Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title

NUCLEAR SCIENCE DIVISION ANNUAL REPORT 1979-1980

Permalink

https://escholarship.org/uc/item/49t70981

Author
 Cerny, J.

Publication Date
1980
Peer reviewed

NUCLEAR SCIENCE MASIER

ANNUAL REPORT
 1979-1980

March 1981

LAWRENCE BERKELEY LABORATORY UNTVERSITY OF CALIFORNLA

Contents

Introduction
J. Cerny 1
Part 1. Research Programs
Exotic Nuclei and Nuclear Reactions
J. Cerny 5
Heavy Ion Reactions
B. G. Harvey and R. G. Stokstad. 7
Nuclear Structure
R. H. Diamond and F. S. Stephens 8
Polarization Phenomena in Nuclear Physics
H. E. Conzett. *
Spin, Isospin and Energy Fluctuation in Heavy Ion Reactions
L. G. Moretto. 10
Heavy Element Research
A. Ghiorso and J. M. Hitschice. 12
Superheavy Element (nter labor atory Chemistry (SHEIKS)
G. T. Seaborg. 15
Hioh Energy Nuclear Collisions
A. M. Peskanzer and H. H. Gutbrod. 16
Relativistir Heavy Ion Phusics
H. H. Heckman. 18
Bevalac Research
H. G. Pugh, L. S. Schroeder, A. Sandoval and R. Stock. ?
Study of Central Collisions
H. Steiner and 5. Nagamiya 74
Heavy Ion Studies/Pion Studies
K. M. Crowe and J. O. Rasmussen. it
Nucleus-Nucleus Collisions
P. B. Price. :
Nuclear Theory
N. K. Glendenning. $: 9$
Heavy Ion spectrometer system (HISS) Group A
D. E. Greiner. 3
Nuclear Electronics
F. S. Gouldi 3 34
Isotopes Project
J. M. Dairiki 36
Supertilac Research
R. H. Diamond and M. S. Zisman $3 E$
B8 Inch Cyclotron Operations
R. A. Gough and D. J. Clark 40
Bevalac Operations and Research
H. G. Pugh and G. D. Hestfall. 45
Yenus PlanningH. G. Pugh and T. Elioff46
Part 2. Progress Reports
I. Experimental Research
A. Nuclear Structure
Nuclei at High Angular Monentum
R. M. Diamond and F. S. Stephens 51
Correlation Studies of Po:ential Behavior at Very High Angular Momentun
M. A. Deleplanque, F. S. Stephens, O. Andersen, J. D. Garrett, B. Herskind,
R. M. Diamond, C. Ellegaard, D. B. Fossan, D. L. Hills, H. Kluge, H. Meiman.C. P. Roulet, j. Shin and R. S. Simon.$5 i$
Linear Polarization and Angular Correlation of Continus r-Rays
H. HubeI, R. M. Diamonc. F. S. Stephens, B. Herskind and R. Bauer. 53
The Dipole Component in the Yrast Cascade and the Multiplicity of Statistical Y Rays S. H. Sie. R. M. Diamond, J. D. Mewton and J. R. Leigh 54
El Transition Probabilities from $K^{-}=0^{-}$a $K^{-1}=1^{-}$of ${ }^{233} \mathrm{Pu}_{u}$
C. M. Lederer. 56
Observation of the Decay of the $I_{Z}=-2$ Nucleus ${ }^{36} \mathrm{Ca}$ M. D. Cable, J. Aysto, R. F. Parry, J. M. Houters and J. Cerny 57
Beta Endpoint Measurements of ${ }^{105}$ in and ${ }^{103}$ in
J. Wouters, J. Aysto, M. Cable, P. Haustein, R. Parry and J. Cerny 58
B. Nuclear Reactions and Scattering

1. Miscroscopic
Test of Parity Conservation in pp Scattering at 46 Mm
P. von Rossen, U. von Rossen and H. E. Conzett 61
Concerning Tests of Tire Reversal invariance via the Polarization-Analyzing Power Equality H. E. Conzett. 62
Test of Charge Symetry in n-p Scattering
G. Greeriaus, G. A. Moss, G. Roy, H. Combes, R. Abegg, N. E. Davison, W. T. H. van Oers and H. E. Conzett. 63
Analysis of ${ }^{3} \mathrm{He}+{ }^{4}$ He Elastic Scattering Between 18 and 70 KeV with the Resonating Grap Method of Brown and Tang
A. D. Bacher, H. E. Conzeti, R. de Siniarski, F. G. Resmini and T. A. Tambrello. 65
From Iransfer to Fragmentation
B. G. Harvey 66
Molecular Resonances and the Production of Fist 3 -Particles in the Reaction of ${ }^{16} 0$ with 12,13 C Nuclei
W. D. Rae, R. G. Stokstad, B. G. Harvey, A. Dacal, R. Legrain, J. Mahorey, M. J. Murphy and T. J. Symons 67
${ }^{13} \mathrm{C}$ Production in the $187 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{208} \mathrm{~Pb}$ Reaction
A. N. Bice, A. C. Shotter and J. Cerny 69
${ }^{16} 0-{ }^{12} C$ Elastic Scattering and Total Reaction Cross Section at $E_{C_{2}} m_{\text {. }}=60$, 93 and 135 MeV M. E. Brandan, A. Dacal, A. Galinda, A. Menchaca-Rocha, B. G. Harvey, R. Legrain,
J. Mahoney, M. Murphy, H. D. H. Rae and T. J. M. Symons 71
Study of High Energy ${ }^{7} \mathrm{Li}+{ }^{28}$ Si Elastic Scattering
M. S. Zisman, J. G. Cramer, R. M. Delries, D. A. Gcldberg and A. Seamster 72
The Quasielastic Sreakup ${ }^{12} \mathrm{C} \rightarrow \mathrm{e}^{8} \mathrm{Be}$ at 132 MeV and 187 MeV
A. C. Shotter, A. N. Bice and J. Cerny 73
Fusion Cross Sections Derived Frow Optical Potentials M. S. Zisman 73
Analyzing Powers of ${ }^{\mathbf{3}} \mathrm{He}(\mathrm{p}, \mathrm{p}){ }^{\mathbf{3}} \mathrm{He}$ Elastic Scattering Between 30 and 50 MeV J. Birchall and W. T. H. van Ders. 75
Rotational Energy Expressions and Least-Squares Fitting of Backbenders and Similar Nuclei J. O. Rasmussen, K. W. Guidry, T. E. Hard, C. Castaneda, L. K. Peker, E. Leber and J. H. Hamilton 76
Theoretical Rotational Signatures for Keutron Piskup Reactions to ($\left.\mathbf{i}_{13 / 2}\right)^{\mathbf{2}}$ Bands J. Almberger, J. Hamamoto, G. Leander and J. O. Rasmussen. 78
Surface Structure of Deformed Nuclei by Radial and Angular Localization in Heary Jon Scattering R. E. Neese, M. W. Guidry, R. Oonangelo and J. O. Raseussen. 79
Giant Resonance Polarization Terms in the Nucleus-Nucleus Potential J. O. Rasmussen, P. Möller, M. Guidry and R. Meese 80
2. Macroscopic
Production of Heavy Actinides from Interactions of ${ }^{16} 0$ and ${ }^{18} 0$ vith ${ }^{248}{ }_{C m}$ D. Lee, B. Jacak, M. Nurmia, C. Ouo, G. T. Seaborg and D. C. Hoffean 82
Additional Evidence for the Production of ${ }^{259} \mathrm{Fs}$ in the Bombdrdment of ${ }^{248}{ }^{24}$ with ${ }^{18} 0$ D. C. Hoffman, C. Lee, A. Ghiorso, M. J. Mursia and J. M. Mitschke 83
Maximum Likelihood Analysis of Mew Short-iived Spontaneous Fission Activities
L. P. Somerville, R. C. Eggers, M. E. Leino, J. M. Nitschke, A. Ghiorso and M. ふ. Murmid 84
Exotic Reactions in the Bombardment of ${ }^{202}{ }_{p b}$ by ${ }^{18} \mathbf{0}$A. Ghiorso, R. M. McFarland, M. Leino end S. Yashita85
Actinide Production from the Reaction of ${ }^{136} x_{e}$ with ${ }^{248} \mathrm{~cm}$
K. J. Moody, D. Lee, R. Helch, B. V. Jacak, R. M. McFarlaad, P. L. McGaughey,
M. J. Nurmid, M. Perry, G. T. Seaborg, R. W. Lougheed, P. A. Saisden and E. K. Hulet 87
Production of ${ }^{194}$ At in the Bombardment of ${ }^{141} \mathrm{Pr}$ with ${ }^{56} \mathrm{Fe}$
S. Yashita, M. Leino and A. Ghiorso. 88
Production of ${ }^{192}$ Po in the Reaction ${ }^{56} \mathrm{Fe}+{ }^{\mathrm{j}} 40.142 \mathrm{Ce}$ M. Leino, S. Yashita and A. Ghiorso. 88
Charged Particle Emission from ${ }^{194} \mathrm{Hg}$ Compound Huclei: Energy and Spin Dependence of Fission-Evaporation Competition
M. Rajagopalan, D. Logan, J. W. Ball, M, Kaplan, H. Delagrange, M. F. Rivet, J. M, Alexander, L. C. Yaz and M. S. Zisman. 89
Comparison of Spectri for Deep-lnelastic and Compound Nucleus Reactions
R. J. McDonald, G. J. Hozniak, A. J. Pacheco, C. C. Hsu, D. J. Morrissey,L. G. Sobotka, L. G. Moretto, C. Schuck, S. Shih, H. Kluge, F. S. Stephensand R, M. Diamond.92
Synthesis of Heavy and Super Heavy Elements in the Deeply Inelastic Collision of ${ }^{238} \mathbf{U}$ with ${ }^{248}$
J. M. Nitschke, W. Bruchle, G. Gaggeler, J. V. Kratz, M. Schadel, K, Summerer, G. Wirth,E. K. Hulet, R. H. Loug،reed, A. Ghiorso, R. L. Hahn, F. L. Ferguson, R. Stakemann,N. Trautmann and G. Herrmann93
Charge 0istributions for the ${ }^{86} \mathrm{Kr}+{ }^{139}$ La System
P. Dyer, M. P. Hebb, R. J. Puigh, R. Vandenbosch, T. D. Thoeas and H. S. Zisman. 94
Fast Particle Emission in the Deep Inelastic Reaction ${ }^{n a t}{ }_{C u}+{ }^{20}$ Ne at 12.6 MeV/Nucleon R. P. Schmitt, G. J. Mozniak, G. J. Rattazzi, G. J. Mathews, R. Regimbart and L. G. Moretto. 96
The Reaction of ${ }^{20}$ He with ${ }^{181}$ Ja at $50 \mathrm{MeV} / \mathrm{A}$
D. J. Morrissey, G. J. Hozniak, L. H. Richardson, C. C. Hsu, R. J. McDonald and L. G. Moretto. 97
Evidence for the Onset of Projectile Fragmentation in Peripheral Collisions of ${ }^{20} \mathrm{Ke}+{ }^{181} \mathrm{Ta}$ L. W. Richardson, G. J. Hozniak, D. J. Morrissey, C. C. Hsu and L. G. Moretto 98
Light Partic'e Enission as a Probe of the Rotational Degrees of Freedon in Deep-Inelastic Collisions
L. G. Sobotka, C. C. Hsu, G. J. Hozniak, G. U. Rattazzi, R. J. McOonald, A. J. Pacheco and L. G. Moretto. 99
Evidence for Rigid Rotation and Large Deformations in the Deep-Inelastic Reaction 664 MeV $84_{\mathrm{Kr}}+\mathrm{nat}_{\mathrm{Ag}}$
L. G. Sobotka, C. C. Hsu, G. J. Wozniak, G. U. Rattazii, R. J. HcDonald, A. J. Pacheco and L. G. Maretto 100
the Rise and Fall of the Spin Aligment in Deep-Inelastic Reactions
G. J. Wozniak, R. J. MeDonald, A. J. Pacheco, C. C. HSu, D. J. Morrisey, L. G. Sobotka, L. G. Moretto, S. Sehih, C. Schuck, H. M. Diamond, H. Kluge and F. S. Stephens 102
An Excitation Funct on Study of the Continuum $\gamma \rightarrow R a y$ Multiplicity in Heavy lon Reactions from 7 to Z ? Hew/A
L. W. Rirhardson, G. J. dozniak. D. J. Morrissey, C. C. Hsu and L. G. Moretto. 103
A Comparison of the Alignment Parameter $P_{z z}$ from Gama Anisotropy and Sequential Fiss:on Measurements
A. J. Pacheca, R. J. McDonald, G. J. Wozniak and L. G. Meretto 104
C. Relativistir Heavy Ions
3. Projectile and Target Fragnentation
Emission of HightEnergy Gatma Rays from Relativistic Heavy-Ion Collisions M. P. Budiansky, S. P. Ahlen, G. Tarle and P, B. Price 106
Pion Production and Charged-Particle Nultiplicity Selection in Relativistic Huclear Collisions
K. L. Wolf. H. H. Gutbrod, W. G. Meyer, A. M. Poskamzer, A. Sandovil, R. Stock, J. Gossett, C. H. King, G. King, N. Van Sen and G. D. Hestfall 107
Proton Tungsten Reactions at $400 \mathrm{Ge}=$
J. Cincheza, J. Cohen, A. Marin, T. Visky, E. Freidlander, A. J. Herz, B. Jakobsson,B. Gindkist, I. Otterlund. E. Stenlund and B. Andersson108
Low-Energy Pion Production with $800 \mathrm{MeV} / \mathrm{N}{ }^{20}$ He
J. Chiba, k. Nakai, I. Tanihata, S. Nagamiya, H. Bowman, J. Ingersoll and J. O. Rasmussen. 109
Low-Energy Pion Production at Zero Degrees in Nucleus-Nucleus Collisions
J. A. Bistirlich, H. R. Bomman, K. M. Crowe, K. A. Frankel, O. Hashimoto, J. G. Ingersoll,
J. Jansen, M. Koike, C. J. Martoff, J. Miller, D. I. Hurphy, J. Peter, J. D. Rasmussen. J. P. Sullivan, W. A. Zdjc, w. Benenson, G. M. Crawley, E. Kasiy, J. A. Nolen, Jr., J. Quebert, M. Sasao and T. War 110
Low-Energy Pion Production in High-Energy Nucleus-Nucleus Collis ions
K. Nakai, J. Chiba, I. Tanihata, M. SasaO, H. Bomman, S. Nagamiya and J. O. Rasmussen. 111
Calculation of Muon Final-State Probabilities after Muon-Induced Fission
4. Y. Ma, X. 2. Wu, G. S. Zhang, Y. C. Cho, Y. S Wang, J. H. Chiou, S. T. Sen,
F. C. Yang and $j .0$. Rasmussen 113
Pion Production with Heavy Ions
R. H. Landau and J. O. Rasmussen 114
Evidence for Nonthermal Pion Production in the Central Interactions of Ar on KCl at $1.8 \mathrm{GeV} / \mathrm{A}$ i.E. Renriordt, J. W. Harris, J. P. Brannigan, J. V. Geaga, H. Pugh, L. J. Rosenterg, A. Sandoval, L. S. Schroeder, R. Stock and K. L. Nolf. 115
Energy Dependence of Multi-Pion Production in High-Energy Hucleus-Nucleus Collisions
R. Stock, A. Sandova1, R. E. Renfordt, H. E. Stelzer, J. W. Harris, J. P. Brannigan.
J. V. Geaga, L. J. Rosenberg, L. S. Schroeder and K. L. Molf 116
Inclusive Kaon Production in :High-Energy Nuclear Collisions
S. Schnetzer, G. Shapiro, H. Steiner, 1. Tanihata, M.-C. Lemaire, R, Lombard, E. Hoeller, and S. Nagamiya. 118
Strange Particle Production in Central Collisions of Ar on KCl at 1.8 GeV/A
A. Sandoval, J. P. Brannigan, A. Dacal, J. Geaga, J. W. Harris, H. G. Pugh,
R. E. Renfordt, L. S. シ̈chroeder, R. Stock, H. Stroebele and K. Molf 119
Neutron Emission in Relativistic Nuclear Collisions
J. D. Stevenson. 120
Mean Free Path of Protons .: ide the Nucleus at $E_{p}=800 \mathrm{MeV}$ Detenined from Two-Proton Correlations in pA Collisions
5. Tanihata, S. Nagamiya, S. Schnetzer and H. Steiner. 121
The Correlation of Two Protons at Small Relative Homenta from Collisions of ${ }^{\mathbf{4 0}} \mathbf{A r}$ and KCl at $1.8 \mathrm{GeV} / \mathrm{A}$
J. B. Carroll, K. Ganezer, G. [go, Y. Miake, T. A. Mulera, J. Oostens, A. L. Sagle,
V. Perez-Mendez, I. Tanihata, D. Hoodard and F. Zarbakhsh. 123
Observation of High Momentum Protons from Limiting Target Fragmeatation
J. V. Geaga, S. A. Chessint, J. Y. Grossiard, J. H. Harris, D. L. Hendrie,
L. S. Schrpeder, R. N. Treuhaft and K. Van Bibber. 124
The Age of the Cosm.c Rays
6. E. Greiner and M. E. Hiedenbeck 176
Discovery of New Neutron Rich isatopes ${ }^{20} \mathrm{Ca}$ and ${ }^{27} \mathrm{~F}$
J. D. Stevenson and P. B. Price. 127
Evidence for Anomalous Huclei Among Relativistic Projectile Fragments fron Heavy lon Collisions at Bevalac Energies
E. M. Friedlander, R. H. Gimpel, H. H. Heckman, Y. J. Karant, B. Judek and E. Ganssauge. 128
Target Fragrent Energies and Momenta in the Reaction of $4.8 \mathrm{GeV}{ }^{12} \mathrm{C}$ and $5.0 \mathrm{GeV}{ }^{20}$ me with ${ }^{238} \mathrm{U}$
W. Loveland, C. Luo, P. L. McGaughey, D. J. Morrissey and G. T. Seaborg 129
Target Residue Recoil Properties in the Interaction of $8.0 \mathrm{GeV}{ }^{20} \mathrm{He}$ with ${ }^{181} \mathrm{Ta}$
W. Loveland, D. J. Morrissey, K. Aleklett, G. T. Seaborg, S. B. Kaufman, E. P. Steinberg, B. D. Wilkins, J. B. Cumming, P. E. Haustein and H. C. Hseuh 131
The Energy Dependence of ${ }^{209}$ Bi Fragnentation in Relativistic Nuclear Collisions
K. Aleklett, D. J. Morrissey, H. Loveland, P. L. McGaughey and G. T. Seaborg 132
Emission Patterns in Central and Peripheral Relativistic Heavy-Ion Collisions
R. Stock, H. H. Gutbrod, W. G. Meyer, A. M. Pozkanzer, A. Sandoval, J. Gosset,
C. H. King, G. King, Ch. Lukner, K. Van Sen, G. D. Westfall and K. L. Wolf 134
Coulamb Dissociation of ${ }^{18} 0$
D. L. Oison, B. L. Berman, D. E. Greiner, H. H. Heckman, P. J. Lindstrom, G. D. Westfall and H. J. Crawford. 135
7. Central Collisions
Streamer Chamber Results on the Hechanism for Production of High Monentum Particles in the Backward Direction in Relativistic Nuclear Collisions J. H. Harris, A. Sandoval, H. E. Stelzer, R. Stock, J. Brannigan, J. V. Geaga,
L. S. Schroeder and R. N. Treuhaft 137
Correlations of Charged Particle Multiplicity Patterns and Heavy Fragents frod Relativistic
Nuclear Collisions
A. Baden, M. Freedman, H. H. Gutbrod, I, J. Henderson, S. Kaufman, K. Karadjev,
A. I. Warwick, F. Heik, H. Wieman, and B. D. Wilkins 138
D. Isotopes Project
I sotopes
C. M. Lederer. 140
Nuclear Structure Database
R. B. Firestone and E. Browne 140
The Feasibility of Producing ${ }^{11} \mathrm{C},{ }^{13} \mathrm{H},{ }^{15} \mathrm{O}$ and ${ }^{18} \mathrm{~F}$ with Heavy Ion-Beams
R. B. Firestone, M. R. Betlach, J. M. Tiedje and M. K. Firestone 142
II. Theory of Nuclear Collisions
A. Nonrelativistic
The Dynamics of Nuclear Coalescence or Reseparation W. J. Swiatecki 147
Effect of Pauli Blocking of Exchange and Dissipation Mechanisms Operating in Heavy-Ion Reactions W. U. Schroder, J. R. Birkelund, J. R. Huizenga, M. W. Wilcke and J. Randrup 143
Quantal Dynamics of Charge Equilibration in Damped Nuclear Collisions E. S. Hernandez, W. D. Myers, J. Randrup and B. Remad 149
An Adiabatirity Criterion for Collective Motion
G. Mantzuranis, W. D. Myers and J. Randrup 150
Angular Distributions of Sequentially Emitted Particles and Gama Rays fran Mearly Aligned Nuclei from Deep Inelastic Collisions
L. G. Moretto, S. Blau and A. Pacheco 151
Effects of Particle Evaporation on the Aggular Momentum of the Emitting Nucleus for Deep Inelastic and Compound Huclear Reactions
S. K. Blau and I. G. Moretto 152
High-Multipole Isovector Modes and Charge Fluctuations in Heavy lon Reactions L. G. Moretto, C. R. Albiston and G. Mantzouranis. 153
Manifestations of Excitation Energy Fluctuations in Deep Inelastic Collisions D. J. Morrissey and L. G. Moretto. 154
Angular Momentum Fractionation Produced by an i-Dependent Potential Energy C. R. Albiston and L. G. Moretto 156
A Time-Dependent Hartree-Fock Study of High-Energy Resonance Induced by Heavy-lon Collision
H. Flocard and M. S. Heiss 157
Application of the Imaginary Time Step Method to the Solution of the Stat ic Hariree-Fock Problem K. T. R. Davies, H. Flocard, S. Krieger and M. S. Weiss. 158
B. Reiativistic
Target Frugnentation Calculations with the Nuclear Firestreak ModeI
p. L. IcGaughey, D. J. Morrissey and G. T. Seaborg 159
Two-Particle Correlations in High-Energy Nuclear Collisions
J. Knoll and J. Randrup. 160
Statistical Model for Intermediate-Energy Nuclear Collisions J. Randrup and S. E. Koonin. 161
Finite Particle Number Effects in High-Energy Nuclear Collisions: Impications on Pion-Spectra S. Bohrmann and J. Knoll 162
Cluster Analysis of the Intra-Muclear Cascade J. Cugnon, J. Knoll and J. Randrup. 163
K^{+}Production in Relativistic Nuclear Collisions C. M. Ko and J. Randrup. 163
A Model for Pion Absorption in Nuclei C. M. Ko and S. Bohrmann 164
Relativistic Nuclear Collisions: Theory
M. Gyulassy. 166
Test of Square Law for Ceuteron Formation in Relavistic Nuclear Collisions
C. C. Noack, M. Gyulassy and S. K. Kauffmann 166
Coulomb Effects in Relativistic Nuclear Collisions
M. Gyulassy and S. K. Kauffmann. 168
Quark Confinement in a Cyclic Symetric Field Theory Hodel H. M. Ruck 169
Hyper-Strange Hadronic Matter
N. K. Glendenning. 170
Pion Condensation in a Relativistic Field Theory Consistent with Bulk Properties of Nuclear Matter
B. Banerjee, N. K. Glendenning and H. Gyulassy 171
Pion Condensation at Finite Temperature
N. K. Glendenning and A. Lumbroso. 173
Pion Condensation and Instabilities: Current Theory and Experiment
M. Gyulassy. 174
Beta Stability of Neutron Matter J. Boguta. 175
Relativistic Quantum Field Theory of Finite Nuclei
J. Boguta. 176
Properties of $T \neq 0$ Nuclei in a Relativistic Quantum Field Theor; J. Boguta. 177
Color Excitation and Exotic Nuclei
Y. J. Karant I78
Coulomb Effects in a Nucleus-Nucleus Cascade Model
Y. J. Karant and C. C. Noack 178
III. Instrumentation
A. SuperHILAC and 88 Inch Cyclotron
The SuperHILAC On-Line Isotope SeparatorJ. H. Nitschke181
Improvements to the He-Jet Fed On-Line Mass Separator raMA
R. F. Parry, M. D. Cable, J. M. Wouters, J. Aysto and J. Cerny 182
Hall Probe Controlled Nuclear Magnetic Resonance Magnetometer
J. M. Nitschke and A. A. Wydler. 184
Mon-Destructive Beam Intensity Measurement
J. M. Nitschke and J. A. Hinkson 185
Recent Progress in Ion Sources and Preaccelerators
D. J. Clark 186
Operation of a High-Current Xenon Source
W. Chupp, D. Clark, R. Richter, J. Staples and E. Zajac. 187
A Fast Access Modular Test System for the Jradiation of Actinide Targets with High Intensity Heavy-Ion Bean'
K. J. Moody, M. J. Nurmia and G. T. Seaborg. 188
Calibration of a High-Efficiency Deuteron Tensor iolarimeterE. J. Stephenson, R. J. Hett, J. R. Specht, J. D. Moses, R. L. Burman,G. D. Crocker, J. S. Frank, M. J. Leitch and R. M. Laszewski189
The Effective Solid Angle of a Rectangular Collimator for the Passage of Fragments from Breakup Projectiles
A. C. Shotter, A. N. Bice and J. Cerny 191
Time-Nalk Characteristics of an Improved Constant Fraction Discriminator
G. J. Wozniak, L. W. Richardson and M. R. Maier. 192
B. Bevalac
Streanier Chamber Measur ementr, at the Bevalac
J. P. Brarnigar, A. Dacal, J. Geaga, J. H. Harris, J. Miller, H. G. Pugh,
R. E. Renfordt, L. J. Rosenberg, A. Sandoval, L. S. Schroeder, H. E. Stelzer, R. Stack, H. Strobele and K. L. Holf 195
A Glow Memory Chamber for Use in the Measurement of High Multiplicity Events
M. A. Elo?a, T. A. Mulera, V. Perez-Mendez and P. E. widenbeck 196
Response of NaI:Tl to Relativistic Ne, Ar, and Fe M. H. Salamon and S. P. Ahlen. 197
A Range-Energy Progran for Relativistic Heavy Ions in the Region $1<E<3000 \mathrm{MeV} / \mathrm{amu}$ M. H. Saiamon. 198
Measurement of Higher Order Corrections to Stopping Power for Relovistic He, Ar, and Fe 8eams
M. H. Salamon, S. P. Ahlen, K. C. Crebin and G. Tarle. 199
Bevalac Data nizquisition Project
C. McParland 200
Trajectory Reconstruction at HISS
D. D. Tuttle 200
HISS Detector Systems
H. Crawford, J. Carroll, F. Bieser, S. Nagamiya and J. Symons, 201
Plastic Wall Scintillator Detector ArrayA. Eaden, H. H. Gutbrod, M. Maier, J. Peter, H. G. Ritter, K. Stelzer,A. I. Warwick, F. Weik and H. Higman202
Charged Particle Identification with Modules of the Plastic BallH. H. Gutbrod, M. Maier, H. G. Ritter, A. Warwick, F. Wiek, H. Wieman and K. Wolf203
Position-Sensitive Parallel Plate Avalanche Counters
H. Stelzer and A. Baden. 204
A Simplified Constant Fraction Discriminator Circuit for Application in Multichannel Discriminators
M. R. Maier. 205
Improvenents to the Multi On-Line Analysis System
F. Weik. 206

Part 3. Appendices

Thesis Abstracts 211
Nuc lear Science Division Seninars 213
Nuclear Theory Meetings 215
Papers Published and LBL Reports 1ssued 1979-80 217
Author Index. 234

INTPODUCTKN

Abstract

itis annual report describes the scientific prodarch carried out within the Nuciear Scfence [1v'ston (NSD) during the perics between July 1, af the division continues to be tite experimental and tr cretical investigation of the interar.flons of heavy ions with target nuciei. complemented witt programs in light icn nuclear science, in nuclear data compilations, and in atranced instrumentation deveioprent.

Directly affiliatac sith the division during this perioe were 5 'aculty senior scientists. 16 staff serior scientists. 22 staff scientísts. 3 aivisional fellows. 15 post-doctoral fellows. 21 graduate students, 46 visitors (the majority from 12 forign countries), and 24 tectinical, administrative and clerical support staff. The FY 1980 operating budget wa. sd, IE';,000. Ninetyfour :ournd article's and reforts mere published Sy 小ivision eethers, and three Ph.D. degrees mere awarded io :iuclear Sctence Division students.

During this period there ha:e been soce progressive changes in the divisicn. Two Assistant Divisio: Heads were appointed: Michati 2 isean oversees the planning anc development of the division's many equipment, computer, and instrurentation prcjects while Janis Dairiki's responsibilities lie in the general area of scientific administration. There have also been sane welcome staff additions:

Howe? Pugit hat joined the NSO staff as the Scientific Director of the Bewalac. He was previous) y Head of the Huclear Scjence Section at the National S:ience Foundation. Because of his responsibility for the reseach program at the Bevalac, which cuts dcross LBL division lines, and as cochaiman (with Tom Elioff) of the VENUS Planning Co:mittee, he plays an important liaison role. In addition, he has joined with Andres Sandoval, Lee Schroeder and Reinhard Stock (GSI) in a program of -elativist:. heavy ion research.

Robert Stokstad has come from Dak Ridge Hational Laboratory to become co-leader of the Haryey-Stokstad group at the B8-Inch iyc lotron where he is pursuing a program to study heavy ion reaction mechanisms in the -ntermediate energy region ($10-20 \mathrm{MeV} / \mathrm{anm}$).

With these gains there was also d lass: Javio Scott left LBL to accept a Hannah Chair of Physics and Chemistry at Michiçan State University.

During this period a number of awards and enors were bestowed upon HSD scientists:

Arthur Postanzer received the 1900 American Cheaical Society fard in Wuclear Chenistry at the Society's Houston meeting, March 24-28, "...for his pionetering use of highenergy nuclear reactions to proctuce light nuclei far from beta stability and for his experimental comtributions to the understanciing of the mechanise of nuclear reactions induced iof protons and heavy funs of reldifivistic energy. A one-day symposium on High Energy Reactions and maclef Far Frum Stability mos organized in Art's hynor by Earl riyde, LEL Deputy Dfrector.

Dick Diamond and Frank Stephens were avarded the 1980 Ton M. Bonner Prize in Muclear Physics. sponsored by the American Physical Society. The mard, prerented at the Yashingten AJS meeting in April. has a citation that rec. ." "Their studies of mittiple couloot excitations rith heavy ions. of multiple gama-ray cascades. and of the effects of the Coriolis coupling in rotational spectra are important ingredients in our understanding of rapialy rotating nuclei.*

Bernard G. Harvey became Chairman of the Division of Muclear Physics of the American Physical Society in Aprif for a one-year term, having been elected to serve as ViceChafran for a year in April 1979. He also received an honordry degree from the University of Science and Medicine in Grenoble. France on October 26. 1079.

Glenn T. Seaborg mas awarded an L.H.D. degree from Augustand College in Rock island. Illingis on May 25, 1980.

HSD members 日fll Myers, Jorgen Randrup, and Gary Mestfall organized the first Winter Mortshop on Huclear Dynamics held at Granlibakken, Harch 17-21. This sucgessful conference was d stimlating blend of physics (with emphasis on the macroscapic aspects of nuclear collisions), sparkling snow, and fresh mountain air.

The division continues to operate the 88 inch Cyclotron as a major research facility that aiso supports a strong outside user program. Both the SuperHilac and Bevalai accelerators, operated as national facilities jy LE'-'s Accelerator and Fusion Research Civisien, are also important to RSD experimentalists. Domestic and foreign cooperative efforts are unferway at all three accelerators; in particular, major collaborations with our German and Japanese colleagues continue to flourish at the Bevalac. In Hay the division hosted a delegation fro the Pecple's Republic of China; discussions explored possible collaborative research projects.

The next few years promise exciting duvances fn heavy ton ohysics. High energy uranium beams. socn to be arailable at Lol for the firsi time anywhere, will open up a new ared of heavyion resedrch with the stucy of nuc?edr systems of high charge and mass under conditions of extremely high dersity and comperature. An Electron Bean lon Source (EBIS). currently under study, would significant?y extend the performance of the 86 Inct. Cyclotion for mediun mass ions in the $10-30 \mathrm{ReV} / \mathrm{anu}$ range. Fusfontype reactions wili continue to be pursued in the search for the elusive superfieary elements. Knowledge of particle-creation effects in the

muchear cquation ef state umber commitions of extrenc muchear densitics will be sewqim di the
 the difistion will be of substanctially increasced techmical und concemial comprezity. They whll be allded by strong linteractions with the ginvisü二"s muctear theorists and ty the fimarrased - ffort evosed to crewelopmemt of semm"sticated celectors mod cata amplysts sybients.
\therefore Sez:

PART 1. RESEARCH PROGRAMS

EXOTIC NUCLEI AHD MLCLEAR REACTOHS

	Joseph Cexny
A Bree*	M Itweren.
M Catle:	1) Wouters*
P Pariv*	

For a number of years this group has been actively explo ing tife properties of nuclef near the limits of nucieon stability. Trese investigations test the various thecretical models used to predict the ground state masses and level schemes of exotic light nuelei and perait one to search for net r-dfoactive decay modes, such as aircs proton radioactivity or the still unob-se-". 1 two-proton radioactivity. Techniques for ob:, ving the procucts of very low yield reacdions have been developed. The stucies primarily concirn the lighter elements. since one expects to reach the onset of general nuclear instability first in this region, and particuiarly among the neutrin-deficient nuclides.

Current research at the 88 Inch Cyclotron focuses on er aying the on-line mass separator RAMA for Rerc:i :'rum Hass Analyzer in the study of exr.: m 'lei fir from the valley of beta-stabll $\because \quad \mathrm{A}$: H employs a helium-jet to transport rac.. "ir" nuc\}ides from the target area to a hollum ir de ion source: following extraction and magnetic analysis. the mass of interest is collected eitonr on carbon foils in the focal plane (for beta-delayed proton studies) or on a tape transport systet (for bets and r-ray studies). Witn RaNA, one more (previously unknown) $T_{2}=-2$ beta-delayed proton emitter, ${ }^{36} \mathrm{Ca}\left(\mathrm{T}_{1 / 2}=100 \mathrm{~ms}\right.$!, has been discovered (complementing the di-covery of the decays of 20 Hg and $\mathbf{2}^{4}$ Si reported last year). thereby completing the hedyiest isuspin quirtet possible with estatlished tectricues and staple targets. Excellent agrefrent is observec ${ }^{\circ} n$ this heavy mass system with the predictions of the isobaric multiplet mass equation. Future studies are plennec on both nes :ron-def :ient and neutron-excess light isctopes.

Another part of the progra in studying nuclef far fron seability is the inftiation of a serfies of experiments to determine cotal decay energies of isotopes fin the vicinity of the dorbly magic rucleus 100 sn . Rass encess deterainations for muclides in this region should highlight the influence of the closed shells on un decay energie; and establich whether suct proton-rich agic nuclei follem the sate eyss systextics as do those nuc lei rearer stanility. The decays of 103-106In have been observed following their production wíl 110 MeV If W on mo targets and on-linm, misy mitysis. The simple decay schens for 103, iosin have peraitted the detenination of their massexcesses for comprison with various theories of the eass surface.

In previous work in muclear reactions this group has coserved the nuclear structure of light nuclei via the two-mucleon pickup (p, t) and (p. Hel reaction.s. Cbrrently, they are developing techniques to detect. under optifes conditions. uniound resonant states as nuclear reaction products. An enample is the observation of the unbouno systee $\mathbf{}^{\mathrm{H}}$: its successful detecition pernits such Eeasurements as twoneutron stripping via the (H_{H}. \mathbf{Z}_{He}) reaction mich has led tc tres cbservation of the preier ntiai papulation of states with ($\left.\mathrm{d}_{5 / 2}\right)_{4}^{2}$ and ('7/3) $\frac{7}{6}$ character. Recent studies have utilized this tectunique in the investigation of scattering and transfer redctions induced by heavy ions in which transitions to specific. uncound. excitec states of the ourgoing heavy ion can be sbserved.

HEAVY ION REACTHONS

E G Harvey whd A G Stokstiad

J Manoney
M J Murphy
w D Rae

J Mahoney
in J Aurphy
b D Rac

A Legrain Smidy france
J Cols Grenoble France

This new research group continues the stud) of heavy ion reactions that re; begun by its predecessors (Harvey, Hendrie, Scott) at tie 88 Inch Cyclotron.

The foundation of much of the current and proposed work rests on the surprising discovery of Scott et al. that the heavy fon fragmentation process sets in very rapidly hetweer 10 and 20 MeV/A. Already at $20 \mathrm{MeV} / \mathrm{A}$, cross sections and monentum widths are close to thefr vaives at 2 GeV/A. From these and subsequont results. it is clear that the physics of peripharal collisions is renarkabiy similar at these two energies. As Scott emptiasized in his ICMP lecture, high energy heavy ion physics begins at 15 Melin.

This group's research progran is designed to look for daditional similarities and to try to understend why $15 \mathrm{HeV} / \mathrm{A}$ is such an inoortant frontier. Experiments at ORNL and the Beralac showey that the reartion cross section C_{R} for the ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ system rises rapidly ust above the Coulonb barrier but becomes much lower at Bevalac energies. De Vries interprets this observation in terms of the nucteon-nucleon cross sections, which also drop. The group has recently measured : R at energies intermediate between the ORNL and Eevalac points and the preliminary results do indeed confirm that $c R$ reaches a maximum and then falls off. The peak value seems to fall in the critical region around $15 \mathrm{FieV} / \mathrm{A}$. Is this indeed due to the increasing role of nucleon-nucleon collisions that replaces the nuclear mean field description?

Experiments and theoretical work by Hilczynski et al. draw attention to the importance of the critical angular momentun in oetermining whether nucleon transfers or fragmentation will occur in peripheral collisions. When applied to the system $16_{0}+208_{p o}$ that was studied by Scott et al., the Hilczynski criterion predicts that fragmentation will start at 15 MeV/A, exactly as observed. The Harvey/Stokstad group has studied, the megchanism for fragmenta-

target and oxygen encrgies of 8.5 and 20 Heli. They find that even at $2 C$ MeV/A framentation ogcurs precominately by inelastic encitation of 100 to a-decaying states between 10 and 20 Hey/A and not by a direct single-step process. fhus, the transition from inelastic excitation (i.e., resonant fragmentation) to prompt fragmentation appears in this case to occur at boemtarding energies abrye $20 \mathrm{MeV} / \mathrm{A}$.

In order $i o$ get a more complete picture of heavy ion reactions for the interneajate crerg) region. they have tegun to use a shall streaner chapber to measure the aultiplicity of charced fragnents in coinciderce with an identified forward-going particie. If the streaser chamber proves to be as useful as expected, further experiments will be planned with a more elatorate trigger systew, perhaps using wrays to identily the residual target fragments.

A simple semi-classical model of massive transfer (or incomplete fusion) reacticss can te used to calculate the excitation energy and angular comentue of the final mucteus. It has been very successful in predicting the .-ray mul ifiplitities that are neasurt in coincticence with quasi-elastic fragments. The coodel predicts that massive transfer reas trons will populate final states in a narrow oand of eacilation energy and argular momentur. This is in shary contrast with the $\{\mathrm{H} .1 ., \times \mathrm{xi})$ cesplets fusion reactions that are being used to produce rigt-sann states. In these reactions, all anguiar nomenta are fermed froce zero to a maxiree value. Higtispin spectrascopy would benefit enormcusly by the use of reactions that produce a narrow region of angular momenta centered around a walue that can be predicted and variedty changing the bean energy and the reaction. Consequently, this group plans to make futher experimentay tests of the seni-classicat mode? to test its predictive power. in orcer to reach really high epins, they will eventucill, rezutre beans of heavier ions such as Ar, Kr. anc Mc ot $10-20 \mathrm{MeV} / \mathrm{A}$. These will becomp availdale fror advanced ion sources.

NUCLEAR STRUCTURE

R M. Dramond and F S Stephers

D Lebeck
H Kluge. Hahn Meilner Institute.
Eethn. West Germany
H. L.ndeberget

S Enih. Shanghaı, Instituts of Nuclear Researcti.
Shanyhai. China

The aim of this group is to study and understand some of the important aspects of nuclear structure and, particularly at the present time, the changes that occur with increases in angular momentum. They use beams of yery heavy ions (${ }^{4} \mathrm{GAr}$ through $308 \mathrm{p}_{\mathrm{D}}$) rrom the SuperHILAC and of smaller fons [$^{4} \mathrm{He}$ through ${ }^{40 \mathrm{Ar} \text {) from the }}$ B8 Inch Cyclotron. They exploit the particular properties of heavy ions, namely, their large nuclear charge, the large recoil velocities of the composite system, and the high spin of the composite system.

The high nuclear charge makes the heaviest ions ($36 \times \mathrm{xe}$ and $20 \mathrm{~B}_{\mathrm{pb}}$) especially suitable for Coulomb excitation studies. States with spins up to 30 if can be exuited by ruitiple excitations. The large recoil velocities given to product nuclei under heavy-ion bombardment
makes heavy-ion projectiles the choice for deternining lifetimes by Doppler-shift methods $\left(10^{-10}\right.$ to 10^{-14} seconds), for g-factor nessurements, and for a variety of other techniques requiring implantation of the recoiling nuclei in special materids.

The high angular momente imparted in heavyion fusion reactions leads to muclei in spin states greater than 60 h . Stufles of the deexcitation of these states by continuus r-rays gives information about the moment of inertia and the shape of these nuciei as a unction of spin. In certain cases (non-motitional nuclefl. discrete states ay be seen af to spins of 36-37 h. Juch studies comprise one of the mast exciting ${ }^{\text {fields } i *}$ recent nuclear structure research.

POLAPAZATION PHEMOMENA MI MUCLEAR PHYSICS

H E Conzett

R M Larmer
thp's research uses the polarized beams from the 88 Inch Cyciotron, and it is concerned with spin-polarization effects in muclear scattering and reaction. It particularly addresses such fundarental questions as parity ψ iolation by the wesk interartion component ir能 scattering, time-reversal invariance in reactions, charge symmetry of the nucleonnucleon interaction, and the three mucleon problem.

They haye esser tially completed a progran to measure the various polarization observables in p+d stattering for comparison with exact threenucleon calculations. Hith the exception of the tensor analyzing powers, the agrement between experiment and theory was perfect. An improvement in the input murleon-nucleon tensor potential and the inclusion of an F-wave interaction in calculations (by Doleschall) have now resulted in good agreement with the eeasured tensor analyzing fowers as well. Thus, the exact three-nucleon calculations, with the known nucleon-nucleon input interactions, are now nost successful in reproducting the three-mucieon experimental results.

From accurate measurements of the cross section and tensor analyzing powers in dp scattering at 35 and 45 MeV , they have determined, in a model-independent analysis, an accurate value for an important deuteron D-state parameter. This paramenter, the asymptotic D - to S -state ratio of the deuteron wave function has been deiermined to an accuracy of 5%. This result hes significant impact in several areas. It estatioshes constraints on the nucleonrucleon intermedite and long range tensor force, and, thus, on the various nucleon-nucieon potential models, both the phenomenological and the modern meson-exchange types. These constraints are also important ir exact caizulations of the triton binding energy and in the determination of the saturation properties of nuilear matter, both of which are very sensitive to the deuteron D-state probabiiity.

A most important feature of polarization effects is that they often display uniquely the operation of a basic symmetry property of the nuclear interaction. They are pursuing several fundamentally important experiments of this
nature: (1) They have prepared a longitudinally polarized proton beal and the experimental apparatus for a major experiment on the basic nucleon-mucieon interiction, i.e., a determinaifon of the meak interaction parity nonconserwing part of this interaction from a masurement of the longitudinal anaylzing-power component in pp scattering at 50 heY.
Calculations prodict a maxime value (3×10^{-7}) at 50 MeY , and theirs is one of the three existing polarized-bem facilities in the world with the capability to do the experiment at that energo. (2) They have been engaged in a collaborative experiment at TRIUF to determine the level of validity of charse symetry in the mucleon-muclicon interaction, which implies an equality of the neutron and proton polarizations in hip scattering. The experiment is designed to check this equality te an accuracy of 10^{-3}. One experimental run has taken place in pp scattering which verifies that this accuracy is possible. (3) They have started a collaborative experiment with a group from Laval University to test the principle of time-reversal invariance in muclear reactions. This principle results in the polarization-analyz. 9 power equality, f.e.. the polarization in a $^{\text {a }}$ reaction A($\bar{d}, \mathrm{~b}) \mathrm{f}$ is equa: to the analyzing power in the inverse reaction with polarized projectile $B(\bar{D}, a)$. Polarizafions have been measured at Laval in several (${ }^{\text {He, }} \mathrm{p}$) reactions, and measurements have begun here of the analyzing powers in the corresponding (p, ithe) inverse reactions. Previous checks of eime-reversal invariance in nuclear reactions have been limited to tests in elastic proton scattering.

In the future work they plan to continue to focus on experiments with polarized particies which examine the operation of the basic symunetries of the nuclear interaction, i.e., parity conservation in pp scattering, charge symmetry in n̄p scattering, and time-reversal invariance in muclear reactions. The increased polarized deam intens ties of 2-3 microamperes, to be provided Ey our FY 1980 Accelerator Improvenent Froject, will be particularly important for these experiments which demand high statistical accuracy and overall precision. They will also continue studies of the consequences n? particle identity and charge symmetry in nuclear reactions.

SPIN, ISOSPIN AND ENERGY FLUCTUATION WI HEAVY ION REACTIONS

L G Moretto
J Hunter
H J MeDunald
D J Morfs_e?
L G Solootha**

A J Pactieco"
G J Wornidk
C C Hsw. Berjing
Peoples Repultic of Crured

Ouring the :ast several years this group has been investigating the short-lived dinuclear system, or intermediate complex, which is formed in heavy ion collisions. The short lifetime of this dinuclear system alluws one to classify its excited collective modes in terms of their relaxation times. From short to long they are: neutron to proton ratio, energy damping, angular momentum transfer, and the mass asymmetry degree of freetom. Associated with each of these equilibration processes are quantal or classical fluctuations. These fluctuations can be medsured and general cunclusions can be dram about either the equilibrium distribution and/or the equilibration process. Recently, the group has focused its theoretical and experimental attentions on spin, isospin and energy fluctuations. Information on spin fluctuations is cortained in the r-ray and a-particle angular distributions arising from the decay of one or both of the primary reaction products. For very asymmetric systems, energy fluctuations greatly enhance the statistical emission of fast light particles from deep-inelastic processes. Isospin fluctuations are asscciated with a variety of giant isovector modes and can be studied by means of isobaric charge distributions.

THE TRANSFER, ALIGNMENT MND PARTITIONING OF angular momentum within the dimuclear system

©iementary dynamical considerations suggest that the angular momentum transferred to the reaction products should be perpendicular to the reaction pline. iowrer, thermodynamical considerations also suggest that some amount of angular momentum misalignment should arise from the excitation of angular momentum bearing collective modes of the intermediate complex. For a system of two touching spheres ir, the equilibrium statistical limit, these modes have been identified as bending, twisting, tilting and wriggling. For this simple systen, the second moments of the fragment spins and the spin depolarization have been calculated. If the fragment angular momentum is carried away mainly by stretched E2 transitions, one can learn about the degree of misalignment by measuring the out-of-plane airgular distribution of the rays. In a study of tife ${ }^{165} \mathrm{Ho}+165 \mathrm{Ho}$ system at 8.5 NeV/A, a very strong correlation between the y anisotropy and the reaction Q-value was observer which indirjted a rapid buildup of aligned spin in the qua -elastic region and a decrease in the aligned component at very large 0 -values. A quantitutive comparison of the data with model calculations indicates that the spin depolarization introduced by the angular momentum bearing collective modes is the primary cause of the fall of the anisotropy at large Q-values.

The out-of-plane angular distribution of a particles efitted by deep-inelastic fragments can be used to investigate the partitioning of angular momentue within the dinuclear system. This can be done because in certain kinematic regions only light particles enitted from the target-1ike nucleus are observed and the out-ofplane distribution of these light particles is sensitive to the spin of the emitter nucleus. In addition, the stat of the spins of both fragments can be determined from r-ray multiplicity measure system, the group has deternined that for fully damped evente the intrinsic soin of the dimuclear celaplex is partitioned between the two product fragents as one would expect for rigid rotation of an intermediate complex consisting of substantially deformed ispherolds.

ENERGY FI_UCTUATIONS

Light parzicles with telocities substantially greater than the beam velocity have been reported in inclusive measurements of heavy ion reactions. The production mechanisa of such fast particles has been a lively subject of discussion and the data have been interpreted as evidence for "hot spots" and "PEP jets." The group has recently studied proton emission from the $20_{\mathrm{Ne}}+$ nat C_{Cu} system at $12.5 \mathrm{MeV} / \mathrm{A}$.
Al though siaple evaporation calculations underpredict the intensity of fast protons, including statistical fluctuations in the equilibrated excitation energy givos the correct spectral shape of the fast protons. For this asyme:ric system, fluctuations in. the partitioning of the exitation energy of the dinc:ear complex can produce a substantial increase in the excitation energy oi the Ne-like fragments. The resulting higher temperature gives rise to protons with velocities comparabie to that of the beam which, when coupled to the velocity of the projectilelike fragment, yield values of up to twice the bear. velocity in the lab system.

150SP IM FLUCTUATIONS

Recently, the group has suggested that the isobaric charge distributions Carry information regarding giant isovecter modes in the intermediate complex. The group investigated the role of the higher order isovector modes in the exactly solvable problem of a cylinder split. at various asymetries. The role of the higher isovector multipoles becomes more and more important as the asymmetry increases. While the cylinder model is much too schematic to be realistic, it points to the mass asymetry and to the higher isovector modes as essential components of a comprehensive theory.

[^0]
HEAVY ELEMENT RESEARCH

A. Ghuorso and J. M. Nitschke
M. J. Nuzma
L. P. Somerville
S. Yashuta
E. K. Hulet. LLNL
R. W. Lougheed. LLNL
J. F. Mikd LLNL
D. C. Hoifmen. LASL
M. Lermo. University of Helsink. Funland

The Heavy Element Research group studies the synthesis of new elements and isotopes and investigates their radioactive and chenical properties. An important adjunct to this effort is training students in advanced methods and techniques of experimental nuclear physics. The group conducts experiments at the 88 Inch Cyclotron and the SuperHILAC, and is rollaboraing with other American laboratories in experiments at GSI Cermany. Research at the 88 Inch Cyclotron has focused on the synthesis of neatronrich actinide isotopes with very hemy targets (${ }^{244} \mathrm{Pu}_{\mathrm{u}},{ }^{248} \mathrm{Cm},{ }^{24} 9 \mathrm{Bk}$, ${ }^{249} \mathrm{Cf}$, and $25 \mathrm{Es}^{2}$) and high intensity light ion beams. These reactions do not necessarily proceed accordins to the classical concept of compound nucleus reactions with the subseque int evaporation of a few neutrons or a-particles. To gain a better understanding of the reaction mechanisns involved it has included the study of uransfer reactions in its program. The identification of the reaction products is predominantly achieved through their characteristic a-particie decay but in some cases unfque features of fission decay have given important clues as to the nature of the reaction mechanisms involved. The instrument most useful for the study of the spontaneous fission (SF) decay properties of short-lived isotopes has been the MG system, which has been used in paricular for a systematic investigation of the $\mathbf{S F}$ properties of Fm isotopes.

The di scovery of several new $\mathbf{S F}$ einitters in the neutron rich actinide region was made possible through the development of an instrument that is capable of reducing the background of unwanted long-lived $5 F$ emitters by several orders of magnitude compared to previous experiments. This instrument is able to detect $S F$ emitters with ms half-lives that are formed with sub-nanobarn cross sections, and it will aventually allow searches for exotic nuclei like $264_{\text {Rf }}$ which is a key nur.leus for the understanding of shell effects in the $\$ F$ process of heavy elements.

The group's efforts at the SuperHILAC are directed towards the use of complete fusion reactions to produce and analyze new elements and isotopes with half-lives as short as 1 us. For this purpose it has been successful in bringing on line a gas-filled magnetic spectrometer (SASSY) after a necessarily protracted development perind. This system has on acceptance angle of about two degrees in the beam direction and has proved able to completely suppress the bomberding particies in most cases of interest. The heavy recoils are brought to a focus four meters downstream from the target at
a focal plane where two types of detectors have been used, either solid state reroil/alpha/fission detector; or recoll-detecting gaseous fonization chabers. Two avalanche counters with extremely thin windows intercept the recofl path to provice START/STOP signals for velocity (TOF) measurements.

Using a solfés state detector array ani parastic beams of 40 Ar and 56 fe frow the SuperHILAC short-lived alpha radionctive species from Fo to Ac have been produced. Several ned neutron-deficient isotopes of Po and At have been discovered with SiSSY using this technique. With a multiple grid chasber as the detector an unexpected, cpplicated structure in the Tof spectra when ${ }^{6} t_{\mathrm{Lu}}$ and ${ }^{17} \mathrm{Y}_{\mathrm{Yb}}$ are bombarded by $\mathrm{KO}_{\mathrm{Ar}}$ ions wis fquind. This structure does not appear with 169 Te bombardents, only the cotepound nucleus spectrim being observed. The analyses of these reactions have not jet been completed, so there is no explanation for the phenctenon as yet.

It appears that SASSY has now been developed to the point at which one more definitive search for superheayy elements can be made, this time down to half-lives as short as a fraction of a microsecgng. Early in 1981 it is planned to bombard ${ }^{248}$ cm with ${ }^{48}$ ca ions because it still appears from theroretical considerations that this is the best reaction to try.

A progran of a soncwhat different nature is being pursued with the SuperHiLAC on-line isotope separator. The scope of research is not limited to the investigation of the heaviest elements or the use of complete fusion reactions, but spans the whole range of the periodic table. The reaction mechanisas utilized for the production of isotopes far from the line of beta stability include beside complete fusion, deep inelastic collisions and miti-nucleon exchange reactions.

Several aspects of the separator are still under development, in particular the detection systew; but it is expected that in a year's time on-line 8 -r-spectroscopy will be possible in addition to the present particle detection. The measured efficiencies and separation times are sufficient to study isotopes with half-ifives as short as one second and production cross sections below 1 nib.

A final aspect of their research concerns the study of heavy and superheavy eiements in deep inelastic reactions. For this purpose they nave undertaken a collaborative experinent with

LLNL, URNL, and GSI to bombard ${ }^{248} \mathrm{Cm}$ targets with high intensfty 2384 berms at the Unilac in Germany. Compared to ${ }^{238} \mathrm{~J}$, the yield with ${ }^{248} \mathrm{Cm}$ targets for the production of heavy actinides was enhanced by a factor of 10^{3} to 10^{4}. This enhancenent, however, was not suf-
ficient to discover superheavy elements. In the future the studies of the deep inelastic reaction mechanis: and the process of nuclear diffusion will be continued using ${ }^{238} \mathrm{U}$ and other heavy ion begrif from the SuperHILAC with targets as heavy as ${ }^{25} \mathrm{H}_{\mathrm{Es}}$ and 257 Fa .

SUPERHEAVY ELEMENT INTERLABORATORY CHEAMSTRY (SHEIKS)

Lus Cheng. Bepung. Peoples Republic of Chuna
W Loveland. Oregon State University
H. Von Gunten. Unversity of Bern. Switzerland
H. Groening. Simon Bolivan University

This group uses all three of the LBL accelerators to identify and chardcterize new elements and isotopes, to study nuclear reaction mechanisms: to study the chemical properties of rare known elements, and to train students in modern radiochemical techniques. Currently its reasearch is focused toward (1) the synthesis and ident fication of new isotopes and elements in the ac:inide and transactinide region, along with attempts to synthesize superheavy elements, (2) the study of low energy heavy ion reaction mechanisins potentially useful in the synthesis of new elements and isotopes such as massive transfer, complete fusion and deep inelastic scattering, (3) the characterization of the mechanisms opersting in intermediate energy ($10-100 \mathrm{MeV} / \mathrm{A}$) and relativistic ($-250 \mathrm{MeV} / \mathrm{A})$ heavy ion reactions through studies of the target fragment yields, energies, angular distributions, etc.

With light $(A \times 25)$ heavy-ion reaction studies at the 88 Inch Cyclotron, the primary emphasis has been on the use of "transfer" reactions to produce heavy actinides and the study of the mechanism of these reactions. Preliminary studies have indicated suprisingly large probabilities for the synthesis of all the nuclear species ranging in mass from the target mass to that of the compound nucleus. The group is systematically exploring these reactions by studying the variation of product yields, energies, angular distributions, etc.. with projectile and target mass and energy.

Members of the group have also used the 88 Inch Cyclotron, the low-energy beam line at the Bevalac and the SC synchrotron at CERH to study
the transition between low energy and high energy heavy ion reaction mechanisms. In particular, they are concerned with studies of the target fragment yields, energies and angular distributions in light ion-heavy target reactions. Preliainary results show large dramatic changes in the product yield distributions at projectile energies $\mathbf{- 4 0} \mathrm{MeV} / \mathrm{A}$.

Research at the SuperHILAT has been directed at the use of deep inelastic transfer processes to produce new isotopes or elements, and obtain an understanding of the Eechanisus involved. Efforts have teen concentrated on the reaction of the heaviest projectíles (Kr, Xe) with veiy heavy targets $\left\{24 \mathrm{P}_{\mathrm{p}}, 2.4 \mathrm{C}\right.$. $\}$. Future work willinvolve the use of heavier projectiles such as 238_{4}. Current results seem to indicate no significant advantage in the use of Kr gr Xe projectiles as compared to the use of 48 Ca and other lighter ions in these synthesis studies.

Research on target fragmentation at the Bevalac has shown that (1) the target fragment yiel os have been measured in the interaction of relativistic heavy ions (RHI's) and are in good agreement with the predictions of current models of RHI interactions (such as the firestreak. intranuclear cascade), (2) the target fragment energies, momenta, etc., exceed those of fragments from relativistic p-nucleus collisions and are not well described by current models of these interactions, (3) there are indications of sidewise peaked fragment angular distributions in some of these reactions, suggesting compression of nuclear matter in the RHI-interaction. Futher work in this area will be concentrated in (2) and (3).

[^1]

HIGH ENERGY NUCLEAR COLLISNONS

A M Poskanser and H H Gutbeod GSI

A	Barder:	H Steltag GSi
H	Loetines Unixersaty of Marbuty	P Stock GSI
M	Maum Unversity of Martoury	A Wrundra
J	Mernesers	F Wrat GSi
J	Peter Oisay fiama	H *Mmation GS
H	Rilter GSI	K Worl Anil

The work of this group is directed to the study of cantral collisions of relativistic heavy lons with the aim of learning atout nuclear matter at high temperature and density. The grouf is a continuing collaboration between GSI, the University of Marburg, and LEL. An experiment was performed together with a nuclear chemistry group from the Argonne National Laboratory and, in addition, there were two risitors from ihe Kurchatov institute of Moscow.

In the year bciore this, both a $\Delta E-E$ telescope of silicon and thick germanien detectors and a gas sE -silicon E telescope were used in corijunction with an 80-counter multiplicity array. All the single particle inclusive p, d, and t data tave been published and also some multiplicity selected p and " data. Ihe heavy fragment results, together with their correlations with the fast fragments, have been published. The remainder of the ++ data is ready for putlication.

This year another experiment was performed to study the correlations between slow and fast fragments. For the slow fragments an array of 40 detectors, consisting of silicon counters, gas ΔE counters, and avelanche counters, was used. For the fast fracments the 80 -counte: multiplicity ar:ay plus a new piece of equipment, the Plastic hiall, were used. This year A. Poskanzer was on leave at CERN and performed various experiments with the ISOLDE group on exotic light nuclei and also mèpsured yields from the reaction of $80 \mathrm{MeV} / \mathrm{A}$ l2 C ions with uranium. The fisture work at LBL will be centered exclusively around the combination of the Plastic Ball with the Plastic Wall. This is an attempt to make a much aore exclusive measurement of realtivistic hadvy ion interactions to search for collective phenomena.

p, A, ANO t

Inclusive energy spectra of protans, deuterons, and tritons were measured with a telescope of silicon and germanium detectors at $k i n e t i c$ energies up to 200, 250 and 300 MeV , respectively. Fifteen sets of data were taken using projectiles, ranging from protons to $\mathbf{4 0}_{A r}$ on targets from 27_{A}) to 238_{U} at bombarding energies from $240 \mathrm{MeV} / \mathrm{nuc} 7$ eon to 2.1 GeV ; nucleon. An estimation of the sum of nucleonic charge emitted as protons plus composite particles was obtained as a function of energy in the interval from $15 \mathrm{MeV} / \mathrm{nuc} l$ eon to $200 \mathrm{MeV} /$ nucleon. For low energy fragnents at foward
angles the protons account for only 25^{\prime}; of the nucleonic charges. Comparisons of some cases with fresestreak, cascade, and fluid dynamics models were made. In addition. issociated charged particie mitiplicities and azimuthal correlations wre geasured with in 80 -counter arrity of plisitic scintillators. It was found that the associated multiclicitias were a smooth function of the total inetic energy of the projectile.

CCRRELATIOXS BETMEEM SLOM ALD FAST FRAGMEMTS

Analysis has finished on earlier Bevalac

 measurements of low energy heavy 'ragments and fission fragnents in coincidence with fast light particles. These measurements were aldowith d variety of prajectiles from protons to $2 C_{\text {ne }}$ and a range of botbarding energies from 0.4 gold and silvers. Some of the resulis of this work include charged particle mitiplicity distributions that show fission fragments from realtivistic nuclear collisions are predominally produced in low multiplicity events. There is, however, d component with high multiplicities indicating that even fir viclent reactions binary fragents are produced. It was also found that low-z fragoents are associated only with events of high mitiplicity. Another feature observed in the data was the anomalously la apparent Coulomb barrier encountered by emitted fragments from interactions with both light and heavier projectiles. This lowered apparent Coulomb barrier appears to drop with increa ing incident $k i n e t i c$ energy.

This experimental program the been expanded with additions of equipment and personnel. The apparatus is now composed of four ion chambersilicon telescopes plus two large ared sflicon arrays. two avalanche detectors used in conjunction with the silicon arrays and two of the ion chamber-silicon telescopes provide tof information for mass identification of the fragents. The Plastic liall, later to be used with the Plastic Ball, has been added to the setup to measure coincident fast particles scattered inpa the foward cone between $2^{\prime \prime}$ anc 9°. A mul हiplucity array of 80 scintillator paddles provides coincident fast particle counting over the fult solid angle from 9° to 90 .

For the future, the scattering chamber and multiplicity array of scintillators will be removed from the Bevalac to make way for the

Plastic Balt. it is under consideration. however, to move this apparatus to the Feref laboratory where high energy proten mucleus interacions can be studied to augent our work with heavy fons a* the Bevalac.

PLASTIC BALL

The major future profect c : the collaboration with GS1 and the University of Rearburg is the Plistic Ball. Bevaiac research has passed from the stage where one was satisfied to measure one particle from each event to a tage where one woulc lite to measure all the charged particles from each event in orcer to look for the cllective effrcts. The plastic Ball will cover 94^{\prime}; of 4. -ith 815 modules. each consisting of a CaF_{2} aE detector and a plastic scintillator E decector. The two scintillators are observed by the sume photorul. tiplier tube and the signals are separated electronically by taking advantage of treir different decay characteristics. In addition
positive plions will be identiflied by their. ${ }^{\text {. }}$ - . - e* decay as has been done previ-
ously. The s mall formard angle regicn will be covered oy the Plastic mall placeet of enonEtrean. The mall consists of 186 plastic ecinefllators and will tdentify particles by their tige of flight and energ loss.

It is eapected that the first confliguration of the Phastic Fall/ribll system aill be completec before FT 1981 and that the firsi round of eaperlincots using thts facilitity will be in operation during the FY 1 egi-82 period. The first eaperinent for this dpparditus will be d measurement of ecicitation farctioms for charyed particte multiplicities and thetir correlstione. where for each event all the ctarger particles
 -he 3411 as to their mass. Cmarge. energ and sfatterimgingles and is. The targets will be if Ca mid 20 opb and the frojectilies alll be 12_{C} and 40 Ar yith energlies ringing from 100 MeV/n to $1000 \mathrm{MeV} / \mathrm{n}$.

RELATMSTIC HEAVY ION PHYSNCS

E Gansmuge Unvers * of Wriburn West Grortaris
 Vest Geermin,
 Oteansis Curtimea

This group initiated some of the first heavy ion experiments di the Eevatron/Bevalac to explore the phenomenon of projectile fragenent tion, i.e., the break-up of heayy ion beare projectiles from collisions with larget melei. in which the frayments of the inctoent nucleus are charecterized by their nedr-bect velocities and small production angles. The goup's early works were concerned with the systendics of the prajectile fragment production cross sections, the longitudind and transverse mamentum distributfons, total reaction cross sections. fragmentation mechanisms. etc. The imediate results of these early experinents were the concepts of "limiting fragmentation" and "factorization" which were found to be relevant to heavy ion collisions. Use of these concepts led to d great simplification in the ordering of cross section data and are the bases for estimating isotope production cross sections in any target materidi.

Other direct consequences of the projectile fragnentation experiments were [1] the itmediate application of the cross sections to cosmic-ray studies, (2) the realization that the Boltzean distribution for high energy reactions should have the form: $\overline{5}$ exp($-E / k t)$ rather than $E \exp (-E / k T)$, as clearly demonstrated by the Gaussiar.-shaped Tongitudinal momentu distributions of projectile fragments, (3) facterization is strongly violated for high-2 targets, where the Weizsäcker-Williams virtual-photon field induces photodisintegration of the projectile Wia the giant dipale resonance, (4) the "fragmentation model" explains well fragmentation redctions and (5) practical appiscations of the fragmentation mechanism led to the developnent of isotopic beams of 11 for bionedical applications, the development and calibration of cosmic-ray heavy-ion detectors, and recently. projectile fragmentation was enplayed sutcessfully in searches for new neutron-rich isotopes using ${ }^{40_{A r}}$ and ${ }^{48} \mathrm{Ca}$ beams.

ACCOHPLISHMENTS ARD OUTLOOK

The group's Bevalac experiments during this fiscal year have marked the beginning of a series of second-generation experiments on projectile fragmentation. These experimen:s include (') the interaction properties of secondary, tertiary and later genprations of projectile fragments of $2 \mathrm{~A} \mathrm{GeV}{ }^{16} 0$ and ${ }^{56} \mathrm{Fe}^{2}$ beam nuclei, (2) the observation of eribanced
production cross sections for ${ }^{17 \%} 170$ end IG from the friggentation of 180 in high-2 targets, indicative of the photoeacitation ifia the Weizsacker-williams effectl ane the unige decay of the giant resonance states of the 100 projectile nucleus, and (3) the prosuction and identification C : $:$ mem neutron-rich isotopes. Ir addition, the isctepic copositice of cossic ra) heavy nucieli is being investigated in satellite eaperiment supportes by masa. Expanced elscussions of these activfities are presented telow.

Interaction Properties of 160 and Sffe at Bevalac Energies

The interaction properties of relativistic projectile frageents are teing investigated in Cooperition with B. Judet. Mitional Research Council of Canda, and E. Gansswoge. University of Hortwrg. Hest Cerminy. *a dite. stie 1500 eftra-nugledr cascata induced by - 2 h Gey 160 dnd 56 fe beans in nuclear research eleulsfons have been followtat thrcath all generdtions involving fragnents 2,3 fn order to obtain estinates of the reacticn mean-free patis (nfp) of projectile fragnents in she cifferent generations. The resulis of tre experiment show t'rat the afp's cf later generations of fragents are significantly shorter than these of "primary" accelerator beams of the sing charge. an effect that is interpretable uncer the sieplest assumption that a seall (-Gd fraction of the fragrents interact with a off - 2.5 cis, independent of charge of the fragacnt. Such a \quad fo corresponds to a cross section 5-10 times larger then geonetric for the fragbents considered. The extent of these differences between the efp's ef the primary and secontary (and later generation) frageenes cannot be explained vithin the franework of conventional ruclear physics.

This observatio of anonalous fragent nuciei is surprising $:$ that they (1) are produced at beam energies as 1 cm as 2 a Gev in relatively peripheral collisicns and i2) hava iifetimes as long as - i0-11 ses. Of higr. est priority is to pu ae further experimentation on this new effect to elucidate $\langle 1\rangle$ its dependence on the order of generation in the extra-nuclear cascade. (द) the seen-inclusive properties of the collision parameters fc* production and subsequent interaction of the anomalous component, and (3) to investioate the
iftetime of the statris $\}$. A complex of exposures of emulsions to a varifety of Bevalac beas was recently approves by the PAG and carried out in July 1980.

Concurrently other features of relativistic heavy ion fragmentation, already under studyespecially angular correlations of projectile fragments and their multiplicity distributions-are being investigated with consfderably better statistics than have h itherto been possible.

Coulomb Nissociation of Projectile Muclei

The effect of the electronagnetic interaction on the fragentation of 180 beam nuclef at 1.7 A GeV is being finvestigated in collaboration with B.L. Berman (LLWL). The electromagnetic contribution to the single proton and the one- and two-neutron removal fragmentation cross sections have been determined and they agree with calculaticns based on virtual-photon theory, given the minimin fapact parareter deduced from the coulomb dissociation of ${ }^{12}$ C and 160 .

There are $t w o$ overall results of this experiment. First, the process tidatenhances certain fragmentation cross sections on high- 2 targets is clearly identified as c'ectromsinetic in origin. The quantity that is reasured is the integrated virtual-photon-weighted photonuclear dissoriation cross section. Second, because the physics of this process is understood, one can use the relativistic heavy ion technique, developed here to study the photonuclear cross sections ara branch:ig ratios of variety of stable and unstable bean particles, thereby expanding greatly experimental data on photonuclear processes. Such information on unstable nuclei is impossible to obtain by conventional methods.

With the verification of the coulomb-field induced excitation and decay of 180 , an experiment to study the specific reaction $16_{0(r, p)}{ }^{15} \mathrm{~N}$ by use of illss is under preparation. In this experiment, the group pxpects to detect and momentum-analyze both the 15N (and pgssibly any de-excitation rays from the $5^{2} \mathrm{~N}$) and proton in order to deternine the photoexcitation energies of the 15_{0} nucleus to about 1-2 MeV accuracy. The experiment will determine the virtua, photon-weighted cross section for the ${ }^{6} 0(r, p) 15$ preaction and will also verify the role played by excited states of 15 N in the photodissaciation of ${ }^{6} 6_{0}$, the only nucleus for which such informe. tion is available.

The possiblility of extending these measurements to b-unstable nucle* is intriguing, particularly the extension to isobars of the stable oxygen isotopes (mass 16,17 and 18). From both the photonuciear and electron scattering work done on thes anclei, it is clear that isospin considerations play a major role in our understanding of their structure, and their unstable isobars cannot be studied by conventional techniques.

Production of Mevtron-Rich muclices

In this experiment, come in collaboration vith other groups from LBL, Michigan State University, and the U.S. Mival Research Laborztory, the yfelds of neutron-rich prafect ${ }^{\text {lite }}$ fragonts were reasured it 0° for the reagtion of 0.212 A Cey ${ }^{1} \mathrm{Ca}$ fons on an 890 鳥 co^{-2} Be target. The first experimental evidence for the particle stabjlity of, fourtgen mucliges was

 and 4 [, ws ws al so confirmed.

Clearly estoblished by this enperiment is the fact that the fragentation of high energy nuclei is a practical means for the production of maciei far from stability. Observations of such muclef are useful for maling quantitativr tests of mass formiae. for stuales of alicroscopic level structure. and for elucioation of production mechanisus.

Cosalc Ray Henvy Muclef

Abstract

Data fro the LBL (Hectean/Greiner)-Samel Silver Space Sciences Laboratory (K. Wiederbeck) instrument aboard the ISEE-3 spacec-aft has continued to be of high quality llaunch eate hugust 12, 1978) and are heing used to investigate the isotopic compizition of galactic cosaic rays. The spaceflight instruent used for this experiment. which was fully calfbrated with Bevalac beaes, is the outgrouth of cur interrelated cosmic ray and Eevalac researel.

After a one-year accomulation of data. sufficient statistics have been obtained on the rare loge isotope to permit the determination of a definitive cosaic-raly age. Also, fron measurements of cosmic-ray carbon. nitrogen anc oxygen nuclei the group has concluded that the coseic-ray source abundances de not contaig a prge orerabundiance of the rare isotopes $1{ }^{3}$ c, 17_{0} and 180 . The abuncance of 15_{h} is consistert tith a sclar-iike comesiticn. al thow oh d $15 \mathrm{k} / \mathrm{N}$ ratio subsideially gredter that the solar system value of C. 004 , Dermitted by the data. Furthemore. conventional propagation adels adequately cescribe the observed abundances of the CWO isotopes. In contrast to these results, they find for the composition of twein the local interplanetary space the ratios $22 \mathrm{we} / \mathrm{IO}_{\mathrm{ije}}=0.64 \cdot 0.67$ and \$Ne/ $2 \mathrm{O}_{\text {we }}$ < C .30 . These observations are inconsistent with a solar-like comosition. for

The successful ogzra*ion of the LBL-SSL instrument ano, indeed, the ISEE-3 satellite itself, has lec to an extension of this program beyond that originally planned by Wash. The plan here is to continue studies on the isotopic composition of nuclei through F., a progran that will necessarily require cross section information obtained from Sevalac experiments to interpret the data in teras of cosmic-ray sources and propagation Eechanisis.

bevalac reseanch

H 5 Pugh.
L S Scrapeder

A Sandorad CS: Darmstadt
R Stoch. GSI. Darmstadt

TASS

J Geaga
A Koonte
A Treuhafi*
」 W Harris. GSI. Dammstidt. West Germany
J Engelage* Loursiana State University
P N Kırk. Louisiana State Unturasoly
C Ruiz Loursuma State University
G Moche Clermont Ferrand. Fiance

During 1980 this new group was formed from two smaller groups to respond to the common interests of the members in studying nuclear collisfons at Bevalac energies. The research of the group is in two areas, presently associated with the LBL streamer chamber and with the newly-operating Two-Are Spectrometer System (TASS). With the use of both visual and purely electronic techniques a broad range of experiments from exploratory to follom-up of specific predictions are being undertaken. Both the TASS and Streamer Chanber research are conducted in collaboration with outside researchers.

TASS
The Two-Arm Spectrometer System (TASS) consists of two fully rotatable magnets, with accompanying wire chambers ano scintillation hodoscopes for particle detection and identifiration. The first experiment on TASS, cellaborative LBL and i.ouisiana State University effort, was run in July 1980.

The firist experiment (448r), a follow-up of an earlier experiment (351H) on particle production (n^{+}, p, d, t) at 180°, involved measuring the angular and momentum correlations between high energy particles $\left\{\mathrm{T}^{+}, \mathrm{p}, \mathrm{d}\right.$) emitted in the forward and backward hemlspheres. The majority* of the running involved 2.1 wiv proton-carbor interactions. Particle production ar backrard angles is of considerab?e interest since it is either strictly forbidjen (e.g., nucleon scattering) or severely constrained (e.g., pion production, where $\beta_{\text {max }}^{x} \leqslant 300 \mathrm{MeV} / \mathrm{c}$) in "free"
$\mathrm{N}-\mathrm{N}$ collisions. Thus, the observation of correlations between forward and backward particle particle emission provides a tool to probe possible exotic or cooperative production
mechanisms, that is, study the short-range behavior of mucleons in nuclear autter. The data are being analyzec, with particular ettention being given to that portion of the data that is sensitive to the ixcident proton scattering from two or more mucleon correlations in the target nucleus. These correlation studfes will be contfnued in early 1981 with a proton bean, and for comarison. with a heavier bean such as carbon.

Future directions with TASS will involve measurements of ir and correlations to ascertain the contributions of both meson and baryon resonmaces to the pion spectrum observed in heavy-ion collisions. Also correlations between particles enitted at large p-will be studied to probe features of $A-A$ centrial callisions. Fina:1y, we feel that a study of di-lepton production ($e^{+} e^{-}$or $\mu_{\mu} \mu^{-}$) eight be a very sensitive test of thether exotic states of muclear atter are being formed in central collisions. Befing weakly interacting, the leptons will not suffer the large attenuation that pions, nucleons, and to some extent kions experience in traversing the nuclear mediu from tineir creation point in the collision process. The group presently hopes to condect such a search starting early in 1982.

STREAMER CHMBER

This already active group has been formally established as an independent sub-effort this year, both by GSI and LBL, to coincide with an expansion of activity and support. In addition, the groups of K. Holf at Argonne and A. Dacal at the University of Mexico have made major new comithents to this effort. The University of

Arizona group of T. Bowen will be involved in our future program on strange baryon production.

Recent work by the group has included the following experiments.

401H. Study of the miltiplicity of charged pions produced in Ar + KCl central collisions to obtain an estimate of the space and time extent of the source emitting the pions by interferometry techniques. In addition, the negatively charged pion multiplicity excitation function has been obtained for bombarding energies fro 0.4-1.8 GeV/n (see Phys. Rev. Lett. 45, 874 (1980)). This type of data can be used to test various models of central collisions such as hydrody namic, cascade, thermal, ete. The group is also investigating the yields of if hyperons by observing their decays (appearance of "vee" shiped tracks) in the streamer chamber. at 1.8 $\mathrm{GeV} / \mathrm{n}$ the large statistics central collision running has provided a sample of about 60 ''s, enough to extract their production cross-section as well as gross features of their momentum and angular distributions.

400H. Ihis experiment used a 2.1 GeV proton beam with the streamer chamber being triggered on a backward going lor p. This work, wich complements the backward particle production studies on TA.SS, provides a more exclusive look at the production mechanisms responsible for backward particle emission. An early indication from this study is that a large sample (- 50\%A of the events with a backward particle have an associated pion, suggesting that siempe M-M quasi-elastic scattering is not the dominant mechanism at these energies.

In 1981 the group will condyct new experi-
 study stringe parcicli: (particulari, f) production in both the inelastic and central collision modes. There are plans for high statistics run of $50-100 \mathrm{k}$ pictures. Data fro this experiment will also be used to provide a more detailed study of negative pions. An experiment (557H) looking at the reaction eechanisins of - $100 \mathrm{MeV} / \mathrm{n}$ Ar beams on various targets is scheduled for early 1981. During 1981, the group will start progran of upgrading the streamer chamber at LBL that will include the following:
(1) Replacement of the present camera syste by fange intensifier cameras, and testing digital inge processing.
(2) Investigation of the operating characteristics and posssble limitations of the chamber when exposed to beans heavier than Ar, in anticipation of the heavy beans avallable after the Bevalac upgrading.
(3) Determination of the lieit in a single event of multiple tracks that can be successfully studied in the chaber.
(4) Surrounding the chaber with detectors (e.g., scintillators or solid state counters) to improve particle identification. This will cark the begiming of use of the streamer chamber in a hybrid configuration.
(5) Reactivation of the PEPR semi-automatic measuring facility of the University of Heidelberg, and with this to start proton measurement and $\mathbf{:}^{+}$- p discrialnation.
 tc ohe $\%$ the :rincos seata on ine strexter thatiar.

STUDY OF CENTRAL COLLISIGNS

H. Stener and S. Napanma		
0	Chamberlain. LBL-UC Berkeley	E. Moeller. Fiene Unwersitat Betin
H	Hamayakı. INS. Unuersily of Tohyo	S. Schnetret
	Kadota, INS. University of Tokyo	G Shapeo, LBL UC Berketey
R	Lombard. CEN de Saclay	Y. Shuda, ins. University of Tokyo
Y	Mrake. Osaka University	I. Taruhata. INS. Unmersity of Tokyo

The main research objective of this group is to study reaction mechanisms in nuctear collisions at high energies by measuring the spectra of light fragments and their mutual correlations over a wide range of fragment energies and emission angres.

In Experiment 299H the inclusive spectra of pions, protons, deuterors, tritonc, ${ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}$, as well as two-proton correlations and the spectra of light fragments at high event multiplicities, have been measured. These data, combined with the proton-nucleus data measured by the group, have been used to study reactiun mechanisms, especially those responsible for central collisions.

