and by k2(U) the normal subgroup {h ∈ H : (1, h) ∈ U} of p2(U).

Definition 2.5. We say that a subgroup U of G × H is twisted diagonal if there are

isomorphic subgroups Q of G and R of H and an isomorphism ϕ : R → Q such that U =
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{(ϕ(r), r) : r ∈ R}. In this case, we denote the twisted diagonal subgroup U by ∆(Q,ϕ,R).

Note that a subgroup U of G×H is twisted diagonal if and only if k1(U) = k2(U) = 1. For

Q ≤ G, we denote the subgroup ∆(Q, 1Q, Q) of G×G by ∆(Q).

Definition 2.6. Let K be a finite group and let U and V be subgroups of G × H and

H × K respectively. We denote by Uo the subgroup of H × G consisting of all elements

(h, g) ∈ H×G such that (g, h) ∈ U. We denote by U ∗V the subgroup of G×K consisting of

all elements (g, k) ∈ G×K such that there is an h ∈ H such that (g, h) ∈ U and (h, k) ∈ V.

Definition 2.7. Let Q and R be isomorphic subgroup of G and H respectively, and let

ϕ : R → Q be an isomorphism. Let CG(Q) ≤ I ≤ NG(Q) and let CH(R) ≤ J ≤ NH(R).

We denote by N(ϕ,J,I) the subgroup of J consisting of all elements h ∈ J such that there

exists g ∈ I such that cg ◦ ϕ = ϕ ◦ ch as isomorphisms from R to Q.

Lemma 2.8. Let Q be a subgroup of G and let R be a subgroup of H such that there is an

isomorphism ϕ : R→ Q.

(1) For (g, h) ∈ G×H, (g,h)∆(Q,ϕ,R) = ∆( gQ, cgϕc−1
h , hR).

(2) We have that NG×G(∆(Q)) = ∆(NG(Q))(CG(Q)× 1).

Proof. This is straightforward.

Lemma 2.9. Let Q be a subgroup of G and let R be a subgroup of H such that there is an

isomorphism ϕ : R→ Q. Let CG(Q) ≤ I ≤ NG(Q) and let CH(R) ≤ J ≤ NH(R).

(1) We have that p1(NI×J(∆(Q,ϕ,R))) = N(ϕ−1,I,J) and p2(NI×J(∆(Q,ϕ,R))) = N(ϕ,J,I).

(2) k1((NI×J(∆(Q,ϕ,R)))) = CG(Q) and k2((NI×J(∆(Q,ϕ,R)))) = CH(R).

Proof. This follows immediately from lemma 2.8.1.

Lemma 2.10. For a subgroup X of G×H,X ∗Xo = ∆(p1(X))(k1(X)× 1).

Proof. It is easy to see that ∆(p1(X))(k1(X) × 1) ≤ X ∗ Xo, so it remains to prove that

X ∗ Xo ≤ ∆(p1(X))(k1(X) × 1). Let (g, r) ∈ X ∗ Xo. There exists h ∈ H such that

(g, h), (r, h) ∈ X, so (r−1g, 1) ∈ X and hence g ∈ rk1(X). Therefore, (g, r) ∈ (r, r)(k1(X)×
1) ⊆ ∆(p1(X))(k1(X)× 1). This shows that X ∗Xo ≤ ∆(p1(X))(k1(X)× 1), so the lemma

holds.

Lemma 2.11. For a subgroup X of G×H and for any p1(X) ≤ I ≤ NG(k1(X)),

(∆(I)(k1(X)× 1)) ∗X = X.
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Proof. It is easy to see that X ≤ (∆(I)(k1(X) × 1)) ∗ X, so it suffices to show that

(∆(I)(k1(X) × 1)) ∗ X ≤ X. Let (g, s) ∈ (∆(I)(k1(X) × 1)) ∗ X, and let r ∈ G such

that (g, r) ∈ ∆(I)(k1(X) × 1) and (r, s) ∈ X. As (g, r) ∈ ∆(I)(k1(X) × 1), g ∈ rk1(X), so

(g, s) ∈ (r, s)(k1(X)× 1) ⊆ X. This shows that (∆(I)(k1(X)× 1)) ∗X ≤ X, so the lemma

holds.

Lemma 2.12. For a subgroup X of G×H,X ∗Xo ∗X = X.

Proof. By lemma 2.10, X ∗Xo = ∆(p1(X))(k1(X) × 1), so the result follows from lemma

2.11.
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Chapter 3

Block theoretic preliminaries

The following notation will be used throughout the paper:

Let F be a field. For an F -algebra A, we denote by pi(A) the set of primitive idempotents

of A and we denote by A× the unit group of A. For a set X, we denote by FX the F -

vector space with basis X. For a finite group G, we denote by FG the group algebra of

G with coefficients in the field F. For α =
∑
g∈G

agg ∈ FG and β =
∑
h∈H

bhh ∈ FH, let

αo =
∑
g∈G

agg
−1 ∈ FG, and let α ⊗ β =

∑
(g,h)∈G×H

agbh(g, h) ∈ F [G ×H]. For Ω ⊆ FG and

Λ ⊆ FH, let Ωo = {αo : α ∈ Ω}, and let Ω ⊗ Λ = {α ⊗ β : α ∈ Ω, β ∈ Λ}. We denote by

bli(FG) the set of block idempotents of FG, and by Bl(FG) the set of blocks of FG.

Throughout this section, let F be a field of characteristic p > 0 and let G be a

finite group.

Definition 3.1. Let H be a normal subgroup of G and let e be a block idempotent of FH.

The inertial group of FHe in G is the point stabilizer I of the block idempotent e in G

under the conjugation action of G on FH. The inertial quotient of FHe in G is the

factor group I/H.

Definition 3.2. Let P be a p-subgroup of G, and consider the conjugation action of P

on FG. We define the map BrP : (FG)P → FCG(P ) by
∑
g∈G

agg 7→
∑

g∈CG(P )

agg. By [6]

(Proposition 2.2), BrP is a surjective F -algebra homomorphism. The homomorphism BrP

is called the Brauer homomorphism of FG with respect to P.

Definition 3.3. A Brauer pair of FG is a pair (P, e), where is P is a p-subgroup of G and

e is a block idempotent of FCG(P ). We denote by NG((P, e)) the inertial group of FCG(P )e
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in NG(P ). Let (P, e) and (Q, f) be Brauer pairs of FG. Then (Q, f) ≤ (P, e) if Q ≤ P and

for every primitive idempotent i ∈ (FG)P such that BrP (i)e 6= 0, BrQ(i)f = BrQ(i). Also,

(Q, f) E (P, e) if (Q, f) ≤ (P, e) and Q E P. Let B = FGeB be a block of FG. We say

that a Brauer pair (P, e) of FG is a B-Brauer pair if (1, eB) ≤ (P, e), or equivalently,

BrP (eB)e = e.

Lemma 3.4. (1) For a Brauer pair (P, e) of FG and Q ≤ P, there is a unique block

idempotent f of FCG(Q) such that (Q, f) ≤ (P, e).

(2) Let B be a block of FG. The maximal B-Brauer pairs are precisely the B-Brauer pairs

(P, e), where P is a defect group of B. Furthermore, all the maximal B-Brauer pairs are

G-conjugate.

Proof. See [1](Theorem 3.4 and Theorem 3.10)

Definition 3.5. Let (P, e) be a Brauer pair of FG such that Z(P ) is the defect group of

FCG(P )e. Let I be the inertial group of FPCG(P )e in NG(P ) and let I = I/PCG(P ) be

the inertial quotient of FPCG(P )e in NG(P ). By [9] (Theorems 5.8.10 and 5.8.11), P is

the defect group of FPCG(P )e and hence by [9] (Lemma 5.8.12), FPCG(P )e has a unique

simple module V. It follows that I is the inertial group of V in NG(P ), and hence by [9]

(Theorem 3.5.7), there is a unique 2-cohomology class [θ] ∈ H2(I, F×) such that V admits

an FθI-module structure which extends its FPCG(P )-module structure. The 2-cohomology

class [θ] is called the Külshammer-Puig class associated with (P, e).

Definition 3.6. Let B be a block of FG and let (P, e) be a maximal B-Brauer pair. For

Q ≤ P, we denote by eQ the unique block idempotent of FCG(Q) such that (Q, eQ) ≤ (P, e),

which exists by Lemma 3.4.1. We define a category F as follows: The objects of F are the

subgroups of P, and for Q,R ≤ P,HomF (Q,R) is the set of all group homomorphisms of

the form cg : Q→ R, where g ∈ G such that g(Q, eQ) ≤ (R, eR). By Theorem 3.9 in [6], F
is a (saturated) fusion system. The category F is called the fusion system associated with

(P, e).

Definition 3.7. An interior G-algebra is an F -algebra A endowed with a group homo-

morphism ψ : G→ A×. For g ∈ G and a ∈ A, we denote the element ψ(g)a of A by ga and

the element aψ(g) of A by ag. If A and B are interior G-algebras, an interior G-algebra

homomorphism (respectively isomorphism) is an F -algebra homomorphism (respectively

isomorphism) σ : A→ B such that σ(ga) = gσ(a) and σ(ag) = σ(a)g for a ∈ A and g ∈ G.

7



Definition 3.8. Let B be a block of FG. A source idempotent of B is a primitive

idempotent i of BP such that BrP (i)e = BrP (i) 6= 0 for some maximal B-Brauer pair (P, e).

We say that the source idempotent i is associated with (P, e). A source algebra of B is

an interior P -algebra of the form iBi endowed with the group homomorphism P → (iBi)×

defined by u 7→ ui for u ∈ P, where (P, e) is a maximal B-Brauer pair and i ∈ pi(BP ) is a

source idempotent of B associated with (P, e).

Lemma 3.9. For a block B of FG and a source idempotent i of B,B = BiB and B is

Morita equivalent to iBi.

Proof. This holds by Proposition 38.2(a) and Theorem 9.9 in [16].
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Chapter 4

Module theoretic preliminaries

Throughout this paper, all modules are finitely generated.

Throughout this section, O is a complete discrete valuation ring with maximal

ideal (π) and residue field F = O/(π) of characteristic p > 0, and G is a finite group. For

α ∈ O, let α∗ denote the image of α under the canonical O-algebra homomorphism from O
onto F.

For OG-modules M and N, we write M |N if M is isomorphic to a direct summand

of N.

Lemma 4.1. Let H be a subgroup of G, and let e be an idempotent in (OH)G. For an

OH-module N, IndGH(eN) ∼= eIndGH(N).

Proof. This follows from the equality OG⊗OH eN = e(OG⊗OH N).

Definition 4.2. (1) For an OG-module M, the dual module of M, denoted by Mo, is

the OG-module consisting of the O-vector space HomO(M,O) endowed with the G-action

defined by gσ(m) = σ(g−1m) for g ∈ G,m ∈M, and σ ∈ HomO(M,O).

(2) If H is a finite group, X ≤ G×H, and M is an OX-module, we view Mo as an OXo-

module by transporting the OX-module structure of Mo onto an OXo-module structure via

the isomorphism Xo → X defined by (h, g) 7→ (g, h) for (h, g) ∈ Xo.

Definition 4.3. For an FG-module M, the head of M, denote by hd(M), is the largest

semisimple quotient of M.
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Definition 4.4. The trivial module of OG, denoted by OG, is the OG-module consisting

of the O-module O endowed with the trivial G-action.

Definition 4.5. Let H be a subgroup of G and let M be an OH-module. For g ∈ G, we

denote by gM the O( gH)-module obtained by transporting the OH-module structure of M

along the isomorphism c−1
g : gH → H.

Definition 4.6. Let M be an OG-module and let H be a subgroup of G. We define the

O-linear map trGH : MH →MG by m 7→
∑

g∈G/H

gm for m ∈MH . The map trGH is called the

trace map. Note that
∑
Q<H

trHQ (MQ) +πMH is an ONG(H)-submodule of MH . We denote

by M(H) the FNG(H)-module MH/(
∑
Q<H

trHQ (MQ) + πMH). The FNG(H)-module M(H)

is called the Brauer construction of M with respect to H.

Remark 4.7. Let H be a finite group. For an (OG,OH)-bimodule M, we may view M as

an O[G ×H]-module via (g, h)m = gmh−1 for m ∈ M, g ∈ G and h ∈ H. Conversely, for

an O[G×H]-module M, we may view M as an (OG,OH)-bimodule via gmh = (g, h−1)m

for m ∈M, g ∈ G and h ∈ H. In this way, we identify (OG,OH)-bimodules with O[G×H]-

modules.

Definition 4.8. An OG-module M is called a trivial source module if M is isomorphic

to a direct summand of a permutation module.

Lemma 4.9. For an OG-module M, the following are equivalent:

(1) M is a trivial source module

(2) The trivial module is the source of every indecomposable direct summand of M

(3) For every p-subgroup P of G,ResGP (M) is a permutation module.

Proof. See [4] ((0.4)).

Lemma 4.10. (1) If M and N are trivial source OG-modules, then M ⊕ N and M ⊗ N
are trivial source OG-modules.

(2) If M is a trivial source OG-module, then so is Mo.

(3) If M is a trivial source OG-module, then M/πM is a trivial source FG-module.

(4) If H is a subgroup of G and M is a trivial source OG-module, then ResGH(M) is a trivial

source OH-module.

10



(5) If H is a subgroup of G and M is a trivial source OH-module, then gM is a trivial

source O( gH)-module and IndGH(M) is a trivial source OG-module.

Proof. This follows easily from lemma 4.9.

Lemma 4.11. Let M be a trivial source OG-module, let P be a p-subgroup of M, and let

X be a P -invariant O-basis of M, which exists by lemma 4.9. Define the O-linear map

BrX : M → FXP by
∑
x∈X

αxx 7→
∑
x∈XP

α∗xx. The FNG(P )-module M(P ) is isomorphic to

the FNG(P )-module consisting of the F -vector space FXP endowed with the NG(P )-action

defined by g · x = BrX(gx) for x ∈ XP and g ∈ NG(P ).

Proof. See [16] (Proposition 27.6(a)).

Lemma 4.12. Let M be a trivial source OG-module and let P be a p-subgroup of G.

(1) We have that M(P ) ∼= (M/πM)(P ) as FNG(P )-modules.

(2) We have that Mo(P ) ∼= (M(P ))o as FNG(P )-modules.

Proof. Note that (1) follows immediately from lemma 4.11. For (2), see the proof to lemma

(2.4) in [4].

Lemma 4.13. For an indecomposable trivial source OG-module M and a normal p-subgroup

Q of G,Q is contained in a vertex of M if and only if Q acts trivially on M.

Proof. If Q acts trivially on M, then Q is contained in the vertex of M by [9] (Theorem

4.7.8). Conversely, suppose that Q is contained in a vertex P of M. As M is an indecom-

posable trivial source OG-module with vertex P,M |IndGP (OP ), so the result follows from

the Mackey formula.

Lemma 4.14. Let M be a trivial source FG-module and let P be a p-subgroup of G. By

the Krull-Schmidt theorem, there exist unique FNG(P )-modules L and N such that P acts

trivially on L,P does not act trivially on any indecomposable direct summand of N, and

ResGNG(P )(M) ∼= L⊕N. We have that M(P ) ∼= L as FNG(P )-modules.

Proof. As P acts trivially on L,L(P ) ∼= L by lemma 4.11. As P does not act trivially

on any indecomposable direct summand of N, no indecomposable direct summand of N

has vertex containing P by lemma 4.13, and hence N(P ) = 0 by [4] ((1.3)). Thus as

M(P ) ∼= (ResGNG(P )(M))(P ) ∼= L(P )⊕N(P ), the lemma holds.

11



Lemma 4.15. (1) Let M be an indecomposable trivial source OG-module with vertex P, and

let Q be a subgroup of P. The FNG(Q)-module M(Q) is a trivial source module and every

vertex of every indecomposable direct summand of M(Q) is contained in a G-conjugate of

P.

(2) Let H be a finite group and let M be an indecomposable trivial source (OG,OH)-

bimodule with twisted diagonal vertex. For any subgroup U of G×H contained in a vertex of

M,M(U) is a trivial source FNG×H(U)-module and every indecomposable direct summand

of M(U) has twisted diagonal vertex.

Proof. It suffices to prove (1), as then (2) follows. As M is an indecomposable trivial source

OG-module with vertex P,M |IndGP (OP ), so by the Mackey formula,

ResGNG(Q)(M/πM)|
⊕

t∈NG(Q)\G/P

Ind
NG(Q)
N t

P
(Q)(FN t

P
(Q)).Now asM(Q) ∼= (M/πM)(Q) by lemma

4.12, M(Q) is a direct summand of ResGNG(Q)(M/πM) by lemma 4.14, so the lemma fol-

lows.

Lemma 4.16. For an indecomposable trivial source FG-module M with vertex P,M(P ) is

the Green correspondent of M.

Proof. This is an immediate consequence of lemma 4.13 and lemma 4.14.

Lemma 4.17. Let Q be a p-subgroup of G and let R be a p-subgroup of NG(Q). For a

trivial source OG-module M, (M(Q))(R) ∼= M(QR) as F (NG(Q) ∩NG(R))-modules.

Proof. This follows from lemma 4.11.

Lemma 4.18. Let M be a trivial source FG-module, let Q be a p-subgroup of G, and let i

be an idempotent in (FG)Q. If iM = M, then BrQ(i)M(Q) = M(Q).

Proof. This is well-known and it is straightforward.

Lemma 4.19. Let H be a finite group and let ∆(Q,ϕ,R) be a twisted diagonal p-subgroup

of G×H such that QEG and REH. If ∆(D,ϕ,E) is a twisted diagonal p-subgroup of G×
H containing ∆(Q,ϕ,R) and M is an indecomposable trivial source ONG×H(∆(Q,ϕ,R))-

module with twisted diagonal vertex containing ∆(Q,ϕ,R), then

(IndG×HNG×H(∆(Q,ϕ,R))(M))(∆(D,ϕ,E)) ∼= M(∆(D,ϕ,E)) as FNG×H(∆(D,ϕ,E))-modules.
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Proof. By applying the Mackey formula to the restriction of

IndG×HNG×H(∆(Q,ϕ,R))(M) to NG×H(∆(D,ϕ,E)), it suffices to show that if (g, h) ∈ G × H

such that (IndNG×H(∆(D,ϕ,E))

NG×H(∆(D,ϕ,E))∩
(g,h)

NG×H(∆(Q,ϕ,R))
( (g,h)M))(∆(D,ϕ,E)) 6= 0, then (g, h) ∈

NG×H(∆(Q,ϕ,R)).

As (IndNG×H(∆(D,ϕ,E))

NG×H(∆(D,ϕ,E))∩
(g,h)

NG×H(∆(Q,ϕ,R))
( (g,h)M))(∆(D,ϕ,E)) 6= 0, it follows that

∆(D,ϕ,E) is contained in a vertex of (g,h)M, and hence ∆(Q,ϕ,R) is contained in a vertex

of (g,h)M. Thus as (g,h)M has twisted diagonal vertex containing (g,h)∆(Q,ϕ,R), it follows

that (g, h) ∈ NG×H(∆(Q,ϕ,R)), so the lemma holds.

Lemma 4.20. For a trivial source FG-module M, there is a unique trivial source OG-

module N such that N/πN ∼= M as FG-modules.

Proof. This holds by [9] (Theorem 4.8.9(iii)).

Definition 4.21. Let M be a trivial source FG-module. We denote by MO the unique

trivial source OG-module such that MO/πMO ∼= M as FG-modules. If O has characteristic

zero and K is the field of fractions of O, we denote the KG-module K ⊗OMO by MK .

Lemma 4.22. Let M and N be trivial source FG-modules.

(1) We have that dimF (HomFG(M,N)) = dimO(HomOG(MO, NO)).

(2) The FG-module M is indecomposable if and only if the OG-module MO is indecompos-

able, and in this case, M and MO have the same vertex.

Proof. This holds by [9] (Theorem 4.8.9 and Theorem 1.11.12)

For the following lemma, we assume that O has characteristic zero and contains a

primitive |G|th root of unity.

Lemma 4.23. Let B = FGeB be a block of FG with defect group P such that P ≤ Z(G).

For any subgroup Q of P, there is a unique indecomposable trivial source B-module with

vertex Q.

Proof. Let G = G/Q. By the Green correspondence, it suffices to show that there is a

unique projective indecomposable B-module. By [9] (Theorem 5.8.10 and Theorem 5.8.11),

B is a block of FG with defect group P , so as P ≤ Z(G), we may assume that Q = 1. Thus

the lemma holds as B has a unique projective indecomposable module by [16] (Proposition

39.2(b)).
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Chapter 5

Blocks with normal defect groups

Throughout this section, let F be an algebraically closed field of characteristic

p > 0, and let G be a finite group. Let B = FGeB be a block of FG with maximal

B-Brauer (P, e) such that P EG, and let I be the inertial group of FCG(P )e in NG(P ).

Lemma 5.1. Let i be a primitive idempotent of FCG(P )e. Then i is a source idempotent

of B and FIe and iFGi = iBi = iFIi.

Proof. By Proposition 2.3 in [6], ker(BrP ) is a nilpotent ideal of BP , so as i = BrP (i) is a

primitive idempotent of BrP (BP ) = FCG(P )BrP (eB), i is a primitive idempotent of BP ,

and hence i is a source idempotent of B. Thus as (P, e) is a maximal FIe-Brauer pair and

P E I, i is a source idempotent of FIe. As i ∈ B, iFGi = iBi. To show that iFGi = iFIi,

note that for g ∈ G − I, igi = i gig = 0 as i and gi lie in the distinct blocks FCG(P )e and

FCG(P ) ge of FCG(P ) respectively.

Lemma 5.2. Let CG(P ) ≤ S ≤ I and let i be a primitive idempotent of FCG(P )e.

(1) Any block of the S-algebra FSe has defect group S ∩ P.
(2) The (FSe, iFSi)-bimodule FSi induces a Morita equivalence between the F -algebras

FSe and iFSi.

(3) If P ≤ S, then FSe is a block of FS with defect group P and i is a source idempotent

of FSe.

Proof. (1) Let Λ be a block of FSe and let D be a defect group of Λ. Then as S ∩ P E

S, S ∩ P ≤ D. Now as e ∈ FCG(P ) ⊆ FS and S ≤ I, it follows that FIe ∼=
⊕

t∈S\I/S

F [StS]e

as (FS, FS)-bimodules, and hence FSe is an (FS, FS)-bimodule direct summand of FIe.
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Thus as Λ is a block of FSe,Λ is an (FS, FS)-bimodule direct summand of FIe. Therefore,

as ∆(D) is a vertex of the indecomposable (FS, FS)-bimodule Λ and ∆(P ) is a vertex of

the indecomposable (FI, FI)-bimodule FIe,∆(D) ≤I×I ∆(P ), so D ≤ S ∩ P and hence

D = S ∩ P. Thus (1) holds.

(2) As (Z(P ), e) is a maximal FCG(P )e-Brauer pair by (1), i is a source idempotent of

FCG(P )e by lemma 5.1. Therefore, e ∈ (FCG(P )e)i(FCG(P )e) ⊆ (FSe)i(FSe) by lemma

3.9, so FSe = (FSe)i(FSe) and hence (2) holds.

(3) As P E S, any block idempotent of FS must lie in FCG(P ). Thus as FCG(P )e is a

block of FCG(P ), FSe is a block of FS. By (1), P is the defect group of FSe, so (3) holds

by lemma 5.1.
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Chapter 6

Brauer pairs for trivial source

modules

Throughout this section, O is a complete discrete valuation ring with maximal

ideal (π) and residue field F = O/(π) of characteristic p > 0, and G is a finite group.

Definition 6.1. For a trivial source OG-module M , an M -Brauer pair is a Brauer pair

(P, e) of FG such that eM(P ) 6= 0.

Remark 6.2. Let B be a block of FG. The B-Brauer pairs are precisely the Brauer pairs

of the form (P, e) such that (∆(P ), e⊗ eo) is a B-Brauer pair of the indecomposable trivial

source F [G×G]-module B.

Lemma 6.3. Let M be a trivial source OG-module. The set of M -Brauer pairs is closed

under inclusion and G-conjugation.

Proof. If (P, e) is anM -Brauer pair and g ∈ G, then geM( gP ) ∼= g(eM(P )) as FNG(( gP, ge))-

modules, so as eM(P ) 6= 0, geM( gP ) 6= 0 and hence ( gP, ge) is an M -Brauer pair. This

shows that the set of M -Brauer pairs is closed under G-conjugation, so it remains to show

that it is closed under inclusion.

It suffices to show that if (P, e) be an M -Brauer pair and (Q, f) is a Brauer pair

of FG such that (Q, f)E (P, e), then (Q, f) is an M -Brauer pair. Assume the contrary. Let

I be the inertial group of FCG(Q)f in NG(Q). As P is a subgroup of I by [16] (Theorem

40.4(b)), we may apply the Brauer construction at P to the FI-module fM(Q). As (Q, f) is
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not an M -Brauer pair, fM(Q) = 0, and hence as (fM(Q))(P ) ∼= BrP (f)M(P ) as FCG(P )-

modules by lemma 4.17 and lemma 4.18, BrP (f)M(P ) = 0. Thus as eBrP (f) = e by [16]

(Theorem 40.4(b)), eM(P ) = 0, which is a contradiction as (P, e) is an M -Brauer pair.

Thus the lemma holds.

The next lemma is a generalization of lemma 3.4.2 to M -Brauer pairs for an

indecomposable trivial source FG-module M.

Lemma 6.4. Let M be an indecomposable trivial source OG-module. The maximal M -

Brauer pairs are precisely the M -Brauer pairs (P, e), where P is a vertex of M. Furthermore,

all maximal M -Brauer pairs are G-conjugate.

Proof. This is a consequence of Theorem 2.5 in [15], but we shall give an independent proof.

By lemma 4.12 and lemma 4.22.2, we may assume that O = F. First we show that

the M -Brauer pairs of the form (P, e), where P is a vertex of M, are all G-conjugate. As

the vertices of M are all G-conjugate, it suffices to show that if P is a vertex of M, then

the M -Brauer pairs of the form (P, e) are all NG(P )-conjugate. By lemma 4.16, M(P ) is

the Green correspondent of M, and hence is an indecomposable FNG(P )-module. Thus by

[9] (Lemma 5.5.4), for a block idempotent e of FCG(P ), (P, e) is an M -Brauer pair if and

only if FCG(P )e is covered by the block of FNG(P ) to which M(P ) belongs, so we obtain

the desired result by [9] (Lemma 5.5.3). Therefore, it suffices to show that if (Q, f) is an

M -Brauer pair, then (Q, f) is contained in an M -Brauer pair of the form (P, e), where P

is a vertex of M.

As (Q, f) is an M -Brauer pair, M(Q) 6= 0, and hence Q is contained in a vertex of

M by [4] ((1.3)). Thus we may proceed by induction on the index of Q in a vertex of M that

contains Q. Let I be the inertial group of FCG(Q)f in NG(Q). As (Q, f) is an M -Brauer

pair, fM(Q) 6= 0, and hence there is an indecomposable direct summand N of M(Q)

such that fN 6= 0. Assume that the FI-module fN has vertex Q. As fN |ResNG(Q)
I (N)

and N ∼= Ind
NG(Q)
I (fN) by [9] (Lemma 5.5.4), it follows that N has vertex Q. Thus as

N |M(Q)|ResGNG(Q)(M) by lemma 4.14, M has vertex Q by the Burry-Carlsson-Puig the-

orem, and hence the result holds in this case. Thus we may assume that fN has vertex

R properly containing Q. As R is a vertex of fN, (fN)(R) 6= 0 by lemma 4.16, so as

fN |fM(Q), (fM(Q))(R) 6= 0. Thus as (fM(Q))(R) ∼= BrR(f)M(R) as FCG(R)-modules

by lemma 4.17 and 4.18, BrR(f)M(R) 6= 0, and hence there is a block idempotent e of
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FCG(R) such that eBrR(f) = e and eM(R) 6= 0. As R ≤ I and eBrR(f) = e, (Q, f)E(R, e)

by [16] (Theorem 40.4(b)), and as eM(R) 6= 0, (R, e) is an M -Brauer pair, so as Q is properly

contained in R, the result follows from our inductive hypothesis.

Lemma 6.5. Let M and N be indecomposable trivial source OG-modules with a common

maximal Brauer pair (P, e), and let I be the inertial group of FCG(P )e in NG(P ). Then

M ∼= N if and only if eM(P ) ∼= eN(P ) as FIe-modules.

Proof. By lemma 4.12 and lemma 4.20, we may assume that O = F. By lemma 6.4, P

is a common vertex of M and N, so by lemma 4.16, M(P ) and N(P ) are the Green

correspondents of M and N respectively, and hence M(P ) ∼= N(P ) as FNG(P )-modules

if and only if M ∼= N. Let C = (FCG(P )e)NG(P ) be the block of FNG(P ) that covers

FCG(P )e. The (FNG(P ), F I)-bimodule FNG(P )e induces a Morita equivalence between

C and FIe, so as M(P ) and N(P ) belong to C,M(P ) ∼= N(P ) as FNG(P )-modules if and

only if eM(P ) ∼= eN(P ) as FI-modules, so the lemma holds.
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Chapter 7

A tensor product of modules

Throughout this section, let G,H and K be finite groups and let O be a commu-

tative ring.

Lemma 7.1. Let X and Y be subgroups of G×H and H×K respectively, let M be an OX-

module and let N be an OY -module. The (Ok1(X),Ok2(Y ))-bimodule M⊗O(k2(X)∩k1(Y ))N

may be endowed with an O(X ∗ Y )-module structure which extends its O(k1(X) × k2(Y ))-

module structure as follows: For (g, k) ∈ X ∗ Y,m ∈ M, and n ∈ N, let (g, k)(m ⊗ n) =

(g, h)m⊗ (h, k)n, for any h ∈ H such that (g, h) ∈ X and (h, k) ∈ Y.

Proof. This is a straightforward verification.

Lemma 7.2. Let S ≤ X ≤ G×H, let Y ≤ H×K, let V be an OS-module and let W an OY -

module. If p2(X) ≤ p1(Y ), then IndXS (V )⊗O(k2(X)∩k1(Y ))W ∼= IndX∗YS∗Y (V ⊗O(k2(S)∩k1(Y ))W )

as O(X ∗ Y )-modules.

Proof. The map α : IndXS (V ) ⊗O(k2(X)∩k1(Y )) W → IndX∗YS∗Y (V ⊗O(k2(S)∩k1(Y )) W ) defined

by ((g, h) ⊗ v) ⊗ w 7→ (g, k) ⊗ (v ⊗ (h, k)−1w) for (g, h) ∈ X, v ∈ V and w ∈ W, where

k ∈ K such that (h, k) ∈ Y is a well-defined O(X ∗ Y )-module isomorphism with inverse

β : IndX∗YS∗Y (V ⊗O(k2(S)∩k1(Y ))W )→ IndXS (V )⊗O(k2(X)∩k1(Y ))W defined by (g, k)⊗(v⊗w) 7→
((g, h)⊗v)⊗ (h, k)w for (g, k) ∈ X ∗Y, v ∈ V and w ∈W, where h ∈ H such that (g, h) ∈ X
and (h, k) ∈ Y.

Lemma 7.3. Let X ≤ G×H, let T ≤ Y ≤ H×K, let V be an OX-module and W an OT -

module. If p1(Y ) ≤ p2(X), then V ⊗O(k2(X)∩k1(Y ))Ind
Y
T (W ) ∼= IndX∗YX∗T (V ⊗O(k2(X)∩k1(T ))W )

as O(X ∗ Y )-modules.
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Proof. The map α : V ⊗O(k2(X)∩k1(Y )) Ind
Y
T (W ) → IndX∗YX∗T (V ⊗O(k2(X)∩k1(T )) W ) de-

fined by v ⊗ ((h, k) ⊗ w) 7→ (g, k) ⊗ ((g, h)−1v ⊗ w) for (h, k) ∈ Y, v ∈ V and w ∈ W,

where g ∈ G such that (g, h) ∈ X is an O(X ∗ Y )-module isomorphism with inverse

β : IndX∗YX∗T (V ⊗O(k2(X)∩k1(T ))W )→ V ⊗O(k2(X)∩k1(Y ))Ind
Y
T (W ) defined by (g, k)⊗(v⊗w) 7→

(g, h)v⊗ ((h, k)⊗w) for (g, k) ∈ X ∗Y, v ∈ V, and w ∈W, where h ∈ H such that (g, h) ∈ X
and (h, k) ∈ Y.

For the remainder of the section we assume that O is a complete discrete valuation

ring with maximal ideal (π) and residue field F = O/(π) of characteristic p > 0.

Lemma 7.4. Let X be a subgroup of G×H and let Y be a subgroup of H ×K.
(1) If M is a trivial source OX-module and N is a trivial source OY -module, then

M ⊗O(k2(X)∩k1(Y )) N is either the zero module or a trivial source O(X ∗ Y )-module.

(2) If M is an indecomposable OX-module with twisted diagonal vertex and N is an in-

decomposable OY -module with twisted diagonal vertex, then every indecomposable direct

summand of the O(X ∗ Y )-module M ⊗O(k2(X)∩k1(Y )) N has twisted diagonal vertex.

Proof. (1) Let X ′ = p−1
2 (p1(Y ))∩X. As X ′∗Y = X ∗Y and k2(X)∩k1(Y ) = k2(X ′)∩k1(Y ),

it follows that ResXX′(M)⊗O(k2(X′)∩k1(Y )) N ∼= M ⊗O(k2(X)∩k1(Y )) N as O(X ∗ Y )-modules.

Thus as ResXX′(M) is a trivial source module by lemma 4.10.4, we may assume that

p2(X) ≤ p1(Y ). We may also assume that M = IndXS (OS) for some subgroup S of

X. Thus by lemma 7.2, M ⊗O(k2(X)∩k1(Y )) N ∼= IndX∗YS∗Y (OS ⊗O(k2(S)∩k1(Y )) N), so by

lemma 4.10.5, it suffices to show that OS ⊗O(k2(S)∩k1(Y )) N is a trivial source O(S ∗ Y )-

module. Arguing as above, we may assume that p1(Y ) ≤ p2(S). We may also assume that

N = IndYT (OT ) for some subgroup T of Y. Thus by lemma 7.3, OS ⊗O(k2(S)∩k1(Y )) N ∼=
IndS∗YS∗T (OS ⊗O(k2(S)∩k1(T )) OT ) ∼= IndS∗YS∗T (OS∗T ), so (1) holds.

(2) By the same argument as given in the proof of (1), we may assume that p2(X) ≤
p1(Y ). As M has twisted diagonal vertex, we may assume that M = IndXS (V ) for some

twisted diagonal subgroup S of X and some FS-module V. Therefore, by lemma 7.2,

M ⊗O(k2(X)∩k1(Y )) N ∼= IndX∗YS∗Y (V ⊗O(k2(S)∩k1(Y )) N), and hence it suffices to show that

every indecomposable direct summand of the O(S ∗ Y )-module V ⊗O(k2(S)∩k1(Y )) N has

twisted diagonal vertex. Arguing as in the proof of (1), we may assume that p1(Y ) ≤ p2(S).