The mean free path of protons inside the nucleus was evaluated from the proton-nucleus data. Composite particie emission turned out to De consistent with the codlescence model from which interaction radii of heavy-ion collisions were estimated. From the observed mean free path and interaction radius one learns that heavy-ion collisions, involve both single nucleon-nucleon collisions and mitiple acleon-rucleon collisions. The fraction of each of these processes was studied in restricted kinematical regions in the two-proton correlation experiment and over a wider kinematical region by analyzing the proton spectra of high-multiplicity events. The group aiso looked for but did not find evidence for shocklike behavior or other startling new features in either the two-particle corrlelation data or the high multiplicity events.

In Experiment 471H kaon production has been measured. The data-taking for $2.1 \mathrm{GeV} / \mathrm{A} \mathrm{Ne}, 2.1$ GeV protons and for 4.8 GeV protons had been completed. Cross sections predicted on the basis
of thereal models exceed the observations by factors of $\mathbf{1 0}$ or more. Futher data analysis is still in progress.

Another experimental progran, which is in the process of taking data, is Experiment 472 H, in wich two-particle correlations are studied in detafl over a wider kinematical region than was possfble fin the previous experiment. A new detector system has been instalied. It consists of (1) a bean counter bias on high-event altilplicity. (2) four sets of time-af-flight counters to cover formard angles. (3) 18 sets of $\triangle E-E$ counter telescopes to cover backward angles. Some data have alreidy been obtained with this system but the mar data run is now scheduled for January 198!.

In Experfment 493H a preliminary study of delayed-particle enssion in heavy-ion collisions will be done by using rf-bunched Bevalac beans. Bean time will be scheduled sonetize in 1981.

In FY 1981 another min activity of the group will be Experiment 512 H , in wich fragments with very large transverse momenta and their mutual correlations will be measured using the HISS magnetic spectrometer. To carry oft these studies they plan to install 5 sets of 3-dimensional miltimire proportional chanbers and 30 sets of time-of-flight and $d E / d x$ detectors. Mast of this hardware construction will be conducted under the Instftute for Nuc lear Study. Universits of Tokyo-LBL Col aboration Program.

In the future the group intencs to undertake an experimental program to learn moie about the production of excited baryonic states and the mutual interactions between these excited baryons, using a large solid-angle device.

Apnaratus for two-particle correlation meastrements in high-energy melear collisions being performed by a collaboration LBL and IWS (Universit! ${\underset{\sim}{n}}^{*}$ Fcyol. On the lejt are S. Kadota, I. Taminata, and in fromt, Y. Xiate. The sthers (Zeft to right) are I. Echard, R. Lorbari, S. Schnetzer, ar.J tise arouf Jealers, S. Nagamiya and H. Steiner.

HEAVY ION STUDIESJPION STUDIES

K. M. Crowe and J. O Rasmussen
J A Bistuflich
R Bossingham
H R Bowman
K A. Frankel
C J Marioff
D. L. Murpy
J. P Sullivan
E. Yua
W A Zap

J A Bisturfict
R Bossingham
H 8 Bowman
K A. Frankel
C J Marioff
J. P Sullivan*

W a Zapc
O. Hasturnoto. INS

Tokyo
M. Koike. INS.

TokyD
J. Peter. Orsay. France
J. Quebert. Unmersity of

Bordeaux. France
P. Truoll SIN, Zurnch

The Berkeley research activities of this group center mainty around the study of charged pions produced in high-energy heavy-ion collisions at the Bevalac. The technical approach involves a large (- 1.5 meter Tong) magnetic spectrometer (JANUS) and combinations of fast scintillators and wire chambers interfaced with computer data systems. Dne major part of their work is the determination of the cross sections (with an exploration of the angular dependence) for pion production in heavy-ion reactions, The existence of both positively and negatively charged pions facilitates determinations of simple coulomb effects and therefore the charge density evolution in hea wy-ion collisions by observation of the $\mathrm{n}^{+} / \mathrm{n}^{-}$ratio as a function of pion energy, bombarding eneroy, and targeiprojectile charges. In fact they have found that pions produced with low energy in the projectile frome have large π / π^{+}ratios due to the Coulomb fields of the fragments. Systematic observations of the sharp anomaty are being made to compare with various models for production. The effects due to esoteric mechanisms, i.e., condensates, etc., are expected to modify the conventional modes, and these phenomena are being explored.

They are also studying the production cross section for 10 w -energy r^{-}and ${ }^{4}$ at 90^{*} in the center of mass, where an enhancement in the ${ }_{n}{ }^{+}$production has been observed. They want to ascertain that this 90° peak does disappear at low energy and to attempt to measure the threshold for its appearance. They have undertaken thick target s tudies in order to evaluate the practicality of heavy-ion production of useful T^{-}beams.

The second major part of their work is an experiment to look at the Hanbury-Brown-Jwiss effect for like charged pions made by heavy-ion collisions in events where many pions are produced. They look at the production of a pair of closely related pions,++ or,-- ot the lab angle 40°. In the past ten years, such exotic phenomena as pion condensation, pionic lasing and quark matter have been prodicted as possible for nuclear matter in a heavy-ion collision. Gyulassy, Koonin and others have pointed out that one possible way to see the effect of pion instablilities in heavy-ion collisions is to look for the correlation of like pions in the situation when the relative monentum is extrapolated to zero.

More quantitatively, one studies the correlation function $c_{\text {a }}, \ldots, k_{\text {m }}$) for \quad pions. For the case of two pions, $C_{p}(k, k)=0$ for coherent sources. Hfghly coherent pions will have a different distribution in relative momenta than that expected for chaotically produced pions, and the range of coherence depends on the size of the interaction region. This technique of pion interferometry has been employed to seesure the size and lifetice of the Pfon source formed in the collision of $1.8 \mathrm{Gev} / \mathrm{A}$ HeAr + KCI. The values obtained provide useful constraints on models detailing the pion production mechanisa. The Bose-Einstein enhancement for low relative momenter was observed.

Future work that this group intends to pursue will utilize the experimental techniques and apparatus that they have built. The availability of Bevalac beans of the heavier elemnts (AU, Pb, or U) will call for new pion spectroscopic measurements to search for evidence of highly compressed nuclear matter effects, such as pion condensation, quark matter, etc. The $\mathrm{I}^{+} / \mathrm{m}^{-}$ratios will again be exploited for heavier beans to measure the dynamic charge evolution in relativistic heavyion collisions.

Studies of several rew areas of research are being consideres for work to exploit the Bevalac. Among them are the following topics: measurement of deuteron ground state to excited state (virtual) ratio as a probe of spin correlations associated with pion condensation, and the study of strange particle production.

Kamae and Fujita, Jaffe, Kertan, and Chin have suggested that the system of six quarks including two strange quarks may be exceptionally stable with binding energy of order 80 MeV or greater. The reduction in decay channels may produce significantly different objects, including tightly bound di-lanhda, and hyperstrange quark matter.

As a first step in searching for exotic strange fragments the group plans to develop a mul ti purpose K^{+}trigger. Such a trigger might be used in a streamer chamber collaboration to study strange particle production. The multi~ purpose x^{+}trigger may also find application in JANUS or HISS spectrometer experinents.

After the completion of the scheduled upgrading of the Bevalac to accelerate essentially any element, they plan to undertake new type of experiment, the coherent resonance Coulomb excitation of the 14 keV transition (of wide usage in Mossbauer effect) in a 57 fe beam. This would be collaboration with Y. 0korokoy of the U.S.S.R. and C. Hoak of Oak Ridge.

They fintend to use partially stripped 56fe beams at lower Bevalac energies to study atomic processes. These are of considerable interest in their own right (see earlier Bevalac studfes of Raisbeck, Crawford, et al.) and also lay the

groundwork for the special single-crystal resonance excitation experiment with $57_{F e}$ beves mentioned in the preceding paragraph.

Various mebers of the group are involved in collworative work centered at other laboratorfes: plon or mon experfatents at Luipf: theoretical studfes on muon fission with collaborators in China; theoretical nuclear studies by the Classical Lifit S-Matrix Hethod with collaborators at the Universfty of Temessee, grazil, and Kumat: and hybrid plastic and entision studies of relativistic heivy fons with collaborators in Magoya and Cairo.
 opectroreter uaed for wortion Ever:rorstry experiments at ine bevalac. Hotdin ve o? ti,
 physies aseistant woriking itt tion Crose Rasmaser Groun.

NUCLEUS-NUCLEUS COLLSIONS

S. P. Ahlen	J. Musser*
E. K. Shurk	M. Salamon*
M. Solar	M. Tincknell*
J. D. Stevenson	S. Lewn'
G. Tarle	K. Martin*
M. Budiansky ${ }^{*}$	J. Martinis'
K. Kimeshura*	H. Nelson ${ }^{\text {t }}$
T. Liss*	J. Zelinsty'

All of this group's offices and equipant are located in Birge Hall on the UCB cappus, which makes it easy to attract new students, but restricts to same extent interaction with Nuclear Science Division staff. Current research falis into the following three principal areas:

1. Relativistic heavy ion research (DOE support):
a. Production of heavy fragee ts, including exotic neutron-rich nuclides near the dripline.
b. Production of high-energy gamma rays.
c. Search for Lee-Hick matter.
d. High-order effects in electrodynamics of slowing heary ions.
e. Response of various detectors to heavy ions, and development of new detectors.
f. Hadron calorimetry for nucleus-mucleus collisions.
2. Search for highly ionizing particles in $e^{+} e^{-}$annihilation (PEP-2 experiment, supported by NSF):
3. Cosmic ray astrophysics (HASA support):
a. Relative abundances of isotopes of very heavy cosmic rays.
b. Abundances of cosmic rays in the vicinity of uranjum and beyond.
c. Design of future, large-area detectors for long-duration space exposures.
d. Study of highly ionizing partictes with
anomously long interaction lengths at mountain altitudes.

Drs. Ahlen, Stevenson, and Tarle play a major role in concefying new experiments and in trainfing students. There is a great deal of overlap anong the various projects. Detectors devised to solve one problea frequently make possible part or all of the salution of another prob?en. A result obtained with pi'stic detictors may stimulate the construction of an elfactronic syster to do a second-generation eiperiment. Expertise gained in resolving isotopes in a hallon-borne cosific ray enperiment my be used at PEP or the next-generation neutron-rich mucilde experiment. In all these projects, both post-graduate and pre-graduate students play an active part.

Among the experiments planned for the next two years at the Bevalac are a high-energy gana ray experiment with 10^{2} higher collecting power: detection of many new nuclides delineating the neutron dripline; hadron calorinetry with large solid angle; search for Lee-Hick metter in U-U collisions; measurement of higher-order electrodynamics in dE/dx and Cerenkov radiction by ions up to V ; and determinatic: of the response of plastic track detectors to relativistic ions up to u (the latter being of crucial finportance for the proof that coseic rays cone from freshly synthesized supernova debrist.

[^2]
NUCLEAR THEORY

NK Glendernung
J Botuta
M Grulassy
Y Karant
S. K Kauffmann
C. M. Ko
G. Manizouranis
W D Mvets
J. Randrup
M. Redlich
H Ruck

J Botuta
M Grulassy
Karant
C. M. Ko
G. Manizouranis

Myers
M. Fedich

H Ruck

W - Swajtechs
S Gohtmbann. MPI. Hemelberta West Germany
H Flocard. CNRS. Orsay tramie
J Knoll GSI. Damenstimit Wesi Germany
A Lumbioso. CEN Saclaty Fiatue
C Noach. Universaty or Euthem Wersi Gerntiny

There are three general themes in the research of the theory group. One of these works close to the boundary between nuclear. particle and astrophysics, and includes the study of hadronic matter at extreme densities and the search for pliase transitions. The next is an investigation of the properties of ordinary nuclei treated as a system of relativistic interacting fields. The third concerns nuclear collisions from the Caulomb barrier to Bevalac energies.

'ADRONIC AND QUARK MATTER

Several lines of investigation are being pursued. The first, appropriate to an intermediate range of densities from normal up to a few times normel density, employs a relativistic Lagrangian field theory to describe nuclear matter. In this density range, the nuclear forces can be regarded as arising through the exchange of the mesons having various spin and isospin quantum members. This theory has been formulated and solved for symetric nuclear matter with particular emphasis on the possible phase transition to the so called pion condensed state. For the first time, this much discussed state of matter has been shown to be compatible with the constraints imposed on the therry by the bulk properties of normal nuclei. the constraints severely limit the magnitude of the condesate energy, al though the amplitude of the spin-isospin density wave to which it corresponds attains almost its maximum possible value. This work is being extended to finite temperature and preliminary work suggests two very interesting phenomena. Although of minor importance at zero temperature, the pion condensate creates a density isomer above a critical temperature of a few MeY. Secondly the pressure in the condensed state is not isotropic, but is greater along the direction of the spin-isospin lattice. This is very encouraging for it implies that dense matter in which a condensate has been induced would disassemble, in bulk, preferentially along this direction. Asynmetric matter or neutron star matter is currently being formulated. The rho meson has to be introduced because of the asymmetry, and accounts in part for the symmetry energy. Technically, this is a considerably more complicated problem.

The other research in this catergory investigates quantum chromodynamics in a one dimen-
sional model. The success of this project so far is that the theory has been demonstrated to lead to quark confinement. Currently a quark matter state of the theory is being sought.

RELATIVISTIC FIEL THEORY OF MICLEI

This research, like that descritied above, is a relativistic interacting field theory. In this case the field equations are solved for finite muclei. The theory has so far been demonstrated to account successfully for saturation, the spin-orbit interaction, single-particle levels, charge distributions, l-hyper muclei, the level density paraseter for finite meclei, and the energy dependence of the optical potential. The theary also makes a prediction for the anti-mucleon nucleus optical potential, which turns out to have a greater range than the muclear optical potential. The spin-orbit interaction is introduced phenomenologically in the usuat Schroedinger description of nuclear physics but in this theory arises naturally as a relativistic effect. Particular attention is being focused on whether there are other muclear properties that specifically require relativity.

nuclear collisions froh the coulohb barrier to beyalac energies

A large number and diversity of projects are underway in this area, including the development a new type of dynamic large-scale shape evolutions (with applications to the production of super-heavy nucleil; progress toward the unification of transport-type theories of nuclear collisions through the use of parameterless "proximity" expressions for the transport coefficients (analogous to the proxinity force and proxiaity friction); the detailed study of the time-dependence of the charge-equilibration degree of freedom in fission and nucleus-nucleus collisions; and the refinement and application of TOHF methods to (resonant) nuclear collisions. In the high energy region, the research includes the study of the role of non-equilibrated dynamics via cascade simulation, the analysis of \boldsymbol{F}^{-}* correlations and pp correlations; theory of the composite fragnent production, dynamics of pion and kaon production; role of final state interactions such as Coulomb. These topics are described in more detail.

Futher progress has been adde fn develaping and applying a new macroscopic theory of nurlear dynamics in which the nuclear shape evolution is largely dominated by dissipation (of the "onebody" type). A global survey of different types of muc leus-nucleus reactions that follow from this theory is under way. In addition to criterid for compound-nucleus and deep-inelastic processes a new type of reaction emerges 1 rom such studies, probably to be identified with fast-fission or quasi-fission processes suggested by recent experiments. The theory has also been applied to estinating the optimu reactions for producing super-heavy elements.

A theory has been developed fer the effect of nucleon transfer on the dynamics of the dinuclear complex formed in a damped nuclear collision. Some hitherto puzzling features of the experimental data appear now to be well understood on this basis. This theory, together with the above mentioned shape dunamics, form a useful reference model for the dynanical evolution of a damped nuclear collision and its numberical implementation has already proved successful in the data analysis. The validity of the Fokker-Planck treatment of transport in nuclear collisions is being explored by performing a direct dynamical sinulation of the individual nucleon transfers.

Various studies reldting to the role of giant modes in the dinuclear complex have been carried aut. For damped collisions, the charge asymmetry has been treated as a collective quantal mode analogous to the Giant Dipole mode in spherical nuclei. In this connection, separate studies have been made of the inclusfion of damping effects into the time-dependent Schrodinger equation. The quantal treatment of the collective charge-asymmetry mode has been incorporated into the dynamical collision model mentioned above, allosing reasonably realistic calculations to be nade. For the case of fission, the dependence of the charge disuersian on the dynamical trajectory has been examined. A separate study has show that isovector modes of higher multipolarity $c a n$ be important for the charge distribution in damped collisions. Progress on the charge distribution in static nuclei has been made within the Droplet Model.

The currerit low-energy program also includes studies within the Hartree-Fock approximation. The possibility of exciting high-lying modes in nuclear collisions has been studied in TDHF. A search for periodie TDHF solutions has been carried out: a general numerical code has been developed and applied to monopole vibritions of magic nuclei. The use of TDHF codes witi an imaginary time for solving the static problems has also been explered.

The theoretical pursuit of problems relating to the Bevalac has been continued over a broad
front. The dynaibics of relativistic nuclear collisions has been studied within the framework of conventional mittiple-collision cascade models. These studies are providing useful insight into the equilibration process and permit the test of various idealized treetments. Dae current praject is the study of proton-protion correlations. A special aspect here is whether critical scattering phenomen of ght anifest themselves in the correlation function via the dependence of the elementary cross section on the nuclear mediun. These studies are to be extended to pion-proton correlations is well.

Extensive theoretical developent on r^{--} correlations has been co-pleted. The goal here is to test for coherent pion fields prodeced in nuclear collisions. iturerical calculations of the role of Couloct find state interactions have been corpleted. The recent ada on - - - correlations are now being analyzed in licht of these calculations.

A first calculation of haon production in relativistic nuclear collisions has been eade in a mitiple-collision cascade model. Kans are produced in relatively violent mucleon-nuclion collisions (above 1.6 GeV) and have a small interaction cross section so that once produced they are likely to leave the interaction zone rather unperturbed. Kaons are therettore particularly suitable tor probing the early collirion stage where the highest otgree of compre ision and excitation occurs. Futher work on kzon production is anticipated when the analysis if recent experiment is completed.

Recent interest has focused on the empirical square lam of deuteron production. A new line of attack on the problem based n a a dicrocanonical ensemble approach has begun that will complement the previour? y developed matrocanonical chemical-thermal equilibrium models.

The effect of coulonb interactions on the $\mathrm{T}^{-} \boldsymbol{\beta}^{+}$and n/p ratio has been calculated. In addition the question of ;" focusing has been analyzed. The simple analytical formulas that have been drived compliment the mumerical studies at other laboratories. The hope in this time of research is to use the well understood coulomb interactions to gain insight into the dynamics cf nuclear collisions.

A current topic under investigation is why there are so few pions produced in nucle's collisions. Statistical models systematically predict twice the observed number of pions. Yet temperatures predicted are correct. There is an energy balance problem to be solved. Does this mean more transpare-ay in nuclear collisions than we expect?

HEAVY ION SPECTROMETER SYSTEM (IHSSI CHOUP A

```
Mf B.ortis
& (7.*)0,0)
A Pfrrimisil
P [retartamm
```



```
    l at wratory
```

HiSS Group A was formed this year to spearhead the experimental program at the Heavy lon Spectrometer System. The mijor effort in 1960 has been to direct construction of HISS, develop and coordinate the first five experiments to be performed at HISS, and to oversee design and construction of the Phas? : detector system to be used in these experiments.

The HISS facility will be on the dir by the end of FY 1080 . The numerous dttendant difficulties in getting this large project maving have been overcome in this year. The group had, been responsible for overseeing the constru_cion of the dipole, experimental housing and bead lines. They have been directly responsible for the computer system and beam line diagnostics. The design and construction of the Phase ! detectors for H!SS has been a cooperative effort between the gruups that will perform the first five HISS experiments: the HISS Group has played d major role in forming and encouraging this collaboration. The thirty-five people involved consist oi iwent, five physicists, 50°, outside users. and represent eight institutions.

The first five experiments on MisS will be performed betw men October 1980 and June 1981. It is hoped 2 . at it will be possible to perfore these experiments fotaling 750 haurs of levalac time) before the shutdown for the Bevalac improvement project. These five experiments could not be done without HISS; all require the large magnetic volume and solid ang'e tha: HISS provides to make multi-particle neasu ents. These long-awaited mul tipartica! measurements will provide the irfortation necessary to probe the underlying assumptiors of presently available interaction models and bring us closer to our understanding of the reaction mechanism and its time evolution.

During FY 1980 this group has also performed numerous service, for the laboratory. They have provided the management for the Division effort to devillop general purpose software for Bevalac users. In t^{\prime} is area a system has been put together at low cost from borrowed pieces and is proving itself indispensable to a growing number of experimenters. They assisted the Accelerator Division and many Bevalac users in the nopot. ation of new beam lines and in the detemandion of the characteristics of these lines. Thry also support an active outside user program and several times a year special runs for short exposures (emulsions, plastics, etc.l and MASA calibrations are handled by this group on the 0^{-} spectrometer in Beam 40.

H Ceavetorct U C Spuce Srupars Labomatory
C McPaxland U C Spuce ©equices Laturatory

In this group's emperimental progra during FY 1900 . dati collection and analysis mas colpleted on Bevalat experiment 350 H . This experiment is a detaliledextaination of the photodisintegration of $1 \varepsilon_{0}$ in the photon fields of heary targets. Earliter experiments had indicated that there is in enhacement proportional to l^{2} of the target in the nucleon removal mich could be attributed to Coulonb effects. Ey using 10_{0} this assumption couid be strongly verified because of precise knowledge of the photon-induced disintegrations
 Preliminiry analysis indeed shours and entianced rate for ${ }^{18} 0(7,27) 160$ which gives the proper fincrease with target charge. This work was done in collaboration with H. Heckman (LEL) and B. Berman (LLML).

In another experiment this year the advantage of using relativistic heary ions to investigate the limits of stability of nuclear matter was clearly demonstratec by the discovery of 14 new isotapes within the space of a few hours. The experitent was quite simple; it invalved fragpenting ${ }^{48} \mathrm{C} a$, then dispersing and indentifying the fragments. (This work was done in collaboration with the Scott-Symons group of LBL]. Fragment identification was made using the solis state detection technique wich the group developed for artellite use.

In FY 1981 the Pilase i HISS experiments be: in. The HISS Group will carry out three of the five experiments that will be completed within this period. These experiments each exploit the same basic method: the examination of exclusive or near-exclusive final states of the projectile fragents.

The first experiment at HISS will oe an examination of the exclusive states of 12_{C} fregnentation (exp. 513H). The reictivistic energies provide tinematic focusing of projectile fragents, allowing measurfment of branching ratios to states totaling - 40 of the nuclear fragmentation chamels with the relatively small HISS Phase J detectors. On an event-by-event basis the hypothesized excitation stage of the reaction will be reconstructed. This stage, unlike the evaporation stage, has properties such as excitation energy, mass ratios and momentum distributions that are clearly predicted by the arailable models and will allow us for the first time to distinguish between the various reaction models.

This powerful analysis method will also be
applied at HISS to the fragmentation of ${ }^{56}$ Fe in experiment 516H, were the primary gosi will be a search for abnormal states. Possible signatures for such states are (1) structure in the invariant mass spectrum, (2) correlations in fragment emission, (3) planer emission, of fragments, and (4) short-lived states, 111 of which can be investigoted for the first time with HISS.

An additional goal of this group is to provide HISS users with the documentation and advice necessary to allow efficient use of the facility. They will be supplementing the available software tools and keeping the commonuse detector arrays in operating condition. They also expect to continue to cooperate with
the Acceleration Division to ensure samen operation of the experiemtal progrin as well as contimuing support for outside users (Wash) in Bean 40.

In 1981 a fraction of their time will be spent in designing and prototyping the Phase II detector systea for HISS. In particular. the schedule calls for eitensive prototype tests of the emergy flow calorimeter in FY 1901. Experience gained in the Phase I experiments will futher support an optivula design for the Phase Il detectors. The tiving is eacellent as the shutdow for the Bevalac vacuuv feprovempnt project will allow the to ensure that the Phase II detectors are suitable for the high charge ayaflable fro the upgraded Bevalac.

NiSCLEAR ELECTROMOSS

F 5 Goulding

F Gon	D fetua
E Hatict	H Sommen
D Landis	J Wation
P Luke	Y Wong
J Heng	

This group specializes in the developent of detectors and associated electronics for nuclear sciente. It is also involved in the development of improved datd acquisition and reduction systems based on Hod Comp IV and Classic computer systems.

The bulk of the detector work centers on semiconductor detectars (Doth silicon and germanium). At the base of the germanium detector work is the high-purity germaniu miterials program. This program has made unique contributions to the development of high-purity germanium for radiation detectors and to the understanding of purification processes and of the role of defects in germanium. Of particular recent inportance has been the discovery of the role of hydrogen and its association with crystal defects and with inpurities such is carbon and silicon. The extreme purity of the germanium (10l?. provides a unique enviroment for squdies of such interactions and the results achieved are of considerable interest in solar cell procesaing where hydrogen can play an importanc part in the electrical behavior of amorphous layers.

Abstract

Another focus of the germaniul detector program is on studies of radiation dmage and arnealing of damige in high-purity detectors. This work is of particular importance in the application of milti-detector telescopes for long-range particle identification and spectroscopy. In these experiments the detectors are severely danaged, and the practicality of the method rests on the abilicy to conveniently repair the damage (preferably in situ). This type of experiment also demands reliable detectors, exhibiting oniy very thin dead layers in both contacts. An anorphous germanima coating has been developed to provide surface protection for such detectors, and it has denonstrated its ability to provide surface protection. The group has also developed thin ion-implanted contacts (both p and n type) and is continuing work to improve these contacts.

An outgrowth of this research and development program has been the provision of specialized germanium detectors and germanium detector telescopes that are the basis for experiments in several laboratories in the United States and Europe. Far example, much of the work at the University of Indiana Cyclotron uses multidetector telescopes supplied by this group.

The silicon detector program covers the complete range of detectors but has recently
focused on very larye erea detectors (up to 7 co dianeter) of unfforn thickness (- 10μ in 5 -] and with rery thin dend layers. These detectors are used at the bevalic, in space experiments Eeasuring the isotopic composition of cosidc rays and in many laboratories in the United States and Europe. The work has recently been eupanded to producing position-sensitive versions of these large are detectors, and work is continaing in this direction.

A significant interest is developing in the fabrication of large position-sensitive silicon detector arrays for 4t detection of the products of high-energy particle reactions. The resold. tion of gas detectors is 1 ifmited to >100 un while that of seificonductor detectors can. in principle, be each salalter. This improvetent in resolution can be reflected in a smiler 4. detector assembly and a large reduction in the cost of the wole detector systen. Our detector capability will be used in the future to explore some of the possiblities in this area.

The work on signil processing for detectors is substantialiy sinller now than it mas few years ago. The group has been responstile in the past for meny of the processing rethods and hardeare design nom in conm use. Mort contimues on special processing techniques such as gated-integrators to improve resolution at highcounting raies. Work on puised-reset preandifiers for high-rate system and particularly for wort on pulsed machines is also presently being carried out. The group expects to be morking in the next two years on the application of CMOS and WOS switching devices to simplify and improve the analogfdigital part of our data acquisition systens. This work will include development of malog titiplexers, very fast ADCs and cheap multichannel ADCs.

The present digital work is aimed min? y toward the developaent of a highly interactive data sorting system that uses specialiped hardware associated with Mod Comp Classic computer system. It is expected that this work will ressit in a throughput for typical experimental data that is between 10 and 100 times that of conventional systems of similar cost. The savings arise minly from the prowision of multiple programable sorting and arithetic modules and from complex hardware to handle randon demands on menory and processors in an efficient way. This progra is expected to continue intensively for the next three years with demonstrations of portions of the system in mid-1981 and corpletion of the whole system in 1982 or 1983.

The group 3 ?:0 provides ach of the specialized maintenance and design effort for experiments in the Huclear Science Bivision. Considerable time is spent in consultation with
experimentiol groups about nex experiments or proposed instruents, the proposed crystal or liguid-xenon oull being an example that will involve much design effort by the group.

R B Fueston:

C An Ledmet
$v S$ Shutcy

Abstract

This group compiles and evaluates nuclear structure and decay data and develops comilation methodology. The majority of effort is directed to the evaluation of experimental data, based on knowledge of the experimental methods, of the experimenters themselves, and of the relationships and constraints inposed upon the data by nuclear theory and systematics. Considerable effort is also devoted to the selection and prescitation of data in formats most convenient for users.

The Isotopes Project coordinates its muctear data evaluation effort with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains $A=$ 146-152 and $A=163-194$; all evaluated data are entered into the internacional [valuated Huclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets.

During the past year the evaluation of nuclear-structure data for all nuclei with mass $A=163$ has been published.' The mass $\lambda=191$ evluation has been reviewed and accepted for publication, and the mass $A=193$ evaluation has been submitted for review. Evaluations of four additional mass chains $(A=188,189,190$, and 192) are nearing completion. Those for masses $A=169,174,185,181,168,176$ and 171 will be started in 1981.

In addition to the evaluation effort, the I sotopes Project will produce, on behalf of the U.S. Nuclea" Data Network (NDH), a "Radiodctivity Handbook" for applied users. The purpose of the handbook is to provide a cerrizilation of recommended decay data that is detailed enough tor use in sophisticated applitations, but that is organized clearly so as to be usable in simple routine applications. The handbook will be produced at four-year intervals, begiming in 1982. Recommended decay data will be taken from the current version of ENSDF, with no further updating. Additional calculations and evaluation will be done to provide recommended data on atomic radiations and conversion electrons. Each mass chain will be referenced to the most recent evaluation in Nuclear Data Shects, as the source for futher details and references to the original papers.

Copies of a "Hanrhook Sample" 2 illustrating the co.,tents and format proposed by the group were distributed to the other data centers for their comatents and approval. Additional copies (and a tho-page questionnaire requesting specific comments on the proposed format) were also sent to about 5000 members of several professional societies, including the nuclear
divisions of both the American Physical Society and the American Chemical Society and four divisions of the American Huclear Society. A further mailing of about 900 was handied by the Hational Nuclear Data Center (BNL). Additional suggestions and coments on the format were obtained frow the IREA Advisory Group on Nuclear Structure and Decay Data during its Vienna meeting in April 1980.

Sirce puilication of the Table of 1 sotopes ${ }^{3}$ in 1978, continued development of data handing teinniques has been directed to support the orijectives of the Mon, espec ally the handoook rroduction and the evaluation effort.

Work has begun on the computer codes needed to procuc. the handbook; this involves retrieval of the destict data from ERSDF and their presentation in the final pubifation formats. The first step involves endification of the data in ENSOF so thet each decay data set wili contain the "best" values for pray and level properties, independent of the decay parent. Monuniformities and holes in the EMSDF data are being corrected as work proceeds. The existing level-scheme graph'cs prograla (used for the Table of Isotopes) is being modified to handle data in ENSDF formats.

Programing tools to aid the evaluation effort have also been developed. The physics analysis prograes, written by the Nuclear Datd Project (ORML) for datd in EMSDF formats, have been adapted and extended into an interactive package for use on the CDC-7600 computer. The resulting pack progras enables imediate calculation of quantities such as internal conversion coefficients, energy fits, and log ft values and level feedings in radioactive decay. It also permits manipulation of the data to give, for example, energy-ordered y-ray listings and to allow on-line editing. As a further aid in the evaluation effort, prograns trave been developed for the TI-59 calculator to permit desk-top calculation of $\log \mathrm{ft}$ valses, rotational band paraneters, and Weisskopf photon half-lives.

The seventh edition of the Table of Isotopes, published in 1978, continues to be the most up-to-date general reference source available for nuclear data. Sales of the saventh edition through January 1980 total 5101 copies (2371 clothbound and 2730 paperback). The Nuclear Wallet Cards, 4 produced in 1979 by the I sotopes Project on behal f of the NON, have proved to be very popular; about 6500 copies have been distributed.

The Isotopes Project also compiles and publishes every 3-4 years the Table of Nuclear

Moments, the only such table maintained on a continuiag basis. The most recent version was published is an appendix to the Table of Isotopes. Nark will begin in 1981 on the fifth edition. Like previous editions it will be a comprehensive compilatir of uclear magnetic and cuadrupole moments. Net features wili be the inclusion of "adupted" or "recompended" values, the addition of values for higher-order nuclear moments and the inclusjon of the magnitudes of such non-uniform corrections as those due to the Knight shift.

During the past year the database prepared for the Index of the Table of Isotopes was modified and expanded to produce the Table of Nuclides. 5 In addition, the Table of Isotopes level-scheme file has been restructured into a searchable database. It is the most un-to-date file of nuclear structure data aiti san readily be used for horizontal compilations and systematic studies of nuclear properties.

The Project also maintains a library containing comprehensive data files and the major nuclear physics journals.

References

1. J. M. Dairiki, E. Brome, and Y. S. Shirley, Huc1. Data Sheets 29, 653 (1980).
2. E. Brame, J. M. Dairiki, C. R. Lederer and V. S. Shirley, LEL-97111, 126 (1980).
3. Table of Isotof , 7th edition: C. M. Lederer ind V. S. Shirley, editors; E. Brome, J. M. Dairikf, and R. E. Doebler, principal authors; A. A. Shihab-E1din, L. J. Jardine, J. K. Tuli, and A. 8. Buyrn, authors. John Wiley and Sons: Inc., New Yorik (1978).
4. V. S. Shirley, C. M. Lederer, E. Brome, J. M. Dairiki, R. E, Doebler, A. A. Shihab-El din, L. J. Jardine, J. K. Tuli, A. B. Buyrn, J. M. H. Chong, and D. P. Kreitz, Nuclear Mallet Cards, produced by the Isotopes Project on behal f of the U. S. Nuclear Data Network (1979).
5. Y. S. Shirley and C. M. Lederer, Table of Huclides, LBL-10436 (1980). [Prepared for publication in the book Nuclear and Radiochenistry (3ra edicion); Gerhart Friedlander, Joseph W. Kemedy, Edward 5. Macias, and Julfan Halcolm Miller, John Hiley and Sons. Inc.. New York [1980].]
Y. Eitis-AOcvazt, V. Shirle: and ?. Firestone at the Isotages 7rofent corouter sersete.

SUPERHILAC RESEARCH

The SuperHILAC is one of two LBL accelerators (the other being the Bevalac) designated as national facilities. This means that a substantial portion of the research, more than 50 i, is performed by outside users. At present, this research can be divided into five major categories: nuclear reactions t59' nuclear structure (14), exotic nuclei (ifd, atomic physics (15\% x , and biomedicine (I^{\prime}). The first three of these categories correspond to research sponsored by the Nuclear Science Division, while the latter two are sponsored mainly by other LBL divisions.

Research in muclear reactions, the most heavily used area, primarily involves study of the deeply inelastic scattering (DIS) process. The questions that are being addressed are: What are the mechanisms ard time scales for the equilibration of virious nuclear cegrees of freedom in DIS' Whac are the magnftuce and alignment of the angular momentum transferred to the target-like and projectile-like fragment in DIS? What are the time scales and mechanisms for the emission of light charged particles (protons, alphas, ett.) and neutrons? In addition, the field of heavy ion induced fusion reactions is also under in estigation. The questions to be answered here are related to limitations to the fusion process and details of the competition between complete and incomplete fus ion.

The nuclear structure program at the SuperHILAC involves mainly the study of Coulomb excitation reactions. Because of our unique (in the U.S.) ability to produce beans of very heavy projectiles. such as ${ }^{136} \mathrm{xe},{ }^{165} \mathrm{Ho}$, and ${ }^{20} \mathrm{P}_{\mathrm{pb}}$, these experiments are well suited to the SuperHILAC. By Coulomb-exciting nuclei up to very high spin states, a great deal can be learned about $B(E 2)$ values of collective excitations. Other areas under study involve the use of heavy beams to measure g-factors of high spin states with transient field techniques. This work populates high-spin states via Pa "inverse" reaction such as ${ }^{28}$ Sil ${ }^{134} \mathrm{Xe}, 4 \mathrm{n}$) 158 Er. The high recoil velocity in such a reaction greatly enhances the transient field effect and also allows the implantation of the recoil ions into a non-perturbing medium in times as short as 0.5 psec .

Investigation of exotic nuclei involyes two different experimental techniques. The first technique utilizes radiochemical iavestigations of various heavy ion reaction products. Heavy targets are irradiated with high intensity heavy beams from the SuperHILAC and then chemically separated and counted offline. Although the ul timate goal of the program is to synthesize
superheavy elements, exploration of the reaction mechanisms of heavy project?les with heavy targets is also emphasized, since it will lead to better knowledge about the stability of very heavy muclei and provide important tests of nuclear structure models in this mass region. A second technique, suitable for halfwives as short as 1 usec, involves use of a spectrometar called SASSY (Simil Angle Separator System).
.he device consists of a gas-filled dipole agnet, a quadrupole doublet frer refocusing the recoil products, and two avalancine estectors for time-of-flight easurements. Because of the very different agnetic rigidities of bean particles rad recoil ions as they pass through the spectrjaeter, it is possible to collect recoil products at 0^{*} while suppressing the beam particles by as mich as 10^{-12}. Various trget-prodectile combinations such as $248_{\text {Cm }}$ * ${ }^{48} \mathrm{C}$ a and ${ }^{238} \mathrm{y}+{ }^{76} \mathrm{Ge}$ are being looked at, since these are predicted theoretically to lead to formation of compound nuclef near the superteavy island of stability.

In the next few years, there are plans to expand our experiental facilities in several areas. For one thing, a new area for gama-ray experiments is plamed. This new bear line, in the North Cave area, will relieve some of the overcrowding in the present Coulex area and also provide space for any user with a large experimental apparatus (which is difficult to acconodate in any of the existing caves). A second planned expansion, already mell underway, involves construction of an on-line isotope separator for the study of exotic nuclef. The device will employ an ion source to ionize recoil atoms and an extraction system to accelerate these ions into a 180° spectrometer. (Details may be found in the article by d.M. Hitschke in this annual report.) It is hoped that this device will become an outside user facility and a tape transport system is being planned that will allow low backgrourd beta- and gama-spectroscopy of the mass-separsted recoil products. A new scattering chamber will be added for the nuclear reaction program along with various special detection systens such as large-area position sensitive avalanche detectors (for fast timing) and one or more largearea total energy ionization chanbers (suchi as a Bragg curve spectrometer, designed at LBL, or a Sann chamber, designed in Germany). These new devices will allow the nuclear reaction groups the ability to take full advantage of the proposed SuperHILAC beam buncher, now under development by the LBL Accelerator and Fusion Research Division, which is expected to provide beam bunches as narrow as $200-300 \mathrm{psec}$ FWHM in selected target areas.

Start of an experimental setup in the SupenHILAC usen's 30-Enon soattrir: chamber. Shom are D. Lagan (left) from Carnegie-ileiion vniversit. wi: M. Zismat, LBL SupenHILAC users liaison. The device mountei ineitit ti: chamber is a detector arm that allows measurements to be made out in" tie reaction plane.

88 INCH CYCLOTRON OPERATIONS

R. A. Gough and D. J. Clark

D. Elo
L. Glasgow
A. Lam
P. von Possen

The 88 Inch Cyciotron, operated by the Nuclear Science Division, provides a large fraction of the beam time that is used by LBL scientists. Variable energy, high resolution beams from hydrogen through argon are produced and used for studies of nuclear structure and nuclear reaction mechanisms. The 88 Inch Cyciotron is also the laboratory's major source of medical isotopes and its only source of polarized proton and deuteron beams.

The large energy constant, K, recently increased to 160 , permits the acceleration of ions as heavy as ${ }^{40} \mathrm{Ar}$ to energies useful for nuclear physics. The lighter heavy ions reach energies up to $30 \mathrm{MeV} / \mathrm{A}$. The cyclotron and its almost identical twin at Texas ABM remafn the only sources in the world of variable energy heavy ions in the important region around and above $15 \mathrm{MeV} / \mathrm{A}$ where low-energy nuclear phenomena disappear very suddenly.

These beams, as well as the polarized proton beams, are extensively used by outside groups from many institutions in the U.S. and abroad. In recent years, about 25% of the operating time has been taken up bu outside users, almost as many hours per year as they receive at SuperHILAC. Proposals are made by letter and are informally reviewed by two outside consultants. Approval can be made within twe weeks and the expa.: nent can be scheduled within two weeks jinereafter. This economical and jlexible system is much appreciated by the users.

The past year has seen substantial progress in the completion of accelerator improvement projects, especially by the raising of the main magnetic field to $K=160$ and by the first successful operation of the external PIG heavy ion source. These and other improvements are described in the report that follows.

The rapid increase in electric power rates in 1980 has had an impact upon present and future operation by diverting funds that were needed for engineering and technical support. A) though the impact is not immediately apparent, in the future it will seriously slow the completion of ongoing improvement projects and the design stages of new ones. A serious problem for the future will be the allocation of resources between present operations and future development.

OPERATIONS

In the year ending June 30, 1980, the cyc lotron was scheduled for 20 eight-hour shifts per week for experiments in nuclear science, isotope production and machine development. One
eight-hour period per week was scheduled for routine mintenance. In addition there were five weeks of shutdown for general mintenance. machine improvements and because of budgetary restrictions. Accelerator time distribution is show in Table 1 . The list of bews available is shom in Table 2, while Fig. 1 shows the particle distribution of light and heavy ion beans over the past 12 years. The ratio of heavy fon to light ion beas tive has stablized at $2: 1$ in the last several years.

As previously mentioned, the cyciotron magnetic field was increased to increase the energy or K value from 140 to 160 . A design study mas done of the min and triming coils to determine that they would tolerate the increased mechanical forces and dissipate the aditional heat generated by the greater current. The main coll power supply was revised and a $25 \mathrm{Y}, 3250$ A booster pom- supply was added ifi late August 1979. The electrical cables from the power supplies to the magnet were replaced with higher current cables. The whole system wis checked out in Spring 1980. The current has been run up to 3250 A for an extended period with all electrical components working within the design ratings. i new regulator was designed and instalied to inprove regulation and reliabflity. Bean custs of acceleration and extraction were done using maip magnet currents up to 3230 A. Beams of $\mathrm{C}^{4+}, \mathrm{C}^{5+}$ and 0^{4+} were extracted af K values ranging up to approximately 160 for c^{4+}. Some changes had to be made in the calculated trim coil settings to obtain beam extraction for the highest energy C^{4+} beams due to slight errors in extrapolation of measured magnetic fields to these higher levels.

A 750 kVA capcitor bank and its associated switching circuitry were installed to bring the full load power factor frow 60% to about 89% This modification has cut down about 15° "' of reactive current in the load center and has reduced the heating of the transformer considerably.

A new 4648 rf power tube was installed in January 1980. A smaller diameter water separator was used in the anode cooling circuit. This modification has greatly reduced the number of flushings required. New regulators have been installed to replace the old tube type regulators in the defelector supplies and as a result of this improvenent the ac ripple has been reduced by a factor of at least 50 and the reliability of the system has been greatly improved.

The polarized ion-source weak-field and intermediate-field oscillators have been
modified so that they can be remotely turned on or off by a control signal from the counting area. A regulator circuit has also been added to the screen power supply to stablize the 331 MHz or 468 MHz power output. To stabilize the position of the polarized beam on target, a set of low inductance steering magnets and a set of high current driving amplifiers have been designed and installed in the vault for Cave 5 beam centering feedback control. This system has greatly stablized the beam on target in spite of fluctuations on the deflector and dee vol tages.

An order was placed for a new ionizer for the polarized ion source. Installation will be made early in 1981 when it is anticipated that the factor of 10 increase in the intensity of polarized beams will be obtained.

A11 components of the new external PIG ion source and beam line have been completed, installed and aligned. The system has been used to inject heavy ions into the cyclotron and external accelerated beams have been obtained. Futher testing is required to maximize the overall efficiency from source to extracted bean. A new cryopumping unit has been purchased for this system and will be installed when prelininary testing is complete.

Design work is continuing on a passive magnetic deflection channel that will provide radial focusing for all beams and greater deflection strength for the higher K, high charge/mass beams; it will replace the third element in the present electrostatic deflector. Studies have included magnetic design of the channel and orbit tracking of phase space ellipses through the channel. This is a cooperative project with the Cyclotron Institute at Texas AsM University, where Don May is carrying out the orbit tracking studies. Mechanical design of the channel will begin later in 1980.

A second cryopump on the cyc lotron accoleration chamber was connected to its compressor, given a thorough leak check and is now in the final stages of debugging. The unit will provide an additional 10,000 liters per second pumping speed in the dee tank. Fyll operation is expected later in 1980.

A project was begun i: 1976 to systematize the p:ediction of cyciotron set-up parameters for any requested new ion and energy and provide them on a single sheet to the cyclotron opera-
tors. It was completed this year by adding the capability to store values of the currents in the 17 trim coils. The task of entering values for these colls for some 400 reference beans up to $K=160$ will be completed in 1990. This was faplemented by the recent acquisition of a cual floppy disk drive for the PET computer.

Planning is underway for an advanced heavy ion source for the cyclotron. The ggal is to provide useful bear intesities oi $109-1010$ particles/sec on target with energies of 2-3 tifmes those of present heavy ion bears with wasses between nitrogen and xenon at values up to $40 \mathrm{HeV} / \mathrm{u}$ for the lower masses. The tro leading candidates for sources are the Electron Beaf Ion Source (EBIS) and the Electron Cyc10tron Resonance (ECR) source. The EBIS uses a well collimated electron beam on a solenoid axis In high vacye to produce very high charge states (Ar18+, Kr^{3+}). It is a pulsed device whose duty factor can be 10-50\%. The ECR source uses a microwave-generated plasmath magnetic mirror confinement to produce high charge states. It gives higher intensities at the lower charge states than EBIS, but lower intensities at the highest charge states. Dur choice is the EBIS because its higher charge states provide a greater energy range for the cyc lotron.

Research and development to build a test bench EBIS was begun in January 1980, under the direction of the plasma 3 roup in the LBL Accelerator Division. The goal is to reproduce the high electron bean densities observed by the Orsay group. This will require careful alignment of the electron gum and magnet system, and high vacule technology. To use existing hardware as far as possible, it will use an electron gun on loan from the Cyclotron Institute, Texas AsH University. A nomal conducting coil system, using three 16 -inch inside diameter coils, will be used to generate a 10 kG field on the axis of the 50 cm long source. A series of fron "homogenizing rings" inside the coils will provide a straight magnetic axis. A vacum chamber and drift tube system will each be independently adjustable in position transverse to the dxis. A time-offlight mass analyzer will be designed and built for the system by R. Kenefick of Texas AaM. This test bench will give valuable infomation on the requirenents for high charge state production, which will be used to design the final ource to be instailed on the axial injection system of the cyclotron.

Takle 1. 88 Inch Cyclotron time distribution including total calendar time exisept holidays (7/79-6/60).

	Hours	Percent of total
Operating		
Experimental Program	6404	75.1
Beam Development	390	4.6
Subtotal	6794	79.7
Maintenance		
Routine	552	6.5
Scheduled Shutdown	974	11.4
Unscheduled Shutdom	208	2.4
Subtotal	1734	20.3
	8528	100.0

Fig. 1.

Table 2. 88 Inch Cyclotron bein IIst, July 1900.

$10 n$	$\begin{aligned} & \text { Energya) } \\ & (\operatorname{MeV}) \end{aligned}$	[xi. Beam intensity (euab)	: n	$\begin{gathered} \text { (nergyot } \\ \text { (Mey) } \end{gathered}$	$\begin{aligned} & \text { fili Beat } \\ & \text { ntensity } \\ & \text { ieuabl } \end{aligned}$
p	0.2-55	$100-20$	$19^{5} 3^{\circ}$	30-66	5
p (polarized)	$6-55$	0.3	19F4*	66-118	10
d	0.5-65	$100-20$	19F5*	118-198	?
	65-70	~ 0.5			
d (polarized)	$10-70$	0.3	$20 \mathrm{me}{ }^{\text {3 }}$	$28-63$	210
			$20 \mathrm{mes}{ }^{\text {a }}$.	63-112	10
${ }_{3}{ }^{3} \mathrm{He}^{1+}$ (0)	$2-47$	>20	20 me 5 *	112-175	;
${ }_{4}^{3} \mathrm{He}{ }^{\text {e }}$ 2 (d)	4-140	100- 10	$20 \mathrm{Me}^{6}$ 。	115-752	1
$4^{4} \mathrm{He}^{2+}$	3-130	$100 \cdot 10$	$20 \mathrm{ne}{ }^{\text {7 }}$	252-343	0.01
	130-140		$20 \mathrm{He} \mathrm{S}^{\circ}$	343 - 448	~ 50 epm
$6 \mathrm{li}{ }^{1+}$ (d)				102.159 159.229	>3
$6 \mathrm{Ll} 2^{*}$ (d)	$23-93$	5	$22 \mathrm{He}^{6}$ \|ot	159-229	1
${ }_{7}^{6} \mathrm{Li}^{3+}$ (0)	$93-195$	0.5	${ }^{24} \mathrm{Mg}^{4}{ }^{\text {* }}$		
	$20-80$ $30-180$	S.	$2{ }^{24} \mathrm{Rg}^{\text {a }}$	$93-146$	0.7
$\mathrm{li}^{\text {+ }}$	$30-180$	0.5		50 49	?
${ }^{9} 8 \mathrm{e}^{2+}$	\therefore - 62	5	$26 \mathrm{Mg}{ }^{\text {a }}$ (d)		?
$9^{9} \mathrm{Be}^{3+}$	$62-140$ 140	2.05	${ }^{285} 515^{\circ}$	$80-125$	1
${ }^{9} 8 \mathrm{e}^{4}$	140-249	0.05		125-190	0.3
$10_{B}{ }^{2+}$ (${ }^{\text {a }}$	14 - 56	10	2857°	180-245	0.05
${ }^{10} \mathrm{~B}^{3}{ }^{\text {a }}$ (d)	56-126	50	$325^{\circ}{ }^{\circ}$?
${ }^{10} 0^{4} 5^{4}$ (d)	126-224	0.3	325°	158-? 14	0.7
$1{ }^{10} \mathrm{~B}^{5}{ }^{+}$(d)	224-320	0.001			
1183**	$12-51$ 51	10	${ }^{35} 5 \mathrm{Cl}^{\prime \prime}$	184* 196	0.5
${ }^{11} \mathrm{~B}^{4}{ }^{+}$	115-204	0.3	35 Cl 37 16°	$196-256$ $95-136$	0.75 0.3
12\% ${ }^{*}$	$12-47$	>20	${ }^{33} \mathrm{Cl}{ }^{\prime *}$	136-185	0.08
$12{ }^{3}$	47-105	30			
$12 c^{4}$ *	105-212	5 - . 4	$40{ }^{\text {ar }}$,	3.4. 14	9.5
1205*	187-306	0801.00^{3}	$40_{\text {ar }}{ }^{\text {a }}$,	, 4 :, ,	2
126°	29? - 384	$10^{5} \mathrm{p} / \mathrm{sec}$	40 Ars,	17\% - 78	
${ }^{13} \mathrm{C}^{3}$ (d)	43 - 97	≥ 20		225-280	-
$14 \mathrm{~N}^{2}$ *	10-40	-	${ }^{40}{ }_{\text {ar }}$? $90-350$	- ioser
$14 \mathrm{MJ}^{*}$	$40-90$	15	${ }^{40} \mathrm{Ca}^{6}{ }^{\text {a }}$		
$14 \mathrm{Na}^{4}$	$90-160$	15	${ }^{4} 0 \mathrm{Ca}{ }^{\text {a }}$	176-17\%	
$14 \mathrm{Na}^{\text {c }}$	160-250	6^{2}			1.
	250-360	$10^{66} \mathrm{p} / \mathrm{sec}$	${ }^{56} \mathrm{Fe}^{\text {: }}$ -	$135_{5} \cdot 250$	Brerr
$14{ }^{1} \mathrm{~N}^{+}{ }^{+}$	360-448	100 p/sec	fer	10.2.00	orirr
$15 \mathrm{~N}^{4}$ (d)	34-150	15	$\begin{aligned} & { }^{53} \mathrm{c}_{4} 9^{\circ} \\ & 63 \mathrm{c} \\ & 60^{\circ} 0^{*} \end{aligned}$	$142-130$ $130-220$	$5 \mathrm{mg}$
1601°	9	1	${ }^{63} \mathrm{Cu}^{\text {¢ }}$,	22? - 264	=.103pisar
$1602{ }^{\text {a }}$	9 - 35	>5			
$1603{ }^{*}$	35-79	29		1.6. 6	¢ 6.00 :
$160^{4}{ }^{\text {a }}$	$79-155$	$30-. ?$	${ }^{34} \mathrm{Kr} \mathrm{r}^{8}$	32-101	, 8.54
$1605{ }^{16}$	$140-219$ $219-315$	5		197-135	S.13]
$160{ }^{*}$	315-429	$10^{7} \mathrm{p} / \mathrm{sec}$	$34_{k r 11}{ }^{\text {r }}$	$137-163$ $167-208$	
$160{ }^{\circ}{ }^{+}$	429 - 512	$0 . ?$ p/sec			
[803 ${ }^{+}$(d)	31-70	- 20	197A以! ${ }^{\text {c }}$	10? - 120	
$180^{4}+$ (d)	70-124	>10	197 Au ${ }^{14 *}$	1?0-:30	0.10 sec
$180{ }^{5+}$ (d)	124-194	5			

BEVALAC OPERATIONS AND RESEARCH

H C Pugh and G O Wmatald

The Bevalac, operated by the Accelerator and Fusion Research Division's Accelerator Operations Grosp hesded by R.J. Force, provides beans of heavy tons from $50 \mathrm{MeV} / \mathrm{am}$ to $2.1 \mathrm{GeV} / \mathrm{an}$ and is available approximately 2000 hours per year for nuclear scfence experiments

Currently active experiments in muclear science involve outside users f-om 20 U.S. institutions and from 17 foreign groups. Major international Collaborations exist with GSI Darmstadt, U. Germany: INS Tokyo, Jepan; and UNAM, Hexico. In addition there is a collaborative program with the Kurchatov Institute. U.S.S.R.

Experiments are approved by a Program Advisory Comittee of the following peapie: H. Feshbach, MIT, Chariman: S. Koonin, Caltech: J.P. Schiffer, AHL; R. Stock, GSI, W. Germatiy; W.A. Henzel, LBL: T. Yamazaki, University of Tokayo, Japan; and ex officio members.

A Users' Association Executive Comittee conducts monthly telephone conferences with local management. Huclear science represontatives on the committee dre R.T. Poe, UC Riverside, chaiman-elect, and K.L. Wolf. AML. In conjuction with the annual meeting of the Users' Association, in February 1980, three wor'asiops were held, on "Experinents Detecting ifigh Energy Photans or Electrons," "Low Energy Experiments," and "Experiments Using Visual Techniques:" as well as discussions concerning progress on HISS and planning for vENUS.

In addition to the annual Users' Association meeting and the semiannual meetings of the Program I ivisory Committee, it has become a tradition to hold a major workshop every two years, such as the Ist Workshop on UltraRelativistic Nuclear Collisions, held in 1979, and the 5th High Energy Heavy Ion Sumer Study, planned for May 18-22, 1931. These worksheps are plann d in conjunction with GSI Darastadt, who have recently hosted similar workshops in the alternate years.

The major facilities at the Bevalac include the Streamer Chamber, the Zero-Degree Spectrometer (Yeam 40), the Low Energy Beam Line, and several megnetic spectroneter systems in Beam 30. Almost ready to operate are the GSI Plastic Ball/Wall system involving over 1000 different detector telescopes and the HISS system, which consists of a 2 meter diameter, 1 meter gap superconducting spectrometer with a 3 tesla
field. Both of these systems are expected to take dais during the 1981 running period.

An electronics nool is maintained for users. The Beralac Softmere Group. led by Chuck HicPariand and Everett Harvey, coordinates standardized emperimental softmare.

The past year has been orie of continced developant of new beas lines and rearranyement of the experimental area in preparation for HISS. The Low Energy Bear life was used for several experiments and will be further improved in 1980 under the direction of David Hendrie. lmprovenents will incluce installation of a large scatter chamer on lodn from the Univers cy of Maryland. In Bear 30 the Two-Armed Magnetic Spectroneter systet (TASS) was installed and used for experfionts. Mactine developent included operation with a siggle motor-generator to save electric pomer and testing a "meztanine" mode of operation that should permit prime beas sharing between biomedical and nuclear science users ouring the daytime shifts. A radipactive the beam was developed and used for biomedical work.

Upgrading of the Bevalac to provide fincense beams of heavier particles (uraniun capability) is now undermy and is erpected to be completed during a shutdown for the latter half of 1981 .

The resedrch program during the past yedr has be characterized by a close interaction between theory and experiment. The striking - $^{*} \boldsymbol{f}^{*}$ ratio near projetile velocity drew attenticn to the strong effects of the nuciear iharge under some circustarkes. ihe large $n-p$ ratio observed in inclusive speitre presented a puzzle until it was recognized that the iight particle stable nuclei emitted in coilisions have low isospin and thus deplete the supply of neutrons and protons about equally, magnifying the n-p ratio awong those mucleons lefe unoound. The streager chamber provided a quantity of systematic data on multipion production. wile "bounce-off" me? tiparticle correlation tay be the first clear hydrodynasical effect te the identified at the Bevalac.

All of the above observations are characterized by a close relationstiv to theoretical calculations and provide critical tests for some theories. On the other hand, the obse vation of anomalous behavior of proje: tile fragment mean free paths is a major puzzle and will require futher experimental work to provide clues for its interpretation.

VEMUS PLANNHNG

H G Pugh and T Elroll

A committee was formed in Decenber 1979, under the present co-chairmanship of the above, with the following (condensed) charge: "VEWUS is an acronym which describes a proposed major accelerator for the Laboratory. While the nale: is associated with d specific design, the parameters of the accelerator have not been frozen and will depend on the scientific program to be executed with it ... the VERUS Planning Committee will conduct further study of the options available, in consul tation with the full spectrum of potential users of such an accelerator ..." The membership, consisting origindlly of the co-chairmen and Miklos Gyulassy, Lee Schroeder, James Symons, Christoph Leeman and Frank Selph, with Joseph Cerny, Hermann Grunder. and Norman Glendensing as ex officio members, was subsequently expanded to include Bernard Harvey and Jorgen Randrup.

ACTIVITIES

A circular requesting suggestions, comments. and help was widely circulated and responses were received from over 100 people from outside the Laboratory. Interest was expressed in research programs related to atomic physics, astrophysics, and biomedicine. Taking into account these responses and after an intensive reexamination of the proposed scientific program the committee arrived at some preliminary conclusions, which have ben presented at a variety of meetings inside and outside the Laboratory.

The proposal basically covers three regions of heavy fon physics. One is the domain of colliding beams, for which the design energy of $20 \mathrm{GeV} / a m u$ against $20 \mathrm{GeV} / \mathrm{amu}$ is reconfirmed by the committee as being close to an ideal choice. Jnteractions in this energy region will be dominated by particle creation and will require quantum chromadynamics for their description. Secondly, the maximum energy of 20 GeV/amu for the fixed target capability is considered necessary to explore the full range of possibilities of nuclear phase transitions
involving rearrangements of the quarks present in the target andfor projectile as opposed to conglomerates of created quarks. In addition the region up to 20 celfany covers range of interesting particle creation thresholds. Thirdly, the lower end of the fixed-target range, below a fer hundred Mey/au, is the natural region for evolution of progrias at the 88 Inch Cyclotron and the SuperHilac. The comititee considered that in view of the variety of the interesting phenomen to be anticipated in the region of $10-40 \mathrm{MeV} / \mathrm{am}$ and the presence in that region ce significant energies such as the Fermi eneray and the energy corresponding to the relocity of sound in muclear matter, it would be desirable to extend the larest energy of the accelerator dom to 10 KeVfang if possible.

On the technical side. the confittee examined some of the practical desirabilities for the accelerator. The flexibility of the design for mul tiple beams and independent variation of the was much appreciated, and it was concluded that three independent fixed-target beins should be sialtaneously operable, and three intersection regions for the colliding bean capability. However, the fact that the colliding bears and fined target operation are mutually exclusive in this design is a disadvantage for the low energy segment of the research prograr:. To address this prablem, and also the above mentioned tesirability of extending the energy range downards, futher designs are being investigated, including boosters, subsidiary rings, and the existing L8L accelerators in a variety of configurations. Current objectives are listed in Table 1.

PROSPECTS

In July-August 1979 the DOE/NSF Haclear Science Advisory Comittee, chaired by Professor Herman Feshbach, held a major long range planning study and projected national construction and operating budgets for the coming decade. The Advisory Committee stated that $\$ 100$ million

Table 1. Current objectives for VENUS design.

Fixed target node	ID MeV/amu to 20 GeV/amu independently variable in ion, energy, duty factor, and intensity
Colliding beam mode	2 Gey/amu to 20 GeY/amu (1 TeV/amu fixed target equivalentl: 3 intersection regions.
Proton capability	50 GeV fixed target or colliding beam (5 TeY/amu fixed target equivalent)

projects such as VENUS, or a kaon-antiproton facility, would require funds supplemental to those projected for the national base progran. and would have to "be justified separately as required by important national goals, requiring special constructon allocations, and ... substantial (additional) operating costs." The Advisory Copinittee recommended that research and development be conducted on such facilities. noting, "It is essential in all these cases that the RaD is not confined only to accelerator and other technical developments. A serious inves-
tigation into the scientific case ... must be counted Scientific feasibility, thit is, the demonstration that one will be able to obtain results, is equally essential."

These considerations form the basis of current LBL planing for VEWUS. He look foward to adoption by the government of the Mdvisory Comittee's Long Range Plan and to the opportunfity to compete for the supplementary construction funds that would be needed.

PART 2. PROGRESS REPORTS

I. EXPERIMENTAL RESEARCH

A. NUCLEAR STRUCTURE

NUCLEI AT HHGH ANGULAR MOMNENTUM*

R M Damond and F S Siephens

Nuclei have sume of the classical properties of liquid drops, as attested by the success of the liquid-drop model, but are finite quantal systems. This imposes certain restrictions on their rotation. In addition, there is a competition between the single-particle motion and a collective rotation to carry angular momentum most efficiently. This interplay tecomes increasingly important at high spin where a compromise between the two limiting situations appears to occur. That is, at lower spins we may otserve in well-deformed nuclei relatively pure collective rotation that follows the geometrical relationships very well, or we may find in nuclei near closed shells that the shell model does an excellent job in explaining states up to several MeV in excitation and carrying tens of units of angular monentum. But at spins above $-40 n$, nuc lei seem to have sone characteristics from each of these liniting cases, and it is of interest to ungiarstand this compromise.

An important nuclear parameter whose behavior it is necessary to understand is the moment of inertia. The cranking-model calculations of Inglis give the rigid-body value, which is 2-3 times too large for the groundstates of real nuclei. Now it is understood that this is mainly due to the neglect of the pairing correlations. With an increase in spin. these correlations are reduced (Coriolis antipairingl, leading to a rise in the moment of inertia towards the rigid-cody value. The suddent increase in the moment of inertia observed in some rare-earth nuclei between spins 14-20 h (backbending) in 1971 is now recognized to be due usually to the crossing of the ground band by an excited band with two unpaired but
aligned high-j particles. The aligned singleparticle angular momentum allows the collective spin of this bind to be reduced over that of the ground tand for the same total angular momentuen. in fact, this staring of angular eorentum between the collective and sincle-particle motions appears to be the most efficient way of carrying angular momentum in deformed muclei above spins of around 20 A ; at still higher spin, bands with still more al jned particles appear to becone lowest in energy. for scme nuclei, theory predicts that there should te a very mathed backhend above spin $50-60 \mathrm{~h}$ caused partly by the rapid stretching of nuclei at these spins, as suggested by the liquid-drop modei , and partly hy the large shell effect at such spins favoring a prolate nucleus with axes in the ratio of 2:1.

A new technique for studying high-spin states involves determining the v-ray energy correlations obtained with pairs of p-ray cetectors. The resulting y-y correlation diagrams or contour plots, after subtraction of the uncorrelated events (adinly Comptonscattered events in one or both detectors) show structure extending sell above transition energies of 1 KeV. In well-deforapd nuclei there is a valley along the diagonal. corresponaing to the fact that in a pure rotational nucleus each transition has a different energy and soin. In rare-earth nuclei the first backband shows up clearly as a bricge across the valley de $500-600 \mathrm{kel}$, and there is evidence for a second one at higher energy, and then more bridges at si'll higher energies. It is clear that a whole new spectroscepy of high-spin states is developing.

Fondensed from Ann. Rev. Part. Sci. 37. us (:3in.

CORRELATION STUDIES OF ROTATIONAL BEHAVIOR AT VERY HIGH ANGULAR MOMENTUM*

M A. Deteplanque. F. S. Stephens. O Andersen. J D Garrets, B Herskend

R. M Diamond. C Ellegaard. D. B Fossan. D L. Hills. H Kluge. M Neiman. C Poulet. S Shih.
and R S Simon

Nuc lear structure studies, based on the analysis of r-rays, are limited at the present time to spins below - 70 h in the mass region around $A=160$, since for higher spins the cont pound nucleus fission prior to p-ray emission. For the deformed rare earth region, detailed spectroscopic measurements extend now
up to a spin 30 h , above which the r-ray spectrum can no longer be resolved. Many measurements have shown that this: "continuum" r-ray spectrum consists of an exponentially decreasing high-energy tail composed of statistical r-rays which cool the nucleus toward the yrast line, and a lower-energy bump extending up to 1.5-1.B

MeV depending on the nucleus. This burep is formed by "yrast-like" r-rays which deexcite the nucleus through many pathways roughly parallel to the yrast line, and which remove the angular momentum of the system. This yrast-like cascade contains nuciear structure information, and in deformed nuclei, it is dominated by stretched E2 rotational transitions, whose energies are correlated. The correlations can be studied in some detail, even in an unresolved spectrun, by a method which isolates correlated events from an uncorrelated tackground. Although these events cannot isolate individual rotational sands, they are sensitive to certain features, in particular the single-particle angularmomentum alignment, shared by many bands.

The measurement was performed at he 88 Inch Cyclotron. It consisted essentially of $r-r$ coincidences, but four Ge(Li) detectors were used simultaneously, which gave six times the coincidence rate of one pair.

We have studied the deexcitation of the ${ }^{164} \mathrm{Er}$ compound system from the reaction of $124 \mathrm{Sn}_{\mathrm{n}}+40_{\mathrm{Ar}}$ at $185 \mathrm{MeV}{ }^{40} \mathrm{Ar}$ energy - A background of "uncorrelatod" events was subtracted from the $+-\gamma$ matrix of 40 million events.

A contour plot of the correlated twodimensional coincidence spectrum is shown in Fio. 1. It is symmetric about the 45° diagonal because the two indcpendent halves of the $\Delta \mathrm{N}_{\mathrm{i}} \mathrm{j}$ matrix have been added to improve the statistics. In the low-energy region lup to $E \approx 1$ MeV), there is an absence of counts along the diagonal, which produces a valley. This valley reflects the absence of r-ray transitions having the same energy, which is a property of a rotational sand with a constant moment-ofinertia. Fig. 1 shows that the valley can be

Fig. 1. Correlated r-ray spectrum. The contour levels are statistically significant up to ~ 1.2 MeV along the diagonal.
(XBL 803-481)
seen up to 1250 keV , although it is largely filled beyond about 1 KeV and even completely in some locations.

The width of this valley measures a collective" monent-of-inertia,.$\%$, and can be combined with Ieff to determine the aligned angular momentum, j_{a} - Previous measurements of moment-of-inertia at high spins have always measured seff and found it to be near the rigid-body value. It appears that sc mit be significantly lower if $\mathbf{j a}_{\mathrm{a}}$ is large, which sirply reflects the fact that single particles cannot contribute fully both to the aligned angular moneitum and to the collective moment-of-inertia. Data of the present type are not easy to interpret quantitatively along this line, but seè generally consistent with these ideas.

The observed filling of the valley in the high energy region (>1 Mev) probably implies many band crossings. It is clear from Fig. 1 that there are irregularities in the valley ("bridges") and also along the ridges ("gaps"). There are only a limited numer of these, at least discernable within the present statistics. In the lower spin region, the bridges correspolic in known band crossings. This has been establisher iro the detailed spectroscopic studies of many nuclei in this region. These band crossings occur at specific rotational frequencies ($K_{\omega}=E_{Y} / 2$) which depend, in a given nucleus, only on which orbitals are crossing. A given orbital crossing can occur ia many bands differing in the rest of the configuration, and thus produce a feature in the correlation spectrul even though one camot resolve individual bands for example, the known first backbend in the 160 Er region (at he $\approx 0.3 \mathrm{MeV}$) corresponds to the crossing of a 2 -quasiparticle $\mathrm{f}_{13 / 2}$ neutron state with the vacuum (ground band), and the second backbend (at $h_{\omega} \approx 0.41$ Rev) involves a 2 -quasi-particle $h_{11 / 2}$ proton configuration crossing the vaculum. Both of these crossings can be involved in many bands and produce readily observable bridges in Fig. 1 at $E_{1}=0.6$ and 0.82 MeV , respectively.

In the high energy region (where pairing correlations probably no longer exist) one expects crossings with large angular momenture transfer due to only a few strongly aligned configurations based on the high-j orbitals. If these configurations are filled at high rotational frequencies, they will experience a band crossing $\{$ as the frequency decreases during the deexcitation of the nucleus) and empty at a characteristics orbital-crossing frequency irrespective of the rest of the state configuration. We propose that these characteristic frequencies are related to those where the few bridges and gaps are observed in Fig. 1.

Footnute and References

*Condensed from Phys. Rev. Lett. 45, 172 (1980).

1. O. Andersen, J. D. Garrett, G. B. Hagemann, B. Herskind, D. L. Hillis, and L. L. Riedinger, Phys. Rev. Lett. 43, 687 \{1979\}.

LINEAR POLARIZATION AND ANGULLAR CORRELATION OF CONTAUUUM r-RAYS

H. Hubel. * R. M. Diamond. F. S. Stephens, B. Herskind.' and R. Bavers'

Thie investigation of very high spin states ($1 \approx 30 . .70$) involves studies of continum r-ray spectra emitted in heavy-ion compound-nucleus reactions. If sufficient angular momentum is brought into the nucleus there exists a broad structure in the spectra around - 1.2 MeV (the "yrast bump") which is mainly conposed of highly collective stretched E2 transitions. At higher energies where the spectrum falls exponentially witt energy (the statistical cascade) the radia-
tion is probably mainly stretched and nonstretched El. At energies below the E2-bump there appears a dipole comonent which varies in intensity depending on the properties of the n=rticular system. An important question is whether this dipole contribution to the continu spectrin is mainly electric or agnetic in character. If ml it probably originates in collective phenomena, whereas EI's would likely indicate statistical processes.

Fig. 1. (a) Multipole spectra for stretched quadrupole and dipole components from angular correlation measurements.
(b) Linear polarization asymmetry double ratios $A=\frac{N \perp\left(90^{\circ}\right)}{N I I\left(90^{\circ}\right)}, \frac{N \perp\left(0^{\circ}\right)}{\operatorname{Nif}\left(0^{\circ}\right)}$ from measurements at $\theta=90^{\circ}$ and 0° to the beam direction (direct experimental points). (c) Linear polarization asymméry double ratios A after unfolding (\quad), and calculations for pure stretched M1, E1, and E2 (solid curves) an」 for a mixture of the E2 and MI components of the decay (dashed curve) with the $L=2$ and $L=1$ amounts taken from the upper part of the figure.
(XBL 807-10661)

We have measured the angular correlation and the lifear polarization of continuum r-rays in
 done with 170 MeV 40 Ar beans from the LBL 88 lnch Cyclotron. The experimental results of the linear polarization experiment are shown in the center part of Fig. 1. For each 50 keV interval the double ratio $A=\frac{N \perp\left(90^{\circ}\right)}{\operatorname{Ni}\left(90^{\circ}\right)} / \frac{N \perp\left(0^{\circ}\right)}{N\left(0^{\circ}\right)}$ of the vertical ($\mathrm{N}+$) and horizontal ($\mathrm{N}=$) coincidence counting rates measured at $\theta=90^{\circ}$ and 0° to the team is plotted.

For a number of reasons we have restricted the further analysis to stretched dipole and E2 transitions, and have considered pure transitions only; the results from the angular correlation experiments are shown in the upper port of Fig. 1. Below - 1.5 MeV , the spectrum: of the $164 \mathrm{Er}^{\star}$ compound system consists of $80-90 \%$ quadrupole transitions. For the ${ }^{50} \mathbf{G q *}^{*}$ compound system there is - 80°; quadrupole radiation in the bump at 1.5 MeV ; at lower energies, however, the dipole transitions become more prominent, even dominant ($85^{\prime} \mathrm{i} \mathbf{L}=1$ at 0.5 $\mathrm{HeV})$. The amounts of stretched dipole and quadrupole radiation were then used in the analysis of the linear polarization experiments to determine the electric or magnetic character of the dipole component. The result is that it appears to be predominantly Ml between 1.6 and 0.5 MeV , and likely at still lower energies. The dashed curves in the lower part of Fig. 2 are the linear polarization asym- metry ratios
calculated under the assumption of 100°; MI for the dioole component in the spectrum.

Our angular corrleation and linear polarization data, as well as those of Vivien et at. 1 and Trautman et al ., ${ }^{2}$ show that the main features of the investigated cases are thefollowing: (1) The doninant fraction -between 50 re(for nuclei near closed shells) and 80\% for deformed nuclei -- of the radiation consists of stretched E2 transitions. This component reaches $90^{\prime} \mathrm{c}$ in the region of the E2 burp for deformed nuclei.
(2) The remining part of the radiation at iow energies and up to the E2 bump is camessed cf stretched MI transitions in good rotors, and is preduminatly Nl with some El transitions adnixed in nuclei near closed shell.

Footnotes and References

*Institute für Strahlen- und Kernphysik, Universität Bonn, D-5300 Bonn.

The Kiels Bohr Institute, Copenhagen, Denmark

1. J.P. Vivien, Y. Schulz, F.A. Beck, E. Bozek, T. Byrski, G. Gehringer, and J.C. Merdinger, Phys. Letters 85B, 325 (1979).
2. H. Trautmann, J.F. Sharpey-Schafer, H.R. Andrews, B. Haas, D. Hausser, P. Taras, and D. Kard, Phys. Rev. Letters 43, 991 (1979).

THE DIPOLE COMPONENT in THE YRAST CASCADE AND THE MULTIPLICITY OF STATISTICAL y RAYS*

S H Sie. K M. Diamond. J. O. Newton and J R Leigh

It had been observed that for $E_{Y} \leqslant 0.4 \mathrm{MeV}$, the nature of the continuum r rays in a number of deformed nuclei changed from being predominantly stretched E2 to predominantly dipole. The principal objective of the present measurements was to further study this dipole component. The reactions used were $149_{\mathrm{Sm}_{\mathrm{m}}}\left(16_{0,3 \mathrm{n}}\right)^{162} \mathrm{Yb}, 150_{\mathrm{Sm}}$ $\left.(160,4 n)^{163} \mathrm{Yb}, 154 \mathrm{Sm}^{16^{1}} 0,4 n\right)^{166_{\mathrm{Yb}}}, 122_{\mathrm{s}}\left(16_{0}\right.$
 beams from the 14 UD Pelietron at the AMU. The r rays were detected in a movable $7.6 \times 7.6 \mathrm{~cm}$ $\mathrm{NaI}(\mathrm{TI})$ or Ge(Li) detector in coincidence with a fixed Ge(Li) detector. The movable detectors were set alternately at 0° and 90° with respect to the beam direction. The unfolded continuum r-ray spectra are shown in Fig. 1. In the summed spectra $\left(0^{\circ}+2 \times 90^{\circ}\right)$, which are essentially proportional to the isotropic spectra, the main features of the continuum cascades can be readily seen, namely, the exponentially falling statistical tail and the yrast bump.

The number of r rays with $E_{Y}>1.9 \mathrm{MeV}$ is related to the number of statistical r rays,
though the actual relationship lepends on the shape of the spectrum below 1.9 MeV . This quantity is shown plotted against 培 in Fig. 2, where it is apparent that there is a correlation between \bar{M}_{T} and $\bar{M}(>1.9)$; for each reaction the latter quantity increases with \bar{M}_{T}.

The quantity $2\left[N\left(E_{Y}\right) 0^{\circ}-N\left(E_{Y}\right) 90^{\circ}\right]$ is proportional to the value of A_{2} and is shown for the various cases in Fig. 1. Data obtained at the higher bombarding energy show in all cases a pronaunced bump with positive A_{2}, attributable to the yrast cascade. For the strongly deformed $\mathrm{Y} D$ nuclei this bump has A_{2} 9.25, in accordance with the value expected for the stretched E2 transitions thought to constitute the main part of the yrast cascade for such nuclei.

All the cases also show a smaller bump at lower energies than the main quadrupole bump and separated from it by a small dip. This bump has a negative A_{2} and thus is probably a dipole component.

55

Fig. 1. Ançle-integrated r-ray spectra obtained by unfolding the continum pulse-height spectra are shown in the lower parts of the figure. The curves were calculated from the model described in the text. A function $E^{3} e^{-E_{\gamma} / T}$ was assumed for the shape of the statistical spectrum. The upper parts of the figure show the $2\left(0^{\circ}-90^{\circ}\right)$ spectra which, when nomalized, approximate the A_{2} coefficients of the angular correlations. The calculated lines correspond to $A_{2}=-0.6$ and -0.4 for the "dipole" component and $A_{2}=0.25$ for the quadrupole components.
(XBL 807-10662)

The spectra in Fig. 1 can be discussed in terms of a simple modell in which the yrast cascade is assumed to originate from decay through collective rotational bands roughly parallel to the yrast line. This cascade is approximated by decay through a single "average" deformation-aligned band, and the dipole component arises from the $I-I-1$ transitions. The relative intensities of these to the crossover transitions and the E2/H1 amplitude mixing ratios δ are proportional to ($g_{K}-g_{R}$) $2 \mathrm{~K}^{2} / 0_{0}$ and $\mathrm{Q}_{0} /\left(\mathrm{g}_{k}-\mathrm{g}_{\mathrm{R}}\right)$, respectively. The results of the calculations ire shown by the full lines in Fig. 1.

In summary it can be said that a component with negative A_{2}, and hence presumably dipole, with average E about half of that for the main yrast bump, does occur in all four final nuclei, even though two are only weakly deformed and possibly triaxial. It suggests that the low-energy dipole component may be a fairly general phenomenon since it has now been
observed in $X e$, Ce, Yb and W nuclei. The real tive magnitudes of the dipole and quadrupole components of the yrast cascade do appear to vary fron case to case, which suggests that nuclear structure information on the states well above the yrast line may be derived from their study.

The measurements al so suggest that the multiplicity of the statistical cascade \vec{M}_{S} increases with increasing angular monentum input (Fig. 2). This can be explained as arising from a corresponding increase in average excitation energy for gamina emission above the yrast line, and calculations with the evaporation code GROGI2 do show agreement with this expectation. The change in the number of statistical r rays with increasing bombarding energy or angular momentum input depends on the relative rate of increase of the excitation energy and the yrast line with spin; the results might be different in a light nucleus.

Fig. 2. The number of al y rays with $E_{Y}>1.9$ $\mathrm{Me} Y$ b) statistical gamma rays M_{S} estimated with the function assumed plotted in Fig. 1 against the total multiplicity M̈T. (XBL 807-10663)

Footnote and Reference

*Work performed at the Department of Nuclear Physics, the Australian National University, Canberra, ACT 2600, Australia.

1. J.O. Newton, S.H. Sie and G. D. Dracoulis, Phys. Rev. Lett. 40, 625 (1978).

E1 TRANSITION PROBABILITIES FROM K" $=0 \quad$ AND K ${ }^{n}=1 \quad$ OF ${ }^{2314 P u * ~}$

C. Michael Lederer

An experimental study of $238 \mathrm{~Np}_{\mathrm{B}^{-}}$decay and ${ }^{242}$ Cm a decay has reveaied previousiy unobserved transitions, established new multipolarity assignments and mixing ratios based on measured internal conversion coefficients, and improved the accuracy of the relative r-ray intensities. Much of the information on ${ }^{242} \mathrm{Cm}$ a decay is new; the a-decay hindrance factors and conclusions based on them will be reported elsewhere.