As N has twisted diagonal vertex, we may assume that N = IndYT (W ) for some twisted di-

agonal subgroup T of Y and some FT -module W. Thus by lemma 7.3, V ⊗O(k2(S)∩k1(Y ))N ∼=
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IndS∗YS∗T (V ⊗O(k2(S)∩k1(T )) W ). Therefore, V ⊗O(k2(S)∩k1(Y )) N is (S ∗ T )-projective, and as

S and T are twisted diagonal, S ∗ T is twisted diagonal, so the lemma holds.

Lemma 7.5. Let (Q, e) and (U, ε) be Brauer pairs of FG and FK respectively such that

there is an isomorphism α : U → Q, let CG(Q) ≤ S ≤ NG((Q, e)), and let CK(U) ≤ T ≤
NK((U, ε)). Let Γ denote the set of ordered quadruples (R, f, ϕ, ψ), such that (R, f) is a

Brauer pair of FH and ϕ : R → Q and ψ : U → R are isomorphisms such that ϕ ◦ ψ =

α. Note that NG×K(∆(Q,α,U)) × H acts by conjugation on Γ via ((g,k),h)(R, f, ϕ, ψ) =

( hR, hf, cgϕch−1 , chψck−1) for (R, f, ϕ, ψ) ∈ Γ, (g, k) ∈ NG×K(∆(Q,α,U)), and h ∈ H. Let

M be a trivial source (OG,OH)-bimodule such that every indecomposable direct summand

of M has twisted diagonal vertex, and let N be a trivial source (OH,OK)-bimodule such

that every indecomposable direct summand of N has twisted diagonal vertex.

(1) We have that e((M ⊗OH N)(∆(Q,α,U)))ε ∼=⊕
(R,f,ϕ,ψ)∈Γ/∼H

eM(∆(Q,ϕ,R))f ⊗FCH(R) fN(∆(R,ψ,U))ε

as (FCG(Q)e, FCK(U)ε)-bimodules.

(2) We have that e((M ⊗OH N)(∆(Q,α,U)))ε ∼=⊕
(R,f,ϕ,ψ)∈Γ/∼NS×T (∆(Q,α,U))×H

Ind
NS×T (∆(Q,α,U))
NS×H((∆(Q,ϕ,R),e⊗fo))∗NH×T ((∆(R,ψ,U),f⊗εo))(eM(∆(Q,ϕ,R))f

⊗FCH(R) fN(∆(R,ψ,U))ε) as FNS×T (∆(Q,α,U))(e⊗ εo))-modules.

Proof. As M ⊗OH N is a trivial source (OG,OK)-bimodule by lemma 7.4, we may assume

that O = F by lemma 4.12. By Theorem 3.3 of [2], the map

σ :
⊕

(R,f,ϕ,ψ)∈Γ/∼H

eM(∆(Q,ϕ,R))f⊗FCH(R)fN(∆(R,ψ,U))ε→ e((M⊗FHN)(∆(Q,α,U)))ε

defined by m⊗n 7→ m⊗ n for (R, f, ϕ, ψ) ∈ Γ/ ∼H ,m ∈M∆(Q,ϕ,R), and n ∈ N∆(R,ψ,U) is an

isomorphism of (FCG(Q)e, FCK(U)ε)-bimodules, so (1) holds. Furthermore, by transport-

ing the FNS×T (∆(Q,α,U))(e⊗εo))-module structure of e((M⊗FHN)(∆(Q,α,U)))ε along

the isomorphism σ, we see that for (R, f, ϕ, ψ) ∈ Γ/ ∼H , (s, t)(eM(∆(Q,ϕ,R))f ⊗FCH(R)

fN(∆(R,ψ,U))ε) = seM(∆( sQ, csϕ,R))f ⊗FCH(R) fN(∆(R,ψct−1 , tU)) tε for

(s, t) ∈ NS×T (∆(Q,α,U)), and that the F (NS×H((∆(Q,ϕ,R), e⊗fo))∗NH×T ((∆(R,ψ,U), f⊗
εo)))-module structure of eM(∆(Q,ϕ,R))f ⊗FCH(R) fN(∆(R,ψ,U))ε is the one obtained

by applying the construction given in lemma 7.1. Thus (2) follows.

Lemma 7.6. Let (Q, e) be a Brauer pair of FG and let CG(Q) ≤ S ≤ NG((Q, e)). Let
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Γ denote the set of ordered triples (R, f, ϕ) such that (R, f) is a Brauer pair of FH

and ϕ : R → Q is an isomorphism. Note that S × H acts by conjugation on Γ via
(g,h)(R, f, ϕ) = ( hR, hf, cgϕch−1) for (g, h) ∈ S × H and (R, f, ϕ) ∈ Γ. Let M be a triv-

ial source (OG,OH)-bimodule such that every indecomposable direct summand of M has

twisted diagonal vertex, and let N be a trivial source (OH,OG)-bimodule such that every

indecomposable direct summand of N has twisted diagonal vertex.

(1) e((M ⊗OH N)(∆(Q)))e ∼=⊕
(R,f,ϕ)∈Γ/∼H

e(M(∆(Q,ϕ,R)))f ⊗FCH(R) f(N(∆(R,ϕ−1, Q)))e

as (FCG(Q)e, FCG(Q)e)-bimodules.

(2) e((M ⊗OH N)(∆(Q)))e ∼=⊕
(R,f,ϕ)∈Γ/∼S×H

Ind
NS×S(∆(Q))
∆(N(ϕ−1,S,J))(CG(Q)×1)(e(M(∆(Q,ϕ,R))f ⊗FCH(R)

fN(∆(R,ϕ−1, Q)))e) as FNS×S(∆(Q))(e ⊗ eo)-modules, where J is the inertial group of

FCH(R)f in NH(R).

Proof. The hypothesis of the lemma is the special case of the hypothesis of lemma 7.5 with

G = K, (Q, e) = (U, ε), S = T and α the identity automorphism of Q. Thus (1) follows

immediately from (1) of lemma 7.5, and hence it remains to show that (2) is a consequence

of (2) of lemma 7.5.

As CG(Q) ≤ S ≤ NG(Q), NS×S(∆(Q)) = ∆(S)(CG(Q)× 1) by lemma 2.8.2. Thus

as CG(Q)× 1 acts trivially on Γ and for s ∈ S and (R, f, ϕ) ∈ Γ, (s,s)(R, f, ϕ) = s(R, f, ϕ),

the NS×S(∆(Q))-orbits of Γ are precisely the S-orbits of Γ. Let (R, f, ϕ) ∈ Γ, and let J be

the inertial of FCH(R)f in NH(R). Then NS×H((∆(Q,ϕ,R), e⊗fo)) = NS×J(∆(Q,ϕ,R)),

so NS×H((∆(Q,ϕ,R), e⊗ fo)) ∗NH×S((∆(R,ϕ−1, Q), f ⊗ eo)) = ∆(N(ϕ−1,S,J))(CG(Q)× 1)

by lemma 2.9 and lemma 2.10. Thus (2) follows from (2) of lemma 7.5.
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Chapter 8

Adjointness of ⊗ and Hom

Throughout this section, let F be a field and let G and H be finite groups. Let

X ≤ G×H, let U be an FX-module, let V be an FXo-module, and let W be an F (X ∗Xo)-

module.

Lemma 8.1. (1) HomFk1(X)(U,W ) is an FXo-module via

((h, g)σ)(u) = (g, g)σ((g, h)−1u) for (h, g) ∈ Xo, σ ∈ HomFk1(X)(U,W ), and u ∈ U.
(2) HomFk1(X)(V,W ) is an FX-module via ((g, h)σ)(v) = (g, g)σ((h, g)−1v) for (g, h) ∈
X,σ ∈ HomFk1(X)(V,W ), and v ∈ V.

Proof. This is a straightforward verification.

By viewing Fk1(X) as an F (X ∗ Xo)-module via left and right multiplication,

HomFk1(X)(U,Fk1(X)) acquires an FXo-module structure and HomFk1(X)(V, Fk1(X)) ac-

quires an FX-module structure as in lemma 8.1.

Lemma 8.2. (1) Uo ∼= HomFk1(X)(U,Fk1(X)) as FXo-modules.

(2) V o ∼= HomFk1(X)(V, Fk1(X)) as FX-modules.

Proof. (1) The map α : Uo → HomFk1(X)(U,Fk1(X)) defined by α(σ)(u) =
∑

g∈k1(X)

σ(g−1u)g

for σ ∈ Uo and u ∈ U is an FXo-module isomorphism with inverse

β : HomFk1(X)(U,Fk1(X))→ Uo defined by the condition that β(τ)(u) is the 1-coefficient

of τ(u) for τ ∈ HomFk1(X)(U,Fk1(X)) and u ∈ U.
(2) This is analogous to (1).
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Lemma 8.3. (1) HomF (X∗Xo)(U ⊗Fk2(X) V,W ) ∼= HomFXo(V,HomFk1(X)(U,W )) as F -

spaces.

(2) HomF (X∗Xo)(U ⊗Fk2(X) V,W ) ∼= HomFX(U,HomFk1(X)(V,W )) as F -spaces.

Proof. (1) The map α : HomF (X∗Xo)(U ⊗Fk2(X) V,W ) → HomFXo(V,HomFk1(X)(U,W ))

defined by (α(σ)(v))(u) = σ(u⊗v) for σ ∈ HomF (X∗Xo)(U⊗Fk2(X)V,W ), v ∈ V, and u ∈ U
is an F - isomorphism with inverse β : HomFXo(V,HomFk1(X)(U,W ))→
HomF (X∗Xo)(U ⊗Fk2(X) V,W ) defined by β(τ)(u⊗ v) = τ(v)(u) for

τ ∈ HomFXo(V,HomFk1(X)(U,W )), u ∈ U, and v ∈ V.
(2) This is analogous to (1).

Lemma 8.4. (1) If U is a projective Fk1(X)-module, then

HomFk1(X)(U,W ) ∼= HomFk1(X)(U,Fk1(X))⊗Fk1(X) W as FXo-modules.

(2) If V is a projective Fk1(X)-module, then

HomFk1(X)(V,W ) ∼= W ⊗Fk1(X) HomFk1(X)(V, Fk1(X)) as FX-modules.

Proof. (1) By [13](the beginning of section 2.2.2), the map

α : HomFk1(X)(U,Fk1(X))⊗Fk1(X)W → HomFk1(X)(U,W ) defined by α(τ⊗w)(u) = τ(u)w

for τ ∈ HomFk1(X)(U,Fk1(X)), w ∈ W, and u ∈ U, is an (Fk2(X), Fk1(X))-bimodule

isomorphism, so it only remains to show that α is an FXo-module homomorphism, which

is a straightforward verification.

(2) This is analogous to (1).

Lemma 8.5. (1) If U is a projective Fk1(X)-module, then

HomF (X∗Xo)(U ⊗Fk2(X) V,W ) ∼= HomFXo(V,Uo ⊗Fk1(X) W ) as F -spaces.

(2) If V is a projective Fk1(X)-module, then

HomF (X∗Xo)(U ⊗Fk2(X) V,W ) ∼= HomFX(U,W ⊗Fk1(X) V
o) as F -spaces.

Proof. This follows from lemma 8.2, lemma 8.3, and lemma 8.4.

Lemma 8.6. Let Q and R be isomorphic subgroups of G and H respectively and let ϕ :

R → Q be an isomorphism. Let CG(Q) ≤ I ≤ NG(Q) and let CH(R) ≤ J ≤ NH(R).

Let M and N be FNI×J(∆(Q,ϕ,R))-modules such that N is projective as an FCG(Q)-

module, and let V and W be FNI×I(∆(Q))-modules. Then HomFNI×I(∆(Q))(V ⊗FCG(Q)

Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(M ⊗FCH(R) N

o),W ) ∼=
HomFNI×J (∆(Q,ϕ,R))(V ⊗FCG(Q) M,W ⊗FCG(Q) N) as F -spaces.
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Proof. By lemma 2.9, k1(NI×J(∆(Q,ϕ,R))) = CG(Q), and p1(NI×J(∆(Q,ϕ,R))) =

N(ϕ−1,I,J), so by lemma 2.10, NI×J(∆(Q,ϕ,R)) ∗ (NI×J(∆(Q,ϕ,R)))o =

∆(N(ϕ−1,I,J))(CG(Q)× 1), so as k2(NI×J(∆(Q,ϕ,R))) = CH(R), we may view M ⊗FCH(R)

No as an F∆(N(ϕ−1,I,J))(CG(Q) × 1)-module. Note that NI×I(∆(Q)) = (NI×I(∆(Q)))o,

so by lemma 2.8.2 and lemma 2.10, NI×I(∆(Q)) ∗ NI×I(∆(Q)) = NI×I(∆(Q)). Thus as

k2(NI×I(∆(Q))) = CG(Q) by lemma 2.8.2, we may view

V ⊗FCG(Q) Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(M⊗FCH(R)N

o) as an FNI×I(∆(Q))-module by lemma

7.1. This shows that the F -vector space on the left hand side of the isomorphism in the

statement of the lemma makes sense.

By lemma 2.9.2, k1(NI×J(∆(Q,ϕ,R))) = CG(Q), so as NI×I(∆(Q)) =

∆(I)(CG(Q)× 1) by lemma 2.8.2, it follows that NI×I(∆(Q)) ∗NI×J(∆(Q,ϕ,R)) =

NI×J(∆(Q,ϕ,R)) by lemma 2.11. Thus it follows from lemma 7.1, that V ⊗FCG(Q) M and

W ⊗FCG(Q)N may be viewed as FNI×J(∆(Q,ϕ,R))-modules, so the F -vector space on the

right hand side of the isomorphism in the statement of the lemma makes sense.

By lemma 2.8.2 and lemma 2.11, NI×I(∆(Q)) ∗ ∆(N(ϕ−1,I,J))(CG(Q) × 1) =

∆(N(ϕ−1,I,J))(CG(Q)× 1), so as NI×I(∆(Q)) ∗NI×I(∆(Q)) = NI×I(∆(Q)) as noted in the

first paragraph, it follows from lemma 7.3 that V⊗FCG(Q)Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(M⊗FCH(R)

No) ∼= Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(V ⊗FCG(Q)M ⊗FCH(R)N

o). Thus by Frobenius reciprocity,

HomFNI×I(∆(Q))(V ⊗FCG(Q) Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(M ⊗FCH(R) N

o),W ) ∼=

HomF∆(N(ϕ−1,I,J))(CG(Q)×1)(V ⊗FCG(Q) M ⊗FCH(R) N
o, Res

NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(W )). As

noted in the second paragraph, V ⊗FCG(Q) M may be viewed as an FNI×J(∆(Q,ϕ,R))-

module, and as N is projective as an FCG(Q)-module, No is projective as a right FCG(Q)-

module. Thus as NI×J(∆(Q,ϕ,R)) ∗ (NI×J(∆(Q,ϕ,R)))o = ∆(N(ϕ−1,I,J))(CG(Q) × 1) as

was noted in the first paragraph, it follows from lemma 8.5.2 that

HomF∆(N(ϕ−1,I,J))(CG(Q)×1)(V ⊗FCG(Q) M ⊗FCH(R) N
o, Res

NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(W )) ∼=

HomFNI×J (∆(Q,ϕ,R))(V ⊗FCG(Q) M,Res
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(W ) ⊗FCG(Q) N) as F -spaces.

But now as p1(NI×J(∆(Q,ϕ,R))) = N(ϕ−1,I,J) by lemma 2.9.1, ∆(N(ϕ−1,I,J))(CG(Q)× 1) ∗
NI×J(∆(Q,ϕ,R)) = NI×J(∆(Q,ϕ,R)) by lemma 2.11. Thus as

NI×I(∆(Q))∗NI×J(∆(Q,ϕ,R)) = NI×J(∆(Q,ϕ,R)) as was noted in the second paragraph,

and k2(NI×I(∆(Q))) = k2(∆(N(ϕ−1,I,J))(CG(Q)×1)) = k1(NI×J(∆(Q,ϕ,R))) = CG(Q), it

follows thatResNI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(W )⊗FCG(Q)N ∼= W⊗FCG(Q)N as FNI×J(∆(Q,ϕ,R))-

modules. Thus the lemma holds.
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Chapter 9

Perfect virtual characters and

isometries

Throughout this section, let p be a prime and let (K,O, F ) be a p-modular system

with F algebraically closed and K large enough.

Definition 9.1. For a finite group G, a normal subgroup N of G, and an idempotent e in

(FN)G, we denote by ẽ be the unique lift of e in (ON)G.

Definition 9.2. For a finite group G, we denote by R(KG) the Grothendieck group

of KG-modules with respect to the relation [[M ]] = [[L]] + [[N ]] whenever there is a short

exact sequence of 0 → L → M → N → 0 of KG-module homomorphisms, where [[M ]]

denotes the image of the KG-module M in R(KG). We denote the K-vector space K ⊗Z

R(KG) by KR(KG). We identify KR(KG) with the group of K-valued K-linear functions

on KG which are invariant under the conjugation action of G on KG, and we identify

R(KG) with the character group of G, which is the subgroup of KR(KG) generated

by the irreducible K-characters of KG. For a central idempotent e of KG, we denote by

R(KGe) the subgroup of R(KG) generated by the images in R(KG) of the irreducible KGe-

modules, or equivalently, the subgroup generated by the irreducible K-characters of KGe.

We denote by KR(KGe) the K-subspace of KR(KG) generated by R(KGe). If in addition,

H is a finite group and f is a central idempotent of KH, we denote R(KGe ⊗KHfo) by

R(KGe,KHf) and we denote KR(KGe⊗KHfo) by KR(KGe,KHf).

For the remainder of the section, let G and H be finite groups, let A = FGeA be

a block of FG, and let B = FHeB be a block of FH.
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We recall the notion of a perfect virtual character, as defined in [5].

Definition 9.3. We say that a virtual character µ ∈ R(KG,KH) is perfect if the following

conditions hold:

(1) For g ∈ G and h ∈ H,µ(g, h) ∈ |CG(g)|O ∩ |CH(h)|O.
(2) For g ∈ G and h ∈ H such that µ(g, h) 6= 0, g is a p′-element if and only if h is a

p′-element.