A new method is developed for analysis of the Y-ray branching from the $K^{\pi}=1^{-}$band, in which the interband E2 transition rates to the $K^{\pi}=0^{-}$band are calculated from a mixing model and used to estimate the rates of
competing El transitions. The model also yields estimated E1 trinsition rates from the $K^{\text {T}}=$ 0^{-}band. In ${ }^{238} \rho_{u}$, El transitions to the ground state from either octupole-vibrational band have half-lives on the order of 5 ps , corresponding to hindrance factors around 10^{4}. Al though the required data are absent or less precise for other heavy nuclei, estimates can be made for five of them including 236 U , for which the model agrees with a direct measurement of highly retarded El transition probabilities from the 0^{-}band. Table 1 summarizes the results of the calculations. A description of them and a discussion of the limitations of the model are included in the full paper.

Table I. Estimated El transition probabilities from octupole-vibrational states of heavy nuclei.

Nucleus	Heisskopf Hindrance Factor	
${ }^{224} \mathrm{Ra}$	2×10^{4}	
${ }^{230}$ Th	4×10^{3}	$9 \times 10^{3} \mathrm{~b}$
${ }^{2} 36$	4.5×10^{7}	$3.1 \times 10^{6} \mathrm{c}$
	2.2×10^{7}	
$238{ }_{\text {U }}$	$=10^{5}$	$\simeq 10^{7} \mathrm{e}$
${ }^{238} \mathrm{Pu}$	1.5×10^{4}	4.3×10^{4}

a By direct comparison with intraband E2 transitions.
b Geometric mean of 17×10^{3} for the K1r $=$ 11^{-}state, 4.5×10^{3} for the 12^{-}state.
c For the 11^{-}state. y-ray branching from the 13^{-}state is inconsistent with the model. d Fron the measured hal f-life for the 01^{-} state (2).
e Approximate value; branching from the 11 . 12^{-}, and 13^{-}states yield values that vary by two
orders of magnitude. (The data for ${ }^{238} \mathrm{U}$ are suspect.)

Footnote and References

* Condensed from reference (1).

1. C. Michael Lederer, to be submitted to Phys. Rev. (1982).
2. C. M. Lederer, J.M. Jaklevic, and S.G. Prussin, Huc1. Phys. A135, 36 (1969).

OBSERVATION OF THE DECAY OF THE $T_{z}=-2$ NUCLEUS ${ }^{30} \mathrm{Ca}$;

M. D. Cable, J. Äystö. ' ' R. F. Parry. J. M. Wouters, and J. Cerny

The B^{+}-delayed proton decay of ${ }^{36} \mathrm{Ca}$ has been observed. From the energy of the proton group, it was possible to deduce the mass of the lowest $\mathrm{T}=2$ excited state in 36 K (See Fig. 1). Neasurement of this mass completed the mass 36 isospin quintet.

The masses of analog states in an isospin mul tiplet are given in first order by:
$M\left(A, T, T_{z}\right)=a(A, T)+b(A, T) T_{Z}+c(A, T) T$? This lsobaric Multiplet Hass Equation (IMME) arises yia first order perturbation theory from the asswiptions that the wave functions of the members of an isospin multiplet are identical and that only two body fowses are responsible for charge dependent effects in auclei. Possible deviations from this quadratic form can be due to higher order Coulomb or other charge dependent effects as well as to various isospin mixing effects. These deviations are generally represented by the additional terms $d(A, T)$ - T_{Z} and $e(A, T)$. T_{Z}^{4} and can only be studied with isospin multiplets having $T \geq 3 / 2$.

In general, extensive studies of isospin quartets and more recently quintets, have shown excellent agreement with the quadratic form of the IMAE. Persistent deviations have been observed, however, in the niass $\&$ and mass 9 multi t plets. These multiplets have members which are unbound to narticle decay, so it is of interest to study higher mass multiplets in which all members are bound to isospin-allowed particle decay. The mass 36 quintet is, to date, the highest mass quintet that has been completed.
${ }^{36} \mathrm{Ca}$ was produced with the ${ }^{40} \mathrm{Ca}\left({ }^{3} \mathrm{He}, a \mathrm{Bn}\right){ }^{36} \mathrm{Ca}$ reaction at 95 MeV . Because of the simultaneous production of other strong B^{+}-delayed proton emitters, the on-line mass separator, RAMA, was
used to isalate the mass 36 nucjei from the other reaction products. The ${ }^{36} \mathrm{Ca}$ experiment was made exceptionally difficul: both by the expected low yield of the reaction and by possible interference by B^{+}delayed protons from ${ }^{36} k$. Fortunately, a detailed study of $3 E_{K}$ by Eskola et al. 1 ras available. With the RAMA ion source operating in a mode that enhanced alkali metal praduction, the ${ }^{36} k$ groups were observed. Operation of the ion source in a mode that enchanced Ca ionization produced a new group that was not observed in the ${ }^{3} \epsilon_{\mathrm{K}}$ studies. This group, at an energy of

Fig. I. A proposed decay scheme for ${ }^{36} \mathrm{Ca}$.
(XBL 793-910)

Table 1. Properties of the $A=36$ isobaric quintet and coefficients of the IME.

Nucleus T_{2}	Hass excess $[\mathrm{MeV}]$		Ex [MeV]		
${ }^{36} \mathrm{Ca}$ a -2	- 6.440	± 0.040			
36 K -1	-13.168	$\pm 0.0224 .2$	58 ± 0.023		
36 Ar	-19.3795	$\pm 0.002210 .8$	518 ± 0.0022		
${ }_{36}^{36} \mathrm{C} 1+1$	-25.2229	$\pm 0.0013 \quad 4.2$	989 ± 0.0013		
$36 \mathrm{~S}+2$	-30.6659	± 0.0015			
Coefficients for the IMME: $M=a+b \cdot T_{z}+c \cdot T_{z}^{2}+d \cdot T_{z}^{3}+e \cdot T_{z}^{4}$					
a	b	c	d	x_{v}^{2} (a)	
-19.3795(20)	-6.0437(37)	$0.2003(16)$	--	--	1.90
-19.3801(22)	-6.0446(40)	$0.2030(46)$	-0.0011(17)	--	3.42
$-13.3795(22)$	-6.0434(74)	0.1997 (92)		$0.0001(14)$	3.80
-19.3795(22)	-6.018(15)	$0.177(15)$	-0.0097(50)	$0.0075(41)$	--

(a) Reduced $x_{v}^{2}=x^{2} / v$.

251921 ke', we attribute to the super-allowed β^{+}decay of the $0^{+}, T=2$ ground s tate of ${ }^{36} \mathrm{C}$ a to the $0^{+}, \mathrm{T}=2$ state in its daughter, followed by proton emission. This energy, together with the mass of ${ }^{35} \mathrm{Ar}$, yields a value of $-13,168 \quad 22 \mathrm{keV}$ for the mass excess of the T $=2$ state in 36_{k}.

Table 1 shows the results of fitting the mass 36 dita with possible forms of the IMME. The best fit to the data is seen to be the quadratic IMME. Four parameter fits result in a d or e coefficent consistent, with zerg. More precise measurements of the ${ }^{36} \mathrm{Ca}$ and ${ }^{30} \mathrm{~b}$ points are necessary to detemine any posible
significance of the non-2ero d and e coefficients found in the five paramenter fit.

Footnotes and Reference

tCondensed from 28L-11193.
HPresent address: University of Jyväsky7ä, Finland.

1. K. Eskola, M. Ríhonen, K. Yierinen, J. Honkanen, M. Kortelahti and K. Valli, Res. Rept. HU-P-177, Department of Physics, Univ. of Helsinki, Finland; to be published in Nucl. Phys. 1980.

BETA ENDPOINT MEASUREMENTS OF ${ }^{105} / n$ AND ${ }^{103}$ n

J. Wouters. J Aysto, 'M. Cable. P. Haustein. ' R. Parry and J. Cerny

In a contiluing series of experiments 1 to determine beta endpoints we have now measured the beta endpoint of 105 In and ${ }^{103} \mathrm{In}$. The 105 In beta endpoint of $3.88 \pm 0.150 \mathrm{Mey}$ is a new measurement while that of $103_{I n}, 4.08 \pm$ 0.250 MeV is a corroboration of a previous measurement by G. Lhersonneau et al. 2 Comparison of these measurements with the various
mass formula predictions enables the observation of any effects on the mass surface due to the nearby double shell closure.

The beta endpoint measurements were conducted using the RAMA mass separator system together with standard $\mathrm{s}^{+}-\gamma$ coincidence techniques for data collection. Preliminary

Fig．1．Fermi Kurie plot and partial decay scheme for 105 In ．Beta－branching ratios were de＊a．mined from the r－spectrum in coincidence with p心itrons．
（XBL 799－2801）
restilts，ncluding a detailed description of the techniques used，were reported at the 6th International Conferençe on Atomic Masses and Fundamental Constants．${ }^{3}$ We have since repeated the experiments with the following refinements．The beta－telescope was calibrated with the endpoints of the strongest allowed decay branches of ${ }^{123} \mathrm{Cs}(3.410 \pm 0.122 \mathrm{MeV})$ ， and ${ }^{124} \mathrm{Cs}(4.574 \pm 0.150 \mathrm{MeV})$ produced in 14 N on Cd at 110 MeY ，and ${ }^{80} \mathrm{Rb}$［4．069t
$0.025 \mathrm{MeV}),{ }^{79} \mathrm{Rb}(1.837 \pm 0.041 \mathrm{MeV}$ ）and $78_{\mathrm{Rb}}\left(3.41 \pm 0.37 \mathrm{HeV}\right.$ ）produced in 1_{H} on Zn at 150 HeV ． 105 In and 103 In were produced by bomparding 1 mg／c．natural Mo and sepa－ rated ${ }^{9} 2_{H o}$ targets．respectively，with 110 MeV ${ }^{14}$ N ions．The data were collected using hardwire coincidences between the beta－telescope detectors and the gaina detector and analyzed using software gates on known r－rays of the daughter nucleus to project out a single component beta spectrum．

The resulting beta spectra were anlayzed two ways．The spectra were plotted in Fermi－Kurie form using a ：omputer code that also corrects for the response function of the beta detector． Linear least squares fits of the resulting spectrum determined the endpoints（See Fig．1）． Secondly the spectra were analyzed using the shage function fitting technique of Davids et al． 4

A sumary of our measurements and the mass excesses of ${ }^{105}$ In and ${ }^{103}$ In are presented in Table 1．Deviations of the experimental values from a semiempirical shell model formula by Liran and Zeldes，and fron a Garvey－Kelson transverse equation are givens for compari－ son．In the main，these predicted masses agree fairly well with the experimental measurements． An interesting disagreement of -1.0 MeV of the 103In mass excess from the Liran－Teldes calculations is inconsistent with the good agreement of their approach in predicting the other experimentally known In mass excesses． Further systematic studies are required to understand both this behavior and whether it might have any possible relationship with the nearby double shell closure．

Table 1．Summary of Q_{EC} determinations and comparison to different mass predictiens．

Nuclide	Decay Energy［ MeV ］		Mass excess ［MeV］	$\begin{gathered} \Delta=\operatorname{Me}(E x p)-\operatorname{Me}(\text { theory })^{5} \\ L-Z \quad[\mathrm{MeV}] \text { G-K } \end{gathered}$	
	？his wirk	Literature			
${ }^{103} \mathrm{In}$	5.56 ± 0.35	5.8 ± 0.5^{2}	－75．04士0．38	－1．00	－0．61
${ }^{105}$ In	5.12 ± 0.130		－79，22土0．13	0.24	0.55

Footnotes and f －ferences

PPermanent address：University of Jyvaskyla， Finland．
\＄Permanent address：Brookhaven National Labaratory，Upton，NY．

1．Nuclear Science Division Annual Report for 1978－1979，LBL－9711，p． 21.

2．G．Lhersonneau，G．Dumont，K．Cornelis，M． Huyse，and J．Yerplancke，Phys．Rev．［ 1B， 2688 （1978）．

3．J．Cerny et．al．，Lawrence Berkeley Laboratory preprint LBL－9876．

4．C．N．Davids，C．A．Guliardi，M．J．Murphy， and E．B．Norman，Phys．Rev．C 19， 1463 （1979）．

5．S．Liran and N．Zeldes，At．Data and Nucl． Data Tables 17 （1976）431；J．Janecke，ibid． 17 （1976） 455.

B. NUCLEAR REACTIONS AND SCATTERING

1. Microscepic

TEST OF PARITY CONSERVATHON IN pp SCATTERNGG AT 46 MeV*

P von Hossen. U von Rossen. *and H E Conrett

it has ween calculated that the parity non-conserving weak-interaction part of the nucleon-nucleon interaction should result in a non-zero value of the longitudinal analyzingpower A_{z} in $p-p$ scattering. A_{z} is given by
$A_{Z}=\left(1 / P_{Z} \| c^{+}-c^{-}\right) /\left(0^{+}+{ }^{-}\right)$ where p_{2} is the beam polarization and $c^{+}\left(c^{-}\right)$is the cross section for incident protons of positive (negative) helicity. The \therefore Iculations predict A_{z} to have a broad maximum near 50 MeV with a value of at 7ost a few times 10^{-7}. Thus, extreme care ans precision are required in orcer to reduce the experimental error to such a level.

The present experimeni is done with a $50-\mathrm{HeY}$ polarized proton beam from the 88 Inch Cyclotron. Since the polarization direction is provided by the magnetic field, the beam from the cyclotron has only transverse (vertical) polarization. As shown ín Fig. 1, a solenoidal

Fig. 1. The beam line and the experimentai set-up. D. quadrupole magnets; FS, fast steering magnets: $S S$, slow steering magnets: $C M$, centering magnets; MB , bending magnet: $M C$, monitor chanber: POS, bean position sensors; PAT. target-detector assembly. (XBL B011-3901)

Table L. Sumary of errors and results.

Systematic effect	Contribution to error in $\mathrm{P}_{7} \mathrm{~A}_{2}\left(\times 10^{7}\right)$	
(1) Intensity modulation $\left(I^{+}-I^{-} \mid /\left(I^{+}+I^{-}\right)\right.$	-1.3131×10^{-7}	C.2d
(2) Position modulation $\left\langle x_{1}^{+}=x_{1}^{->}\right.$	-0.03(4) $\times 10^{-2} \mathrm{k}$ 的	0.2
$\left\langle y_{1}^{+}-y_{1}^{-}\right\rangle$	-0.2111×10^{-2}, 1 m	0.2
$\left\langle{ }_{2}^{+}-x_{2}^{-}\right.$	$0.4(2) \times 10^{-2} \mu(1)$	0.2
$\left\langle y_{2}^{*}-y_{2}^{-}{ }^{-}\right.$	$1.6(4) \times 10^{-2} \mu \mathrm{~mm}$	0.2
(3) Emittance modulation 6Q/Q	-10^{-5}	0.5
(4) Transverse poiarization components		1.0
(5) Electronic asymmetry		0.3

measurod $\left|P_{7}\right| A_{2}$ with statistical error ($\left.-1.0 \cdot 1.2\right\rangle \times 10^{-7}$
${ }^{1} P_{z} \mid A_{z}$ with combined errors (-1.0 -1.8$) \times 10^{-7}$

[^3]ragnetic field is used to precess the spin axis 90° into the horizontal plane, after whith a dipole magnet bends the beam through an angle of 47.7° and precesses the spin axis into the bean direction. Thus, spin-reversal at the ion source results in proton helicity reversal at the target.

Since integrated scattering rates of 10^{9} to 10^{10} per second are obtainable, it is not difficult to achieve a statistical accuracy at the level of 10^{-7}. The severe challenge is to reduce the systematic effects, which provide false asymmetries, to a comparabie level. The systematic errors arise from coherent changes of the beam properties with spin reversal. Two beam-position sensing elements, consisting of secondary electron monitors in a quadrant geometry, are used both to monitor and control the beam in positivn and angle through the target. Improvements have been made on the polarized ion source and on the cyclotron in order to minimize instabilities which affect the ultimate accuracy obtainable with our experinental apparatus.

In contrast with the approach used by the Zurich group, ${ }^{2}$ our design is to ontrol the coherent beam madulation. to such an extent that the remaining effects are not influencing the measured asymuetry in a signficanc way. The success of this apprach is seen in Table 1 . where our coherent beam position and intensity modulation amplitudes are two to three orders of magnitude smaller than those of Ref. 2.

Our present results, which are summirized in Table 1. were achieved in 3-4 days of data acquisition. The neasured asymetry is

$$
\mathrm{c}=\left\{\mathrm{p}_{2} \mid A_{2}=(-1=1.8) \times 10^{-7}\right.
$$

wich. with a value of $p_{2}=0.80$ gives the result

$$
A_{2}=(-1.3-2.3) \times 10^{-7}
$$

The listed error is the root square sum of the statistical and systematic errors. The min contributions to total error are the statistical error and the systemtic error due to transverse polarization compments. These both can be reduced substantially when a new fonizer for the polarized ion source is instatled in a fey months. A factor of ten increase in the polarized bean intensity is anticipated.

Footnotes and References

Condensed from Lill- 11122 . Presented at the 5th International Syaposiun on Polarization Phenomend in Nuclear Physics, Santa Fe, MW, Augerst 11-15, 1900.
+Present address: Institute of Muclear Physics. University of Bonn, 0-5300 Bomn, West Germany.

1. M. Simonius, Phrs. Lett. 418, 415 (1972); Huc.7. Phys. Az20, 269 (1974). F. R. Brown, E. M. Hen'tey, and F. R. Krejs, Phys. Rev. C 9. 935 (1974).
2. R. Balzer et al, Phys: Rev. Lett. 44, 699 (1980).

CONGERNING TESTS OF TIME REVERSAL INVARLANCE VIA THE POLARIZATION-ANALYZING POWER EOUALTY*

Homer E. Conzett

It has fong been established that time reversal invariance (TRI) is a sufficient condition for the general polarization-analyzing power equality. 1 That is, the polarization (P) of an outgoing particie from a (binary) nuclear reaction is equal to the analyzing-power (A) for those polarized particies incident in the inverse reaction. Since elastic scattering is its own inverse process. it has been used in essentially all of the tests of TRI that use the polarization-analyzing power equality.

In particular, the most sensitive test by this method was made on $p+{ }^{13} \mathrm{C}$ elastic scattering. ${ }^{2}$ It is necessary to scatter from a nucleus with a non-zero spin value, because otherwise parity conservation alone ensures thrt $P=A$. By making the measurements for ${ }^{13} \mathrm{C}$ relative to ${ }^{12} \mathrm{C}$, it was not necessary to measure either the absolute beam polarization or the absolute analyzing power, and the result that $P=A$ to $I 2.5$ citws achieved.

As is shown in Ref. 2, the P-A difference is given by
$P(\theta)-A(\theta)=\left\{\sigma^{-+}(\theta) \sim c^{+}-(\theta)\right) / c(\theta)$
where
$s(\theta)=\left(c^{+}(\theta)+c^{+-}(\theta)+c^{++}(\theta)+z^{\sim}(\theta)\right) / 2$
and $0^{-t}(\mathrm{~B})$ is the cross section for the scattering of a proton from an initial negative spin state to a final positive spin state. Using the Madison convention, 3 the positive (+y) direction is up for a proton scattered to the left in the horizontal plane. Since the time-reversed process of $q^{-+}(\theta)$ is $o(b)^{+\infty}$, eq. (1) becones $P(\theta)-A(\theta)=0$ if the strong interaction is invariant under time reversal. Thus, the ref. 2 result for the elastic scattering of 32.9 MeV protons from ${ }^{1} 3_{C}$ at $e_{L}=60^{\circ}$ was interpreted as satisfying TRI within the -2.5^{\prime} raccuracy of the experiment.

It is clear, however, from eq. (11 that another reason for $P(\theta)-A(\theta) \approx G$ could be the very small values of the individual spin-flip probabilities, even if they were not equal as required by TRI. And, it is now known from measurements of the depolarization in elastic p-nucleus scattering that this is, indeed, the
case. 4 Since the depolarization parameter is given by

$$
\begin{equation*}
D(0)=1-25(0) \tag{2}
\end{equation*}
$$

with the (total) spin-flip probability

$$
\begin{equation*}
S(\theta)=\left(0^{+-}(\theta)+\sigma^{-+}(\theta) / 20(\theta)\right. \tag{3}
\end{equation*}
$$

measurements of $D(\theta)$ provide determinations of $5(\theta)$. It is now possible to estimate a value of $5(\theta)$ in $p-{ }^{13} \mathrm{C}$ scattering at $32.9-\mathrm{MeV}$ and盟 $=60^{\circ}$ from determinations of $D(s)$ in p 9 Be scattering at 25 MeY. That is, for the same $g R$, with q the momentum transfer and $R=$ $r_{0} A 1 / 3$, the nuclear radius, one has $D=0.94$ $\pm 0.02 .{ }^{\circ}$ I take this to be the lower 1 imit of D($\left.32.9 \mathrm{Mev}, \theta=60^{\circ}\right)$ for $p=13 \mathrm{C}$ siattering, since the quadrupole spin-flip mechanisn' is not avajlable here because of the spin-1/2 value of ${ }^{3}$ C. Thus,

$$
\begin{equation*}
25 \leq 0.06 \tag{4}
\end{equation*}
$$

Assume now that

$$
\begin{equation*}
c^{+-}=20^{-+} \tag{5}
\end{equation*}
$$

which would be a clear and substantial breaking of TRI. From eqns. (1), (3), (4), and (5) it follows that even then

$$
\begin{equation*}
|P-A| \leq 0.02 \tag{6}
\end{equation*}
$$

which is smaller than the experimental error. Hence, the experiment did not provide a test of time reversal invariance.

It is immediately obvious from this discussion that tests of TRI using the polarizationanalyzing power equality should be made through measurements in a reaction and its inverse where tlie spin-flip probability is expected or known
to be large. Such measurements are presently undermay in a Laval-Berkeley collaboration. ${ }^{\text {f }}$

I tim grateful to H. S. Sherif for the suggestion to estiente D in $p=13 C$ scattering from the p - Se results.

Footnote and References

*LBL-11087. Presented at the 5th International Symposiu on Polarization Phenomen in Huclear Physics, Santa Fe, NH, August 11-15, 1980.

1. R. 3. Blin-Stoyle, Proc. Phys. Soc. A65, 452 (1952); G. R. Satchler. Mucl. Phys. 8, 65 Tig58).
2. E. E. Gros:, J. J. Malanffy, A. pan der Houde, and A. Zucker. Phys. Rev. Lett. EI, 1476 (1968).
3. Polarization Phenomena in Nuc?ear Reactions, eds. H. H. Barschall and W. Haeberlif (Unir. of Wisconsín Press, Madison, 1971), p. xy.
4. See, for example, H. S. Sherif, Proc. Fourth Int'1. Symposium on Polarization Phenoment in Wuclear Reaction, eds. W. Gruebler and Y. Konig TBirkhauser YerTag, Basel, 1976], p. 189.
5. J. Birchall, H. E. Conzett, J. Arwiew:, W. Dahme, and R. M. Larimer, Phys. Lett. 53B, 165 (1974).
6. From a linear interpolation, using the three data points of ref. 5 between $\propto=60^{\circ}-100^{\circ}$.
7. J. S. Blair, M. P. Baker, and H. S. Sherif, Phys. Lett. 608, 25 (1975).
8. R. J. Slobodrian, C. Rioux, R. Ray, H. E. Conzett, P. von Rossen, and F. Hinterberger, to be published.

TEST OF CHARGE SYMRETRY IN n-p SCATTERING

G. Greeniaus, * G. A. Moss. - G. Roy. * H. Coombes. * A. Abe'z.'
N. E. Davison, ${ }^{1}$ W. T. H. van Ders, ${ }^{\text { }}$ and H. E. Conzett

An experiment has been proposed to TRIUMF to investigate the isospin-mixing charge-symmetry breaking (CSB) component in the n-p interaction. The experiment will measure the difference ΔA between the neutron and proton analyzing power A_{n} and A_{p} in n-p elastic scattering at 500 MeV . Designed as a nullmeasurement requiring no accurately known polarisation standards, the experiment will determine the difference in angle at which A_{n} and A_{p} cross through zero. It will provide an unambiguous test for the existence of CSR effects to the level of $\triangle A \simeq 0.001$, corresponding to a laboratory angle difference at zero crossing of $\simeq 0.05^{\circ}$.

During the sumer of 1979 a test measurenent of the p-p analyzing power crossover was made. This test was undertaken to provide sore firm evidence that a precision comparable to the desired n-p experinent could be obtained, and to yield quantitative estimates of potential background. A polarized proton beam was incident on CH_{2} target. Protons were detected in ccincidence in symmetric multiwire proportional chamber (MAPC) counter telescopes having central lab angles of 41.65°. The MAPC's allowed track reconstruction to be made. The HaI detectors were sufficiently thick to stop the p-p elastic protons that entered them. Figure 1 shows ie coincidence yield as a function of the opening

Fig. 1.

Fig. 2.
(x 8 L 8011-3903)
angle between the coincident protons. When appropriate cuts are made, the $C(p, 2 p)$ events are reduced by at least a factor of 7 relative to the p-p plastic events. The p-p scattering asymetry observed for 5 consecutive runs and averaged for the left and right telescopes is show in Fig. 2. The bins are 0.1083° wide llab angle). The fit yields a crossover at bin 100.15 - 0.85. The expected value is at bin 100. The error is purely statistical. The five runs represent about 25^{\prime}; of the data for the thick target. Systematic errors in geometry are probably less than 0.05^{*} at this stage of the analysis. These results are sumarized in Table 1.

Footnotes

*Physics Department, University of Alberta. Canada
†Physics Department, Univeristy of Manitoba, Canda

Table 1.

	$\begin{aligned} & \text { p-p experiment } \\ & \text { at } 500 \mathrm{Mer} \end{aligned}$	n-p experiment
Quasi-elastic scattering background	<1r'c	probably < 1\%
Background asymmetry	Small and similar to free p-p	Probably as iavorable as the p-p case
Effect of background on crossover	$\begin{aligned} & \Delta \theta_{\mathbf{0}} \leq 0.005^{\circ} \\ & \text { pessimistically } \end{aligned}$	Probably similar to the p-p case.
	$p-p$ experiment at 500 MeV	n -p experiment
Crossover determination for 5 run sample.	$\theta_{0}=41.64^{\circ} \quad 0.09^{\circ}$	
	$x^{2}=85.74 / 79 \mathrm{d.f}$	
	$\frac{d P(a)}{d \theta 1 a b}-0.024$	

ANALYSIS OF ${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}$ ELASTIC SCATTERING BETWIEEN 18 and 70 MoV WITH THE RESONATING GROUP METHOD OF BROWN AND TANG*

The elastic scattering of 3^{3} be by ${ }^{4}$ He has geen well described at least for low energy 3he particles by the resonating-group eethod of Brown and Tang in the one-channel approximation. Indeed phase-shifts calculated by this method have been found in good agrement with those determined from typical phenomenological analysis of ${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}$ elastic scattering at least up to $E_{3}=31.5 \mathrm{MeV}$ (ref. 2). The purpose of this experiment was to obtain data at higher energies to provide an extensive comparison with the resonating-group formalism which a priori should be less successful since an increasing number of reaction channeis are expected to open as the energy increases. Another purpose of this experiment was to investigate the possible existence of high lying excited states of ${ }^{7} \mathrm{Be}$. A recent ${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}$ elastic scattering for incident ${ }^{3} \mathrm{He}$ particles between 27 and 43 MeV has indeed shown that the resonating-group method describes the data only in a rather general quantitative fashion. ${ }^{3}$

Fig. 1.
(XBL 698-1242)

In this faper we present the differential cross-section of the $3^{\mathrm{He}}+\mathrm{He}$ elastic scaltering at certain angles and for 44 energies between 18 agd 70 MeV . The range of excitation energies of Ee covered is between 11.8 and $\mathbf{4 1 . 5}$ MeV. Most of the low-lying states in 7 Be have alrrady been observed in low energy He + ${ }^{4}$ He elastic scattering. Fori 4 only f-waye phase shifts show resonance structure for $E\left({ }^{3} \mathrm{He}\right)$
id MeV corresponding to the $4.57 \mathrm{MeV}\left(7 / 2^{-}\right)$. the troad 6.75 Mey (5/2-1 and the 9.27 MeV (7/2-) states in $\mathbf{7}_{\text {Be }}$ (refs. 2.5). The 7.21 HeV (5/2-) level has not been seen in elastic scattering. Besides these levels and states at $9.9 \mathrm{MeV}\left(3 / 2^{-}\right)$and $11.01 \mathrm{MeV}\left(3 / 2^{-}\right)$which haye been obtained through various reactions, 2.4 no other levels in Be have yet been clearly assigned. Recently ${ }^{5}$ however a broad resonance structure at $E\{3 \mathrm{He}\}=34 \mathrm{MeV}$ has been seen in rough agreement with the resonating-group prediction. 6 Resonatinggroup calculations' eaploying an l-dependent phenomenological imaginary potential reproduce the cross-section data over a wide range of energy and predict a broad $l=2$ level at 11.6 HeV and both $f=4$ and $f=5$ levels near 25 HeV excitation. In this paper we will compare the resonating-group calculations with the excitation function obtained at some particular angles, such as the zeros or maxima of the Lengendre polynonials which contribute to the partial wave expansion. Since we are dealing with a spin $1 / 2$ particle elastically scatered on a spin zero target it is important to recall that for any level of given spin and parity only one partial wave contributes. He observe indeed marked changes in the shape of the angular distribution which are best reflected, as we shall see, in the behavior of the excitation functions. Figure ! presents the excitation function at two angles corresponding to zeros or maxima of the Legendre polynonials which are compared to the resonating-group calculations. This figure shows the behavior at 38.5^{*} ($\mathrm{P}_{3}=$ $\left.0, \mathrm{P}_{5}=\operatorname{maximum}\right)$ and $\mathrm{a}=63.4^{\circ}\left(\mathrm{P}_{3} \times \operatorname{maxi}-\right.$ mum) compared to the resonating-group calculations. The increase in the cross-section in the upper one suggests that the $\ell=5$ wave could be involved, however the slow decrease in the lower one rules out the possibility of a significant contribution from the $l=3$ wave.

In conclusion, we can say that the resonatinggroup predictions follow generally the behavior of the excitation functions, at least for the shape of these functions. These calculations are also in retatively good agreement with the phase-shift with the exception of the p-wave a_{1}. From our analysis and experiment, we can suggest the existence of a possible $\|^{\prime}=1$ level around $20-30 \mathrm{MeV}$ and most certainly broad $\ell=4$ and $l=5$ levels above 30 MeV in agreement with
recent theoretical calculations. The resonatinggroup method deşcribes the $3 \mathrm{He}+4 \mathrm{He}$ elastic scattering for 3^{3} e energies between 18 and 70 Mel only in a rather general qualitative fashion. Polarization measurements ysing either d polarized ${ }^{3}$ he beam or a polarized ${ }^{3} \mathrm{He}$ target will provide the possibility of a complete and unique phenomenological analysis of the scattering data, especially when the polarization data will be extended to higher energies.

Footnotes and References

*Condensed from Helv. Phys. Acta 51, 680 (1978).
†Present address: Physics Department, University of Indiana, Blomington, U.S.A.
\dagger Present address: Institut des Sciences Nucleaires de Grenoble, France.
§Present address: University of Milan, Italy.
Present address: California Institute of Technology, Pasadena, California, U.S.A.

1. R. E. Brown and Y. C. Tang, Phys. Rev. 176. 1235 (1968). Y. C. Tang, E. Schmid, K. Wildermuth, Phys. Rev. 135, 2631 (1963).
2. R. J. Spiger and T. A. Tombrello, Phys. Rev. 163, 964 (1967). J. S. Vincent, E. T. Boschit: and R. E. Wagner. Bull. Amer. Phys. Soc. 12. 1 i (1967).
3. P. Schmandt, B. H. Ridiey, S. Hayak ma, L. Put and J. J. Kraushear, Phys. Lett. 308, 30 (1969).
4. F. Herchez et a1.. ?. of Phys. 29, 968 (1968) ; F. Ajzenberg-Selove and T. Lauritsen, Huc1. Phys. Rev. A227, 1 and references therein (1974).
5. R. E. Brown, E. E. Gross, A. van der Hounde. Phys. Rev. Lett. 25, . 346 (1970).
6. C. G. Jacobs, R. E. Brown, Phys. Rev. 1C. 1615 (1970).
7. J. A. Koepke, R. E. Brown, Y. C. Tang and D. R. Thompson, Phys. Rev. 9C, 823 (1974).

FROM TRANSFER TO FRAGMENTATION*

Bernard G. Harvey

Studies of the system ${ }^{160} 0+208 \mathrm{pb}$ seem to indicate that quasi-elastic fragments of the projectile (those with beam velocity) are produced by fragmentation at energies greater than about $20 \mathrm{MeV} / \mathrm{A}$ but by a different mechanism (probably m. 'ti-nucleon transfer) at low energies. The change in mechanism appears to occur rather abruptly in the region of $15 \mathrm{MeV} / \mathrm{A}$.

Semiclassical calculations based on the matching conditions for momentum and angular momentum in transfer reactions ${ }^{2}$ predict that the transfer cross section will be greatest when the ejectile retains almost the projectile velocity, and that the angular momentum of the heavy nucleus will be mvR/K, where m is the transferred mass, v is the relative velocity of projectile and target nucleus and R is the radius of the final nuclus. Measurments of the average y-ray multiplicity 〈M ${ }^{\prime}$ 〉 in coincidence with quasi-elastic fragments ${ }^{3}$ show that $\left\langle M_{r}\right.$ > is indeed proportional to m and v at energies up to $10 \mathrm{MeV} / \mathrm{A}$, but not at higher energies.

At some value of v, the angular momentum of m around the core must become so great that the "transferred" nucleons cannot remain bound long enough for their angutar momentum and energy to be taken up by the whole system. At this point, some or all of the transferred mass will presumably be promptly re-emitted, carrying away a substantial part of the angclar momentum and excitation energy.

Figure 1 shows seniclassical transfer calculations of the angular momentum of the final

Fig. 1. Semiclassical calculition of angular momentum as a function of mass transferred.
(XBL 808-1631)
heavy nucleus in the ${ }^{16} 0+208_{p b}$ system as a function of the mass of the observed quasielastic fragment. The dashed line shows the critical angular momenturi $l_{c r i t}$ from the Wilczynski semi-empirical systematics. 4 For E_{160} of 140 MeY , the anjuiar momentum of the final heavy nucleus is always below crit, and transfer is not limited by this criterion. At E_{160} of 315 NeV , only one or two nucleons can be transferred before the angular momentum exceeds lcrit. At E_{160} of 225 MeV [14 MeV/A), as many as six nucleons c an be transferred before the angular menentum exceeds $\ell_{\text {crit. }}$ It is therefore at about this beam energy that transfer reactions should begin to give way to the fragmentation mechanism.
lt is instructive to look also at the excitation energy $E_{\text {ex }}$ of the final nucleus. Figure 2 shows Eex as a function of the mass of the observed quasi-elastic fragment for the same three beam energies. The slopes of the lines correspond to the excitation energy per transferred nuciean, Eex/m. When that quantity exceeds the binding energy per nucleon, it seems likely that prompt re-emission will occur. At the three beam energies shown in Fig. 2, the excitation energies per nucleon are respectively 4.3, 9.0 , and 14 MeV . This result suggests again that true transfer should cease in the vicinity of $14 \mathrm{MeV} / \mathrm{A}$.

Further experiments are required to sort out the relative importance of the excitation energy and of the angular momentum in determining where transfer changes over into fragmentation. At least for the $16_{0}+208_{p b}$ system, both criteria suggest that this kill occur at about $14 \mathrm{MeV} / \mathrm{A}$, in agreement with the experiment.

Footnote and References

*B. G. Harvey, Notas de Fisica 3 No. 1, 99 (1980).

Fig. 2. Semiclassical calculation of excitetion energy as a function of mass transferred.
(XBL 806-1632)

1. C. K. Gelbie et al., Phys. Rep. 42, 312 (1978).
2. D. M. Brink, Phys. Lett., 408, 37 (1972).
3. L. W. Richardson, contribution to this Annual Report.
4. J. Wilczynski, Nuc1. Phys., A216, 386 (1973).

MOLECULAR RESONANCES AND THE PRODUCTION OF FAST a-PARTICLES IN THE REACTION OF ${ }^{16} \mathrm{O}$ WITH ${ }^{12}{ }^{13} \mathrm{C}$ NUCLEI*

W. D. Rae. R. G. Stokstad, B. G. Harvey. A. Dacal. ${ }^{\text {' }}$

R. Legrain, 'J. Mahoney, M. J. Murphy, and T. J M Symons

Recently Nagatani et al . ${ }^{1}$ presented experimental results that suggest the direct population of molecular resonance 5 tates by ${ }^{12} \mathrm{C}$ transfer in the reaction ${ }^{12}\left(16_{0}\right.$, e) at ${ }^{16} 0$ $=145 \mathrm{HeV}$. The inclusive spectra presented in Ref. 1 show structure in the yield of fast a-particles on top of a large underlying conti nuum. In contrast, these structures are not observed in the singles a-spectra obtained by bombarding ${ }^{13} \mathrm{C}$ with $\mathrm{I}^{6} 0$. The higher energy resonances observed in the $2_{C}+12 / C$ system are estimated to have large partial widths for decay into the 12 C g.5. +12 C
g.s. ${ }^{2}$ so for the ${ }^{16} 0+{ }^{12} \mathrm{C}$ system an experiment in which carbon ions are detected in coincidence with a-particles could be expected fo irclude events rrom the decay of a resonant ${ }^{12} C+{ }^{12}$ C final state. To this end the following experiments were performed:

A beam of $140-\mathrm{MeV} 160^{4+}$ from the LBL 88 inch Cyclotron was used to bombard a 620 $\mu \mathrm{g} / \mathrm{cm}^{2}$ natural carbgn target and a ${ }^{3} 3 \mathrm{C}$ target of $285 \mathrm{ag} / \mathrm{cm}^{2}$ thickness enriched to $\mathrm{gcc} ;$ in ${ }^{13} \mathrm{C}$. Alpha particles were detected in a $\triangle E-E$ telescope while 2_{C} and 13_{C} ions were
detected in either a second $\Delta E-E$ telescope or in the QSD magentic spectrometer.

Data were taken at 22 angle pairs cquering 7.5° to 30° in the laboratory for the ${ }^{2} \mathrm{C}$ telescope and -4° to -18° for the a telescope. Figure 1 shows typical spectra obtained using the two telescopes and the ${ }^{12} \mathrm{C}$ target. Only events in which all three particles energed in their ground states ($0=-7.16 \mathrm{MeV}$) are shown. Analysis of all the data showed that the dominant peaks are not constant in E_{0} or E_{6} as a function of either θ_{a} or θ_{c}. Also shown in Fig. 1 are ${ }^{16} 0^{*}$ excitation spectra. The energies of the peaks in these spectra are found to be independent of both θ_{α} and θ_{C}, and the relative angies $\theta_{a}-\theta_{c}$. On the basis of these results we conclude that the coincidence data are dominated by inelastic excitation
of discrete a-unbound states of the ${ }^{16} 0$ projectile followed by their decay.

For a comparison of reactions with ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ targets we used the magnetic spectrometer to detect the carbon ions. Figure, ? compares typical spectra obtained with the ${ }^{12} C$ and ${ }^{13} \mathrm{C}$ targets. The Q-value spectra for a-12C coincidences and the energy spectra of the a-particles show similar structures. Analysis of data taken at different angles showed that the coincident yield of a +12 C is dominated by the excitation and subsequent decay of ${ }^{16}{ }^{6 *}$ regardless of whether the target is $\mathbb{Z}^{2} \mathrm{C}$ or $1^{3} \mathrm{C}$.

Differences between the da a fron ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ targets were observed in the coincident yeild of $a+{ }^{3} C$ ifigs. $](c)$ and (d). This

Fig. 1. Coincident counts vs E_{a}, E_{c} and $E_{160^{*}}$ are shown in columns 1-3. Each row shows a different paif of detector angles.

Fig. 2. A comparison of the coincidence data obtained in 160 induced reactions on ${ }^{12} \mathrm{C}$ and 13_{C} at $\theta_{\alpha}=-14.5^{\circ}$ and $\theta_{c}=10^{\circ}$.
(XBL 806-3395)
was explained by the respective 0 -values for neutron pick up by the projectile. Another difference, the larger relative cross-section for the production of coincident fast a particles by a 12 C target, (Figs. $1(g)$ and (h)), is not understood at this time.

The irclusive alpha spectra of Ref. 1 suggest the population of highly excited states in 24 Mg , and this has beep interpreted in, terms of resonances in the ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ systen. ${ }^{1}$ The present coincidence experiments do not reveal a ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ final state interaction. The possibility exists that the small differences observed in the coincidence data on ${ }^{12} \mathrm{C}$ and on ${ }^{13} \mathrm{C}$ might account for the absence of structure in the a singles data on ${ }^{13}$ C. Al ternativaly, (1) the resonant breakup of the projectile uight obscure a ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ interaction, or (2) the states formed in ${ }^{2}{ }^{4}{ }^{\mathrm{Mg}}$, gay have a small width for decay into ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$.

Footnotes and References

*Condensed from LBL-11135
IInstituto de Fisica, UNAM, Mexico.
\ddagger DPhN-Be, CEN Saclay, 91190 Gif-sur-Yyette, France.

1. K. Nagatani, T. Shimoda, D. Tanner, R. Tribble and T. Yamaya, Phys. Rev. Lett. 43 (1979) 1480.
2. D. A. Bromley, Proc. Int. Conf. on Resonances in Heavy Ion Reaction, Huar, Yugoslavia, (1977), ed N. Cindro, Horth Holland Pub. Co., 1978. See also T. M. Comier et al., Phys. Rev. Letters. 40 (1978) 924 and A. J. Ldzzarini, et. al Phys. Rev. Letters 40 (1978) 1426.

${ }^{13}$ C * PRODUCTION IN THE 187 MeV ${ }^{12} \mathrm{C}+{ }^{20 s}$ Fh REACTION

A. N. Bice, A. C. Shotter ' and Joseph Cerny

The reaction mechanisms involved in the produetion of fast light particles and projectile like fragments in the interaction of very assymetric systems are currently under extensive study. Several single particle inclusive, angular correlation and particle-y experiments ${ }^{1}$ have been performed with $10-20$ $\mathrm{MeV} /$ nucleon $\mathrm{B}, \mathrm{C}, \mathrm{N}$, and 0 beams on heavy
targets. In general, these studie's seem to indicate that the process of projectile excitation and decay is of relatively minor importance in explaining the observed inclusive yield of beam velocity particles. Indeed, it recently has been suggested by Wu and Lee ${ }^{1}$ that the mechanism of incomplete fusion following projectile fragmentation must be a
dominant process in complex projectile induced reactions. A recent investigation ${ }^{2}$ of the ${ }^{12} \mathrm{C}+20 \mathrm{EPD}_{\mathrm{D}}$ system at 187 MeV found that the process of projectile excitation and subsequent decay (in the ${ }^{12}$ 忘 $a+8_{\text {Be }}$ channel) contributes significantly to inclusive Ble measure- $^{\text {b }}$ ments. Presented here is data for another
 ${ }^{13}{ }^{\mathrm{C}} \mathrm{*}^{2}{ }^{207} \mathrm{~Pb}(\mathrm{~g} . \mathrm{s}$.$) reaction at 187 \mathrm{MeV}$.

This study was perfonmed by bombarding a 1.4 $\mathrm{mg} / \mathrm{cm}^{2}{ }^{20} \mathrm{~A}_{\mathrm{p}}$ target with $2187 \mathrm{MeY}{ }^{12} \mathrm{C}$ beam. The production of ${ }^{13}{ }^{\mathrm{C}} \underset{\rightarrow}{ }+{ }^{9} \mathrm{Be}$ was observed by detecting the decay products in coincidence with a two telescope system. Further experimental details of this detection system may be found elsewhere. 2

Coincidence between a and ${ }^{9} \mathrm{Be}$ reaction products were measured between 13° and 30° in the laboratory system. The summed energy spectra of $a+{ }^{-9}$ Be fragments at all angles are dominated by a single transition that is kinematically consistent with a neutron pickup by the ${ }^{12}$ C projectile leaving ${ }^{207 \mathrm{~Pb}}$ in its ground s tate and an excited ${ }^{13} \mathrm{C}$ product, which then decays into a $+{ }^{9}$ Be fragments. This interpretation is further supported by the observed a - Me relative energies of - 1.2 and -2.7 MeV , which is close to the relative energies expected for a ${ }^{13} \mathrm{C}$ nucleus excited to the first two groups of alpha decaying states above the a $+{ }^{9}$ Be breakup threshold. Our detection system geometry did not allow clear observation of a - 9 Be relative energies above 2.7 MeV.

Figure 1 shows the measured a +9 Be yield (for the ${ }^{207} \mathrm{~Pb}_{\mathrm{b}}$ (g.s.) transition) versus the laboratory angle of the two telescope detection system. As was observed in the (${ }^{2} \mathrm{C},{ }^{12} \mathrm{C}$ *) reaction channel the $\alpha+{ }^{9} \mathrm{Be}$ production peaks near the grazing angle $\left(-20^{\circ}\right)$. The shape of the ($\left.{ }^{12} \mathrm{C},{ }^{13} \mathrm{C} *\right)$ angular distributions were interpretable in terms of a peripheral reaction mechanism.

The observation of a strong neutron pickup channel to s tates unbound with respect to alpha decay suggests that direct nucleon transfer to unbound levels, in general, cculd strongly influence single particle inclusive measurements. For the ${ }^{12} \mathrm{C}+208_{\mathrm{Pb}}$ reaction it has been found that the sequential breakup process can significantly affect other reaction channels such as inclusive ${ }^{B_{B e}}$ measurerarits. From the observed ${ }^{13^{4} \xrightarrow{\star} \alpha}+9_{\text {Be }}$ transitions we have

Fig. 1. The relative yield of ${ }^{13} \mathrm{C}$ ta $+{ }^{9} \mathrm{Be}$ production for $\alpha-98 \mathrm{e}$ relative energies less than - 3 MeV. Transitions from two groups of excited states of ${ }^{13} \mathrm{C}$ contibute to the observed $a+9$ Be coincident yield.
(XBL 808-1755)
estimated that - 10-1b; of the near beam velocity ${ }^{9}$ Be inclusive cross section comes from this neutron transfer and subsequent decay channel.

Clearly, further investigations of sequential breakup and direct nucleon transfer reactions producing unbound outgoing systems are necessary before a complete understanding of fast particle production can be achieved.

Footnote and References
ton leave from the Physics Department, University of Edinburgh, Edinburgh EHg3jZ, United Kingdom.

1. J. R. Hu and I. Y. Lee, Phys. Rev. Lett. 45, 8 (1980), and references therein.
2. A. C. Shotter, A. N. Bice, D. P. Stahel and Joseph Cerny, to be pubiished.
3. J. S. Larsen et al., Phys. Lett. 42日, 205
(1972).

${ }^{14} O$ - ${ }^{12} C$ ELASTIC SCATTERING AND TOTAL REACTION CROSS SECTION AT $E_{\text {c.m. }}=60,93$ and 135 MoV .

M. E. Brandan," A. Dacal, * : Galinda, * A. Menchaca-Rocha. ${ }^{*}$

8 G. Harvey, R. Legrain, J. Mahoney, M. Murphy, W. D. M. Rae, and J. 3. M. Symons

Angular distributions have been measured for the elastic scattering of 16_{0} from ${ }^{12} \mathrm{C}$ at 160 energies of 140,218 and 315 MeV for angles up to $45^{\circ} \mathrm{c} . \mathrm{m}$. The data were analyzed in terms of a six-parameter H -S optical potential. The determination of the optical parameters at each energy showed the ambiguities already known for heavy ions. The real part is well determined only between ~ 6.6 and 7.4 fm ., this sensitive radial region being the same for the three energies. Figure 1 shows the data with a representative optical model fit.

Some of the ambiguities di sappeared when the three sets of data were analyzed simul taneously assuming an energy-independent potential. The quality of the fits however, was poorer, x^{2} / N being 2 to 5 times larger than the best individual fit at each energy.

Fig. 1.
(XBL 809-1841)

Total reaction cross sections op(E) were obtained from the optical model analysis of the elastic data. Since the parameters are not uniquely detemined it is not possible to unambiguously derive a value for or. An averaging procedure was followed, based on the strong correlation that was found between cR and the imaginary diffuseness a_{i}. Figure 2 presents the values of og(E) witn uncertainties calculated from the statistical distribution of or values corresponding to different ${ }^{1}$. The data show that op(E) does not simply level off and stay at the geonetrical value $(=1.39 \mathrm{~b})$ but they are consistent, within the uncertainities, with parameter-free calculations (solid line) based on nucleon-nucleon data, which show increased nuclear transparency in heavy-ion reactions at medium energies. ${ }^{2}$

Fig. 2.
(X8L 809-1840)

Footnote and References

*IFUNAM, A.P. 20-364, Mexico 20 D.F.

1. R. M. DeVries and J. C. Peng, private communication.
2. R. M. DeVries and J. C. Peng, Phys. Rev. lett. 43, 1373 (1979), to be published in Phys. Rev. C.
3. H. H. Gutbrod et al, 2. Phys. 262, 373 (1973).
4. R. H. Bassel et al, Nuc1. Phys. 89, 419 (1976).

STUDY OF HIGH ENERGY ㄴil $+{ }^{\mathbf{2 0} S i}$ ELASTIC SCATTERING

M S. Zisman. J G. Cramer. * R. M DeVries. ${ }^{\text {P }} \mathrm{D}$ A. Goldberg. ${ }^{\text {a }}$ and A Seamster*

As a continuation of our previous studies of high energy elastic sgattering, we have now looked at the $\mathrm{Li}+{ }^{28} \mathrm{Si}$ system at 140.7 MeV using a $\mathrm{fil}^{(3+)}$ beam from the LBL 88 [nch Cyclotron. Based on our earlier work, it is known that ${ }^{6}$ Li exhibits behavior simifar to that of light ions such as ${ }^{4} \mathrm{He}$. For example, the high energy ${ }^{6} \mathrm{Li}$ elastic data show evidence for a back angle enhancement due to nuclear rainbow scattering, and global fits indicate the need for markedly energy dependent potentials. In contrast, for heavier projectiles such as ${ }_{9} \mathrm{Be},{ }^{12} \mathrm{C}$, ar ${ }^{16} 0$ there is no evidence ${ }^{1},{ }^{2}$ for nuclear rainbow scattering at high energies, and it is possible to find energy-independent optical potentials that fit the data over a very wide energy range.

Because ${ }_{6}$ Li shares many properties in common with $6_{\text {Li }}$ and ${ }^{9}$ Be (such as having a small binding energy and a non-zero spin), comparison of the present results with those from Refs. 1 and 2 might ultimately be expected to shed some light on whether the "transition" in elastic scattering properties outlined above depends primarily on these features. In addition, Satchler and Love ${ }^{3}$ found in their global folding model analysis that both 6Li and 9 Be are anomalous in the sense of rejuiring a substantial renormalization of the real potential ($N \sim 0.5$) to fit existing data. On the other hand, existing low energy $7_{\text {Li }}$ elastic scattering data on various targets do not appear to show such an anomaly. 3 Thus, it is very interesting to compare the real potential derived from the present $7 \mathrm{Li}+285 i$ data with the high energy $6 \mathrm{Li}+28_{\mathrm{si}}$ potentials 1,2 obtained previousiy.

Figure 1 shows our preliminary $7_{L i}+$ ${ }^{28}$ Si elastic scattering angular distribution at $E_{L a b}=140.7 \mathrm{MeV}$, along with optical model calculations employing both a deep $\left\{V_{0}-150\right.$ $\mathrm{MeV})$ and a shallow ($\mathrm{V}_{0} \sim 15 \mathrm{MeV}$) Woods-Saxon real potential. As can be seen, the back angle data appear to show evidence for rainbow enhancement. This feature can be fully reproduced with a deep potential, but is only approximately reproduced when a shallow potential is used. In contrast to the difference between ${ }^{6} \mathrm{Li}$ and $7_{\text {Li }}$ reported by Satchler and Love, ${ }^{3}$ we find that the real potentials required to fit high energy ${ }_{6} i+28$ Si data (Ref-1) and the present ${ }^{7} \mathrm{Li}+{ }^{28} 8_{\text {Si }}$ data are very simitar. One consequence of this similariiy of the rea? potentials is that the fusion barriers that they predict are nearly the same. Interestingly, the values obtained for both systems agree rather well with predictions based on the systematics of Vaz and Alexander. 4

As regards the imaginary potential for the $7_{\mathrm{Li}}+28_{\text {Si }}$ system, our preliminary analysis indicates that it is considerably less diffuse than that required to fit the high energy $6_{L i}$
$+{ }^{28}$ Si datal ${ }^{l}$ ang iooks more like the sort of imaginary potential found ${ }^{2}$ in fits to low energy $6_{\mathrm{Li}}+28_{\text {si }}$ data. This suggests that whatever process causes the long tail on the ${ }^{6}$ Li imaginary potential is less inportant in the case of 7_{Li} scattering. Insofar as breakup is the most likely candidate, 2,3 the differences between 6_{Li} and 7_{Li} wauld presumably be related to the different separation energies (1.47 Mev fur ${ }^{6} \mathrm{Li}, 2.47 \mathrm{MeV}$ for $\left.f_{\text {Li }}\right)$ for the two ions. Firm conclusions on this point necessarily await more data as well as more detailed analysis of the present data.

Fig. 1. $7_{\text {Li }}+{ }^{28}{ }_{\text {Si }}$ elastic scattering angular distribution at $\mathrm{E}_{\mathrm{L}} \mathrm{ab}=140.7 \mathrm{MeV}$. The sol id curve represents an optical model calcuiation employing a deep Hoods-Saxon real potential ($\mathrm{V}_{\mathbf{o}}$ - 150 MeV) and the dashed curve represents a caiculation using a shallow real calculation potential ($\mathrm{V}_{\mathrm{o}}-15 \mathrm{MeV}$).
(XBL 808-1664)

Footnotes and References

*University of Kashington, Seattle, HA 98195
${ }^{\dagger}$ Los Alamos Scientific Laboratory, Los Alamos, NM 87545
|University of Maryland, College Park, MD 20742

1. J. G. Cramer, R. M. DeVries, D. A Gotdberg, M. S. Zisman, and C. F. Maguire, Phys. Rev. C 14, 2158 (1976); R. M. DeVries, D. P. Gol dberg, J. W. Katson, M. S. Zisman, and J. G. Cramer, Phys. Rev. Lett. 39, 450 (1977).
2. M. S. Lisman, J. G. Cramer, D. A. Goldberg, J. W Hatson, and R. M. DeVries, Phys. Rev. C 21, 2398 (1980).
3. G. R. Satchler and W. G. Love, Phys. Rept. 55, 183 (1979).
4. L. C. Vaz and J. M. Alexander, Phys. Rey. C 18, 2152 (1978).

THE QUASIELASTIC BREAKUP ${ }^{1} \mathrm{C} \rightarrow \boldsymbol{o}^{\circ}$ Be at 132 MeV AND 187 MeV

A. C. Shotter.* A N Bice and Joseph Cerny

In the last few years there has been increased interest in breakup reactions of light ions scattered from nuclei. Such reactions are of interest in their own right but it is also important to understand the breakup mechanism since it can have an influence on other reaction channels. In the case of light ions, it is normal to consider only a direct breakup process, i.e., a rapid fragmentation of the projectile at the nuclear surface. However, it is also possible for the breakup to occur following excitation of the projectile to discrete states that are above the corresponding breakup thresholds. We have undertaken an experiment designed to study the breakup characteristics of 132 and $187 \mathrm{MeV}{ }^{12} \mathrm{C}$ ions on ${ }^{208} \mathrm{~Pb}$, in which it is found that for quasi-elastic events in which the relative energy between the fragmerts is below 2.3 MeV , the breakup proceeds primarily through discrete states of ${ }^{12} \mathrm{C}$.

The experiment was performed using ${ }^{12} \mathrm{C}$ beams produced by the 88 Inch Cyclotron. The only breakup channel of 12 C above 7.37 MeV , and below 15.96 MeV , is ${ }^{12} \mathrm{C} \longrightarrow \mathrm{B}_{\mathrm{Be}}+\mathrm{a}$; these breakup fragments are confined to a cone of an angular width that is determined by their relative energy, c , and the laboratory energy of the excited projectile, E Maximum efficiency for the detection of the ${ }^{12}{ }^{C} *$ breakup fragments was achieved by constructing two $\Delta E \times E$ telescopes in close vertical geometry, with one telescope above and the other below the reaction plane. These telescopes consisted of pairs of ΔE and E detectors manufactured on the same silicon wafer such that the minimum vertical angular separation of the telescopes was 1.5^{*}. Reject detectors placed behind the E detectors were employed to veto high energy events.

The differential cross sections for the breakup of ${ }^{12}$ C into the $8 \mathrm{Be}+$ a chanrel, for which the target remains unexcited, is shown in Fig. 1 for 132 and $187 \mathrm{MeV}{ }^{12} \mathrm{C}$ energies. The grazing angle for these two reactions are 32°, 20°. It is seen that the experimental angular distributions are at a maximum near these angles. The shape of these distributions are
diso sjeilar to other surface reactions such as $\left.208_{\mathrm{Pb}}{ }^{12} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{20} 7_{\mathrm{Pb}}$, which supports the interpretation that the breakup reaction is a peripheral phenomenon.

An investigation of the breakup cross section witi incident energy should provide valuable data for testing various breakup theories, and complementary data for incomplete fusion reactions. 1

Fig. I. The measured differential cross section for the ${ }^{20} 8_{p_{b}}\left({ }^{12} \mathrm{C}, \mathrm{a}^{8} \mathrm{Be}\right){ }^{208_{p b}}$ (g.s.) reaction at 132 and 187 MeV .
(XBL 809-1906)

Footnote and Reference

*On Jeave from the Physics Department, University of Edinburgh, Edinburgh EH93j2, United Kingdom.

1. K. Siwek-Wilszynska et al., Phys. Rev. Lett. 42. 1599 (1979).

FUSION CROSS SECTIONS DERIVED FROM OPTICAL POTENTIALS

M. S. Zisman

In recont years defajited studies of heavy ion elastic scattering, 2 and also fusion excitation functions 3,4 have appeared in the literature. One interesting question which these data allow us to investigte is whether or not the optical potentials obtained from fits tu elastic scattering data are also capable of
reproducing the measured fusion excitation function for the same system. This question has been addressed previousily by Vigdor et al. ${ }^{3}$ for the ${ }^{160}+{ }^{40}$ Ca system. They were successful in simultaneously fitting both the fusion excitation function data and the elastic scattering data at one energy (55.6 MeV) with a
single real potential. However, this potential was incapable of providing good fits to the higher energy elastic scattering data (extending up to 214.1 MeV).

In the present study a somewhat different approach is useo, namely to emphasize the high energy elastic data in the fit procedure. It turns out for most light heavy ion systems that the high energy elastic data are sensitive to a rather broad radial range, and that this region of sensitivity extends well inside of the $l=0$ fusion barrier. 2 Thus, insofar as there is a single interaction potential between the ions which determines both elatic scattering and fusion, it is the high energy elastic data which are sensitive to that region of the potential which is important for 1 lw energy fusion data.

Examples of optical model fits to the elastic scattering in the $160+28$ si system, utilizing both a Woods-Saxon (WS) and a proximity radial form are shown in Fig. 1. Fusion cross sections were calculated for each of the potentials shown in Fig. 1 using various friction-free models. The first involves a simple sharp cutoff (SCO) model in which $c_{f}(E)={ }_{\pi \lambda^{2}}\left(\ell_{c r}+1\right)^{2}$, where $\ell_{c r}$ is the highest partial wave for which the maximum

Fig. 1. Optical model fits to the clastic scattering of ${ }^{16} 0+28 S_{i}$ at several laboratory energies. The solid lines correspond to a Woods-Saxon parametrization of the real potential and the dashed 1 ines to a proximity form for the real potential.
(XBL 804-619)

Fig. 2, Predicted fusion cross sections :or the $160+{ }^{28}$ Si syste based on the US potential shom in Fig. 1. The solid curve represents a sharp cutoff calculation while the dashed curve represents a calculation including Hill-Wheeler tarrier penetration effects.
(XBL 803-518)
in the real potenifal (nuclear + Coulomb + centrifugal) is below energy E. In addition, calculations including barrier penetrability have been gerformed using the Hill-Wheeler expression ${ }^{4}$ for passage through a parabolic barrier. In both rases the barrier height and position for each partial wave were deternined by explicitly differentiating the appropriate optical potential.

Shown in Fig. 2 are calculated fusion cross sections for the $160+28 \mathrm{Si}$ system usting the WS potential from Fig. 1. The solid points and crosses represent measured fusion data from Ref. 5. As can be seen, the agrecment is quite gord and indicates that for this systen it is possible to find a single interaction potential which sieul taneously reprocuces both elastic scattering and fusion data. Similar studies have been performed for the $16_{0}+27_{A 1}$ and $16_{0}+$
${ }^{40}$ Ca systems with comparably good results.

References

1. S. G. Cramer, R. M. DeVries, O. A. Goldberg, M. S. Zisman, and C. F. Maguire, Phys. Rev. C 14, 2158 (1976); R. M. Devries, D. A. Goldberg, J. H. Hatson, M. S. Zisman, and J. G. Cramer, Phys. Rev. Lett. 39, 450 (1977).
2. M. S. Zisman, J. G. Cramer, D. A. Goldberg, J. H. Hatson, and R. M. DeVries, Phys Rev. C 2I, 2398 (1980).
3. S. E. Yigdor, D. G. Kovar, P. Sperr, J. Mihoney, A. Menchaca-Rocha, C. 01 mer, and M. 5. Zisman, Phys. Rev. C 20, 2147 (1979).
4. L. C. Vaz and d. M. Alexander, Phys. Rev. C 18, 2152 (1978).
5. W. J. Jordan, J. V. Maher, and d. C. Peng. Phys. Lett. 87B, 38 (1979); R. Rascher, W. F. J. Nüller, and K. P. Lieb, Phys. Rev. C 20, 1028 (1979).

ANALYZING POWERS OF ${ }^{3} \mathrm{He}\left(\mathrm{p}_{\mathrm{p}} \mathrm{p}\right){ }^{3} \mathrm{He}$ ELASTIC SCATTERANG BETWEEN 30 AND 50 MeV *

J Birchall* and W T H van Oers*
H E Conzelt. P von Rossen ${ }^{\circ}$ and P M Lammer

J Watson. ${ }^{\text {R }}$ E Brown

In a recent phase-shift analysisl of p- ${ }^{3} \mathrm{He}$ suattering data unusual belaviour of the ${ }_{S_{0}}$, ${ }^{I} P_{1}$, and ${ }^{D_{2}}$ phases was observed in the energy range between 20 and 50 HeV . With a view to enlarging the data base and to obtain improved phase parameters, we have made neasurements of the ${ }^{3} \mathrm{He}(\overrightarrow{\mathrm{p}}, \mathrm{p}){ }^{3} \mathrm{He}$ analyzing powers at laboratory angles between 20° and 160° at proton energies of $32.4,35.1,37.6,40.1,45.0$. 47.6 and 49.6 MeV . These angular distributions complement those ${ }^{2}$ at 21.4, 24.8, 27.3, and 30.1 MeV and differential cross section ${ }^{3}$ and total reaction cross-section dafa as well ${ }_{5}$ as data obtained with a polarised ${ }^{3}$ He target. 5

The polarised proton beam from the 88 Inch Cyc lotron of the Lawrence Berkeley Laboraţory was transported to a gas cell containing ${ }^{3} \mathrm{He}$ gas at pressures between 1 and 2 atnospheres. Beam currents on target were varied between 10 nA and 100 nA while the beam polarization was typically 0.8 .

The gas target was contained in a scattering chamber, at the entrance and exit of whic: coliimation slits were fitted. Current falling on the left and right components of these slits was monitored and beam transport parameters adjusted to enslire that these currcats were equalised. In the first series of runs lat $32.4,35.1,37.6,40.1 \mathrm{MeV}$ these adjustments were made by hand. An automatic control system was installed for subsequent runs.

The scattering chamber contained arrays of detectors placed symmetrically at either side of the beam. Four detector systems in the first and twi in the second series of runs were used.

An absurber wheel downstream of the scattering chamber was used to reduce the beam energy to that appropriate for the beam polarimeter. The polarimeter was immediately downstream from the absorber whec 1 . One detector system at either side of the beam detected protons elastically scattered from the polarisation analyser. which was ${ }^{4} \mathrm{He}$ gas for the first and a ${ }^{12 C}$ foil for the second set of measurements. The ${ }^{4} \mathrm{He}$ and ${ }^{12} \mathrm{C}$ analyzing powers were taken from the data of Bacher et al. 6 and Kato et at. 7

Beam was collected in a Faraday cup and charge integrated. The beam polarisation was reversed at the source a few times per second on the basis of equel Faraday cup charge per spin state.

The results of the measurements are shown in Fig. 1. Corrections for finite geometry were very smal! (usually less than 0.001) and have
been incorporated into the data onlv at 32.4 and 35.1 MeV. The statistical error bars when not show are salier than the size of the tots.

Fig. 1. Analyzing powers A_{y} for $3_{\mathrm{He}}(\overline{\mathrm{p}}, \mathrm{p})$
$3_{\text {He between }} 30$ and 50 MoV . The curves are to guide the eye.
(XBL 8011-3900)

Footnotes and References

[^4]\# Institute of Nuclear Physics, University of Bonn, D-5300 Bonn, West Germany.
§ Department of Physics, Kont State University, Kent, Ohio 44242.

Los Alams Scientific Laboratory, Los Alanos, N 87545.

1. R. E. Brown, B. T. Murdoch, D. K. Hascll, A. M. Sourkes and W. T. H. van Oers, Few Body Systems and Nuciear Forces, ed. H. Zingl, M. Haftel and H. Zanke1 (Springer, Berlin, 1978), vol. 1, p. 292.
2. J. W. Watson, H. E. Conzett, R. M. Larimer, B. T. Leemann and E. J. Stephenson, Bull, Am. Phys. Soc. 22, 531 (1977).
3. B. T. Murdoch, D. K. Hasell, A. M. Sourkes, W. T. H. van Oers and R. E. Brown, (1980) to be published.
4. A. M. Sourkes, A. Houdayer, H. T. H. van Oers, R. F. Carlson and R. E. Brown, Phys. Rev. C13, 451 (1976).
5. R. H. McCamis et al. Contribution to this Conference.
6. A. D. Bacher, G. R. Plattner, H. E. Conzett, D. J. Clark, H. Grunder and W. F. Tivol, Phys. Rev. C5, 1147 (1972).
7. S. Kato, K. Okada, M, Kcido, A. Shimizu, K. Hosono, T. Saito, M. Mat suoka, S. Magarachi, K. tisinura, N. Tamira, K. Imai, K. Egam, K. Nakamura, T. Moro, H. Shinizu, K. Digino and Y. Kadota, Nucl. Instr. Meth. 169, 589 (1980).

ROTATIONAL ENERGY EXPRESSIONS AND LEAST-SQUARES FITTING OF BACKBENDERS AND SIRILAR NUCLEI*

J. O Rasmussen, M. W. Gundry. T E Ward.' C Castaneda.' L. K. Peker.* E Leber.' and J. H. Hamiton: :

With the increasing knowledge of states near the yrast line in deformed even-even nuclei, it appears that irregularities in spacings (backbending or upbending) may be associated with band crossing. The band that crosses the ground band (g-band) at sur critical spin I_{c} will here be referred t, as the $\mathrm{S}_{\mathrm{-k}}$ tand (for "super. band" or "Stcekholm band"). The band-mixing picture has been invoked in numerous studies.

Stephens et al ${ }^{2}$ especially have advanced the picture that the S-band involves the decoupling of a pair of particles in a high-j orbital to a resultant $J_{p}=2 j-1$ angular momentum, to which the core anguiar momentum adds in stretched fashion to yield the resultant spin I. In its purest form the decoupled S-band should show a band-head spin of $\mathrm{J}_{\mathrm{p}}(=2 \mathrm{j}-11$ and energies of

$$
\begin{equation*}
E_{S}(J)=E_{0}+\frac{\pi^{2}}{2 \cdot g_{S}} R(R+1), \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
R=I-J_{p} \tag{2}
\end{equation*}
$$

The limiting case of two bands, degenerate in the absence of Coriolis interaction, has a simple analytical solution.

Consider the case of a deformed even-even nucleus with neutrcn chemical potential between ! a and $\Omega+1$ orbitals of high j. We suppose that the $i_{13 / 2}$ neutrons play the major role in the backbending phenomenon and that essential
features are dominated by the two nearest-lying
il3/2 orbitals. From these orbitals we can generate an excited !+ band and an excited 0^{+}band that involve, respectively, procotion of one and two nucleons across the Fermif surface from $j!?$ to $j 0+1 \nu$. To avoid spurious 0^{+} states we treat the problem in a particle, not quasiparticle, representation. The three bards (including ground $\mathbf{0}^{+}$) will interact via pairing and Coriolis interactions. The physical nature we postulate for the important bands allows us to treat then by successive 2×2 diagonalizations. If we approximate the Loper k $=0^{+\%}$, and $K=I^{+}$bands as degenerate ${ }^{-}$ before Coriolis interaction, we get simple energy solutions with maximal $50: 50$ state mixing,

$$
\begin{equation*}
W_{1}=E_{0}+A[I I+1]=H_{\text {cor } .,} \tag{3}
\end{equation*}
$$

where $A=\pi^{2} / 2$. s $_{\text {, the }}$ the rotational constant, and the Coriol is matrix element is H cor. $=2 A[j(j$ $+1)-11(1 t+1)] 1 / 2[I(I+1)-a(n+1)] 1 / 2$. Taking the lower (minus) sign we have our approximate expression for the superband energies in the absence of mixing with the ground band.

In the limit of low ? we get the "decoupled band" expression of eq. (2). This is the idealized Stephens decoupling limit.

Having derived a simple analytical expression for S-band enargies, we now wish to introduce mixing with the ground band. The mixing matrix elements with the ground band should consist of (a) spin-independent terms coupling
th 0^{+}components and coming from pairing force and j_{1} - j_{2} recoil and (b) of Coriolis temm with the $K=1$ component having the spin dependence $\sqrt{T(1+1)}$. He shall constrain the Coriolis term to have the same $\left\langle!+1 \cdot j_{+} \Omega\right\rangle$ matrix element as in the unmixed 5 -band expression. The spin-independent term will be a variable to be determined by fitting.

In our model sharp backbending requires that the two large mixing terns nearly cancel at the virtual band crossing. The spin-independent term we believe arises from the pairing interaction coupling to the $K=D^{+1}$ component of the S-band wave function, and the other term is Coriolis coupling to the $K=1^{+}$component.

Table 1 gives a sample of least square fits obtainable with six free parameters.

Table 1. Some experimental and fitted transition energies for cases where data exist in both crossing bands on either side of the crossing point ${ }^{\text {d }}$

1.	J	$\cdots{ }_{1}$		1atin		1** 111	
		Sf:arem	. $H_{1,1}$ (hetio	1t.c.r.thet	1F., 4kNI	18.	14...akelit
2	0	414	1135	112 3	11611	12411	1416
4	2	2081	2122	22x1	2233	これ1	2407
6	4	315.4	3114	1375	127	-1	159?
K	6	41110	41511	4 kO :	4225	456	$1 \leq 21$
10	k	44:5	4×94	9177	C05 7	523:	$5 \geqslant 0$
12	10	5645	56.12	S045	5T4T	ctul	4kil
14	12	6198	bil 0	60115	6179	$5<15$	478
16	14	501) 5	5651	3445	गข1 K	15361	4h2?
1 K	16	51055	5124	5491	$515:$	$53:$	525 4
20	I*	5771	¢7:4	SKX K	5 kH 4	$\mathbf{4 0 7}^{7}$	Sus 5
22	20	6544	6507				
24	29	79911	7143				
16	14	T066	7111	tascis	(1)6 4		
14	IV	3557	3540				
18	16	7100	71sy	2120	701:		
14	12	7420	7 c 71			A4.40	*xa*
20	18			72418	2214		

${ }^{\text {a }}$ The convention above is that the lowest level of a given spin (yrast) is unprimed and the next level of a given spin is primed.

Footnotes and References

*Condensed fron Ref. ?
†Physics Jepartment, University of Tennessee, Knoxyille, TN 37916
\ddagger 1ndiana University Cyclotron Facility, Bloomington, IN 47401
§Physics Department, University of California, Davis, CA 95616
**Datâ Group, Brookhaven National Laboratory, Upton, NY 11973
tt American Public Power Association, 26 u
Virginia Avenue, NH Washington, DC 20037
\# Department of Physics and Astronomy, Vanderbilt University, Nashville, TH 37240

1. It may be rationalized that retention in the zeroth order Hamiltonian of the diagonal matrix elements of pairing could make the $0^{+\prime}$ band degenerate with the 1^{+}.
2. J. O. Alasmissen, M. W. Guidry, T. E. Mard, C. Castenada, L. K. Peker, E. Leber, and J. H. Hamil ton, Nuclear Physics, A332, pp. B2-94 (1979).
3. F. S. Stephens and R. S. Simon, Nucl. Phys. A13B, p. 25 (1972).

THEORETICAL ROTATIUNAL SIGNATURES FOR NEUTRON PICKUP REACTIONS TO ($\left.\mathbf{i}_{13 / 2}\right)^{2}$ BANDS *

J. Almberger. ' Hamamoto. 'G Leander, and J. O Rasmussen

We show with the particie-rotor model that non-yrast low-spin states, which are structurally related to the rotation-aligned $\left(i_{13 / 2}\right)^{2}$ band causing backbending at higher spins, can be populated selectively by means of $1=6$ neutron pickup from an odd-reutron target with an appropriate ground-state configuration.

We suggest that lower-spin states with relatively large, spin alignment can be located selectively by (${ }^{\text {He, ne }}$) reactions on even-odd target nuclei having the odd neytron in an $i 13 / 2$ state, i.e. 161 Dy $5 / 2^{+}$, ${ }^{167} \mathbf{E r}$ $7 / 2^{4}, 179$ Hf $9 / 2^{+}$. The value of performing such experiments has been pointed out earier ${ }^{2}$ and experimental work is now in progress ${ }^{3}$. These large- 0 neutron-transfer reactions are known to favor high-j orbitals, in contrast to (d, p) and (d, t), where lower-j orbitals are favored.

He used the parameters of the "i $13 / 2$ model" as employed in Ref. 4. The results are s mmarized in Figs. 1 and 2.

Fig. 1. Spectroscopic factors calculated from the particle-rotor model for $I=6$ and 8 . The Fermi level A is varied through eleven values in a MeV range around the $1!=5 / 2$ orbital, whose position on the abscissa is arbitrarily set to 9.5 MeV . The states with an excitation energy between 2.0 and 2.7 MeV above the calculated I = 0 ground states are marked by dots. The spectroscopic factor is indicated by the length of the horizontal bar on each dot.

Fig. 2. Theoretical rotational signatures for i13/2 neutron pickup The results for spin 6 and 8 fron fig. 2 at $\lambda=12$ and λ_{5} are displayed again in the lower and upper parts of the figure, respecisively. In addition the states of the ground band and states with spin $4,5,7$ and 9 are included. The lower, plot might be approximately relevant for a ${ }^{161}$ Dy target. For $1=12$ there are three spinaligned states, closely spaced at an energy which the present calculation way be predicting somewhat inaccurately, which have as large spectroscopic factors as the $I=6$ member of the ground band.

Footnotes and References
*Condensed from ief. 1.
'Research Institute for Physics, Stockholm, Sweden
\ddagger NORDITA, Copenhagen, Denmark
§Cepartment of Mathematical Physics, Lund Institute of Technology, Lund, Sweden.

1. J. Almberger, I. Hamamoto, G. Leander, and J. 0. Rasmussen Phys. Letters GDB (1,2) pp. 1-5 (1980)
2. B. R. Mottelson, private communication.
3. J. Garrett, G.-M. Jin, G. '.̈̈vhöiđen, J. Rekstad, T. F. Thorsteinsen and J. Waddington, private conmunication.
4. J. Almberger, I. Hamamoto and G. Leander, Phys. Lett. 808, p. 153 (1979).

SURFACE STRUCTURE OF JEFORMED NUCYEI BY RADAAL AND AMGULAR LOCALIZATION IN HEAVY ION SCATTERANG*

Abstract

The development of the classical-1init S-matrix (CLSM) formalism has made tractable the analysis of inelastic scattering data for heavy-ion systems and has provided simple and accurate semiclassical models for the excitation mechanism. These calculations demonstrate that (1) because both Coulonb and nic lear forces contribute to the excitation, scattering in this region should probe both charge and mass parameters; (2) at energies below the barrier a relatively clean separation can be made between the effects of the real and imaginary parts of the potential; (3) the short wavelength of the heavy-ion system implies radial localization; (4) the large transfer of angular momentum to the target nucleus implies localization in the orientation u : the deformed rotor.

In Fig. 1 we show excitation functions for the system $40_{\mathrm{Ar}}+16 \mathrm{Gd}_{\mathrm{Gd}}$ in the range $\mathrm{E}_{\text {lab }}$ $=100-160 \mathrm{MeV}$. Assuming the 1 MeV contour defines a surface which is generated py deforming a sharp charge radius $r_{c}=1.2 A_{2} 1 / 3 \mathrm{fm}$ and assuming a spherical projectile, we deduce that $B_{2}-0.34$ and $B_{4}-0.03$, in reasonable agreement with other deteminations of these quantities (e.g., Ref. 3). Howeyer, we bel ieve the potential contours shown in Fig. 2 are more fundamental than such model-dependent parameters and provide a direct method of comparing theoretical deformed potentials (e.g., folded or proximity) with a minimum of a priori assumption. For instance, a deformed folded potencial can be tested by its ability to reproduce the potential contours of Fig. 2

Fig. 1. Excitation functions for various states in the ground band of ${ }^{160} \mathrm{Gd}_{\mathrm{Gd}}$ excitnd by ${ }^{40} \mathrm{Ar}_{\mathrm{Ar}}$ projectiles scattered at olab ${ }^{-170^{\circ}}$. The lines represent fits by our theory. Below ~ 135 HeV the excitation is purely Coulomb.

Fig. 2. The deformed ion-ion potential contours. Figs. (a)-(c) represent the contribution of each state, and fig. (d) is the composite nuclear potential energy surface for the ion-ion interaction. Each radial unit is 2 fm . The solid lines are spherica? harmonic representations of each contour.
without including the folded potential explicitly in the scattering calculation. We may expect that resuits such as those in Fig. 2 will encourage the extension of fol ded and proximity potentials to include an adequate treatment of deformed systens. Such a progran has recently been initiated by Randrup and Vaagen for proximity potentials. 4

Footnotes and References

*Condensed from Ref. 1.
${ }^{1}$ Department of Physics and Astronony, The University of Tennessee, Knoxville, TH 37916, USA and Dak Ridge Nationat Laboratory, Oak Ridge, TN 37830, USA.
†Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

1. R. E. Heese, M. W. Guidry, R. Donangelo, and J. O. Rasmussen, Driys. Letter, 858 (2,3), pp. 201-205 (1979).
2. M. W. Guidry et al., Nucl. Phys. M274, 183 (1976); H. Massmann and J. O. Rasmussen, Nuclear Phys. A243, 155 (1975); M. W. Guidry et al, Nuc1. Phys. A295, 482 (1978).
3. K. A. Erb et al.. Phys. Rev. Lett 29, 1010 (1972).
4. J. Randrup and J. S. Vaagen, Phys. Lett. 778, 170 (1978).