Definition 9.4. We say that a virtual character µ ∈ R(KG,KH) is quasi-perfect if

condition (2) of definition 9.3 holds.

Definition 9.5. Let x be a p-element of G and let e be a central idempotent of FCG(x).

We define the generalized decomposition map d
(x,e)
G : KR(KG) → KR(KCG(x)ẽ) by

d
(x,e)
G (χ)(x′) = χ(xx′ẽ) if x′ ∈ CG(x) is a p′-element and d

(x,e)
G (χ)(x′) = 0 if x′ ∈ CG(x) is

not a p′-element. If e = 1, we denote d(x,e)
G by dxG. If x = 1, dxG is called the decomposition

map and is denoted by dG.

Definition 9.6. For µ ∈ R(KG,KH), we denote by Iµ : KR(KH) → KR(KG) the K-

linear map defined by χ 7→ µ⊗KH χ for χ ∈ KR(KH).

Lemma 9.7. Let µ ∈ R(KG,KH) and let χ ∈ KR(KH). For g ∈ G, Iµ(χ)(g) =

(1/|H|)
∑
h∈H

µ(g, h)χ(h).

Proof. See [5].

Lemma 9.8. Let µ ∈ R(KG,KH). The following are equivalent:

(1) The virtual character µ is quasi-perfect

(2) dG ◦ Iµ = Iµ ◦ dH as maps from KR(KH) to KR(KG).

(3) dH ◦ Iµo = Iµo ◦ dG as maps from KR(KG) to KR(KH).

Proof. We only show that (1) is equivalent to (2), as the proof that (1) is equivalent

to (3) is analogous. Suppose that (1) holds. Let χ ∈ KR(KH) and let g be an el-

ement in G. First suppose that g is not a p′-element. By lemma 9.7, Iµ(dH(χ))(g) =

(1/|H|)
∑
h∈H

µ(g, h)dH(χ)(h). As g is not a p′-element and µ is quasi-perfect, if h is a p′-

element, then µ(g, h) = 0. On the otherhand, if h is not a p′-element, then dH(χ)(h) = 0.

Therefore, Iµ(dH(χ))(g) = 0 = dG(Iµ(χ))(g) as g is not a p′-element. Thus we may assume

that g is a p′-element. In this case, as µ is quasi-perfect, dG(Iµ(χ))(g) = Iµ(χ)(g) =
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(1/|H|)
∑
h∈Hp′

µ(g, h)χ(h) = (1/|H|)
∑
h∈H

µ(g, h)dH(χ)(h) = Iµ(dH(χ))(g) by lemma 9.7.

Thus we have shown that dG ◦ Iµ = Iµ ◦ dH , so (1) implies (2).

Now suppose that (2) holds. Let g ∈ G be a p′-element and let h ∈ H such that h

is not a p′-element. Assume that µ(g, h) 6= 0. Let χ ∈ KR(KH) be the class function such

that for y ∈ H,χ(y) = 1 if y is H-conjugate to h, and χ(y) = 0 if y is not H-conjugate to h.

As g is a p′-element and by lemma 9.7, dG(Iµ(χ))(g) = Iµ(χ)(g) = (1/|CH(h)|)µ(g, h) 6= 0

as µ(g, h) 6= 0. However, by lemma 9.7, Iµ(dH(χ))(g) = (1/|H|)
∑
y∈Hp′

µ(g, y)χ(y) = 0 by

definition of χ and the fact that h is not a p′-element. Therefore, dG(Iµ(χ)) 6= Iµ(dH(χ)),

which is a contradiction to (2). Thus we have shown that if g is a p′-element in G and

h is not a p′-element in H, then µ(g, h) = 0, so it suffices to show that if g ∈ G is not a

p′-element and h ∈ H is a p′-element, then µ(g, h) = 0.

Assume that µ(g, h) 6= 0. Let χ ∈ KR(KH) be the class function such that for

y ∈ H,χ(y) = 1 if y isH-conjugate to h, and χ(y) = 0 if y is notH-conjugate to h. By lemma

9.7 and the definition of χ, Iµ(dH(χ))(g) = (1/|CH(h)|)µ(g, h) 6= 0, while dG(Iµ(χ))(g) = 0

as g is not a p′-element. This shows that dG(Iµ(χ)) 6= Iµ(dH(χ)), which is a contradiction

to (2), so µ(g, h) = 0 and hence (1) holds. Thus we have shown that (2) implies (1), so the

lemma holds.

Definition 9.9. We say that µ ∈ R(KGẽA,KHẽB) is an isometry if µ⊗KHµo = [[KGẽA]]

in R(KGẽA,KGẽA), and µo ⊗KG µ = [[KHẽB]] in

R(KHẽB,KHẽB).

Lemma 9.10. Let µ ∈ R(KGẽA,KHẽB) be a quasi-perfect virtual character such that there

is a nonempty subset Ω of Irr(A) such that µ⊗KH µo =
∑
χ∈Ω

χ⊗ χo. The virtual character

µ is an isometry.

Proof. The hypothesis of the lemma implies that there is a subset Λ of Irr(B) such that

µo ⊗KG µ =
∑
ζ∈Λ

ζ ⊗ ζo. Thus as µo is quasi-perfect, by symmetry, it suffices to show that

Ω = Irr(A). For χ, χ′ ∈ Irr(A), let mχ′,χ ∈ Q denote the Schur inner product of dG(χ) with

χ′ and let M be the Irr(A)× Irr(A) matrix with (χ′, χ)-entry mχ′,χ. As M is a symmetric

matrix and mχ′,χ 6= 0 for all χ, χ′ ∈ Irr(A) such that χ has height zero by [9] (Lemma

6.34.ii), it follows that the rows and columns of M cannot be rearranged so as to make M

a block diagonal matrix consisting of more than one block. Thus to complete the proof, it
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suffices to show that for χ ∈ Ω and χ′ ∈ Irr(A), if mχ′,χ 6= 0, then χ′ ∈ Ω. In other words,

it suffices to show that dG(Ω) ⊆< Ω >K .

Let χ ∈ Ω. By the hypothesis of the lemma, there is a unique ζ ∈ Λ such that

Iµ(ζ) = χ. Thus as µ is quasi-perfect, by lemma 9.8, dG(χ) = Iµ(dH(ζ)) ∈ Iµ(KR(KHẽB))

⊆< Ω >K . This shows that dG(Ω) ⊆< Ω >K , so the lemma holds.
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Chapter 10

Grothendieck groups and

p-permutation equivalences

Throughout this section, let F be an algebraically closed field of characteristic

p > 0.

Definition 10.1. Let G be a finite group and let B be a direct sum of blocks of FG.

We denote by R(B) the Grothendieck group of B-modules with respect to the relation

[[M ]] = [[L]] + [[N ]] whenever there is a short exact sequence of 0 → L → M → N → 0

of B-module homomorphisms, where [[M ]] denotes the image of the B-module M in R(B).

We identify R(B) with the Brauer character group of B, which is the group of virtual

Brauer characters of B.

If G and H are finite groups, A is a direct sum of blocks of FG, and B is a direct

sum of blocks of FH, we denote R(A⊗Bo) by R(A,B).

Definition 10.2. Let G be a finite group and let B be a direct sum of blocks of FG. The

trivial source group of B, denoted by T (B), is the Grothendieck group of trivial source

FG-modules with respect to the relation [M ] = [L] + [N ] whenever there is a split short

exact sequence 0 → L → M → N → 0 of B-module homomorphisms, where [M ] denotes

the image of the B-module M in T (B). For γ ∈ T (B) and an indecomposable trivial source

B-module M, we say that M appears in γ if the coefficient of [M ] in γ is nonzero with

respect to the Z-basis of T (B) consisting of indecomposable trivial source B-modules. For

γ ∈ T (B), we denote by [γ] the image of γ under the canonical homomorphism from T (B)

to R(B).
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Lemma 10.3. Let (P, e) be a Brauer pair for FG, let I be the inertial group of FCG(P )e

in NG(P ), and let ω ∈ T (FG) such that no indecomposable FG-module appearing in ω has

Brauer pair properly containing (P, e). For an indecomposable trivial source FG-module M

such that (P, e) is an M -Brauer pair, M has the same coefficient in ω as eM(P ) has in

e(ω(P )) ∈ T (FIe).

Proof. This follows from lemma 6.5.

Definition 10.4. For ω ∈ T (FG), an ω-Brauer pair is a Brauer pair (P, e) of FG such

that eω(P ) 6= 0 in T (FIe), where I is the inertial group of FCG(P )e in NG(P ).

Definition 10.5. Let X be a subgroup of G×H, and let Λ be a direct sum of blocks of FX.

We denote by T∆(Λ) the subgroup of T (Λ) spanned by those indecomposable trivial source

Λ modules that have a twisted diagonal vertex. If A is a direct sum of blocks of FG and B

is a direct sum of blocks of FH, we denote T∆(A⊗Bo) by T∆(A,B).

Definition 10.6. Let G and H be finite groups, let A be a direct sum of blocks of FG, and

let B be a direct sum of blocks of FH. We denote by T∆
o (A,B) the set of all elements of

γ of T∆(A,B) such that γ ⊗B γo = [A] in T∆(A,A) and γo ⊗A γ = [B] in T∆(B,B). An

element of T∆
o (A,B) is called a p-permutation equivalence.
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Chapter 11

Brauer pairs for p-permutation

equivalences

Throughout this section, let p be a prime and let (K,O, F ) be a p-modular system

with F algebraically closed and K large enough. Let G and H be finite groups, let A =

FGeA be a direct sum of blocks of FG and let B = FHeB be a direct sum of blocks

of FH. Suppose that A and B are p-permutation equivalent and let γ ∈ T∆
o (A,B) be a

p-permutation equivalence.

Lemma 11.1. Let (Q, e) be an A-Brauer pair and let I be the inertial group of FCG(Q)e

in NG(Q).

(1) For an irreducible KNI×I(∆(Q))(ẽ⊗ ẽo)-module V, there is a unique I ×H-conjugacy

class of triples (R, f, ϕ) such that (R, f) is a B-Brauer pair, ϕ : R→ Q is an isomorphism,

and [[V ]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KNI×J(∆(Q,ϕ,R))(ẽ ⊗ f̃o)), where J is

the inertial group of FCH(R)f in NH(R). Moreover, [V ]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K is

plus or minus an irreducible KNI×J(∆(Q,ϕ,R))(ẽ⊗ f̃o)-module.

(2) For an irreducible (KCG(Q)ẽ, KCG(Q)ẽ)-bimodule V, there is a unique H-conjugacy

class of triples (R, f, ϕ) such that (R, f) is a B-Brauer pair, ϕ : R → Q is an isomor-

phism, and [[V ]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KCG(Q)ẽ, KCH(R)f̃). Moreover,

[[V ]]⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K is plus or minus and irreducible (KCG(Q)ẽ, KCH(R)f̃)-

bimodule.

Proof. (1) As eA(∆(Q))e ∼= FCG(Q)e as FNI×I(∆(Q))-modules and γ ∈ T∆
o (A,B),

[FCG(Q)e] =
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∑
(R,f,ϕ)∈Γ/∼I×H

Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)(eγ(∆(Q,ϕ,R))f ⊗FCH(R) fγ

o(∆(R,ϕ−1, Q))e) in

T∆(FNI×I(∆(Q))(e ⊗ eo)) by lemma 7.6.2. Therefore, it follows from lemma 4.20 and

lemma 7.4.1 that [[KCG(Q)ẽ]] =∑
(R,f,ϕ)∈Γ/∼I×H

Ind
NI×I(∆(Q))
∆(N(ϕ−1,I,J))(CG(Q)×1)((eγ(∆(Q,ϕ,R))f)K⊗KCH(R)(fγ

o(∆(R,ϕ−1, Q))e)K).

As V is irreducible, dimK(HomKNI×I(∆(Q))(V ⊗KCG(Q) KCG(Q)ẽ, V )) =

dimK(EndKNI×I(∆(Q))(V )) = 1, so it follows from lemma 8.6 that 1 =∑
(R,f,ϕ)∈Γ/∼I×H

dimK(EndKNI×J (∆(Q,ϕ,R))([[V ]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K)), where J is

the inertial group of FCH(R)f in NH(R), and hence (1) holds.

(2) As eA(∆(Q))e ∼= FCG(Q)e as (FCG(Q), FCG(Q))-bimodules, and γ ∈ T∆
o (A,B),

[FCG(Q)e] =
∑

(R,f,ϕ)∈Γ/∼H

eγ(∆(Q,ϕ,R))f ⊗FCH(R) fγ
o(∆(R,ϕ−1, Q))e in

T∆(FCG(Q)e, FCG(Q)e) by lemma 7.6.1. Therefore, [[KCG(Q)ẽ]] =∑
(R,f,ϕ)∈Γ/∼H

(eγ(∆(Q,ϕ,R))f)K ⊗KCH(R) (fγo(∆(R,ϕ−1, Q)))e)K . As V is irreducible,

dimK(HomK(CG(Q)×CG(Q))(V ⊗KCG(Q) KCG(Q)ẽ, V )) = dimK(EndK(CG(Q)×CG(Q))(V )) =

1, so it follows from lemma 8.5.2 that

1 =
∑

(R,f,ϕ)∈Γ/∼H

dimK(EndK(CG(Q)×CH(R))([[V ]]⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K)), and hence

(2) holds.

Lemma 11.2. Let (Q, e) be an A-Brauer pair and let (R, f) be a B-Brauer pair such

that R is isomorphic to Q and let ϕ : R → Q be an isomorphism. Let I be the inertial

group of FCG(Q)e in NG(Q) and let J be the inertial group of FCH(R)f in NH(R). Then

(eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KNI×J(∆(Q,ϕ,R))(ẽ⊗ f̃o)) if and only if

(eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KCG(Q)ẽ, KCH(R)f̃).

Proof. The “if” part of the statement clearly holds, so it suffices to prove the “only if” part.

Suppose (eγ(∆(Q,ϕ,R))f)K 6= 0 inR(KNI×J(∆(Q,ϕ,R))(ẽ⊗f̃o)).As [[KCG(Q)e]]⊗KCG(Q)

(eγ(∆(Q,ϕ,R))f)K = (eγ(∆(Q,ϕ,R))f)K 6= 0, there is an irreducible KNI×I(∆(Q))(ẽ ⊗
ẽo)-module V such that [[V ]]⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K 6= 0, and hence by lemma 11.1.1,

[[V ]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K is plus or minus an irreducible KNI×J(∆(Q,ϕ,R))(ẽ ⊗
f̃o))-module. Therefore,

[[ResNI×I(∆(Q))
CG(Q)×CG(Q)(V )]]⊗KCG(Q) Res

NI×J (∆(Q,ϕ,R))
CG(Q)×CH(R) ((eγ(∆(Q,ϕ,R))f)K) =

Res
NI×J (∆(Q,ϕ,R))
CG(Q)×CH(R) ([[V ]]⊗KCG(Q)(eγ(∆(Q,ϕ,R))f)K) 6= 0, and hence (eγ(∆(Q,ϕ,R))f)K 6=
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0 in R(KCG(Q)ẽ, KCH(R)f̃), so the lemma holds.

Lemma 11.3. (1) If (Q, e) is an A-Brauer pair, (R, f) is a B-Brauer pair, and ϕ : R→ Q

is an isomorphism such that (eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KCG(Q)ẽ, KCH(R)f̃), then

(eγ(∆(Q,ϕ,R))f)K is an isometry and

[eγ(∆(Q,ϕ,R))f ] 6= 0 in R(FCG(Q)e, FCH(R)f).

(2) For an A-Brauer pair (Q, e), there is a unique H-conjugacy class of triples (R, f, ϕ) such

that (R, f) is a B-Brauer pair, ϕ : R→ Q is an isomorphism, and (eγ(∆(Q,ϕ,R))f)K 6= 0

in R(KCG(Q)ẽ, KCH(R)f̃).

(3) For a B-Brauer pair (R, f), there is a unique G-conjugacy class of triples (Q, e, ϕ) such

that (Q, e) is an A-Brauer pair, ϕ : R→ Q is an isomorphism, and (eγ(∆(Q,ϕ,R))f)K 6= 0

in R(KCG(Q)ẽ, KCH(R)f̃).

Proof. As (2) and (3) follow from (1) and lemma 11.1.2, it suffices to prove (1). By lemma

11.1.2, [[V ]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K is either zero or plus or minus and irreducible

(KCG(Q)ẽ, KCH(R)f̃)-bimodule for any irreducible (KCG(Q)ẽ, KCG(Q)ẽ)-bimodule V,

and [[W ]] ⊗KCH(R) ((eγ(∆(Q,ϕ,R))f)o)K is either zero or plus or minus an irreducible

(KCH(R)f̃ ,KCG(Q)ẽ)-bimodule for any irreducible (KCH(R)f̃ ,KCH(R)f̃)-bimodule W.

Thus as (eγ(∆(Q,ϕ,R))f)K is a perfect virtual character by [5](Theorem 1.5(2)), it fol-

lows that (eγ(∆(Q,ϕ,R))f)K is an isometry by lemma 9.10. Let µ = (eγ(∆(Q,ϕ,R))f)K .

As µ is a perfect, IdCG(Q)×CH (R)(µ) ◦ dCH(R) = Iµ ◦ dCH(R) = dCG(Q) ◦ Iµ as maps from

KR(KCH(R)f̃) to KR(KCG(Q)ẽ) by lemma 9.8.2. As µ is an isometry, dCG(Q) ◦ Iµ 6= 0,

so [eγ(∆(Q,ϕ,R))f ] = dCG(Q)×CH(R)(µ) 6= 0, and hence (1) holds.

Lemma 11.4. Let (D, e) be an A-Brauer, and let (E, f) be a B-Brauer such that there is an

isomorphism ϕ : E → D. Let R ≤ E, let Q = ϕ(R), let σ ∈ bli(FCG(Q)) such that (Q, σ) ≤
(D, e) and let τ ∈ bli(FCH(R)) such that (R, τ) ≤ (E, f). If (eγ(∆(D,ϕ,E))f)K 6= 0 in

R(KCG(D)ẽ, KCH(E)f̃), then (σγ(∆(Q,ϕ,R))τ)K 6= 0 in R(KCG(Q)σ̃,KCH(R)τ̃).

Proof. Arguing by induction on [D : Q], we may assume that Q ED and D/Q is a cyclic

group. Thus there exists x ∈ D such that D = Q < x > . Let y = ϕ−1(x), and note

that E = R < y > . Assume that (σγ(∆(Q,ϕ,R))τ)K = 0 in R(KCG(Q)σ̃,KCH(R)τ̃). By

lemma 11.2, (σγ(∆(Q,ϕ,R))τ)K = 0 in R(KNI×J(∆(Q,ϕ,R)))(σ̃⊗ τ̃ o)), so by lemma 4.17

and lemma 4.18,
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[BrD(σ)γ(∆(D,ϕ,E))BrE(τ)] = [(σγ(∆(Q,ϕ,R))τ)(< (x, y) >)] =

d
(x,y)
NI×J (∆(Q,ϕ,R))((σγ(∆(Q,ϕ,R))τ)K) = 0. Thus as eBrD(σ) = e and fBrE(τ) = f,

[eγ(∆(D,ϕ,E))f ] = 0, which is a contradiction to lemma 11.3 as (eγ(∆(D,ϕ,E))f)K 6= 0,

so the lemma holds.

Lemma 11.5. Let (Q, e) be an A-Brauer pair and let (R, f) be a B-Brauer pair such that

there is an isomorphism ϕ : R → Q. If there is an indecomposable A ⊗ Bo-module M that

appears in γ such that (∆(Q,ϕ,R), e⊗fo) is an M -Brauer pair, then (eγ(∆(Q,ϕ,R))f)K 6=
0 in R(KCG(Q)ẽ, KCH(R)f̃).

Proof. Let I be the inertial group of FCG(Q)e in NG(Q) and let J be the inertial group of

FCH(R)f in NH(R). By lemma 11.4, we may assume that (∆(Q,ϕ,R), e⊗fo) is a maximal

A⊗Bo-Brauer pair subject to the condition that (∆(Q,ϕ,R), e⊗ fo) is an M -Brauer pair

for some indecomposable A ⊗ Bo-module appearing in γ. It follows that for any indecom-

posable A⊗Bo-module M that appears in γ such that (∆(Q,ϕ,R), e⊗ fo) is an M -Brauer

pair, (∆(Q,ϕ,R), e⊗fo) is a maximal M -Brauer pair, and hence eM(∆(Q,ϕ,R))f is a pro-

jective indecomposable FNI×J(∆(Q,ϕ,R))/∆(Q,ϕ,R)-module by lemma 4.16 and lemma

6.4. Therefore, eγ(∆(Q,ϕ,R))f is a virtual projective

NI×J(∆(Q,ϕ,R))/∆(Q,ϕ,R)-module. By our hypothesis, there is an indecomposable A⊗
Bo-module M that appears in γ such that (∆(Q,ϕ,R), e⊗fo) is an M -Brauer pair, so by the

maximality of (∆(Q,ϕ,R), e⊗fo) and lemma 10.3, the indecomposable FNI×J(∆(Q,ϕ,R))-

module eM(∆(Q,ϕ,R))f has nonzero coefficient in eγ(∆(Q,ϕ,R))f, so eγ(∆(Q,ϕ,R))f 6=
0 in T∆(FNI×J(∆(Q,ϕ,R))). Thus as eγ(∆(Q,ϕ,R))f is a virtual projective

FNI×J(∆(Q,ϕ,R))/∆(Q,ϕ,R)-module, (eγ(∆(Q,ϕ,R))f)K 6= 0 inR(KNI×J(∆(Q,ϕ,R)))

by the injectivity of the adjoint to the decomposition map. Therefore, (eγ(∆(Q,ϕ,R))f)K 6=
0 in R(KCG(Q)ẽ, KCH(R)f̃) by lemma 11.2, so the lemma holds.

Lemma 11.6. Let (Q, e) be an A-Brauer pair and let (R, f) be a B-Brauer pair such that

there is an isomorphism ϕ : R→ Q. Let I be the inertial group of FCG(Q)e in NG(Q) and

let J be the inertial group of FCH(R)f in NH(R). The following are equivalent:

(1) The A⊗Bo-Brauer pair (∆(Q,ϕ,R), e⊗ fo) is a γ-Brauer pair.

(2) eγ(∆(Q,ϕ,R))f 6= 0 in T∆(FCG(Q)e, FCH(R)f).

(3) (eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KNI×J(∆(Q,ϕ,R))(ẽ⊗ f̃o)).
(4) (eγ(∆(Q,ϕ,R))f)K 6= 0 in R(KCG(Q)ẽ, KCH(R)f̃).
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(5) [eγ(∆(Q,ϕ,R))f ] 6= 0 in R(FNI×J(∆(Q,ϕ,R))(e⊗ fo)).
(6) [eγ(∆(Q,ϕ,R))f ] 6= 0 in R(FCG(Q)e, FCH(R)f).

Proof. Clearly each of conditions (2)-(6) implies (1) and (6) implies each of conditions (2)-

(5), so it suffices to show that (1) implies (6). Now (1) implies (4) by lemma 11.5, and (4)

implies (6) by lemma 11.3, so the lemma holds.

Lemma 11.7. (1) For every A-Brauer pair (Q, e), there is a unique H-conjugacy class of

triples (R, f, ϕ) such that (R, f) is a B-Brauer pair and ϕ : R→ Q is an isomorphism such

that (∆(Q,ϕ,R), e⊗ fo) is a γ-Brauer pair.

(2) For every B-Brauer pair (R, f), there is a unique G-conjugacy class of triples (Q, e, ϕ)

such that (Q, e) is an A-Brauer pair and ϕ : R→ Q is an isomorphism such that

(∆(Q,ϕ,R), e⊗ fo) is a γ-Brauer pair.

Proof. This follows from lemma 11.3 and lemma 11.6

Lemma 11.8. For each block direct summand A′ = FGeA′ of A, there is a unique block

direct summand B′ = FHeB′ of B such that eA′γeB′ 6= 0, and for each block direct summand

B′ = FHeB′ of B, there is a unique block direct summand A′ = FGeA′ of A such that

eA′γeB′ 6= 0. Furthermore, if A′ = FGeA′ is a block direct summand of A and B′ = FHeB′

is a block direct summand of B such that eA′γeB′ 6= 0, then eA′γeB′ is a p-permutation

equivalence.

Proof. The first statement follows from lemma 11.7 with Q the trivial subgroup of G and

R the trivial subgroup of H. The last statement follows from the first and the fact that γ

is a p-permutation equivalence.

Now suppose that A is a block of FG and B is a block of FH.

Theorem 11.9. The set of γ-Brauer pairs is closed under inclusion and G×H-conjugation.

The maximal γ-Brauer pairs are precisely the γ-Brauer pairs of the form (∆(D,ϕ,E), e⊗fo),
where (D, e) is a maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair, and ϕ : E →
D is an isomorphism. Furthermore, the maximal γ-Brauer pairs are all G×H-conjugate.

Proof. The set of γ-Brauer pairs is easily seen to be closed under G×H-conjugation, and

it is closed under inclusion by lemma 11.4 and lemma 11.6. The second statement follows

from lemma 11.3, lemma 11.4 and lemma 11.6. The final statement holds by lemma 11.3

and the fact that G acts transitively by conjugation on the maximal A-Brauer pairs.
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Chapter 12

Invariants preserved by

p-permutation equivalences

Throughout this section, let p be a prime and let (K,O, F ) be a p-modular system

with F algebraically closed and K large enough. Let G and H be finite groups, let A =

FGeA and B = FHeB be p-permutation equivalent blocks of FG and FH respectively, and

let γ ∈ T∆
o (A,B) be a p-permutation equivalence.

Theorem 12.1. Let (∆(D,ϕ,E), e ⊗ fo) be a maximal γ-Brauer pair, where (D, e) is

a maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair, and ϕ : E → D is an

isomorphism. Let A be the fusion system associated with (D, e) and let B be the fusion

system associated with (E, f). The isomorphism ϕ : E → D is an isomorphism between B
and A.

Proof. We need to show that if R and R′ are subgroups of E,Q = ϕ(R), and Q′ = ϕ(R′),

then ϕ−1 ◦HomA(Q′, Q) ◦ ϕ = HomB(R′, R). By symmetry, it suffices to show that ϕ−1 ◦
HomA(Q′, Q) ◦ ϕ ⊆ HomB(R′, R). Thus by Alperin’s fusion theorem we may assume that

Q = Q′. Let σ be the unique block idempotent of FCG(Q) such that (Q, σ) ≤ (D, e) and let

τ be the unique block idempotent of FCH(R) such that (R, τ) ≤ (E, f). Let I be the inertial

group of FCG(Q)σ in NG(Q) and let J be the inertial group of FCH(R)τ in NH(R). Let

g ∈ I. As (∆(Q,ϕ,R), σ ⊗ τ o) is a γ-Brauer pair by lemma 11.9, (∆(Q, cgϕ,R), σ ⊗ τ o) =
(g,1)(∆(Q,ϕ,R), σ ⊗ τ o) is a γ-Brauer pair, so by lemma 11.7, there exists h ∈ H such that

(R, τ, cgϕ) = h(R, τ, ϕ) = ( hR, hτ, ϕc−1
h ), and hence h ∈ J and ϕ−1◦cg ◦ϕ = c−1

h . This shows

that ϕ−1 ◦ AutI(Q) ◦ ϕ ⊆ AutJ(R), so as AutA(Q) = AutI(Q) and AutB(R) = AutJ(R),
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the lemma holds.

Theorem 12.2. Let (∆(Q,ϕ,R), e⊗ fo) be a γ-Brauer pair, where (Q, e) is an A-Brauer,

(R, f) is a B-Brauer pair and ϕ : R→ Q is an isomorphism. Let I be the inertial group of

FCG(Q)e in NG(Q), and let J be the inertial group of FCH(R)f in NH(R).

(1) ϕ ◦ J/CH(R) ◦ ϕ−1 = I/CG(Q).

(2) Let CG(Q) ≤ S ≤ I and let CH(R) ≤ T ≤ J such that ϕ ◦ T/CH(R) ◦ ϕ−1 = S/CG(Q).

The element IndS×TNS×T (∆(Q,ϕ,R))(eγ(∆(Q,ϕ,R))f) ∈ T∆(FSe, FTf) is a p-permutation equiv-

alence.

Proof. Note that (1) holds by lemma 11.9 and lemma 12.1, so it suffices to prove (2). By

lemma 11.7, if (R′, f ′, ϕ′) is a triple such that (R′, f ′) is a B-Brauer pair and ϕ′ : R′ → Q is

an isomorphism and (R′, f ′, ϕ′) is not H-conjugate to (R, f, ϕ), then eγ(∆(Q,ϕ′, R′))f ′ = 0

in T∆(NI×J ′(∆(Q,ϕ′, R′))(e⊗(f ′)o)), where J ′ is the inertial group of FCH(R)f ′ in NH(R′).

Thus as eA(∆(Q))e ∼= FCG(Q)e as FNS×S(∆(Q))-modules, it follows from lemma 7.6.2

that [FCG(Q)e] = eγ(∆(Q,ϕ,R))f ⊗FCH(R) fγ
o(∆(R,ϕ−1, Q))e in T∆(FNS×S(∆(Q))(e⊗

eo)). Thus it follows from lemma 7.2 and lemma 7.3 that [IndS×SNS×S(∆(Q))(FCG(Q)e)] =

IndS×TNS×T (∆(Q,ϕ,R))(eγ(∆(Q,ϕ,R))f)⊗FT IndT×SNT×S(∆(R,ϕ−1,Q))
(fγo(∆(R,ϕ−1, Q))e). Now as

CG(Q) is a transitive NS×S(∆(Q))-set and ∆(S) is the point stabilizer of the identity el-

ement, FCG(Q) ∼= Ind
NS×S(∆(Q))
∆(S) (F∆(S)), so by lemma 4.1, IndS×SNS×S(∆(Q))(FCG(Q)e) ∼=

eIndS×S∆(S)(F∆(S))e ∼= FSe as (FSe, FSe)-bimodules. Therefore, [FSe] =

IndS×TNS×T (∆(Q,ϕ,R))(eγ(∆(Q,ϕ,R))f)⊗FT (IndS×TNS×T (∆(Q,ϕ,R))(eγ(∆(Q,ϕ,R))f))o, and by sym-

metry, [FTf ] =

(IndS×TNS×T (∆(Q,ϕ,R))(eγ(∆(Q,ϕ,R))f))o⊗FSIndS×TNS×T (∆(Q,ϕ,R))(eγ(∆(Q,ϕ,R))f), so (2) holds.

Lemma 12.3. Let (∆(D,ϕ,E), e⊗fo) be a maximal γ-Brauer pair, where (D, e) is a maxi-

mal A-Brauer, (E, f) is a maximal B-Brauer pair and ϕ : E → D is an isomorphism. Let A
and B denote the fusion systems associated with (D, e) and (E, f) respectively. For Q ≤ D
and R ≤ E, let eQ denote the unique block idempotent of FCG(Q) such that (Q, eQ) ≤ (D, e)

and let fR denote the unique block idempotent of FCH(R) such that (R, fR) ≤ (E, f). Let

R ≤ E and let Q = ϕ(R). Let I be the inertial group of FCG(Q)eQ in NG(Q), and let J be

the inertial group of FCH(R)fR in NH(R).

(1) The FCG(Q)eQ⊗FCH(R)foR-Brauer pair (∆(CD(Q), ϕ, CE(R)), eQCD(Q)⊗ foRCE(R)) is
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a maximal eQγ(∆(Q,ϕ,R))fR-Brauer pair if and only if Q is fully A-centralized. In par-

ticular, (∆(Z(Q), ϕ, Z(R)), eQ ⊗ foR) is a maximal

eQγ(∆(Q,ϕ,R))fR-Brauer pair if and only if Q is A-centric.

(2) The FIeQ ⊗ FJfoR-Brauer pair (∆(ND(Q), ϕ,NE(R)), eND(Q) ⊗ foNE(R)) is a maximal

IndI×JNI×J (∆(Q,ϕ,R))(eQγ(∆(Q,ϕ,R))fR)-Brauer pair if and only if Q is fully A-normalized.

Proof. (1) If (∆(CD(Q), ϕ, CE(R)), eQCD(Q) ⊗ foRCE(R)) is a maximal

eQγ(∆(Q,ϕ,R))fR-Brauer pair, then as eQγ(∆(Q,ϕ,R))fR is a p-permutation equivalence

by lemma 12.2, CD(Q) is a defect group of FCG(Q)eQ by lemma 11.9 and hence Q is fully

A-centralized by [6] (Theorem 3.11). Conversely, suppose that Q is fully A-centralized. As

eQCD(Q)(eQγ(∆(Q,ϕ,R))fR)(∆(CD(Q), ϕ, CE(R)))fRCE(R) =

eQCD(Q)γ(∆(QCD(Q), ϕ,RCE(R)))fRCE(R) in

T∆(FCG(QCD(Q))eQCD(Q), FCH(RCE(R))fRCE(R)) and

(∆(QCD(Q), ϕ,RCE(R)), eQCD(Q) ⊗ foRCE(R)) is a γ-Brauer pair by lemma 11.9, it follows

that (∆(CD(Q), ϕ, CE(R)), eQCD(Q)⊗foRCE(R)) is an eQγ(∆(Q,ϕ,R))fR-Brauer pair. As Q

is fully A-centralized, CD(Q) is a defect group of FCG(Q)eQ by [6] (Theorem 3.11), and

hence (∆(CD(Q), ϕ, CE(R)), eQCD(Q) ⊗ foRCE(R)) is a maximal eQγ(∆(Q,ϕ,R))fR-Brauer

pair by lemma 11.9, so (1) holds.

(2) If (∆(ND(Q), ϕ,NE(R)), eND(Q) ⊗ foNE(R)) is a maximal

IndI×JNI×J (∆(Q,ϕ,R))(eQγ(∆(Q,ϕ,R))fR)-Brauer pair, then ND(Q) is a defect group of FIeQ

by lemma 11.9, and hence Q is fully A-normalized by [6] (Theorem 3.11). Conversely, sup-

pose that Q is fully A-normalized. By lemma 11.9 and [6] (Theorem 3.11), it suffices to show

that (∆(ND(Q), ϕ,NE(R)), eND(Q) ⊗ foNE(R)) is an IndI×JNI×J (∆(Q,ϕ,R))(eQγ(∆(Q,ϕ,R))fR)-

Brauer pair. By lemma 4.19,

eND(Q)(Ind
I×J
NI×J (∆(Q,ϕ,R))(eQγ(∆(Q,ϕ,R))fR))(∆(ND(Q), ϕ,NE(R)))fNE(R)

= eND(Q)γ(∆(ND(Q), ϕ,NE(R))fNE(R), so (2) follows as

(∆(ND(Q), ϕ,NE(R)), eND(Q) ⊗ foNE(R)) is a γ-Brauer pair by lemma 11.9.

Lemma 12.4. Let (∆(Q,ϕ,R), e ⊗ fo) be a γ-Brauer pair, where (Q, e) is an A-Brauer

pair, (R, f) is a B-Brauer pair, and ϕ : R→ Q is an isomorphism.

(1)The block FCG(Q)e has defect group Z(Q) if and only if the block FCH(R)f has defect

group Z(R).

(2) Suppose that FCG(Q)e has defect group Z(Q).