GIANT RESONANCE POLARIZATION TERMS IN THE NUCLEUS-NUCLEUS POTENTLAL*

J. O. Rasmussen, P. Müller, ' M. Guidry. ' and R. Neese ${ }^{\text { }}$

Effective polarization potentials for adiabatic Coulomb coupling to giant resonances are derived for heavy-ion collisions (see Table 1). The isovector giant dipole resonance and isoscalar giant quadrupole resonance are found to contrjbute attraçtiye terms varying as $Z_{1}^{2} Z_{2}^{2} / r^{4}$ and $Z_{1}^{2} Z_{2}^{2} / r^{6}$ respectively to the effective nucleus-nucleus potential. Because of the strong Z-dependence these terms become significant in the collision of very heavy ions, dominating the far tail of the ion-ion potential. Analysis of a recently determined surface potential for ${ }^{40} \mathrm{Ar}+160 \mathrm{Gd}$ suggests the
presence of such pglarization terms. We calculate that for a $208 \mathrm{~Pb}+208 \mathrm{~Pb}$ collision the adiabatic polarization potential oyceeds the real nuclear ion-ion potential estimated by the proximity theoren for center-of-mass separation distances $r \geq 1.4\left(A_{1} 1 / 3+A_{2} 1 / 3\right)$. Furthermore. at the point where the polarization and nuclear potentials becone equal $-Y_{\text {pol }}$ may be 2-3 MeV for very heavy systams (see fig. 1). Therefore the adiabatic polarization represents a mearurable effect that may be expected to play a significant role for heavy-ion reactions in which discrete final states are observed.

Table 1. Polarization potential at grazing distance $1.6\left(s_{p}^{1}, 3+A_{t}^{1 / 3}\right)$ Fin.

Projectile	Target	$\mathrm{R}_{(} \mathrm{Fm}$)	$\begin{aligned} & Y_{Y D R}(\mathrm{MeY}) \\ & \text { G-Dipole } \end{aligned}$	$Y_{S O P}(\mathrm{HeV})$ G-Quadrupole
$\begin{aligned} & { }^{40} \mathrm{Ar} \\ & 18 \end{aligned}$	${ }_{20}^{40} \mathrm{Ca}$	10.9	0.040	0.011
	${ }_{58}^{140} \mathrm{Ce}$	13.8	0.129	
	${ }_{82}^{208} \mathrm{~Pb}$	15.0	0.182	
	${ }_{92}^{238}{ }_{41}$	15.4	0.203	
${ }_{36}^{86} \mathrm{Kr}$	${ }^{140} \mathrm{Ce}$	15.4	0.311	
	$208 p b$	16.5	0.453	
	238 J	17.0	0.511	
$208 p_{\text {b }}$	${ }^{208} \mathrm{p}$ b	19.0	1.230	0.237
	$238{ }^{\mathrm{V}}$	19.4	1.404	
238 U	${ }^{238}{ }_{U}$	19.8	1.607	0.307

Fig. 1. Calculated polarization potentials (giant modes) for the system of two 208 pb nuclei and comparison to the nuclear proximity potential. Note that by this estimate the polarization poteritial may reach several MeV before being masked by the real nuclear potential.
(XBL 7910-12119)

Footnotes and Reference

*Condensed from Meils Bohr titute report NBI-79-40 and Res. 1.
1 Lund Institute o: Technology, tund, Swesen
\ddagger Department of Physics, University of Tennessee, Knoxville, Tennessee
1. J. Rasmussen, P. Moller, M. Guidry, and R. Neese, Nuclear Physics A34]. No. 1, p. 149 (1980).

2. Macroscopic

PRODUCTION OF HEAVY ACTINIDES FRGM INTERACTIONS OF 140 and ${ }^{10} 0$ with ${ }^{244} \mathrm{Cm}$

Diana Lee. Barbara Jacak, Matli Nurmia, Cheng Ouc, Glenn T. Seaborg
and
Darlearre C. Holfman*

The transfer of many nucleons from heavy-ion projectiles to target nuclei is a phenomenon that has been known for some time. A variety of techniques has been used to measure details of the product kinetic energies and angular distributions. Hahri et ai. l lage investigated the reactions of 12 C with ${ }^{239} 9_{\mathrm{Pu}}$ and 238 J leading to 244 Cf and 245 Cf . More recently, considerable attention has been devoted to the production of actinides and possible superheavy elements by bombardment of 238 y and other heavy targets with very heavy ions (${ }^{6} \mathrm{CB} \mathrm{Ca}$, $85 \mathrm{Kr}, 136 \mathrm{Xe}, 238_{\mathrm{U}}$). However, no comprehensive measurements have been made of actinide yields between target and compound nucleus for systems involving heavy actinide targets and neutron-rich lighter heavy ions such as 180 or 22 Ne. In the current work we have used radiochemical separation techniques to isolate and measure yields of isotopes of Bk through No produced in ${ }^{18} 0$ bombardments of ${ }^{248} \mathrm{Cm}$. One of the most dramatic results is that isotopes of all these elements are formed in relatively high yields zompared to those observed for bombardment with 86 Kr , 136 xe , or ${ }^{238} \mathrm{~b}$ ions. In on-line experiments we have previously detected ${ }^{2}$ and measured the properties of a $1.5-5 e c$ spentanecus fission activity that is probably ${ }^{5} 9 \mathrm{Fm}$, the most neutron-rich nuclide known, from bombardment of ${ }^{24}{ }^{\circ} \mathrm{Cm}$ with 18_{0} ions. In order to assess, the importance of the extra pair of neutrons in 180 , we have also measured yields of the same plements for bombarcment of 248_{Cm} with 160.

In these experiments ${ }^{2}$ target of ${ }^{248} \mathrm{CmF}_{3}$ containing $924 \mathrm{\mu g} / \mathrm{cm}^{2}$ of 248 Cm was bombardec with $95-\mathrm{MeV} 180$ and 160 icns. The recoiling products were caught in a $2 \mathrm{mg} / \mathrm{cm}^{2}$ gold foil which was subsequently dissolved for radiochemical processing. After preliminary processing, the individual actinides were separated by elution from a cation exchange resin column with hot alpha-ammonium isobutyrate. (The overall chemical yield was $80^{\circ} \mathrm{n}$) The resulting actiniof fractions were assayed by standard fission counting, and alpha and ganma spectrometry. The yields dotermined for the 180 and 16_{0} bombardments of ${ }^{248} \mathrm{Cm}$ are shown in Fig. 1. They were calculated assuming all recoiling actinides escaped from the target $(6.5 \mathrm{~mm}$ diam.) and were caught in the gold catcher toil (19.5 nim diam) which was disult 3 min from the target.

Comparison of the resules for ${ }^{18} 0$ with those for 160 show that the maxima of the

Fig. 1. Yields of the heavy actinides from $95-\mathrm{MeV}$ bombardments of ${ }^{248} \mathrm{Cm}$ with ${ }^{16}$) and 180.
(XBL 811-3579)
mass-yield curves for each element are shifted to the neutron-rich side by about 2 mass units for ${ }^{18} 0$ relative to 160 , reflecting the neutron excess of the projectile. The yield curves also appear to be rather symmetric and do not drop off sharply on the neutron-rich side. The peak yields are relatively large, ranging from a few mb for the Bk and Cf to a few ub for Fm. This is to be compared with peak yields of about $a, m b$ to a few tenths of ${ }^{z}$ ub, for example, in the ${ }^{136}$ xe hombardment of ${ }^{248} \mathrm{Cm}$. In general, the maxima of the yjeld curves are smaller for the 180 than for the 160 bombardments, but the yields of neutron-rich products are much higher. These "transfer-type" reactions may
offer a method for making new neutron-iich isotopes for study that have not previously been available to us. We diso propose to similarly study reactions with ${ }^{20} \mathrm{Ne}$ and ${ }^{22} \mathrm{Ne}$ and compare the results with predictions based on various mechanisms such as transfer, deep inelastic, and incomplete fusion reactions.

Footnotes and References
*Chemistry-Nuc lear Chemistry Division, Los

Alanos Scientific Laboratory, Los Alamos, HM 87545.

1. R. L. Habn et al., Phys. Rev. C 10, 1889, (1974).
2. D. C. Hoffman et $\therefore .$. LBL Nuclear Science Division Annual Report for 1979, LBL-9711.

ADDITIONAL EVIDENGE FOR THE PRODUCTION OF ${ }^{259} \mathrm{Fm}$ IN THE BOMBARDMENT
 OF ${ }^{24 *} \mathrm{Cm}$ with ${ }^{18} \mathrm{O}$

D. C. Hoffman. * L. Lee, A. Ghiorso. M. J. Nuimia and J M. Nitschke

We used the MG fission-fragment spectroscopy system to make more precise measurements on the 1.5-second spontaneous-fission activity that we had tentatively identified as ${ }^{259}$ Fm. 1

The activity wias again produced lyy bombarding a $490 \mu \mathrm{~g} / \mathrm{cm}^{2}$ target of ${ }^{248} \mathrm{Cm}$ with $95-\mathrm{MeV}$ (in target) 180 ions from the LBL $8 i$ Inch Cyclotron. The recoil nuclei were stopped in hel ium seeded with NaCl aerosol and transferred through a capillary to the MG system where they were deposited on collection foils mounted on an 80 -position fiberglass wheel. The wheel was stepped every two seconds to bring the foils successivley between four pairs of solid-state detectors for the recording of coincident fission fragments.

By replacing the wheel with a new one containing 80 clean foils every 40 minutes we were ${ }^{2} 66$ le to reduce the buildup of the 2.7-hour ${ }^{256} \mathrm{Fm}$ to such a low level that its contribution in the first crystal pair during the first two seconds of observation was only $\mathrm{ar}^{\circ} \mathrm{m}$. No attempt was made to subtract this background from the energy spectra.

We again found the mass-yield distribution to be narrowly symmetrical. The half-life of the activity was determined to be 1.5 ± 0.1 seconds, in agreement with the value of $1.5 \pm$ 0.2 seconds measured by Hoffmank for pure ${ }^{25}{ }^{5}{ }^{\text {Fm }}$ produced via the ${ }^{25}{ }^{2} \mathrm{Fm}(\mathrm{t}, \mathrm{p})$ reaction.

The pre-neutron-emission total kinetic energy (TKE) spectrum for 542 pairs of coincident fission fragments observed in the first detector pair is shown in Fig. 1. The average TKE was found to be 233 iteV , in close agreement with the 狍號 probable TKE of 242 MeV measured for pure ${ }^{259} 9_{\mathrm{Fm}}{ }^{2}$.

The close agreement of the measured halflife and TKE with those of ${ }^{259}$ Fm would of course sypport the identification of the activity as 259 Fm . However, we feel that further

Fig. 1. The distribution of pre-neutronemission total kinetic energies of 542 pairs of coincident fission fragments observed in the first detector pair. The average TKE is 233 MeV .
(XBL 807-1547)
measurements are in order before a positive assignment is made; in particular, more information is needed about the (1.89 ± 0.88) second fission activity observed by Bemis et al ${ }^{3}$ in bombardments of ${ }^{249}$ Cf with 15 N and ascribed by them to a gpontaneous-fission branching in the dec:y of $26 \mathrm{H}_{\mathrm{H} 2}$.

Footnote and References
*Chemistry-Nuclear Chemistry Division, Los Alamos Scientific Laboratory, Los Alamos, NM 87545

1. D. C. Hoffman, D. Lee, A. Ghiorso, M. J. Nurmia, J. M. Nitschke and K. Aleklett, LBL-9711 p. 66.
2. Darlene C. Hoffman, "Fission Properties of Very Heavy Actinides", IAEA 4th Symp. Phys. and

Chem. of Fission, Julich, Germany, May 1979;
IAEA-SM-241/B14; LBL-9126 (May 1979).
3. C. E. Bemis, Jr., P. F. Dittner, R. J. Silva, R. L. Hahn, J. R. Tarrant, L. D. Hunt, and D. C. Hensley, Phys. Rev. Clu, 1146 (1977).

MAXIMUM LIKELIHOOD ANALYSIS OF NEW SHORT-LIVED SPONTANEOUS FISSION ACTIVITIES

L. P Somerville, R. C. Eggers. M. E. Leino, J. M. Nitschke, A. Ghiprso. M. J. Nurma

In the last annual repor t^{1} we discussei the observation of several spontaneous fission (SF) activities with half-lives of 19 ms , 54 ms , 1.4 s , and 4.8 s , produced in the reactions 160 t ${ }_{96}^{248} \mathrm{Cm},{ }_{8}^{18} \mathrm{O}+{ }_{96}^{248} \mathrm{Cm},{ }_{7}^{15} \mathrm{~N}+{ }_{97}{ }_{97} \mathrm{Bk}$, and ${ }_{6}^{13} \mathrm{C}+{ }_{29}^{249} \mathrm{Bk}$ and dr tected using the recoil tape transport systent. The half-lives were determined by least mean squares (LMS) analysis.

Shortcomings of half-life analysis using any of several LMS codes became apparent when dealing with fek events. Therefore, a maximum likelihood (ML) computer code was written which could accommodate up to five components, in contrast to Ref. 2, which could accommodate only one variable component. This ML code makes use of the decay time t_{i} of each nucleus in determining the decay constants λ_{j} and amounts A_{j} of each component j; it maximizes the likelihood function

$$
L=\prod_{i=1}^{n}\left(\sum_{j=1}^{m} A_{j} e^{-\lambda_{j} t_{i}} / \sum_{j=1}^{i d} \lambda_{j} A_{j} \int e^{-\lambda_{j} t} d t\right)
$$

where the integral extends over the time of observacion. This extracts the maximum amount of information from the data.

A comparison of ML and LMS analyses of the same sets of experimental data revealed that the half-1ives determined by the ML code were as much as ten per cent longer than the LMS values. Therefore, it was decided to test the ML code using computer-generated artificial data for which the half-life was fixed. Assuming a 23.3 ms half-1ife, 157 sets of 645 decay times with Poisson statistical fluctuations were generated. These event times were then analyzed with the ML code to determine the apparent half-life. The distribution of half-lives, as shown in fig. 1 has a mean value of 23.3 ms which is in agreement with the 23.3 ms half-life assumed in generating the data. A similar test of 28 sets of 645 decay times pius barkground again showed that the ML code was able to reproduce the assumed half-life.

Having been thoroughly tested, the ML code was used to analyze the results of several experiments. Table 1 lists the half-lives of

Fig. 1. Distribution of half-lives determined by the maximum likelihood code for 157 sets of 645 decay times, computer generated by assuming a 23.3 ms half-ife and Poisson statistical fluctuations.
($\sim \mathrm{BL}$ 807-1389)
the observed SF activities in ms and the projectile energies in MeV as $\mathrm{T}_{1 / 2}(E)$ determined by the inL code for experiments using the drum ${ }^{3}$ and tape ${ }^{1}$ systems.
With the ML analysis it now appears that a 20-24 ms SF actiyity was produced in the reactions $78-86 \mathrm{MeV} 15 \mathrm{~N}+249 \mathrm{BK}$ and $92 \mathrm{MeV} 160+$ ${ }^{248} \mathrm{Cm} ;$ also for $88-100 \mathrm{MeV} 15 \mathrm{~N}+249_{\mathrm{Bk}}{ }^{+}$and $109 \mathrm{MeV} 18_{0}+{ }^{248} \mathrm{Cm}$ a $15-17 \mathrm{~ms}$ SF ectivity was produced. However, on the basis of the available statistics we cannot distínguish between the $15-17 \mathrm{~ms}$ SF activity being a pure activity or the result of a small admixture of a short-lived compcaent of -5 ms with a $20-24$ ms SF activity. These data aione do not allow us to make definite isotopic assignments, due to the non-specific nature of the fission process. But these results, together with the excitation function data of Refs. 1 and 3, are now no: inconsistent with the possible assignment of 104 ff to the $20-24 \mathrm{~ms}$ SF activity and another

Table 1

reaction	system	component 1	component 2
$15_{N}+249_{B k}$	drum tape	$23 \pm 2(78,82,86,15 \pm 4(88,100)$	
$16_{0}+248_{C m}$	tape	$21 \pm 1(92)$	
$180+248_{C m}$	tape	$16.7 \pm 1.5(109), 53 \pm 4(89)$	

SF activity with $Z<104$, (e.g., 261 lr) to the $15-17 \mathrm{~ms}$ SF activity. An assignment of the $50-55 \mathrm{~ms}$ SF activity to ${ }_{10}^{26}$ erf would be consistent with our data.

References

1. J. M. Nitschke et al., Nuclear Science Division Annual Report 1978-1979, LBL-9711, p. 63.
2. V. B Zlokazov, Nuc 1. 1nstr. and Meth. 151, p. 303, \{1978\}.
3. J. H. Nitschke et al., Nucl. Phys., to be published (1981).

EXOTIC REACTIONS IN THE BOMBARDMENT OF ${ }^{204 P b}$ by ${ }^{10}$

A. Ghiorso. R. M. McFarland. M. Leino and S. Yashita

In the reaction ${ }^{248} \mathrm{Cm}+180$ we have produced ${ }^{1}$ a 1.5 sec spontaneous fission activity with a 15 nb cross section. Within experimental error it demonstrates the same characteristics, symmetric fission, total kinetic epergy, and half-1ife, as the known ${ }^{2}$ nuclide $259_{f m}$. If this assignment is correct it suggests the intriguing reaction mechanism in which the 18_{D} projectile transfars a ${ }^{11}$ Be nucleus to the target with minimal kinetic energy loss.

To test this hypothesis we have bombarded 20 Ppb with 180 at the 88 Inch Cyclotron and sought the equivalent product, ${ }^{219} \mathrm{Rn}$. This nuclide decays by the sequence:
$219 \mathrm{Rn} \frac{\mathrm{a}}{3.96 \mathrm{~s}} 215 \mathrm{P}_{\mathrm{o}} \frac{\mathrm{a}}{1.78 \mathrm{~ms}} 21 \mathrm{Pbb}_{\frac{\mathrm{B}^{-}}{36.1 \mathrm{~m}}} 211_{\mathrm{Bi}} \frac{\mathrm{a}}{2.15 \mathrm{~m}}$
The reaction recoils were stopped near the target in helium and the atoms conducted quickly into a metal sphere of 5 -inch diameter with a gas flow rate of about $10 \mathrm{~cm}^{3} / \mathrm{sec}$. An insulated plate charged at -600 V was placed at the top of the sphere to collect the granddaugher 211pb ions generated by the alpha decay of the precursors.

Directly produced alpha activities that gould interfere with the search for ${ }^{211} 1 \mathrm{~Pb}$ from ${ }^{219}{ }^{\text {Rn }}$ were removed with both a 3 -micron filter and a coaxial electrostatic precipitator in the line connecting the target chamber to the sphere. We measured the efficiency of the system by using a thin $223_{\text {Ra }}$ source to generate 219 Rn
at a known rate into the target chamber, and found it to be nearly 100%. After each bombardnent of 0.5 to 1 hour the collector plate was removed and analyzed for the distinctive alpha particles from $21_{B i}$ in secular equilibrium with 2llpb.

A small number of prel iminary bombardments have been made at 110 MeV . The only alpha activity observed on the collector plate was fron 211_{Bi} and decayed with about a hal f-hour half-life, at a rate correspondirg to a cross section for ${ }^{219}{ }^{\mathrm{Rn}}$ of roughly 10 nb . Further bombarments are planned at different energies.

Using the same target, we have aiso detected ${ }^{220} \mathrm{Fr}$, , resumably made via the mechanism ${ }^{208} \mathrm{~Pb}\left(18_{0}, 5_{\mathrm{Li}}\right)^{220} \mathrm{Fr}$. This nuclide decays by the sequence:

The experiments were set up to milk alpha recoils from the decaying ${ }^{220} \mathrm{~F}_{\mathrm{r}}$ and detect the 2) ${ }^{2}$ ha radiations from the 60.5 m duo ${ }^{212} \mathrm{Bi} \longrightarrow$

The francium atoms were stopped in hel ium loaded with NaCl aerosol and transferred yia helium jet to catcher plates in vacuum. The plates were mounted on an 80-step wheel that moved one step every 28 seconds. Secondary a]pha-recoij catchers were mounted next to the first ten plates following the helium jet. After one cycle of the wheel these catchers were removed and analyzed for the alpha radiations from ${ }^{212} 2_{B i}$ and 212 Po with a set of 10 Si Au detectors.

Only one experiment has been tried so far, but it indicateg, that ${ }^{220} \mathrm{Fr}$ is producec. Some 42 events from $212 \mathrm{Bi} /{ }^{212} \mathrm{Poo}^{2}$ decaying with a half-iife of about an hour were observed in the first four secondary catchers. The amount of activity in each foil successively decreased consistent with the half-minute half-life of ${ }^{2} 20 \mathrm{Fr}$.

If we assume that the ${ }^{220}{ }^{2} r$ gas jet yield was 50^{\prime}; and that 50° of the alpha-recoiling daug ters were collected, then the cross section for the reaction ${ }^{208} \mathrm{~Pb}\left(18_{0}, 6:\right)^{220} \mathrm{Fr}$ is rounhly 0.3 microbarns at 110 MeV .

We calculated optimum Q-values and optimum excitation energies for these bombardments to
see if the ${ }^{248} \mathrm{Cm}$ experiments energecical.y fayored the ${ }^{11} 8 e^{-1}$ transfer more than the $208_{p b}$ experiments did. This preliminary caliculation includes only Coulonb and reçoil effects on the trajectory of the system. ${ }^{3}$

From Table 1, no great difference between these bombardments is inmediately obvious that would explain the contradictory experimental results by Gopt considerations alone. More thorough calculations will be done that will include nuclear and centrifugal contributions to Qopt and, more importantly, that will consider transfer amplitudes and de-excitation survival probabilities of the heavy products.

The $\mathrm{Q}_{\text {opt }}$ calculations for the ${ }^{18} 0+$
${ }^{208 p b}$ system shom that at lower initial kinetic energies, around 80 MeV (c.m.s.), - Qopt is 43 MeV for ${ }^{219} \mathrm{Rn}$ production. This is too 180 to overcome the -0 gg of 48.1 MeV . For 220 Fr production, $-\mathrm{Q}_{\mathrm{opt}}$ is 52 MeV , higher than the $-\mathrm{Qgg}_{\mathrm{gg}}$ of 48 . I MeV. This suggests that ${ }^{220} \mathrm{Fr}_{2}$ should be produced at lower energies with ${ }^{21} 9_{\text {Rn }}$ beginning to show up at higher energies. Our planned measurement of the excitation functions of these reactions should shed light on these estimates.

Table 1

System	Products	$\begin{aligned} & \text { Einc (expt) } \\ & (\mathrm{MeV}) \end{aligned}$	$Q_{g g}$ (MeV)	Qopt (MeV)	E^{a} (MeV)
$18_{0}+248_{C m}$	${ }^{259} 5 \mathrm{~m}^{2}+7 \mathrm{Be}$	95	-42.7	-47.4	4.7
	$260 \% d \mathrm{ab}+6_{L i}$		-44.2	-57.8	13.6
$180+208 p b$	$219_{R n}+7_{B e}$	110	-47.1	-53.7	6.6
	${ }^{220} \mathrm{Fr} \mathrm{r}^{+6}{ }^{\text {Li }}$		-48.1	-65.7	17.6

${ }^{\text {a }}$ Droplet model ${ }^{4}$ mass used
bimaginary nucleus

References

1. D. C. Hoffman, D. Lee. A. Ghiorso, M. J. Nurmia, J. M. Nitschke, and K. Aleklett, LBL-9711, p. 66 (1980).
2. Darleane C. Hoffman, "Fission Properties of Very Heavy Actinides," IAEA 4 th Symp. Phys. and

Chem. of Fission, Julich, Germany, May 1979; IAEA-5M-241/B14' LBL-9126 (May 1979).
3. F. Hubert, H. Delagrange, A. Fleury, Nucl. Phys. A 22日 (1974) 415-431.
4. William D. Myers, Droplet Model of Atamic Nuclei, Plenum, New York 1977.

ACTINIDE PRODUCTION FROM THE REACTION OF ${ }^{30} \times$ 有 with ${ }^{30}{ }^{\circ} \mathrm{Cm}$

K J. Moody, D. Lee, R. Welch. B V. Jacak, R. M. McFarland. P. L. McGaughey. M. J Nurma,
M. Perry. G. T. Seaborg, A. W. Lougheed." F. A. Baisden." andi E. K. Hutet*

We have measured the production crosssections for many of the acfinide nucl ides formed by the reaction of 136 xe with ${ }^{248} \mathrm{Cm}$, at a projectile energy between 865 MeV and 795 Mey (1.2 to 1.1 times the Coulomb barrier). These are plotted in Fig. 1 as a function of the product mass sumber. The trans-target (Z greater than 96) cross-sections for a given element show peaks in the curves at slightly lower mass numbers compared with those measured for the same element in the reaction of ${ }^{48} \mathrm{Ca}$ with ${ }^{248} \mathrm{Cm}$. 1 An extrapolation of the subtarget (2 less than 96) cross-sections indicates that the ${ }^{136}$ xe pius ${ }^{248}$ Cm reaction may prouide a viable method for the production and identification of new neutron-rich Pu and Am isotopes.

This set of data was obtained from two irradiations at the SuperHILAC, where a beam of 1130 MeV -36xe was delivered to our recently constructed actinide target facility ${ }^{2}$. The bean was focused through a $5-\operatorname{mm}$ collimator, after which it passed through a tnin Havar isolation foil and a $2.6 \mathrm{mg} / \mathrm{cm}^{2}$ beryllium target backing before striking a target consisting of $2.1 \mathrm{mg} / \mathrm{cm}^{2}$ of 248 Cm , which was present as the fluoride. Recoil nuclei were collected with a conical catcher foil between the laboartory angles of 15° and 75° with respect to the beam direction, No catcher foil geometry corrections have been applied in calculating the crosssections summarized in Fig. 1.

During the first irradiation of 18 hours an average beam current of 300 electrical nanoamperes passed through the target. The gold catcher foil was dissolved in aqua regia and the resulting solution was passed through an anion exchange column (Dowex-1 resin). The transplutonium elements were eluted from the column with concentrated HC , while the lighter actinide elements remained on the resin. The concentrated HC] sclution containing the heavy actinides was evaporated to dryness, after which the activity was dissolved in a small volume of dilute HCl and loaded onto a cation-exchange column (Dowex-50xi2) at an elevated temperature. The actinides from Cf to Md were separated from each other by elution with a low pH a-hydroxyisobutyrate solution. The column was then stripped, giving a solution containing Am, Cm and Bk, which was passed through a catio:iexchange column in saturated HCl to separate the actinides from lanthanide contaminants. The original anion-exchange column was stripped of the elements from Pa to Pu , which were further processed to remove any fission products. The chemical fractions containing ff to Md were counted to detect alpha and spontaneous fission activities, using a pulse-height analyzer, for a period of over one-half year with Si surfacebarrier detectors. The other fractions were counted to detect ganma-ray emitting activities,
with Geili) detectors, for up to several weeks. The production cross-sections were obtained from decay curve analysis of the observed activities.

A second irradiation of 30 minutes duration, with an average beam current of 180 electrical nanoamperes, was performed to ascertain the yield of the short-lived ${ }^{247}$ An and 246 Am (two isoners). The aluminum catcher foil was dissolved in concentrated NaOH , and An was co-precipitated with La(OH)3. The precipitate was dissolved in HHO_{3}. An(III) was oxidized to Am(VI), and LaF_{3} was precipitated to remove the lanthanides from solution. Am(VI) was then reduced to Am(III), which was co-precipitated with LaF_{3} in a second step. The insoluble product was ready for counting oi the gamma-ray activities within 40 minutes after the end of bombardment.

Fig. 1. Production cross-sections vs. product mass numbers from the reaction of 136 xe with 248 cm .
(XBL 808-1558)
Comparison of the trans-target crosssections from the reaction of ${ }^{136} \mathrm{Xe}$ and ${ }^{5} 48 \mathrm{Cm}$ tions from the reaction of those from the reaction of ${ }^{18} \mathrm{Ca}$ and 248 Cm , at an energy of 1.1 to 1.0 times the Coutomb barrier, shows that for products near the target the distributions of crosssections as a function of mass number for a
given element are very similar for the two reactions. As Z increases, the distribution for the ${ }^{136}$ xe plus ${ }^{248} \mathrm{Cm}$ reaction seems to shift to lighter mass. This shift is about one mass unit in the distrirition of Fm isotopes. The peak cross-sections remain roughly equal in magnitude for the two reactions. Examinations of the cross-sections for the production of Pu and Am isotopes indicates that the crosssections for the unknown nuclides 247 Pu and
248 Am should be on the order of tenths of millibarns and millibarns, respectively.

Footnote and References

*Lawrence Livernore Laboratory, Livermore, Ca. 94550

1. E. K. Hulet et al., Phys. Rev. Lett. 39, 385 (1977).
2. K. J. Moody, M. J. Hurmia and G. T. Seaborg, in this Annual Report.

PRODUCTION OF ${ }^{194 A t}$ IN THE BOMBARDMENT OF ${ }^{141}{ }^{1} \mathrm{Pr}$ WITH ${ }^{36} \mathrm{Fe}$

S Yashta. M Lemo. and A Ghorso

The availability of rather neutron-deficient heavy projectiles such as ${ }^{56} \mathrm{Fe}$, together with the development of a fast on-line mass separator system, enable us to produce and detect new neutron-deficient isotopes in the At region.

> We bombarded a $0.6 \mathrm{mg} / \mathrm{cm}^{2} 14 \mathrm{lpr}$ target at the SuperHILAC with 56 Fe particles at energies from 243 MeY to 275 MeV. After the separation of the beam by the helium-filled SASSY mass separator magnet the fusion recoil products were focused by quadrupole magnets and passed through a pair of position sensitive counters to get tine of flight information. Finally the recoil nuclei were implanted in an array of 10 silicon surface barrier detectors that were used to detect their subsequent dipha decay.
> In this bombardment an unknown 7.21 MeV alpha activity with a 0.2 sec halflife was found. We searched for the possible alpha decays of daughter nuclei within 10 seconds following the detection of a 7.21 MeV alpha particle. As a result, 6.45 MeV alpha particles with a halflife of 5 ± 2 sec were found to be correlated with the 7.21 HeV alpha particles. The probability that this correlation is accidental was estimated to be less than 0.000l. Since the
known nuclide 190 Bi (6.45 MeV alpha emitter with a 5.4 sec halflife) has the observed characteristics. ${ }^{1}$ we assigned the 7.21 MeV alpha activity to 194 At , the mother of 190_{Bi}. The decay scheme is as follows:

$$
{ }^{194} \mathrm{At} \frac{7.21 \mathrm{MeYa}}{0.2 \mathrm{~s}}{ }^{190} \mathrm{Bi} \frac{6.45 \mathrm{MeV}_{a}}{5.4 \mathrm{~s}}{ }^{186} \mathrm{Ti}
$$

This assignment is further supported by the results of a calculdicion with the neutron evaporation code JORPLE ${ }^{2}$ which predicts that the cross sectjog for the reaction $14 \mathrm{Pr}^{56}{ }^{5 \mathrm{Fe}, 3 \mathrm{n})}{ }^{194_{\text {At }}}$ has its maximum at 256 meV bombarding energy. Dur experimental exsitation function for this new activity has a maximum at 258 MeV with 15 MeV FHHM. The cross secticn is of the order of 1 ub .

Footnote and Refere.ces

*On leave from University of Helsinki, Finland

1. Y. Le Beyec, M. Lefort, J. Livet, N. T. Porile, A. Sijvola, Phys. Rev. C9, 1091 (1974)
2. J. Alonso, Gmelins Handbuch der anorganischen Chemie, Erganzungswerk, 7b A1, II, Springer Verlag, Berlin (1974)

PRODUCTION OF ${ }^{192}$ Po IN THE REACTION ${ }^{56} \mathrm{FE}+{ }^{140,142} \mathrm{Ce}$

M. Leino. S. Yashita, and A. Ghiorso

The recoil spectrometer system SASSY at the SuperHILAC has been used to study the fusion products from the reaction $56 \mathrm{Fe}+140,142 \mathrm{Ce}$. The $3 i 5 \mu \mathrm{~g} / \mathrm{cm}^{2}$ target was prepared by evaporating natural cerium onto a $2.05 \mathrm{mg} / \mathrm{cm}^{2}$ Havar foil. The reaction products recoiling from the thin target were separated from the primary beam in the SASSY magnet. An array of 10 Si surface barrier detectors each of which had an active area of $12 \times 27 \mathrm{~mm}^{2}$ was used for measuring the
recoil energy of the products as well as the 2] pha decay energies of alpha-active nuclei produced. in a set of earlier runs which have been used as comparison, the tine of flight of the recoil products between two gas counters was measured also. The time of flight and the energy of the recoil products are useful in discriminating against recoil nuclei that are not complete fusion products, but still fly through SASSY. In order to measure the
excitation functions for different x products. six bombardments approximately equidistant in energy ranging from 241 MeV to 274 MeV were made.

In the measured alpha-spectra there was n continious background, probably produced by (n, a)-reactions and recoiling (filling gas) Henuclei, which are beiow the threstiold to produce a signal in the gas counters. This background is created when the beam is on. In the final dnalysis only alpha events outside the beam pulses were accepted, and the resulting alphaspectra were practically background-free. The FWHM of the alpha peaks was approximately 50 kev. The halfife of an alpha activity was determined in the following way: For each alpha particle of a given energy the recoil event in the same detector that had the expected recoil energy (and velocity, if measured) and that preceded it and was closest in time to the alpha particle was chosen as its probable emitter. Thus the average counting rate in each detector determines an upper limit for the hal flife that can be measured. The distortions in the decay curves caused oy the choice of a wrong recoil nucleus as the emitter of the alpha particle have been corrected in determining the halflives in this work. Since the daughters of the light Po isotopes produced by alpha decay have small alpha decay tranches (3.3 or lees) it has not been possible to observe mother-daughter or longer delay chains. The assignment of the observed activities is based on the measured excitation functions and on half-life and alpha enerny predictions and systematics.

In this work the previously known isotopes 193-196 P_{0} were observed. In addition about

1000 alpha decays from an activity assigned to ${ }^{192} \mathrm{Ppo}_{\mathrm{o}}$ were measured. Assuming a 10° refficiency for the observation of the alpha decay of ? fusion product in SASSY, the peak production cross section for $19 \%_{0}$ in the reaction ${ }^{56} \mathrm{Fe}$ +140 ce $-19 \mathrm{P}_{\mathrm{o}}+4 \mathrm{n}$ is of the order of $10 \mu \mathrm{~b}$. The measured alpha energy is $7.17: 0.02 \mathrm{MeV}$ and the halflife is $34^{-} 3$ es. Of the mass tables published in Ref. 1 the systendics of Liran and Zeldes seem to reproduce the experimental trend of the alpha energies of the light Po nuclei most closely. The prediction of biran and Zeldes for the alpha energy of ${ }^{19}{ }^{2} \mathrm{P}_{0}$ is 3.45 MeY, but from the discrepancy between the predicted and experimental alpha energies for neigiboring Po isotcpes it can be estimated that this value is too high by - 200-230 kev. The extrapolation of the alpha halflife systematics of known light Po isocopes to 192po gives a halfiffe of the order of 50 ms . The TadgeperaHuraila prediction is 30 ms . The alpha energy measured for 192Po in this work differs significantly frge the value of 7.12 MeV published previcusly.?

Footnote and References

*On leave fron University of Helsink, Finland

1. S. Maripuu (Ed.) Atonic Data and Nucl. Data Table 17, Mos. 5-6 (1976).
2. S. Della Hegra, B. Lagarde, and Y. : E Beyec, J. de Phys. Lett. 38. 393 (1977).

CHARGED PARTICLE EMISSIUN FROM ${ }^{194} \mathrm{Hg}$ COMPOUND NUCLEI: ENERGY AND SPIN DEPENDENCE OF FISSION-EVAPORATION COMPETITION

M. Rajagopalan. © D. Logan, J. W. Ball. ' M. Kaplan. 'H Delagrange. * M. F Rivet. *
J. M. Alexander. * L. C. Vaz. * and M. S. Zisman

Reactions between complex nuclei often give rise to intermediate transition systems with very high spins and excitation energies. For lighter projectile-target combinations this is evidenced by statistically equilibrated compound nuclei. Here the cross section measurements of evaporative $H / H e$ emission, fission, and fusion residues make possible the improvement of our understanding of nuclear de-excitation and the testing of equilibrium theory. To this end twelve reactions, indicated in Table 1, were sfudied. All lead to the compound system 194 Hg , over the excitation energy range of 57 to 195 MeV . The ${ }^{12} \mathrm{C}, 1^{19}$ and $125 \mathrm{MeV}{ }^{20} \mathrm{Ne}$ beams were supplied by the 8; Inch Cyclotron and the remaining beams by the SuperHILAC. Fission and evaporation residues were detected by a gas ionization chamber and H / He by solid state telescopes ($45 \mu \mathrm{~m}, 500 \mu \mathrm{~m}, 5 \mathrm{~mm}$ Si detectors). Coincidences were al so measured between fission and H / He.

In all cases the evaporative component of H/He emission was indicated by center of mass angular distributions which showed backward angle peaking. Morever, there were several factors suggesting that evaporation occurred prior to scission. For example, with the lighter projectile systems the coincidence measurements set an upper 1 imit of 5 e; on the fraction of H / He in coincidence with fission. Also, for these and the remaining systems there were three additional points: (1) The shapes of the singies spectra were nuch narrower than those expected from fission fragment evaporation. (2) The high ${ }_{\mathrm{He}}$ to 1_{H} ratio ? 0.6) indicated unrealistically high spins of fission parentage. (3) The coincident H/He energy spectra did not exhibit the kinmatic shifts expected of evaporation from the moving fission fragments.

14，weation spment												
比量 Terge	${ }^{11 e^{c}}$	$\begin{aligned} & 11_{c} \\ & 18 e_{y} \end{aligned}$		$\stackrel{4}{4}_{44_{6}}$	${ }^{17} \mathrm{c}$	${ }^{19}$	134_{5}^{4}	w_{c}	15			${ }^{4}$
$c_{148}(\mathrm{NaV})$	71	186	123	1\％	121	335	272	M	18	27	25	$3{ }^{3}$
c＊（MaF3）	51	\％	＊	－	se	＊	18	142	148	248	188	158
${ }^{3}$	－	246	116	35＊	acs	218	7．5＊	514	480	248	1tes	\cdots
${ }^{2}$	－	17	6.8	$2.0 *$	78	8	4.7	53	－1	31．4	Hen	$1{ }^{1}$
${ }^{3}$	－	4	1.4	1．04＊	11	14	7.7	17	51	15.8	1耍	56
4 er	34	136	23	31	188	153	37	327	384	27	985	44
Ha	545	435	451	＊	45	131	＊	53	317	\％	183	144
Pretee	21	390	6.1	－30	$4{ }^{4}$	73	74	Et	10＊	418	48	1630
Tution	548	005	48	94.	1055	1131	440	140	189	48	4810	［53）
${ }^{\text {Unefla }}$	－	0.61	0.41	©．6）	B．00	0．78	1．81	©． 71	－n	－．\％	－ $\mathbf{H y}^{3}$	－．tet
4 er	35.5	3	53	46	43	57	B	63	3	1星1	45	14.
4	13	17	75	16	15	2	$\%$	3t	\％	x	36	＊
$1 / 1$	＊	0．23	－ 0.12	0.601	0.25	0.75	－${ }^{\text {a }}$	－．34	0.38	0.84	0.94	0．4）
${ }^{7}$	－	6.014	－cees	－ 0 明	日．${ }^{\text {a }}$	0．042	4.0	E．en	－ 6	－mb	6．14	－．ay
1	－	0.011	H．003	－．005	0．01	－ 0 en	c．ent		－．ny	－． 016	0．	－6．4
4en	0．035	－．1s	0．0\％	0.68	0.17	C． 11	－${ }^{\text {cent }}$	－2．26	－2．2	－．23	－． 4	4
te	0．\％	0.84	－．ters	－1．80	0．43	c． 11	4.10	＊＊＊	0.23	－14	－．14	－＊
Ftantom	6.04	0.41	0.695	－． 84	－． 37	0．61	－． 8	－6．6	－ 37	－． 02	5 d	＊．02

[^5]The identity of fission products tats univer－ sally unabiguous at angles near 90° in the cent ter of mass and c：oss sections were estimited as de／d d^{C} ．．．．．．$\left(90^{*}\right) \times 2 \mathbf{N}^{2}$ with the assumption that the angular distribution goes as $1 / \sin 0$ ． The identity of the fusion residues，inowever， suffered in most systems from possible çontri－ butions from incocaplete fusfon paths． 1,2 Because of detector energy thresholds this was mainly true for the systeas inyolving the heavier，more energetic projectiles．

Shown in Table 1 are the cross sections and cumulative decay fractions for the systens indi－ cated．The latter quantities mere calculated as the ratio of the emission cross section in ques－ tion to that of the complete fusion cross sec－ tion．Also listed are the critical angular momenta，computed under the sharp cutoff model， for fusion（ $\ell_{c r i t}$ ）and for evaporation residue survival（ $\ell_{\text {er }}$ ）．Hot listed here，but illus－ trated in Fig．1，are cumalative alpha decay fractions for interedfate regions of spin spanning the range between $l_{\text {crit }}$ values from different entrance，channels，but with the same excitation energy．${ }^{3}$

Figure 1 illustrates the behavior of ${ }^{H} \mathrm{He}$ emission and evaporation resicue（ER）survival as a function of excitation energy and average
spin．As is evident，the probability for He elission（and H wlso）increase rapidly with E＊ wille decreasing slowly with spin．This is true even for spias at or greater than that at wich the IIquid drop model predtets aero fission barrier（ -80 n ）．

Shom in Fig． 2 is the Lehavior of Rer （ocF／$/ \pi \pi^{2}$ ）as function of E and $L_{\text {crit }}$ for the present systim as well as several others reportied in the ifterature． 4 To a first approxiation，the statistical Boltamm model predicts thot 4 er should reasin equal to $\sum_{\text {grit }}$ until near the point at which the fis－ sion barrier approaches the neutron separation energy and thereafter Jevel off as the barrier continues to decrease．However，what is observed for all systens above is that there appears to be a distinct secondary rise at large ecrit and／or E＊values．

It is certainiy clear that part or all of this trend may we accounted for by extensive pre－equiliforive pathays to the ER products． Ho：ever there is also a strong suggestion that the surprisingly large $H /$ the enission is directly responsible for the fusion survival even at spins for which the fission barrier approsches zero．In either case，to retain the validity of the statistical model at high E^{*} and／or J the
existing framework must be adusted to allow for both avenues. Whfle great flexibility is possible by incorporating energy- and exit-channel-dependent level densities, it is possible that the large calculatad nuber of decay channels for fission ay be irreconcilable with the experimental observations of large H/he evaporation probability at high E* and J. These results may thus be reflecting in evolution of competition between evaporation and fission away from pure phase space models at lower energies to mechanises that call for the inclusion of reaction dynamics.

Fig. 1. Cumulative decay fractions for evaporation residues (a) and ${ }_{H e}(b)$ vs average spin. The letters represent points from Table 1 from the various reactions as shown in Fig. 2. The high-spin zones are shan as: 0,80 HeV; 0 . 98 mev;: 142 Mer; 0 , 194 MeV. The nearly vertical arrows for 4 the crudely represent evaporation probabilities for each separate step in the evaporation sascade. For ${ }^{19}{ }^{4} \mathrm{Hg}^{*}, \mathrm{E}^{*}=$ $194 H \in V, J=56$, one might guess for the first four evaporation steps that $A d \approx 2$ and $\Delta E^{ \pm} \approx 12$ for the neutron exission that is expected to dominate. Therefore the suland He evaporation probab.iity is $=0.81-0.25=0.56$ or for each individual step $P_{\alpha} \approx 0.14$.
(XBL 807-10817)

Fig. 2. The dimensignless evaporation residue cross section ofelva ws 4 crit for several reactions os infícated. (i) ota fro this wort. Encitation energies are moted for reactions leading to $\}^{4} \mathrm{Hg}^{*}$. (b) and (c) Data from lef. 4.
(XBL 807-10818)

Footnotes and leferences

State University of Mew York at Stony Brook, Stony 8rook, MY 11794
tCarnegfe-Hellon University, Pittsburgh, PA 15213
I. H. Delagrange, D. Logan, M. F. Rivet. M. Rajagopalan, J. M. Alexander, M. S. Zismin, M. Kaplan, and J. W. Ball, Phys. Rev. Lett. 43, 1490 (1979).
2. D. Logan, H. Delagrange, N. F. Rivet, R. Rajagopalan, J. M. Alexander, K. Kaplinn, M. S. Zisman and E. Duek. Phys. Rev. C 22, 1069 (1900).
3. See for example, R. C. Reedy, M. J. Fluss, G. F. Herzog, L. Kowalski, and J. M. Hiller. Phys. Rev. 188, 1771 (1969); A. H. Zebelam, L. Komalsk I, J. M. Milier, K. Beg, Y. Eyal, G. Yaffe, A. Kandil and D. Logen, Phys. Rev. I 10. 200 (1974).
4. B. Tanain, C. Mgö, J. Peter, and F. Hanappe, Wuc 1. Phys. A252, 187 (1975); H. Gauyin, D. Guerreau, Y. Lefeyec, M. Lefort, F. Plasil, and X. Tarrago, Phys. Lett. 58, 163 (1975); H. C. Britt, B. H. Ertkila, R. H. Stokes, H. H. Gutbrod, F. Plasil, R. L. Ferguson, and M. Blann, Phys. Rev. C 13, 1483 (1976); S. Della Megra, H. Gavin, H. Jungelas, Y. Leseyec, and H. Lefort, Z. Physik A282. 65 (1977).

COMPAPUSON OF SPECTRA FOR DEEP-MELASTIC AND COMPOUND NUCLEUS FEACTIONS-

R. J. McDonsld, G. J. Woanisk, A. J. Pacheco, ${ }^{\text {t }}$ C. C. Hzu, ${ }^{\text {T D. J. Morricery, L. G. Sobotk, L. G. Moretto }}$ C. Schuck.'S. Shin, H. Khuge. ' F. S. Stephens and R. M. Dismond

Recent studies of the continuur r-ray spectra following compound nucleus (CN) formition have been valuable in understanding muclear structure at high spin. One naturally asks whether this information ay be applied to other energy and angular momentum regines, for exinple, deep inelastic (DI) reactions.

Important characteristics of continurn r-ray spectra from rotational nuclef formed in the CM reactic.: are the following: "bung" at about 1.0 MeV formed by the stretched E2 yrast and yrast-like transitfons, where the high-energy edge is observed to move to higher energies as spin increases, and an isotropic "statistical tail" extending to several Mey. The "buep" structure is quite evident for rotational nuclef, but becomes less pronounced for products near closid shells.

Figure I(a) illustrates the general features of in-plane and gut-of-place r-ray spectra from the DI reaction ${ }^{165} \mathrm{Ho}+165^{\mathrm{Ho}}$ at $8.5 \mathrm{MeV} / \mathrm{A}$. The spectral shapes are similar to those observed in CN reactions and display the characteristic "E2 bump" at about 0.6-I. 2 HeY. A comparison of these two spectra showe that the bunp is more pronounced in-plane where the angular distribution for stretched E2 transitions peaks. Aiso evident is the statistical tail, extending to several Mey, and isotropic within experimental uncertainties.

In-plane r-ray spectra, normalized so that the integral of each curve is equal to the average number of r-rays enitted, ©L, $>$, are shown in Fig. 1(b) for several $Q-$ walue regions. The upper edge of the E2 bump moves to higher energy as Q increases through the quasi-elastic (QE) region ($-0-150 \mathrm{MeV}$) and stabilizes in the DI region (-150 to 400 MeV). This effect, having the sume spectral shapes for the regions $148<\mathrm{Q}<191 \mathrm{MeV}$ and $233<0<276 \mathrm{MeY}$, indicates that the spin transfer is saturating. r-multiplicity data (not shown) verifies this effect. The upper edge of the EZ bup moves from about 0.7 MeV to 2.0 MeV as Q changes from zero to 150 MeV . Over this same range of Q . $\left\langle H_{7}\right\rangle^{\prime}$, changes from - 5 to 30 . This is consistent with the findings for rotational nuclei whre $E \times$.

The statistical tail has mearly the sate slope for each spectrum. One can estimate the number of statistical transitions in each spectrum by fitting a function:

$$
F\left(E_{\gamma}\right) \times E_{\gamma}^{2} E X P\left(-E_{\gamma} / T\right)
$$

where T is an effective nuclear temperature, and is taken here as 0.6 MeV. Upon doing this, we obtain a somewhat varying number of statistical transitions as a function of Q bin, going from 0.9 to 2.1 to 3.3 to 3.3 for the four 0 regions shown.

fig. I (al int and out-of-plane poray puiseheight spectra associated with reaction products having $0 \approx-140 \mathrm{MeV}$. (b) In-plane r-ray spectra for several o-value bins.
(XDL 806-1134a)

In sumary, the gemeral characteristics of the corstimu r-ray spectra for rotational nuclei forned by DI reactions are sidilar to those formed by in reactions. This sideilarity opens the door to siznifficant new experitents in DI reactions using the same techniques that have proven so valuable for CM reactions.

Footnates

Condensed, in part, from LBL-11057, 6. J.
Yozniak, et al., Phys. Rev. Lett. 45, 1081,
(1960)
Permanent addresses:
ttomision Macional de Energia Atomica, Argentina
\ddagger Institute of Atooic Energy, Beijing, Chinc
§̧. S. N. S. M., Orsay, France
ishanghai Institute of Muclear research, China
IIHahn-Meitner Institute, Serlin, Germany

SYNTHESIS OF HEAVY AND SUPER HEAVY ELEMENTS NU THE DEEMY WELASTIC COLLHSON OF 2mu NTHH *aCm

J. Michael Nitschke, W. Bruchte.* H. Geggotes," J. V. Krous.* M. Schadel." K. Summenwr.*

R. Stakemem.' N. Truutmann." and G. Herrmann'

This is a preliminary report about an attenpt to produce super heavy elements (SHE) and to study the yield of actigiges in deeply inelastic collisions (DIC) of 238 d with 248 Cm .

Cn metal targets 4 to $7 \mathrm{mg} / \mathrm{cm}^{2}$ thick were bombarded with $23 \mathrm{~B}_{\mathrm{y}}$ ions from the Unilac. Darmstadt (Hest Germany). The target thickness was sufficient to degrade the beid energy from $7.5 \mathrm{MeV} / \mathrm{A}$ to below the interaction barrier. An unexpected experimental difficulty was encountered when the targets failed at totipl integrated beam currents of abourt $5 \cdot 10^{14} \mathrm{U}$ ions, a factor 100 below the expected value. Nevertheless two experiments were carried out as planned albeit with reduced sensitivity: target recofls were stopped in (1) copper catchers and
cherically separated, and (2) in $\mathbf{K r}$ gas and analyzed for volatile, noble SME's.

The results for the heaviest actinides observed in the chemistry experinent are shom ig Fig. 1 together yith previous results from 48 Ca (Ref 24) and 136 Xe (Ref $\mathrm{f}_{2} 2$) boxpardments of 248 ta targets and $238 \mathrm{y}+234$ (Def. 3) for comarison. SHE's were not observed in either experiment with cross section Ifint of less than 1 io for half 11 ves between 1 and 100 days. Cross section predictions by Riedel et al.. using a diffusion model are of the sane order of mignitude.

Several observations can be made with regard to the data shom in Fig. 1:

Fig. 1. Cross gectigns for the formation of the heaviest actinides in the reaction $23 \mathrm{~S}_{\mathrm{J}}+248 \mathrm{Cm}$ at $\leq 7.5 \mathrm{MeY} / \mathrm{A}$. other reactions for comparison. The curves are dram to guide tire eye.
(XBL 808-1739)
(1) The cross sections for the formetion of the heaviest actinides are about 3 orders of gignitude higher in the 238 phomardment of a ${ }^{248}$ Cm target compared to a 238 target. This is obviously due to the fact that the nuclear diffusion is strongly dependent on AZ.
(2) An intercomparison of different projectiles on the same 248 Cm target homever shows much smaller effects: The peak cross sections are $\mathrm{g}^{2 n} \mathrm{y}$ a factor 3 higher for 238 J compared to ${ }^{48} \mathrm{Ca}$ and $136 \times \mathrm{xe}$ prajectiles. In the case of Es actually no difference in cross sections between the three ions can be found within the experimental erros. A slight shift in the centrold of the mass distribution can be observed in the ${ }^{238} \mathrm{U}$ case, which could be caused by a lower excitation energy of the products due to the heavier reaction gartner and/or the larger N/Z ratio of the 238 U projectile.
(3) From the point of view of producing neutron rich unknown isotopes of the heaviest elements, the centroid shift is disappointingly small in particular for Fm where the wost neutron rich distribution is actualiy ghtained with ${ }^{48} \mathrm{Ca}+{ }^{248} \mathrm{Cm}$ and not with ${ }^{238} \mathrm{~J}+248 \mathrm{Cm}$.
(4) The U and $C m$ data shom in Fig. 1 are compatfble with the following assumptions: a) The heavy fragments are formed in statistical
equilibriun, and b) the average excitation energy is bout 45 MeV corresponding to the evaporation of about four neutrons.
(5) In this picture the centroid for the Wo mass distribution should be around $A=259.4$ and preliainary calculations show a peak cross section of about $3 \cdot 10^{-33} \mathrm{co}$. Asfiliar calculation gives $5 \cdot 10^{-34} \mathrm{~cm}^{2}$ for 287114 .

If therefore ane hundred fold increase in beale integral /sensitivity can be obthined in the future a reasonable chance still exists for the production of SF|'s.

Footnotes and References

*GSI, Darmstadt (Gertany)
t Lawrence Livermore Mational Laboratory
\ddagger Oak Ridge Mational Laboratory
5 University of Maiz (Germany)

1. E. K. Hulet, et al ., Phys. Rev. Lett. 39, 385 (1977).
2. K. J. Moody, this annual report.
3. M. Schädel, et al., Phys. Rev. Lett. 41, 469 (1978).

CHARGE DHSTRABUTIONS FOR THE ${ }^{*} \mathrm{KH}_{r}+{ }^{31} \mathrm{La}$ SVSTEM*

P Dyer. 'M. P. Webb. ' R J. Pugg.' R Vandenbosch.' T. D. Thomas. ' and M. S Zisman

The Kr + La cross sections at 6 to $8 \mathrm{MeV} / \mathrm{A}$ exhibit interesting features 1,2 that indicate reaction mechanisms intermediate between those for lighter systems, where fusion is important, and those for heavier systems, where the Coulomb barrier is so high that little finterpenetration of the projectile and target ever occurs. The picture of the $\mathrm{Kr}+$ La reaction that has evolved is one in which high-partial-wave projectiles are scattered to relatively large angles, interacting little with the target. Projectiles of smaller impact parameters, on the other hand, interact for increasingly longer times, with increasing overlap of nuclear matter; the cow bined complex rotates toward more forward angles, with possible rotation past 0°.

In a previous paper, ${ }^{2}$ we have presented differential cross sections as a function of angle and energy loss, integrated over all reaction product nuclear charges. In this paper we present the \mathbf{Z}-dependence of the cross sections, in order to study the mass transfer mechanism, and in particular to study the correlation between energy loss and mass transfer. One of the primary interests in this work is to study the widths of the Z distributions vs eritrgy loss, as a function of scattering angle and particularly as a function of bombarding
energy. Distributions in Z were generated from two-dimensional Q-value vs Z data by integrating over 0 -value bins 25 HeV wide. An example of these distributions for 31* at 610 MeV , is given in Fig. 1 .

An feportant echanise for energy dissipation in peripheral collisions of heavy fons is nucleon exchange. If the exitation energies of the nuclei are modest so that the mucleon mean free path is comparable to the dimension of the system, then the energy transfer associated with exchange can be treated as a one-body interaction in which the exchanged nucleon's share of the relative kinetic energy of the two ions at the time of exchange is converted into excitation energy. Although Fermi motion and Pauli blocking are neglected in the simplest form of the exchange eodel, Randrup ${ }^{3}$ has recently extended the adel to include both of these effects.

[^6]The full and dashed curves give the absolute slopes expected from the extended exchange nodel with $M=\frac{A_{0}^{2}}{2} Z$ and with $M=\left[\frac{1}{Z}\right]^{2}{ }^{2}{ }_{2}^{2}$
He note that with this rew model the data for the two bombarding energies ife on the same curve, and that the slope gf the curve is consistent with the model of $\mathrm{H} \approx \hat{A}_{0}{ }_{2}$. The agreement between experiment and theofy suggests that the major mechanism for energy dissipation is in fact nucleon exchange. This conclusign is in contrast to that of previous studfes ${ }^{4}$ in which the effect of the exclusion principie was not taken into account.

Fig. 1. Charge distributions for different energy losses at $\theta_{L}=31^{*}$ and $E_{L}=610 \mathrm{MeV}$.
(XBL 808-1554)

Fig. 2. Dependence of the rate of energy loss per enchange as function of the square root of the prodict of the ralative avallable energy per nucleon and the Fermi energy, $E_{f}=40$ MeV. The full and dashed curves give the expected behavior from the exchange model for two assuptions about the relation between the number of exchanged particles and the charge distribution variances. The absolute value of ${ }_{2}$ the ordinate is for the assumption $N=(A / Z))_{2}^{2}$
Rather than replotting all the experimental data points for the assumption $H=(A / Z)^{2} o_{7}^{2}$. the theoretical prediction has been scaled appropriately.
(XBL 808-1555)

Footnotes and References

*Condensed from Phys. Rev. C 22, 1509 (1980)
\dagger Michigan State University, East Lansing, HI 48824
†Los Alamos Scientific Laboratory, Los Alamos, NiN 87545
§ Hanford Engineering Development Laboratory, Richland, WĂ 99352

11 University of Mashington, Seattle, UA 98195
II Oregon State University, Corvallis, OR 97331

1. M. P. Webb, R. Vandenbosch, and T. D.

Thomas, Phys Lett. 628, 407 (1976).
2. R. Vandenbosch, M. P. Mebb, P. Dyer, R. J. Puigh, R. Weisffeld, T. D. Thomas, and M. S. Zisman, Phys. Rev C 17, 1672 (1978).
3. J. Randrup, Huc1. Phys. A327, 490 (1979).
4. M. U. Schröder, J. R. Hulzenga, J. R. Birkelund, K. L. Molf, and Y. E. Yiola, Phys. Lett. 718, 283 (1977); W. U. Schrider and J. R. Huizenga, Ann. Rev. Mucl. Sci 27, 465 (1977).

FAST PARTICLE ENUSSION IN THE DEEP MVELASTIC REACTION necu + 20Ne AT 12.6 MoV/MUCLEON"

R. P. Schunitt,' G. J. Wornizk, G. U. Rattarzi,
G. J. Mathews, ${ }^{1}$ R. Regimbart. ${ }^{\text {' }}$ and L. G. Moretto

Fast protons (1-2.4 times the beam velocity) have been observed from t'? deep-inelastic reaction nat $\mathrm{Cu}_{\mathrm{u}}+20 \mathrm{Ne}$ at $12.6 \mathrm{imeV} / \mathrm{A}$. Similar proton spectral shapes are seen in both singles and coincidence. The most energetic protons are associated with partially relaxed processes rather than the most peripheral reactions. The angular carrelations exhibit a strong peak near 0^{*} for proton energies greater than 15 MeV . This correlation can be explained by evaporation ca)culations that take accoun: of the steep forward-peaked angular distribution of the projectile-like fragnents and evaporationrecoil effects.

In Fig. 1 proton lab energy spectra are shown for two Z-bins ($\theta_{P T}=+14^{\circ}$). We have attempted to understand these spectral shapes in terms of equilibrium evaporation and have assumed that after the deep-inelastic collision the excited fragnents undergo sequential decay. For the measured lab angle, atomic number and mean kinetic energy of the projectile-like fragment, the total excitation energy of both fragments was calculated from two-body kinematics. Assuming that the average excitation energy divides according to the fragment masses, the proton yield was then calculated in the moving frame using simple evaporation theory. ${ }^{1}$ This yield was then transformed into the lab frame and the contributions from prajectile and target emission were summed. The calculated spectra are in reasonable agreement with the data up to about 30 MeV [see dashed curves in Fig. 1). Since the high energy portions of the calculated spectra are due to enission from the projectile-like fragment, the failure of the calculations in this region can be attributed to a deficiency in the excitation energy of the prajectile-like fragnent. Trivially, increasing its share of the excitation energy would increase the yield of high-energy protons but would also simeltaneously destroy the agreement with the angular distibutions.

This difficulty can be overcone by considering the thermal fluctuations? in the division of the excitation energy, E^{\star}, between the fragments which have been neglected so far. To evaluate this effect, we have calculated energy spectra for various divisions of E^{*} and have fulded them with a Gaussian probability distribution

$$
P\left(E_{1}^{*}\right) \times \exp \left[-\left(E_{1}^{*}-E_{1, e q}^{*}\right)^{2 / 2} \sigma^{2}\right]
$$

On purely statistical grounds, alue for a of 10 Mel is predicted from the ewpression 0^{2}. $2 T^{3} a_{1} a_{2} /\left\{a_{1}+2 a^{2}\right.$, where T is the temperature of the fntermediate complex and al and a_{2} are the level density parameters of the two fragments (see Ref. 2 for derivation). While the calculations with (solid lines) and without (dashed lines) fluctuations are essentially identical at low energies (see Fig. 1), the incorporation of fluctuations produces a dramatic increase in the number of high energy protons. Including fluctuations in the calculations ciearly reproduces the experimental proton energy spectra.

Fig. 1. Proton-energy spestra detected in a colinear geometry witi $Z=6-7$ (circles) and $Z=$ $8-9$ (squares). The curves are the predicted spectral shapes from a simple evaporation model with $\sigma=10 \mathrm{MeV}$ (solid ifnes) and with $\sigma_{0}=0$ (dashed lines)
(XBL 806-1322)

Footnotes and References

*Condensed from LBL-9512
Present adidress: Cyclotron Institute and Department of Chemistry, Texas A \& M University, College Station, TX 77843.
|Present address: W. K. Kellogg Radiation Laboratory, 106-38, Calffornia Institute of Technology, Pasadena, CA 91125.

5Present address: Laboratories de Physique Corpusculaire, Universite de Caen, 1400 Caen, France.

1. Y. Weisskopf, Phrs. Rev. 52. (1937) 295.
2. L. G. Moretto, Lerrence Berkeley Laboratory Report Mo. LBL-9130 [1979), Proceedfings of the Yarenn Conference, Yarem, Italy, July 9-25, 1979.

THE REACTION OF ${ }^{20 H}$ WITH "'Ta at 50 Mav/A

D J. Morrissey. G. J. Wouniak. L. W. Richumson,
C. C. Hsu, R. I. McDonald and L. G. Moretto

As part of a systematic study of angular momentum transfur in heavy-ion reactions we report here some results for the ${ }^{181} \mathrm{Ta}(20 \mathrm{He}, \mathrm{Y}) \mathrm{X}$ system at $50 \mathrm{MeV} / \mathrm{A}$. These data represent the high-energy end of a study that spans the region from a few to a few tens of MeV per nucleon.

A - $50 \mathrm{MeV} / \mathrm{A} 2 \mathrm{O}_{\mathrm{Ne}}$ beam was extracted from the Bevalac and delivered to the LESL scattering chamber. After interaction in a $100-\mathrm{mg} / \mathrm{cm}^{2}$ tantalum target, projectile-1ike products were identified in either of two identical si-telescopes. These telescopes consisted of a $250-\mu m$ Si surface barrier ($\mathrm{A} E$) folloxed by two 5-mm Li-drifted Si detectors (E and E-reject). All light products, except protons and alphas, stopped in the first two elements of the telescopes. Prompt gama rays and their time distribution were measured in

Fig. 1. A Wilczynski diagram is shown for the oxygen products.
(XBL 808-1553)
coincfdence with any valid telescope event in an array of eight 3×3-in. (Mal(TI) detectors. The Hal(Ti) detectors were placed outside the scattering chamber, at 45° out-of-plane to the telescopes.

The pradectile-like prodz=ts were measured from 8° to 24° in the lab systen. This covered the angular region from just behind the classical grazing angle, $0 \approx 6^{2}$, to the point where only $2=1$ and 2 products were observed at low rate. In Fig. 1 we show the Hilczynski diagram for oxygen products. Even though there is a

Fig. 2. The energy spectra and the average gama-ray multiplicity as a function of particle energy are shown for the even Z products in (B) and (A). respectively.
(XBL 808-1549)
relatively high threshold for detecting the oxygens (-200 MeV) one can see that the cross section is dominated by a peak slightly belom the projectile velocity. Additional eessurenents inside $\boldsymbol{\theta}_{\mathrm{g}}$ are desirable to detersine if the lower enersy oxygen products restit from orbiting through 0°.

The measured values of the average gama-ray multiplicity $\left\langle H_{r}\right\rangle$ and the corresponding energy spectra at. 8° are shown in Fig. 2 for the even Z products. Two features of the (H, distributions are immediately apparent: (i) the values of the miltiplicity are rather low, never exceeding - 20 and (b) the siope of the gultipicicity with energy loss for each exit channel is rather small. The observations indicate that the transfer of orbital angular momentu finto intrinsic spin and then into gama-ray wittiplicity is nut characterized by only two large
fragrents in thexit channel. There are two obvious stages where this breakdonn ay be cocurring. If the target-1ike residue is not able to hold the extitation energy and angular comentre imparted to it, then sequential fission would convert intrinsic spin buck into orbital cotion. Similarly, if the projectile undergoes fragaentation without transfer-induced transport of angular moventum, then the initial orbital cotion would be contained in the orbital motion of projectile fragents. Further experiments in which te plan to differentlate between these two processes are anticipated in the next operating perfod.

Reference

1. Cf. 1. W. Rischardson et al, in this amua) report.

EVIDENCE FOR THE ONSET OF PROJECTME FRAGMENTATHON in PFRiPHERAL COLLSIONS OF 3eNa + 'B'Ta

L. W. Richardson, G. J. Worniak, D. J. Morrisser
C. C. Hsu and L. G. Moretto

The evolution with energy of heavy ion reactions in the bonbarding energy range of 5 to 20 $\mathrm{MeV} / \mathrm{A}$ has recently becoge subject of considerable investigation. Several theorfes predict an onset of fragmentation-1ike phenomend at 15 to $20 \mathrm{MeV} / \mathrm{A}$. 1 In an effort to gain an understanding of the reaction mechanise in this region we have undertaken a study of the energy dependence of the angular momertum transfer.

We have measured the continuum gatas ray mult plifity $\left\langle M_{T}\right\rangle$ fer peripheral collisions of $2 \mathrm{~W}_{\mathrm{Na}}+{ }^{181} \mathrm{Ta}$ over a wide range of orajp;tile energies. The intrinsic angular haentu of the fragnents may be extracted for this system from the $\left\langle M_{r}\right\rangle$ data since the heavy fragments procuced in this reaction are good rotational nuclei known to decay predominantly through stretched quadrupole (c2) p-ray cascades. Furthernore due to the large mass asymetry of the system almost all of the angular momentum will reside in the heavy fragnent.

The events of interest are those where the r-rays are in coincidence with the projectilelike fragments which are moying at near bean velocity. For these events the source of momentum transfer to the target and hence $\left\langle M_{7}\right.$) must come frum the interaction of the missing portion of the projectile with the target. Figure 1 shows <My for near bean velocity fragments (which cerrespond closely to the peak in the differential cross section) at four bombarding energies 7.6, 9.9, 16.7, and 21.9 $\mathrm{MeV} / \mathrm{h}$, We see for example at 7.6 MeV/A a linear Increase in the angular momentum with captured mass as expected for these massive transfer events. ${ }^{2}$ The solid lines are computed from
semiclassical matching conditions leading to the constrajit on the angular momentem transfer $A l$.

$$
\Delta l=m \mathrm{vR} / \mathrm{h} \text { hence }\left\langle\mathrm{H}_{\mathrm{r}}\right\rangle=\operatorname{my} / 2 \mathrm{~h}
$$

where <H, is the average r-ray mulitiplicity for the collision of two nuclef at relative velocity v leading to a transfer of mass m from one to another at radius R, which we take to be the hal f density matter radius of the residual heavy nucleus.

We see from Fig. 1 that for bomarding energies up to $10 \mathrm{MeV} / \mathrm{A}$, © H_{3} ’ and thus the angular mosentim transfer is indeed proportional to the mass and fincreases linearly with the velocity. Above $10 \mathrm{meV} / \mathrm{A}$ the angular momentu no longer increases with velocity but decreases slightly. A possible explanation for this change in the dependence of $\left\langle\mathrm{H}_{\mathrm{r}}\right\rangle^{\prime}$ - i ght be a loss of transferred spin to orbttal motion via sequential fission of the target-like fragment. However, sequential fission is not very likely over the range of spin and excitation energy invol ved and ore is forced to consider an aiternative mechanis.

We interpret the change in the dependence of $\left\langle H_{r}\right\rangle$ as evidence for a change in the reaction mechanism from one similar to massive transfer to projectile fragmentation. As indicated by Harvey ${ }^{3}$ this may be thought of in terns of a simple model of 1 firiting angular momentum. The dashed lines in Fig. 1 indicate the critical angular montum $\boldsymbol{l}_{\text {crit }}$ for each exit channel calculated from the sem-emprical formula of Wilczynski. 4 We see from the figure that for bombarding energies below 10 MeV/A mass transfer

Fig. 1. 〈 H_{1} 〉 as a function of mass for near beam velocity fragments.
(XBL 807-1556)
leads to final states below Cerit* Above 17 MeV/A mass transfer leads to unbound states ahove lerit, in which case none of the projectile is captured. For these frageentation types of events one wight indeed expect <th? to decrease with increasing energy since the angular comentu transfer here my be considered to arise from an impulsive force and hence oust decrease in a maner wich is inversely proportional to the velocity.

References

1. K. M. McYoy and H. C. Memes, Z. Physit R295, 1977 (1960). K. Siwek-Wilczynska, et al ., Phys. Rev. Lett. 421599 (1979).
2. K. A. Geoffroy, et al .. Phys. Rev. Lett. 43 1303 (1979).
3. B. G. Harvey, Hotas de fisica 3 (1) 99 (198D).
4. J. Wflczynski, Mucl. Phys. A216, 386 (1973).

LIGHT PARTICLE EMISSION AS A PROBE OF THE ROTATIOAAL DEGREES OF FREEDOM IN DEEP-INELASTIC COLLISIOHS

L. G. Sobotka, C. C. Hsu. G. J. Wormak, G. U. Rastarz,

R. J. MeDonaid. A. J. Pacheco and L. G. Moretto

A promising method for the study of the transfer of orbital angular momentu into the intrinsic spins of the product nuclei in deep inelastic collisions is the sequential emisstion of light particles. In a manner similar to sequential fission, the width of the out-ofplane light particie angular distribution depends on the spin of the enitter. The usefulness of this technique depends primarily on two factors, the ability of obtaining out-ofplane distibutions of particles emitted from just one of the fragments and sufficient sensitivity of the distributions to the spin of the emitter to enable accurate spin determination.

Recently R. Babinet et al. 1 have shown, for the system $280 \mathrm{MeV}{ }^{40} \mathrm{Ar}+{ }^{58} \mathrm{Ni}$, that by use of coincidence techniques and proper selection of the reaction systen and detection angles one is able too study the out-of-plane distribution of light particles enitted from an indiyidual fragment For the substantially heavier system $664 \mathrm{MeV}{ }^{84} \mathrm{Kr}$ + $\mathrm{nat}_{\mathrm{Ag}}$ we have used the same techniques to study alpha-particle enission from the target-like fragment. We find that the contamination due to light particles emitted from the projectile-like fragment to be quite small.

The compatibility of out-of-plane light particle measurements and gamea multiplicity techniques allows one to test the sensitivity of the light particie distibutions to the spin of the emitter. In the ass region covered by the present study, the gama mutiplicity is approxiately proportional to the sum of the fragments' spin. 2 Trus the requirement of an increasing number of r-rays to be in coincidence with the Z-a events should bias the fragments' spin distribution towards larger values. This selection should result in a greater focusing of the angular distribution into the reaction plane. The energy integrated out-of-plane andistributions in the rest frame of the emitter are show in the figure without (a) and with (b) the requirement of two or more coincident r-rays. The distributions without any coincident y-ray requirement are expressed in teras of iffferential multiplicity. 2 As expected the angular distributions associated with the high r-ray multiplicity events display a larger anisotropy than those without the gama-ray requirement. The ariisotroples, quantitatively expressed by the into out-of-plane ratios, indicate the sensitivity of the a-particle distributions to the spin of the emitting nucleus. Also seen in this figure is a significant sharpening of the

Fig. 1. Alpha-particie angular distibutions for several Z-bins as a function of out-of-plane angle. The \mathbf{Z} bins are $3 \mathbf{Z}$-values wide and are indicated by the median Z-valce. In section 1) there is no coincident y-ray requirement while in b) there are 2 or more coincident vrays. The curves in section b) are normalized at 90° to those in a) for the same Z bin. (XBL 807-3459)
angular distributions as the size of the eftiter increases. This is an tratication of the dependence of the fragments" spin on the eass asyentry of the exit channel.

References

1. R. Babinet, B. Caurin, J. Girared, J. M. Alexader. T. H. Chiagn, J. Gelin, B. Gatty, D. Guerrew. and X. Tarrango, 2. Physik A 295, 153 (1990).
2. H. Lefort and C. Hgî, Riv. Wovo Cimento. 2. 1 (1979), and references thereln.

EVIDENCE FDA RIGID ROTATION AND LARGE DEFORMATIONS
 IN THE DEEP-INELASTIC REACTION 664 MoV E"Kr + nethg*

L. G. Sobotha. E. C. Hsu. G. J. Wozntak. G. U. Fattarzi, R. J. MicDonaid, A. J. Pacheco and L. G. Morerio

A prominent feature of deep-inelastic reactions is the conversion of orbital angular momenturn into the intrinsic spins of the twoproduct nuclei. We have simultaneously measured both the ganma-ray multiplicity, M_{y}, and the
sequential eafssion of alpha particles from one of the fragments to investigate this process. Since the out-of-plane angular distributions c an yield the spin of an individual fragment and M_{Y} provides information on the sur of the

Fig. 1 (a). Center of ass fragpent epergies after evaporation corrections as a function of the charge of the light fragent. Horizontal bars indicaie the uncertainty in the primary charge (before evaporation) of the light fragment. Solid lines are ralculations for two spheroids in contact àd are laioled by the ratio of axes. The broken line is for spheres.
(b) Spin of the heavy fragent extracted from the out-of-plane distributions. Calculations for rolling and rigid rotation of spheroids are indicated.
(c) Sum of the spins of the deep-inelastic fragments as determined hy out-of-plane a-distributions (closed) and M_{γ} (open).
(XBL E07-3458)
spitis of both frasments, tive combination is: powerful teal for imuestlgating the preteioning of upular monemtam within the simaciear complex as vell as a cross checr co Doll methods.

A solid state telescope was uned to detect the kr-ilke framet, wife on out-of-plane ars with four ligint par:icle telescopes was postthoned along the recofl direction to detect alphe particles evaporated from the target-like fragnont. Seven mal detectors dbove the retc. tion plane wert used to obeaion m, tata. usimg twnody kimemetics, heury-ion a-purticie coincident events were reconstructed and triasformed into the rest frame of the undetected Ag-1隹e enifter. Fime resultus ont-0f-plase distribytions emhbit large alsctropies as the siae of the enfter incrases. Thase data are Ead to extract the fragment sipin by means of statis.
cfical model.

The fragimit ifmetic mergites were med to estimite the deformation of the dinuclear comple. at the time of scission. If one comparts the data to a calculation facluding buth the coulonb and centrifugal terms in a spharoidspheroid mpdel. part a of figure. a ratio of axes of - 2 is indicated. Tine spins ertracted fran the e-distributions, part o. shon the first cleter evidence for rigid rotation in this miss region and corroborate the clatim of large ceforations. In the thard ourt of the figure the su of the spins ertiracted from both the n. data and the a-distibutions is shom. The agreetent is caite good, thas edding crediollity to the picture of the deep-inelastic comples as two rigidiy rotating substantially ueforned spheroids.

Footmote nd Iefe: ence
-Condensed fra LAL-11148.

1. L. G. Moretto et al. LEI-1060S (to be published).

THE RASE AND FALL OF THE BTH ALCMMENT MUEEPMELATTC HEACTIONS*

G. J. Worniek. R. J. McDonald. A. J. Pacteaco. ' C. C there:
D. I Morrimer. L. G. Sobotca, L. G. Mortito
题
5 Shil, "C. Schjick,' R. M. Dianond, H. Klupe. F. S. Stoptrens

Both the manitude and alignent of trasferred angular apaentum in the ralaction i65\%0 +165 Ho at $\mathrm{a} .5 \mathrm{HeV} / \mathrm{A}$ have been measured as a funtion of 0 -value via continnat r-ray mition plicity and anisotropy techniques. This symmetric system was chosen since (1) large mounts of angular momentum can be transferred to fragment spin, (2) Ho nucle1 are good rotors and thus emit r-spectra enrichec in stresched E2 transitiors, and (3) symetry in the entrance channel allows us to study spin transfer and alignment over bread range of \quad g-values.

Data are shom in Fig. 1. Throughout the quasi - elcitic region $(-100 \mathrm{MeV}<0<0)$, both the spin transfer (circles) and the anisotroay (squares) incredse. The sinisotropy pedis before tre spin transfer seturates and then declines to netr unity at large 0 -values.

Fig. 1. Fragment spin (circles) deduced from γ-multiplicity. Patio of in-plane/ 1γ-ray $y ; 21 d s$ (anisotrory) (squires) for the resion 0.6 MeV \& $\mathrm{E}_{\boldsymbol{Y}}$ < 1.2 MeV . (X :- 36-1214a)

> We "-4erpret these ata apcordian to the ewillimi seatistical earel ${ }^{1}$ of sioretto and Schaft wich postulates a minary eqularization enemonise cured by thernal exitation of angular-montint bearing collective motes. Fig: ure 2 shass solid line (curve i) for the gadel calculatipn compared to the data. To sive a feeling for the fapertance of various contriomtions, the sent calculation is shoun with mo corrections for meatron ewaporation (curve 2). ne statisufical transitions (curve 3), and mo primary timern 1 trolarization (curve 4). A comprison clearly stous that the host ingortant effect is the thernally-indiced ofsalfgrint. inficating thet the terresse of alf gent is finterert to the teep-imelastic process itself.

Fig. 2. Anisotropy data (circles) for E_{V}, 0.3 Mel copared to stages of the model calculation.
(XEL 806-1193a)

This gives rise to the following picture of angular momentur transfer and sgin alignent in the deep-inelastic reaction process: in the quasi-elastic region, the transferred spin increases rapidly with \mathbb{q}-value whereas the therally aisaligned component fincreases are slowly. Thus, the aligned component dominates and the transferred angular momentu is mearly perpendicular to the reaction plane, giving a large anisotropy. However, across the deep inelastic
region, the transferred spin micurates wilte the therni 1 components incraase to becone an ever larger fraction of the total angular mamente. Thus, the allgment decreases and the aisotrone plumets.

Footnotes and Refernmices

*Condensed from LeL-11057, G. J. Hoznfat et al. Phys. Rev. Lett. 45, 1001, (1900)

IComision Macional De Energia Atonfi:, Argentina

Institute of Atonic Enersy. Eefjisg. China. gSmengini Institute of meciear nesearch. Chime. IIL. S. M. S. Mo. Ormy, France. A Him-Neitner Imstitute. explin. Cermany.
 C21 204 (1920).

W HEANY LOM REACTONE FFOM 7 TD 22 ENM/A

L. W. Fichumben. G. J. Warrid. D. J. Mornerivy
C. C. Man and L. G. Moretio

Over the last decade a considerable body of knowledge concerning nuclear reaction achaniss in heavy ion collisons has developed. 1 However, relatively littie is knom chout the energy dependence : f such mechanises.

For bonbarding energies belon $10 \mathrm{MeV} / \mathrm{h}$ the number of r-rays ent thed in keavy ion reactions hrs been shown to correlate strongly with transferred angulur momentul. 2 we have investigated the dependence of the r-ray eutiplicity $\left\langle\mathrm{A}_{\mathrm{y}}\right.$? and of the energy and chago trapifer in peripheral collisions of $2 a_{\text {Le }}+151$ Ta fron 7 to $22 \mathrm{Mey} / \mathrm{A}$.
 entrance channel for the beifardfiny energies investigethed.

Table 1

Elab MeV	C/E	4 Em
152	1.79	83
193	2.33	110
333	3.58	169
438	5.23	203

Tabie 1 shows the ratio of the projectile

 lines) as a function of the lab energy for the carbon isotopes.
(XBL 808-1700A)

At the higher bombarding enerrifes we see that there is avililable a very large mant of energy and angular monentu that my be trassferred to the reaction fragents. In such vioient collision it may certaigly be possible to echieve the livit of exitiation ewergy and monlar opmentu at wich the target nucieus mity survive.

The energy spectrs of the carbon isotopes at near grazing angles for the four bobarding energies are shom in Fig. 1. The lab ewergy Yp corresponding to finel fragent welocity equal to the initial profectile velocity, the lab energy V_{c} corresponding to finil fragents with the exit channel Coulombenery, and the lab energy Vo.s. corresponding to the ground state energry of " reaction leading to a two-bods final state are indicated.

As can be observed, the energy spectera are fypically broad, bell shaped and denimited by the quasi-elastic exmponent at all bubarding energies for near grazing angles. The differential cross section has a $\begin{aligned} & \text { anima } \\ & \text { at mear been }\end{aligned}$ velocity and extends dom to the towlome energy.
 for earticie eissicm) at ench memartins tentry. is alse stem in Fig. I. Ch imerases throngh the quasi-elastic repion with tecreasing frasent ewery (or increasing bo-bent total
 value is obserred to cinuge ifttle with to. bseaing emert and maves to higher enit chamel emeryies mith increasing projectile kinetic enery -

Further cort is in progress to tharstind the varying degrees of imperiance of eass transfer and particie sinion (both equllibrium and nom-etulifibrita) an the mylar equentio transfer as function of prajectile tinetic energy.

Footnotes mo Meferences

1. D. R. Scott. Lll-7727.
2. R. Begimart, et al.. Phys. Bev. Lett. 41. 135 (1973)

A COMPARTSON OF THE ALIGMmENT PARAMETEA P

A J Pacieecu. * I McDonald, G J Worman. and L G Moretio

The manitude and alignent of transferred angular acmentu in deep-inelastic (DI) collisions provide useful informen which aids in understanding the reaction Eechanisa. Aagular distríbutions of y-rays, sequatial fission fragments, or light charged particles have proven to be useful techniquis in deteraining spin and alignelic. There all include reasureent of fragent decay folliowing the pritary reaction, and thus require extraction of the primary reaction misalignent from secondary data. Agreement (or lack therceof) anong these methods is a subject of current concern.

Using continuun r-ray multiplicity and anisotropy techniques, we have extracted the frag16gt sping its alignement from the reaction $165_{\mathrm{Ho}}+165_{\mathrm{Ho}}$ at $8.5 \mathrm{HeV} / \mathrm{A}$ (Ref. 1). Aligneent is described by the paraeter P_{22}. defined as:

$$
P_{z z}=\frac{3<I_{z}^{2}}{2<I^{2}}-1 / 2
$$

where I_{2} is the aligned comprnt n t of the spin I and $\left\langle{ }_{2}^{2}\right\rangle$ is its mean squared value. We note that $P_{z z}$ cannot be measured directly, but must be extracted from the data via some model. We utilize a statistical equilibrium theory (Ref. 2) for the case of two equal touching spheres.

The madel predicts a distribution function given Dy:
$P\left(I_{z}, I_{y}, I_{z}\right)=E x P-\frac{I_{z}^{2}}{2 c_{x}^{2}} \cdot \frac{1_{y}^{2}}{2 e_{y}^{2}}+\frac{\left(1-\left\langle I_{z}\right\rangle\right)^{2}}{2 \varepsilon_{z}^{2}}$
and

$$
c_{x}^{2} \approx c_{y}^{2} \approx o_{z}^{2}=c^{2}=s T
$$

Where Sis the oment of inertia for one of the two spheres and T is the nuclear temperature. $P_{z z}$ becones:
$P_{z z}=\frac{2<1 z_{z}^{2}-0_{x}^{2}-c_{y}^{2}+20_{z}^{2}}{2\left(<1 z_{z}^{2}+c_{x}^{2}+o_{y}^{2}+0_{z}^{2}\right)}$
where o_{1}^{2}, o_{y}^{2} and o_{z}^{2} are the standard deviations In the x, y, and z components of the spin 1. In extracting an experimental" P_{22}, we adjusted σ^{2} to fit the anisotropy data rather than using its theoretical value. The aligned component $\left\langle I_{z}\right\rangle$ is calcuiated under the assumtion that the spin I (extracted from the r-ray altiplicity) is obtained from:

$$
\langle I\rangle=\int I P\left(I_{x}, I_{y}, I_{z}\right) d I_{x} d I_{y} d I_{z}
$$

Finally, since the infortation carried by the y-rays applies to the state of the fragnent: after neutron erission, we have corrected our dats to expected values prior to meutron elssion (Ref 3). In this wiy we have extracted an "experimental" Pzz from our data (circles) as shomin Fig. 1.

Results firom the angular distribution of sequential fission frigments from the experiment $\mathrm{U}+\mathrm{Kr}$ (Ref. 4) wre derived assuing distribution in wich or $=0,1 . t$. considering oaly flucturitons in piane perpendicular to the recojl direction (hef. 4). We note, here again, the model dependency of "experimentel" Piz data. He have transformed this data, retainimy the same $0^{2} /<I_{2}>2$, into new points to include all thrime sigas ! triangies). These systems have approximetely the sant total mas. but the entrance chamel mass asymetry differs significantly. In spite of this differance, the two sets of data are very similar and shom bout the salme degree of allgnaent. Also, apdel culculation (Ref. 2) for the $165 \mu_{0}+165{ }_{W 0}$ data (solid lira) uring $o^{2}=57$ is a retisonabie fit to botr eets of data. From this we conelude that both reactions are yielding comparable values for \mathbf{P}_{22}.

Footnotes and References

*Permanent address: Comisfón Macioral de Energia Atomica, Argentim.

1. G. J. Woznjak et al., Phys. i'ey. Lett. 45. 1081 (1980).
2. L. G. Moretto and R. P. Schaitt. Phys. Rev. C21. 204 (1980)
3. S. K. Blau and L. G. Moretio. LBL-10926 (to be published)
4. R. J. Puigh et al. Phys. Lett. 868, 24 (1979)

Fig. 1. En rected P_{27} for ${ }^{165} 5_{\mu_{0}}+165_{\mu_{0}}$ (circies) and $\mathrm{U}+\mathrm{Kr}^{2}$ (triangles) compared to a model colculation (solid line). See text for details.
(XRL 68-1712)

C. RELATIVISTIC HEAVY IONS

1. Frejectile met Target Fragmenmelion

ENMSSION OF HOH-ENERGY CAMMAA RAYY FROM RELATINTSTIC HEAVY HON COLLHSHONS

M. P. Budiansky, S. P. Ahden, © G. Tmin.* P. B. Price*

There are several pos:ible sources of highenergy (E > 10 MeV) game rays from re!ativistic, heavy-ion collisions; very littie is known about their relative production rates. We are particularly interested in the following sources: (1) Brensstrahlung: Our calculations indicate that the apunt of breasstraklung emitted is sensftyve function of the dynmes of the collision. (2) Photons from " decay: This is the main source of photons in the energs range of interest. (3) $\Delta(1236)$ decay: This resonance decays via M_{Y} about $0.6 \approx$ of the time. The resulting photons, peaked around 260 MeV. may be visible above the background produced by 5 decays.

In the past year we hive designed and built a gamma-ray detector for use at the Bevalac. A preliminary odel mas tested at the LLL Eleciron linac in July 1979, and construction of a revised version was comp:tte in April 1900. (See Fig. 1.)

Fig. 1. Schematic dfagran of gama-ray detector.
(XBL 808-1665)

By using state-of-the-art phototubes with high quantu efficiency and excellent light collectíon, we have achieved good energy resolution. The proble of neutron rejection was given special consideration in the destign. A photon from a collision $1,1: t$ passes through A1 and A2, which are anti-coincidence scintillator paddles to reject charged particies. The photon then interacts in converter C, thin lead sheet, to produce in electron-pesitron pair. The electron and positron produce signals in S, a scintillator, and Ck, plastic Cererkov detector, and then deposit their energy in approximately 13 radiation lengths of lead glass. Heutron rejection is provided by
amazing the signals in S and Ck: in ordier to accept in event we require sigmis in these Cetecters thet correspond to tre relativistic, singly-charged particies. Analysis of the shomer tevelopment in the lad-glass blocks provises furtiner mentiron rejection. Wot shan ere the target, and two detectars in the bean path that form a central-colliston trigger.
 irce ccllisjgns of zone on $200 \mathrm{p}, 40 \mathrm{Ar}$ on 20.pb, and 40Ar on 40ca. Figure 2 shous the distribution of exents in the S-Ck plase for one of our runs; we cin cleanly separate the detired pair-conwersion events. Uren this cut is applied to the rim data. a palk is readily spperrent at a position thet roughly corresponds to the energy of the ". decay penk. Further amalysis, and any conclusions oraut bremstrahlung or a decays, cust ait the results of a later calibrition run at the LLL Linac.

Fig. 2. S vs Ck event distribution. Contoriry are dram at $29 x 50 \% 75 \%$, and 100 of peak.
(XBL 808-1666)

Footnote
*Also at Space Sciences Laboratory.

PION PRODUCTION AAD CHARGED-PARTICLE MMLTIFLCITY SELECTION WI RELATVISTIC MUCLEAC COLLEIOHE*

K. L. Wort, ' H. H. Gutbrod, W. G. Meyer, A. M. Pomkenser, A. Sendoval.
A. Stock, J. Goserti, ${ }^{2}$ C. H. King, G. King, Nouyten Van Sen. ' and G. D. Weatal

Spectru of positive pions with emersies of 15-95 MeV were peasured for high energi droton,
 $27 \mathrm{Al},{ }^{40} \mathrm{Ca}, 107,109 \mathrm{Ag}$, 197 Am , and 23 yy . A Si-Ge range telescope was used to icentify charged pions by dE/dx and stopped 7^{+}were tagged with the subsequent muon ecay. In ill, results for fourteen target-profectile combinations are presented to stuly the dependence of pion edission patterns on the bombarding energy (from $240 \mathrm{MeV} / \mathrm{nuc}$ ienn to $2.1 \mathrm{GeV} /$ hucieon) and on the target and the prajectile masses. In addition, associated chargedparticie wiltipifcities were measured in an 80 -paddle array of plastic scintillators, and used to make fapact permeter restrictions on the pion-inciusive data.

Broad structures oceur in the s^{+}spectra for 20_{Ne} and $4 \mathrm{AMr}^{\mathrm{Ar}}$ induced reactions at the highest bombarding energies. Examles in Fig. I are of contours of constant cross section (1/p) d^{2} o/dide as a function of perpendicular pion momentum and rapidityy for 1.05 and 2.1 GeV/rucleon $20 \mathrm{Ne}+238 \mathrm{~J}$, seiected on high charged-particle multipilcity, 1.e., central and near-central collisions. Many features of the F^{+}emission patterns can be explafned in teriss of the decay of isobars produced in mucleonnucleon collisions, along with Coulomb repulsion from the spectator and participant antter. The results of mare quantitative cross section comparisons of light projectile (p, a) yith heavyion π^{+}production are explained in terms of isobar-nucleon interactions in excited nuclear matter.

Footnotes

*Work performed under the auspices of the office of Basic Energy Sciences, Division of Nuclear Physics, U.S. Department of Eiergy and by the Bundesminsterfun fur Forschung and Technologie, Hest Germany.
tPresent address: Argonne National Laboratory, Argonne, Illincis 60439.

Fig. 1.
(XBL 808-11330)

Present address: DPhi/ME, CEN Saclay, 91190 Gif-sur-Yvette, France.

5 Present address: ISH, 3BO44 Grenoble, France.

PAOTON TJNGSTEN REACTIONS AT 400 GeV*

J. Cincherr, ' J. Coten, ${ }^{\text {t A. Merin, }}{ }^{\dagger}$ T. Yiaky, ${ }^{\dagger}$ E. Priedtander, A. J. Herz. ${ }^{2}$

B. Jekobston,' B. Lindkist, fI. Ottoilund,' E. Stentund,' and B. Anderseonl

We present results from studies of $\mathrm{p}-\mathrm{W}$ reactions in thin tungsten uires eabedded in ewulsion by means of a new method for introducing well-defined targets into nuclear emulsions. The wires, mounted on a square frame, were introduced in the median plane between one 300 um nuclear K 5 emision pellicle and one $300 \mathrm{\mu m}$ emulsion on giass by laminating the tro emilsions using a lamination solution consisting of a mixture of ethyl alcohol and water (Fig. 1). The emulsions were irradiated with 400 GeY protons at FNRL. The bean was parallel to the emulsion surface and perpendicular to the wires. In all we have studfed 470 p-M events. The results show that:

Fig. 1. Geonetry of the wire-loaded emulsion plate.
(XBL 808-10919)

1) The mean multiplicities of black, grey and shower track particles in $\mathrm{P}-\mathrm{W}$ reactions are $\left\langle\mathrm{N}_{\mathrm{b}}\right\rangle=11.5 \pm 0.4,\left\langle\mathrm{H}_{\mathrm{g}}\right\rangle=5.2 \pm 0.2,\left\langle\mathrm{H}_{\mathrm{s}}\right\rangle$ $=20.0 \pm 0.6$.
2) The scaleo multiplicity distribution in p-W reactions deviates from that observed in p-p reactions.
3) The nean number of grey prong particles (recoiling protons) is proportional to $\mathrm{A}^{2 / 3}$.

Fig. 2. Mean pion wultiplicity rs. nuber of encounters $\mathbf{v}^{\left(M_{g}\right)}$ for caulston and H muclei, and <v>, the calculated nuber of effective target nucleons.
(XBL 808-10917)

> 4) The mean nuber of evaporated particies (black particles) for a given number of recofling protons is A-dependent.
if The M_{g} distribution provides strong evidence that ω_{g} is a measure of the nuserer of collisions inside the nucleus.
5) The relationship between $\left\langle n_{s}\right\rangle$ and $\left\langle H_{h}\right\rangle$ is h dersithent.
7) The pion production alnily depends on the longitudinal thickness of nuclear matter fl.e., the number of encounters, $u)$ and not on the target mass itself (Fig. 2).

Footnotes

*Condensed from Nuclear Physics B, 158, 280, 1979.
tCentral Institute for Physics, Bucharest, Rounania
\dagger CERN, Geneva, Switzerland
G NORDITA, Copenhagen, Denmark
"University of Lund, Lund, sweden

Doubly differential cross sections for production of positive pions $(20$ MeV \leq Tab \leq 100 MeY) in bombardment of 20 He on MaF , Cu and Pb targets at 800 MeV/K have been measured with a range telescope. (Ste Fig. 1.) The results showed that the angular distribution of lowenergy pions in the nucleon-nucleon center of
 peaking at - 15 weY C.f. The internediate-tnergy pions ($50 \leq$ T.E. $\leq 300 \mathrm{NeV}$) were formind and backnard ponked, reffecting the individul nucleon-fucledn process in the isobar aditi of production.

Fig. 1. Doubly differential cross sections for positive pion production with the $800 \mathrm{HeV} / \mathrm{N}$ 20\%e beil on (a) MaF, (b) Cu , and ic) Pb targets, respectively. The errors are only statistical ones. (XBL 7812-14102)

Footnotes and Reference
*Condensed fron LBL-8699 and Ref. 1.
\dagger Department of Physics, University of Tokyo, Tokyo, Japan
\dagger Laboratory for Muclear Studies, Osaka University, Osaka, Japan

1. J. Chiba, K. Makai, 1. Tanihata, S. Maganija,
H. Boman, J. Ingersoli, and J. O. Rasmussen, Phys. Rey. C. 20 (4), pp. 1332-1339 (October 1979).

LOW-ENERGY PION PAODUCTION AT ZERO DEGNEES EM MCLEUS-MUCLEUS COLLSIONS*

J. A. Bistinhich, H. R. Bowmm, K. M. Crowe. K. A. Frunkel, O. Hehimoto, J. G. Mrgweol.
J. Jansen, M. Koike, ' C. J. Martofl, J. Miner, ' D. L. Murphy. J. Petw, J. O. Pammasem,
J. P. Suliven, W. A. Zajc, W. Berienson,I G. M. Cruwhey, IE. Kmatry, J. A. Nolen, Jr, I J. Opebert, I
M. Saseo. " and T. Ward 'I

As part of a study of low energy charged pion production in collisions of nuclei with energies around the frce mucleon pion production threshold (290 Nel per nucteon bombarding energy), a large ratio of inclusive π^{-}to T^{+} cross sections has been observed for pions with the velocity near that of the incident profectile (i.e., 60 MeV pions for a $\mathbf{4 0 0 \mathrm { Mel } \text { per }}$ nucleon beam). Isospin symetry suggests that that the F^{-}and z^{+}ratio should be unity for isospin-symmetric nuclei. However, Coulonh interactions between pions and fragments of the projectile result in a large excess of negative pions, with velocfties near that of the projectile. 1.2

Data from an early version of the 180 degree maynetic spectrometer used to collect the deta
are shom in Fig. 1, wich plots invariant cross section versus pion innetic eneroy in the lati for varions neon bels energles incident on MaF, $\mathrm{Cu}_{\text {, }}$ and u targets. An faproved version of this spectrometer, which used two gliti-wire proportionsl counters (AiPC's) fiside the magnet, was used to expand, verify and iaprove the original set of data. The pest in the Inciusive *" cross section has now been abserved for neon betail energies from 140 mel/mucieon, which is well belaw the free nucieon plon production threshold. up to 670 Hell m meieon. The peak has also been observed with a 557 NeV/rucieon Argon bean. The peik in the a^{-}cross section is, in general. sharpest for heavitar beans and lighter targets, wich strongly suggests that it is assocfiated with spectator fragents.

Fig. 1.

Footnotes and References

*Partially condensed from, Phys. Rcv. Lett. 43, 683 (1979), with effective in-target bein energies corrected from 125 to 80 Mell per nucleon, 150 to 110,200 to 164,250 to 219, and 400 to 383. cf. Errata, Phys. Rev. Lett. 44, 54 (1990).

Institute for Muclear Study, Tanashi, Tokyo, Japan, and LBL.
†oept. of Physics, Boston Univelsity, Boston, MA 02215.

GInstitute de Physique Nucleaire, Orsay, France.

IICyclotron Laboratory and Physics Dept. . Michigan Staite University, East Lansing. MI 48824.

4Centre d'Etudes Aucleaires de Bordeaux I. France.
**Physics Dept., Osaka University, Toyonaka, Osaka, Japan, and LEL.
tilndiana University Cyclotron Facility, Blooeington, IN 47401.

1. G. 8ertsch, Hature 283 (1960) 280.
2. M. Gyulassy and S. K. Kauffeann, Larrence Berkeley Laboratory Report LBL-10279 (1980).

LOW-ENERGY PION PRODUCTION W HAGH-ENERGY NUCLEUS-NUCLEUS COLLSSONS*

K. Nakai, ' J. Chiba. ' 1. Tanihata, ${ }^{1}$ M. Saseo, ${ }^{\text { }}$ H. Bowman, S. Neqsmira, and J. O. Fasmussen

Doubly differential cross sections for production of pions with $400-\mathrm{HeV} / \mathrm{N} 2 \mathrm{NF}^{\mathrm{Ne}}$ on C , $\mathrm{NaF}, \mathrm{Cu}$ and Pb have been measured for range of $20 \mathrm{MeV}<\mathrm{T}_{7} \mathrm{AB}<100 \mathrm{MeV}$ and $30^{\circ}<\mathrm{LAB}^{\circ}<150^{\circ}$. The results ${ }_{3}^{7}$ are compared with previous data with $800-\mathrm{MeV} / \mathrm{N} 20 \mathrm{Ne}$ (see Fig. 1). The broad maximum at $0^{C} \cdot \mathrm{~m} .=90^{\circ}$ in the center-of-mass angular distribution of low-energy pions observed at $800 \mathrm{HeV} / \mathrm{N}$ is not seen at the present energy. Neither was such a maximum at the central-rapidity region observed in (p + nucleus) reactions at $E_{p}=730 \mathrm{MeY}$. The 90° naximum seems to be a phenomenon specific to nucleus-nucleus collisions around $1 \mathrm{GeV} / \mathrm{H}$, where the multiplicity of a formation is high and multiple-s interactions could influence the pion production. See also Holf et al.2

Recently, the existence of deeply bound $A-1$ (dibaryon) states has been shown theoretically and experimentally. 5 If such miltiple-a bound states were formed, the energies of pions from their decay should be lower than those from single-a decay and this could help explain the low energy central bump at $90^{\circ} \mathrm{c}$. m .

Footnotes and References
*Condensed fron LBL-8699 and Ref. 1.
tDepartment of Physics, University of Tow vo, Tokyo, Japan
† Laboratory for Muclear Studies, Osaka University, Toyonake, Japan

1. K. Makai, J. Chiba, I. Tanihata, M. Sasao, H. Bowran, S. Maganiya, and J. O. Rasmussen. Phys. Rev. C, 20 (6) pp 2210-2218 (1979).
2. K. L. Wolf, H. H. Gutbrod, W. G. Meyer, A. M. Poskanzer, A. Sandoval, R. Stock, J. Cossett, C. H. King, G. King, Mguyen Yan Sen, and G. D. Hestfall, Phys. Rev. Lett. 22, 1448 (1979).
3. D. R. F. Cochran, P. N. Dean, P. A. M. Gram, E. A. Knapp, E. R. Martin, D. E. Nagle, P. B. Perkins, W. J. Schlaer, H. A. Thiessen, and E. D. Theriot, Phys. Rev. D. 6, 3085 (1972).
4. T. Kamae and T. Fujita, Phys. Rev. Lett. 38, 471 (1977).
5. T. Kamae, I. Mraí, T. Fujii, H. Ikedd, N. Kajiura, S. Kawabata, K. Nakamura, 1. Ogawa, T, Takada, and Y. Watase, Phys. Rev. Lett. 38, 468 (1977).

Fig. 1. Contour plots of Lorentz-invariant cross sections in p_{3} (transxerse momentun) and y (rapidity) plane for (a) $p+p$ at $730 \mathrm{Hey}^{3}$. (b)

 The numbers written along contour lines are the Lorentz-invariant cross sections in units of $\mathrm{mb} \mathrm{sr}^{-1} \mathrm{CeV}^{-2} \mathrm{C}$. The dots indicate observed points.

CALCULATIOA OF EmON FIMML-TATE FHOMANMTTES

Following some mon-induced fission processes, the μ^{-}survives in final states bound to one of the fission fragents. Because the $\mu^{-1 i f e t i m e ~ d e p e n d s ~ i n v e r s e l y ~ o n ~ t h e ~ m a s s ~}$ of the binding nucleus, it is posstble to deteraine the probability of μ^{-}being bound to the heavy fragment, the ifght fragment, or ejected into the continuun.

The final-state probabilities for the mon are associated with fission dynaics. If the motion of the nuclear system past the sadde point is infinitely slow, that is, by very viscous flow, the muon would always stay at the lowest energy level up to the scission point. Past the scission point the nuclear systet is acceterated by the coulomb force modified by the nuclear force and shape distortion at first, and the mion can be excited to the higher orbital and have a non-vantthing probability of ending up bound to the light fragment. On the other hand, if the mation of the nuciear system is nat slow from saddle point to scissiof, that is, the motion is not so viscous, there should be already some fraction of muon excited-state poputation, even before scisston. Thus, for non-viscous flow the greater percentage of mon binding to the light fragment should be obtained.

We felt it worthwhile to make new theoretical calculations ${ }^{1}$, gofing beyond Ref. 2 in that we would examine extended charge distributfons as well as point charges, study alternative forms of variational wave functions, and run a few cases with different conditions for fisston asymetry and nuclear viscosity form saddle to scission.

We use the method of perturbed stationary states (PSS) for the problem of the μ^{-}in the field of moving nuclear charges. We nejlect the muon mass compared to the nuclear masses; that is, the separation motion of the nuclear centers is assumed not to be influenced by the muan motion.

In our two-state case we get two coupled time-dependent Schrödinger equations

$$
\begin{align*}
a_{u}(t)= & \left.-a_{g}(t) \psi_{u}(t)\left|\frac{\partial}{\partial t}\right| \psi_{g}(t)\right\rangle \\
& \exp \left\{\frac{i}{h} \int_{0}^{t}\left[E_{u}\left(t^{\prime}\right)-E_{g}\left(t^{\prime}\right)\right] d t^{\prime}\right\} \tag{la}\\
a_{g}(t)= & -a_{u}(t)\left\langle\psi_{g}(t)\right| \frac{\partial}{\partial t}\left|\psi_{u}(t)\right\rangle \\
& \exp \left\{\frac{1}{h} \int_{0}^{t}\left[E_{g}\left(t^{\prime}\right)-E_{u}\left(t^{\prime}\right)\right] d t^{\prime}\right\} \tag{1b}
\end{align*}
$$

Using the modified Euler method we have integrated these equations on the MOVA 840 com puter of the Atomic Energy Research Institute in Beijing.

To meth the ifinal fiasion kinetic energy of 170 MeV we choose the scission point of 17.6 fa as the starting distence. As for the excitation probability during the penetration of the fission harrier, we investigated two cases,
${ }^{\prime 2} u^{\prime}{ }^{2}=0$ and ${ }^{\prime a} u^{\prime}{ }^{2} 0$. For the latter case we assumed that fro the saddle point to the scission noint the separation speed of the two parts of the fissioning mucleus is yifor with (a) $v=10^{9} \mathrm{ce} / \mathrm{s}$ or (b) $v=3 \times 10^{6}$ ca / s. At the scission point of 18 fe the excitation probebility is aboic 0.0015 for case (a), 0.00017 for case (b) and the kinetic energy at 18 fm is - 29.8 Mev for the former, 2.68 Mer for the latter. The influence on the final exitation probability for case (b) can be neglected.

Fig. 1 shows the final excitation probability is -0.06 for the case with ${ }^{1} \mathrm{a}_{\mathrm{u}}{ }^{2}=0$. $E_{0}=1 \mathrm{MeV}$ at 17.6 fin and - 0.08 for the case with $a_{u}{ }^{2}=0.0015, \varepsilon_{0}=29.8 \mathrm{meV}$ at 18 fm . These results are close to the experimental estimate.

We wish to represent our foregoing calculdtions in a simple functional dependence on fission-charge asymetry. Thus, for uranium $\left(Z_{i}=92\right)$ we have tested and found to be accurate the following expression:

$$
\begin{align*}
P_{\mu}(Z) & =\left\{1+\exp \left[-b\left(z^{2}-(92-Z)^{2}\right)\right]\right\}^{-1} \\
& =\left\{1+\exp \left[b^{\prime}(46-Z)\right]\right\}^{-1}
\end{align*}
$$

The weighted sum over the fission yield curve is so nearly equal to the result for Z_{L} $=40, Z_{H}=52$ that we may use $Z_{L}=40, Z_{H}$ $=52$ calculations to be representative of the full folded distribution.

It is satisfying to see that these simple cal culations are in qualitative agrecment with the experinental result of -0.08 fractional attachment ${ }^{3}$ to the light fragment and 0.92 to the heavy.

fig. 1. Probability curves for more realistic wiscous aescent from saddle to scission point for fissioning system.
(X8L 799-7112)

Footnotes and References
*Condensed from LBL-9689 and Ref. 1.
'Atomic Energy Research Institute, Beijing, Ehina
FFudan University, ftanghai, China
J. Z. Y. Ma, X. Z. Wu, G. S. Zhang. Y. C. Cho,
Y. S. Wang. J. H. Chtou, S. T. Sen, F. C. Yang, and 3. 0. Rasmussen, Hox 'ear Physics A 348, H6 (1900). See also Chinest Jourmat of WucT. Phys. 2. 107 (1980) (fn Chinese).
2. P. Olanders, S. G. Milsson and P. Moller, Phys. Lett. B90, 193 (1980).
3. S. Polikanov, Int. Atonite Energy Agency preprint IACA-SH/23-E1 (1979).

PION PRODUCTION WITH HEAVY TONS*

Rubin H. Landau' and Jokn C Rasmussen

This paper ${ }^{1}$ gives an informal review of pion production by heavy ions under the following headings: Introduction, Experimental Overview, Hultiplicities. Single-particie Spectra, Cascade Calculations and Pion Interferometry in Relativistic Heavy-ion Collisions.

The promise and complexities of pions as probes of heavy ion collision dynamics are discussed for this new and developing field.

Footnotes anf Reference

[^7]
CENTRAL WTERNCTANS OF AT ON RCIAT 1.B COVIA

The pions have in the participant-spectator models in contrast to other retction products in unambiguous origin, nately the participants. The reaction dynamics are sensitive to the number of energles of the produced pions, which can significantly refuce the total avaliable energy. It is necessary for models predicting single particle inclusive nucleon spectra to describe the pion production correctly. In che fireball-like models they arise from theral production and the decay of isobars in theral and chenical equilibriun with - "s, mucleons and nuclear frage. :..s, giving an isotropic and thermal distribution in the center of mess for equa' projectile and target mass systems.

As part of our strearer chamber study of the energy dependence of mitipion production, we have measured and reconstructed -'s producea

In the central interactions of Ar on wCl at 1.8 Cli/R.

Prelinfaly results of the reconstruction of $3600 \mathrm{~m}^{-1} \mathrm{~s}$ shen a nealsotropic fisteribution with formard-bechard paditing in the c.m. frame. possibly e rement of the a(3,3) decay pattern (Fig. 1). The cross, section in the formindbectiard cone is $3 \mu \%$ higeter than arowad 90° in the C.m. In order to extract a temperature of the rivion. where the - "s are produced, $^{\text {s }}$ thermi fistribution (ε - eap $(-\varepsilon / T)$) has been fitted to the data. separatel, fur pl"s $^{-1}$ enitted in formorpbactiverd come and a cont er : 20 90\%. The result is: $T \geqslant 92$ mev sumed over all elission angles, $\mathrm{T}=$ 號 Mey for the fornard-backnard cone and $\mathrm{T}=$ Wh MeV for 90° enfisfon. The assumed thermal distribution fits the anta grite vell.

Fig. 1. Rapirity plot of *- produced in 2600 central interactions of Ar on KCl at 1.B GeV/A.
(XBL 808-1713)

In Fig. 2 the total energy flux in the c.m. system going into r^{-}production is shown. The rather linear relationship with the \mathbf{r}^{-}mitiplicity can be reproduced by assuming on average k inetic energy of 140 MeV per \mathbf{o}^{-}in the c.t.
frame. Further calculations will show whether this is compatible with an independent particle codel or whether coherent processes in the highly pressurized ©ecter must be assured.

$$
\pi^{-}-\text {multiplicity }
$$

Fig. 2. . - mitiplicity vs. total center-ofmass energy going into $\mathrm{o}^{-1} \mathrm{~s}$. The lower line carresponds to zero kinetic energy, the upper line to $187 \mathrm{MeV} / \mathrm{r}^{-}$in the c . $\mathrm{m} .-\mathrm{fr}$ me.
(XBL 608-1714)

Feotaties end leffernce
*Hiversity of Marturg, West Cergay
tCSI. Hornstaik, Hest Eeremy
flim at Argume Mational Luboratory. Argane. It (6040

1. J. D. Framiger ot al., in this anamal repert.
miltiplicity ($n_{n}-$) and the total maltiplicity (ntot) for the inelastic triser male at 1.8 Cei7h. The reaction growicts are cemfined to a smoth distribution sion a rise with we discernible signature of andaleus pife pronction. For high miltiplicities, the interaction approaches the total disintegratien ifint cerresponding to the maximom amer of eleservitle charges. These features are also observed for lower borbarding energfes.

The excitction functicn for the central trigger is shom in Fig. 2. The ${ }^{\text {nem }}$ miltipilcity increases 1 faporly ance the bere barding energy is rensombly aowe plom pronction threshold. No marked discontimultes are

Fig. 1. Topology of reaction products for Ar and KC1 in the inelastic trigger mode at 1.8 GeV/A. Solid lines are contours of constant cross section (mb). Dash-dotted line corresponds to the $\left\langle n_{7}{ }^{-\rangle}\right.$as a function of the total multiplicity.
(ab2 804-703n)
ckervel in ehis emporence. Tinernal extels are foun te emervretice the chservet pion yields by ent fecter of 2 .

Fig. 2. Center of mass emergy dependence of the men - Ealtiplicity for central collisions.
(X1 804-701)

Footnotes and Peference

-Cesellschaft fïr Scherionenforschung, Darmstedt, West Cermany

1Argome Mational Laboratory, Argome, iliinols 60439

1. H. Stocker, J. Maruth, and W. Greimer, 2. Physik A286, 121 (1978) and Phys. Lett. 81B, 303 (1979).
S. Setroetrer, G. Shapiro, H. Sminer, I. Tmileta.'
M. C. Lemmire, ${ }^{\text {I }}$ R. Lomberd. ${ }^{1}$ E. Mooler.I and S. Megemire

Inciusive K^{+}production C oss sections have been measured at angles from 15° to 80° fin collisions of p \{2.1 Gev/muciesn) + (NaF and $\mathrm{Pb})$, $d(2.1 \mathrm{GeV} /$ nucleon $)+\left(\mathrm{K}_{\mathrm{d}} \mathrm{F}\right.$ and Pb$)$, and ye $(2.1$ GeV/nucleon $)+(C$, MaF. KC?, Es, and Pb $)$.

The motivacion of the experiment cane from the fact thes the K^{+}teson has relatively shiall cross section for scattering on mucleons (about 10 mb), and that it is very slightiy absorbed by nucleons because of its + strangeness. Therefore, we expect the observed kwoi: spectra to reflect more directly the initial stage of the interaction, wereas tine pi-feson production reflects both initial and final stages.

He uset a migne ic spectrometer. It was triggered by a Pb glass Cerenkov counter behind the spectrometer in wich the Cerekov light was produced by the auon from K^{4} decay. Since the yleld of K^{7} was about 10^{-3} of those of protons and pions, a lucite Cereknor counter was Installed to veto fions. In addition. an on-line computer cut (we call it the FBD cut) was applied to reduce proton events from the main trigger.

A typical example of the spectrum is shom in Fig. 1 where invariant cross sections, ($\mathrm{E} / \mathrm{p}^{2}$) ($\left.\mathrm{d}^{2} \mathrm{c} / \mathrm{d} \mathrm{d} d \mathrm{p}\right)$, are plotted as a function of laboratory mokentun. Using such data we studied the target-mass dependence of the yield. At forward angles the yield is roughly proportional to A年, where A_{T} is the target wiss and $a=0.8$. Whereas at large angles a was 1. 2.

The win concern is whether or not the K^{+} production is enhanced from what is noreally expected. Here the word "nonml" mens the production cross sections calculated from nonexotic theories with reaspnably ronvincing asspmptions. A calculation by Rialdrup and Ko. Which is one such theory, predicts within a factor of 2-3 the forward yields, while the data at large angles (80°) are significantly sadler thm this calculatio*. Randrup ${ }^{2}$ recently modified his calculciion by allowing the kaon to be scattered once (for Me + MaF system) before detection. This modified calculation predicts reasonably well the slapes of the data. The absolute yields, homystare under predicted by a factor of -2 . Likewise a thermal model ${ }^{3}$ predicts well the slopes but gives too much yield by a factor of -40 .

Fig. 1.
(XBL 812-7908)

Footnotes and Beferences

Work supported by the Muclear Science Division of the U.S. Departient of Energy and IMS-LBL Collaboration Progras.
thn leave from IIMS, thiversity of Tokyo. Tanashi-shi. Tolyo. Jepan.
†Present address: of hinfic, cem de Saclay. 91190 Gff-sur-Yvette. France.
g0n leave from DPhin/i. CEM de Saclay, 91190 Gif-sur-Yvette, France.

Visitor fro the Freie Universitat Berlin. Berlin. Hest Geremy.

1. J. Randrup and C. M. Ko, Nucl. Phys. A343. 519 (1980).
2. J. Randrup, Phys. Lett. (in press).
3. F. Asai, H. Sato and K. Sano, fhys. Lett. 988, 19 (1981).

STRANBE PARTICLE FMODUCTION N CEATHAL COULHOME OF Ar OM MCI an 1.8 COV/A

A. Sendovil, " J. P. Dranionn, A. Decel, ' J. Goepen J. W. Heris."

The threshold for strange particle protuction (A. Σ, K) 1 ies below the 1.8 EeV/A burerting energy at which we have studied the central colitsions of Ar on KC1. The study of the strange particle production is a unique probe of the high-energy nucleus-nuclews fnteractions. The high prodaction threshold deve to associated production $(\lambda+K)$ and $(\Sigma+K)$ leads, at Eevalac energies, to their production most probally only in the first stage of the collision, before a large energy degradation has set in. In contrast to pions and isobars, they camot be reabsorbed, due to strangeness conservation, meking them a more primardial probe. Their production free … interactions invol ves the strage quark-antiquerk production from the vacuin. It is conceivable that this verten is modified in a high-density high-tomperature nuclear medium, king it very interesting to compare their production cross sections in different systeins.

In our straner chaber scudy of centiral callisionf, of equal tass systems, we are sensitive to tie charged decay of newtral strans? particlee $K^{*} \rightarrow \mathbb{F}^{-} \mathrm{F}^{-}$, ps^{-}as well as to y conversions, $y=e^{+} e^{-}$, all of wich produce seconsary vertices (vees) in the fiducia) volume. In order to study the strange particie production with relativistic heavy ions, special scan of the central collision rin of ibar on KC. 1 at $1.8 \mathrm{GeV} / \mathrm{A}$ ws done to ldentify all the vees. The tracks were measured and reconstructed in three views; using the TVEP progran, momentu vectors were obtained which were used to do a-constraint fit to the decay kinematics in order to identify the decaying particles. In the mority of the cases there was only gne possible ass assignent that gave a seallx 2. We fourd that 73% of the vees were gatas which converted mostly on the high- Z aterial of the central electrode; 4\%were identified as haons and 23% ashs. In Fig. 1 the resul ting invariant masses of the strange particle decays are show for the assumption that the vee corresponds to a pr" or a $r^{+} \pi^{-}$pair. The arrans show the lines along which the $\mathrm{A} s$ and $K^{\circ} s$ should lie. For the events corresponding to A inss, the momerta obtained are shown in Fig. 2 as a scatter plot in the center of mass p vs p plane. Surprisingly the As lie outside the region of maxime monentu in the $\mathbf{N}+\boldsymbol{W} \rightarrow \mathbf{N}+\mathbf{A}+\mathbf{K}$ reaction, which corres-

Fig. 1. Scatter plot of the reconstructed invariant masses of the charged decay of neutral strange particles produced in the central collisions of $\mathrm{DO}_{\mathrm{AR}}+\mathrm{KCl}$ at $1.8 \mathrm{EeV} / \mathrm{A}$ bobbarding energy. For each event imvariant masses are obtained assuang it is a pz^{-}((Λ) or a $\pi^{+} x^{-}\left(X^{*}\right)$ palr. The labeled arrous correspond to the lines along which $A s$ and k "s would lie. Identified is and events that converted in the central vire mesh are excluded.
(xCL 804-753)
ponds to a circle with $p=300$ Mev/c radius arcund the c.in. Effects of ferm-motion sight boost them out by 220 meV/c more but not enaugh to explain the high c.e. momenta ve observe.

Fig. 2 Center of mass $p_{11} v_{5} p_{\perp}$ scatter plot of
the As produced in the central coilistons of
4_{Ar} on KCl at $1.8 \mathrm{GeV} / \mathrm{A}$.
(KHL 804-754)

Footnotes

- Gesell schaft fir Scherfonenforsehung, Dermstadt. Mest Cernary
5Present adiress: IFIMN, Mexico 20 D.F.
tPresent address: Am, Argonne, IL 60440
| University of Marburg, West Germany

NEUTRON EMMSSION W RELATIVISTIC MUCLEAR CDLLKSHON:

J. D. Sevemion ${ }^{\text {i }}$

Charged particle endssion in relativistic heavy ion collisions has been extensively studied in the last few years. Measurements of neutron emjession have, however, only recently been made. 1 These measurements show that neutron and proton energy spectra for - 400 MeV/muclepn 20Ne + U are substantially different ${ }^{1}$. The neutron to proton ratio, $R_{\text {, }}$

$$
R=\frac{d^{2} g(n)}{d P d E} \quad \frac{d^{2} g(p)}{d B E}
$$

decreases with increasing fragment energy. It varies from $R X$ at 20 Mel to $R=0.3$ at 60 J MeV at all laboratory angles.

Recently I presented a cascade model of relativistic heavy ion collisions that accounts succespfully for charged particle measurements. ${ }^{2}$ I have found that tilis same model accounts for the fragment energr dependence of R. My madel, which is parameter-free, assumes that the heavy ion collision proceeds in two steps. ${ }^{2}$ First there is a cascade treated as a succession of free nucleon-nucleon elastic scatterings. Then in the fime state some of the scattered nucleons coalesce to for light nuclei. This second stage uses the coalescence model ${ }^{3}$ of Gutbrod et al. Using the coslescence model the proton and neutron spectra can
be corrected to the time before coalescence took place. The precoalescence neutron spectru is given by

$$
\frac{d^{2} o\left(n^{\circ}\right)}{d t}=\frac{d^{2} g(n)}{d t}+\sum(A-Z) \frac{d^{2} o(2, A)}{d g t}
$$

The sw is over all ispocopes, but only H and the isotopes contribute significintly. It is important to note that Eq. 2 involves experimentally detendined quantities only, no parameters. Using Eq. 2 and an analogous equation for protons it is possible to calculate the meutron to proton ratio before collescence takes place, R'. Figure 1 compares the experimentally deterinned values of R^{\prime} with those calculated from cascade model. Hy cascade reproduces fairly well the fragent energy dependence of R^{\prime}.

Much of the predicted energy dependence of R^{\prime} is de to the -15% lower Delm energy of the neutron measurement. However, by cascade predicts that if both masuremente were at exactly $E_{\text {beap }}=400 \mathrm{HeV} /$ nucleon R^{\prime} wild fall from $R^{\prime}=1.5$ at 300 MeV to $R^{\prime}=1.2$ st 400 HeV. This is tue to incomplete equilizration of the projectile-target systen. Thus refined measurements of the neutron to proton ratio R^{\prime} my provide a sensitive test of equilibration in heavy ion collisions.

Fig. 1. Neutron to proton retio before coalescence, \mathbf{R}^{\prime}, versus energy. Trianglas are based on proton data of Ref. 4. Squares are based on proton data sf Ref. 5. The solid line is calculated from the cascade model discussed in the text.
(XBL 807-1682)

Foatrates and Mefel ences

*Condensed from a puper in preparation.
\dagger Also at Space Sciences Laboratory

1. W. Schforiling, J. H. Kast, D. Ortmendah, R. Madey. R. A. Cecti, 8. D. Rriertom, and A. R. bildin, Phys. Rev. Lett. 43. 1905 (1979).
2. J. D. Stewemson, Phys. Rev. Lett. 4L, 1702 (1976).
3. H. H. Cutbrod, A. Sendoval. P. J. Johansen, A. M. Poskanzer, J. Cossett, Y. G. Meyer, G. D. Nestfall, and R. Stock, Fhys. Rev. Lett. 37, 667 (1976).
4. A. Sendoval, H. H. Gutbrod, M. G. Meyer, R. Stock, Cn. Lukner, A. M. Poskanzer, J. Cosset, J.-C. Jourdain, C. H. King, G. King, Marien Yen Sen, G. D. Mestfall, and K. L. Holf. Phos. Rev. C21, 1321 (1590).
5. M. C. Lemafre, 5. Magmalya, O. Chmberlain, G. Shapiro, S. Schnetzer, H. Stelner, and I. Tanthata, private comernication.

MEAN FREE PATH OF PROTOHS MSUDE THE NUCLEUS AT E $=\mathbf{8 0 0} \mathrm{moV}$ DETERAMNED FROM TWO-PROTON CORHELATIONS W PM SOLLSIONS*

I. Tenihata, ${ }^{\dagger}$ S. Nogmiva, S. Schnetrar, and H. Steiner

Inclusive proton spectra and two-proton correlations have been measured in callisions of 800 MeY protons on $\mathrm{C}, \mathrm{NaF}, \mathrm{KC1}, \mathrm{Cu}$, and Pb targets. A magnetic spectrometer was used to measure the inclusive spectra at laboratory angles from 10° to 60° for proton momenta between 0.5 and $2.0 \mathrm{Ge} / \mathrm{C}$. When the spectrometer was set at $=40^{\circ}$, two-proton cofncidences were measured with one proton detected by the spectrometer and the other proton detected by one of two plastic counter telescopes placed at $(0,0)=\left(40^{\circ}, 180^{\circ}\right)$ and $\left(40^{\circ}, 90^{\circ}\right)$, where the spectrometer was located at $=0^{\circ}$.

In finclusive proton spectra, strong peaks associated with pp or pn quast-elastic scatterings (QES) were observed at swall angles
(15° and 30°), whereas at large angles $\left(40^{\circ}\right.$ and 60°) no structures were seen in the momentum spectra. In two-proton coincidences, a peak due to PP QES clearly appeared in the proton momentu spectry at 40° when the other proton was detected with the telescope at $\|=180^{\circ}$ (in-plane two-proton colncidence); however, no structures were still seen in the spectrum when the coincidence mas taken with the $\delta=90^{\circ}$ telescope (out-of-plane colncidence).

Figure 1 shows the target-mass dependences of the yields at the peak regions of per. Inclusive yields, shown at the top, increase monotonically as a function of the target mass, while the in-plane coincidence yields, shown at the botton, have a maxime value at the target

Fig. 1. Target-mass dependence of the singleproton QES cross section (a) and the two-proton QES cross section (b). Best fits are obtained for the mean free path $\lambda=2.4$ fin.
'XBL 8012-13626)
mass around 40-50. As we increase the target Gass. the probability of having pp qES increases, but at the same tila, the probability of rescatterings after the pp QeS also increases. In the present measurements the spectronetrer and the in-pline telescope covered very lind ted kinematical regions, such that, if elther proton from pp DES was rescattered inside the tirget mucieus, it mould not be detected. The probsbllity of detecting in-plane colsifidence could, therefore, be fomer for heaviermass targets, due to swich rescattering effects.

By parazterizing the rescattering effect before and after the pp ges by the mean free path λ_{1} we fitted the observed target mass dependence. When we take $\lambda=2.4 \pm 0.5$ fin for protons at 800 HeV , then the data are very well reproduced, as seen in the figure. This value Is bout 1.6 times larger than the value expected fro the free nucleon-mucleen collisions.

Footnotes
*Abstract sublitted to intermational mucl. Physics Conference, Berkeley. 1900.
ton leave fro. IMS, Universfty of Tokyo, Tanashi-sh1, Tokyo, Japan.

THE CORRELATIOM OF TwO PMOTOUS AT SMALL FELATIVE MOMENTA

V. Perez-Mendez, I.Tonituan. D. Wooderd, ${ }^{7}$ and F. Zarmikhah

We have measured the correlation between two protons that are emitted at smill relative ponenta from collisions of $1.8 \mathrm{GeV} / \mathrm{nucleon}$ ${ }^{40} \mathrm{Ar}$ projectiles on a KCl target. He mere motivaped in part by the theoretical work of $\$$. Koonin who suggested that the correlation function is sensitive to the spatial (r) and temporal (t) extent of the interaction region in relativistic heavy ion collisions. Our fanediate goal is to experimentally test the feasibility of using the correlation function as a technique for measuring sizes and lifetimes. He then wish, to emplay this technique in conjunction with a high miltiplicity trigger to measure the size and lifetime of the compound system or "fireball"2 that may be formed in the Ar-kC1 center of mass.

Measurements have been made when the average momentum of t.te two protons corresponds to the bean rapidity $Y_{B} \mathrm{P}^{\mathrm{P} / Z}=2.4 \mathrm{GeV} / \mathrm{c}$ and tab $=$ $\left.6^{\circ}\right)$ and the mid-rapidity $Y_{B} / 2(P / Z=1.0 \mathrm{GeV} / \mathrm{c}$ and $\theta=13.45^{\circ}$). Protons travelling at γ_{B} are thought to come from the projectile remant while protons travelling at $\gamma_{B} / 2$ are associated with the "fireball". By studying the correlation function, R, in these two rapidity regions, we hope to measure the relative sizes of the fireball and the projectile remant.

The two protons are detected in a metic spectroneter which is iftstrumented with plastic scintillation counters (S), mitiwire proportional chambers (INPC) and a 24-element scinti)lator hodoscope (H). We have also sampled the witiplicity of high P_{t} fragents with in array of miltiplicity counters (Mi) that surround the target.

The correlation function h is formply defined fron the relation

$$
\frac{d_{0}^{2}}{d_{1} d_{2}}=\frac{1}{0_{1}} \frac{\langle n(n-1)\rangle}{\langle n\rangle^{2}} \frac{d 0}{d d_{1}} \frac{d 0}{d_{2}^{3}}(1+R)
$$

where $\frac{d^{2}}{d_{a}}$ is the twarticle inclusive differential cross-section, $\frac{d_{0}}{d_{1}}$ is the single particle inclusive differential cross-section, or Is the total inclusive cross-section for obserying a proton, and $\langle n\rangle$ and $\langle n(n-1)\rangle$ are the firit and second moments of the protion multiplicity distribution.

Prelininary results for the correlation function using single proton mixing are shown in Fig. 1. The symbols (0) represent data at $Y_{B} / 2$

for which a multiplicity of five or wore was requifed in the trigger for both the tho proton and single proton date. The sybols (x) represent data at $Y_{\mathrm{B}} / 2$ with no mutiplicity requifement. The sybols (e) represent data near Y_{B} with no mitiplicity requirement. The curves are S. Koonin's calculations of R for r equal to 2 and 3 fiw when $t=0$.

Even at this early stage in the analysis, it is possible to draw some tentative conclusions. The agrecment between the shape of the data and Koonin's predictions seens quite good. The sizes obtained by comparing our data to Koonin's $\tau=0$ calculations represent upper lifits because a finite lifetime reduces the peak in the correlation function. The sizes we extract for the three different settings shom in Figure 1 are $2.2,2.9$, and 3.5 fim for data at Yg/2 (M $>4), Y_{B} / 2(M \geq 0)$, and $Y_{B}(M \geqslant 0)$, respectively. Since Koonin used Gaussian distributions it is necessary to multiply these sizes by 1.5 to compare them to the RUES values of sharp sphere distributions.

The upper limit for the size of projectile remnant is 5.5 fan which is larger than 4.1 fir, the radtus of 40 Ar . This larger apparent size could be caused by a finite lifetime ($\tau=7 x$ $\left.10^{-23}\right)$. On the other hand, this type of experiment is sensitive to the region of the final hadronic interaction between the protons and the rest of the nuclear mediun. If the projectile remnant is expanding and these last interactions occur when the density is lower
than normal molear deasity. one sight expect to measure a size that is larger then that of the original prajectite.

The size of the source at $\mathrm{Y}_{8} / 2$ appears to be saller than at Y. It is possible that at so high bedbarting energy only a seall portion of the participant region (the geometrical orerlap betinen the projectile and the target) are actualiy stopired in the center of mass. This can be checked by measuring it at lower bomardIng energies.

In the meter future we hope to extract ilfetimes es well es sizes by fitting our data to the predictions of Roonin's modef. We also plan to see whether cascade calculations ${ }^{3}$ sugsest any correlation betwen relative monentim and the size of the interaction region wich ofght explain the sell size te measure at Yg/2.

Footnotes and leferences

*Physics Departient, University of Califormia, Los Angeles, CA
tCaliformia State Lhiversity, Haymerd, CA

1. S. Koonin, Phys. Lett. 708 (1977) 43.
2. 3. Gosset et al., Phys. Rev. C16 (1977) 629.
1. J. Cugnon, T. Mzutari, and J. Yandermealen, Cal. Tech. preprint MPP10 (Feb. 1900).

OBSERVATION OF HGGH MOMENTUM PROTONS FFIOM LIMHTNG TARGET FRAGMENTATION*

J. V. Geage, S. A. Chessin, J. Y. Grostiord, I J. W. Harris,

D. L. Hendrie, L. S. Schroeder, R. N. Trouhaft, and K. Van Bibber ${ }^{2}$

Abstract

Inclusive distributions of protons produced at 180° have been measured in the momentum range $0.3 \leq \mathrm{p} \leq 1.0 \mathrm{GeV} / \mathrm{c}$. Proton, alpha, carbon, and argon beams in the range of kinetic energies 0.4 $\leq T \leq 2.1 \mathrm{GeV} / \mathrm{n}$ (4.89 GeV for protons) were incident on $\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}$, and Pb targets.

The energy dependence of the proton-induced cross sections is shown in Fig. 1. Results from other measurements at $90 \mathrm{MeV}, 600 \mathrm{MeV}, 7.72 \mathrm{GeV}$, and 400 GeV have been included. The data indicate limiting behavior of the distributions In the range of momenta $0.4 \leq p \leq 1.0 \mathrm{GeV} / \mathrm{c}$ starting between 1.0 and 2.0 GeV . Results with other targets and also m'th heavier projectiles are simlar.

The dependence of the proton production cross sections on projectife mass for a carbon target at an incident energy of $1.05 \mathrm{GeV} / \mathrm{n}$ is show in Fig. 2. The shapes of the proton

spectra in the momentin range 0.4 P 1.0 Gevfc are seen to be roughly independent of prajectile ans. Plotted on the sane figure in the prajectile rest frame) are data from Papp for $\mathrm{C}+\mathrm{C} \rightarrow \mathrm{p}\left(2.5^{\circ}\right)$ at $1.05 \mathrm{GeV} / \mathrm{n}$. Recent theoretical investigations ${ }^{2}$ show that the Internal momertip distributions in mactei can be approxilated by two overlapping Gawsians when short-range correlations are included. The low molentur Gussian is dominated by the single particle characteristics of the momentum distributions and the second Gaussian energes when short-range correlations are considered. Specifically, these investigations propose that the higher momentil components in muclei arise predominantly from short-range correlations. The solid line showit in Fig. 2 is a double Gaussian parametrization of the $C+C \rightarrow p$ data. If the internal momentun distributions are indeed correctly specified by the models, then one is led to conjecture that the shapes of the

Fig. 1.
(XBL 7912-13375)
measured distributions in the momentun region $0.4 \leq p \leq 1.0 \mathrm{GeV} / \mathrm{c}$ are a consquence of the presence of nuclear correlations.

In conclusion, we find that the data span a transition region wherein the inclusive distributions of protons in the monentum range $0.4 \leqslant p$ $\leq 1.0 \mathrm{GeV} / \mathrm{c}$ are found to exhibit limiting behavior. Recent theoretical work ${ }^{3}$ also indicates that at higher energies, backward spectra in the same momentum region are mainly composed of spectator nucleons from the breakup of correlated pairs in the nucleus. The data, together with recent theoretical descriptions of internal momentum distributions in muclei and reaction mechanisms involving correlated nucleons, strongly suggest that the limiting shapes of the measured spectra are related to the presence of correlations in the nucleus.

Footnotes and References

*Condensed from LBL-10265

Fig. 2.
(XBL 7912-13374
iPresent address: Institut de Physique Hucleaire de Lyon, France.
\ddagger Department of Physics, Stanford University.

1. J. Papp, LBL-3633, Berkeley (1975), Ph.D. thesis (unpublished).
2. J. G. Zabolitsky and K. Ey, Phys. Lett. 768, 527 (1973). O. Bonigas and S. Stringari, Preprint ORSAY IPHO/TH 79-59 (1979). J. Ki. ran Orden et al., Preprint U. of Md. TR 80-045 (1979).
3. L. L. Frank furt and M. I. Strikman, Phys. Lett. 83B, 407 (1979). T. Yukama and S. Furui, Phys. Rev. c20, 2316 (1979).

THE AGE OF THE Cosme RAYs*

The age of the cosmic rays is one of the key parameters required in order to model processes of cosmic ray acceleration and propagation. This age, conbined with the observed cosmic ray flux, establishes the power output required from the cosmic ray sources and influences the efficiency required of acceleration mechanises. It also has direct bearing on the questions of how strongly the cosmic rays are confined in the propagation voluse and of the mean density of interstellar gas in thit volume.

Measurements of the abundance of long-1ived radioactive isotopes in the galactic cosmic rays provide an excellent probe of this lifetime and $10_{\text {be }}\left(T_{1 / 2}=1.6 \times 10^{6}\right.$ years in the laboratory) is the best. candidate for this measurement. The fact that the fraction of the coswic ray beryllify expected to be lofe, even in the absence of 10 Be decay, is small (-0.1 to $0.2)$ makes this measurement difficult. Even the most recent isotopic composition experiments have had to rely on peak fitting techniques to derive the 10 Be abundance, in many cases without even the benefit of an accelerator calforation of the peak shapes. Balloon-borne experiments have, guffered from the avditional dffficulty that 10 ge produced in the overlying a tmosphere I_{s} fragmentation of heavier species cqutaminates the desired signal fromgalactic 1OBe, contributing as mech as half of the observed abundance.

He have made a measurement of the fisotopic composition of galactic cosnic ray beryllifum which overcomes these problems. Our measurement, made with the U.C. Berkeley HKH experiment ${ }^{1}$ aboard the ISEE-3 spacecraft, has for the first t tme achfeved complete separation of the cosmic ray beryllium isotopes. This measurement covers the energy interval - 60 to $185 \mathrm{MeV} / \mathrm{amu}$. Figure 1 shows a cross-sectional view of the detector system. Mass deterwinations are made on an event-hy-event basis for cosmic rays stopping in the detector system empioying energy loss signals from up to nine Sf(Li) detectors and a trajectory measurement. obtained from six drift chambers.

Figure 1 shows the distribution of masses calculated for the 345 beryllfun events included in this analysfs. The three well-resolved peaks correspond to ${ }^{\text {Be (which decays by electron }}$ capture in the laboratory but is fully stripped and therefore stable at cosuic ray energies), ${ }^{\mathrm{Be}} \mathrm{and} \mathrm{O}_{\mathrm{Be}}$. The average mass resolution for these data is $\mathrm{a}_{\mathrm{H}}=0.15 \mathrm{amw}$, a factor of two better than achfeved in any previous measurenent of cosmic ray beryllium.

For the interpretation of our observations we have adopted a standard model in wich cosuic ray propagation is assumed (1) to occur in a homogeneous medium subsequent to acceleration,
and (2) to be characterized by an exponential distribution of potential pathlengths. In addition, cosilic rays are assumed to underjo solar modulation in penetrating to the earth's orbit.

For this malysis we obtain the mumer density of atons of intersteller gas in the cosmic ray confinement voluse as $0.3 \pm$ $0.1 / c^{3}$. This density, combined yith the escape man-free path of $5.5 \mathrm{~g} / \mathrm{ca}^{2}$ used in the caiculation, can be used to calculate the "cosmic ray age," that is, the gan escape time from the confincment volume. For $=1$ particles we obtain resc $=\left(0.0_{-2}^{4} .0^{2}\right) \times 10^{6}$ yr. These uncertaiaties in mind tesc are due to measurement errors alone.

We thank Fred Bieser, Hank Crewford, Harry Heckean and Peter Lindstran for contributions to this experiment.

Fig. 1. Histogram of we masses calculated for the 345 bery; ifun events ($60-185$ Mev/amu). Inset shows cross sectional view of the U.C. Berkeley HKd detector system on ISEE-3.
(XBL 804-9157)

Footnotes and Reference

*Abstracted from a contribution to the Astrophysical Journal (Letters), August. 1980.
†Space Sciences Laboratory, University of California, Berkeley, CA 94720.

Heckean. IEEE Trans. on Geoscience Electronics 16. 163 \{1978\}.

1. D. E. Greiner, F. S. Bieser, and H. H.

DISCOVERY OF NEW MEUTRON P:CH ISOTOPES 20Ce and 27F

J. D. Steventon* and P. B. Price*

Technfques to produce extremely neutron-rich isotopes include proton-induced fragentation of hea vy nuclef, deep inelastic heavy fon reactions, and most recently, fragmentation of relativistic heavy fons.

We present results of a search for new neutron-rich fsotopes produced by fragnenting $210 \mathrm{MeV} / \mathrm{ama}{ }^{40} \mathrm{Ca}$ nuclei. These results include the first proof of particle stability of ${ }^{20} \mathrm{C}$ and 27 F . In addition we have confireed previous reports of particle stability of ${ }^{19} \mathrm{C}$, ${ }^{22} \mathrm{~N}, 240$, and ${ }^{26} \mathrm{~F}$.

Projectile fragnents are characterized by having very small transverse momenta, $a\left(P_{\perp}\right) \approx$ $150 \mathrm{MeV} / \mathrm{c}$. The longitudinal momentum is strongly peaked at the beam momentum-per-nucleon with o $\left(P_{y}\right)=150 \mathrm{MeV} / \mathrm{c}$. Thus in the laboratory the fragnents form a bean diverging only - 1° from the beam direction.

Our experimental procedure ${ }^{1}$ involved deflecting the "bean" of fragments with the Bevalac Beam- 400° spectrometer and stopping them in a stack of Lexan plastic track detectors, Later the detectors were processed and - 10^{4} tracks were located. The end of range of each particle was determined in three dinensions. This provided sirultaneous measurements of range and magnetic deflection of particles. In addition the charge was measured at the end of range. Typical beam intensity was -107 ${ }^{48} \mathrm{Ca}$ ions $/ \mathrm{sec}$. The target was $0.89 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{Ec}$.

Figure 1 shows the data accumulated over a 40 hr run for carbon, litrogen, oxygen, and fluorine nuclei. The mass resolution is $a_{m}=$ 0.23 for carbon to $o_{m}=0.34$ at fluorine. The ratio of peak hefghts does not reflect the relative ylelds of fsotopes. There is clear evidence for the first observation of ${ }^{20} C$ and ${ }^{27} F$. In addition ${ }^{2} 2_{N}$ and ${ }^{26} F$, which have been observed only once before, ${ }^{2}$ are confirmed. The statistfcal signficance of possible peaks at ${ }^{2 L^{C}}, 23_{N}$, and 250 is being considered.

Footnote and References

*Rlso at Space Scfences Laboratory

Fig. 1. Mass histograms for carbon, nitrogen, oxygen, and fluorine fragments from $210 \mathrm{mg} /$ nuciegn ${ }^{48}$ ca prajectiles. The isotopes 20 C and 27 are clearly observed.
(XBL 807-1390)

1. J. D. Stevenson, P. B. Price, and M. P. Budiansky, MucI. Instr. and Meth. 171, 93 (1980).
2. G. D. Westfall, T. J. M. Symons, D. E. Greiner, H. H. Heck(1an, P. J. Lindstrom, J. Mahoney, A. C. Shotter, and D. K. Scott, Phys. Rev. Lett. 43, 1859 (1979).

FROM HEAVY RON COLLISNOHS AT EEVALAC ENERCWES*

Evidence for momalously short reaction mean free paths (mfp) of projectile fragments (PF) from high energy heavy ion collistons has been persistently reported in coseic ray studies since 1954; havever, because of liefted statistics, these results have not gained recognition. To overcome this liaftation, we have performed two independent sfillar experiments with beades from the LBL Bevalac.

Two stacks of Ilford G5 nuclear research emulsion pelitcles were exposed to relativistic heavy ion beams parallel to the enulsion surfaces $\left\{2_{4}\right] \mathrm{GeV} /$ nucleon 16_{0} and $1.88 \mathrm{GeV} /$ nuclean 56 Fel.

Interactions, defined as events showing enission of at least one target- or projectilerelated track, were collected by scinning along the tracks of beam nuclei. Relativistic tracks of charge 2,3 , with velocity approximety equal to the bean, enitted from all generations of the extra-nuclear cascade within a 100 mr forward cone were followed until they either interacted or left the stack.

Our results, based upon 1470 events, can be summarized as follows:

1) Over the first few ofter energing from a nuciear interaction $\left\{-10 \mathrm{~g} / \mathrm{cm}^{2}\right.$ of atter traversed or - $10^{-11} \mathrm{~s}$ proper time) the PF's exhibit significantly shorter Efp's than those derived from "normal" beams of the same charge 2 ;
2) at larger distances from the emission point, the mfp's revert to "normifity" in the above sense;
3) the data are incematible with a homgeneous lowering of the \quad fp and require the
presence among PF's of at least one component with in unexpectedly figh renction cross section.

In the energy range 0.2-2.1 Cev/nucieon, the Een free path a of bè muclel, $2 \leq 2 \leq 26$, can be parcmeterized as $x(Z)=12^{-b}$, where 1 . Ibetw $=(30.4 \pm 1.6) \mathrm{ce}$ and $b=0.44+0.02$. The investigated the dependence of i on distince D after efission of profectile fragment and obtain for $D \leq 2.5$ and $\geqslant 2.5 \mathrm{~cm}$ estivates for 1 idisplayed te the Dotton of Table 1) Uhich differ by 3.4 S . D .

He display in Table 1 charge-grouped estientes for 1 which illustrate that this effect is present In all charges of PF's. The prabebility $P_{0}\left(<F_{D}\right)$ where $F_{D}=\lambda *(D<2.5 \mathrm{~cm}) / \lambda *(D)$ $2.5 \mathrm{~cm})$ should be aniformis distributed between 0 and 1 for all charges 2. We obtain the ean $\bar{P}_{0}=0.323 \pm 0.053$, Which is 3.4 S.0. from the expected value of $1 / 2$. This result is independent of any asscrption about the functional dependence of a upon 2 . and indicates that within the first few ci fifter PF enission, is significantly less than at larger distances.

Let us assume as a first approximation that, in addition to normi nuclef, there is a fraction a of "anomious" PF's with a conslant "short" ofp $\lambda_{3}<_{1} e_{2}$, leaving a fraction $1-a$ that behaves "nonilly as confirmed by our observations at larger distances after eisifion. He
 tion from. ir data and obtain ${ }^{*}=6 \pi, x_{0} * \approx$ 2.5 cm . As, iting (sic!) that $\overline{2}(2)$ can be extrapolated to $2_{a}=2.5 \mathrm{~cm}$, this corresponds to a preposterous $\mathbf{Z}=300$.

He are not mare of explanations within the framework of conventional nuclear physics for the results of this experiment.

Table 1. Welghted estimates for the mean free path 1 and the parameter \boldsymbol{A} at different distances 0 from the origins of $\mathrm{PF}^{\prime} \mathrm{s}$ for grouped charges. Expected values assuming $\lambda(Z)=\Lambda Z^{-b}$ are given in the Jast colum.

2	$\left.\lambda^{*} \pm 0 \leq 2.5 \mathrm{~cm}\right)$	$\begin{gathered} x *(0>2.5 \mathrm{~cm}) \\ (\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { (} \mathrm{c}) \\ & (\mathrm{c} \text { (}) \end{aligned}$
3-8	12.4 ± 0.7	14.0 ± 0.5	14.6
9-16	8.3 ± 0.7	11.6 ± 1.0	10.6
17-26	6.0 ± 06	8.0 ± 0.8	8.4
	$\begin{gathered} \Lambda^{\mathrm{m}}(\mathrm{D} \quad 2.5 \mathrm{~cm}) \\ (\mathrm{cmin}) \end{gathered}$	$\begin{gathered} \mathrm{A}^{*}(\mathrm{D}>2.5 \mathrm{~cm}) \\ (\mathrm{cm}) \end{gathered}$	$\begin{aligned} & (N) \\ & (C m) \end{aligned}$
3-26	25.0 1.1	$30.0 \quad 1.0$	30.4

 W Lovitand. © Cheng Luo. ' P. L. McGeughey. D. J. Manrietry and G Sembry

The study of the fragentation of a $238 \sqrt{4}$ target nucicu: by relativistic heavy fon (RAD) projectiles has revealed many new and 1 teresting phenomena particularly in regard to the yields of the survivors of deep spallation processes (with Afragent ${ }^{\text { }}$ i50). To better understand these pheinomen, we measured the target fragment energies, and ogrenta for two such reactiogs ($4.8 \mathrm{GeV} 12 \mathrm{C}+23 \mathrm{~B}_{\mathrm{U}}$ and 5.0 $\mathrm{GeV} 20_{\mathrm{Ne}}+23 \mathrm{E}_{\mathrm{U}}$) using the thick targetthick catcher recoil technique. Detalls of the experimental techniques and ata analysis have been described previsusly.

A portion of the resuits of thege studies for the reaction of 4.8 cel ${ }^{12} \mathrm{C}, 25 \mathrm{U}$ is shom in Fig. 1. Here the fraction of target: fragents ricoliling formerd from the target relative to the fraction recoiliag bachard (F/B) along with the target fragent energies is show as function of the product eass merber A and the displacesent ($2-2_{\text {A }}$ of the fragent atoic muber, 2 , from the non-integral 2 correspondi an to the center of the valley of establify. 2n. In this figure one sees evidence of the occurrence of several different processes.

Fig. 1. A contour plot of the fragent kinetic energies \& E, and F / B ratios as a function of the fragment mass maber A and the position of the fragment relative to the center of the valle; of a-stability, 2-2A.
(XBL 809-1869)

The lightest fragments (A < 40) are characterized by high kinetic energies and large values of F / B which is consisient with their production in a "fragmentation" mechanism. The heaviest fragments ($\mathrm{A}>150$) are neutrondeficient, show very large values of F / B and very low fragment kinetic energies. Undoubtedly, these prodycts are the result of deep spaliation of 2380 nuclei. The intermediate mass products $(80 \leq A \leq 140)$ are a complex mixture of fission and deep spallation products. The most n-rich products ($90 \leq A \leq 110$)
are mosily fission fragents (F/B ~ 1, high kinetic energies). The mass and atomic nubers of toese products and their kinetic energies are iunsistent with their formation in the fission of a spectes with $A \sim 210, Z-95$ with some slight adnixture of deep spallation products. Their kinetic energies are too low to be consistent with the fission of uraniu-like species, a phenomenon siailar to that observed in such high energy induced reactions as photon-induced fission where fission occurs primarily at the end of the evaporation chains involved in
de-ex:itation of the primery target fragments.
The group of fragents with $40 \leq 1 \leq 70$ represents an interesting class of events. Their kinetic energies are relatively high and the values of F / B are also larger (2 5 F/t \leq 3). One possible explamition of the origin of these events is that they represent the products of the fission of a species with A - 120-130. Their kinetic energizs are completely consistent with this idea and their F / B, ratios would indicate their formation in a mon-peripheral callision. The other part of tifis scenario could be the large grouf of neutron-deficient products with $120 \leq A \leq 140$ which represent the nonfissioning survivors of the precursors of the $\mathbf{4 0}$ $\leq A \leq 50$ events.

In Fig. 2, we show a comparison between measured and calculated values of the longitudiral velocity $B_{1,}\left(=y_{1} / C\right)$ imparted to the fragment in the first step of the prigectiletarget interaction tor the 4.8 Gey 12 C * ${ }^{23} 0_{\mathrm{U}}$ reaction. The calculations of B_{ij} were made using the intranuclear cascade model of Yariv and F risenkel ${ }^{3}$ and the firestreak model. The measured values of a_{11} selected for use in Fig. 2 are for neutron deficient species. This selection was mate to emphasize deep spallation reactions and to de-emphasize fission, f.e., to select products from coll1sions with significant projectile-terget overlap. As one can see from examining Fig. 2, the cascade model grossly overestimates the values of B_{H} for all fragents with A < 209 with the firestreak model predictions also in gross disagreement with the experimental data. This situation may be analogous to the overestimates of the deep spallation product momenta in proton-rucleus collisions by cascade calculations. 5 Crespo, Cumaing, and Alexander 5 specuiated that the priasry spallation products ofight enfit fragments such as ${ }^{2} \mathrm{Ma}_{\mathrm{a}}$ thus reducing the spallation product momenta and providing a ratural mecheaism for producing the high momenta associated with these light fragments. The mechanism is reasonabie given the calculated excitasion energies (firestreak model) of the precursors of the $A=160-190$ fragments which range in energy from 595 to 380 MeY, respectively.

Footnotes and References

*Permanent address: Dept. of Chemistry, Oregon State University, Corvallis, OR 97331.

Fig. 2. A comarison of the calculated and masured values of a_{n}.
(xic 800-1743)
tPermanent address: Atcaic Energy Besearch

1. M. Lovelard, D. J. Morrissey, K. Alekletr, G. T. Seaborg, S. B. Kaufian. E. P. Steinberg, B. D. Vilkins, J. B. Cuming, P. E. Haustein, and H. C. Hseuh, Phys. Rev. C 23, 253 (1981).
2. B. D. Wilkins, S. F. Kautan, E. P. Steinberg, J. A. Urbon, and D. J. Henderson, Phys. Rev. Lett. 43, 1000 (1979).
3. Y. Yariy and 2. Fraenkel, Phys. Rev. C20, 2227 (1979).
4. M. D. Mvers, Mucl. Phys. A296, 117 (1978); J. Gosset. J. I. Kapusta, and 6. D. Westfall, Phys. Rev. C18, 84 (1978).
5. V. P. Crespo, J. B. Cuming, and J. K. Alexander, Phys. Rev. C2, $=71$ (1970).

Of 8.0 CoV 20 Hen wh 183Ta*

We report the results of an interTaboratory study of the target fragent monta and energifs from the reaction of 8.0 GeY 20 we with 181 Ta. We found that the fragnent kinetic properties are considerably different than those found in the reaction of $25 \mathrm{EeY} \mathbf{1 2}^{2}+101 \mathrm{Ta}$ and, furtherwore, the speciffc product foryapd mumpta observed in the reaction of 8 cer dime +181 Ta exceed those in relativistic proton induced reactions with heavy targets.

The experimental technique used to measure the target fragment recoll properties was the thick target-thick catcher technique. Independent foil stacks from ach of the participating laboratories were irradiated simultaneously and the product radioactivities assayed by off-ilne y-ray spectroscopy. The results of these measurements are presented as the fractions of each radionuciide which recoiled out of a target into the forward and backward directions, F and B, respectively. The forward to backmard ratios, $F / 6$, for various target frigents are show in Fig 1 along with data from similar proton induced reactions. (Al) data are the welghted averages of the measurements of the different laboratories which, in general, agreed within experimental uncertainty.) The results were transformed into kinematic quantities using the simple two step vector model of high energy nutlear reactions. In this model, each targe: fragment kinematic property is decomposed into two components, one resulting from an initial fast projectile, target interaction (the "abrasion step" of the abrasion-ablation model) and another resulting from the slow de-excitation of the excited primary fragment (the ablation step).

The general variation of F / B values with product mass show in Fig. 1 is similar to that observed in the interaction of relativistic protons ($1 \leq E_{p} \leq 300$ GeV) with heavy targets. However, a detailed comparison of the F/E values measured in this work for the reaction of 8 GeV 20 He with similar values from protoninduced reactions reveals that, while the trend of F / B with product mass A is similar for all syst=ms, the product F / B yalues for the 8 GeV $\mathrm{KN}_{\mathrm{Ne}}+{ }^{181} \mathrm{~T}$ a reaction exceed any equivalent values for the other reactions. from these F / B values (and the forward velocity or angular distributions they represent) tee can conclude that limiting fragmentation (with respect to kinetic properties) has not been attained in the interaction of $8 \mathrm{GeV}^{\mathrm{O}} \mathrm{Ne}$ with ${ }^{181} \mathrm{Ta}$. This conclusion is based upon the non-equivalence of

Fig. 1. Comarison of target fragent $F / 8$ ratios for various Jilativistif, proton and heavy ion reactions with $1 \mathrm{~S}_{\mathrm{Ta}}$ and 197 Am .
(XBL 801-71)
the Fi; values for the reacrion gf Gey 20 we with 10lTs (this work), 25 Gey ${ }^{12} \mathrm{C}$ with 192 Tal and 25 GeV 12 C with 197 Au 2

It is instructive to compare the momenca imparted to selected target fragments in the ablation phase (or second step) of the reaction since variation of this property with changes of projectile type and energy can reveal the extent to which the ablation phase of the reaction mechanise is influenced by the abrasion process which occurs during the initial projectiletarget interaction. Figure 2 shows plot of $<P\rangle$, the component of the target fragment momenta due to the eblation phase of the reaction versus A for the spallation of Ta by 8 GeY 20 ive and by protons of $0.45,0.58$, and 19 GeY .

For the $8 \mathrm{Gey}{ }^{20}$ we induced reaction a steady increase in $\langle P$) is observed as one moves from near-target products to those that have resultifd from the rewoval of - 50 nucleons from 181 Ta . This increase in $\langle\rho\rangle$ goes approximately is $\sqrt{\Delta A,}$ and is indicative of sequential, step-wise momentum "kicks" being imparted, in a random walk fashion, to the ablating target fragment. The general pattern based on these results for Ta and those for Mu targets is that the ablation phase of reactions leading to products with $\Delta A \leq 50$ is essentially energy and projectile invarlant.

Fig. 2. Dependence of fragment mamente on product mass fio the interaction of 20 Ne ions and protons with Ta. uata points are for: $8 \mathrm{G}-\mathrm{v}$
 7; $0.58 \mathrm{GeV} \mathrm{I}_{\mathrm{H}} \mathrm{m}$, ref. 10 a and $19 \mathrm{GeV} \mathrm{R}_{\mathrm{H}}{ }^{+}$. m, also ref. 10. The soiid curve through the filled circles for $A>130$ is given by $P=5.15$ $\backslash \Delta \bar{A}$ where $\Delta A=181$ - A. The uppermost turve is a parabola through the open circies.
(X8L :05-970]

Footnotes and References
*Condensed from Phys. Rev. C 23. 253 (1981).
' Permanent Address: Departient of Chemistry. Oregon State linfrersity, Corvallis. 0 97331
†Permment Adoress: Studsrik Scientific nesearch Laboritory, Wytoping. Sieden

5Chenistry Division. Argonne Matiomal Labora. tory, Argonte, IL 60439

Chealstry Bepirtient. Droowhaven Hat fonal Laboratory, Upton, MY 11973

1. W. Loveland, D. J. Morrissey, and G. T. Seaborg, Oregon Stite liniversity leport
mo-2227-Th35-1; 0. J. Morrisser. W. Lovelad, and G. T. Seabirg. 2. Prysik A209, 123 (19781.
2. S. B. Kaufan, E. P. Steinberg, and B. D. Mikins, Prys. Wev. Lett. \$1. 1359 (1978).
3. M. T. Porile and M. Sugaram. Phys. Rev. 107. 1420 (1957).
4. B. Wefdhart and X. Bachman, J. Inorg. Muc 1. Chem. 34, 423 (1972); U. Trabitisch and K, Bacheonn, Radiochenical Acta. 16. 129 (1974).

THE ENERGY DEPEMDENCE OF 20H1 FRACAENTATION IN RELATMISTIC MUCLEAH COLLSNON:

An ambiguous point in the description of relativistic heavy ion (RHI) reactions is the amount of excitation energy deposited in the spectator fragments by the interaction. Various models of the fast interaction generate primiry fragments with varying amounts of excitation which after de-excitation reproduce the experimental results for light muslef. Although direct measurements of this exitation energy are difficult, one can follsa the trend of primary fragnent excitation through some relatively simple experiments. Excitation energy in high mass fbut relatively non-fissionable) nucleus at low angular momentin is caricied off mostly ty evaporaued neutrons. Thus, if the primary fragment cross section distributions are governed by geometry, then differences in the $H / 2$ ratio of final residues of RHI reactions as a function of bombarding energy (same projectile and high mass target) will represent differences in the exitation energy.

Following this idea, we report the variation of the production of gold isotopes from three RHI reactions with $2098 i, ~ I n ~ t h e s e ~ e x p e r i-~_{\text {Bi }}$ ments, bismuth metal foils surrounded with Mylar catchery were irradiated with beams of 4.8 GeV
$(0.40 \mathrm{GeV} / \mathrm{A})^{12} \mathrm{C}$. $8.0 \mathrm{GeV}(9.40 \mathrm{GeV} / \mathrm{A}) 20 \mathrm{we}$, and 25.2 Gel (2.1 GeV/a) 12 C ions fro ine LBL Bevalac facility. The target fragentation products stopped in the carget or catcher foils. and the induced radiouctivities mere measured by direct game ray spectroscopy and by gana ray spectroscqpy of a chearally separated gold fraction. 1 The gra way entefing ngilei were identified using standard techniques ${ }^{2}$ and the production cross sections were calculated for those activities observed in the unseparated foils.

The masured cumulative yield cross sections (which include contributions from nuclef produced by ratioactive decay) were corrected for this decay feeding by in iterative fitting of Gaussian distributions to the decay-corrected \{and independent yield\} cross sections. The resulting calculated and measured independent $y i e l d$ cross sectighs $\sigma(Z / A)$ are shom in Fig. I. The yield of $19 A_{\text {at }}$ is depressed relative to the other nuclidic yields in all the reactions for rezsons that are not clear.