(a) The element eγ(∆(Q,ϕ,R))f ∈ T∆(FCG(Q)e, FCH(R)f) is plus or minus the unique
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indecomposable trivial source (FCG(Q)e, FCH(R)f)-bimodule with vertex ∆(Z(Q), ϕ, Z(R)).

(b) DefCG(Q)×CH(R)
CG(Q)×CH(R)/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f) is plus or minus the unique irreducible

(FCG(Q)e, FCH(R)f)-bimodule.

(c) The element (DefNI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f))K ∈

R(KNI×J(∆(Q,ϕ,R))) is plus or minus an irreducible KNI×J(∆(Q,ϕ,R))(ẽ⊗f̃o))-module.

(d) The element [DefNI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f)] ∈

R(FNI×J(∆(Q,ϕ,R))) is plus or minus an irreducible FNI×J(∆(Q,ϕ,R))(e⊗fo)-module.

Proof. (1) By lemma 11.9, there is a maximal A-Brauer pair (D,σ) and a maximal B-

Brauer pair (E, τ) such that ϕ : R → Q extends to an isomorphism ϕ : E → D and

(∆(D,ϕ,E), σ ⊗ τ o) is a maximal γ-Brauer pair. Now by lemma 12.1, Q is centric in

the fusion system associated with (D,σ) if and only of R is centric in the fusion system

associated with (E, τ), so (1) holds by [6] (Theorem 3.11).

(2) As Z(Q) is the defect group of FCG(Q)e, it follows from [9] (Theorem 5.8.10 and

Theorem 5.8.11) that F (CG(Q)/Z(Q))e is a block of F (CG(Q)/Z(Q)) of defect zero, so it

follows that K(CG(Q)/Z(Q))ẽ is an irreducible (KCG(Q)ẽ, KCG(Q)ẽ)-bimodule. Thus by

lemma 11.3 and 11.6, DefCG(Q)×CH(R)
CG(Q)×CH(R)/(Z(Q)×1)((eγ(∆(Q,ϕ,R))f)K) =

[[K(CG(Q)/Z(Q))ẽ]]⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K is plus or minus an irreducible

(KCG(Q)ẽ, KCH(R)f̃)-bimodule. Let M be an (FCG(Q), FCH(R))-bimodule appearing in

eγ(∆(Q,ϕ,R))f. As ∆(Q,ϕ,R) acts trivially on every module appearing in eγ(∆(Q,ϕ,R))f

viewed as an element of T∆(F (NI×J(∆(Q,ϕ,R)))(e⊗ fo)),∆(Z(Q), ϕ, Z(R)) acts trivially

on M and hence is contained in any vertex U of M. On the otherhand, U is a twisted

diagonal subgroup of CG(Q) × CH(R) with p1(U) ≤ Z(Q) as Z(Q) is the defect group

of FCG(Q)e. Therefore, U = ∆(Z(Q), ϕ, Z(R)) is the vertex of M. Thus we may view

eγ(∆(Q,ϕ,R))f as virtual projective F (CG(Q)× CH(R)/∆(Z(Q), ϕ, Z(R)))-module, and

Def
CG(Q)×CH(R)
CG(Q)×CH(R)/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f) as a virtual (FCG(Q)/Z(Q), FCH(R)/Z(R))-

bimodule belonging to the block F (CG(Q)/Z(Q))e ⊗ F (CH(R)/Z(R))fo of defect zero.

Thus as (DefCG(Q)×CH(R)
CG(Q)×CH(R)/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f))K is plus or minus an irreducible

(KCG(Q)ẽ, KCH(R)f̃)-bimodule, hd(eγ(∆(Q,ϕ,R))f) =

Def
CG(Q)×CH(R)
CG(Q)×CH(R)/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f) is plus or minus the unique irreducible

(FCG(Q)e, FCH(R)f)-bimodule, and hence eγ(∆(Q,ϕ,R))f is plus or minus the unique

projective indecomposable F (CG(Q) × CH(R)/∆(Z(Q), ϕ, Z(R)))-module, so (a) and (b)

hold.
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As (DefCG(Q)×CH(R)
CG(Q)×CH(R)/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f))K 6= 0 inR(KCG(Q)ẽ, KCH(R)f̃),

[[K(CG(Q)/Z(Q))ẽ]]⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K =

(DefNI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f))K 6= 0 in R(KNI×J(∆(Q,ϕ,R))), so as

K(CG(Q)/Z(Q))ẽ is irredicible as an (KCG(Q)ẽ, KCG(Q)ẽ)-bimodule and hence as a

KNI×I(∆(Q))(ẽ⊗ ẽo)-module, (c) holds by lemma 11.1.1.

To prove (d), we may assume without loss of generality that

(DefNI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f))K is an irreducible KNI×J(∆(Q,ϕ,R))(ẽ ⊗

f̃o)-module by (c). Therefore, every module appearing in

[DefNI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f)] has positive coefficient, so as

[ResNI×J (∆(Q,ϕ,R))/(Z(Q)×1)
CG(Q)×CH(R)/(Z(Q)×1) Def

NI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f)] is the irreducible

(FCG(Q)e, FCH(R)f)-bimodule by (b), it follows that

[DefNI×J (∆(Q,ϕ,R))
NI×J (∆(Q,ϕ,R))/(Z(Q)×1)(eγ(∆(Q,ϕ,R))f)] is an irreducible FNI×J(∆(Q,ϕ,R))-module,

so (d) holds.

Theorem 12.5. Let (∆(Q,ϕ,R), e⊗ fo) be a γ-Brauer pair, where (Q, e) is an A-Brauer

pair, (R, f) is a B-Brauer pair, and ϕ : R → Q is an isomorphism. Let I be the inertial

group of FCG(Q)e in NG(Q) and let J be the inertial group of FCH(R)f in NH(R). Suppose

that the defect group of FCG(Q)e is Z(Q) so that the defect group of FCH(R)f is Z(R)

by lemma 12.4.1. Let [α] ∈ H2(I/QCG(Q), F×) be the Külshammer-Puig class associated

with (Q, e), and let [β] ∈ H2(J/RCH(R), F×) be the Külshammer-Puig class associated

with (R, f). Let ψ : Aut(R) → Aut(Q) be the isomorphism defined by σ 7→ ϕ ◦ σ ◦ ϕ−1 for

σ ∈ Aut(R). As ϕ(R) = Q,ψ(RCH(R)/CH(R)) = QCG(Q)/CG(Q), and by lemma 12.1,

ψ(J/CH(R)) = I/CG(Q), so ψ induces an isomorphism ψ : J/RCH(R) → I/QCG(Q).

Furthermore, we have that [α ◦ (ψ × ψ)] = [β] in H2(J/RCH(R), F×).

Proof. We only need to prove the last statement. LetM be the unique irreducible FQCG(Q)e-

module and let N be the unique irreducible FRCH(R)fo-module. By definition 3.5, there

is an FαI-module V and an Fβ−1J-module W such that ResIQCG(Q)(V ) ∼= M and

ResJRCH(R)(W ) ∼= N. By lemma 12.4.2(b) and lemma 12.4.2(d), there is an irreducible

FNI×J(∆(Q,ϕ,R))-module L such that Res
NI×J (∆(Q,ϕ,R))
CG(Q)×CH(R) (L) is the unique irreducible

(FCG(Q)e, FCH(R)f)-bimodule. Therefore, ResNI×J (∆(Q,ϕ,R))
∆(Q,ϕ,R)(CG(Q)×CH(R))(L) is the unique ir-

reducible F∆(Q,ϕ,R)(CG(Q)× CH(R))(e⊗ fo)-module, and hence

Res
NI×J (∆(Q,ϕ,R))
∆(Q,ϕ,R)(CG(Q)×CH(R))(L) ∼= Res

QCG(Q)×RCH(R)
∆(Q,ϕ,R)(CG(Q)×CH(R))(M ⊗ N). Thus as V ⊗W is an

Fαβ−1(I×J)-module andResI×J∆(Q,ϕ,R)(CG(Q)×CH(R))(V⊗W ) ∼= Res
QCG(Q)×RCH(R)
∆(Q,ϕ,R)(CG(Q)×CH(R))(M⊗
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N), αβ−1 is cohomologous to the trivial NI×J(∆(Q,ϕ,R))/∆(Q,ϕ,R)(CG(Q)×CH(R)) 2-

cocycle by [9](Theorem 3.5.7.(iii)). Thus by viewingNI×J(∆(Q,ϕ,R))/∆(Q,ϕ,R)(CG(Q)×
CH(R)) = ∆(I/QCG(Q), ψ, J/RCH(R)) as a subgroup of I/QCG(Q)×J/RCH(R), we find

that αβ−1 is cohomologous to the trivial ∆(I/QCG(Q), ψ, J/RCH(R)) 2-cocyle, and hence

the lemma holds.

Lemma 12.6. Let (∆(D,ϕ,E), e ⊗ fo) be a maximal γ-Brauer pair, where (D, e) is a

maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair, and ϕ : E → D is an iso-

morphism. Let I be the inertial group of FCG(D)e in NG(D) and let J be the inertial

group of FCH(E)f in NH(E). The virtual module eγ(∆(D,ϕ,E))f is plus or minus an

indecomposable trivial source FNI×J(∆(D,ϕ,E))(e ⊗ fo)-module with vertex ∆(D,ϕ,E),

and DefNI×J (∆(D,ϕ,E))
NI×J (∆(D,ϕ,E))/(Z(D)×1)(eγ(∆(D,ϕ,E))f) is plus or minus an irreducible

FNI×J(∆(D,ϕ,E))(e⊗ fo)-module.

Proof. By Theorem 3.11.ii in [6], (∆(D,ϕ,E))(Z(D)× 1) is the defect group of

FNI×J(∆(D,ϕ,E))(e ⊗ fo), and hence FNI×J(∆(D,ϕ,E))/∆(D,ϕ,E)(Z(D) × 1)(e ⊗
fo) is a semisimple F -algebra. Thus as [DefNI×J (∆(D,ϕ,E))

NI×J (∆(D,ϕ,E))/(Z(D)×1)(eγ(∆(D,ϕ,E))f)] is

plus or minus an irreducible FNI×J(∆(D,ϕ,E))/∆(D,ϕ,E)(Z(D) × 1)(e ⊗ fo)-module

by lemma 12.4.2(d), DefNI×J (∆(D,ϕ,E))
NI×J (∆(D,ϕ,E))/(Z(D)×1)(eγ(∆(D,ϕ,E))f) is plus or minus an irre-

ducible FNI×J(∆(D,ϕ,E))/∆(D,ϕ,E)(Z(D)×1)(e⊗fo)-module. Thus as eγ(∆(D,ϕ,E))f

may be viewed as a virtual projective FNI×J(∆(D,ϕ,E))/∆(D,ϕ,E)-module and

Def
NI×J (∆(D,ϕ,E))
NI×J (∆(D,ϕ,E))/(Z(D)×1)(eγ(∆(D,ϕ,E))f) = hd(eγ(∆(D,ϕ,E))f), eγ(∆(D,ϕ,E))f is

plus or minus an indecomposable trivial source FNI×J(∆(D,ϕ,E))(e ⊗ fo)-module with

vertex ∆(D,ϕ,E), so the lemma holds.

Lemma 12.7. There is a unique indecomposable (A,B)-bimodule M appearing in γ such

that M has a vertex of the form ∆(D,ϕ,E), where D is a defect group of A,E is a defect

group of B, and ϕ : E → D is an isomorphism. Moreover, [M ] has coefficient 1 or −1 in

γ.

Proof. By lemma 11.9, there is a maximal A-Brauer pair (D, e), a maximal B-Brauer pair

(E, f), and an isomorphism ϕ : E → D such that eγ(∆(D,ϕ,E))f 6= 0 in

T∆(FNI×J(∆(D,ϕ,E))(e⊗fo)). Thus there is an indecomposable (A,B)-bimodule M that

appears in γ such that (∆(D,ϕ,E), e⊗ fo) is an M -Brauer pair. Therefore, ∆(D,ϕ,E) is
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contained in a vertex U ofM.On the otherhand, U is twisted diagonal and asM is an (A,B)-

bimodule, p1(U) is contained in a defect group of A, so it follows that ∆(D,ϕ,E) = U, and

hence ∆(D,ϕ,E) is a vertex of M.

Let N be an indecomposable (A,B)-bimodule that appears in γ with vertex

∆(D′, ϕ′, E′), where D′ is a defect group of A,E′ is a defect group of B, and ϕ′ : E′ → D′ is

an isomorphism. Let e′ and f ′ be block idempotents of FCG(D′) and FCH(E′) respectively

such that (∆(D′, ϕ′, E′), e′⊗ (f ′)o) is a maximal N -Brauer pair. Then as G is transitive on

the maximal A-Brauer pairs by lemma 3.4.2, we may assume that (D, e) = (D′, e′). Thus by

lemma 10.3, eN(∆(D,ϕ′, E′))f ′ appears in eγ(∆(D,ϕ′, E′))f ′, so eγ(∆(D,ϕ′, E′))f ′ 6= 0.

Therefore, by lemma 11.7, (E′, f ′, ϕ′) is H-conjugate to (E, f, ϕ), and hence we may as-

sume that (E′, f ′, ϕ′) = (E, f, ϕ). Thus as eγ(∆(D,ϕ,E))f is plus or minus an inde-

composable FNI×J(∆(D,ϕ,E))(e⊗ fo)-module by lemma 12.6 and eM(∆(D,ϕ,E))f and

eN(∆(D,ϕ,E))f appear in eγ(∆(D,ϕ,E))f,

eM(∆(D,ϕ,E))f ∼= eN(∆(D,ϕ,E))f, and hence M ∼= N by lemma 6.5.

This shows that M is the unique indecomposable (A,B)-bimodule that appears in

γ with vertex of the form given in the statement of the lemma. Furthermore, by lemma 12.6,

the coefficient of eM(∆(D,ϕ,E))f in eγ(∆(D,ϕ,E))f is plus or minus 1, so the coefficient

of M in γ is plus or minus 1 by lemma 10.3. Thus the lemma holds.

Definition 12.8. The indecomposable (A,B)-bimodule M of lemma 12.7 is called the max-

imal module of γ.

Theorem 12.9. (1) For every indecomposable (A,B)-bimodule M that appears in γ, every

M Brauer pair is a γ-Brauer pair.

(2) Let M be the maximal module of γ.

(a) The set of M -Brauer pairs is equal to the set of γ-Brauer pairs.

(b) The (A,B)-bimodule M is the unique indecomposable (A,B)-bimodule that appears in

γ such that every γ-Brauer pair is an M -Brauer pair.

Proof. Note that (1) holds by lemma 11.5 and lemma 11.6, so it suffices to prove (2). By

lemma 6.4 and lemma 11.9, to prove (a) it suffices to show that the set of maximal M -

Brauer pairs is equal to the set of maximal γ-Brauer pairs, which is clearly the case from

(1), the definition of M, and lemma 11.9, so (a) holds. Now note that (b) holds by (a),

lemma 11.9, and lemma 12.7.
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Lemma 12.10. Let (∆(D,ϕ,E), e ⊗ fo) be a maximal γ-Brauer pair, where (D, e) is a

maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair, and ϕ : E → D is an iso-

morphism. Let I be the inertial group of FCG(D)e in NG(D) and let J be the inertial

group of FCH(E)f in NH(E). Let CG(Q) ≤ S ≤ I and let CH(E) ≤ T ≤ J such that

ϕ−1 ◦ AutS(D) ◦ ϕ = AutT (E), and let M be the maximal module of γ. The (FSe, FTf)-

bimodule

IndS×TNS×T (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f) induces a Morita equivalence between FSe and FTf.

Proof. This follows from lemma 12.2.2 and lemma 12.7.

Theorem 12.11. Let D be a defect group of A, let E be a defect group of B, and let

ϕ : E → D be an isomorphism such that γ(∆(D,ϕ,E)) 6= 0. Let a ∈ Bl(FNG(D)) and

b ∈ Bl(FNH(E)) be the Brauer correspondents of A and B respectively, and let M be

the maximal module of γ. The (a, b)-bimodule IndNG(D)×NH(E)
NG×H(∆(D,ϕ,E))(M(∆(D,ϕ,E))) induces

a Morita equivalence between a and b.

Proof. As γ(∆(D,ϕ,E)) 6= 0, there exists block idempotents e of FCG(D) and f of FCH(E)

such that eγ(∆(D,ϕ,E))f 6= 0. Let I be the inertial group of FCG(D)e in NG(D) and let

J be the inertial group of FCH(E) in NH(E). By lemma 12.10, the (FIe, FJf)-bimodule

IndI×JNI×J (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f) induces a Morita equivalence between FIe and FJf.

Thus as the (a, FIe)-bimodule FNG(D)e induces a Morita equivalence between a and FIe,

and the (FJf, b)-bimodule fFNH(E) induces a Morita equivalence between FJf and b,

it follows that the (a, b)-bimodule FNG(D)e⊗FI IndI×JNI×J (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f)⊗FJ
fFNH(E) induces a Morita equivalence between a and b. Thus as

FNG(D)e⊗FI IndI×JNI×J (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f)⊗FJ fFNH(E) ∼=
Ind

NG(D)×NH(E)
NI×J (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f) ∼=

Ind
NG(D)×NH(E)
NG×H(∆(D,ϕ,E))Ind

NG×H(∆(D,ϕ,E))
NI×J (∆(D,ϕ,E)) (eM(∆(D,ϕ,E))f)

∼= Ind
NG(D)×NH(E)
NG×H(∆(D,ϕ,E))(M(∆(D,ϕ,E))), the lemma holds.