Cursory inspection of Fig. 1 shows that the distributions of tu fragents are very siailar for the three reactions studied in this work. A
more detailed examination of the data shows that there is a slight (≤ 1 an) shift of the distribution centroids toward larger A values as the projectile energy increases. Thus, althourh the incident projectile energy chynges by over zu GeY, the excitation energy fmparted to target fragments changes by less them 10 mev.

Fig. 1. The isotopic production cross sections for gold products from the reaction of 4.8 and 25.2 GeV 12 C and $8.0 \mathrm{GeV}, 20 \mathrm{He}$ with 209 Bi
are shown. The lines represent the best Gaussian fit to each distribution with the arrows showing the distribution centroids.
(XBL 807-10700)

We are left vith the question of whether this apparent saturation in energy transfer is predicted by current models of fragmentation reactions. One highly developed model of such
collisfon which rektes predictions about the fragmentation products? the intramelear cascade godel of Yeriv and Fraenkel. 3 The results of the calculation' of the position of the centroid of the gold isotopic distributions using this model are in approxinkte agrement with the results of our study but predict values of the distribution centroids which are systeatically more meutron defictent (-1-2 (u) then our data. Thus, the experimentally observed ififiting fracmentation behavior of Migh tass muclei is predicted by this model of relativistic nucleus-macless collisions.

What universal feature of MHJ reactions is responsible for this betherior? In this case involving very peripheral collisions (itpact paraleter $b-9$ fio $>1=7.0$ fill, it is simply a matter that the predicted chanoes in experimental distributions are very sinil copared to the sersitivity of the experimental measurement. Unfortumitaly, selection of events involving more central events suffer fri the fact that such events integrate oore fully the prianry reaction processes through the subsequent ie-ercitation of the primary fragents. We coiclude that the observation of 1 iofting fragentation behavior in yleld distributions can be produced by a variety of effects, mone of which are connected to the central issue of transfer of projectile kinetic energy inco internm? encitation.

Footnotes and meferences

*Permanent Address: Studsvit Scientific Research Laboratory, Mykoping, Sweden
"Permanent Addriss: Departiment of Chemistry, Oregon State University, Corvallis, OR 97331

1. The bismin metal foils mere dissol red in conc. HCL-conc. $\mathrm{H}^{\mathrm{HNO}} \mathrm{O}_{3}$ (1:2) with carriers. After dissolution, excess MO_{2} was driven off. the solution was couled and dfluted with witer. The Au was extracted tuice into ether, wshed twice with 1.5 M HCI and plated on Pt. This procedure required arricimutely 25 minutes.
2. O. J. Morrissey, D. Lee, R. J. Otto and G. T. Seaborg, Huc1-Inst. Methods, 159, 499 (1979).
3. Y. Yariv and Z. Fraenkel, Phys. Rev., C20, 2227 (1979).

ENWSSHON PATTENHS W CENTHRL AMD FEnMPIEML PELATTYISTIC HEAYY-NN COLLETON***

M. Siock, H. R. Gutbrod, V. G. Moyer. A. M. Poakmum. A. Sandowal. J. Gossel. C. M. King. G. King, Ch. Lumer. Nguyen Van Sen, G. D. Westich, end K. L. WoH

Proton enfssion in relativistic muclear collisions is examined for events of low and high multiplicity, corresponding to large and small impact parameters. Presented here are the first resuits on the aultiplicity-selected proton spectra (12<E $\leqslant 210 \mathrm{MeV}$) as measured in a solid-state detector telescope. The data are selected for both high and low associated iultiplicity as recorded in an array of plastic scintillator detectors located with approximite $a z$ imuthal symetry for $10^{\circ} \leq 91 a b<80^{\circ}$. The array is sensitive to charged particles aboye a iomer energy cutoff corresponding to 15 MeV for pions and 25 MeV for protons. The detalls of the experifental arrangement have been described el sewhere. 1

The overall effect of high versus low mitiplicity selection on the proton elission pattern is illustrated in Fig. 1 showing contour diagrams of the invariant cross section in the plane of transverse momentum and rapidity. The contour lines are constructed by a smooth interpolation of multiplicity selected spectra obtained at 30° (20° for some cases) to 150° in $s t e p s$ of 20°. They are superimposed for high and low multiplicity selections.

The typical cases chosen here to illustrate the effects found in the data are 20 we $+U$ at $393 \mathrm{MeV} / \mathrm{u}$ and $40 \mathrm{Ar}+\mathrm{Ca}$ at $1.04 \mathrm{GeV} / \mathrm{u}$. The most important observations from a comparison of these pattens are as foilows:
(i) For the heavy-target cases $\mathbf{~}^{20} \mathbf{N e}$ and 40 Ar on Ag to U) central collisions exhibit a universal trend of the contour iines centering approximately near zero (target) rapidity. The shape of the contour line is roughly semicircular about rapidities ranging from 0 to about 0.2 , the case illustrated here, indicating a continuous shift in apparent longitudinal source velocities as shown by the dashed line. This implies that there is no unique source for proton emission. The bulk of the proton cross section appears neither at fireball rapidities, which are at $y=0.33$ for impact parameters smaller than $0.5 b_{\text {max }}$ in this case, nor ut the corresponding nucleon-nucleon center-of-mass rapidity $1 / 2\left(y_{p}+y_{t}\right)=0.45$.
(ii) The peripheral-collision contour lines are primarily determined by the incident energy. Their shapes are almost insensitive to the choice of target and projectile, with source velocities rapidly shifting from the target domain to the mid-rapidity domain for increasing \boldsymbol{p}_{\perp}.
(ifi) Un]ike the heavy-target cases, the central collisions of equal-size nuclei, such as
$40 \mathrm{Ar}+\mathrm{Ca}$ and $20_{\mathrm{me}}+27_{\mathrm{Al}}$, exhibit contour lines coolnated by the decay of ald-rapdity source for the buik of the observed cross section. Wote that the contours for high multiplicity in $\mathbf{M A N}_{\mathrm{Ar}}+$ ta shift tomards high rapidities $\left[\left(1 / 2\left(y_{p}+y_{t}\right)=0.67\right.\right.$ in this case] even faster than the corresponding lowmitiplicity contours, contrary to the trend exhibited by We + U.

Fig. 1. Contour diagrans of invariant proton cross section for peripheral (thin line) and central (thfck lines) collisions, in the plane of transverse momentum (in units of $p_{1} / m_{p} c$) and rapidity $y=1 / 2 \ln \left[(E+p) /\left[E-p_{1}\right)\right]$. Five lines are dram for each decade of invarignt cross secition. The cases illystrated are $20^{N e}+U$ at $393 \mathrm{MeV} / \mathrm{A}$ (top) and $4 \mathbf{N r r}^{\mathrm{Ar}}$ ${ }^{40} \mathrm{Ca}$ at $1.04 \mathrm{GeV} / \mathrm{A}$ (bottom). (XBL 808-10889)

Footnote and Reference

*Collaboration of Lamence Gerkeley Laboratory, Gesellschaft fur Scimerionenforschung, Dartstadt, and Universitat Marburg, H. Genmany, and

Argone Mational Laboratory.

1. A. Sandoval. H. H. Cutbrod, H. G. Meyer, A. M. Posk ymzer, R. Stock, J. Gosset, J. C. Jourdat n, C. H. King, 6. King, Ch. Lukner. Hompen Vin Sen, G. D. Westfall, and K. L. Molf. Phys. hev. C 21,1321 (1900).

COMLOMR DASSOCHATION OF 180

D. L. Okgon, E. L. Berman, © D. E. Greinew, H. H. Hectumen, P. J. Lindstrom. G. D. Weatfell, and H. J. Crawford*

Measurement of fragmentation cross sections have been made with 1.7 GeV/nucleon 180 profectiles incident upon targets of $\mathrm{Be}, \mathrm{C}, \mathrm{Al}, \mathrm{T}$, $\mathrm{Cu}, \mathrm{Sn}, \mathrm{W}, \mathrm{PL}$, and U at the Bevalac. The differential cross sections inn momentul) were measured for fragments with rigidity $4.79 \leq R \leq$ 6.28 GV. These cross sections were fitted with a Gaussian form in parallel momentum to give total cross sections in fifteen fragmentrivon channels from $\mathrm{Li}_{\mathrm{Li}}$ to O_{F}.

The coulomb dissocation process can be described as the interaction between the projectile nucleus and the nuclear-Coulond field of the target. 1,2 Given the theoretical form of the virtual photon spectrum and the efasured photodissociation cross sections for ${ }^{18} 0(r, n)^{17} 0$. $1_{0(r, 2 n)}^{16_{0}}$ and ${ }^{18} 0(r, p)^{17} N^{3}$ the calculated Coulomb idssociation cross sections for these reactions are of the form

$$
\begin{equation*}
c_{c}(T, F)=Z T^{2} S\left(F, h_{\min }\right), \tag{1}
\end{equation*}
$$

where T and F denote target and fragment, respectively and $b_{\text {min }}$ is the ninimum impact paramet: r for the process.

In this experiment we measured cross sections in which both nuclear and Coulomb processes contribute. Our analysis has taken the observed cross sections to be

$$
\begin{equation*}
o_{0}(T, F)=o_{\text {nuc }}(T, F)+o_{C}(T, F), \tag{2}
\end{equation*}
$$

where $\sigma_{\text {nuc }}(T, F)$ is assumed to satisfy factorization according to

$$
\begin{equation*}
\sigma_{\text {nuc }}(T, F)=r_{T}{ }^{F} \tag{3}
\end{equation*}
$$

the factors ${ }^{Y} T$ and ${ }^{r}{ }^{F}$ depending on, respective! y, the target and fragment only. The form of Eq. 2 neglects interference between nuclear and Coulomb processes which is expected to be less than 10%.

A large set of the cross sections with no luulomb component were analyzed for factorability. This proti sed the individual ${ }^{\prime} T$ and Y^{F} factors a.: $\dot{3}$, howed the facturization hypo- thesis to be valld to $\pm 5 \%$.

Figure 1 shows the dependence of the target
factor, ${ }^{\text {The }}$: target miss, AT. The curve is from fitting the indicated form of ${ }^{r}$ r where the value $-\dot{u} .9$ is derived from thefit. The points plotted for ${ }^{17} 0,160$, and ${ }^{17} \mathrm{~m}$ are the ratio

$$
r_{T}=\frac{o\left(T_{2} F\right)}{r^{F}}
$$

which would have followed the line if there had been no Coulanb contribution. The departure from the line indicates the strong dependence on $z_{\text {target }}$. The scale is proportional to the cross section for each fragment and comparison of the open points to the line shows the relative sizes of Coulonk and mestear cross sections.

Fig. 1. Target factor vs. target mass. $\left.T_{T}=\frac{\alpha\left(T_{9} F\right)}{r^{F}}\right\rangle_{F}$ for ${ }^{17} 0,{ }^{16} 0,{ }^{17} \mathrm{M}$, the effective target factor is " $V_{T}{ }^{\prime \prime}=\frac{o\left(T_{7}, F\right)^{\gamma}}{\gamma}$.
(XBL 808-10918)

Table 1. Coulomb dissociation cross sections.

Fragment	Target	$a_{c}\left(a^{\prime}\right)$	$\frac{\text { Calculated }}{\text { JPEY }}$	ss sections
(a)				
170	Ti	8.66 ± 2.74	13.4	12.5
	Pb	136.04 ± 2.90	132.0	135.0
	U	140.83 ± 4.11	162.0	167.0
$1 G_{0}$	Ti	6.34 ± 2.54	5.78	5.41
	Cu	9.0 ± 3.5	9.42	8.97
	5n	27.5 ± 4.0	24.0	23.7
	H	50.0 ± 4.3	46.1	46.8
	Pb	65.16 ± 2.32	53.9	55.2
	U	74.27 ± 1.74	66.1	68.1
${ }^{17} \mathrm{~N}$	Ti	-. 45 ± 1.01	2.87	2.41
	Pb	20.23 ± 1.82	23.3	23.8
	U	25.10 ± 1.55	28.5	29.2
(b)				
16 N	Ti	3.0 - 2.2		
	Pb	$8.0+4.5$		
	U	10.8 ± 5.1		
${ }^{14} \mathrm{C}$				
	Pb	$33.7+4.0$		
	U	$35.1+2.7$		
${ }^{13} \mathrm{C}$	$\mathbf{T i}$			
	Pb	$21.9 \div 2.4$		
	\checkmark	17.6 ± 2.6		

The experimental values of oc, using Eq. 2, are shown in Table 1. Part (?) shows the fragnents for which theoretical predictions can be calculated. The column JPEl is calculated with El virtual photon spectrum of Jäckle and Pilkuhn with the parameter bmin being $1 / 2$ fin larger than the sum of the 50% charge density radfi of the target and projectile. The column WW is calculated with the virtual photon spectrum of Keiszacker-Williams in Ref. 2 but with $b_{\text {pin }}$ that is 3 fim larger than that used for JPEl values. Part (b) shows the cross sections in fragmentation channels for which the appropriate photodissociation cross sections have not been measured and calculated predictions are impossible. The cross sections in these channels are reasonable, however.

In this experiment we can't distinguish between the two photon theories in a fashion that is independent of $b_{\text {min }}$. The theory of Jäckle and P:ikuhn yields a value of bmin that appears to be physically more reasonable. Because the calculated Coulomb dissociation cross section increases for decreasing bmin, the observation that the ${ }^{3} 60$ cross settions are relatively larger than for either 17_{0} or $\left.{ }^{1}\right\}_{N}$ when compared to the theory, suggests that the nuclear two-neutron loss process occurs at a
smaller impact parameter than the one-nucleon loss process. By fitting bin to these three channels individually, we find the 160 channel to have an impacfoparampter that is 2 fim smaller than either the ${ }^{17} 0$ or ${ }^{17}{ }^{M}$ channels.

Overall, the principal conclusion of this experitent is that the enhancement of the fragmentation cross sections, appropriate to the photonuclear reaction channels of IB_{0}, for high-charge targets, is well described by the process of Coulomb dissociation.

Footnotes and References

*Lawrence Livemmore Laboratory, Livermore, CA 94550
†Space Sciences Laboratory, Berkeley, CA 04720

1. T. Jäckle and H. Pilkuhn, Nuct. Phys. A247, 521 (1975).
2. J. D. Jackson, Classital Electrodynamics, Hiley, WY, second edition, p. 719 (1975).
3. J. G. Woodworth, K. G. McNeill, J. W. Jury, R. A. Alvarez, B. L. Berman, D. D. Faut, and P. Meyer, Phys. Rev. [19, 1667 (1979).

STREAMER CHAMAER RESULTS ON THE MECHANSSM FOR PAODUCTION OF HWGH WOWENTUM PARTICLES W THE BACKWARD DMPECTION W PELATTVISTIC MUCLEAR COLLISKNS

J. W. Harris.* A. Sandoval, * H. E. Stelzer, * R. Stock. * J. Brannigan, J. V. Geaga.

L. S. Sehroeder, and R. N. Treuhalt

There exists considerable long-standing controversy on the origin of particles with high momentum in the backward direction. Since production of nucleons beyond 90° in the 1 ijoratary is kinematically forbidden in free nucleonnucleon interactions, particle enission in this region is of particular interest. Single hardscattering combined with internal Ferimi motion, mul tiple scattering cascades, and intranuclear correlations are a few of the most notable backward particle production mechanisms that have been proposed. Inclusive proton momentum density distributions accumulated from recent projectile and target fragmentation experiments in conjunction with theoretical predictions suggest the presence of short-range carrelations i.

In the interest of obtaining more-complete event information on the production mechanisms associated with backward particle emission, the exclusive charge-particle production accompanying backward particle emission was studied in the streamer chamber at the Bevalac. The streamer chamber was triggered on a chargedparticle with $p \neq 250 \mathrm{MeV} / \mathrm{C}$ at $\theta_{\mathrm{lab}}>90^{\circ}$. Approximately 10,000 events were photographed in the bombardment of C, KCl, and BaI_{2} targets with 2.1 GeY protons. The mean positivelycharged particle nultiplicites associated with a backward trigger particle from these targets were observed to be $\left\langle M_{+}\right\rangle=4.7 \pm 0.1,6.7 \pm$ 0.2 , and 8.0 ± 0.2 respectively. Particle trajectories were measured and reconstructed using the Three View Geonetry Progran (TVGP).

A kinematic analysis of two-prong events (an 8.7% subset of all events) in $p+{ }^{12}$ C interactions was initiated to determine the contribution of two specific mechanisms to the backward particle spectrum: (1) single hard scattering with coherent recoil of the residual nucleus $\left.\left[p+{ }^{12} C \rightarrow p+p+1\right]_{B}\right]^{2}, 3$ and (2) scattering from two correlated nucleons in the nucleus $[p+(p n) \rightarrow p+p+n]$, The fraction of two-prong event: that lie within one standard deviation of satiscying the kinematics for the hard scattering mecho.ism is 0.015 ± 0.015. The fraction of events satisfying the kinematics for scattering from a pair of nucleons is considerably higher: 0.275 ± 0.063. These results are not sufficient to determine the reaction mechanism uniquely since the kinematics are not unique to these processes. However, they are highly suggestive of the presence of co:relations in the nucleus and their importince in backward particle production.

The production of the $A(3,3)$ isobar in the reaction $p+p \rightarrow n+A^{++}$(1232) accounts for a major fration of the pp total cruss section at energies from 1-2 GeV. 4 Therefore, the effects of the subsequent decay $\left[4 \underset{+}{+} p+i^{+}\right]$ and/or absorption $\left[a^{++}+n \rightarrow p+p\right]$ of isobars on the backward particle spectra must be considered. If isobar production is an teportant eechanism, a back-to-back (180 ${ }^{\circ}$) correlation between the proton and 8^{+}in the Δ^{*+} decay frame and between the two protons in the ($4+$ + n) absorption frame is expected as illustrated in Fig. 1. This correlation ay be preserved in the laboratory systen due to the dominance of 10w momentur trasfer in the production cross

ISOBAR PROOUCTION MECHANISM

Fig. 1. $\mathrm{pp} \rightarrow \mathrm{na}^{++}(1232)$ isobar production mechanism: (top) diagras for a(3,3) isobar formation and decay; (bottom) diagran for $9(3,3)$ isobar formation and reabsorption. Assoilated schematic monentum vector diagrams in the laboratory system are also displayed for each case.
(XBL. 809-2017)

Fig. 2. Correlation between all pairs of positively-charged particles in each event as a function of the cosine of the angle between the particles (histogram) where one particle of each pair is emitted at elab $>90^{\circ}$. The curve represents results of a phase space calculation for 2.1 GeY $p+d \rightarrow p+p+n$. (XBL 609-2054)
section of tie a ${ }^{++}$Isobar. As A splayed in Fig. 2, 180° correlation between the angles of positively-cherged pirticles is observed in the analysis of all g + I2C events providing evidence for $a(3,3)$ isobar production as an inportant mechaisi for production of high maventur particles in the bwelhard direction. However, such a correlation is also predicted by a $[p+d$ $\rightarrow p+p+n 1$ pure phase space calculation represented by the curve in Fig. 2. These results my reffiect the ciacept that the a^{++} production and reabsorption process schemitized in Fig. 1 and the $p+d \rightarrow p+p+n$ process are in fact intiantely related and are faportant to the production of t th momenton particles in the backward diraction.

Footnote and References

*Gesellschaft fur Schwerionenforschung, Darestadt, W. Germany.

1. J. V. Geaga, S. A. Chessin. J. Y. Grossiord, J. K. Harris, D. L. Sendrie, L. S. Schroeder, R. T. Treuhaft and K. Van Bibber, Phys. Rev. Lett. 45 (1980) 1993.
2. R. D. Mado and R. H. Waloshyn, Phys. Rev. Lett. 36 (1976) 1435.
3. S. Frankel, Phys. Rev. Lett. 38 (1977) 1338.
4. 0. Benary, L. R. Price and G. Alexander, University of California Radiation Laboratory Report Mo. LBL-20000 MN (August 1970).

CORRELATIONS OF CHARGED PARTICLE MMLTHPLICITY PATTERNS ANC HEAVY FRAGMENTS FROM RELATIVISTIC NUCLEAR COLLISKNS*

A. Baden, M. Fieedman, H. H. Gutbrod, I. J. Henderson, S. Kaufman, K. Karadjev. ${ }^{1}$ M. R. Maier, V. Manko, 'J. Peter.' H. G. Pitter, E. P. Steinberg. H. Steizer. A. I. Warwick, F. Weik, H. Wieman, B. D. Wilkins 5

In a recent Bevelac experiment completed in may ICOw, a rather comprehensive exasurement of wit properties of emitted charged fragments and the associated spray of fast charged particles has been achieved. The purpose of the experiment is to investigate effects seen (a) in an earlier Bevelac experiment where correlations were measured between light fragments and their assoclated fast charged spray, and (b) in a previous series of measurements with proton projectiles made at the ZGS, ${ }^{2}$ where coincident fragements were observed.

Ue have neasured wultiparticle correlations. Heavy slow fragments are identified as to their mass and energy in a double-arm TOF apparatus consfsting of two position-sensitive avalanche detectors ${ }^{3}$ and two arrays of silicon detectors. Light fragments were Identified by 2 in four $\triangle E-E$ ionization chamber telescopes. The layout of these detectors is shown in Fig. 1. In addition fast charged particies were deterited in a multiplicity array of 80 scintillator
paddles, I each of which proulded a pulseheight spectrum. The forward angles befween 2^{*} and 9° are covered by the Plastic Mall. This provides pattern information, momentum measurement and Z fdentification of the fast charged particies in this forward cone.

The experiment examines specifically (a) the collisions leading to binary enission of fragments, (b) the light fragment production in very violent collisions wich seews to be dependent only on the total incident energy rather than on the velocity or the mass of the projectile, and (c) the observed perpendicular momentum, "sidekick, ${ }^{1} 1$ of heavy target residues (probab'y in seniperipheral collisions) and the possible deflection of the projectile matter.

Recent experiments at the $\mathbf{Z G S}^{2}$ have provided evidence of an exciting new phenomenon. The experiments measured the energles, masses (by time of fifight), and correlation angles of coincident heavy fragments eifted near 90° to
the bean in 2.2 to 11.5 GeY proton bombardent of uranium. The analysis of the results has estabiished that the fragment-fragment corre-
lation is very nearly collinear and that binary breakup frequently occurs wen the total fragment mess is as low as one-quarter that of the

Fig. 1. Exploded view of the layout of the detectors within the chamber. (XBL 808-1691a)
target. The missing mass is probably emitted as a large number of light nuclei or particles. In addition, the total kinetic energy for such events is higher than predicted for a statistical fission process.

In this work the binary events have been otiserved from reactions induced by both proton of associated fast charged particles has been measured. An investigation of this multiplicity pattern will be of great value in characterizing the nature of the reaction mechanism.

Information on the momentum of the light: charged particles detected in the Plastic Hall will yield momentum correlations between the fragments and the spray, and momentum reconstruction will be possible for selected events. These data will yield the transverse monentum transfer and elucidate the mechanism by which the kinetic energy dissipation in the collision is diverted from thermalization into the collective sidekick observed in the previous studies. ${ }^{1}$

Footnntes and References

*Collaboration of Lawrence Berkeley Laboratory, Argonne National Lahoratory, and Gesellschaft für Schwerionenforschung, Darestadt.
†Visitors from Kurchatov Institute of Atomic Energy, Moscow.
\#Visitor from I.P.H., 91406 Orsay, France.
${ }^{5}$ Argonne National Laboratory.

1. H. G. Heyer, et al, LBL-9151 and Phys. Rev. C, to be published.
2. B. D. Hilkins, et al., Phys. Rev. Lett. 43 (1979) 1080.
3. H. Stelzer, in this annual report.
4. A. Baden et al., in this annual report.

D. ISOTOPES PROJECT

ISOTOPES*

C. Michael Lederer

Ordinary matter consists of the 266 isotopes of 83 elements that are stable or long-lived compared to the age of the earth. For wost polyisotopic elements, the relative abundances of the isotopes are remarkably constant. Isotopes are usually assayed by mass spectrometry.

Of many isotope-separation methods that have been develped, two (electronagnexic and thermal diffusion) are used commonly to produce smil: quantities of many isotopes for research purposes, and two others (the GS chemical-exchange process for hydrogen, gaseous diffusion for uranium) are used on an industrial scale. The large-scale use of gas centrifuges for uranium is imminent, and laser separation methods appear promising for uraniun, deuterium, and expandedscale production of research materials.

In addition to the applications of 235 u and deuterium in nuclear energy, separated iso-
topes serve as chemical tracers and as targets or beam particles in radioisotope production and nuclear research. Isotope effects on chenical equilibria and reaction rates are mell understood; kinetic effects provide useful tool for the study of reaction mechanisms. Isotopic substitution in living systens has yielded new knouledge in the blological sciences, as has the stugy of natural isotopic abundance variations in the geosciences.

Footnote

*Abstract of a revied article ta be published in Encyc lopedia of Chenical Technoiogy, 3rd ed., edited by David Eckroth, John Wiley and Sons, Hew York (1981). The article includes 6 tables, 5 figures, and 95 references. A longer version, from which the published article was condensed, is contained in LBL-10124.

NUCLEAR STRUCTURE DATABASE*

R. B. Firestane and E. Browne

The seventh edition of the Table of Isotopes ${ }^{1}$ contains evaluated radioactive decay and nuclear reaction data fer all known nuclides as of 1977. This data exists in an LBL computer file that was designed for the production of level-schene plots and was not suitable as a database for horizontal compilations and systematic studies of nuclear properties. We have restructured this file by removing the references and non-data plotting instructions. The new file has been modified to greatly improve the ease and speed of data searches and represents the most complete and up-to-date collection of nuclear data currently available.

An initial search of the database was performed to create a file of all levels with measured half-lives and their associated deexcitations. This file was then utilized to extract the known Heisskopf enhancements for the lowest lying $2^{+} \rightarrow 0^{+}$transitions in eveneven nuclei. These results are presented in Table 1 where the systematic trends of small enhancements near closed shells and large collective enhancements (of order Al in the deformed regions are clearly demonstrated. He intend to use the database for a systematic study of r-ray transition selection rules, and, in the future, to expand the content of this database and promote its general use.

Table 1. E2 Meisskopf enchancements for the $\mathbf{Z}_{1}^{+} \rightarrow \mathbf{0}_{1}^{+}$transitions in eveneven nuciei, $Z=2-50$. Closed shells are indicated by toti.

Table 1, continued. $2=52-100$

1. Table of Isotopes, 7th edition: C. M. Lederer and V. S. Shirley, editors: E. Brome,

THE FEASIBILITY OF PRODUCING ' ${ }^{1 C}$. ${ }^{13 N}$, ${ }^{10}$ and "CFYMTH HEAVY IDM-EEANS"

R. B. Frrestone, M. A. Betlach.' J. M Tredpe. 'M. K Firestone'

The short-1ived tracer ${ }^{13}$ H has proven uniquely useful in our studjes of biological nitrogen trans formations. 1,2 With the closing of the Michigan State University cyclotron there is no longer a suitable facility for these $\mathbf{3}_{1}$ experiments. We therefore investigated the possibility of producing 13_{N} with heavy-ion beams such as those available of the LBL 88 Inch Cyclatron. Useful sources of $11 \mathrm{C},{ }^{1} 50$, and 18F could also be produced with these beans.

He performed ALJCE particle-evaporation code calculations ${ }^{3}$ to predict the yarious isotope fields from 15 -itel $p, 75-\mathrm{MeV} 3 \mathrm{He}$, and 300 - HeY ${ }^{2} \mathrm{C}$ beams incident on natural $\mathrm{H}_{2} \mathrm{O}$ targets. These calculations, sumarized in Table 1 indicate that sybstantial quantities of $1_{1} C$, $13_{\mathrm{N},} 1^{5} 0$, and 18 F are produced with heavier beams. Le previously used the $15-\mathrm{HeY} p$ beap because it produces neafly fure sources of 13_{W} containing only small 8_{F} inpurities The experimental yields of both $\mathbf{1}^{2}$ and l_{F} were predicted well with the ALICE calculations. To test the heavy-ion calculations bembarded a natural $\mathrm{H}_{2} \mathrm{O}$ sample with a $75-\mathrm{HeV}$ 3te beam.

The resultant activity was analyzed by half-life and by high pressure liguid chrget tography
(thPLC). The yield of 13 代 and 18 F again
fgreed well with the ALCE calcylations; the 150 yield was too tow; and no 11c yis observed. This disparity in the ${ }^{15} 0$ and ${ }^{11} \mathrm{C}$ results may arise because these species are produced largely in the gaseous state while the experinenfol system was not gas tight. To purify IS_{M} source we acidified it, evaporated it to dryness, reconstituted the sounce with 0.001 W MaH, again evaporated it to dryness and finally reconstituted it with $\mathrm{H}_{2} \mathrm{O}$. An HPLC analysis of the raw and purified sources je show in Fig. I. After this treatrent only 13 wo 3 remaised (plus 18 which was not detectable by HPLC) suygesting that heavy-ion beam should be useful for ${ }^{13}$ w production.

A wide variety of bean at the L8L 88 Inch Cyclotron should be useful for tracer production. Since natural $\mathrm{H}_{2} \mathrm{O}$ is a target of choice, sources can be p-oduced in the bean dumps without interfering with simitaneous nuclear physics experiments.

Table 1. Calculated and experimental isotope yields far various beams on $\mathrm{H}_{2} \mathrm{O}$ targets.

I sotope	t $1 / 2$ (m)	E_{B}	Yield (mCi/uA per 10 min)				
			15-Hev Experiment	Theoryb	$75-\mathrm{MeV}$ Experiment	3 He Theory ${ }^{b}$	$\begin{aligned} & 300-M e V^{12} c \\ & \text { :ileory } \end{aligned}$
${ }^{13} \mathrm{H}$	9.96	1.20	20	31	96	81	26
$11_{\text {¢ }}$	20.4	0.96	0	0	< 15	51	8.2
150	2.03	1.73	0	0	67	384	109
$18_{\text {F }}$	109.8	0.63	0.2	0.1	12	5.5	4.2

[^8]

Fig. 1.
(XBL 804-9287)

Footnotes and Meferences

*Condensed from Lel-10919.

1 Departments of Microbiology and of Crop and Soll Sciences, Hichigan State University, East Lansing, MI 40324.

Departient of Solls and Plant Mutrition. University of Californita, Betzeley, CA 9i720

1. J. M. Tiedje, R. B. Firestone, M. K. Firestone, M. R. Betlach, M. S. Smith and M. H. Caskey, sofl Sci. Soc. Amer. J. 43, 709 (1979).
2. M. K. Firestone, M. S. Silth, R. B.

Fires tome, and J. M. Tiedje, Soli scf. Soc. Aer. c. 43, 1140 (1979).
3. :1. Blann and F. Placi1, AilCE: A Huclear Evaporation Code, U. S. Atomic Enersy Comis? ion Report $\mathbf{c} 00-3494-10,1973$.
II. THEORY OF NUCLEAR COLLISIONS

A. NONRELATIVISTIC

THE DYMAMCS OF MUCLEAR COALESEENCE ON REPEPARATION*

W. J. SwienelkI

A quilititative theory of the macroscopic dynamics of sub-sonic nuclevs-nueleus collisions is presented. Attention is focused on three degrees of freedom: asymetry, fragent separation, and neck size. The physical ingredients are a macroscopic (1 iquid-drop) potential energy, acroscopic dissipation (in the form of the wall- and mall-plus-window formulae) and simplified treatment of the inertial force. These ingredients are distilled into al gebraic equations of motion that can often be solved in closed form. The applications include the calculation of the normal modes of motion around the saddie-point shapes, and the division of nuclear resctions into: a) dinucleus (deep-inelastic) reactions, b) mononucleus or composite nucleus (quasifission) reactions, and c) compound-nucleus reactions. Static and drnalic scaling rules are deduced for comparing different reactions in a systematic way, an example being the following: For two dinuciear systems with the same value of the effective fissility defined by

$$
\left(\frac{z^{2}}{A}\right)_{\mathrm{eff}} \equiv \frac{42_{1}^{\tau_{2}}}{A_{1}^{1 / 3} A_{2}^{1 / 3}\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)}
$$

the dyramical time evolutions resulting from
heid-on collisions should be approximately sínilar, provited leneths are fasured in waits of the retuced redfus $R\left(E R_{1} R_{2} /\left(R_{1}+R_{2}\right)\right)$ and times in wints of $p^{-1} f^{2} T_{0}$ fitere o is the eass density of muclei, \bar{T} is the mean meleonfc speed and y is the muclear surface-emery coefficient.)

Estimetes are given for the critical curve in the space of target and projectile mass abowe Which deep-inelesti= reactions onght to nale their appearance. The extra push over the interaction barrier meded to male two muclei form a composite maclems or eise to fuse into a compound mucleus is also estimeted (Fig. 1).

The dynulcs of dozens of (head-on) collisions have been fol? owed in the thretdinensional configuration space of asymetry. fragent-separation and meck-opening. The predictions of the theory. in the full range of asymatries and infection velocites, are baing compared with experifent. Extension to noncentral collisions is under my.

Footnate

tCondensation of L8L-10911, to be published in Plysica Scripta, 1901.

Fig. 1. The extra push over the interacton barrier (in head-on collision) needed for fusion into a composite macleus (lines and dashed Tines) and into a compound nucleus (circled mubers). (XBL 806-1201)

W HEAVY-HON REACTION**

W. U. Schroder '. J. R, Birketund, 'J. R. Hurgenge, 'W. W, Mricte, and J. Pandrup

Al though considerable progress has been eade
during recent years in understanding the eechanisms operating in damped mu 'sar reactions. several of the most character: : tic features of these processes have so far escaped a consistent theoretical description. This is particularly true of the experigental well-established correlations, between energy dissipation and nucleon exchange. Experfaental evidence is in accord with the assumption of successive exchange of single nucleons procreding staultaneously with dissipation of relative kinet!c energy in many small steps. We have exalned available data in order to expose the systematic properties of dissipation and exchange eechanisms associated with danped muclear reactions. It is shown that these features cannot be understond on purely classical ground but find a natural explanation when the fermion mature of the exchanged nucleons is taken into account.

A quantal model ${ }^{2}$ is applied attributing energy dissispation to the stochastic exchange of nucleons between two Ferti-ntrac gases in relative motion, a oescription expected to be relevant for the modest excitations attained in the damped reactions uncer consicaration. The model expresses the rate of change of the projectile mass number A and the energy dissipation rate as

$$
\begin{equation*}
d A / d t=F_{A} N^{\prime}\left(\epsilon_{F}\right), d E_{\text {loss }} / d t=\left\langle_{L}\right\rangle_{F} H^{\prime}\left(E_{F}\right) . \tag{1}
\end{equation*}
$$

contributing to emchange processes. In the Ifinft 'ul < <7, it approaches the melear temperature T . wheress in the case $\mathbf{u} \gg \boldsymbol{r} \boldsymbol{T}$ * $\approx 1 / 2$ \&u ${ }^{2}$ f iny be considerably larger thin T, because of larger relative displacement of the two Ferll spheres. In any case, the appearance of \boldsymbol{t} tin Eq. (2) ensures that proper account is taten of the quantiv statistics at all temperatures.

It is possible to anke simple fdetil2ed estimates of the correlation between the energy lass and the naber dispersion. puntitative results have been obtalned from dymencal calculations of collistons trajectories in a coordinate space including the fragent-mass and -charge asymetries.

Typical results of the calculetions (full curves) are compared to experiment in Fig. 1. The dashed curves represent the dynumical calculations in the classica! 1 ifit. The pauli principle is essential to the good agreement betweem data and the quantal model.

In sumary, the good agreewent between date and model predictions found in genteral temonstrates that energy dissipation in damped reactions can be cansistently understcod in teris of the nucleon exchange mechanis. in which the Pauli exclusion principle plays a crucial role.

Here $N^{\prime}\left({ }^{E} F\right)=a N\left({ }_{F}\right) / \partial_{F}$ is the differential current of nucleons exchanged Detween the gases calculated with neglect of the Pauli blocking effect. This form factor governs the overali intensity of the interaction and depends delicately on the details of the interaction zone. The quantity o is the amount of intrinsic excitation produced by the exchange of a nucteon and the brackets denote an average over the orbitals in the Fermi surface, the only ones participating. The two quantites in Eq. (I) can both be ropresented in terms of one-body operators and may, therefore, be calculated without taking explicit account of the Pauli exclusion principle.

This, however, is not true for the particle-number dispersion on 2 a quantity depending explicitly on the correlations present, such as those imposed by the Fermi-Dirac statistics of the nucleons. The r; te of growth of σ_{A}^{2} is, in this model, equal to the total rate of actual exchanges, as long as the systed has not evolved too far towards equilibrium. It is given by

$$
\begin{equation*}
d_{0_{A}}^{2} / d t=2 \tau^{\star} N^{\prime}(E F) \tag{2}
\end{equation*}
$$

Here, $\tau^{\star}=\alpha_{\omega} / 2$ coth $\left.(\omega / 2 \tau)\right\rangle_{F}$ is a measure of the energy interval around the Fermi level

Fig. 1. Comparison of odel predictions for the correlation Eloss (ri?) with data for the reactions ${ }^{209} \mathrm{Bi}+136 \mathrm{Xe}$ (left) and ${ }^{209} \mathrm{Bi}$ $+{ }^{2} 6 \mathrm{Fe}$ (right). The dashed curves represent the classical lifits of the full calculations (full curves).
(XBL 808-11029)

Footnotes and Peferences
*Condensed from Phys. Rev. Lett. 44, 308 \{1900). LBL-10529.
tDepartments of Chewistry and Physics, University
of llochester, mochester; MY 1427.

1. W. U. Schröder and J. R. Mulzeng, Ann. Rev. Nacl. Sci. 27, 465 (1377).
2. J. Randrup, Mact. Phys. R307 (1979), and A327, 450 (1979).

OUANTAL DYNAMMES OF CHANGE EOUMLHMTTON NDANTED MUCLBAT COLLEAON:

E. S. Hernandez, ' W. O. Mywri, J. Rendrup, and B. fimmaud ${ }^{\text {t }}$

In quasi-elastic and deep-inelastic muciear reactions charge equilibration appears to occur quite rapidly. This rapid movement of protons in one direction and neutrons in the other can be viewed as a collective wode associated with isovector-type hydrodynamical flom in the dinucleus analogous to the Steinmedel-Jensen description of the giant dipole resomance (CDR) in ordinary nuclei. Since we find that the characteristic energy of such a mode is typically much larger than the muclear temperatures encountered, the fluctuations in the charge asymetry degree of freedom are expected to come mainly from zero-point motion.

Such a description of the charge asymatry mode has already been applied with some success by Swiateck! and Blann to charge and mass distributions seen in fission, 1 and wore recently to heavy-ion reactions hy Moretto, ${ }^{2}$ by Berlanger et al.. 3 and by Hofinm, Gregoire, Lucas and Ngo.4,5 Howeyer, as pointed out by Nifenecker et al., 6 it is essential to consider the time dependence of the shape of the system in order to correctly establish the comection between the con-like collective motion and the width of the charge distibutios which is experimentally observed.

Roughly speaking, the inertia associated with the charge asymetry degree of freedon is inversely proportional to the size of the neck connecting the two colliding nuclei. Trajectory calculations predict that the pinch-off takes place sufficiently rapidly that the width of the charge distribution is "frozen in" by the increasing inertia.

In order to describe the division of charge between the two partners, for a given mass asymnetry, we use the isospin component of the projectile-like nucleus $\mathrm{T}=(\mathrm{N}-\mathrm{Z}) / 2$. The potential-energy surface of the dinucleus varies rather gently in the A-direction while the strong symmetry energy makes it much steeper in the T-direction. Furthermore, the dynamical evolution along the mass asymmetry proceeds relatively slowly and can often be entirely neglected.

The upperi portion of the figure shows the man charge < 2) and the louer portion shous the gidth I' of the finel charge distribution at a fixed eass partition; both quantites are plotted as functions of the total center-of-mass kinetic energy loss E^{*} win? ${ }^{\circ}$ h is approximetely the sime as the induced Intrinsic excitation in the fragents.

Fig. 1.
(XBL 779-2954)

The primary experimental data are shom as the open dots on the upper portfon of the figure and the dashed curve results after correction for neutron evaporation has been made. The calculated values are given by a solid curve.

The present calculations give a quick rise of $1^{\prime \prime}$ with E^{*}, followed by a broad maximu. The maximmon occurs at around $\mathrm{E} \star \times 35 \mathrm{MeV}$ in agreement with the data but it is not as pronounced. The overall magnitude of the calculated curve is seen to fall somewhat below the experimental data. He are encouraged by the fact that these predictions are consistent with the observations. This is especialiy significant since all the coefficients entering in the various formulas are either fundamental nuclear constants or have been otherwise fixed beforehana so that there are no adjustable parameters.

Footnotes and References

*Condensed from LBL-9761, Nucl. Phys. A (in press)
\dagger Permanent address: Departmento de Fisica, Facultad de Ciencias Exactas y Naturates, 1428 Buenos Aires, Argentina.
\ddagger Permanent address: institue de Phosique. Universite de Mates, 2 rue de la Houssiniere. 44072 Mantes, France.

1. M. J. Siriatecki and H. M. Blann, unpublished notes (1961); M. J. Swiatecki, lecture at Princeton University, 7 Harch 1961
2. L. G. Moretto, J. Sventek and G. Mantzouranis, Phys. Rev. Lett. 42 (1979) 563.
3. N. Berlanger, A. Cobbi, F. Hamppe, U. Lynen, C. Mgo, A. Olmi, H. Sann, H. Stelzer, H. Richel, and M. F. Rivet, Proc. Int. Workshep on Gross Properties of Wuclei and Wuclear Excitations YII, Hirschegg, Austria, Jan. 1979; also Z. Phys. A291 (1979) 133.
4. C. Gregoire, R. Lucus, C. Mgo and H. Hoffinin, Proc. IVth Balaton Conf, on Mucl. Phys., Keszthely, Hungary, June 1979.
5. H. Hofmann. C. Gregoire, R. Lucas and C. Hgo., preprint DPh-M/MF/79/22, CEN, Secliay, Juiy 1979.
6. H. Mifenecker, J. Blachot, J. P. Bocquet, R. Brissot, J. Crancon: C. Hamelin, G.
Mariolopolous and Ch. Ristori, preprint Centre d'Etudes Mucleaires, Grenoble, July 1979.

AN ADIABATICTTY CRITERION FOR COLLECTIVE MO' ON ${ }^{*}$

G. Mantzouranis, W. D. Myers and J. Pendrup

In studies of the charge equitioration process in strongly damped nuclear collisions, we have found that the width of the charge distribution of the projectile-like fragment is "frozen in" when the neck between the two nascent fragments decreases rapidly just before separation. 1

Our approach was to view the charge equilibration process as one aspect of the collective motion of neutrons against protons in the composite system formed by the colliding nuclei. Thus, we were mainly concerned with the ground state motion in the giant dipole resonance (GDR) degree of freedon for the dinuclear complex. To detprifine the width of the charge distibution we resorted to a numerical calculation that followed the time-dependent GDR as the collision took place. The results of the calculations corresponded closely with the observed values.

In order to eliminate the need for numerical calculations and make the approach more generally available we are developing an empirical method for calculating the dispersion in a collective coordinate trias is frozen in" when the inertial ziass fncreises rioidly. For the systems of interest (nuclear collisions and fission) the mass is inversely proportional to the size of the opening between the two halves
of the system. Consequently we can focus our attention on a collective coordinate whose associated mass $m=b^{-1}(t)$ where b decreases Ifnearly with time. The equation of motion for the width of the distribution o is

$$
\begin{equation*}
\ddot{\sigma}-(6 / b) \dot{d}+k b_{0}=\left(\hbar^{2} / 4\right) b^{2} s^{-3} \tag{1}
\end{equation*}
$$

where k is the stiffness parameter for the GOR. This parameter changes very little during the collision so it can be fixed at its scission value. Examimation of Eq. (1) suggests that the quantity

$$
\begin{equation*}
c=\frac{3}{4} \frac{(\bar{b} / b)^{2}}{k b}-1 \tag{2}
\end{equation*}
$$

is critical for determining whether the system is able to adiabaticly follow the time variation of b or whether the process becomes nonadiabatic. The figure shows how this quantity can be used in practice to avoid the need for mumerical calculations.

In the upper part of Fig. 1 we have plotted (as heavy straight lines) the adiabatic value of the fourth power of the full width at half maximum 1^{-4} (where $i=2.355$ o) for four different values of $6(-0.002,-0.008,-0.014$,

Fig. 1. Curyes used to determine the value of the critical quantity C which can then be user to estimate the final value of the width r.
(XBL B07-1637)
-0.020) that bracket the range of phasically interesting values. The heavy dashed lines are numerically calculated values of $I^{-4}(t)$
obtained from solving Eq. (1) with k. 4 HeV. When the finm "freeze-out value of $\mathrm{I}^{-4}(\mathrm{t})$ is projected back to the adiabatic curves, one can deternine the time at which the adiabatic value of I was the sme as the final value. If this time is projected dom to the lower part of the figure, we find that the critical quantity C has approxinately the sane value in each case of 1.108. This result allows us to estinte rfinat since we finow that

$$
\begin{equation*}
r_{\text {edfabtic }}^{4}=(2.355)^{4} \frac{h^{2}}{4 k} b \tag{3}
\end{equation*}
$$

Footnote and Reference

*ondensed from LEL-11542, Phys. Lett. 988 (1981)

1. E. S. Hernandez, W. D. Hyers, J. Randrup and B. Remurd, Quantal Dynanics of Charge Equilibration in Damped Muctear Collisions, ${ }^{-}$ LBL-0761 (October 1979), to be published.

ANGULAR DISTRIBUTIONS OF SEQUENTIALLY ENITTED PARTICLES AND GAMMA RAYS FROM MEARLY ALKGNED NUCLE FROM DEEP MELASTIC COLLSHON

L. G. Moratto, S. Bleu, and A. Pacheco

Thermal fluctuations in deep inelastic collisions can produce an angular momentuma misalignment in the resulting fragments. A statistical analysis of the problem leads to the following distribution in the three angular momentum components for asymotric systel:

$$
P(I) \alpha \exp -\left(\frac{I_{x}^{2}}{2 \sigma_{x}^{2}}+\frac{I_{y}^{2}}{2 a_{y}{ }^{2}}+\frac{\left(I_{z}-\bar{I}_{z}\right)^{2}}{2 \sigma_{z}{ }^{2}}\right)
$$

where $\sigma_{z}{ }^{2}=\sigma_{y}{ }^{2}=\frac{6}{7}, T, \sigma_{x}^{2}=\frac{6}{5} T$, is the temperature of the intermediate couples and is the morrent of inertia of one of the two fragments.

If one of the fragments either fissions or under-goes particle decay, the argular distribution of the enitted particles 1 s
where $\operatorname{A}_{\max (\min)}=1_{\max (\min)}^{2}\left[\frac{\cos ^{2} \theta}{2 s^{2}-a}\right] ; B=$ $\frac{\hbar^{2}}{2 T}\left[\frac{1}{s n}-\frac{1}{g \perp}\right] ;$

$$
\begin{aligned}
s^{2}(\theta, \phi) & =K_{0}^{2}+\left(a_{x}^{2} \cos ^{2} \phi+o_{y}^{2} \sin ^{2} \phi\right) \sin ^{2} \theta+o_{2}^{2} \cos ^{2} \theta ; \\
K_{0}^{2} & =\frac{1}{\hbar^{2}}\left[\frac{1}{\sigma_{1}}-\frac{1}{1}\right]^{-1} T
\end{aligned}
$$

and $I_{\text {If }} A_{\perp}, I_{n}$ are the parallel and perpendicutar moments of inertia of the critical shape (saddle point) and of the residual nucleus after neutron enission respectively.

Similarly for the stretched endssion of ganma rays we have the follgwing angular distribution (we set $o_{x}^{2}=0_{y}^{2}=0_{z}^{2}$):

$$
\begin{aligned}
& H(\theta\}_{E 1}=\frac{3}{4}\left[1+\cos ^{2} \theta+\theta^{2}(1-D(\theta))\left[1-3 \cos ^{2} \theta\right)\right] \\
& W(\theta)_{E 2}=\frac{5}{4}\left[1-\cos ^{4} \theta\right. \\
& -2 \theta^{2}\left\{3 \sin ^{2} \theta \cos ^{2} \theta-2 \cos ^{4} \theta-\frac{3}{4} D(\theta)\right. \\
& \left.\left\{\sin ^{2} \theta-4 \cos ^{2} \theta\right) \sin ^{2} \theta\right\}
\end{aligned}
$$

$\left.-3 s^{4}\left\{4 \cos ^{4} \theta+\frac{3}{2} \sin ^{4} \theta-12 \sin ^{2} \cdot \cos ^{2} \theta\right\}(1-D(s))\right]$
where $\beta=\frac{c}{I_{2}}$ and $D(B)=\sqrt{2}(1 / \sqrt{2})$ and $F(x)$ is the Dawson integral:

$$
F(x)=e^{-x} \int_{0}^{x} e^{t^{2}} d t
$$

These formulae provide a cost direct tool to extract information on the fragent spin aisalignment from angular distribution.

Reference

1. L. 8. Morette and R. P. Schmitt, Phy5. Rev. C 21. 204, 1980. LBL-30805.

effects of particle evaporation on the angular momentum of the EMITTING NUCLEUS FOR DEEP INELASTIC AND COMPOUND NUCLEAR REACTIONS*

S. K. Blau and L. G. Morerto

Gamma multiplicity measurements ${ }^{1}$ and angular distributions of photons, light particles and fission fragments ${ }^{2}$ provide information about the magnitude and alignment of the angutar momentum transferred during deep inelastic processes. None of these data, though, many be interpreted properly without including a correction for the effects of particle enfission on the angular momentum of the residual nucleus. He endeavor to provide analytical formulae to show how such corrections can be made.

He assume that the evaporation process is controlled by a critical shape ${ }^{3}$ (emitter/ ejectile complex) consisting of residual nucleus and emitted particle in contact with each other. In our model the ejectile removes angular monentum equal to the orbital angular momentum of the ejectile/emitter complex, i.e., it carries no intrinsic spin. We assume that the probability of emission at a given colatitude, θ, is proportional to the Boltumann factor $\exp \left(-E_{\text {rot }}(\theta) / T\right)$. We find that the average angular monentum removed by an ejectile is:
$\left\langle\mathrm{I}_{\text {ejct }}\right\rangle=I\left(1-F-\left(1-F^{2}\right) g(Z) / 2 F\right.$
$+\left(1-F^{2}\right)^{2} h(Z) / 8 F^{3}$,

$$
\text { where } \begin{aligned}
f= & J /\left(J+\mu R^{2}\right), \\
Z= & I / \sqrt{2} K_{0} \\
g(Z)= & (\operatorname{erf}(Z) / / 2- \\
& \left.\left.Z \exp \left(-Z^{2}\right) / \cdot \sqrt{\pi}\right) / Z \exp (Z)\right), \text { and } \\
h(Z)= & \left(3 \sqrt{i} \operatorname{erf}(Z) / 14-3 Z \exp \left(-Z^{2}\right) ; i=\right. \\
& \left.-3 Z \exp \left(-Z^{2}\right)\right) /\left(v i Z Z_{\operatorname{enf}}^{4}(Z)\right) .
\end{aligned}
$$

The functions $g(Z)$ and $h(Z)$ may be expanded in powers of Z. Their expansion to second order in 2 yields:

$$
\begin{aligned}
& g(z)=1 / 3-4 z^{2} / 45 \\
& h(z)=1 / 5-4 z^{2} / 45 .
\end{aligned}
$$

Substitution of these approximations for the analytical expressions in Eq. 1 and the formulae that follow introduces an crror of $\leqslant 3 \%$.

In order to caiculate the dispersion in the angular monention of the residual nucleus due to emission of an ejectile, we may assume that for a given colatitude, θ, ejectiles are enitted isotropically. If we estimate $\left\langle p^{2}\right\rangle=3 \pi T$
where m is the efectile's mass and T is the nuclear temperature it find:
$\sigma_{x}^{2}=\sigma_{y}^{2}=\frac{I(1-F)^{2}}{2}\left[(g(Z)-h(Z)]+\frac{m^{2} \gamma}{2}\right.$
$(1+g(z))$.
$a_{z}{ }^{2}=I^{2}(1-F)^{2}\left(h(Z)-g^{2}(z)\right)+m r^{2} T$
(1-g(z)).
where x and y are two orthogonal directions in the reaction plane and the 2 direction is perpendicular to the reaction plane.

We also calculate the dispersion in the angular momentum of the residual nucleus with a model in which the velocity of emitted ejectiles follows the Maxwell velocity distribution weighted by a factor, v_{1}, the velocity of the ejectile perpendicular to the surface at the point of evaporation. The results are

For non-fissioning compound nuclel we choose the $x^{\prime \prime}$ axis to be the beal axis. The y^{\prime} and $z^{\prime \prime}$ axes are arthogonal axes perpendicular to the bean axis. The compsnents of the dispersion of the angular monentur of the compound mucleus after evaporation of an sjectile nay be expressed in terms of $\sigma_{x}{ }^{2}, y_{y}^{2}$ and $o_{z}{ }^{2}$

Footnote and References

*Condensed from LBL-10926

1. M. Lefort and C. Mgo, Riv. Mrovo Ciaento.

12, 1 (1979) and references therein.
2. L. G. Moretto, S. Blau, and A. Pacheco, LBL Report Mo. 10805 (to be published).
3. L. G. Moretto, Nuc I. Phys. A 247, 211 (1975).

HIGH-MULTIPOLE ISOVECTOR MODES AND CHARGE FLUCTUATIONS IN HEAVY ION REACTIONS*

L. G. Moretto, C. R. Albiston and G. Mantzouranis

The isobaric charge distribution of frejments in deep-inelastic scattering provides information regarding the thermal and quantal fluctuations of axial component of the E1 mode associated with the intermediate complex. 1 There have been allegedly contradictory findings of small and large charge fluctiztions at large and small mass asymmetries, respectively.

To elucidate the role played by mass asymmetry and the higher-order isovector modes, we propose a simple model in which the intermediate complex is approximated by a cylinder split into two parts, and study its axial modes.

Using the Steinwedel-Jense hydrodynamical model, we obtain the mode frequencies un $=$ $k_{n} u$, where u is the isospin sound velocity and $k_{n}=(\pi / 2 a) n$, the wavenumber of the nth mode, is given by te boundary conditions of the mode wave functions on the cylinder. The ootential energy as a function of the charge excess of one of the fragments yields the stiffness constant

$$
c_{n}=\pi^{2} \times\left(\frac{A}{Z^{2}}\right) \frac{n^{2}}{\sin ^{2}[n \pi Q]}
$$

where X is the liquid drop symetry energy coefficient and Q is the degree of symmetry.

In the limit of 10 w temperature, the partial charge widths are given by

$$
\begin{aligned}
\sigma_{n}^{2} & =h_{v_{n}} / 2 c_{n} \\
& =o_{1}^{2}(s y m e t r y) \sin ^{2}\left[n_{x} Q\right] / n
\end{aligned}
$$

and are plotted in Fig. 1. The contribution of the higher modes is comparable to that of the lowest one, and the partial widths of all the modes depend strongly on Q. At complete asymetry ($0=0$), all widths vanish.

The total charge width

$$
\sigma^{2}=o_{1}^{2}[\text { symmetry }) \sum_{n} \frac{\sin ^{2}\left[n_{0} Q\right]}{n}
$$

diverges logarithmically; however, the finite size of the mucleon sets an upper limit on n.

Footnote and Reference
"Condensed from LBL-9896, Phy. Rey. Lett. 44, 924 (1980).
i. L. G. Moretto, J.Sventek, G. Mantzourenis, Phys. Rev. Lett. 42, 563 (1979).

Fig. 1. The square of the normalized partial width is plotted (a) against the degree of symmetry at fixed n, and (b) against n at a fixed degree of symmetry.
(XBL 7910-4421)

MANIFESTATIONS OF EXCITATION ENERGY FLUCTUATIONS IN DEEP MELASTIC COLLISHONS

D. J. Morrissey and L. G. Moretto

The equilibration of excitation energy hetween the partners in deep inelastic collisions has to occur on very short time scale. This fast equilibration is required by observations that the mean number of evaporated neutrons from reaction products is indicative of a splitting of the total dissipated energy in proportion to the fragment masses 1,2 over the whole range of dissipated energy, even for very small energy loss (i.e., the shortest collision times). Thus, the themalization time must be shorter than the shortest interaction times so that the fragments always remain in themal equilibrium. A further check of statistical equilibrium can be made by observing fluctuations in the sharing of the excitation energy between the two fragments. This distribution of excitation enerqy, E, is proportational to the level densities?

$$
\begin{equation*}
P(x) d x \propto \rho_{1}(x) \operatorname{oL}_{2}(E-x) d x \tag{1}
\end{equation*}
$$

For small excursions about the mean, \dot{I}_{0}^{\star}, the distributions is approximately Gaussian:

$$
\begin{equation*}
P(x) d x \propto e^{-\left(E_{0}^{\star}-x\right)^{2} / 2 \sigma^{2}} d x \tag{2}
\end{equation*}
$$

where a^{2} is a function of the temperature and the leyel density parameters:

$$
\begin{equation*}
\sigma^{2}=2 T^{3} \frac{a_{1} a_{2}}{a_{1}+a_{2}} \tag{3}
\end{equation*}
$$

For the symetric system $A_{1}=A_{2}=100$ with $E=100 \mathrm{MeV}$ we obtain $(a=A / 8), E_{0}^{*}=50$ MeV, and $a=10 \mathrm{HeV}$.

We have explored two avenues through which the fluctuations could manifest themselves, neutron energy spectra and evaporated neutron number. He have found these two observables complementary in that fluctuations have a large effect on the neutron energy spectrd only when the mass asymetry is large and fluctuations introduce covariance in the nuber of evaporated neutrons that is prominent for equal mass fragments.

Figure 1 shows the neutron energy spectrum expected from the light partner (20:180 mass split). The constant temperature neutron spectrun was calculated as:

$$
\begin{equation*}
P\left(\varepsilon_{v}, T\right)=\frac{\varepsilon}{T^{2}} e^{-\varepsilon / T} \tag{4}
\end{equation*}
$$

The neutron spectrum for a fluctuating excitation energy was calculated by nunerical folding of Eq. 1 with Eq. 4. The increase in the probability of emitting a high-energy neutron is very dramatic.

The covariance of the number of emitted neutrons from reaction partners was investigated with a simple Monte Carlo code. The division of

Fig. 1. The calculated neutron energy spectra from the light partner with and without fluctuations are shown.
(XBL 808-1551)
the excitation energy was either fixed or picked at random in proportion to Eq. 1 . Then the two fragments were allowed to emit neutrons until the nuclei had cooled to less than $\left(B_{\psi}+2 T^{1}\right)$, where B_{v} is the liquid drop neutruil binding energy and T ' is the temperature after emission of the previous neutron. The probability contours for emission of v_{1} neutrons from fragment 1 and v2 neutrons from fragment 2 are shown in Figs. 2(A) and (B). Again, a dramatic change can be seen when we turn on the fluctuations (Fig, 2 (B)). Experiments along these lines should therefore be very useful in

Fig. 2. The correlation of the number of neutrons ewitted from symmetric fragments is show for discrete excitation energy division in (A) and with fluctuations in (B). (XBL B08-1552)
establishing if thermal equilibritu is really attained.

References

1. B. Cauyin et al., Nuc1. Phys. A301, 511 (1977).
2. Y. Eyal et al., phys. Rev. Lett. 41, 625 (1978).
3. L. G. Moretto, Proc. Varenma Conf., Varenna, Italy, July 9-25, 1979 (in press) and LBL-9130.

ANGULAR MOHENTUM FRACTHONATION PRODUCED BY AN 1 -DEPENDENT POTENTIAL ENERGY*

C. R. Albiston and L. G. Moretto

The gamma-ray nultiplicity associated with deep-inelastic collisions provides information about the spin of the product fragments. For nonequilibrated systems, the variation of the multiplicity with mass asymetry may shed light on the time dependence of the anguiar momentur transfer.

We present experimental evidence for angular momentum fractionation caused by an ℓ-dependent potential energy, and we expiain it using a simple model. The gama-ray multiplicjty for $340-\mathrm{MeV}{ }^{40 \mathrm{Ar}}+{ }^{159} \mathrm{~Tb}$ at 50° in the lab (Fig. 1) drops sharply wfth decreasing fragment charge, or increasing mass asymetry, in contrast to the multiplicity measured for He +Ag , $\mathrm{Ar}+\mathrm{Y}, \mathrm{Kr}+\mathrm{Ag}$, and $\mathrm{Kr}+\mathrm{Ho}$.

A possible explanation is suggested by Fig. 2. For low ℓ waves, the potential at the injection point slopes dewmard with increasing mass

Ffg. 1. Gamma-ray nultiplicities as a function of fragment charge with representative error bars on the experimental results. (XBL 804-4135)
asymetry, whereas it slopes upward for high l waves, barring their diffusion. Consequently, the fragents of lover charge are preferentialiy populated by lower l waves and smaller ganaray multiplicities.

Fig. 2. Potential energy as a function of fragnent charge for representative l waves. The arrow indicates the entrance-channel asymmetry, or injection point, for this reaction.
(XBL 804-4136)

A simple diffusion model can describe this effect more quantatively. The asymmetry potentials are approximated by inverted parabolas, each peaking at $A=A_{\text {max }}$, and whose curvature increases with $\ell: V_{\ell}=(1 / 2) c_{\ell}\left(Z-Z_{\text {max }}\right)^{2}$. In this case, the Fokker-Planck equation describing the time dependence of the population along the asymetry coordinate has an analytical solution:

$$
\phi(h, l)=c_{\ell}^{1 / 2}\left(2-T\left[1-\exp \left(-2 c_{\ell} \mathrm{t}_{\ell} / K\right)\right]^{-1 / 2}\right.
$$

exp

where t is the interaction time, K is the friction coefficient, and $h=h_{0}$ at the injection point.

Simple ansatze are made for the dependence on l of the interaction time and the curvature of the potential. The multipilcity is given by half of the the first moment of the fragment spin with respect to the distribution $\phi(h, \mathcal{L}$;
the reoults are shom in Fig. 1. This calculation is not intended to fit the data quantitatively; rather, it serves to demonstrate that the offference in the potential energies of the varfous l maves must be accounted for.

Footnote and Refarence

*Condensed from LBL-10664.

1. M. Lutolf et al... Nucl. Sci. Div. Anual Report 1978-1979, L8L 9711, p. 67.

A TIME-DEPENDENT HARTREE-FOCK STUDY OF HFGH-ENERGY RESONANCE INDUCED BY HEAYY+ON COLLISION

H. Flocard and M. S. Weiss*

Recent heavy-ion experiments measuring, with high-resolution, cross sections as a function of excitation energy, have shown that superimposed on the previously known quasi-elastic peak and deep inelastic broad bump, there existed welldefined structures. The exact nature of these structures is still far from being elucidated, but one natural exr-7ation would be that they correspond to high lising resonances. It was therefore tempting to see whether such resonances could be predicted by a timedependent Hartree-Fock calculation (TDHF). He first chose the starting point of our calculation so as to reproduce the experimental condition, namely a ${ }^{40} \mathrm{Ca}+{ }^{40}$ Ca at an energy $E_{\text {lab }}=400 \mathrm{MeV}$ and an impact parameter leading to a quasi-grazing collision ($\mathrm{L}=100 \mathrm{~K}$). Once the collision was completed, we stopped each fragment so it did not fly out of the box in which the calculation was performed. We then let the two outgoing fragments evolve in time in their c.m. frame, and we recorded the time evolution of their multipole monents.

In d second state we analyze this time evolution and try to detect if it contains high frequency vibrational modes. A first observation is that the motion of all moments is highly dominated by noni inear phenomena. A direct Fourier transform shows the major peaks occuring in the 0-3 MeV range which, in view of the total time over which the motion is recorded (2 x $10^{-21} s$), cannot be considered as significant
(a $2-\mathrm{meV}$ mode performs only one vibration in 2 $x 10^{-21} \mathrm{~s}$). However, some structures are evident at high energy. Their analysis is made difficult by the background naise generated by the Fourler transform performed on a finite time interval. In order to study the high energies it is necessary to filter out the low-energy modes and the ensuing high frequency background that they artificially generate. Indeed, subtracting from the calculated curve its smooth part obtained by convolution with a Gaussian shows clearly the existence of underiying vibrations whose energy can be slowly extracted. A more detalled analysis of which frequencies are excited, in wich multipole moment, is now needed in order to assign each frequency to a specific shape vibration of the nuclei. An investigation as to whether the rather large number of vibrations seen in our calculation corresponds to independent modes or whether they can be sorted into families of frequencies miltiple of a given number, thus indicating a nonlinear vibration, is presently underway.

Footnote and Reference

*Lawrence Livermore National Laboratory, Livernore, CA 94580.

1. N. Frascaria et al., Phys. Rev. Lett. 39, 918 (1977) and ORSAY Preprint IPNO PAN-79-19 (1979).

APPLICATION OF THE MMACMARY TMNE STEP METHOD TO THE SOLUTHON OF THE STATIC HANTHEEFOCK PROELEM

K. T, R. Devies,* H. Flocerd, S. Krieger I and it. S. Weiss:

The Hartree-Fock (浢) wethod appears over the years as one of the most powerful methods available to study nuciear structure. However, it entails the solution of nonlinear equations for which no mothentical analysis is yet available. One must therefore rely on empiricisa to find schemes, necessarily of iterative nature, which ensure a convergence toward the H^{\prime} solution. One such scheve was developed in the forties and used extensively in the sixties by several groups to study nuclear structure properties. It involves the expansion of the single particle wave function on given basis followed by a construction of the HF Hamiltonian h in the variational space. Subsequent diagonalizations of the HF Hamiltonian provide the wave functions for the next approximations of the HF Haniltonjan. With minor improyements this method has proven quite successful in all the cases in which it could be implemented. The crucial limitation of the method is the size N of the variational space which mast not exceed $N \sim 100$ for the calculation to remain manageable. For the description of complicated shapes like those appearing in heavy-ion collistons of fission processes this limitation appears too restrictive. In addition, the diagonalization of the Hamiltonfan matrix at each interation provides un-useful information on high lying (and very likely unphysical) states. The imaginary time method that we propose studies only those states that contribute to the Hartree-Fock solution (unless information on specified unoccupied states is also desired). It also allows the handling of large variationa? spaces. For example, calculations have been performed for spaces of dimension $M=2000$. The
iterative procedure goes as follows. Starting from in initial guess of the useful single particle wave functions. we generate the if Horiltonian matrix h and the wave functions at the next fteration by the transformation

$$
\begin{equation*}
\phi_{i}(n+1)=\exp \left(-{\frac{\lambda h^{(n)}}{h}}^{(n)}\right) \tag{l}
\end{equation*}
$$

In the proceeding formula iftands for the single particle index, (n) labels the iteration, and 2 is a parameter of the method that happens to be homgeneous to an inginary time step. Before moving to the next iteration. the $4\left(\begin{array}{l}i \\ +1)\end{array}\right.$ must first be orthogonalized, since the transformation 11 is not unitary. Practically, the exponential in formula (1) can be replaced by a fea terms' expansion so that transformation (1) amounts to successive nultiplications by $h(n)$. Since in gany cases the ettrix $h(n)$ is sparse, the storage and calculation proble is greatly reduced. The method has been successfuliy applied for severa? salculations for the study of either fission or nuclear molecular states. We plan nom to apply it to study the changes in muclear shapes induced by high values of the angular monentur like those achieved by a heavy-ion collision.

Footnotes

Oak Ridge Rational Laboratory, P.D. Box X, OLk afdge, TM 37830
Department of Physics, University of Illinois at Chicago Circle, Box 4348, Chicago IL 60680 |Lawrence Livermore Laboratory. University of Callfornia, 'ivermore, CA 94550

B. RELATIVISTIC

TARGET FPACMEMTATION CALCLLATIONS WTIH THE MUCLEAR FMESTREAK MODEL

P. L. Mctaughey. D. J Mortisety, and G. T. Sentorg

Previous calculations of the fragentation of heavy targets, induced by beans of relativistic heavy-lons, have been performed under the formaitisms of the nuciear fireball mocel ${ }^{1}$ and the intra-nuclear cascade (IMC) model. ${ }^{2}$ These models represent iwo liniting views of the mechanism of interaction of nuclei colliding at relativistic velocities. The IMC model pictures the interaction as consisting of the uncorrelated collisions of individual mucleons within the two nuclei, while the fireball model assumes that the interaction is localized to the overlap region, with the non-overlapping regions being unaffect r. Both systenatics require a two step reaction: during the first step the struck target nucleus fragments into highly excited remnants, and in the latter step the remants de-excite by statistical emission of particles and by fission.

Unfortunately, the fireball model calculation is much inferior to that of the IWC model. for it severely underestimates the excitation energy deposited in the fragment during the abrasion 5 tep and cannot predict angular and linear momentum transfer at all, both of which are calculaten by the use of the INC model. In order to reta'n the collective nature of tre Interaction ard to eliminate the unrealist clean-cut assumptions of the fireball model we have extended the firestreak model of Myers ${ }^{3}$ to include the calculation of the residual masses, excitation energies, and linear and angular momenta of the primary target remants that are produced in these reactions. Under this newer formalism, the two colliding nuclei have diffuse nuclear surfaces that are generated by folding a short-range (Yukawa) function into the conventional sharp-sphere density distribution. It is assumed that during the collision the interaction is localized to the overlap region, where co-linear tubes of nuclear matter from the projectile and target undergo completely inelastic collisions. A transparency function, which is based upon the total free nucleon-nucleon cross sections, is included to prevent collisions from occuring between tubes containing an insufficient density of nucleons. Once two tubes have collided, they fuse and equilibrate their kinetic and thermal energies. If the resulting kinetic energy of t 'e fused tubes is less than its binding energy to the target, then it is captured and contributes directly to the turget fragnent's excitation energy, mass, and momenta, which are all explicitly conserved during the interaction. The de-excitation step of the eaction is handled in identical fashion to that of the other models.

In Fig. 1, the results of some of the calculations of the fast collision sted are given for the reaction of $400 \mathrm{MeV} / \mathrm{A} 20 \mathrm{He}+238 \mathrm{~N}$, as calculated by the three models. The ine computer code was executed using an eight step density distribution for the two nuclei, with the inclusion of Fenmi motion of the nucleons. and the allowance of meson production. The fireball code used took neutron sifin effects into account for the target mucleus. The firestreak calculation was performed including pauli-principle blocking in the target. The latter two computations both used a giant dipole resonance model to obtain the initial charge distributions of the residual nuclei. The de-excitation phase of each calculation was performed using a standard Monte Carls statistical evaporation code, which ted bren modiffed to include fission competition for all target fragents. The three final eass distibutions,

Fig. 1. Excitation energies, recoil musenta, and masses of target fragments produced dur..ig the primary interaction of 8.0 GeV 20 He 238 U , as calculated by the fireball (1), intra-nuclear cascade (2), and firestreak (3) models.
(XBL 808-1675)
as calcuiated by this code, are given in Fig. 2, together with the experimentally feasured di stribution. 4

Fig. 2. Calculated mass-yield distributions of the target residues after de-excitation, labeled as in Fig. 1. The dashed line is the experimental data, as reported in reference 4.
(XBL 808-1676)
Several conclusions are flamediately suggested by an inspection of Figs. 1 and 2. As mentioned previously, tise fireball molel is clearly deficfent, in that the predicted excitation energy transfer is far too low. This results in the generation of mass distributions with heavy mass yields which are far in excess of those actually observed. The sfilarity between the excitation energies, the momenta,
and the mass distrifutions predicted by the firestreak and the IMC models is very striking, with the IWC model predicting generally higher energy trasfer and less mas repoval during the fast part of the collision. It is somentat surprising that two such divergent collision mechantses give nearly the same results. This suggests that al though the interaction may well be collective in nature, this collectivity does not manifest itself in these experimental observables. Indeed, the shape of final ass distribution seens to be more sensitive to the choice of the statistical exaporation eodel parmeters then to the differences between the firestreak and IWC model predictions. Nevertheless, the firestreak has two apparent advantages over the IWC model, for overall it produces the better fit to the experimental mss distribution for target residiys formed from the interaction of 8 Gey 20 we $+236{ }^{5}$, and because it requires less than one-tenth of the computer tife to perform the sale calculation.

References

1. D. J. Morrissey, M. R. Marsh, R. J. Dtto, M. Loveland, and G. T. Seaborg, Phys. Rev. C 18, 1267 (1978).
2. Y. Yariv and Z. Fraenkel. Phys. Rev. C 20. 2227 (1979).
3. W. D. Myers, Nuc1. Phys. A 296, 177 (1978).
4. P. L. McGaghey, D. J. Horrissey, M. D. Loveland, and G. T. Seaborg, Herclear Science Div. Annual Report 1978-1979, LBL-9711, p. 92.

TWO-PARTKCLE CORRELATIONS IN HIGH-ENERGY NUCLEAR COLLISIONS

JBrn Knoil and Jotrgen Randrup

We di scuss the corrclations of two particles (proton-proton, proton-pion) in high-energy nuclear reactions by mepans of the linear-cascade model (rows on rows) 1,2 It describes the observed cross sections in terms of contributions arising from dynamically independert groups of interacting nucleons. In addition to a correlated part where both observed particles aise from the same group of nucelons, there is also a signficant background contribution from the particles originating from two independent groups. The construction of the one and two particle spectral functions by means of a Monte Carlo sfrallation method allows the inclusion of various dynamical effects, such as the production of delta fsobars or precritical scattering.

The presently availabie data ${ }^{3}$ express the amount of correlation by a ratio R of the $f n-$ plane to out-of-plane coincidence cross sections
registered in a tag counter and spectrometer. Our fnitial studies indicate that not only the height of the quasi-elastic peak. but also its position in momentum space may be sensitive to the background term and to correlations arfsing fron the sharing of energy and mosentum arong more than two particles.

For proton induced reactions ($p, 2 p$) only one participant cluster exists per event. Therefore the background term vanishes, thu; enhancing the quasi-elastic peak such that it can be directly studied in the coincidence cross section.

The calculated coincidence spect:a are found to be in close agreement with the data ${ }^{3}$ for light systems. The observed shadowing effects in heavy sustem, however, are beyond the scope of this simple model.

Footnote and References

*Heisenberg fellow (Germany), from Sept. 1, 1980: Gesellschaft fur Sehwerionenforschung (GSI), D-6100 Darmstadt, West Germany.

1. J. Hiffner and J. Knoll, Mucl. Phys. A290 (1977) 460; J. Knoll and J. Randrup, Muct.

Phys. A324 (1979) 445: J. Randrup. Phys. Lett. 768 (1976) 547.
2. J. Knoll, Phys. Rev. C 20 (1979) 509. J. Randrup, Mucl. Phys. A316 (1979) 509.
3. S. Magmalya et il., J. Phys. Sac. Japan 44, Suppl. (1979) 378, and 1. Tanihata et al., to be published.

STATISTICAL MODEL FOR MTERMEDIATE-ENERGY MUCLEAR COLLLSIONS*

J. Rendrup and S. E. Kocomin'

We have developed a statistical model for multi-fragment final states in nuclear collisions with bombarding energies E/A $<200 \mathrm{MeV}$. A portion of the system formed with energy per nucteon e and isospin polarization $\mathrm{I}=(\mathrm{N}-\mathrm{Z}) / \mathrm{A}$ is assumed to decay according to the avaliable non-relativistic phase-space. The conservation of energy, nucleon number, and charge is most conveniently imposed by considering the grand canonical ensemble and introducing appropriate Lagrange multipliers. This results in a fragment gas" zit nuclear density ρ_{o} / x, where oo $=0.17 \mathrm{fm}^{-3}$ is the nucleon density of ordinary

Fig. 1.
nuclei and X is a paraneter of order unity. The ground and all known particle-stable emited states of fragents with $\mathbf{A} \leq 16$ are included explicity in the intermal fragment partition functions, while those for A >16 are approximited in Fermigas mode1. For given values of c, I, and X, we calzulate the temperature and the fragment mers and charge distributions.

The figures show some instructive resulits: the temperature for given (Fig. il is always greater than that of free nucleons ($=$ $2 / 3 \mathrm{c}$) because composite fragments effectively el ininate some translacional degrees of freedom. The ratio of produced free neutrons to free protons (Fig. 2) increases drantically

Fig. 2.
with 1 , since all light composite fragments have $\mathrm{H}=\mathrm{Z}$.

Although our model has no Hinmical assumptions, it can nevertheless correlate and predict many experimental observables in terns of only 3 parameters (c, I, and X), which can be determined from experiment. Any dymalcal mechanisex which may be invoked to explain internediate energy collisions can therefore be judged
agairst these "background" predictions.

Foptnotes

*Condensed from Lel-10959, Mucl. Phys. A (in press)
${ }^{\dagger}$ M. K. Kellogs Radiation Laboratory, Cal Tech. Pasadens. CA 91125; Alfred P. Slone Foundetion Fellow, supported in part by the MSF.

FINITE PARTICLE NLMBER EFFECTS WH FIGH-ENERGY MUCLEAR COLLSSIONS: MAFLCATKOHS ON MON-SPECTRA*

Steffen Bohmman and Jifn Knoll I

Recently high-energy nuclear collisionsl have been studied by means of a statistical model. ${ }^{2}$ It describes the observed cross sections in terms of contributions arising from dynamically independent groups of interacting nucleons, ascribing highest entropy distributions in line with the conservation laws to each group. The model has particularly elucidated the role of finite particle number effects in inclusive proton spectra. ${ }^{3}$ In this work the model has been extended to include the production of pions. As in Fermi's statistical theory the rate of pions produced out of a group of nucleons follows fro the assuptions of complete equilibrium in all degrees of freedom in the system which is assumed to be confined to a given volune. Consequently and analogously to other thermo-chemical models 5 a density parameter governs the production rates. This is the only free parameter of the model. It has been chosen such as to reproduce the observed pion multiplicities at 800 MeV/A bean energy.

As a consequence of the finite number of particles involved in a heavy-ion reaction the asymptotic slopes of the one-particle spectra (protons or pions) turn out to be steeper than those calculated with models using bulk-1imit distributions ${ }^{5}$ and are in fair agreement with experimental data. Especially the dependence of the spectra on the mass of the colliding system can be explained as an effect of the respective difference in the numbers of particles involved. Furthermore, sone of the scaling features of inclusive pion spectra ${ }^{6}$ can be reproduced and seem to reflect the dominance of kinematical effects in these cases.? The statistical model in general proves to be superior to other models based on the equlibrium assumption in all cases where kinemetical linits are being approached, e.g. for pion production
at forward angles which was recently measured up to the kinematical livit. 8

While the pion production rates still realin to be understood, the inclusive protion- and pfon-spectra reflect areat deal of features typical for equilforized but finite systems.

Footnotes and References

*Condensed from LBL-10970. This wort was supported in part by the Bundesininteriun fir Forschung and Technolagie, Hest Gertany.

IMax Planck Institut fir Kemphysik and Institut: fir Theoretische Physik der Universitït, 6900 Heidelberg, Hest Germany.

1. S. Hagamiya et al., Phys. Lett. 818 11979) 147 and I. Tanihata et al.. Phys. Lett. 87 B (19.9) 349.
2. J. Knoll, Phys. Rev. C 20 (1979) 773.
3. J. Knoll, Mucl. Phys. A. 343 (1980) 511.
4. E. Fermi, Progr. of Theor. Phys. 5 (1950) 570.
5. J. 1. Kapusta, Phys. Rev. C 16 (1977) 1493 and J. Gosset, J. I. Kapusta, G. D. Westfall, Phys. Rev. C 18 (1978) 844.
6. J. Papp et al., Phys. Rev. Lett. 34 (1975) 601.
7. R. H. Landau and M. Gywiassy, Phys. Rev, C 19 (1979) 149.
8. E. Aslanides et al., Phys. Relf. Lett. 43 (1979) 1466.

CLUBTER ANALYEAS OF THE mTRA-WUCLEAR CASCADE*

J. Cugron,' J. Know, ${ }^{4}$ and J. Risndrup

He attempt to disentangle the apparently complicated results of an intra-nuclear cascade calculation (INC) of relativisitic muclear reactions by analyzing the cluster structure of each cascade event. The basic building bricks. the clusters, comprise those nucleons that are in intimate interaction contact. In this my we achieve a formulation of the collision problem close to those used in siaplified approaches, facilitating a direct comparison with siaple physical ideas.

He distinguish between gentle and violent interactions by means of a cut-off in momentum transfer, the violent collisions defining the clusters. The cut-off chosen of the order of the Feran momentum was found to be of no dynamical relevance for each cluster's spectrum.

The main results are the following. The resulting nucleon momentum distributions pertaining to a specific cluster size do not depend on the colliding nuclei (universality). The spectral shapes in particular are found in close agrement with those calculated with the siaple rows-on-rows mode1 ${ }^{2}$ with the limiting behavior for cluster sizes beyond eight nucleons. The largest discrepancy with simplified models appears in the size of the ciusters formed. While straight-line concepts in the rows-on-rows model lead to fairly small clusters, the intranuclear cascade links many nucleons into the same cluster. The main reason for these large sizes produced in the INC was traced to the finite value of the $N \mathrm{~N}$ interaction radius which
leads to an increase in transverse commication as the size of the cluster grois. A structural analysis of these large clusters would probably reveal the as built up of several subclusters linked by only one or two interactions. In such a case the subclusters my more directly reflect the drnafical information on the process.

We see the present analysis as an aid to improve the IMS. In particluar, it my reduce its complexity and hence increase the practical utility of the IMS for relatively rare events such as high eomenter components or multiparticle coincidences.
\section*{Footnotes and Meferences}
*Condensed from LBL-11301, wucl. Phys. A (in press)
+ Kelloce iladiation Laboratory, Caltech, Pasadena, CA 91125; on leave frol University of Liess, Belgium.
\dagger Heisenberg fellow; frow Sept. 1, 1900: Cesellschaft fur Schmerionenforschung, GSI, D-6100 Darmstadt, Hest Germany.

1. a) 3. Cugnon, Cal Tech preprint Map-9, Jan. 1980. b) Cugnon. T. Hizutanf, J. Yan Der Meullen, Cal Tech preprint Map-10, Feb. 1980.
2. a) J, Hüfner, J. Knoll, Mucl. Phys. A290, 460 (1977). b) J. Knoll, S. Randrup, Huch. Phys. A324, 445 (1979).

K+ PRODUCTION IN REIATIVISTIC NUCLEAR COLLISIONS*

Che Ming Ko and Jergen Randrup

A current Bevalac experiment measures the spectrum of charged kaons produced in relativistic nuclear collisions. 1 though the partial cross section for kaon production is relatively small, such an experiment is of great interest because of the important new information i^{2} ray provide about the nuclear collision dynamics. Positive kaons have a relatively small interaction cross section (-9 mb) with nucleons so that they are more likely to escape unperturbed once created. Since the threshold (-1.6 GeV) for their production is relatively high on the scale of presently available beam inergies, the kaons are predominately produced before the initial kinetic energy is substan-
tially degraded. They are therefore expected to be better suited as bessengers of the prinary, violent stage of the collision which might otherwise remain quite elusive.

Our study is based on a conventional multiple-collision picture of the nuclear reactions. In particular, we employ the approximate linear-cascade wodel developed by Hüfner and Kgoll ${ }^{2}$ and later extended by Knoll and Randrup. ${ }^{3}$ This is probably quite adequate for our present exploratory study. Two baryonic states were included: the nucleon N(940) and the delta resonance $s(1232)$. The baryonic cascade then involves the process $N N=N_{0}=8 \Delta$. Due to
the Lorentz dilation factor, which is around 3, the deltas are not likely to decay until after the cascade is completed. It is therefore important to note that the pions, whether created during the primary cascade or later, are expected to have too little energy to produce any kaons in their further interactions with the nucleons. We therefore expect that the dominant source of kaons is the primary baryon-baryon collisions. Since the partial production cross section for kaons is 50 small we may safely employ a perturbative approach in wich the dynamical feed-back effect of the kaon proderction on the further collision process is ignoret.

The quantities needed in order to generate the kaon spectra in a nucleus-nucleus collision are the kacn spectra associated with the various types of elementary baryon-baryon collisions. Experimentally, the available information is limited to proton induced reactions at fen energies. From both the avallable experimental information and the theoretical extrapolations based on the one-pion exchange model, we arrive at the following conclusions for the kaon spectra from the baryon-baryon collisions: 1) the angular distribution is isotropic in the center-of-mass system. 2) the momentum distribution can be parameterized by $d a / d p \approx x^{2}(1-x)$ where $x=p / P_{\text {max }}$ is the kaon nomentum teasured in units of its maximum value. 3) The energy dependence of the isospin-averaged total kaon production cross section is approximately given by $\bar{\sigma}_{N N} \approx 1.33 \bar{\sigma}_{\Delta} \approx 2 \bar{\sigma}_{\Delta \beta} \approx 144 \mu b p_{\text {max }} / \sigma_{K} c$, where m_{k} is the mass of kaon.

He have calculated the differential kaon cross sections for the experimental cases of p, d, and Ne projectiles on taruets ranging from NaF to Pb . The calculation yields kaon distribution which are nearly isotrooic and centered near the mid-rapidity $y_{c}=y_{\text {beam }} / 2=0.92$. The total inclusive kaon cross section is pre-
dicted to approximately scale as the product of the nuclear masses AB.

The predictions obtained from the miltiplecollision model are significantly different from what would result in a thereal model. Such a model would predict that kaons are enitted from a source which woves with half the bean rapidity for symetric systems but with a smaller rapidity for a light profectile incident on a heavy target. Also, the scaling behavior predicted in the wultiple-collision model is not expicted to fold in the thenal model. The raons should therefore be very well suited for discriminating between the cascade-type picture and the thermal picture.

The initial Fernd mozion of the nucleus is instrumental in broudening the kan distribution over a wide domin in rapidity space and thus leads to kaons at considerabiy larger laboratory angies than that could result in proton-proton collision. It is thus conceivable that the kaons lay be used to probe the intrinsic mane tur distribution of the nucleans; this might be a particularly powerful ethod at beal energies belon the nucleon-nucleon kaon producition threshold where the kaons would be produced exclusively due to the Fermi motion.

Footnote and References

tCundensed from LBL-10530; Muc1. Phys. A 343 (1980) 519.

1. S. Schnetzer et al., Bevalac Experiment Hc. 471H
2. J. Hïfre* and J. Knoll, Nucl. Phys. A270 (1977) 460
3. J. Knoll and J. Randrup, Huc1. Phys. A324 (1979) 445

A MODEL FOR PION ABSORPTION IN NUCLEI*

Che Ming Ko and Steffen Bohamam:

Abstract

Recently, detailed experimental studies of the pion absorption process in nuclei for pion energies in the region of the Δ resonance have been carried out. I The general features of these data suggest that the energy and the momentum brought in by the pion are equally shared among several nucleons the nuaber of which ranges between 3 and 6 depending on the target mass. The inclusive spectra of these nucleons are structureless and monotonically decreasing with increasing nucleon energy. In analogy to the statisticai model of high-energy nuctear reactions ${ }^{2}$ we suggest that the nucleans sharing the pion-energy and momentum are these lined up in a "row" extending in beam direction at the impact parameter of the pion.

Energy and monentum are completely rindomized among these nucleons, i.e., their avaliable phase space is accupied uniformly. The resulting proton spectra agree very well with the measured data (see Fig. 1; data are from Ref. 1).

The mean number of nucleons in a row is goversed by the e:viss section given to this row. It can be adjusted to give the observed value for a fixed target. This same value of the cross section (40 mb) reproduces the observed nean number of participating nucleons for any target (Fig, 2 (c)). Taking into account the slightiy varying probability for absorbing a pion with the number of nucleons in a row gives
almost exactly the observed integrated protion yields except for the isghtest target, which \boldsymbol{m} be due to completely neglecting the two-nucleonabsorption process in our codel (Fig. 2 (a)). Finally, the ratio of the integrated proton yield following the absorgtion of r^{+}to the yfeld after the absorpticion of is as mell reproduced (Fig. 2 (6)).

The success of our simple model supports the assumption that energy and momentio of the incouting pion are equally shared among the nucleons in a rou. The model, however, does not deal with the dyranical details of the process, which may be very invoived because of the large muber of participating particies. Further research perhaps may clarify this question.

Fig. 1. Inclusive proton spectra after pion absorption. Data are from Ref. 1.
(XBL 805-1324)

Footnotes and References

[^9]

Fig. 2. Data are from Ref. 1: (a) Total proton yield after the absorption of a $\mathbf{"}^{+}$on various targets (${ }^{12} \mathrm{C}, 27 \mathrm{~A}, 58 \mathrm{Ni}, 181 \mathrm{Ta}$). (b) Ratio of the proton yield after \mathbf{s}^{+}-absorption to the yle, after x^{-}-absorption as a function of the tar'get mass. (c) Mean number of nucleons sharing the energy and momentum of the pion as a function of the target mass.
(XBL. 806-1323)

1. R. D. FicKeom, S. J. Sanders, J. P. Schiffer, H. E. Jackson, M. Pasl, J. R. Specht, E. J. Stephenson, R. P. Redwine, and R. E. Segel, Phys. Rev. Lett. 44, 1033 [1980\}.
[^10]
RELATTVISTIC NUCLEAR COLLISNONS: THEORY*

Miklos Gyulassy

Recent theoretical developments in relati7istic ($0.5-2.0 \mathrm{GeV} / \mathrm{nucleon}$) nuclear collisfons are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail.

We have learned a tremendous amount about the basic reaction mechanism. The roles of geometry, phase space, and kinematics have been shown to dominate many of the gross features of the data. However, initial state interactions (Fermi motion) and final state interactions (composite production, Coulomb fields, and nuclear shadowing) of ten lead to complicated distortions of the particle spectra. He have learned that finite mean free path effects cannot be ignored in any reaction studied so far. The spectra show clear non-equilibrium effects.

The significant non-equilibrium component even in near central $\mathrm{Ne}+\mathrm{U}$ collisions virtually rules out a l-fluid hydrodynamic description of such data. Since hydrodynamics is the only direct link between data and the nuclear equation of state $H\{\rho, T\}$, the prospects of
determining W from data do not seem promising. The problen is not that we are looking at the wrong observable (central triggered proton inclusive cross sections), but rather that hydrodynarics does not take into account finite mean free paths and binding that seem essential from the deta.

On the other hand, we saw that the high momentum components of inclusive spectra are very insensitive to dynadcal details of the compression phase. Thus, we cannot hope to learn about high density nuclear mitter from such data either.

It must be emphasized though that we do not have a complete understanding of the reaction echanism. Many detailed features of the data such as the ${ }^{+}$bump at $y=Y_{c n} D_{1} \approx 6.5$ m. ara only partially understood. The low energy $E<50 \mathrm{HeV}$, $\mathrm{Ne}+\mathrm{U} \rightarrow \mathrm{p}$ data are also not well understood. In these cases, we still have to sort out the complex interplay of the many elements of the reaction mecticnis ${ }^{(1)}$.

Footnote

*Condensed from LBL-11040.

TEST OF SQUARE LAW FOR DEUTERON
 FORMATION IN RELATIVISTIC NUCLEAR COLLISIONS*

C. C. Noack, ${ }^{\dagger}$ M. Gyulassy, and S. K. Kauffmann

One of the striking features of nuclear collisions in the $0.2-2.0 \mathrm{GeV} / \mathrm{nuc}$ feon range is the copious production of light composite fraqments. The first attempt at understanding light composite production was in terms of the coalescence model of Ref. I. Since the probability that a nucleon is found in a coalescence volume is proportional to the invariant proton inclusive cross section: $\sigma_{1}(p)=\omega_{d o}^{3} / d p 1$, a sinple power law is predicted for the inclusive cross section of a fragment with A nucleons,

$$
\begin{equation*}
o_{A}(p) \equiv \omega A \frac{d^{3} \sigma_{A}}{d^{3} p_{A}} \times\left(\sigma_{1}(p)\right)^{A} \tag{1}
\end{equation*}
$$

where w_{A} and PA are the energy-momentum per nucleon of fragment A. For deuterons, Eq. (1) just states that the deutron yield should be proportional to the square of the proton yield.

Since extensive new data for a large variety of projectile and target combinations at various
energies have becone available, 2 it is now possible to test the square law over a much broader domain of reactions. These data a^{2} test the square law in high densit; regions of momentum space, where in terms of the coalescence model, I the probability of finding two or more nucleons in a coalescence volume approaches unity.

To generalize the coalescence model to make it more appropriate for the high density region, we suggest the modification

$$
\begin{equation*}
\sigma_{\underline{A}}(p) \propto o_{1}(p)\left(\sigma_{c h}(p)\right)^{A-1} \tag{2}
\end{equation*}
$$

where och(p) is the "primordial" proton distribution, which we obtain by summary over proton, deuteron, triton, etc.. data.

He have calculated a certain type of "best fit" to the proportionality constante in Eqs. 1 and 2 for the special case of deuterons

$$
\begin{align*}
& R:=o_{d}(p) / o_{1}{ }^{2}(p) \tag{3}\\
& R^{\prime}:=o_{d}(p) /\left(o_{T}(p)_{\sigma_{c h}}(p)\right) \tag{4}
\end{align*}
$$

With R and R^{\prime} forced to be independent of P
("best" constants) but not of the type of collision partners or bean energy.

The straight lines in Fig. I(a) correspond
to a proton square 1aw, (Eq. 1). The straight lines in Fig. $1(b)$ correspond to the generalized square 1 m of Eq. 2. On this $\log -\log$ plot we see rearkable adherence to both lass within a factor of 2 . This form of plotting o_{p}^{2} vs od_{d} emphasizes that the approximate law works within a factor of 2 over three or four decades of cross section!

Fig. 1. (a) Plot of $R|p| g_{p}^{2}$ ys iplo. Typical experimental error bars are indicated. The data have been shifted by factors of 10^{n} to separate the reactions. The straight lines correspond to the "square law." (b) Plot of $\mid \mathrm{pi} \mathrm{R}^{\prime} \mathrm{op}^{\circ} \mathrm{ch}$ vs p od for the same reactions as in (a). Straight lines correspond to the generalized square law of Eq. 2.
(XBL 804-9221)

Footnotes and References

*Condensed fron LBL-11053.
\dagger Universitat Bremen, 2800 Bremen 33, Hest Germany.

1. H. H. Gutbrod, A. Sandoval, P. J. Johansen,
A. M. Poskanzer, J. Gosset, H. G. Meyer, G. D. Hestfall, and R. Stock, Phys. Rev. Lett. 37 (1976) 667.
2. A. Sandoval, H. H. Gutbrod, W. G. Meyer, A. M. Poskanzer, R. Stock, J. Gosset, J. C. Jourdain, C. H. King, Ch. Lukner, Nguyen Van Sen, G. D. Kestfall, and K. L. Molf, Phys. Rev. C 21, (1980) 132.

COULOMB EFFECTS MU RELATIVISTIC RHCHEAR COLUSHONS*

M. Gyulasay and S. K. Keuffimann

Recent data on nuciear collisions in the 1 GeV/rucleon range have revealed unuspal angular and momentum magnitude distributions ${ }^{1}$ of single particle fragments such as $\pi \pm p$, n. While it is tempting to attribute those unusual features to nuclear compression effects, it has becone increasingly clear ${ }^{2}$ that Coulonb final state interactions in muclear collisions are complex and have to be understood before any conclusions on the role of nuclear compressions can be reached. We have derived sinple analytical formulas to calculate Coulomb distortions, and we apply them to the analysis of recent data.

He ain to supplement and extend prevfous works by deriving analytical formulas that clearly reveat the structure and form of Coulomb distortions in nuclear collisfons. Our basic approach is to use first order relativistic perturbation theory which readily yields an expression for Coulomb distortions for an arbitrary space-time dependent charge current. In particular, effects due to finite nuclear sizes, expanding fireballs and miltiple charged fragments, are easily calculated. To overcome some of the limitations of perturbation theory. we recast our results in a non-perturbative (Gamow factor) form.

We found it noteworthy that a simple classical calculation already reveals the essential qualitative features of Coulonb final state interactions. It shows the single particle inclusive cross sections for \pm charged particles to be of the form

$$
\begin{equation*}
\sigma_{\mp}(k)=\sigma_{0}(\underline{k} \mp \delta p(k)) D(k), \tag{1}
\end{equation*}
$$

where $\sigma_{0}(k)$ is the corresponding single particle neutral inclusive cross section. $D(k)$ is a Coulomb phase space distortion factor, which tends to suppress positively charged particles relative to neutrals, and is important for momenta k close to those of any surviving nuclear fragments having sizeable charges, 1 while $g p(k)$ is a Coulonb impulse that acts to enhance positively charged partiches relative to neutrals, and is important for momenta k where $\sigma_{0}(k)$ is falling steeply with increasing |k|. 2 He have kept the form of Eq. 1, but, using perturbation theory, the Gamow factors, and thermal averages as guides, we have modified the classical analytical results for $D(k)$ and op(k) to approximately Incorporate relativity, quantum effects, and the themal expansion of the nuclear fireball. For our first calculations with Eq. 1, we have chosen to keep the formulas entirely andytical by using the fireball model for $\sigma_{0}(\underline{k})$.

For the π^{-} / π^{+}at θ apb $=0$, the Coulomb phase space distortion factor $D(k)$ produces sharp peaks at pion rapidities equal to those of the projectile and target spectators, as shown
in Fig. 1. Mote that the prajectile and target spertators differ a bit in rapidity from the bean and target, due to the friction of the collisfon. This friction also slightly heats the spectators, preventing infiniteiy high Coulon peaks. In Fig. 1(a) the data apparently reveal the prajectile spectator Coulomb peak.I In Fig, 1(b), the data show the $=\frac{15^{+}}{}$ratio going perceptibility below unity at high pion rapidities--apparently confirsing the Coulomb fimpulse effect.

Fig. 1. The $\pi^{-/ \pi^{+}}$ratio at olab $=0^{\circ}$ as a function of rapidity $y_{1 a b}$. The reaction ${ }^{1}$ is $\mathrm{Ne}+\mathrm{NaF} \rightarrow x \pm \mathrm{at}(\mathrm{a}) 383 \mathrm{MeV} / \mathrm{nuc}$ leon (square points) and (b) $164 \mathrm{MeV} / n u c l e o n s$ (solid dots). solid curve shows Coulonb distorted fireball model results. Dotted segnent in (a) shows sensitivity of results to 20% reduction of initial radif.
(XBL 802-8094)

We have obtained similar results to Ref. 2 on pion focusfing for \boldsymbol{r}^{+}yields at $e_{c, m}$. x 90° using our analytic formulas. The role of Coulomb effects on the n / p ratio were also calculated.

Footnote and References

1. ì. Benenson et. al., Phys. Rev. Lett. 43
(1979) 683; and Errata, Phys. Rev. Lett. 14
(1980) 54.
2. K. G. Libbrecht and S. E. Koonin, Phys. Rev. Lett. 43 (1979) 1581.
*Condensed from LBL- 10279.

QUARK CONFINEMENT IN A CYCLIC SYMMETRIC FIELD THEORY MODEL

Herbert M. Ruck

When the production of a single quark is impossible due to confinement, one thinks about studying quark matter that might be simpler. However producing quark matter in equilibrium will be experimentally even harder than producing nuclear fusion at a steady rate. Therefore the curiosity to study the properties of quark matter has to wait for some time. So we study the region in-between, but as usual the middle is more difficult than the extremes and so the investigation of the structure of the nucleons and their resonances, as weil as the interaction between them -- from the point of view of quarks -- is faced with the formidable complexity of DCD (SU(3)) calculations. For example the field equations describing the proton in terms of three quarks and one gluon field contain as many degrees of freedom as the field equations for a carbon nucleus made of 13 nucleons and a pion and p-meson field.

I seek an alternative theory of strong interactions that will have all essential properties of OCD and be simpler. This is a Z(3)symmetric field theory of scalar particles and fermions. $2(3)$ is a discrete abelian group, that takes a special place between continuous abelian groups like $U(1)$ and nonabel lan groups like SU(3). The model is defined in physical Minkowsk' 5 pace but the results presented are obtained in the $1+1$ dimension space-time continuum only, where closed form solutions are possible.

The action for the model is:

$$
\begin{align*}
& S\left(\psi_{1}, \psi_{2}, \phi_{1}, \phi_{2}\right)=\int d t d x\left[1 / 2\left|\partial_{\mu} \phi_{1}\right|^{2}+1 / 2\left|a_{\mu} \phi_{2}\right|^{2}\right. \\
& -\lambda\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}+v\left(\phi_{1}^{3}-3 \phi_{1} \phi_{2}^{2}\right)+\mu\left(\phi_{1}^{2}+\phi_{2}^{2}\right)+Y \\
& +i \bar{\psi}_{1} \gamma_{\mu} \sigma_{\mu} \psi_{1}-m \bar{\psi}_{1} \bar{\psi}_{1}+i \bar{\psi}_{2} r_{\mu} \bar{\partial}_{\mu} \psi_{2}-m \bar{\psi}_{2} \psi 2 \\
& \left.+g\left(\bar{\psi}_{1} \psi_{1}-\psi_{2} \bar{\psi}_{2}\right) \phi_{1}-g\left(\bar{\psi}_{1} \psi_{2}+\bar{\psi}_{2} \psi_{1}\right) \sigma_{2}\right] \tag{1}
\end{align*}
$$

First I find soliton solutions that tunnel between the three vacuum states of the scalar field systen. 1 Then the wave equations of the fermions coupled to the solitons have a solution that is equivalent in effect to confined individual fields in a calor singlet state
$\left(F_{f}=1 / 2 g g_{y}\right):^{2}$
$\psi_{1}(t, x)=N\left(\frac{1}{\exp (-\{5 x / 6)}\right) \exp \left(-i E_{F} t-H(x)\right)$
$\psi_{2}(t, x)=i \sigma_{3} \psi_{1}(t, x) \quad$.
Where of is the third Pauli matrix and $H(x)$ a positive definite function:

$$
\begin{align*}
& H(x)= \\
& g\{2 x)^{-1 / 2} \ln \left[\cosh \left((3 x / 2)^{1 / 2} g y\left(x-x_{0}\right)\right)\right] . \tag{3}
\end{align*}
$$

An exampl 2 of the energy spectrum of the model is shown in Fig. 2.

Fig. 1. Equipotential lines for the selfinteraction potential of the scalar fields. The three minima vacuum states are clearly seen.

| M-Particle mass |
| :--- | :--- |

References

1. H. R. Ruck, Mucl. Phys. B167. 320 (1960).
2. H. H. Ruck, Praceedings of the IX International Colloquiue on Group Theoretical Hethods in Physics, Cocoyoc, Hexico, 2960, Springer Yerlag, Oct.-Wov. 1960.

Fig. 2. Energy spectrum (arbitrary units) for the same set of coupling constants that give Fig. 1.

HYPER-STRANGE HADRONIC MATTER

Norman K. Glisndenning

In a recent letter, Chin and Kerman ${ }^{1}$ have suggested the possible production of lang-lived hyper-strange multi-quark object in high-energy nuclear collisions. They studied the stability of quark matter as a function of the fraction of strange qladrks. Based on the currently popular values of the MIT bag constants they found that the energy per baryon of infinite matter becomes a minimum for a ratio of strangeness to baryon number of approximately 2 . This minfmum 1 ies above the energy of free nucleons so that an object made of this matter is only metastable, its decay still characterized by the weak decay lifetime of strange haryons.

In this note, we investigate whether a hyperstrange hadronic object also possess a metastable state and would have a lower or higher energy than the corresponding quark object. He do this by means of a straightforward extension of relativistic field theory of matter solved in the mean field approximation. 2 In this theory the nucleons are coupled to scalar and vector mesons. The meson fields are approximated by their mean values, which are related to the scalar and baryon densities $\psi \psi$ and $\psi^{+} \psi$. The nucleon field then obeys a Dirac-like equation in which the nucleon mass is shifted by the scalar field and the energy eigenvalues by the vector field. The ratio of coupling constants to masses of the mesons are two parameters which are adjusted to reproduce the saturation properties of infinite nuclear matter. To this systen we now add the
$A(1116), \Sigma(1193)$ and $\Xi(1318)$ fields, each of which is coupled to the mesons. The strength of this coupling is not mell established. Universal coupling is somewhat suggested for the coupling of these octet baryons to the mesons. On the cther hand we can look to hyper-nuclei for evidence. A coupling of the Λ to the fields that is $1 / 3$ less than for the mucleon in light nuclei produces the correct binding energy. Therefore we consider two possibilities, 1) universal coupling, or 2) g. $, \Sigma, \equiv=I / 3 g^{N}$ for both the scalar and vector coupling.

In Fig. 1 the binding energy per baryon, ($\left.\varepsilon / \rho-m_{N}\right)$, of the two phases, quark and hadron, are compared as a function of strangness fraction. For the hadron phase, results for the two hyperan coupling constants are shown.

We conclude that no metastable state exists for fyper-strange objects in the hadronic phase in contrast to the quark phase.

One reservation can be mentioned. Both estimates of energy are extrapolations in different models of nature. The parameters of the bag model are optimized with respect to a few hadron masses and have no known connection to larger objects. The parameters of the hadronic matter model are determined by properties of nuclear matter and A-nuclei, and extrapolated away from these conditions.

Fig. 1. Binding of hyper-strange matter in the hadronic and quark phase are compared as a function of strangeness fraction per baryon. In the hadronic phase, results for two hyperon coupling constants are shown.
(XBL 808-1663)

References

1. S. A. Chin and A. K. Kerman, Phys. Rev. Letters 43 (1979) 1292.
2. a) M. H. Johnson and E. Teller, Phys. Rev. 98 (1955) 783, b) H. P. Duerr, Ph, ;. Rev. 103 (I956) 369, c) J. D. Halecka, Ann Phys. 83 (1974) 491, d) S. A. Chin, Ann Phys. 10871977) 301.

PION CONDENSATION IN A RELATIVISTIC FIELD THEORY CONSISTENT WITH BULK PROPERTIES OF NUCLEAR MATTER*

B. Banerjee. ' N. K. Glendenning, and M. Gyulassy

Pion condensation has not previously been investigated in a theory that accounts for the known bulk properties of nuclear matter, its saturation energy and density and compressibility. We have formulated and solved selfconsistently, in the mean field approximation, a relativistic field theory that possesses a condensate solution and reproduces the correct bulk properties of nuclear matter.

Up to moderate density, the internal quark structure of the nucleons can be ignored. In this case the nuclear forces can be represented by the exchange of mesons in the various spin, isospin channels. In order of these quantum numbers these meson fields are

$$
\begin{aligned}
& \sigma\left(\mathrm{J}=0^{+}, I=0\right), \quad \omega_{\mu}\left(1^{-}, 0\right), \\
& \pi\left(0^{-}, 1\right), \rho_{\mu}(1-, 1) \ldots
\end{aligned}
$$

and they are Yukawa coupled to the 8-component nucleon field through the interaction Lagrangian

$$
\begin{aligned}
& \text { £int }=g_{\sigma} \sigma \bar{\psi} \psi-g_{L} \cdot{ }^{\mu} \bar{\psi} \gamma_{\mu} \psi-g_{\Gamma}\left(a^{\mu_{T}}\right) \cdot\left(\bar{\psi} Y_{5 Y_{\mu}} \tau \psi\right) \\
& -g_{p} p^{\mu} \cdot\left(1 / 2 \psi_{Y_{\mu}} \tau \psi+\sum \times \partial_{\mu \pi}\right) \cdots \text {. }
\end{aligned}
$$

We show how to incorporate the effects of short-range correlations, the Δ-resonance, and finite-size form factors into is renomalized coupling constant, g_{π}, by establishing a relationship with the propagator approach at the condensation theshold. The coupling is essentially independent of density over the range considered. The theory is solved in its relativistically covariant form of a general class of space-time dependent pion condensates. By making a local isospin gauge transformation on the nucleon fields, the solution to the Dirac
equation can be obtained algebraically. Two cases are studied, corresponding to parmeters of the Lagrangian, which in both cases yield identical saturation properties and differ only in their softness at higher density. This latitude was introduced to represent our ignorance of the equation of state away from the saturation point. Only one of these possessed a condensate solution for pion-nucleon coupling constant at the value of the renormilized coupling. This was the case where the equation of state was softer at higher density. Even in this case the condensate energy was very small. not exceeding 3 MeV for density up to $3 \rho_{0}$ (see Fig. 11. This is in sharp contrast with other studies based on the chiral a-model. 1 Since the nomal state of the a-model does not possess the saturation properties of nuclear matter, ${ }^{2}$ we believe that our estimate is more reliable. Thus self-consistency and compatibility with bulk nuclear properties are strong constraints on the existence, persistence and empitude of the condensate phase. Despite the sidill condensate energy in our theory, the corresponding amplitude of the spin-isospin density is very significant, being about $p / 2$, as seen in Fig. 2. We conclude that a pion condensate is

Fig. 1. Showing the "normal" state labeled re $=0$ and pion condensed states labeled with g_{π}. The vacuum value of g_{7} is 1.40 fm , but the renormalized value is 1.0 fm , for which condensate energy is very small.
(XBL 805-837)
compatible with the known bulk properties of nuclear matter, but that its contribution to the energy is very seall although there eny be rather large amplitude spin-isospin mues.

(b)

Fig. 2. In (a) the amplitude R53 of the spinisospin density oscillations in units of the foryon density. Also indicated are values of the condensate field and the condensate energy. Part (b) illustrates 鴼gnitude of the spinisospin oscillations for $\mathrm{R}_{53}=0.5$ as a function of coordinate paraliel to condensate momentum k. $p \nmid$ means proton with spin up.

Footnotes and References

*Condensed from LBL-10979.
\dagger Permanent address: Tata Insitute of Fundamental Research, Bombay, India.

1. H. J. Perner, K. Yazaki, P. Bouche, M. Rho, Nucl. Phys. A329 (1979) 491.
2. A. K. Keman and L. D. Miller, Proc. 2nd High-Energy Heavy-I on Summer Study, LBL-3875 (1974) p. 73.

PION CONE .NSATION AT FWWTE TEMPERATUPE

N. K. Glendenning and A. Lumbroso*

In a related work, pion condensation in zero temperature matter was investigated in a relativistic field theory. 1 Unlike earlier work or the subject, the theory was constrained to possess the known saturation properties of nuclear matter. Here we investigate matter in the same theory at finite temperature. Of course finite temperatures are interesting because pion condensation is believed to be an important mechanism involved in the cooling of neutron stars. Morever, nuclear collisions at high energy, if they produce dense matter, certainly produce it at finite temperature.

The meson fields considered are the chargeless scaldr and vector mesons o and o and the pseudoscalar isovector pion field. The first two are Yukawa coupled to the 8-component nucleon field, and the pions are vector coupled to the axial vector isospin current of the nucleons. The field equations are solved for the mean values of the fields, evaluated for finite temperature medium.

Our results are surprising. Contrary to common expectation, the pion condensed state is not quenched as the temperature is increased but persists to as high a terpperature as makes sense to consider in this model of nature. (The limit of validity is reached when higher baryon resonances are appreciably populated, ${ }^{2}$ or when matter undergoes a phase transition to quark matter. ${ }^{3}$)

In Fig. 1 we show the normal and pion condensed equations of state as a function of density for three temperatures. It is true that the critical condensate density increases with temperature 'dotted linel. However, the equation of state is dramatically softened by the condensate as the temperature is increased. Therefore, the hydrodynamical flow of hot dense matter will be strongly influenced by the transition to a condensate phase. Moreover, a subsequent phase transition to quark matter may be facilitated by this softening of the equation of state because, for a given energy and density, the temperature of the matter is considerably higher in the condensed than in the normal state.

These results are somewhat encouraging as concerns the d ection of a condensed phase in relativistic nuclear collisions, al though the lifetime of the high-density region is much shorter than the disassembiy time of the collision complex, which fact may permit final state interactions to obscure the effects of the softened equation of state on the flow.

However, there is another feature with possibly important consequences. As is well known, the pion condensate corresponds to a specific alignment of spin and isospin, an
isospin lattice, having an orientation in space, with a me muber $k=1.5 \mathrm{fa}^{-1}$. What has not been noted previously is that in this direction the pressure is greater than in the transverse directions. This suggests that in unbound syscems in which condensate is induced, the matter will disassemble preferentially along the direction of the condensate. To detect such jets in muciear collisions, coincicence expericents on single events would have to be perforted. In bound systems, such as nuclei in the condensed p'ase with temperaturis up to - 15 Mey (see figure), or neutron stars, the differential pressure in the condensate direction would induce al elongation untifl the pressure is counterbalanced by the sarface tension.

Fig. 1. Binding energy per aucleon as a function of density for two temperatures. The normal state is labeled " $\bar{\Sigma} 0$ " and the condensed state of $\bar{\pi}$. The renormalized pions nucleon coupling is $\delta_{1}=1.13 \mathrm{frr}$. The energy of the condenmbe is minimized for wave number of the spin-isu,. n density oscillations, $k=$ $1.5 \mathrm{fm}^{-1}$. The critical density as a function of temperature is indicated by dotted line.
(XBL 808-1448)
*On leave from CEN, Saclay, France.

1. B. Banerjee, H. K. Glendeming, and M. Gyulassy, LBL-10572 (submitted to Phys. Lett.),

LBL-10979 (suburitted to Mucl. Phys.).
2. S. I. A. Garpean, M. .. Glendenning and Y. J. Karant, lucl. Phys. sidicz 11979) 382.
3. J. I. Kapusta, Mucl. Phys. B148 (1979) 461 and references therein.

PION CONDERSATION AND WUSTADMTTES: CURRENT THEOAY AND EXPERHMENT*

Moklos Gytulessy

In this report, current calculations of pion condensation phenomena in symmetric nuclear matter are first reviewed. The comparison between RPA and MFA methods is made with special attention given to the wean field theory of Banerjee, Glendenning and Gyulassy. ${ }^{1}$ Those results show that in equilibrium the magnitude of the spin-isospin fluctuations in the pion condensed phase are large and insensitive to the plarameters of the theory. Using this and previous ${ }^{2}$ results, a novel calculation of the number of coherently radiated pions in nuclear collisions is made. The result of that estimate is that the degree of coherence, which could be observed by pion interferometry, ${ }^{3}$ is very small. Subsequent analysis (to be published) taking into account the miltiplicity of unstable pion modes k as well as pion absorption yields a larger number of coherently radiated pions per nucleon:

$$
\begin{equation*}
\left(\frac{\bar{n}_{\pi}^{-}}{A}\right)_{\text {coherent }}=0.01\left(\frac{y}{m_{x}}\right)^{2} \mathrm{Ae}^{-\mathrm{A}^{1 / 3 / 3}} \tag{1}
\end{equation*}
$$

where $y / m_{\pi}=0.1-0.2$ is the average grow th
rate of the fistabifity ${ }^{2}$ and A is the number of participating mucleons. For $A=100, r=0.2$ 3. tiris gives $\left(\bar{n}_{3}-/ A\right)_{\text {coh }}=10^{-2}$ as compared to experimentil value of 4×10^{-2} from $1 \mathrm{GeV} /$ rucleen $\mathrm{Ar}+\mathrm{KCI}$. The degree of coherence in that case would be $D=1 / 4$, Such . degree of coherence could be observable ${ }^{3}$ if Coulonb final state distortions are properiy nemoved from $\mathbf{r}^{-} \mathbf{F}^{-}$correlation data.

Footnote and References

-Candensed from LBL-10883.

1. B. Banerjee, N. Y. Glend mining, and \boldsymbol{H}. Gyulassy, LBL-10572 (Apri1 1980).
2. M. Gyulassy, W. Greiner, Ann. Phys. 109 (1977) 485.
3. H. Gyulassy, S. K. Kauffmann, and L. W. Wilson. Phys. Rev. C20 (1979) 2267.
4. A. Sandoval et al., GSI Preprint 80-15, 1980.

DETA ETA EMTY OF NEUTHON MATTER

J. Boguta

The cooling of neutron stars, especially since the launch of the Einstein X-Ray Observatory, has elfcited a number of suggestions explaining the high neutrino iuninosity required to understand thts rapid cooling. A natural explanation of this, such as the beta decaly of neutrons f.e., $n \rightarrow p+e^{-}+v_{e}$ was ruled out, because of the difficulty in conserving momentum near the corresponding Ferci surfaces. 1 The Ferri-Dirac factor would signfficantly surpress such cooling mechanism. Alternative processes such as plon condensation ${ }^{2}$ and recently proposed beta decay of the down quark ${ }^{3} \mathrm{~d} \rightarrow \mathrm{u}+\mathrm{e}^{-+}+\mathrm{v}_{e}$ have been suggested as a way to rapidly cool the neutron star. The pion condensate eodel inplies that there exists a new collective mode inside neutron stars, while the quark model suggests that the interiors of the neutron stars are composed of quarks. In vimw of these interesting suggestions to account for the rapid neutron star cooling, another look at the beta decay of ordinary neutrons in a dense neutron start is quite appropriate. Perhaps a conventional explantion of neutron star cooling is still possible.

It is known that one has to pay the price of symmetry energy when separating neutrons from protons. It, together with Coulomb energy, plays an essential role in deternining the line of beta stability in nuciel. It stands to reason that it should be considered in studying the proton concentration in beta stable neutron stars. For this purpose we study nuclear matter in a relatiyistic quantum field theory proposed by Halecka.4,5

The actual details of this model are unimportant to support our conclustons, as long as the syumetry energy of ordinary, symetric ($M=$ Z), nuclear matter is correctly parametrized. Figure 1 shows the proton Fermi momentum in beta equilibriun with neutrons for two values of symmetry energy. In both cases neutron stars can be cooled by beta decay.

Fig. 1.
(XBL 609-1995)

References

1. J. M. Bahcall and R. A. Molf, Phys. Rev. 140B, 1445 (1965); Phys. Rev. 140B, 1452 (1965).
2. O. Maxwell, G. E. Brown D. X. Campbell, R. F. Dashen and J. T. Manassah, Astrophys. J. 216, 77 (1977); R. F. Sanyer and A. Sonf, Astrophys. J. 216,73 (1977).
3. N. Imamoto, Phys. Rev. Lett. 44, 1637
(1980); A. Burrows, Phys. Rev. Lett 44, 1640 (1980).
4. J. D. Malecka, Ann. Phys. 83, 491 (1974).
5. J. Boguta and A. R. Bodmer, Muc 1. Phys. A292, 413 (1977).

RELATINISTIC QUANTUM FMELD THEORY OF FNHTE MUCLE

J. Boguta

A relativistic quantun field theory of nuclear matter was proposed by Walecka, 1 in which the dominant properties of nuclear matter such as saturation and binding energy per particle are accounted for by the presence of scalar (0) and vector (u) meson fields. This model, conceptually, is in sharp disagreement with conventional nuclear physics approacli, where a static two body force together with a non-relativistic Schrodinger equation form the basis to describe a many body system such as the mucleus. The conventional approach, after 15 years of intense cultivation, has reached such a point of sophistication that only minor modifications are possible. 2 Nonetheless, it still fails to provide a reljable phenomenological tool by which nomal iuclear properties can be tied together witn higher density and temperature phenomena in nculear matter. Furthermore, the whole approach might be unduly complicated. Ideally, one would like to have a complete description of nuclear physics, where the bulk properties of nuclei are di rectly related to the forces derived from low energy nucleon-nucleon scattering. It has been emphasized by Serier ${ }^{3}$ and Walecxal and a long time ago by Jeller and Johnson, ${ }^{4}$ that nuclear structure can perhaps be easier understood by a much simpler, single body central force. After all, this is the basis of the shell model. It has been shown by Millers that relativistic effects in such a mesonic central field approach are very important, in that they affect the single body kinetic energy. Thus the investigation of alternative nuclear matter models is desirable. In this rote we shall explore the phenomenological consequeces of the Halecka model.

Recently Walecka and Serot ${ }^{6}$ showed that the field equations of the Walecka model, truncated for numerical convenience, give a fair description of the charge densities in Ca ${ }^{40}$ and Pb^{208}. Serber has shown that a nuclear model based on a mesonic field o, together with a hard core repulsion given by an excluded volume, gives rather good results for finite nuclei. 3^{3} In this work we show that a careful analysis of the Halecka model, together with a better choice of parameters leads to charge distributions in $\mathrm{Ca} 40, \mathrm{Ca}^{48}, \mathrm{Ni} 5{ }^{4}, \mathrm{Zr}^{90}$, Pb208 that are in rather good agreement with experimental data, where it is available, and in an overall agreement with the more refined non-relativistic Hartree-Fock calculations. The quality of our results in the Thomas-Fermi approximation leads us to believe that a relativistic Hartree approximation to the Walecka model will give an excellent description of sphericat, closed shell nuclei.

Fig. 1.
(XBL 809-1991)

References

1. J. D. Walecka, Ann. of Phy!. 83, 49] (1974).
2. J. Negele, Seventh Inti. Conf. on High Energy Physics and Huclear Structure, ed. M. Lochner (Birkhauser Verlag, Basel, 1978) p. 231.
3. R. Serber, Phys, Rev. 14C, 718 [1976).
4. H. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).
5. L. D. Miller, Phys. Rev. Lett. 28, 1281 (1972).
6. B. D. Serot and J. D. Walecka, Phys. Lett. 87B, 172 (1980).

PROPERTHES OF $T \neq 0$ MUCLE WN A RELATIMSTIC QUANTUM FEELD THEOAY

J. Bogut;

The knowledge of the equation of state of nuclear matter at various densities and temperatures is of considerable interest, in that it enters into the calculation of a large numer of physically interesting ri,enomenon. Ideally such an equation of state should be calculated from a theory that is known to be reliable. Unfortunately, this is inpossible to do. The next best thing is to use a theory that does reproduce known nuclear matter properties and does not violate important constraints such as relativity and the effects of the mesonic degrees of freedom at high densities. The only known may to achieve both goals is through a relativistic quantum firi:d theory, in which it is possible, in a systematic way to compute the corrections. It has been shown by Chin ${ }^{2}$ that such a theory, in a mean field approxination, beconcs more accurate with increasing density. What has not been appreciated thus far is that the mod?l is a good phenomenological tool in studying the properties of finite nuclei. 3^{3}

Fig. 1.
(XBL 809-1985)

The in eerest in studying non-zero teaperarure (T $\leq 5 \mathrm{MeV}$) has been stimlated by the production of highly excited nuclei. To describe these many body systems, a statistical approach seess a natural one. The very high temperature ($T \geq 50 \mathrm{HeV}$) behavior of the Yalecka model has been studied for neutron matter apd symetric matter rith tower of resonances. 5 Temperature effects for the size and mass of neutron star has also been investigated. 6 There have also been a nuber of conventional nuclear physics calculations, for the temperature properties of finite muclef. 7 of particular interest for us in this work will be the level density parameter a. If aE is the thermal excitation energy of the nucleus, then $\Delta E=$ a^{2}, where T is the tenperature. Experimentally determined nuclear excitations can be fitted by $a \approx A / 8$, where A is the mass mueber. 8 He find a \approx A/9.8.

In this work we present solutions of the Walecka model for finite nuclei at non-zero temperatures. Presently we still deal witinin the Thomas-Fermi approximation. This approximation is, strictly speaking, inconsistent with the boundary conditions of the problen. He made rather trivial modifications to overcome this problem. At this stage of investigation, this will serve our needs to show that the Nalecka model does give a good description of the level density parameter and a re onable description of densities in Ca^{40} and Pb^{208} for temperatures up to 5 MeV . A consistent calculation, involving the solution of relativistic Hartree equations will be reported later.

References

1. J. D. Halecka, Ann Phys. 83, 491 (1974).
2. S. A. Chin, Ann. Phys. 108, 491 (1977).
3. F. E. Serr and J. D. Halecka, Phys. Lett. 79B, 10 (1978) ; J. Hoguta and J. Rafelski, Phys. Lett. 71B, 22 (1977); L. N. Savushkin, Sov. J. Nucl. Phys. 30, 340 (1979); R. Brockmann and H. Heise, Phys. Rev. 16C, 12B2 (1977); B. D. Serot and J. D. Nalecka, Phys. Lett. 87B, 172 (1980); J. Boguta, Relativistic Quantum Field Theory of Finite Nuclei, LBL preprint, July 1980.
4. J. D. Halecka, Phys. Lett. 59B, 109 (1975).
5. S. 1. A. Garpman, N. K. Glendenning, and Y. J. Karant; Nucl. Phys. A322, 382 (1979).
6. J. Boguta, Hot and Cold Neutron Stars, LRL preprint July, 1980.
7. G. Sauer, H. Chandra, and U. Mosel ; Mucl. Phys. A264, 221 (1976); U. MoseT, P.-G. Zint and K. H. Passler; Hucl. Phys. A236, 252 (1974).
8. A. Bohr and B. R. Mottelson, Muclear Structure Yot. 1 (H. A. Benjatin, Inc. 1969, New York) p. 186.

COLOR EXCITATION AND EXOTIC NUCLEI

Y. J. Karant

Recent observations of the apparent short mean free paths of relativistic nuclear projectile fragments in emision suggest that these fragments are contaminated by a component with an anomalously large reaction cross section. I suggest that this effect might be due to the formation of an internally color-polarized multi-baryon state. For this explanation to be tenable, it must: (1) be allowed to exist, (2) be long-lived ($\tau \geq 10^{-10} \mathrm{sec}$), (3) have a suitable mass and be produced with a large enough probability to account for several percent of the projectile fragment flux, and (4) have a larger cross section than a nomal nuc leus of the same ($B, 2$).

By considering the color algebra of OCD, I show that (1) is satisfied and (2) and (4) are closely related problems. As contrasted with the three-valence quark systen ($B=1$) which has only one color singlet state, the six-valence quark system $(B=2)$ has two: (3) ${ }^{6} \rightarrow 101-1$ and
$(3)^{6} \longrightarrow 8081$, both of wich are topological invariants. If one extends the algebra to SU(2) flaygr $\operatorname{SU}(2)_{\text {spin }} \oplus S U(3)$ color \longrightarrow SU(12), there are two $\$$ tates of interest ($\mathrm{N} \frac{1}{/ / 2)^{2}}$ (ordinary deuteron-1ike state) and $\left(a_{1 / 2}^{8}\right)^{2}{ }^{1 / 2}$ dibaryon of two coior 8, isospin $3 / 2$, ind spin $1 / 2$ "baryons"). In all orders, the $(\Delta 1 / 2)^{2} f(\mathrm{~N} \mid / 2)^{2}$ by gluon excharige (due to the flavor singlet mature of g) nor by ordinary $q \bar{q}$ (meson) exchange. Dnly quark turneling permits the decay of such an object.

To restrict this tunneling probability to an acceptable level, one needs a large object with an effective barrier between the two color octet baryons. Since 8as is repulsive, one obtains a natural model in wich both 8 's repel but nonetheless are confined at sona distance of several fa. This imer repulsion prevents a fast tunneling decay. Point (3) is not addressed by this model.

COULOMB EFFECTS IN A NUCLEUS-NUCLEUS CASCADE MODEL

Y. J. Karant and C. C. Noack *

There has been much interest in the effect of the Coulomb interaction on the differential cross sections in high energy nucleus-nucleus collisions. In p-p collisions, one can eastly neglect such effects, since they are of order a. However, in an $A A^{\prime}$ state, they become of order Z2' α, which in many cases is non-neglible.

To explore this, we are working within the context of the SIMON code. $: I T H O H$ is a relativistic nucleus-nucleus inter-7ucleon cascade model. It uses experimental up, pp nn differential cross sections, takes rartial account of Fermi motion and binding enerijes, and treats the cascade as developing sirultaneously in both target and projectile nuclei (that is, it has moving-moving collisions).

There are two asper's of the problem! which we ignore at the start: meson (and isobar) production and comp ${ }^{1}$ ex nuclear ejectiles All complex fragmer is ($A=2$ and above) must come from de-excifiation of the target and projectile remnants after the cascade has stopped.

We assume that during the cascade, Coulomb forces are absent. As soon as a particle has
left the cascade region ldefined by having reached a pofnt in space where the instantaneous local particle density i. insufficient for it to have any further collisions), Coulonb forces are turned on. Let x be the position vector for the i th particle, with velocity $c \beta \quad x$, and momentum p so that

$$
\overrightarrow{\mathrm{p}}=\frac{\mathrm{m}}{\sqrt{1-\theta^{2}}} \overrightarrow{\mathrm{~B}}, \stackrel{\stackrel{\rightharpoonup}{\mathrm{p}}}{ }=\overrightarrow{e k}
$$

where \vec{E} is calculated from all other $A=1$ particles as though they were on straight line trajectories. However, the target and projectile remnants are placed on Coulomb trajectories under their mutual influence (ignoring the effect of the ejectiles) and are included in calculating E. Thus, we ignore magnetic and retardation effects, but do include the relativistic relation between $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{B}}$. Detaited comparison with experiments are now under way.

Footnote

[^11]
A. SUPERHILAC AND 88 INCH CYCLOTRON

THE SUPERHILAC ON-LINE ISOTOPE SEPARATOR

J. Micheel Nitsehke

The on-line isotope separator (Fig. 11 as described in last year's annual report ${ }^{1}$ has undergone a considerable transformation. A new plasma fon source and a surface ionization source were developed. The plasma source was tested off-line and has produced Kr beans with efficiencies of 22\% The transmission through the mass spectrometer is $\geq 90 \%$, and a resolution of $\left(\frac{m}{\Delta m}\right)$ FWHH of -2000 has been obtained (Fig. 2). The operating temperature of the arc source is $2500^{\circ} \mathrm{C}$ so that elements with high boiling points can be separated. While the performance of the arc source has not yet been optimized, the surface ionization has been tested extensively. The operating principle of the source is as follows: recolls from a thin target transverse two heat shields and pass through an array of capillary tubes into the fonization region where they are s sopped in slanted tantalun strips. They diffuse out of these strips and are surface fonized on the inner wall of the fonization chamber which is made of tungsten operating at $2900^{\circ} \mathrm{C}$. The ion extraction, acceleration and mass analysis have been described previ-
ously. ${ }^{1}$. The purpose of the capil' my array is to act as moleculer flow rest .ction that prevents the gaseous reiction products fro back-diffusing towards the target. Thin Ta windows, which have beer, tried for the same purpose, fail after short periads. Isotopes of the following element have been separated so far: Na, $\mathrm{In}_{\mathrm{n}} \mathrm{Dy}, \mathrm{Ho}_{\mathrm{i}} \mathrm{Er}, \mathrm{Tu}, \mathrm{Fr}$, Ra and Ac . The efficiencies are 12%, for $\mathrm{Fr}, 3 \%$ for AC and a few percent for the rare earth elements. The 3\% efficiency of Ac was ghteved for an isotope with 0.8 sec hal f-1ife (213 Ac); this serves as an illustration for the obtainable separation speed, which is however highly elementdependent. At present four masses can be studied simultaneoulsy in the focal plane if they decay by particle eaission, y spectra of In isotopes have been obtained by removing monoisotopic samples from the separator via a vacuum lock and oft-line r spectroscopy. Hinty percent of all on-line runs were carried out with He beams from the SuperHILAC operating at the rate of 2 pps parsitically to the Bevalac bio-med progran.

Fig. 1. Principal components of the SuperHILAC on-7ine isotope separator with surface fonization source.
(XBL 808-1739)

Fig. 2. natke mass spectrum at the focal plane of the on-line isotope separator obtained with the plasma ion source ($E_{j o n}=20 \mathrm{KeV}$, resolution: m/am $=1140$ FWHM). (XBL 808-1754)

Reference

1. Muclear Science Division Annual Report 19781979, LBL-9711, p. 229.

IMPROVEMENTS TO THE He-JET FED ON-LINE maSS SEPARATOR RAMA

R. F. Parry. M. O. Cable, J. M. Wouters, J. Äystö.* and J. Cerny

Efforts to increase the total efficiency, reliability, and versatility of the Recoil Atom Mass Analyzer (RAMA) have resulted in several improvements. These include a target box redesign, a ntw yersion of our standard ion source that has been developed to increase the overall yield of several nuclides, and finally the addition of a process control computer to monitor and adjust various devices critical to a stable operational environment for RAMA.

The target hox redesign was centered around increasing the reliability, servicing ease, and operating convenience of olir multiple capillary system. ${ }^{1}$ This was accomplished by adding several target/degirader ladders that could be set up for variol: inultiple target-multiple capillary designs iFig. I). Also incorporated was a refrigeration system that supplements tile previous liquid nitrogen vapor cooling that keeps the target box at a constant temperature necessary for optimal cluster formation for the He-jet transport system. The redesign has eliminated a set of rear isolation foils that previously separated the Faraday cup (at vacuum) from the target box (at - 1.5 atm of He). The intention is tc replace the downstream cup with one located at the rear of the pressurized
target box. Further development of the Faraday cup is underway because initial results produces somewhat misleading beam current readings due to secondary electron enission.

Some ion source development was necessary in arder to proceed with an experiment ${ }^{2}$ to measure the decay of ${ }^{36} \mathrm{Ca}$ because the previous source did not produce calcium in sufficient yield. The position of the arc and filament were inverted in the new source, resulting in a longer and smaller diameter plasma compared to the original source. The higher plasma density and longer interaction region resulted in a substantial increase in the ${ }^{36} \mathrm{Ca}$ and ${ }^{37} \mathrm{Ca}$ yields.

The installation of a process control computer, a ModComp MODACS III, has recently been implemented to monitor and adjust various sytern elements on RAMA. Presently the system monitors the field strength of our analyzing magnet through a link with the recently developed CERN NMR, various magnet power Slipplies including the Wien filter and several sextupoles, and the extraction vol tage of the ion source. Dur current development efforts include monitoring the total rata system 5 tatus

Fig. 1. The RAMA target box.
(BBC 803-3384)
(valves, diffusion pumps, $L N$ traps, etc.!. compiete closed loop contral of the analyzing magnet, system control programing for mass changes, calibrations, etc., interactive RAMA control and monitoring, and a CPU to CPU link with the ModComp IV/25 on-line data acquisition computer at the 88 Inch Cyclotron.

Footnote and References

*Present address: University of Jyväskylä,

Dept. of Physics, Nisulankatu-78, Jyväskylä-72, Finland.

1. D. M. Moltz, J. M. Wouters, J. Äystö, M. D. Cable, R. F. Parry, R. D. von Dincklage, and J. Cerny, LBL preprint LBL-9721 (in press).
2. J. Aysto, M. D. Cable, R, F. Parry, J. M. Houters, D. M. Moltz, and J . Cerny, LBL preprint LBL-11193 (in press).

hall probe controlled nuclear magnetic resonance magnetometer

J. M. Nitschke and A. A. Wydler

The precise determination of atomic masses with the SuperHILAC on-line isotope separator depends upon the exact measurement of the fon energy and the magnetic field of the analyzing magnet. The ion energy is determined by the accelerating potential which is measured with a precision voltage divider and a 6-1/2 digit digital volt meter. The magnetic field is measured with a nuclear magnetic resonance (NMR) probe. Like all NMR probes, it has to be retuned manually whenever the magnetic field is changed (except for small variations). This is quite inconvenient in particular when the NMR is linked to a computer that calculates the mass from the NMR frequency and the ton energy. The device described here eliminates any tuning and affords a completely automatic mass determination. Figure 1 shows the principal components: The Hall probe and the RMR probe are located adjacent to each other inside the homogeneous magnetic field section of the anal lijing magnet. The tuning of the NMR probe is affected by the coarse frequency control vol tage. This vol tage is derived from the Hall probe via the Hall
probe amplifier, an active filter, and the summing amplifier Amp. II. An offset is introduced into Amp. II because the control vol tage spans a range from 0 to 7 V while the magnetic field varies fron 3.5 to 10.5 kG . This primary control circuit would be sufficient for tuning the NHR if its frequency were a linear function of the control voltage. But since this is not the case, a correction signal is generated in Amp. I that compares the field measured by the Hall probe with the converted NMR frequency. In addition, an error signal from the NMR and an offset voltage are added. This conbined correction signal ensures perfect tracking between the field measured by the Hall probe and the MMR frequency, which amounts to an automatic tuning precedure. The function of the error signal is to lock the PNR signal to the zero crossing of the magnetic field modulation. For an ion energy of 50 keV , as used in the SuperHILAC on-line isotope separator, the masses that can be determined automatically range from 45 to 380 amu. Other mass ranges can be obtained by changing the Hall probe.

Fig. 1. Block diagram of Hall probe controlled NMR magnetometer.

NON-DESTRUCTIVE BEAM INTENSITY MEASUREMENT

J. M. Nitschke and J. A. Hinkson

For most experiments at heavy ion accelerators it is mandatory that the instantaneous beam intensity, the profile of the macroscopic beam pulse, and the total integrated bean current be measured. The conventional methods are to design the target as a Faraday cup that also stops the beam, or to let the beam transverse the target and catch it in a separate Faraday cup. In the case of an on-line isotope separator neither method is feasible because the beam stops in a target-ion source rombination that is operated at a high voltage potential of several tens of kilovolts. We therefore developed the beam measuring system shown in Fig. 1, which relies on the charge induced by individual microscopic beam bunches as they traverse an electrostatic pickup electrode. A microscopic beam bunch at the SuperHILAC is typically 1 to 3 cm long and has a repetition frequency of 70.289 MHz . As it passes thorough the $5-\mathrm{cm}$ long pick-up electrode it induces a voltage (J) that is proportional to the charge (Q) carried by the bunch and inversely proportional to the capacity
(C) of the electrode, i.e., $\mathrm{l}:=\mathrm{Q} / \mathrm{C}$. This voltage has a fundamental frequency of 70.289 Hilz and several harmonirs depending on the degree of bunching or debunching of the beam. It is amplified in a preamplifier of 20 db gain and 5 MHz bandwidth and mixed down to an IF of 1 MHz . The IF empliffer has a bandwidth of about 100 KHz and a gain of 80 db ; it is followed by a detection circuit, a gated integrator and a sample and hold circuit. The momentary output of the sample and hold circuit is proportional to the integrated beam intensity during one macropulse. The shape of the macropulse is displayed at the output of the detection circuit. An attenuator between the preamplifier and the mixer serves as a range switch. This device has been used successfully in many on-line runs at the SuperHILAC and is generally calibrated by comparing its output to a conventional Faraday cup in order to avoid errors due to the varying microstructure of the beam.

Fig. 1.
(XBL 8C8-1737)

RECENT PROGRESS IN ION SOURCES AND PREACCELERATORS*

David J. Clask

Recent progress in ion sources is reviewed. The types of sources discussed include positive and negative proton and deuteron sources developed for conventional preaccelerators and for neutral beam applications. Positive heavy ion sources for conventional linacs and for induction linacs are included. Negative heavy ion sources are used for tandem electrostatic accelerators. Positive and negative polarized ion sources for protons and deuterons inject cyclotrons, tandems and linacs. Some recent preaccelerator designs are summarized.

Ion source development of many different types of sources has been undertaken by groups throughout the world. Groups working on each type of source generally have good commnication with each other, but it is also valuable to have interaction between research groups working on different sourro types. For example, the development of the multiaperture sources in the ion engine field and for neutral beams offers useful computer methods and extractor designs for high current injectors for particle physics and heavy ion fusion. The techniques develcnnd in experimental plasma physics are also valuad'e for ion sources. The contact ionization sources developed in plasma studies and also for ion engines are useful for negative heavy ion scurces and for high current induction linac injection. Also, the magnetic bucket confinement system for plasmas is finding applications in high currrent sources for neutral beam formation. So we need a healthy interaction oetueen various source people and with those in plasma science.

The listing and description of ion sources is such a large field that it would take a book to do it justice, such as the one by Valyi. 1 Recent reviews have been given by Osher ${ }^{2}$ on many light and heavy ion sources, by Curtis ${ }^{3}$ on duaplasmatrons for proton linacs, by Middleton ${ }^{4}$ on negative heavy ion sources, by clark ${ }^{5}$ and Seliger ${ }^{6}$ on sources for heavy ion fusion, by Haeberli 7 and Glavish 8 on polarized ion sources, and by Kunke? ${ }^{9}$ on neutral beams for fusion. The present review will concentrate on sources developed for particle accelerators and
sources developed for other fields which may have useful applications in particle accelerators. In such a large field of development, only a few typical examples can be chosen to illustrate recent developments in each source area.

The specific types of sources described include duoplasmatrons and duopigatrons for proton linacs, wiltiaperture sources for fusion plasma heating, PIG, ECR, and EBIS sources for heavy ion cyclotrons and linacs, negative ion sources for tinacs, fusion injectors and electrostatic accelerators, and polarized sources.

Footnote and References
*Condensed from LBL-9619.

1. L. Valyi, Atom and ion Sources (Wiley, New York, 1977).
2. J. E. Osher, IEEE Trans. Nuc1. Sci. NS-22, 3, 1626 (1975).
3. C. D. Curtis, Proc. 1976 Proton Linear Accelerator Conf., p. 179, A.E.C.L. Canada (1976).
4. R. Middleton, Revue de Physique Appliquee 12, 101435 (1977).
5. D. J. Clark, IEEE Trans. Nuc]. Sci NS-24, 3, 1064 (1977).
6. D. J. Clark and R. L. Seliger, Proc. Heavy Ion Fusion Workshop, ANL-79-41, p. 127 (1978).
7. W. Haeberli, Proc. Conf, on High Energy Physics with Polarized Beams and Polarized Targets, AIP No. 51, p. 269 (1979).
8. H. F. Glavish, Proc. 5th Conf. on Applications of Small Accelerators, Denton, Texas (1978).
9. H. B. Kunkel, leEE Trans. Nucl. Sci, NS-26, 3, 4166 (1979).

OPERATION OF A HIGH-CURRENT XENON SOURCE*

Warren Chupp, Dave Clark, Robert Richter, John Staples, and Emergy Zajac

The development of heavy ion accelerator driver systems for inertial confinement fusion will also require the development of high current heavy ion sources. High current plasma arc sources have al ready been developed at LBL in connection with neutral beam program. 1 This paper reports the results of adapting the Ehlers type source to produce singly charged xenon ions and subsequently accelerate them to 500 kilovalts.

A multi-aperture Ehlers-type source has been constructed and operated to produce a 60 mA Xe^{+1} beam. A schematic of the multi-aperture xenon source is shown in Fig. 1. The electron current is supplied by a circular array of eight 0.02 inch diameter tungsten filaments connected in parallet. The large hemispherical anode is shaped to reduce the arc potential, favoring Xe^{1+} production. The extraction lens is a 13 hole accel-decel system with typical operation voltages of 25 and 3 kV .

Fig. 1. The multi-aperture xenon source.
(XBL 793-8705)

The low vol tage test stand consists of feir principle components: the xenon source including its accel-decel lens, the pumping system, a 4 inch quadrupole triplet, and a 50 degree analyzing magnet. Two Sargent-Kelch turbonolecular pumps provide a pumping speed of 3000 liters/sec at the ion source, while a diffusion pump and an additional turbomolecular pump provide 1650 liters/sec pumping in the transport system. Diagnostic equipment includes several Faraday cups, a $32-$ wire $x-y$ beam profile monitor, a slotted plate emittance measuring device, and two sets of $x-y$ jaws to detemine the beam size. Extraction and decel lens potentials are supplied by two unregulated supplies capable of delivering 80 kV at 10 mA dc with additional capacity to compensate for beam loading effects. The arc supply can deliver 300 volts at 50 amperes with a puise length of 500 $\mu s e c$, and the paralleled saurce filaments are powered by a 10 volt 150 ampere dc supply. Pulsed gas is supplied to the source by a vol tage-controlled piezo-electric valve. Calculations of beam optics with space charge included showed that even 1 mA of uncompensated space charge would cause a factor of 2 loss in transmission, so the 35 mA beam in the cup was at least 97% neutralized. The fact that the experimental setting of the quadrupoles were within $15-20 \%$ of those calculated without space charge indicated that the space charge is well compensated. For a total acceleration voltage of 22.5 kV , the nomalized emittance area $\varepsilon \mathrm{N}=$ $0.027 \pi \pm 10 \% \mathrm{~cm}-\mathrm{mrad}$, for a current of 29 mA .

After initial tests on the xenon source were completed in the low voltage facility, the xenon source was installed in a 500 kV test terminal. The normalized emittance area is $0.08-0.11 \mathrm{ncm}-$ mrad at 50 keV . The transmitted beam current was 35 mA in this run. Currents of up to 60 INA have been produced, but the emittance at these higher currents has not been measured. The Xe^{+1} charge state was found to be 90% of the total when operating at an arc voltage of 20 V . As is to be expected, higher arc voltages lower the Xe^{+1} percentage through the production of higher charge states.

Footnote and Reference

*Condensed from LBL-8859.

1. W. R. Baker et al., Proceedings of the Symoposium on Ion Sources and Formation of Ion Beams, BNL Conf. Report 1971.

A FAST ACCESS MODULAR TARGET SYSTEM FOR THE IRRADIATION OF ACTINIDE TARGETS WITH HIGH INTENSITY HEAVY-ION BEAMS

K. J. Moody, M. J. Nurmia and G. T. Seaborg

We have designed and built a target system for the irradiation of thin actinide targets with high intensity heavy-ion beams, for use in radiochemical experiments. The system offers quick access to short-lived activities. The modular design allows the target apparatus to be quickly disassemb?ed and rebuilt into other configurations and used for the irradiation of other target types.

Figure 1 is an exploded view of the actinide target facility. It is enclosed in a glove box with a filtered exhaust. The beam is collimated with a graphite collimator of variable diameter, which is clamped to the water-cooled collimator rousing. This housing is electrically isolated front and back by Teflon spacers so the beam current striking the collimator can be measured separately from the target. The bolts holding the system together have a 1 -mm clearance allaround in the collimator housing. Rotational orientation is maintained with pins. The bean next passes through an electron suppressing magnet, a $1.8 \mathrm{mg} / \mathrm{cm}^{2}$ Havar vacuum window, and
the target. The target and the window are both cooled with jets of nitrogen gas with a total flow of 1500 standard liters/hour. Constant pumping on the target chamber with a rotary pump keeps the gas pressure below 100 torr. The beam is stopped in the water-cooled end-piece. The difference in temperature between the incoming and outgoing water is monitored as a measure of the beam power. The infra-red radiation from the target is monitored through a quartz window in the end-piece (not shown in Fig. 1). Infrared and beam power signals are used to limit the beam current. The electrical signal from the end-piece and the gas-cooling jacket are sumned to detemine the bean flux.

Recoiling products are collected on a truncated conical foil, which the bean does not strike, shown in Fig. 1. The end-piece is put in place by pressing it against the last Teflon spacer and giving it a clockwise twist to lock it under the restraining bolts. At the end of an experiment, the system is let up to air and the end-piece is twisted off. In recent

Fig. 1. Target system for the irradiation of actinide targets with high intensity heavy-ion beams.
(XBL 803-503)
experiments the catcher foil was ready for transportaion within 90 seconds of the end of the irradiation.

Two tests of the target system were made with a blank target of 0.01 min thick beryllium. In one test, a beam of $144 \mathrm{MeV} 20 \mathrm{Ne}^{7+}$ at 36 pulses/sec with an average intensity of 3.5 microamperes was delivered to the target. This beam deposits appruximately two watts of heat in the vacuum window. No problems were encountered. Another test was performed with an intense beam of $100 \mathrm{MeV}{ }^{12} \mathrm{C}^{6+}$ at two pulses/
sec. The bean curient was gradually stepped up until the peak current was 80 electrical aicroamperes, at which point the water-cooled bean stop was punctured.

The system has been used in sfeveral irradiations of targets of ${ }^{24} \mathrm{E}_{\mathrm{Cm}}$ and ${ }^{244} \mathrm{Pu}$ with beams of 136 xe and 86 Kr at average intensities of as much as 500 electrical nanoamperes on the ${ }^{248} \mathrm{Cm}$ target and as much as 1.4 microamperes on the ${ }^{44} \mathrm{P}_{\mathrm{u}}$ target. Ro probleas have been encountered.

CALIBRATION OF A HIGH-EFFICIENCY DEUTERON TENSOR POLARIMETER

E. J. Stephenson. * R. J. Holt, ' J. R. Specht, f J. D. Moses, ; M. L. Burman, :

The polarized deuteron beam from the 88 Inch Cyclotron was used to calibrate a high-efficiency polarimeter $s \in \operatorname{Isitive}$ to the ceuteron t_{20} moment. This polarimeter was subsequently used at LAMPF to measure the t20 polarization of deuterons recciling from elastic scattering by 142-MeV positive pions. Both three-body (Fadeev) and isobar doorway models in theipresent form provide a satisfactory description of the cross section for $\pi-d$ elastic scattering. However, the outgoing deuteron polarization is more sensitive to many important details in the calculations. The first measurement of such a polarization was conducted with this polarimeter and reported in Ref. 1. The final result of $t_{20}=-0.23 \pm 0.15$ for $T_{\pi}=140$ MeV and $\theta_{\mathrm{I}}=180^{\circ}$ is in disagreement with all theories.

The polarimeter, shown in Fig. 1, makes use of the ${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}$, reaction below 15 MeV . Near 0°, both the $3 \mathrm{He}(d, p)^{4} \mathrm{He}$ cross section and T_{20} analyzing power are large. To give the polarimeter a large efficiency, a thick target of compressed ${ }^{3} \mathrm{He}(750 \mathrm{psi})$ was used. The large reaction Q-value facilitated the detection of outgoing protons, which were identified and counted with a pair of plastic scintillators. In addition, the incident deuterons were observed in a scintillator as they entered the ${ }^{3} \mathrm{He}$ gas. Thus, the polarimeter provided a direct measure of the efficiency ε, the ratio of proton to deuteron count rates. This efficiency is sensitive to the deuteron t20 moment acccording to

$$
\varepsilon=\epsilon_{0}\left(1+t_{20} T_{20}\right)
$$

where ε_{0} is the efficiency for an unpolarized deuteron beam and T_{20} is the polarimeter analyzing power.

In the π-d elastic scattering experiment, the LAMPF Low Energy Pion channel was used to celiver an energy analyzed pion beam to the target, and to separate the recoil deuterons
fram the pion bean and transport then to the polarimetar. The emerging deuterors were expected te cover a wide area and contain a large range of deuteron energies. So the polarimeter was constructed with a large

Fig. 1. Cross sectional view of the deuteron polarimeter showing the entrance window and particle detectors.
(XBL E011-12741)
entrance window ($81 \mathrm{~cm}^{2}$) and two $x-y$ wire chambers in front to locate the incicent deuteron position and angle.

To provice enough information to anelyze the full distribution of recofl deuterons, the calibration was carried out at a variety of deuteron energies, entrance positions, and angles of incidence. ${ }^{2}$ The cyclotren provided $47-\mathrm{Hey}$ censor polarized ceuterons. The colerizatiun was monftgred upstreas. with the ${ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{d})^{\mathbf{4}} \mathrm{He}$ reaction. ${ }^{3}$ To reduce the intensity, the bean was dispersed by multiple scattering ane recolfimated ahead of the poldrimeter. Rapit spin flip was used to reduce sysfeeatic errors. Aluminum degrade.- foils were used to change the deuteron energy. The calibration consisted of measurements of toth the unpolarized efficiency - O and the tensor analyzing power T20. It was found that the efficiency was insenstive to the position or angle of incidence of the deuteron on the polarineter, while T_{20} rase slowly for positions near the edge of the entrance wincow. Ro sensitivity was observed to other de:ceron moments. The largest sersitivity was to the deuteren energy, as show in Fig. 2. The average efficicncy anc analyzing power for the distribution of ceuterons cbserved at LaR'PF was to $=1.52 \cdot 0.06 \times 10^{-4}$ and $\mathrm{T}_{20}=$ -C.C0 0.05 , making this the most efficient deuteron polarineter available.

In sutsequent experirents, a secnne polarimeter of similar design will be calibrated and used io obtain ar. angular cistribution of the recoil deuteron tyo winnent. Segrentation of the rroton counter should provide additional information on t_{22}. This second polarimeter will ulso be used to otserve the recoil pelar ; zation from electron-deuteron scattering. This experiment should pernit the first separation of the deuteron electric monorole and quadrupole formfacto:s.

We are indebted to R. E. Conzett, R. M. Larimer, P. von Rossen, H. Keiman, and the technical staff at Berkeley for their assistance during the calibration of the polarimeter. This work was performed under the auspices of the u. S. Department of Energy and partially supported by the National Science Founcation.

Footnotes and References

*Present acdress: Indiana University Cyclotren Facility, Bloomington, IN 47405
'Argonne liational Laboratory, Argonne, Il 60439.
ilos Alamos Scientific Laboratory, Los Alamos, Ni 87545.

Fig. 2. Energy cepencence of the polarimeter efficiency ε_{0} and analyzing power T_{20} - The curves are a guice to the eye. The horizontal bar cepicts the central enercy anci caximam energy spread of the recoil deuterons in the - -d experizent.
(XEL E011-12742)

5 University of 111 inois, Chazpaign-Urbena. IL 61820.

1. R. J. Holt et al., Phys. Rev. Lett. 43, 1229 (1979).
2. E. J. Stephenson et al., to be cublished.
3. E. J. Stephenson et al., Phys. Rev. C2I (1980).

THE EFFECTIVE SOLD AHCLE OF A REGTANGULAN COLMATOR FOR THE PASEAGE OF FRACMENTS FROM GREAKU FHOJECTILES

A. C. Shotter.* A. N. Bica and Jowph Cerny

In certain experimencal investigations the outgoing particies from a nuclear reaction can be excited to energies above particle breakup thresholds; these particles can then breakup. usually into two fragments. More often than not, the best way to record such events is to record the coincidence of breakup fragents in separate counters. However it is sometimes experimentally expedient to record the two fragments in the same detector system (e.g.. studying $8_{\text {Be }}$ production by observing its two break-up a's in a single systen). If the detectors system is a $\Delta E \times E$ particle telescope then these events may be identified by thisir special mass identification signals. If such a procedure is followed then it is importart for cross section estiastes to determine the effective solid angle of the collimetor. For a rectangular collimator a general expression has been derived for this effective solid angle.

The breakup kinemitics for the situation considered is show in Fig. 1. Try center-ofmass is denoted by V_{c}. The velocities of the two frag, ents in the center-of-nass frume are V_{1}, v_{2}, their masses m_{1}, m_{2}. The total laboratory energy of the projectile is denoted by E and the center-of-mass energy by t. The collimator is assumed to be of dimensions $2 a x$ ab and is placed a distance of from the target. The radius of the breakup sphere corresponding to $V_{1}\left(\geq V_{2}\right)$ at the collifetor plane is given by

$$
r=V_{1} d / V_{C},
$$

where $r=d\left(\frac{m_{2}}{m^{I}} \cdot \frac{\varepsilon}{E}\right)^{1 / 2}$
If the actual solid angle subtended by the collimator is Ω then

$$
\Omega \text { eff }{ }^{\mp} \Omega^{P(a, b)}
$$

where

$$
\begin{aligned}
& P(a, b)=\frac{1}{\operatorname{ra\theta }}\left\{\beta\left(1+a^{2}\right) \tan ^{-1}\left[\frac{a}{\left(1-a^{2}-B^{2}\right)^{1 / 2}}\right]\right. \\
& +a\left(1+B^{2}\right) \tan ^{-1}\left[\frac{a}{\left(1-a^{2}-\theta^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

$$
E_{L A B}=12\left(m_{1}+m_{2}\right) v_{c}^{2} ; \epsilon=1 / 2 m_{1} v_{1}^{2}+1 / 2 m_{2} v_{2}^{2}
$$

Fig. 1. Kirematic breakup cone.
(XIL 807-1531)

$$
\begin{aligned}
& +\left(1-a^{2}-B^{2}\right)^{1 / 2}\left(\frac{a^{2}+\beta^{2}+2}{3}\right) \\
& -2 a \tan ^{-1}\left[\frac{a s}{\left(1-a^{2}-B^{2}\right)^{1 / 2}}\right]-\left(1-a^{2}\right)^{1 / 2} \frac{2+a^{2}}{3} \\
& -\left(1-s^{2}\right)^{1 / 2}\left(\frac{2+a^{2}}{3}\right)-a \sin ^{-1}(a)- \\
& \text { B } \left.\sin ^{-1} \theta+2 / 3\right\} \\
& \text { where } \alpha=(a / r), \theta=(b / r), \text { and provided } r^{2} \geq
\end{aligned}
$$ $a^{2}+b^{2}$.

As check to the accuracy of this expression, numerical calculations were also undertaken. These calculations simiated breakup events and tested whether any particular pair of breakup fragents passed through the colliantor. It was assumed that the breakup fragments were isotropic with respect to the rest frame of the decaying projectile. Typically, for eich P(a,b) calculated- 10^{6} breakup events were sapled. In Fig. 2 a comparison between the results from the tho methods is shom for different colliator configurations.

Fig. 2. The analytical function $P(a, b)$ for a normalized breakyp sphere.
(XEL 807-1532)

Footnote

En leave from the Physics Departiment, University of Edinburgh, Edinburgh EH93uZ, United Kingdow.

TIME-WALK CHPRACTERISTICS OF AN IMPROVED CONSTANT FRACTION DISCRIMINATOR

$G J$ Worniak, L W Archardso and H R Rarer*

Many interesting aspects af deep-inelastic reactions can be investigated by measuring both the atomic :umber and mass of the reaction products. Very thin silicon detectors with exceptional uniformity ($\Delta T / T<1 \approx$) are now comercially available which allow the identification of atomic numbers up to $Z=40$. Furthermore, these detectore have good timing properties such that when coupled to fast electronics, signal rise times of e 2 ns and time resolutions of < 100 ps have been achieved. In order to retain this time resolution over a wide range of input signal amplitudes, the contribution form the electronics should bic made sufficiently small so that off-line corrections to the data are not necessary. Commercial constant fraction discriminators (CFD) are available which have a time walk of less than 100 ps for large dynamic ranges, however, we would like to report here on a simple and much less costly alternative, which is the modification of a standard LBL-CFO 121 $\times 1031 \mathrm{P}-1)$ to make it competitive with the best commercial CFDs.

To neasure the time walk of a CFO, a fixed amplitude signal fror a pulser with a fast rise time (-1.0 ns) was fed into a 50Ω splitter. One of the cutput signals was kept constant in amplitude for all the ceasurements and was connected directly to a reference CFD. The other cutput of the splitter was cornected to a precisien attenuator (a Wandel a lint ternamn type RT-1 specially selected for low alk, i.e., < 30 ps which fed directly the seconr, CFO with a clipping tice of 1 A biased time-toamplitude converter (TAi) was started by the reference and stopped with the deiayed output signal froc tie second CFD. The tipe walk of the second CFD was measured by varying the attenuation factor and zeasuring the cientroid of the TAC peak. The tice scale was calibrated with a precision delay line ($0.50 \pm 0.01 \mathrm{~ns})$. For such a exeasurement it is essential that the different attenuator settings do not change the signal rise time or pulse shape.

In Fig. 1 the measured time walk is plotted
versus the input signal amplitude. For the unmodified LBL-CFD, the measured time walk (triangles.) is 500 ps over an input vol tage range of 0.1 to 2.5 Y . For the madified CFD, the time walk (circles) is substantially reduced to less than 30 ps over the same dynamic range. These results indicate that by optimizing the leading edge [LE] and zero-crossing [2C] discriminator settings, the electronic contribution to the time resolution can be made sufficiently small such that in many situations time-walk corrections are unnecessary. Furthermore, this modification, which consists of replacing two integrated circuits (ICs) in the original circuitl with faster IC's, (i.e., replace the an 685 from AND ${ }^{2}$ by an SP 9685 from Plessey ${ }^{3}$) is relatively easy and less expensive than buying a new low walk CFD.

Fig. 1. Neasured time walk versus input signal amplitude for the unmadified (triangles) and modified (circies) CFD.
(XBL 808-1697)

In Fig. 2(a) the dependence of the walk on the LE discrimine tor threshold is show. The observed time walk is a slowly varying function of the input signal amplitude above 100 mY . Below 100 mV, the time walk increases rapidly with decreasing signal amplitude and is quite sensitive to the LE discriminator setting. For a LE threshold of 5 mV (sc) id cervel, the axio mum time walk is $=100 \mathrm{ps}$ for input signals varying from 50 mV to 500 mV . By increasing the LE discriminator threshold, the time walk can be reduced further if the low amplitude data can be excluded.