Theorem 12.12. Let (∆(D,ϕ,E), e ⊗ fo) be a maximal γ-Brauer pair, where (D, e) is

a maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair, and ϕ : E → D is an

isomorphism. Let I be the inertial group of FCG(D)e in NG(D) and let J be the inertial

group of FCH(E)f in NH(E). Let a ∈ Bl(FNG(D)) be the Brauer correspondent of A and

let b ∈ Bl(FNH(E)) be the Brauer correspondent of B.

(1) Let DCG(D) ≤ S ≤ I and ECH(E) ≤ T ≤ J such that ϕ−1 ◦AutS(D) ◦ ϕ = AutT (E),
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let i be a source idempotent of FSe associated with (D, e) and let j be a source idempotent of

FTf associated with (E, f). The source algebras iFSi and jFTj are isomorphic as interior

E-algebras, where we view iFSi as an interior E-algebra via the isomorphism ϕ : E → D.

(2) Let CG(D) ≤ S ≤ I and let CH(E) ≤ T ≤ J such that ϕ−1◦AutS(D)◦ϕ = AutT (E), let

i ∈ pi(FCG(D)e), and let j ∈ pi(FCH(E)f). The algebras iFSi and jFTj are isomorphic as

interior E∩T -algebras, where we view iFSi as an interior E∩T -algebra via the isomorphism

ϕ : E ∩ T → S ∩D.
(3) Let i be a source idempotent of a associated with (D, e) and j is a source idempotent of

b associated with (E, f). The source algebras iai of a and jbj of b are isomorphic as interior

E-algebras.

Proof. By lemma 5.1 and lemma 5.2.3, it suffices to prove (2). Let M be the maximal mod-

ule of γ, and let V = IndI×JNI×J (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f). As V induces a Morita equiv-

alence between FIe and FJf by lemma 12.10 and V (∆(D,ϕ,E)) ∼= eM(∆(D,ϕ,E))f

by lemma 4.19, V is indecomposable and ∆(D,ϕ,E) is a vertex of V. Thus as V is a

trivial source module, V |FIe ⊗ FJfo ⊗F∆(D,ϕ,E) F∆(D,ϕ,E). Now by viewing FIe as an

(FIe, FE)-bimodule via the isomorphism ϕ : E → D, we may view FIe ⊗FE FJf as

(FIe, FJf)-bimodule. Furthermore, FIe ⊗FE FJf ∼= FIe ⊗ FJfo ⊗F∆(D,ϕ,E) F∆(D,ϕ,E)

as (FIe, FJf)-bimdules, and hence V |FIe ⊗FE FJf. Thus as V is indecomposable, there

exists primitive idempotents i′ ∈ FCG(D)e and j′ ∈ FCH(E)f such that V |FIi′⊗FE j′FJ.
As the blocks FCG(D)e and FCH(E)f each have a unique projective indecomposable mod-

ule, i is conjugate to i′ in FCG(D) and j is conjugate to j′ in FCH(E). Thus it fol-

lows that FIi ∼= FIi′ as (FI, FE)-bimodules and jFJ ∼= j′FJ as (FE,FJ)-bimodules.

Therefore, V |FIi ⊗FE jFJ, and hence V j ∼= FIi as (FI, FE)-bimodules by [8](Theorem

4.1). As V (∆(D,ϕ,E)) ∼= eM(∆(D,ϕ,E))f, (eM(∆(D,ϕ,E))f)j ∼= V (∆(D,ϕ,E))j ∼=
V j(∆(D,ϕ,E)) ∼= FIi(∆(D,ϕ,E)) ∼= FCG(D)i as FNS×E(∆(D,ϕ,E))-modules. Let

W = IndS×TNS×T (∆(D,ϕ,E))(eM(∆(D,ϕ,E))f). As (eM(∆(D,ϕ,E))f)j ∼= FCG(D)i as

FNS×E(∆(D,ϕ,E))-modules, it follows thatWj ∼= Ind
S×(E∩T )
NS×E(∆(D,ϕ,E))((eM(∆(D,ϕ,E))f)j)

∼= Ind
S×(E∩T )
NS×E(∆(D,ϕ,E))(FCG(D)i) ∼= FSi, and hence Wj ∼= FSi as (FS, F (E∩T ))-bimodules.

Thus as W induces a Morita equivalence between FSe and FTf by lemma 12.10, it follows

that jFTj ∼= (EndFS×1(Wj))o ∼= (EndFS×1(FSi))o ∼= iFSi as interior E ∩ T -algebras, so

the lemma holds.

Lemma 12.13. Let (∆(D,ϕ,E), e⊗fo) be a maximal γ-Brauer pair, where (D, e) is a max-
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imal A-Brauer, (E, f) is a maximal B-Brauer pair and ϕ : E → D is an isomorphism. Let

A and B denote the fusion systems associated with (D, e) and (E, f) respectively. For Q ≤ D
and R ≤ E, let eQ denote the unique block idempotent of FCG(Q) such that (Q, eQ) ≤ (D, e)

and let fR denote the unique block idempotent of FCH(R) such that (R, fR) ≤ (E, f). Let

R ≤ E and let Q = ϕ(R). Let I be the inertial group of FCG(Q)eQ in NG(Q), and let J be

the inertial group of FCH(R)fR in NH(R).

(1) Suppose that Q is fully A-centralized, let CG(QCD(Q)) ≤ S ≤
NCG(Q)((CD(Q), eQCD(Q))) and let CH(RCE(R)) ≤ T ≤ NCH(R)((CE(R), fRCE(R))) such

that ϕ−1 ◦AutS(CD(Q)) ◦ ϕ = AutT (CE(R)). The element

IndS×TNS×T (∆(CD(Q),ϕ,CE(R))(eQCD(Q)γ(∆(QCD(Q), ϕ,RCE(R))fRCE(R)) ∈
T∆(FSeQCD(Q), FTfRCE(R)) is plus or minus an indecomposable

(FSeQCD(Q), FTfRCE(R))-bimodule that induces a Morita equivalence between FSeQCD(Q)

and FTfRCE(R).

(2) Suppose that Q is fully A-normalized. Let CG(ND(Q)) ≤ S ≤ NI((ND(Q), eND(Q)))

and let CH(NE(R)) ≤ T ≤ NJ((NE(R), fNE(R))) such that ϕ−1 ◦ AutS(ND(Q)) ◦ ϕ =

AutT (NE(R)). The element

IndS×TNS×T (∆(ND(Q),ϕ,NE(R)))(eND(Q)γ(∆(ND(Q), ϕ,NE(R)))fNE(R)) ∈
T∆(FSeND(Q), FTfNE(R)) is plus or minus an indecomposable (FSeND(Q), FTfNE(R))-bimodule

which induces a Morita equivalence between FSeND(Q) and FTfNE(R).

Proof. Note that (1) holds by lemma 12.3.1, lemma 12.10, and lemma 4.17, and (2) holds

by lemma 12.3.2, lemma 12.10, and lemma 4.19.
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Chapter 13

Finiteness of the set T ∆
o (A, B)

Throughout this section, let p be a prime and let (K,O, F ) be a p-modular system

with F algebraically closed and K large enough. Let G and H be finite groups and let

A = FGeA and B = FHeB be blocks of FG and FH respectively. Let S∆(A,B) denote

the poset of A ⊗ Bo-Brauer pairs of the form (∆(Q,ϕ,R), e ⊗ fo), where (Q, e) is an A-

Brauer pair, (R, f) is a B-Brauer pair, and ϕ : R→ Q is an isomorphism, and let S̃∆(A,B)

denote the set of G×H-conjugacy classes of S∆(A,B).

Let (∆(Q,ϕ,R), e ⊗ fo) ∈ S∆(A,B), let I be the inertial group of FCG(Q)e in

NG(Q) and let J be the inertial group of FCH(R)f in NH(R). Define the group homomor-

phism

Ψ(∆(Q,ϕ,R),e⊗fo) : T∆(A,B)→ Hom(R(KNI×I(∆(Q))(ẽ⊗ ẽo)), R(KNI×J(∆(Q,ϕ,R))(ẽ⊗
f̃o))) by Ψ(∆(Q,ϕ,R),e⊗fo)(γ)([[M ]]) = [[M ]]⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K for γ ∈ T∆(A,B)

and a M a KNI×I(∆(Q))(ẽ⊗ ẽo)-module.

Let

Ψ =
⊕

(∆(Q,ϕ,R),e⊗fo)∈S̃∆(A,B)

Ψ(∆(Q,ϕ,R),e⊗fo) : T∆(A,B)→⊕
(∆(Q,ϕ,R),e⊗fo)∈S̃∆(A,B)

Hom(R(KNI×I(∆(Q))(ẽ⊗ ẽo)), R(KNI×J(∆(Q,ϕ,R))(ẽ⊗ f̃o))).

Lemma 13.1. The group homomorphism Ψ is injective.

Proof. If (X,σ), (Y, τ) ∈ S∆(A,B) such that (X,σ) �G×H (Y, τ), and M is an indecom-

posable trivial source (A,B)-bimodule such that (Y, τ) is a maximal M -Brauer pair, then

Ψ(X,σ)([M ]) = 0 by lemma 6.4. Thus by an upper triangular matrix argument, it suffices to

show that for (∆(Q,ϕ,R), e⊗ fo) ∈ S∆(A,B) and γ ∈ T∆(A,B) such that every indecom-
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posable (A,B)-bimodule that appears in γ has maximal Brauer pair (∆(Q,ϕ,R), e ⊗ fo),
if Ψ(∆(R,ϕ,Q),e⊗fo)(γ) = 0, then γ = 0. As Ψ(∆(R,ϕ,Q),e⊗fo)(γ) = 0, (eγ(∆(Q,ϕ,R))f)K =

[[KCG(Q)]] ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K = 0. Let I be the inertial group of FCG(Q)e

in NG(Q) and let J be the inertial group of FCH(R)f in NH(R). As eγ(∆(Q,ϕ,R))f

is a virtual projective FNI×J(∆(Q,ϕ,R))/∆(Q,ϕ,R)-module and (eγ(∆(Q,ϕ,R))f)K =

0, eγ(∆(Q,ϕ,R))f = 0 in T∆(FNI×J(∆(Q,ϕ,R))(e⊗ fo)) by the injectivity of the decom-

position map, and hence γ = 0 by lemma 10.3. Thus the lemma holds.

Theorem 13.2. T∆
o (A,B) is a finite set and T∆

o (A,A) is a finite group.

Proof. It follows from lemma 11.1.1 that Ψ(T∆
o (A,B)) is finite, so as Ψ is injective by lemma

13.1, T∆
o (A,B) is finite.
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Chapter 14

Isotypies

Throughout this section, let p be a prime and let (K,O, F ) be a p-modular system

with F algebraically closed and K large enough. Let G and H be finite groups, let A =

FGeA be a block of FG, and let B = FHeB be a block of FH.

We recall the notion of an isotypy, which was defined in [5](Définition 4.6 and

Remarque 2 following it.)

Definition 14.1. An isotypy is a tuple I = (D, e, ϕ,E, f, (µR)R≤E) satisfying the follow-

ing:

(1) (D, e) is a maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair and ϕ : E → D is

an isomorphism. Let A be the fusion system associated with (D, e) and let B be the fusion

system associated with (E, f). For Q ≤ D, let eQ denote the unique block idempotent of

FCG(Q) such that (Q, eQ) ≤ (D, e) and for R ≤ E, let fR denote the unique block idempo-

tent of FCH(R) such that (R, fR) ≤ (E, f).

(2) The isomorphism ϕ : E → D is an isomorphism between B and A.
(3) For R ≤ E,µR is a perfect isometry between FCH(R)fR and FCG(Q)eQ, where Q =

ϕ(R). We denote by IR : KR(KCH(R)f̃R) → KR(KCG(Q)ẽQ) the K-linear map defined

by χ 7→ µ⊗KCH(R) χ for χ ∈ KR(KCH(R)f̃R).

(4) Let R ≤ E and let Q = ϕ(R). For g ∈ G and h ∈ H such that cg ∈ HomA(Q,D) and

ch ∈ HomB(R,E) such that ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R,E),

I h
R

= (g,h)IR, where (g,h)IR denotes the K-linear map cg ◦ IR ◦ ch−1 .

(5) Let R ≤ E, let Q = ϕ(R), let y ∈ CE(R) and let x = ϕ(y) ∈ CD(Q). The equality

d
(x,eQ<x>)

CG(Q) ◦ IR = IR<y> ◦ d
(y,fR<y>)

CH(R) holds.
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Lemma 14.2. For a tuple I = (D, e, ϕ,E, f, (µR)R≤E) such that I satisfies conditions (1)-

(4) of definition 14.1, I is an isotypy if and only if the equation in condition (5) of definition

14.1 is satisfied for all R ≤ E such that R is fully B-centralized and for all y ∈ CE(R).

Proof. We adopt the notation of definition 14.1. Suppose that I satisfies conditions (1)-

(4) of definition 14.1 and that the equation in condition (5) of definition 14.1 is satisfied

for all R ≤ E such that R is fully B-centralized and for all y ∈ CE(R). Let R ≤ E, let

Q = ϕ(R), let y ∈ CE(R) and let x = ϕ(y) ∈ CD(Q). We need to show that d(x,eQ<x>)

CG(Q) ◦
IR = IR<y> ◦ d

(y,fR<y>)

CH(R) . By the extension axiom for fusion systems and the fact that every

fully B-normalized subgroup of E is fully B-centralized by [7](Proposition 2.5), there is

an h ∈ H such that hR is a fully B-centralized subgroup of E and ch ∈ HomB(R <

y >,E). Thus as ϕ is an isomorphism between B and A, there exists g ∈ G such that

cg ∈ HomA(Q < x >,D) and ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R < y >,E). Therefore,

ϕ( hy) = gx, so as hR is fully B-centralized, d
( gx,e g

Q<gx>
)

CG(
g
Q)

◦ I h
R

= I h
R< hy>

◦ d
( hy,fh

R<hy>
)

CH(
h
R)

by

our hypothesis. As I satisfies condition (4) of definition 14.1, I h
R

= (g,h)IR, and I h
R< hy>

=
(g,h)IR<y>. As cg ∈ HomA(Q < x >,D) and ch ∈ HomB(R < y >,E), e gQ< gx> = geQ<x>

and f h
R< hy>

= hfR<y>, so d
( gx,e g

Q<gx>
)

CG(
g
Q)

=
g
d

(x,eQ<x>)

CG(Q) and d
( hy,fh

R<hy>
)

CH(
h
R)

=
h
d

(y,fR<y>)

CH(R) .

Therefore, d(x,eQ<x>)

CG(Q) ◦ IR =
g−1

d
( gx,e g

Q<gx>
)

CG(
g
Q)

◦ (g,h)−1
I h
R

=
(g,h)−1

(d
( gx,e g

Q<gx>
)

CG(
g
Q)

◦ I h
R

) =
(g,h)−1

(I h
R< hy>

◦d
( hy,fh

R<hy>
)

CH(
h
R)

) =
(g,h)−1

( (g,h)IR<y> ◦
h
d

(y,fR<y>)

CH(R) ) = IR<y> ◦d
(y,fR<y>)

CH(R) , so the

lemma holds.

Lemma 14.3. Let I = (D, e, ϕ,E, f, (µR)R≤E) be a tuple such that I satisfies conditions

(1)-(3) of definition 14.1. Adopt the notation of definition 14.1. The tuple I is an isotypy

if and only if I satisfies the following conditions:

(1) Let R ≤ E, let Q = ϕ(R), let h ∈ H such that ch ∈ HomB(R,E), and let g ∈ G such

that cg ∈ HomA(Q,D) and ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R,E). The equality µ h
R

= (g,h)µR

holds.

(2) Let R ≤ E such that R is fully B-centralized, and let Q = ϕ(R).

(a) Let y ∈ CE(R) and let x = ϕ(y) ∈ CD(Q). For x′ a p′-element in CG(Q < x >) and y′

a p′-element in CH(R < y >), µR(xx′ẽQ<x> ⊗ yy′f̃oR<y>) = µR<y>((x′, y′)).

(b) Let (< x >, σ) be an FCG(Q)eQ-Brauer pair and let (< y >, τ) be an FCH(R)fR-

Brauer pair, where x is a p-element of CG(Q) and y is a p-element of CH(R). If there exist
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p′-elements x′ ∈ CG(Q < x >) and y′ ∈ CH(R < y >) such that µR(xx′σ̃ ⊗ yy′τ̃ o) 6= 0,

then there exists z ∈ CE(R) such that (y, τ) is CH(R)-conjugate to (z, fR<z>) and (x, σ) is

CG(Q)-conjugate to (ϕ(z), eQ<ϕ(z)>).

Proof. Clearly condition (4) of definition 14.1 is equivalent to condition (1), so by lemma

14.2, it suffices to show that if I satisfies condition (4) of definition 14.1, then I satisfies

condition (2) if and only if for R ≤ E such that R is fully B-centralized and for y ∈ CE(R)

the equality in condition (5) of definition 14.1 is satisfied. Let R ≤ E such that R is fully

B-centralized. As ϕ is an isomorphism between B and A, we also have that Q is fully A-

centralized. Thus by [6](Theorem 3.11), (CD(Q), eQCD(Q)) is a maximal FCG(Q)eQ-Brauer

pair and (CE(R), fRCE(R)) is a maximal FCH(R)fR-Brauer pair, so the lemma holds by

[5](Proposition 4.7).

Lemma 14.4. Let I = (D, e, ϕ,E, f, (µR)R≤E) be a tuple such that I satisfies conditions

(1)-(3) of definition 14.1. Adopt the notation of definition 14.1. The tuple I is an isotypy

if and only if I satisfies the following conditions:

(1) Let R ≤ E, let Q = ϕ(R), let h ∈ H such that ch ∈ HomB(R,E), and let g ∈ G such

that cg ∈ HomA(Q,D) and ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R,E). The equality µ h
R

= (g,h)µR

holds.

(2) Let R ≤ E and let Q = ϕ(R).

(a) Let y ∈ CE(R) and let x = ϕ(y) ∈ CD(Q). For x′ a p′-element in CG(Q < x >) and y′

a p′-element in CH(R < y >), µR(xx′ẽQ<x> ⊗ yy′f̃oR<y>) = µR<y>((x′, y′)).

(b) Let (< x >, σ) be an FCG(Q)eQ-Brauer pair and let (< y >, τ) be an FCH(R)fR-

Brauer pair, where x is a p-element of CG(Q) and y is a p-element of CH(R). If there exist

p′-elements x′ ∈ CG(Q < x >) and y′ ∈ CH(R < y >) such that µR(xx′σ̃⊗ yy′τ̃ o) 6= 0, then

there exist elements g ∈ G and h ∈ H such that cg ∈ HomA(Q,D), ch ∈ HomB(R,E), ch =

ϕ−1 ◦ cg ◦ ϕ in HomB(R,E), and there exists z ∈ CE( hR) such that h(y, τ) = (z, f h
R<z>

)

and g(x, σ) = (ϕ(z), e gQ<ϕ(z)>).

Proof. By lemma 14.3, it suffices to show that if I satisfies condition (1), then I satisfies

condition (2) if and only if I satisfies condition (2) of lemma 14.3. Suppose that I satisfies

condition (1).

Suppose that I satisfies condition (2) of the lemma. Clearly, I satisfies con-

dition (2)(a) of lemma 14.3, so it suffices to show that I satisfies condition (2)(b) of
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lemma 14.3. Let R ≤ E such that R is fully B-centralized and let Q = ϕ(R). Let

(< x >, σ) be an FCG(Q)eQ-Brauer pair and let (< y >, τ) be an FCH(R)fR-Brauer pair,

where x is a p-element of CG(Q) and y is a p-element of CH(R). Suppose there exist p′-

elements x′ ∈ CG(Q < x >) and y′ ∈ CH(R < y >) such that µR(xx′σ̃ ⊗ yy′τ̃ o) 6= 0.

As R is fully B-centralized, (CE(R), fRCE(R)) is a maximal FCH(R)fR-Brauer pair by

[6](Theorem 3.11). Therefore, by lemma 3.4.2, (< y >, τ) is CH(R)-conjugate to a sub-

pair of (CE(R), fRCE(R)). Thus we may assume that y ∈ CE(R) and τ = fR<y>. As

condition (2) of the lemma holds, there exist elements g ∈ G and h ∈ H such that

cg ∈ HomA(Q,D), ch ∈ HomB(R,E), ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R,E), and there exists

z ∈ CE( hR) such that h(y, fR<y>) = (z, f h
R<z>

) and g(x, σ) = (ϕ(z), e gQ<ϕ(z)>). As h(R <

y >, fR<y>) = ( hR < z >, f h
R<z>

), ch ∈ HomB(R < y >,E), so as ϕ is an isomorphism be-

tween B andA, there exists s ∈ G such that cs ∈ HomA(Q < ϕ(y) >,D) and ch = ϕ−1◦cs◦ϕ
in HomB(R < y >,E). Therefore, sϕ(y) = ϕ( hy) = ϕ(z) = gx, so g−1sϕ(y) = x. As

cs ∈ HomA(Q < ϕ(y) >,D), seQ<ϕ(y)> = e gQ<ϕ(z)>, so g−1seQ<ϕ(y)> = g−1
e gQ<ϕ(z)> = σ.

Therefore, g
−1s(ϕ(y), eQ<ϕ(y)>) = (x, σ) and as ϕ−1◦cg◦ϕ = ch = ϕ−1◦cs◦ϕ inHomB(R,E),

it follows that g−1s ∈ CG(Q), so condition (2)(b) of lemma 14.3 holds.

Now suppose that I satisfies condition (2) of lemma 14.3. First we show that I

satisfies condition (2)(a). Let R ≤ E and let Q = ϕ(R). Let y ∈ CE(R), let x = ϕ(y) ∈
CD(Q), let x′ be a p′-element in CG(Q < x >) and let y′ be a p′-element in CH(R < y >).

Let h ∈ H such that hR is fully B-centralized and ch ∈ HomB(R < y >,E). As ϕ is

an isomorphism between B and A, there exists g ∈ G such that cg ∈ HomA(Q < x >

,D) and ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R < y >,E). Thus as I satisfies condition (1) and

(2) of lemma 14.3, µR(xx′ẽQ<x> ⊗ yy′f̃oR<y>) = µ h
R

( gx gx′ ˜e gQ< gx> ⊗
hy hy′ ˜foh

R< hy>
) =

µ h
R< hy>

( gx′, hy′) = µR<y>(x′, y′), so I satisfies condition (2)(a). Thus it remains to show

that I satisfies condition (2)(b).

Let (< x >, σ) be an FCG(Q)eQ-Brauer pair and let (< y >, τ) be an FCH(R)fR-

Brauer pair, where x is a p-element of CG(Q) and y is a p-element of CH(R). Suppose there

exist p′-elements x′ ∈ CG(Q < x >) and y′ ∈ CH(R < y >) such that µR(xx′σ̃⊗yy′τ̃ o) 6= 0.

As I satisfies condition (1), we may assume that R is fully B-centralized. Thus as I satisfies

condition (2)(b) of lemma 14.3, it follows that I satisfies condition (2)(b), so the lemma

holds.

Theorem 14.5. Suppose that A and B are p-permutation equivalent and let γ ∈ T∆
o (A,B)
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be a p-permutation equivalence. Let (∆(D,ϕ,E), e⊗ fo) be a maximal γ-Brauer pair where

(D, e) is a maximal A-Brauer pair, (E, f) is a maximal B-Brauer pair, and ϕ : E → D is

an isomorphism. Adopt the notation of definition 14.1. The tuple

I = (D, e, ϕ,E, f, ((eϕ(R)γ(∆(ϕ(R), ϕ,R))fR)K)R≤E) is an isotypy.

Proof. The tuple I satisfies condition (1) of definition 14.1 by construction, and condition

(2) is satisfied by lemma 12.1. Next note that for R ≤ E, every module that appears

in eϕ(R)γ(∆(ϕ(R), ϕ,R))fR has twisted diagonal vertex and hence is projective as a left

FCG(ϕ(R))-module and as a right FCH(R)-module, so I satisfies condition (3) of definition

14.1 by lemma 12.2.2 and [5](Theorem 1.5(2)). Thus by lemma 14.4, it suffices to show that

I satisfies conditions (1) and (2) of lemma 14.4.

Let R ≤ E, let Q = ϕ(R), let h ∈ H such that ch ∈ HomB(R,E), and let

g ∈ G such that cg ∈ HomA(Q,D) and ch = ϕ−1 ◦ cg ◦ ϕ in HomB(R,E). As µ h
R

=

(e gQγ(∆( gQ,ϕ, hR))f h
R

)K = ( geQγ(∆( gQ, cgϕch−1 , hR)) hfR)K =
(g,h)((eQγ(∆(Q,ϕ,R))fR)K) = (g,h)µR, I satisfies condition (1) of lemma 14.4.

Let R ≤ E, let Q = ϕ(R), let y ∈ CE(R), let x = ϕ(y) ∈ CD(Q), let x′ be a

p′-element in CG(Q < x >) and let y′ be a p′-element in CH(R < y >). As µR(xx′ẽQ<x> ⊗
yy′f̃oR<y>) = (eQγ(∆(Q,ϕ,R))fR)K(xx′ẽQ<x>⊗yy′f̃oR<y>) = ((eQγ(∆(Q,ϕ,R))fR)(< (x, y) >

))K(x′ẽQ<x> ⊗ y′f̃oR<y>) =

(eQ<x>γ(∆(Q < x >,ϕ,R < y >))fR<y>)K((x′, y′)) = µR<y>((x′, y′)), so I satisfies condi-

tion (2)(a) of lemma 14.4.

Let R ≤ E, let Q = ϕ(R), let (< x >, σ) be an FCG(Q)eQ-Brauer pair and let

(< y >, τ) be an FCH(R)fR-Brauer pair, where x is a p-element of CG(Q) and y is a

p-element of CH(R). Suppose there exist p′-elements x′ ∈ CG(Q < x >) and y′ ∈ CH(R <

y >) such that µR(xx′σ̃⊗yy′τ̃ o) 6= 0. As µR(xx′σ̃⊗yy′τ̃ o) = (eQγ(∆(Q,ϕ,R))fR)K(xx′σ̃⊗
yy′τ̃ o) = ((eQγ(∆(Q,ϕ,R))fR)(< (x, y) >))K(x′σ̃ ⊗ y′τ̃ o) = (σγ(∆(Q,ϕ,R) < (x, y) >

)τ)K((x′, y′)), it follows that σγ(∆(Q,ϕ,R) < (x, y) >)τ 6= 0, and hence (∆(Q,ϕ,R) <

(x, y) >, σ⊗τ o) is a γ-Brauer pair. Thus by lemma 11.9, there exists g ∈ G and h ∈ H such

that (∆(Q,ϕ,R) < (x, y) >, σ ⊗ τ o) ≤ (∆( gD, cgϕch−1 , hE), ge ⊗ hfo). Therefore, g−1
σ =

e g−1
Q< g−1x>

and h−1
τ = f h−1

R< h−1y>
. As (< x >, σ) is an FCG(Q)eQ-Brauer pair and

(< y >, τ) is an FCH(R)fR-Brauer pair, (Q, eQ) ≤ (Q < x >, σ) and (R, fR) ≤ (R < y >

, τ), so g−1

(Q, eQ) ≤ g−1

(Q < x >, σ) = ( g
−1
Q < g−1

x >, e g−1
Q< g−1x>

), and h−1

(R, fR) ≤
h−1

(R < y >, τ) = ( h
−1
R < h−1

y >, f h−1
R< h−1y>

). Therefore, cg−1 ∈ HomA(Q,D) and
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ch−1 ∈ HomB(R,E). Furthermore, as ∆(Q,ϕ,R) < (x, y) >≤ ∆( gD, cgϕch−1 , hE), it follows

that ch−1 = ϕ−1◦cg−1◦ϕ in HomB(R,E) and ϕ( h
−1
y) = g−1

x. Thus it follows that I satisfies

condition (2)(b) of lemma 14.4, so the lemma holds.
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Chapter 15

A character-theoretic criterion for

p-permutation equivalences

Throughout this section, let p be a prime and let (K,O, F ) be a p-modular system

with F algebraically closed and K large enough. Let G and H be finite groups, let A =

FGeA be a block of FG and let B = FHeB be a block of FH.

Lemma 15.1. Let (D, e) be a maximal A-Brauer pair and let (E, f) be a maximal B-Brauer

pair such that there is an isomorphism ϕ : E → D such that ϕ induces an isomorphism

between the fusion system B associated with (E, f) and the fusion system A associated

with (D, e). For Q ≤ D, let eQ denote the unique block idempotent of FCG(Q) such that

(Q, eQ) ≤ (D, e), and for R ≤ E, let fR denote the unique block idempotent of FCH(R)

such that (R, fR) ≤ (E, f). Let Q ≤ D and let R = ϕ−1(Q). The triple (R, fR, ϕ) lies in

the unique H-conjugacy class of triples (R′, f ′, ϕ′) such that (R′, f ′) is a B-Brauer pair,

ϕ′ : R′ → Q is an isomorphism, and (∆(Q,ϕ′, R′), eQ ⊗ (f ′)o) ≤G×H (∆(D,ϕ,E), e⊗ fo).

Proof. We need to show that if (R′, f ′, ϕ′) is a triple such that (∆(Q,ϕ′, R′), eQ⊗(f ′)o) ≤G×H
(∆(D,ϕ,E), e⊗ fo), then (R, fR, ϕ) and (R′, f ′, ϕ′) are H-conjugate. By hypothesis there

exists (g, h) ∈ G×H such that (∆( gQ, cgϕ′c−1
h , hR′), geQ ⊗ h(f ′)o) ≤ (∆(D,ϕ,E), e⊗ fo).

As (Q, eQ), ( gQ, geQ) ≤ (D, e), c−1
g : gQ → Q ∈ A, so as ϕ : E → D is an isomorphism

between B and A, ϕ−1c−1
g ϕ : hR′ → R ∈ B. Thus there exists y ∈ H such that yh(R′, f ′) =

(R, fR) and c−1
g ϕ = ϕcy as homomorphisms from hR′ to Q. As ∆( gQ, cgϕ′c−1

h , hR′) ≤
∆(D,ϕ,E),∆(Q,ϕ′, R′) = ∆(Q, c−1

g ϕch, R
′). Therefore, (R′, f ′, ϕ′) =

(R′, f ′, c−1
g ϕch) = (R′, f ′, ϕcyh) = (yh)−1

(R, fR, ϕ), so (R, fR, ϕ) and (R′, f ′, ϕ′) are H-
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conjugate and hence the lemma holds.

Lemma 15.2. Let γ ∈ T∆(A,B) such that the maximal γ-Brauer pairs form a G × H-

conjugacy class consisting of A ⊗ Bo-Brauer pairs of the form (∆(D,ϕ,E), e ⊗ fo), where

(D, e) is a maximal A-Brauer, (E, f) is a maximal B-Brauer pair, and ϕ : E → D is an

isomorphism of groups that induces an isomorphism between the fusion systems associated

with (E, f) and (D, e) respectively. The element γ is a p-permutation equivalence between

A and B if and only if (eγ(∆(Q,ϕ,R))f)K ⊗KCH(R) ((eγ(∆(Q,ϕ,R))f)o)K = [[KCG(Q)ẽ]]

in T∆(KNI×I(∆(Q))(ẽ ⊗ ẽo)) and ((eγ(∆(Q,ϕ,R))f)o)K ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K =

[[KCH(R)f̃ ]] in T∆(KNJ×J(∆(R))(f̃⊗f̃o)) for any A⊗Bo-Brauer pair (∆(Q,ϕ,R), e⊗fo)
contained in a maximal γ-Brauer pair, where I is the inertial group of FCG(Q)e in NG(Q)

and J is the inertial group of FCH(R)f in NH(R).

Proof. We have seen in the proof of lemma 12.2.2 that if γ is a p-permutation equivalence,

then (eγ(∆(Q,ϕ,R))f)K ⊗KCH(R) ((eγ(∆(Q,ϕ,R))f)o)K = [[KCG(Q)ẽ]] in

T∆(KNI×I(∆(Q))(ẽ⊗ ẽo)) and ((eγ(∆(Q,ϕ,R))f)o)K ⊗KCG(Q) (eγ(∆(Q,ϕ,R))f)K =

[[KCH(R)f̃ ]] in T∆(KNJ×J(∆(R))(f̃⊗ f̃o)) for any A⊗Bo-Brauer pair (∆(Q,ϕ,R), e⊗fo)
contained in a maximal γ-Brauer pair, where I is the inertial group of FCG(Q)e in NG(Q)

and J is the inertial group of FCH(R)f in NH(R), so it remains to prove the converse. By

symmetry, it suffices to show that γ ⊗FH γo = [A] in T∆(A,A).

As the group homomorphism Ψ of lemma 13.1 is injective, it suffices to show that

for anyA-Brauer pair (Q, e), (e(γ⊗FHγo)(∆(Q))e)K = [[KCG(Q)e]] in T∆(KNI×I(∆(Q))(ẽ⊗
ẽo)), and that for any A⊗Ao-Brauer pair of the form (∆(Q,α,U), e⊗ εo), where (Q, e) and

(U, ε) areA-Brauer pairs and α : U → Q is an isomorphism, if (e(γ⊗FHγo)(∆(Q,α,U))ε)K 6=
0 in T∆(KNI×L(∆(Q,α,U))(ẽ ⊗ ε̃o)), then (∆(Q,α,U), e ⊗ εo) is G × G-conjugate to

(∆(Q), e ⊗ eo), where I is the inertial group of FCG(Q)e in NG(Q) and L is the inertial

group of FCG(U)ε in NG(Q).

Let (Q, e) be an A-Brauer pair and let I be the inertial group of FCG(Q)e in

NG(Q). It follows from our hypothesis and from lemma 15.1 that there is a unique H-

conjugacy class of triples (R, f, ϕ) such that (R, f) is a B-Brauer pair, ϕ : R → Q is an

isomorphism, and (∆(Q,ϕ,R), e⊗fo) is a γ-Brauer pair. Thus by lemma 7.6.2 and our hy-

pothesis, (e(γ⊗FH γo)(∆(Q))e)K = (eγ(∆(Q,ϕ,R))f)K ⊗KCH(R) ((eγ(∆(Q,ϕ,R))f)o)K =

[[KCG(Q)ẽ]] in

T∆(KNI×I(∆(Q))(ẽ⊗ ẽo)).
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Now suppose that (∆(Q,α,U), e ⊗ εo) is an A ⊗ Ao-Brauer pair, where (Q, e)

and (U, ε) are A-Brauer pairs and α : U → Q is an isomorphism and that (e(γ ⊗FH
γo)(∆(Q,α,U))ε)K 6= 0 in T∆(KNI×L(∆(Q,α,U))(ẽ ⊗ ε̃o)), where I is the inertial group

of FCG(Q)e in NG(Q) and L is the inertial group of FCG(U)ε in NG(U). By lemma 7.5.2,

there exists a quadruple (R, f, ϕ, ψ), where (R, f) is a B-Brauer pair and ϕ : R → Q

and ψ : U → R is are isomorphisms such that α = ϕ ◦ ψ and (∆(R,ϕ−1, Q), f ⊗ eo)

and (∆(R,ψ,U), f ⊗ εo) are γo-Brauer pairs. Thus by our hypothesis and lemma 15.1,

there exists g ∈ G such that g(U, ε, ψ) = (Q, e, ϕ−1). Therefore, α = g
ψ−1 ◦ ψ = cg, so

(1,g)(∆(Q,α,U), e⊗ εo) = (∆(Q), e⊗ eo), and hence the lemma holds.
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