The dependence of the time walk on the ZC discriminator setting is shown in Fig. 2(b). Slightly better walk characteristics are observed (dashed curve) if the ZC discriminator threshold is offset $(<0 \mathrm{mv})$ to trigger in the lower half of the noise. Also, shown in Fig. 2(b) is the FWHM of the TAC peak idotted curve) as a function of the input signal amplitude. This FWHN is constant (-20 ps) for input voltages above 0.3 V . Below 0.3 V the FHHM
increases from 20 to 40 ps , as the noise begins to dominate the time resolution.

In sumary, we have shown that an easy and inexpensive modification to a standard LBL-CFD substantially ieproded its time-malk characteristics. Furthemore, over the input signal amplitude range of 50 EY to 2 V , the time walk will be less than ≤ 100 ps regardless of the ZC discriminator setting if the LE threshold is sufficiently $10 \mathrm{~m}(-10 \mathrm{tr})$.

Fig. 2. Keasured time walk (a) for several LE discriminator settings and (b) for several ZC discriminator settings. The electronic time resulution (FWHM) is also shown (Gash-dot curve: $L E=5 \mathrm{mV}, 7 C=0 \mathrm{mV})$.

Footnote and References

*Permanent address: University of Marburg, Hest Germany.

1. M. R. Maier and D. A. Landis, Nuc1. Inst. and Meth. 117, (1974) 245.
2. Advanced Micro Devices, Sunnyvale, CA 94086.
3. Plessey Semiconductors, Irvine, CA 92714.

B. BEVALAC

Streamer chamber measurements at the bevalac

J. P. Brannigan, A. Dacal" J. Geaga, J. W. Hartis. I J. Miller, H. G. Pugh. R. E. Renfordt, ${ }^{\text {t }}$ L. J. Rosenberg, A. Sandoval, ${ }^{1}$ L. S. Schroeder, H. E. Stelzer, ${ }^{\dagger}$ R. Stock, ${ }^{\text {t }}$
H. Strobele, ${ }^{1}$ and K. L. Wolf'

In reactions of heavy ions at relativistic energies, the multiplicity of secondary particles can be very large. For example in a collision between $\mathrm{Ar}+\mathrm{KC1}, 60$ charged particles have been observed, exceeding the number of protons in the target and projectile combined. In order to extract information about possible reaction mechanisms it is desirable to detect as many of these darticles as possible.

A triggered streamer chamber offers the possibility of detecting charged particies with 100% efficiency in a 4π geonetry, either for an unbiased sample ef events or for events selected according to some criterion imposed by the trigger conditions. The LBL streamer chigmber has a sensitive volume of $126 \times 59 \times 40 \mathrm{~cm}^{3}$ in a 1.32 tesla field. The primary ionization in the $90 \% \mathrm{Ne}-10 \%$ He gas mixture at S.T.P. is amplified by a factor of 10^{8} by a 10 ns 700 kV pulse applied across the chamber subsequent to detection of an event by the trigger detectors. The streamers produced along each track are photographed on high-speed 35 mm film in threeview geometry. The chamber can be triggered 3 to 4 times per second, limited by the film advance mechanism and the charging time of the Marx generator. The menory time of the streamer chamber is about $2 \mu \mathrm{~s}$.

Basic trigger modes for the streamer chamber are derived from small scintillators placed along the beam line, in particular an upstream scintillator just before the target and a downstream scintillator some distance after the target along the beam trajectory. in the "inelastic" trigger mode the pulse height from the downstream scintillator is required to differ from the pulse height for beam particles by sufficient to indicate that an interaction has occurred in the target. In the "central" trigger mode the downstream scintillator is required to have essentially no pulse, indicating that the projectile has been destroyed by the interaction. Studies of stream chamber pictures in the two moces indicate that the central triggers for Ar + KCl collisions correspond closely to the selection of head-on nuclear collisions. Other trigger modes are possible with the existing set up, and a hodoscope array presents the possibility of tagging each event with scintillator pulse beights to provide additional information for particle icientification.

The pictures are scanned and measured manually. Information obtained directly from the scanning includes results on the number of negative pions produced percollision as a function

Table 1.

Projectile	Target	Beam (Gev/A)	Inelastic	$\frac{\text { Trigger }}{\text { Central }}$	Other
Ar	KCl	$\begin{aligned} & 0.4-1.82 \\ & (8 \text { energies) } \end{aligned}$	x	x	
	Bal_{2}	0.8	x	x	
	$\mathrm{Pb}_{3} \mathrm{O}_{4}$	0.4, 0.8		x	
${ }^{4} \mathrm{He}$	KC1	1.0, 1.8	x		
	Bal_{2}	1.0, 1.8	x		
p	KC1	2.1	x		backward
	BaI_{2}	2.1	x		backward
	$\mathrm{Pb}_{3} \mathrm{O}_{4}$	2.1	x		buckward
${ }^{12} \mathrm{C}$	BaI_{2}	0.2			test run

verted gammas, or lambda charged decays. After measurement and reconstruction of the events in three dinensions, the particles' monenta and emission angles are extracted. The main characteristics of the reconstruction are: 41 solid angle and 100% efficiency for charged particles, lower threshold of less than 1 MeV for protons and vertex position resolution of - 1 mon, $\Delta \mathrm{p} / \mathrm{p}$ < 5\%; angular resolution < 1° and 1 inited charge resolution.

The exposures listed in Table 1 have been made and are in the process of analysis: of bombarding energy, and on the number of "vees" produced corresponding to kaons, con-

The following experiments have been approved for future running:

- Study of pion and hyperon production in equal mass systems,
- In'zmediate energy (100-200 $\mathrm{MeV} / \mathrm{A})$ heavy ion reaction mechanisms, and
- Test of the streamer chamber capabilities for U beams.
These experiments are coi?zborations between the
basic LBL/GSI group and one or more from Argonne Hational Laboratory, University of Arizona, University of Marburg, and University of Hexico. The University of California at Riverside (R. T. Poe et al.) also has a progran using the streamer chamber.

Some trodifications and improvements to the systen that are in progress or under investigation are improvements in the gas mixture, stab'lization of the Marx generator, use of image intensifiers, construction of external hodoscope and trigger arrays, seniautonatic reconstruction, and use of CCD careras and inage digitization.

Footnotes

*lnstituto de Fisica, UNAM, Hexico
IGSI, Darmstadt, West Gernany
|Universty of Piarburg, Hest Germany
EHow at Argonne Hational Laboratory, Argonne, IL 60440

A GLOW MEMORY CHAMBER FOR USE IN THE MEASUREMENT OF high multiplicity events*

M. A. Elola, T. A. Mulera, V Perez-Mendez, and P E. Wiedenbeck

One characteristic of relativistic heavy ion collisions is the high mu\}tiplicity $\mathbf{~} 50-100$ secondary particies) of a "typical" event. Information regarding the multiplicity, both its magnitude and any directional information, is desirable as an indicator of the violence of the collision and in the study of such phenomena as jet formation, hydrodynamic splash or other forms of collective behavior. We have been working to develop and build a detector capable of providing such information for use as a target area detector in the Heavy Ion Spectrometer System (HISS) at the Bevalac.

Conventional wire chamber readout techniques are plagued by $x-y$ correlation anbiguities when more than one particle is registered in the chamber. In fact, to completely resolve all such ambiguities for n particles requires the reading out of $n+1$ separate coordinates. Clearly, resolution of the ambiguities involved in an event of multiplicity, say 50, by this method would be prohibitively expensive. The reading out of each separate $x-y$ coordinate in the detector via, for example, charged coupled devices is likewise an expensive solution to the problem. In our scheme, the $x-y$ ambiguities are resol ved in an inexpelsive fashion by employing the detector itself as a correlated event menory, a method first suggested by Reumana and Sherrard. 1

The passage of a charged particle tirough our apparatus is used to ignite a glow discharge
at the point of passage. This ignition may be achieved through the use of pulsed spark chamber technfques or by some less catactysmic avalanche method. Once ignited, the fiow discharge may maintained by a de potential of several hundred volts for an indefinite period of time. This "mectorization" of the position of the event allows the $x-y$ correlation ambiguity to be resolved as follows. Each wire of one coordinate, say x, which registers a hit is successively interrogated by the superposition of a voltage pulse over the dc giow maintenance voltage. The wires of the y-coordinate are then examined for the transmissions of this pulse through the conductive glows. In this way, the $x-y$ positions of the glows, and thus of the hits, are determined in an unambiguous way.

A large effort has been expended in szudying the glow discharge mechaniso and in prototyping glow discharge menory gaps. A "honeycomb" cell structure has been developed that gives good glow stability, multiple hit efficiency, and that prevents the ignition of spurious glows in cells neighboring the location of the desired glow. Development of a readout system to locate these glows is being carried out with the help of the Plysics Instrument Systems Group.
lgnition of glow discharges may be achieved by placing a conventional spark chamber gap atop the glow memory gap. Residual ions and ultraviolet light from the spark serve to ignite a glow discharge in the cell nearest the spark.

Br=ause of the traditional problens of long dead times and high radio frequency noise levels associated with the use of spark chambers, alternative ignition uethods are befing investigated. Tro such methods are ignition by ultraviotet light produced in gas scintllations, and ignition by the production and multiplication of electron fon pairs in an avalanche less cataclysmic than a spark discharge, i.e., an avalanche taking place in the proportional or Geiger regime.

The final version of the mitiplicity detecto: will surround the HISS target and will have an active area subtending as much of 4 r
steradians as is compatible with construction requi reeents.

Footnote and Reference

©Condensed fron an LBL report in preparation and
a paper subritted to the International
Conference on Nuclear Physics, Berkeley (1980).

1. M. J. Heumann and T. H. Sherrard, IEEE

NS-12, 379 (1965). An elaboration on this idea may be found in H. Kobayakawa and T. Yamaki, Int. Conf. on Instrumentation for High Energy Physics, Frascati (1973).

RESPONSE OF Nal:TI TO RELATIVISTIC Ne. Ar. AND Fe

M. H. Satamon and S. P. Ahten*

An exposure of a $1 / 2$ inch thick conmercial Harshaw NaI:Th crystal scintillater to relativistic ${ }^{20} \mathrm{Ne},{ }^{40} \mathrm{Ar}$, and ${ }^{56} \mathrm{Fe}$ ions was performed at the Bevalac. The fixed $600 \mathrm{MeV} / \mathrm{amu}$ beains were nearly continuously degradabie in energy by an extremely precise, automated $\mathbf{P b}$ absorberl upstream of the crystal. A silicon detector midstream of the absorber and crystal discriminated against ions that had undergone charge reducing nuclear interactions in the absorber. The $\mathrm{NaI}: \mathrm{Tl}$ crystal's sole transparent face emitted into the interior of a light diffusion box, which by randomizing the light direction before PRT (EMI98170) detection effectively eliminated variation in spatial response. Calibration between runs was maintained by a 241 Am-doped NaI:T1 erystal permanently affixed to the light diffusion box; temperature control was maintained to minimize themal crystal response variation ($\leqslant 0.4 \pi$).

The scintillation efficiencies dl./dc $/ \varepsilon=$ total kinetic energy) were determined by differentiation of a fitted function $L(E)$, the light output of an ion of energy e entering an infinitely trick crystal, to the data $\Delta L=$ [L(ein)-L(equt)] versus $\varepsilon_{\text {in. }}$. The resuiting fit is excellent, as seen in the inset in Fig. 1 (the cusp corresponds to maximum energy deposition in the crystal, as the ion stops just at the exit surfacel. The efficiencies thus detemined are shown in the figure, aiong with the scintillation efficiency of cosmic ray secondary (atmospheric) muons (minially ionizing) measured separately with the same crystal-light diffusion box configuration. Thirty radiation lengths of Pb eliminated contaminating shower electrons, and a widely separated, triple detector coincidence requirement eliminated both noise and non-vertical muons.

The rough error bars on the ion data, shown at both ends of the curves, are based on magnitudes of variations resulting in dL/de from
insertion of artifical nomally distributed errors on top of the raw data which gives an estimate of dl/de inaccuracy, as well as on estimated inter-run calibration errors. The muon error is based on the estimated error in peak assignment in the Landau distribution collested during the muon exposure.

Fig. 1.
(XBL 808-1701)

Compared to organic scintillators, Hal:Tl evidences a remarkable lack of dependence on track structure (radial variation of energy deposition), evidenced by the fact that the ion's dL/de nearly falls on a universal scintillation efficiency curve. The gross
structure of this curve is similar to that observed for low energy data $l e^{-}, p, a, 2<Z$ < 101.2,3

An empirical curve may be fit to the efficiency data that is based on mixed mono- and bi-molecular reactions occurring between uncorrelated electrons and holes and betreen excitons. Postulating a certain exciton production fraction, the kinetics may assume the form $\mathrm{dr} / \mathrm{dt}$ $=-k_{1} n-k_{2} n^{2}$, where the first tem contributes to radiation (quenching) for excitons (electrons) and the second to quenching (radiation) for excitons (electrons). The solution has the form $d L / d x \propto(1-\lambda)+\frac{1}{S}\left[a / n\left(1+\frac{\lambda}{S} \$\right)-\right.$
 $\lambda=$ excitor fraction. The fit shown (dashed line) is for $\lambda=0.75, a=275, b=1.0$, with nomalization constant 0.4.33.

A1though the physical significance of the kinetic equation is lipited, the fit it affords can te of use to those needing Pal:Il response information in heavy jon expericents or heavy element cosmic ray experiments.

Footnote and References

*Also at Space Sciences Laboratory.

1. This automated absorber can be made available to other oxperimentalists at LBL. Please contact the authors.
2. R. B. Murray and A. Meyer, Phys. Rev. 122, 815 11961).
3. J. B. Birks, The Theory and Practice of Scintillation Countiry, (Perganen Press, 1964).

A RANGE-ENERGY PROGRAM FOR RELATIVISTIC HEAVY IONS IN THE REGION $1<E<3000$ MeV/amu*

M. H. Salamon

A computer progrem is now available on PSS at LBL's Computer Center that calculates stopping power ($\mathrm{dE} / \mathrm{dx}$), range, or energy using the prescription of Ahlenl, 2 which is accurate to 4\% in the regime of high charge 2 and relativistic energies.

Starting with the well known Bethe formula for stopping power, derived quantur mechanically in the first Born approximation $((2 a / \theta) \ll 1)$, several correction terms are added which maintain accuracy as 7 . increases past the point of validity of the Bethe expression:
(1) the Bloch correction bridges the gap between the quantum ($\mathrm{Za}_{\mathrm{a}} / \mathrm{B} \ll 1$) Bethe and classical (Za/s>>1) Bohr stopping fowers, giving the Bet,he-Bloch formula:
(2) the Mott correction term is based on expansions of the Mott cross-section which contribute close collision stopping power terms up to Z^{7};
(3) the Z^{3} low velacity polarization correction terms adjust for failure of the impulse approximation made in the Bethe-Bloch treatment;
(4) the shell effect term corrects for failure of certain assumptions in stopping power derivations when the ion velocity drops below any of the atomic electronic shell velocities;
(5) the standard expression for the density effect is included;
(6) the effective charge of the projectile ion is calculated to account for electron pickup.

Above $8 \mathrm{HeV} / \mathrm{amu}$, range-energy tables are calculated by integration for $d E / d x$. For $E<B$ $\mathrm{MeV} / \mathrm{amu}$, the expressions for $\mathrm{dE} / \mathrm{dx}$ becomes unreliable and enirical range-energy relations ${ }^{3}$ are relied on.

The full report discusses use of the program, and the program itself is an appendix. Copies of the program may be abtained by executing the control card

LIBCOPY, EXTUSER, X, IHTRO, RDEDX, RRANGE, RNERGY.
and DISPOSE-ing the file x as desired.
Footnote and References
*Condensed from LBL-10446 \{1980\}.

1. S. P. Ahlen, Phys. Rer. Al7, 1236 (1978).
2. S. P. Ahlen, Rev. Mod. Phys. 52, 121 (1980).
3. W. H. Barkas and M. J. Berger, in Studies of Penetration of Charged Particle in Matter, NatT. Acad. Sci. Publ. 1133 (1964).

MEASUREMENT OF HIGHER ORDER CORRECTIONS TO STOPPING POWER FOR RELATIVISTIC Ne, Ar, AND Fe Bams*

M. H. Salamon, S. P. Ahlen, ' K. C. Crebbin, and G. Tarle'

Abstract

Measurements of range of $600 \mathrm{MeV} / \mathrm{am} \mathrm{N}^{20} \mathrm{Ne}$, ${ }^{40} \mathrm{Ar}$, and ${ }^{56 \mathrm{Fe}}$ in absorbers of Al, Cu, and Pb have been made to test the accuracy of the higher order Hott, Bloch, and polarization correction terms 1,2 to the Bethe expression of stopping power.

After extraction from the accelerator and passage through a series of accurately known upstream materials, the jons mere slowed to nearly stopping in each of the three primary absorbers ($\mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$); the residual range was traversed in a stack of a few hundred thin ($0.03 \mathrm{~g} / \mathrm{cm}^{2}$) sheets of Lexan polycarbonate plastic. Subsequent chemical etching exposed stopping tracks, yielding a mean ion range. By integrating $\mathrm{dE} / \mathrm{dx}$ through the ccomplete list of stopping matter, initial (extraction) energies were calculated. These computed energies varied, depending upon which correction terms mentioned above were or were not included in the expression for $\mathrm{dE} / \mathrm{dx}$. To be compared to these calculated energies are the actual beam energies, which were determined by using the Bevalac itself as a time-of-flight device, ${ }^{3}$ providing unparalled beam energy accuracy.

Figure 1 summarizes the results, where three sets of data, one for each absorber, are shown. The ordinate gives the percentage deviation of the integrated energies from the actual measured beam energies which determine the ordinate zero; the measured beam energy errors are represented by horizontal dashed lines. Stown are integrated energies calculated using a $d E / d x$ expression with no correction terms added (0), with all but the Bloch term added (a), and with all the expected correction terms added (a). Systematic and random thickness uncertainties in the matter list contribute to the error bar. The larger e'ror bar also includes a systematic uncertainty in the $I_{a d j}$ of the absorber.

The failure of the Bethe expression at high Z is unequivocal. Although the fully corrected $d E / d x$ (Δ) is within errors, the fact that the absence of the Bloch term (D) provides nearly as good a fit suggests that a relativistic calculation of the Bloch term (presentiy a non-relativistic calculation) might yield a correction of smaller magnitude.

As $Z \rightarrow 0$, one demands that higher order corrections in Z vanish with respect to the

Fig. 1. Deviations of calculated (fntegrated) energies determined by time-of-flight methods versus ion charge, for three absorbers (A1, Cu, Pbl.
(XBL 806-10380)

Bethe expression, i.e., all the integrated energy points should coverge to $\Delta E / E=0.0$ (within errors). Extrapolation confirms this, reinforcing confidence in the independent calculation of the actual beam energies.

Footnotes and References

*Condensed fror paper subaitted to Phys. Rev. Lett.
\dagger Also at Space Sciences Lz.boratory

1. S. P. Ahlen, Phys. Rev. AI7, 1236 (1978).
2. S. P. Ahlen, Rev. Mod. Phys. 52, 121 (1980).
3. K. C. Crebbin, LBL-1 1669 (1980).
4. M. H. Salamon, LBL-10446 (1980).

BEVALAC DATA ACQUISTIOM PROJECT

Chuck RtcPatiand*

The Bevalac software effort is nearing the end of its second year. This effort has produced a software system (QDA-MUTI) that is currently installed and in use on six DEC PDP-íl's at the Bevatron.

Experimental softmare needs at the Bevatron vary greatly. To be generally csefal, the system must be adsptaite to experinents ranging from a weekend effort at an exicting experinent facility tu a year-long developnerit of a new beam line or detector systen. To this end the system attempted to meet several design gaals:

1) To provide a common "core" of data acquisition programs for all PDP-1l eachines in use at the Bevatron,
2) To structure the system to easily accommodate user-written. experinent specific code, and
3) To allow (i.e., require) experimenters to specify CAMAC data sources and FCHA codes to be used in reading them.

Ite degree to anich experimenters are required to program this system varies. Hany experimenters need specify nothing core than the commands required to access the proper CAMAC modules. The software for expericents of this sort can be assembled in a few hours. For these experiments, QDA-MULTI is almost a ready-to-run system.

Host Bevalac experinents, hisever, require the addition of experiment-specific prugraws. These consist of user-written analysis rountines within molti, speciall ReD data acquisition code, or user-written displays. In ane instance. experiurental needs have requiret the addition of several parallel analysis tasks that display their results thraugh WillT: For these applications, (DA-MiCIT] should be vieved as a softrare structure whist. Eas been only part'ally filled in. The "etpty" routines are there :accept experinent-specific code.

Experience at the Eevetrun shows this philosophy of experimenter-software involvement to the realistic one. Futare plans for 1981 include greater use of disk spopling. enhancswent to MILTI, increased histrogran storage, and addition ducumentation to aid in user-mritten software.

> Footnote and Sibl iograshy
-Space Sciences Laboratory, University of Californin, Bereley, Ca G4720

1. Ferailab MILTI User Gude, Fervilab Pu77.4, Sept. 1, 1978.
c. E. Harvey, "Dat acquisition using PDP-11 and HBD branch drive at LBL," IEEE Trans. or Nucl. Scit. RS-26, 4633 (1979).

TRAJECTORY RECONSTRUCTION AT HISS

Douglas D 「rite

As part of the HISS facility, we are providing a complete method for trajectory reconstruction. This method requires the creation of reconstruction software and magnet mapping hardware.

The hardware portion consists of a threecomponent magnetic field mapper, a microprocessorbuasd controller and interface to the VAX. The mapper will have three Hall probes mounted mutually orthogonal to one another, one for each field componant. Each Hall probe signal will be digitized and passed to the vax via CAMAC and a PDP 11/34. The Hall probes will be aoved sequentially through a sufficient number of three-space positions to define the winole magnetic field to an accuracy of - : - $3 x$ 10^{-4} of isimax. Probes and amplifiers of this accuracy are readily available. The probes will most likely require some form of temper-
ature stabilization $4-1-10^{\circ} \mathrm{C}$). Electric wotors under control of the aicroprocessor will cove the probes to the required positions. The prabe positions will be consinuously sensed by linsar encoders anc/or a co-bination of shaft and linear encoders, and will be digitized and read irto the contruller. Software in the controller will enasie ceasuresent and buffe-ing of - 236 points of data. Software for an Eicire field rap will resice in either the 11/. or the Vax. Complete fieid caps will reside on a VAX disk file.

Since the HISS facility alreacty has an ward systen, the drift in the nomalization of th: field can be monitored. Also, because tre required coordinates are generated in the controller, arrers due to kncm cechanical distortions c an be corrected for, e.g., gravitational "sag" and thercal expansion and cortraction.

The field will be ceasured on a un* form grid of points that lie on the surface if rectansular volume. The field at interior poonts will be obtained by solving Laplace's equation with the measured beundary canditions. Exteric: points will be obtained by Tay"or"s serfes extrapolation.

There will be approxitateay 40,000 field measurements mace, taking each approfmately second. Thus. 10 hours will se reguired to measure one rap. If the entire volume were to be measured (instead of reconstructed), mearlly a week would be required. Thus, reconstriction greatly reduces the capping tire.

Once the field is recoistructed a darge sairple of trajectories (- 10.00 Q) will r - fremnd by numerical integration. Trajectery recomsifuttion will then consist. essentipily, of interfisation between these sareple irafectories. Our metnad of us'i:g Chebychey polynomials will closely parallel d fast and

Fo catar tolm ffelld end trajectory recen-
 rodifficttitins teffere they are reacy for ginsrall

 merkinfical distertimens in the magettic ithelt
 errois. Thetis is maw betieg dimin.

In chatiticn 40 trese efforts. agtrcral

 presentalters in mow-Dut 0959.

 te reedy dust septemter 1 . 1330.

hiss Detector sisstems

The first five experiments at the HisS facility will be perforced between Rarch and June of 1981. These Phase I experiments require analysis of multip'? particles frce each event to investigate the energy transfer spectrun, the production of very high transverse encentur light and heavy fragrents, the role of electremagnetic excitation in nuclear frageneation. and the size of the interaction region in relativistic nucleus-nucleus reactions. To accomplish this progran required collaberaciom among all the experionental groups to design and construct a set of detectors comen to all experiments that could be easily raconfigured .3 meet the specific needs of each ceasuregent. The system must measure the cherge, nass and momentum of up to 10 frageerits free each interaction

The Fhase I detector systen consists of threse major subsystems. Jo ceasure rigidity $\{=$ P/2) we use the large (1 $\times 2$ a) drift chamers based on our 1555-3 satellite drift chamer designl in conjunction with the HISS magnetic field. To measi e charge Z we will use a $1 \times I$ $\times 0.5 \mathrm{~m}$ xenon-filled ionization chaster, and sample the ionization along the frascents' path up to 50 times. ${ }^{2}$ To measure velocity we use both a scintillator array 130 pieces, each $200 \times$ $10 \times 2 \mathrm{~cm}$) for time of flight and a silica aerngel Cerenkov hodoscope. ${ }^{3}$ In addition we will employ two position sensitive perallel plate avalanche chambers to define the incident particle vectors. With the systen configured as shown in Fig. i we expect to attain charge resolution of 0.2 e at $Z=26$, mass resolution
 of a If Mevity for each fregment.

This system fis getreniled for complettion in Noucmber 5500 . Fatrication of the drift chenter parts at UCE is alnost camplete. with ore of Whe large chanters resefy fce the winding 3 hsp . Construition af tive xemtn tonnzatien chamier has besul at U50, atd fest at the ea Imth Cytouron

Mrse in cerector samiv

Fig. 1.
are planned for the fall. The tife of f:ight array, with a time resoluticn of 70 psec Fan attained on the first sample in a 1.88 GeV/ nucleon fe beam, is being fabricated in Japan.

Footnote and References
*Space Scfences Laboratory. Berkeley, CA 94720

University of California, Los Angeles, CA 90024

1. D. E. Greiner, JF. S. Bieser. and H. H. Heckean, Proc. IEEE on Geosci. Elec. CE-16. 163 (1976).
2. M. Aderholz et al.. MIN 118, 419 (1974).
3. M. Cantin et al.. vIM 118 (1976).

PLASTIC WALL SCMTK $\operatorname{LatOR~DETECTOR~ARMAY*~}$

A Baden. H. H. Gutbord. M. Marer, J. Peter,' H. G. R.iter. H Stelrex.

A I. Warwill, F. Wed. and H. Wiemant ${ }^{-1}$

An array of plastic scintillators, called the "plastic wall," has beer developed for use in heavy ion reaction studies at the Bevelac. This 150 -element, time. of-flight det ector, shown in Fig. 1, was designed for use with the 4 t solid-arole plastic ball system. ${ }^{1}$ it will cover the mist forwarc stattering cone 10° to 9°).

The plastic wall covers an area of 192×192 cm , and consists of scintillators arranged in two areas: the irner ared and the outer area. The inner area is a square of 48×48 ite con-

Fig. 1. Outer portion of the plastic wall scintillator detector array.
(CBB 799-12302)
sisting of 36 incividual counters each $\mathrm{cm}^{\mathrm{cm}}$ thick. At a distance if 6 from the target in the plastic ball, this area covers an angular region of about 0° to 2.5^{*}. The outer region extends be 9° and censists of 60 pe'rs of pesition-sensitive scintillation tetectors. The distance of 6 m corresponds to flight times varying fron 24 nsec at $809 \mathrm{MeV} / \mathrm{n}$ to $E S$ nsec at $50 \mathrm{Mev} / \mathrm{n}$. The widtr of the scintillators of 8 ce results in an angular resolution of 0.75°.

The purpose of the imer region of the plastic wall is th prowice the information necessary to form on event trigger for both the plastic sall and the wall. This is achieved by cooparing the imer wall signals with these of an upstrem bear counter. The fragerits are ifentified by their tise of flight and their pulse height in the scintillators. The trigger car. thus be definec by selections on fragnent velocity and/or or nuclear charge in the $3 E$ counters. A fragnentation can lead zo several fragmeras hitting the inner regions, so a subd: vision into 36 indivicual detectors allows us to identify the degree of fragmentation.

The purpose of the wall's outer region is to detect the reaction products or prejectile fragments at angles tetweer 2^{-}and 9° with suff $i-$ cient angular resolution and multipartic'e detection capability. It is mide of $\mathbf{6 0}$ position-sensitive double modules. ench consistir.s of two scintillator rods with diensions of $72 \times \mathrm{B} \times 4 \mathrm{c}$ thick. Each scintillator of the double module is viewed by one phatomitiplier at different ends ifig. 2). The time difference between the two photodultiplier signals give the longitudinal position of the particle in the couble module; the mean time gives the flight time fram the upstrea detector.

For high-energy charged particles the $c \pm / \delta x$ in one or both scintillators combine: with the tive of flight allows us to detect 2 and E / A. For energies helow $122 \mathrm{emeV} / \mathrm{n}$, particles are stopped in the wall. Trus the velocity measurement and the ε information determines the mass of the stopped particles. The double coincident cE/dx informe tion for particles above $80 \mathrm{meV} / \mathrm{n}$, furthermore, allows one to discriainate against
neutron and gawna response in the scintillators， which is rather important because as many neu－ trons as protons are expected for light projec－ tiles at forward angles．

The outer region of the wall has already been used in an experiment to study siow target

TOF－FLASTKC WAL

Fig．2．Schematic view of scinillator elements from the plastic kall array．（KBL 7910－12432）
fragments in coincidence witr．fast charge particles． 2 Bem velocity and slower $I Z=1$ and 2l particles mere identified in the 2.5° to 9° cone with this detector using warfety of projectiles（ $\mathrm{P}, \mathrm{He}, \mathrm{C}$ and Me，ranging in energy from 250 tc 4900 GeY／n）．The tiat resolution obtained between scintiliaters in the aifirs mas better than 350 psec（Fvan），thus providing a longitudinal position resolution better than the 8 cm width of the scintillators．Preliarinary scars of the data have shom an in－plane thhancement of 1 ight particies observed in the ull？correlated with hewy slow fragments at large angles．Also，ultiple hits in the wall tend to be localized rather than suread sye－ metrically about the bere axis．

Footnotes and leferences

＊Collabor：tion of Cesellschaft fur Scherianenforuschung，Daristadt and the University of Marturg，Hest Gernany，and Lewrence Berteley Laborstory．
1Visfキだ from I．P．M． 91406 Drgay，France．
1．A．aaden et it．，in this annual repart．
2．H．H．Gutbrod et al．．in this annal repor：－

CHIARGED PARTICLE IDENTHFICATION WITH MODNLLES OF THE PLASTKS BALL

H．H．Gutbrod M．Maser，H G．Ritter．A．Waswich．F．Wiek，if Wreman and K Motf＊

In the low energy pion line at LaMpF a set of 13 plastic ball modules（see Fig．1）was used to measure the efficiency and particle separi， tion capability of the plastic ball detectorl， 2 for pions and protons．

Each module is a $\Delta E-E$ detector wherein the ΔE counter is a 4 min thick CaF_{2} crystal．The E counter consists of a 36 cn long plastic scin－ tillator．Both are cptically coupled and read out by one photomultiplier．IF and E signals are separated via pulse shape analysis．In dodition to the $\Delta E-E$ identification the positive pions are detected by their delayed $\boldsymbol{t}^{+}-\mathbf{u}^{+}$－ ${ }^{+}$decay．This is achieved by measuring the energy of the positron and the decay time for the $\mu^{+} \rightarrow e^{+}$decay．

Thirteen modulf＇s out of the 815 were chosen such that the respe nse of different module types and the effect of scattering out of particles into neighbouring modules could be measured． The individual modules were studied for geomet－ rical effects，e．g．．by injecting the beall at the center，a corner，or a triangular side．

The energy was varied between ： 0 and 300 MeV for pions and between 30 and 90 MeV for pro－ tons．An excellent separation between pions and protons could be obtained．The overall energy
resolution is better than 5 ．Most of the events in which particles scatter out of the module during the process of slouing down can be reconstructed by suriing up the energy signals of neighboring modules．This procedure is especiall，important for obtaining high detection efficiency far the pions，where the decay position is usually stopped in ore than one module．

Fig．1．Plastic ball modules under test at the low energy pion channel，LAPFF．（CBS B08－9285）

Footnote and References

*Callaboration of Lawrence Berkeley Latoratory, Gesellschaft fur Schwerionenforschung, and Argonne National Laboratory.

1. M. R. Maier, H. G. Ritter, H. H. Gutbrod, IEEE Trans. MS-27. 42 (1980).
2. Bevalac Proposal 486H, Lawrence Berkeley Laboratory.

POSITIDN-SENSITIVE PARALLEL PLATE AVALANCHE COHNTERS

H. Steicer* and A Gaden

For an experiment ${ }^{1}$ at the Bevelac we have built two parailel plate dvalanche counters that measured, in addition to tiaing, the position of the incoming particle in one direction. The speritrum of particles to be measured ranged from light particles. like Be, to heavy fragments. The two counters were placed on both sides of the target parallel to the beam direction. The reaction products from the Ldrget, after passing one of the dualanche counters, were stopped in an array of 28 silicon detectors, which eeasured the energy and the time-stop signal. The flight-path of this TOF telescope was only 31 cm. Tlie impact point on the avalanche counters was measured along the beam direction and this information, together with the silicon detector that showed the stop signal, gave the interaction point on the target. The target had an angle of 15° to the bedm.

The sensitive areas of the ayalanche counters were 160×30 anc $90 \times 50 \mathrm{~mm}$, respectively. The outer diakens ions of the detector housing were $205 \times 84 \times 26$ and $135 \times 94 \times 26$ an. respectively.

The construction of the counters and the position readout was done in a similar way, as described in Ref. 2. The two electrodes were made of $15 \mathrm{ug} / \mathrm{cm}^{2}$ Formuar foils and glued onto epoxy frames iFig. II. The foils were then evaporated with $20 \mathrm{ug} / \mathrm{cmi}^{2}$ silver. Onto the cathode 4 min wide strips (<0.55 meparation) were evaporated by means of a mask. Due to the hed sensitivity of the fragile foils. the evoooration process had to be done in about 10 step.s, with cooling-down periods in between. The two electrodes were mounted exactly parallel

Fig. 1. Position-sensitive pardlel-plate avalanche counter.
(XBL 807-16B4)
to each otrier fith gap of 1.9 m. The ronstruction allowed an easy gas-flom through the gap.

The timing signal was caten off from the anode. The individual stripes of the cathode plane were cannected to chai of 10011 resistors (cf. Fig. 1). The ends c. this resistor chain were connected to linear amplifiers, and the position was determined by the chargedivision irthod. The windous of the detector hrusing were stre: ited polypropylene foils (40 ug/cme thick). The total thickness of such counter was 150 -g/cer as determined by an energy-loss measurement.

The counters were operated at 6 ib isobutane ax 470 v. The applied high vol tage was kept relatively low. Alpha particles from a ${ }^{252}$ Cf surce were still detected iwith reduces efficiencyl and strongly ionizing particies dfd not develop a spart. Thus reliable operation of the counters during weeks of ruming time could be matntained.

The TOF-telescope was frequently calibrated with a's and fission fragents from ${ }^{252}$ Cf seurce. Figure 2 shows such a calibration spectrum. The a- ard the fission-peaks allow a measurement of the plasea delay of silicon detectors for hovily fonizing particles. We

Fig. 2. TOF-spectrum of a ${ }^{252}$ Cf source. The a peak (Teft peak) has been scales down by 30.
(XEL 977-1685)
measured a plasma delay of $1,5 \mathrm{~ns}$, which is very close to the published value ${ }^{3}(1.8$ ns). This shows that, if at all, there is only a meak dependence of the tining output of an avalanche counter on the type of the fincoming particle.

Footnote and References

*Gesellschaft fur Schwerfonenforschung, D_{i} (w-
stadt, West Germiny

1. A. Baden et pl., contribution to this onnual report
2. Y. Eyal, H. Stelaer. Muc. Instr. and Methods 155 (1978) 157.
3. H. Menschel and R. Scheidt. Wucl. Instr. and Metrods 151 (1978) 529.

A SIMPLIFIED CONSTANT FRACTION DISCMAENATMT CINCUT FOR APPLICA7. W MULTICHAGNEL DSCHMMITOHS

M. A. Maver *

The original cyrcuic of the constant fraction discriminator ${ }^{1}$ (CFD) has been simplified (see Fig. 1J. It uses now only two integrated circuits. This version is therefore particularly suited for th: constructon of oul tichannel CFD's. We have built two versions of the multi CFD, one quad CFD $(21 \times 414, L 8 L)$ and an octal CFD ("wall-box," GSt).

The quad CFD has all controls on the front panel. l.e.. threshold, walk adjust, and dead time. Each channel has three logic outputs, two with short, clipped signals, and one which shows the dead time--these are all fast Mil negative signals. It has also on inspect output for walk adjustment purposes.

The octal CFD, because of lidited front panel space, has olly two outputs per channel; one produces a clipped signal, the other shows the dead time; all are fast NIM signals. There
is common threshild control and a comon deadtime contral for all elght chamels. The walk adjustient is done internally with a gated tase ifre restorer. In addition, the wall-hox has on OR cutput, where all channels are OR-ed together, and a multipicity output, which produces 100 mY with a source resistance of 50 S per chantel fired. Far the application in the plastic ball exferiment. it has a linear sul output. which gives the sul of all input sfignais (divided by 16). On the tack panel there are eight linear outputs, MC coupled eeitter followers that isolate the digital logic from the analog circuitry. There are also eight additional logic outputs, with positive going MECLO signals.

These milti-CFDs use plug-ins to define the fraction, which can be eastly changed. Different plug-ins can we used to reconfigure the input stages as leadiag edje or zero cross dis-

Fig. 1. Simplified constant frastion circuit. The input comparatore are fast dual ELL comparatur IC's; the dead time monostable and the CLI, stages are a duat ECL fiipflops with proper feedback. Hote the wired-MD connection on the outputs of the comparators.
(XBL808-11106)
criminators. The delay for the constant fraction has to be supplied externally. The CFD delay should be equal to the pulse-rise tire multiplied by (1-fraction):

$$
t_{\text {CFD }}=t_{\text {rise }}(1-\text { fraction })
$$

The range of anplitudes at the input is $\mathbf{- 5} \mathbf{~ y ~ t o ~}$ -5 Y. Minimum input pulse width is? nsec FMM and the minimum rise time is 500 ps . Since we now uşe faster ICs than in the original circuit, ${ }^{2}$ the walk of these units is less than 100 ps for input pulses between -50 田 and -5 γ^{3}.
*Visitor fron Unfyersity of Marburg, West Germany.

1. H. R. Naier, P Spert, MiM87, p. 13.
2. M. R. Raier, D. A. Landis, HIM 117, p. 245.
3. G. F. Mozniak, L. H. Richarson, R. R. Maier, separate contribution to this annual report.

IMPROVEMENTS TO THE HULTI ON-LINE ANALYSIS SYSTEM

Friedemann Weik*

To increase the on-line analysis facil?ty above the level provided by the MULTI system, ${ }^{1}$ which is mostly used at the Bevalac PDP-11 computers: a parallel analyzing task iANALTK) has been developed.

The main part of this task is a set of userwritten Fortran subrautines, indepencent for different problems ar users, which have da initialization part to define the histograns with their names and limits, and an analysis part in which the histrograming itself is done by a call to an ASSEMBLER subroutine. The use of ASSEMBLER has been chosen to increase tile speed and to reduce the necessary space. inis is true for ali other parts of the task too. Furthermore, to keep the command-handler of ANALTK as small as possitle, it eas only a CLEAR and a MOVE function. The MOVE sends a histrogram to PMLTI and enables an additional activity like a di splay or print.

The histogranming space in ANALIK can have up to $22 r$ words. The synchronization for each event is done by MULTI and allow; enly one parallel task to have access to rife data. However, by means of a priority changing control task, two to five tasks have analyzed into 420 histograms in parallel and by that means sarmled the incoming ${ }^{\prime} 1$ ta for the 489 H experiment, ${ }^{\text {? }}$ which had 455 oata words per event.

Additonal changes to MULTI have been made to improve its possibilities in this kind of experiment.

To give an overview over the whole event or a selected part of it, there is now a special two-dimensional display mode, for which the y-position is the number of the word within the event, and the x-position is the value of that
word (see Fig. 1). This gives something like a "footprint" of an cvent. The superposition of eany events in such a display has recognizable structure, for example Fig. I shows pulser dats peaked in each spectria.

Another overview facility is a histogran for which each channel is dedicated to one word within the event and is only incremented if the value of that word lies between selected lifarts. By this a "noisy" detector in an array of equivalert ones shows as a peak, a nonfiring detector as a drop in the histogram.

The r :est feature is a vector variable type, whiz : points to : consecutive group of words in the integer-, real-, or data-array. By this means wore than one variable can one the irput to one histogran or to a two dinensional dot displiay. Ir the latter case each value of the first vector is displayed against the corresponding value of the second.

In the near future the irpleaentation of two-dimens ional 1 istrograns fin ANALTK and their display in MJLTI is planned.

Footnote and References

*Gesellschaft fur Schwerionenforschung, D-6100 Danmstadt, Mest Germany.

1. J. F. Bartlet et al., Fermi Laboratory report PN-97.4.
2. A. Baden et at.., in this annual report.

207

Fig. 1. Simultaneous display of pulser data in ali 455 spectra produced by the detectors of Bevalac experiment 489H.
(XBL 808-10939)

PART 3. APPENDICES

Thesis Abstracts

DEVELOPMENT OF THE HELIUM-JET FED OH LINE MASS SEPARATOR RAMA AND ITS APPLICATION TO STUDIËS OF $T_{z}=-2$ NUCLEI*

Dennis Michael Holtz

Abstract

The study of nuclei far from beta stability is hampered greatly when the ruclide of interest decays in a manner identical to that of a nuclide produced in greater yieid in the same bombardment. Attempts to observe the protons associated with the decay of the $A=4 n_{2}, T_{z}=-2$ e, - ies oi beta-delayed proton emitters failed because of the large numbes of protons arising from the strong beta-delayed proton decay of the $A=4 n+1, T_{2}=-3 / 2$ nuclides. One sciution to this problem is through the use of an on-line mass separator. Developmerit of the Berkeley helium-jet fed on-line mass separator RAMA is discussed as applied to studies of the $A=4 n, T_{2}=-2$ nuclides.

RAMA, an acronym for Recoil Atom Mass Analyzer, has typizai efficiencies of $01 x$ for -75 elements witiomelting points $62000^{\circ} \mathrm{C}$. This efficiency permits decay studi :s to be readily performed on nuclei with production crass sections $\geqslant 500 \mu \mathrm{~b}$ for γ-ray spectroscopy and \vec{l} i ib for discrete energy charged particle spectroscopy. The mass range on the normalized RAMA focal plane is $\pm 10 \%$. The quoted efficiency is for a mass resolution of $\mathrm{H} / \mathrm{LM}-300$.

RAMA has been used to observe two members of the $A=4 n, T_{Z}=-2$ series of betadelayed proton emitters, 20 Hg and ${ }^{24} \mathrm{Si}$. Observation of beta-delayed protons from a mass-separated sample of ${ }^{20} \operatorname{Mg}\left(\mathrm{t}_{1 / 2}\right.$ - 95 ms$)$ establishes the mass-exiess of the lowest $T=2\left(0^{+}\right)$state in 20 Na $(13.42 \pm 0.05 \mathrm{MeV})$, thereby completing the mass trenty isospin quintet. A similar measurement of the decay of $24 \mathrm{si}(\mathrm{t}, 12-100 \mathrm{~ms})$ establishes the mass-excess of the lowest $T=2\left(0^{+}\right)$state in $24 \mathrm{Al}\left(5.90 \mathrm{~S}^{ \pm} \pm 0.009 \mathrm{HeV}\right)$. The mass 24 isospin quintet is incomplete because the mass of 24 si renains unknown. In both cases, excellent agreement is obtained using only the quadratic forn of the isobaric multiplet mass equation (IMME).

*Abstract of LBL-9718 (Oct. 1979).
transfer products from the reactions of heavy ions aith heavy nuclei*

Kenneth Eugene Thomas 111

Production of nuclides heavier than the target from ${ }^{86} \mathrm{Kr}$ and ${ }^{136} \mathrm{Xe}$ induced reactions with ${ }^{181} \mathrm{Ta}$ and 238 U has been investigated. Attempts were made to produce new neutron excessive neptunium and plutonium isotoges via the deep inelastic mechanism. No evidence was found in this work for ${ }^{242} \mathrm{~Np}$ or ${ }^{247} \mathrm{Pu}$. Estimates were made for the production of $242_{\mathrm{Np}}, 24 \mathrm{P}_{\mathrm{Pu}}$, and 248 Am fram heavy ion reactions with uranium targets.

Comparisons of reactions of 86 Kr and 136 xe ions with thick ${ }^{181}$ Ta targets and ${ }^{86} \mathrm{Ta}$ targets and ${ }^{86} \mathrm{Kr}$, 136 Xe and ${ }^{238 \mathrm{y}}$ ions with thick ${ }^{238} \mathrm{U}$ targets indicate tht the "most probable" products are not dependent on the projectile. The most probable products can be predicted by the equation

$$
Z-Z_{\text {target }}=0.43\left(A-A_{\text {target }}\right)+1.0
$$

The major effect of the projectile is the magnitude of the production cross-section of the heavy products. Based on these results, estimates are made of the "most probable" mass of element 114 produced from heavy ion induced reactions with ${ }^{248} \mathrm{Cm}$ and ${ }^{254} \mathrm{Es}$ targets. These estimates give the mass number of element 114 as ~ 287 if produced in heavy ion reactions with these very heavy targets.

Excitation functions of gold and bismuth isotopes arising from $\mathbf{8 0 R r}^{\mathbf{K r}}$ and 136 Xe induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and lofation (in Z and A above the target) of the fotopic distribations are nut strongly dependent on the projectile incident energy. Also, the nuclidic cross-sections are found to increase with an increase in projectije energy to a maximum at approximately 1.4-1.5 times the Coulonb barrier. Above this maximum, the nuclidic eross-section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum.
*AbStract of LBL-9886 (Nov. 1979).

INTERACTIONS OF 100 MEV/HUCLEON 40 Ar HITH URAHIUM ${ }^{*}$

Kenneth Alan Frankel

Fragments produced in the interactions of $100 \mathrm{MeV} / \mathrm{nucle}$ ien ${ }^{40} \mathrm{Ar}$ projoctiles with a uranium target have been measured at energies from 10 to $130 \mathrm{MeV} / \mathrm{nuc}$ 位On at angles from 10° to 170°. Nuclei with charge $5 \leqslant 7 \leqslant 10$ were ohserved.

The data can roughly be divided into two grouss, corresponding to central and peripheral collisions. The central collision data can be fit with a thermal model that uses iwo recoiling sources. The source velocities are consistent with the predictions of the fireball and target explosion models, but the source temperatures inferred from the data are higher than one would expect on the rasis of energy anu momentum conservation. These results are similar to those obtalned in previous studies at bean energies of 400 and $500 \mathrm{MeV} / \mathrm{nucleon}$. The data also follow the pattern of the universal curve of invariant cross section vs momentum observed at higher bean energies by Price et al. The projectile fragnentation data are also fit by two thermal sources. There are indications that the observed temperatures art higher than one would expect on the basis of other projectile fragmentation studies.

The projectile fragnentation data are studied in tems of a simple friction model. Order of magnitude estimates show that the data may be consistent with the model, but further development, calculation and experimentation are necessary to check the validity of the model at this bean energy.

A preliminary imestigation is made of the possibility that the projectile may pick up one or more target nucleons before its fragnents. This process leads to widening of the distributions at large momentum transfers.

From this broad survey we find that much of the spectrum can be described by falling exponentials in energy in the emitting frames. He conclude that the observed spectrum is due to nonthermal sources as the temperatures derived from the slopes of the exponentials are greater than those we predict.

[^12]
Nuclear Sclence Division Seminars*

n.2. 6, 1979

Oct. 22, 1979

Oct. 15, 1970

0ct. 22, 1979

Oct. 29, 1979

Oct. 29, 1979

Nov. 5, 1979

Nov. 12, 1979

Nov. 19, 1979

Nov. 26, 1979

Nov. 30, 1979

Dec. 3, 1979

Jan. 7, 1980

Jan. 14, 1980

Jan. 21, 1980

Jan. 28, 1980

Peter Glassel
Max Planck Institut

Robert Stockstad
ORNL
Gary Hestfall

Norman Glendenning

Carolyn Albiston

Rose Marie McFarland
D. Ceperley
K. Aleklett

Studsvik, Sweden
L. D. Mclerran

SLAC
John Harris

Noriaki Lakahasi

John Rasmussen

Shoji Hagamiya

Erwin Friedlander

Herbert Bolotin
LBL and University of Melbourne

John Sullivan

Patrick L. McGaughey

Fission properties of very heavy nuclei nuclei produced in deep inelastic collisians.

Heavy-ion fusion at sub-barrier energies.

Production of neutron-rich nuclef by fragmentation of $212-\mathrm{HeV} / \mathrm{amil} 48_{\mathrm{Ca}}$.

Very high energy nuclear collisions and the symptotic spectrum of hadrons.

The effects of giant modes on charge and angular distributions in heavy-ion reactions.

Recoil ranges of trans-target products fran $180+248^{\circ} \mathrm{C}$.

Exact solutions of the mais-sody Schodinger equations via stochastic methods.

Delayed neutron enission probabilities for 30 isctopes of $\mathrm{Ga}, 8 \mathrm{gr}, \mathrm{In}, \mathrm{Sb}_{\mathbf{2}}$ I, and Cs.

Explosive quark matter and the Centuaro event.

Deep inelastic scattering and particle emission in collisions of "light" heavy ions.

Spin polarization and aligment in the deep inelastic heavy ion collisions.

Experiences and research results on a Shanghai sabbatical.

Geometry and dynamics of high-energy heavy ion collisions.

Interaction properties of projectile fragments from relativistic heavy ion collisions at Bevalac energies: An LELL-RRC collaboration.

Level spectrascopy of 197 Au and the core excitation model.

Small angle pion production in heavy ion reactions.

Application of the nuclear fireball model to target residue production in the relativistic reaction of neon and uranium.

[^13]Feb. 2, 1980
Feb. 11, 1980
Feb. 18, 1980

Feb. 25, 1980

Mar. 10, 1980

Mar. 24, 1980

Apr. 7, 1980

Apr. 14, 1980

Apr. 21, 1980

Apr. 28, 1980

May 5, 1980

May 12, $198=$

May 19, 1980

June 2, 1980

June 9, 1980
E. L. Alven

Barry Berman LLNL

Cornelius Noack
LBL and University of Bremen, West Germany
H. J. Mang

Technishe Universitat Munchen, West Germany
K. Johnson MIT and SLAC
J. Kapusta LASL

Michael Cable
Edward Tel ler LLNL

Ray Sawyer
U.C. Santa Barbara
J. Kratz

GSI, Darmstadt West Gemany

Roger Parry

Gianluca Rattazzi

Paul Vincent GSI, Darmstadt Hest Germany
C. M. Lederer
T. L. Khoo ANL
B. Muller University of Frankfort, West Germany

Alden Bice

Lee Sobotka
C. D. Goodman
Indiana University

Bevalac biomedical science.
Coulonb dissociation of 18_{0}.

Cascade calculations of high energy nuclear collisions.

Application of HFB theory to high spin states in the rare earth region.

The HIT bag model of hadron structure.

Angular monentum transfer in heavy ion reactions fran 7.7 to $\mathbf{2 2 . 4} \mathbf{~ H e V / A . ~}$

Beta deiayed proton decay of ${ }^{36}$ ca.
A personal view of future U.S. energy options.

Same neutron star physics involving nuclear theory.
$\mathbf{U}+\mathbf{U}$ reactions at GSI.

Math measurements of neutron oeficient indius isotope.

A study of the magniture and direction of fragment spin orientation for the systems $\mathrm{Xe}+\mathrm{Au}$ and $\mathrm{Ho}+\mathrm{Ho}$ at $8.5 \mathrm{MeV} / \mathrm{R}$.

Positrons and x rays fron superheavy quas i atoms.

El lifetimes for octopole vibrational states in the actinide region.

Feeding of very high spin yrast states.

Atonic clocks for nuclear collisions.

Light ion structure and reaction studies via measurement of unbound outgoing systems.

Light preticle emission as a probe of the rutational degrees of freefon in deep inelastic reactions.

Intermediate energy (p, n) reactions and giant resonances.

Nuclear Theory Meetings*

Aug. 1, 1979	Klaus Reidel GS1, Darmstadt, Hest Germany	Relaxation phenomenon in deep inelastic scattering.
Aug. 8, 1979	R. Vinh Mau Orsay	Baryonium: Multiquark of quasi nuclear state?
Aug. 15 and	Miklos Gyulassy	Hormal versus abnarmal nuclear states in mean field theory.
Aug. 20, 1979	John Vergados Greece	Lepton non conserving processes in nuclei.
Aug. 22, 1979	Horst Stocker GSI	Indications for strong compression effects in nuclear collisions.
Aug. 29, 1979	Roger Barrett University of Surrey	Kaon nucleus optical potentials and the K^{--p} atom.
Aug. 30, 1979	Oriol Buhigas	Sum rules, fluid dynanics and giant resonances.
Sept. 5, 1979	R. Remaud LBL and Universite de Nantes	Quantal treatment of damped relaxation modes: The charge equilibrium in heavy ion reactions.
Sept. 6, 1979	Z. Paltiel MIT	A self consistant schene for calculating energy levels, transition matrix elements, tunneling effect, etc.
Sept, 12, 1979	W. H. Howard LLNL P. Molier Lund University. Sweden	Potential energy surfaces and decay properties of neutron rich heavy elements and its astrophysical implications.
Sept. 19, 1979	Stefan Frauendorf Oresden	Quasi particle band structure above : 'e Yrast line.
$\begin{gathered} \text { Oct. } 4 \text { and } 17, \\ 1979 \end{gathered}$	Yasha Karent	Color excited nuclei.
Oct. 10, 1979	d. Speth Institut fur Kernphysik Julich	Oynamical theory of giant resonances.
Nov. 7, 1979	Hubert Flocard Orsay	Microscopic calculations of molecular resonances: Calculation of collision mass parameters from adiabatic timedependent Hartree-Fock.
Nov. 28, 1979	Jorgan Randrup	Kaon production in relativistic nuclear collisions.
Dec. 19, 1979	E. 5. Hernandez LBL and Faculty of Science, Buenos Aires	Current theories of Quantal danped motion and fluctuations.
Jan. 17, 1980	Phil Sienens Copenhagen	Evidence for quark matter in nuclear collisions.

[^14]| Jan. 23, 1980 | H. Kleinert
 Berlin |
| :--- | :--- |
| Jan. 30, 1980 | Xi-fun |
| Feb. 22, 1980 | Herbert Ruck
 A. Reyer-Ter-Vehn |
| Yoram Alhassid | |
| Cal. Tech. | |

Seraiclassical approach to largeaxplitude collective nuclear excitations.
A. Some theoretical physics resedrch in Shanghai.
B. Pion condensates.

Fusion of quark bags.
innatural parity state in nuclei and pion condensatian.

A constrained phase space approach to analysis of nuclear reaction data.

Papers Publiched and LBL. Reports Istued
 1979-80

```
ACUER, P. (See HILLIS, D. L., 1.AL-S51S)
ALb:STON, C. R. (See MORETTOD, L. G., LBL-SASG)
ALEKLETT, K. (See LOVELAND, N., L8L-10a10)
ALEONARD, M. M. \See NAPD, D., No LEL number\
ALMBERGER, J.,.. Hememoto, G. Leander, and J. O. Rasmussen
        Theoreticel Rotational SiEnaturet for Neutron Pietup
        Reaction to ilis/2i2 Pands
        No LBL number, Septmmer 1970
        Phys. Lelts. gob (19sh) I
ANDRFWS, H. R. (See NaMD ご., No LBL numbery
AVERY, M. (See VAN BIBBER, K., LBL-997!)
AHES, T. C. (See MESTFALL,G. D., LBL-9326)
AYSTO, J., M. D. Cable, R. F. Parfy, J. F. Touters,
    D. M. Moltz, and Joseph Cerny
    Decaya of the Tz = -2 Nuetei 20gm, 24Si and 36Ca
    LBL-11193, June 1980
    Phys. Rev. C.
AYSTO, Juhe end Inseph Cerny
    Current and Pu&ure Direetions in the Study of Light
    Nuc lef Employing mn on-Line Mess Separacor
    LBL-987B, September 1979
    Presented at the International Symmosicm on Pature
    Directions in Studies of Nuclei from Siduibilty,
    Vanderbilt University, Nashville, TH, Septerber 10-13,
    1979. 3.H. Hamilion, et al. (Els.) 25T (1980)
AYSTO, J. (See CERNY, Joseph, LBL-9876)
AYSTO, J. (See MDLTZ, D. M., LBL-9721)
BANERJEE, B., N. K. Glendenning and M. Gyulassy
    Pion Condensation in a Field Theory Consistent with Bulk
    Properties of Nuclear Matter
    LBL-10979, May 1990
    NucI. Phys.
BEMIS, C. E., Jr., (See NITSCHKE, J. M., LBL-10173)
BETLACH, M. R. (See PIRESTONE, R. B., LBL-1C919)
BIESER, F. S. (See HIEDENBECR; H. E., LBL-8920)
BIROINLL, J., W. T. H. van Ders, H. E. Conzett, P. von Rossen,
    R. N. Larimer, J. Wetson, and R. E. Bromn
    Analyzing Powers of }\mp@subsup{}{}{3}\textrm{He}(\textrm{D},\textrm{p}\mp@subsup{)}{}{3}\textrm{He}\mathrm{ Flestie Seatrering
    between 30 and 50 Mev
    LBL-1112:, June 1980
    Presenter; at the 5th International Symposium on
    Polarization in Nuclear Physies, Santa Pe, Nh, August
    11-15, 1980
BIRKELUND, J. R. (See SGHRODER, W. U., LRL,-10529)
RLOEMHOLF, E. (See VAN BIBBER, K., LBL-9979)
```

```
BOHFMAN, Steffen and Jöm Knoll
    Pinite Parifele Number Effeets in High-Enerey Nuetear
    Collisions: Implieations on Pion Speetra
    LBL-10570, May 1986
    NucI. Phys. A
```

BOHRHAN，Steffen（see KO，Che Ming．LBL－lidil）
BOWHAN，H．（See CHFBA，J．，LBL－B69）

BROHN，R．E．（See BIRCHALL，J．，LBL－11I21）
BROWNE，E．（See FIRESTONE，R．B．，LBL－II明）
BUDIANSKY，M．P．（See STEVEREON．J．D．．LBL－LGB4）
BUTLER．，P．A．（See WARD．D．．No LBL number）
CABLE，M．D．（See AYSTO，J．，LBL－IIIS3）
CABLE，M．D．（See CERNY，Joseph，LBL－9e76）
CABLE，M．D．〔See MOLTZ，D．M．，LBL－972i）
CASTANEDA，C．（See RASMUSSEN，J．O．：LBL－ 8540
CERNY，Joseph，J．Aysto，M．D．Cable，P．E．Haustein， D．N．Mollz，R．D．von nineklage，R．F．Perry and J．M．Wouters Studies of lsospin quintets and Neutron－Deficient Indium Isotopes with the on－Line Mass Analysíw System Rama LBL－9876，September 1979 d．A．Nolen，Jr．end W．Berenson，Eds．Atomie Messes and Fundamental Constants＿E，Plenum Press，Rew Yorin． 1980，Pp．T－TI．
CERNY，Joseph（See ÄYSTÖ，Juht，LBL－9878）
CRRNY，Joseph（See ĀYSTÖ，J．．LBL－1119：）
CERNY，Joseph（See MOLTZ，D．M．，LBL－9478）
CFRNY，J．（See MOLTZ，D．B．，LBL－9721）
CERNY，Joseph（See STAHEL，D．P．，LBL－8636）
CHAMBERLAIN，O．（See TANIHATA，LBL－9352）
CHESSIN，S．A．（See GEAGA，J．V．，LBL，10265）
CHESSIN，S．A．（See VAN BIBBER K．，LBL－8939）
CHIBA，J．，K．Nakai，I．Tanihata，S．Nagemiya，H．Bomman， J．Ingersoll and J． $\mathrm{H}_{\text {．Rasmussen }}$ Low－Energy Pion Production with $800 \mathrm{MeV} / \mathrm{N} \mathbf{2 0}^{20} \mathrm{Ne}$ LBL－8699，January 1979 Phys．Rev．C20（1979） 1332

CHIBA，J．（See NAKAI，K．，LBL－10936）
CHIOU，J．H．（See MA，A．Y．，LEL－9689）
CHO，Y．C．（See MA，A．Y．，LBL－96量）
CHUNG－TA，MENG（See KO，Che－Ming，LBL－8933）

CLARK, David J.
Recent Progress in Ion Sources and Prenceelerator: LBL-9819, September 1979
 Montauk, New Yorli, September 10-14, 1875

CONZETT, Homer E.
Concerning Tests of Time Reversel Invariance via the Potarization-Analyeing Power Equality LBL-11087, June 1980
Presented at the International Conference on Polarization Phenoment in Nuelear Physics, Santa fe, ret, August 1l-15, 1980

CONZEIT, H. E. (See BIRCHALL, J., LBL-III2I)
OONZETT, H. E. (Tee LANOHTHGNE, C. R., LBL-8555)
CONZETT, H. E. (See STEPHENSOH, E. J., LBL-3531)
CONZETT, H. \&. (See VON FOSSEN, P., LDL-III22)
CRiNER, J. G. (See ZISMAN, M. S., IBL-94e5)
CRAMER, J. G. (See ZISMAN, M. S., LBL-IU2O4)
CRAWFORD, H. J. (Sce HESTFALL, G. D., LBL-se26)
CRAWFORD, H. J. (See WIEDENBECK, G. D., LEL-8320)
CUMMIKG, d. B. (See LOVELAMD, W., LBL-10ele)
DACAL, A. (See RAE, W. D., LBL-III35)
DAVIES, K. T. R., H. Flocerd. S. Krieger and M. S. \%eiss Application of the Imaginery Time Step Method to the Solution of the Static Hartree-Fock Problem LBL-10269, December 1979 Nucl. Phys. A342 (1980) 111

DE SAIMT SIMON, M. (See MCRRISSEY, D. J., LRL-89a3)
DEVRIES, R. M. (See ZISMAN, H. S., LBI.-9405)
DEVRIES, R. M. (See ZISMAN, M. S., LEL-10204)
DIAMOND, R. M.
New Developments in Gamme-Ray Continuum Speetroseopy LBL-10137, Decenber 1979
Presented at the Internetional Symposium on Continuom Spectroscopy, San Antonio, Tex ${ }^{\text {S }}$, Decomber 3-5, 1975

DIAMOND, R. M. and F. S. Stephens
Nuclei at High Momentum LBL-10325, June 1980

DIAMOND, R. M, (See HILLIS, D. L., LBL-9519)
DIAMOND, R. M. (See WARD, D, no LBL number)
DONAMGELO, R. (See NEESE, R. E., no LBL number)
ELLEGAARD, C. (See HILLIS, D. L., LBL-9519)
EL MASRI, Y. (See WARD, $\mathrm{n}_{\text {, }}$ no L.EL number)
ESKOLA, P. (See NITSCFIKE, J. M., LBL-10173)
EVANS, H. C. (See MOLTZ, D. M., LBL-9476)
FIRESTONE, H. K. (See FIRESTONE, R. B., LBL-10919)

FIRESTONE, R. B., M. R. Betimeh. J. M. Tiedie. and
M. K. Firestone

The Peasibility of Producinf ${ }^{11} \mathrm{C},{ }^{13} \mathrm{~N}, 150$, and
Tif with Heevy i on Beans
LBL-fidis, mey 1 sito Advances in Chemistry

FIRESTONE, R. B. and E. EFomite Nuclear Strueture Database LBL-IIoss, vC-34e, Junt 1810

FLOCARD. H. (SEE DAYIEs, K. T. T., LPL-IA2Gs)
POSSAN, D. it. (See HILLIS, D. L., LBL-95IS)
FOWLER, M. (See NITSCHFE, J. M., LBL-10173)
FRAENKFL, Z. (See moritissey, LBL-ASB4)
PRANKEL, Kenneth Alen
Interactions of 100 sev/Nueleon 4 Ar with Uraniun LBL-10980, Deeember 1979

FRIEDLANDER, E. M., R. W. Gimpel, H. H. Heeknan, Y. J. Karant, B. Judek, and E. Ganssmere Evidence for Anomalous Nuclei mong Reletivistife Projectile Fragments from Heavy ton Collistons at Bevalae Energies
LBG-III36, June 1580
Phys. Rev. Lett.
PROIS, B. (See LAMONTAGNE, C. R., LBL-E555)
GANSSAUGE, E. (See FRIEDLALDER, E. M., LBL-11136)
GEAGA, J. V., S. A. Chessing J. Y. Grossjard, J. W. Herris, D. L. Hendrie, L. S. Schroeder, R. N. Treuhaft and K. Van Bibber

Observation of High Momentum Protons fron Lfmiting Target Fragmentation LBL-10265, April 1980 Phys. Rev. Letts.

GEAGA, J. V. (See VAN BIBBER, K., LBL-B939)
GELBKE, C. K. (See WESTPALL, G. D., LBL-99:66)
GHIORSO, A. (See HULET, E. K.. LBL-9B44)
GH. ORSO, A. (See NITSCRKE, J. H., LBL,-10173)
GIMPEL, R. W. (See FRIEDIARDER, E. M., LBL-11136)
GLENDENNING, No rman K.
Pion Condensetion in a Theory Consistent mith Bulk Properties of Nucleap Ninter LBL-10388, January 1980 Invired paper presented at Internationel Workshop Vill, Hirschegr, Austrie, Januafy 14-19, 1980

GLENDENNING, N. K. (See BANERNEF, B., LBL-10572;
GLENDENNING, N. K. (See BANERJEP, B., LBL-10979)
GOLDBEFG, D. A. (See ZISMAN, M. S., LBL-9405)
GOLDBERG, D. A. (See ZISMAN, M. S., LBL-10204)
GOSSET, J. (See SANDOVAL, S., LBL-8771)
GOUCH, R. A. (See MOLTZ, D. M., LBL-94T6)

```
GREINER, D. F. (See WESTFALI., G. D., LBI. 9926)
GREINER, D. E. (See WIEDENBECK, M. E., LBL-8920)
GROSSIORD, J. Y. (Sec GEAGA, J. V., l.BL-10265)
GROSSIORD: J. Y. (See VAN BIBBER, h., LRL,-8939)
gUIDRY, M. W. (See NEESE, R. F., no LBL number)
Gl'IDRY, M. W. (See RAGiNSSEN, J. O., . .I-B540)
GUIDRY, like (See RASMUSSEN, no I.RL number)
GUTBROO, H. It.
    Scarch lor Collective Phenomene in Relativistie Nuclear
    Colimsions
    LBL-11123, June 1980
    Presented nt the l980 Institute for Nuciear Studies,
    Kikuchi Summer schocl on Nuclear Physies at High
    Energies (Fuji-Yoshida) Juiy I-4, 1980, and Conference
    on High Energy Nuclear Interactions and Propertizs of
    Dense Nuclear Matter (Hakone) Japan, July T-II, I9BD
GL'TBRON, H. H.
    Senreh for Extreme States in Nuclear Vatter tor looking
    for Coilective Phenomena)
    L.BI.-10624, \areh 1980
    Prescnted at the International Fonfefence on Extreme
    States in Nuclear Systems, Dresden, hest Gemmany,
    February 4-9, 1980)
GUTBROO, H. H. (Sce MLAEER, M. R., LRLL-10062)
GUTRROD, H. H. (See NEYER, N. G., LRL.-9151)
GUTBROD, H. H. (See SANTDOVAL, S., I.BI.-8a`I)
GYUIMSSY, M., S. K. Kauffmann, and Lanee W, Kilson
        Pion Interferometry of Nuelear Collisions. $. Theory
        LBL-8759, April 1979
        Phys. Rev. (20 (1970) 226%
GYULASSY, Miklos
        Pion Condensation and Instabilities: rurrent Theory and
        Experiment
        1.BL-10883, Nay 1980
GYULASSY, M. and S. K. Kauffmann
    Coulomb Effects in Relativistic Nuclear Collisions
    LBL-17279, Blareit 1980
GYULASSY, M. (See SaNERJEE, H., LBL-10572)
GYULASSY, M. (See BANERJEE, B., LBL-10979)
GYUIASSY, M. (See k.AUFFMLANN, S. K., l.BL-90II)
HADS, B. (See HILLIS, D. L., LBL-9519)
HAMAMOTO, I. (See ALMBEFGER, J., no LJL numiver)
HAMILTON, J. H. (See RASMUSCEN, LBL-8540)
HARRIS, J. I. (See GEAGA, J. V., LBL-10265)
HAUSSER, S. (See WARD, D., no LBL number)
HAUSTEIN, P. E. (See CERNY, Joseph, LBL-9876)
HAUSTEIN, P. E. (See LOVELAND, W., LBL,-10010)
```

heckman, h. H. (See friedlander, E. M., LBL-11136)
heckman, H. H. (See mesteall, G. D., Lbl-9926)
HECKMAN, H. H. (See WIEDENBECK, LBL-8920)
HENDRIE, D. L. (See GEAGA, J. V., LBL-10265)
hendrie, D. L. (See Van bibber, K., Lbl-8939)
HERNANDEZ, E. S.
The Role of Fluctuations in the Quantal Description of Damped Motion LBL-10321, January 1980
hernandez, E. S. and G. Mantzouranis Markovian and Non-Markovian Effects in Heavy-Ion Reactions at k10-200 MeV per Nueleon LBL-9568, August 1979 Phys. Rev. C22 (1980)
hernandez, E. S., W. D. Myers, J. Rendrup and B. Remaud Quantal Dy namies of Charge Equilibretion in Damped Nuclear Collisions LBL-9761, Oeteher 1979 Nuc1. Phys.
hernandez, E. S. and B. Remaud Quantal Fluctuations and Invariant Operators for a Generai Time-Dependent harmonic Oseillator LBL-9558, August 1979 Phys. Lett. 25A (1980) 269

HERNANDEZ, E. S. (See Remaud, B., LBL-9506)
Hillis, D. L., C. P. Roulet, F. S. Stephens, P. Aguer, C. Ellegaard, D. B. Fossan, D. Habs, H. J. Korner, H. Kluge, S. Shih, and R. M. Diamond Super-Deformed Shapes in Rotating Nuclei LBL-9519, Oetober 1979 Phys. Rev. Letts.
hSEUH, H. C. (See LOVELAND, W., LBL-!001v)
HULET, R. K., R. W. Lougheed, J. F. Wild, J. H. Landrum, J. M. Nitschke, and A. Ghiorso Chloride Complexation of Element 104 LBL-9844, May 1979 J. Inorg. Nucl. Chem. 42 (1980) 79

HULET, R. K. (See NITSCFKE, J. M., LBL-10173)
HUZENGA, J. R. (See SCHRODER, W. U., LBL-10529)
INGERSOLL, J. (See CHIBA, J., LBL-8699)
JAHN, R. (See STAHEL, D. P., LBL-8636)
JOURDAIN, J.-C. (See SANDOVAL, A., LBL-8771)
JUDEK, B. (See FRIEDLANDER, E. M., LBL-II136)
KAPUSTA, Joseph
Mechanisms for Deuteron Production in Relativistic Nuclear Collisions LBL-925I, June 1979 Phys. Rev. C2I (1980) 1301

KARANT, Y. J. (See FRIEDLANDER, E. M., LBL-11136)

KAUFFMANN, S. K. and M. Gyulassy Charge-Contrialned Coherent Pion States Produced In Nuclear Matter LBL-9011, April 1979
Nucl. Phys. A33s (1980) 392
KAUFFMANN, S. K. (See GYULASSY, M., IABL-8750;)
KAUPFMFANN, S. K. (See GYULASSY, M. : LaL-10279)
KAUFMAN, S. B. (See LOVELAND, W., 2BL-100N0)
KIDD, J. M. (See NESTPALL, G. D., LBL-9926)
KING, C. H. (See SANDOVAL, A., LBL-8771)
KNOLL, Jurn (See BOHRMAN, Steffen, LBL-109;0)
KLUGE, H. (See HILLIS, D. L., LBL-9SIS)
KO, Che Ming
Evidence for Statistical Fluctuation in the Fragmentation of 160 at Interme-fiate Energies LBL-9985, November 1979
Phys. Rev. C2I (1980) 2672
KO, Che Ming and Steffen Bohrmann
A Model for Pion Absorption in Nucleif LBL-11041, June 1980
Phys. Lett. B
KO, Che Ming and TA-chung
180° production of $p_{2} d$, and t, and $p-p$ Correlation in p-Nucleus Colisions
LBL-8933, March 1979
Phys. Rev. Lett. 43 (1979) 994
KO, C. M. (See RANDRUP, J., LBL-10530)
KORNER, H. J. (See HILLIS, D. L., LBL-95i9)
KRIEGER, S. (Sce UAVIES, K. T. R., LBL-10269)
LAMDNTAGNE, C. R., B. Frois, R. J. Slobodrian, H. E. Conzett, and Ch. Leemann
The p-Si Elastic Scattering in the Region of Giant Mu: típole Resonances LBL-bこ55, December 1978
Z. Physile A - Atoms and Nuclei 295 (1980) 55

LANDAU, Rubin H. and John O. Rasmussen
Pion Production with Heavy Ions
LBL-8654, January 1979
lnvited Comm. Nucl. Part.
Phys. 9 (1979) 1
LANDRUM, J. H. (See HULET, E. K., LBL-9844)
LANDRUM, J. H. (See NITSCRKE, J. M., LBL-10173)
LARIMER, R. M. (See BIRCHALL, J.; LBL-11121)
LARIMER, R. M. (See STEPHENSEON, E. J. LBL-9531)
LEANDER, G. (See ALMBERGER, J., no LBL number)
LEBER, R. E. (See NITSCHKE, J. H., LBL-10173)
LEBER, K. E. (See RASHUSSEN, J. O., LBL-8540)
LEEMANN, Ch. (See LAMONTAGNE, C. R., LBL-8555)

LEEMANN, Ch. (See STEPHENSON, E. J., LBL-9531)
LEGRAIN, R. (See PAE, W. D., LBL-11135)
LEMAIRE, M. -C. Complex Fragment Emission in Relativistic Heavy Ion Collisions LBL-10555, October 1979 Presented at the Colloque Fanco-Japonaise de Physique Nucleaire avec des lons Lourds, Saclay, France, October 8-12, 1979)

LEMAIRE, M. -C. (See TANIHATA, LBL-9352)
LJNDSTKOL1, P. J. (See WESTFALL, G. D., LBL-9926)

LOUCHFED, R. N. (See IHUIET, E. K., LBL-9844)
LOUGHEED, R. 1 . (Sce NITSCHKE, J. M., LBL-10173)
LOVELAND, W., D. J. Morrissey, K. Alektett, G. T. Seaborg,
S. B. Kaufman, E. P. Steinberg, B. D. Wilkins,
J. B. Cumning, P. E. Hlaustein, and H. C. Hseuh Target Residue Recoil Properties in ibe interaction of 8.0 GeV 20 Ne with 181 Ta I.BL- 10010 , May 1980

Phys. Rev. C
LOVFLAND, W. (See MORRISSEY, D. J., LBL-8983)
LUKNER, Ch. (See MEYER, W. G., LRL-9151)
LUKNF.R, Ch. (See SANDONAL, A., LBL-8771)
MA, A. Y., X. 7. Wu, G. S. Zhang, Y. C. Cho, Y. S. lvang, J. H. Chiou, S. T. Sen, \therefore. C. Yang, and J. O. Rasmussen Calculation of Muon final Siate Probabilities after Muon-Induced Fission LBL-9689, August 1979
Nuc 1. Phys.
MAHONEY, J. (See RAE, W. D., LBL-11135)
MAHONEY, J. (Sce WESTFALL, G. D., LBL-9926)
MAIER, M. R., H. G. Ritter, and H. H. Gutbrod The Plastic Ball-A Multi-Detector, Large Solid Angte Spectrometer with Cbsrged Particle ldentification for the Bevalac
LBL-10062, Janurry 1980
Presented at the Proceedings of the IEEE Transacioions in Nuelear Scienee, San Francisco, Califoznia, October 17-20, 1979
leEE Trans. on Nucl. Sei. NS-27 (1980) 42
MAIER, M. R. (See RICHARDSON, L. W., LRL-10146)
MANTZOURANIS, G. (See HERNANDEZ, E. S., LBL-9568)
MANTZOUR NIS, G. (See MORETTO, L. B., LBL-9896)
MATHENS, G. J., and L. G. Moretto
On Barpier Penetration in Complete-Fusion Systems LBL-8972, Mareh 1979
Phys. Lett. 87B (1979) 331
MATHEWS, G. J. (See SCHMITT, R. P., LBL-9512)
MATHEWS, G. J. (See SOBOTKA, L. G., LBL-8512)

```
MePARLAND, C. (See WESTFALL, G. D., LBL-9926)
MEYER, W. G., H. H. Gutbrod, Ch. Lukner and A. Sandoval
    Correlations between Slow and Fast Fragments in
    Relativistie Nuclear Collisions
    LBL-915I, May 1979
    Phys. Rev. C22 (1980) 179
MEYER, W. G. (See SANDOVAL, A., LBL-877I)
MOLLER, Peter (See RASMNSSEN, J. O., no LBL number)
MOLTZ, Dennis M.
    Development of the Helium-Jet Fed on-Line Ntass Separator
    RAMA and its Applicgtion to Studies of }\mp@subsup{T}{2}{}=-2 Nucle
    LBL-9718, October 1979
MOLT'Z, D. M., R, A. Gough, M. S. 7.isman, D. J. Vieira,
    H. C. Evans and J. Cerny
    Development of the Helium-Jet Fed on-I,ine Mass Separator
    RAMA, I
    LBL-9476, December 1979
    Nucl. Inst. and meth. 172 (1980) 507
MOLTZ, D. M., J. M. Nouters, J. Aysto, M. D. Cable,
    R. R. Parry, R. D. von DinckJege, and J. Cerny
    Development of the He-Jet Fed on-line Mass Separator
    RANA, II
    LBL-972!, December 1979
    Nucl. Inst. and Meth. 172 (1980) 519
MOLTZ, D. M. (See AYSTO, J., LBL-11193)
MOLTZ, D. M. (Sce CERNY, Joseph, LBL-9876)
MORETTO, L. G., C. R. Albiston and G. Mantzouranis
    High Mulifpole Isovector Modes and Charge Fluciuations
    in Heavy Ion Reactions
    LBL-9896, November 1979
    Phys. Rev. Letts. 4d (1980) 924
MORETTO, Luciano G, End Richard P. Sehmitt
    Equilibrium Statistical Treatment of Angular Nomenta
    Associated with Collective Modes
    LBL,8656, ifay 1979
    Phys. Rev. C21 (1980) 204
MORETTO, L. G. (See MLATHESS, G. J., LBL-8972)
MORETTO, L. G. (See RICHARDSON, L. H., L.BL-10146)
MORETTO, L. G. (See SCHMITT, R. P., LBL-9512)
MORETTO, L. G. (See SOBOTKA, L. G., LBL-8512)
MORRISSEY, D. J.. W. Loveland, M. de Saint Simon, and
    G. T. Seaborg
    Target Residues from the Reaction of 8 Gev 20Ne with
    181Ta and 197Au
    LBL-8983, May 1979
    Phys, Rev. C21 (1980) 1783
MORRISSEY, D. d., L. F. Oliveira, J. O. Rasmussen,
    G. T. Seaborg, Y, Yariv and Z. Fraenkel
    Mieroscopie and Macroscopic Model Calculations of
    Relativistic Heavy Ion Fragmentation Reactions
    LBL-8964, March 1979)
    Phys. Rev. Letts. 43 (1979) 1139
MORRISSEY, D. J. (See LOVELAND, W., LBL-10010)
```

MORRIGSEY, D. J. (See NAGAMIYA, S., LBL-10461)
MUKPKY, M. J. (See RAE, W. D., LBL-III35)

```
MYERS, William D., Jorgen Randrup, and Gary D. Wesifall
    Worlshop on Nuelear Dynamies
    LBL-10888, March 1980
    Workshop on Nuclear Dynamies,Granlibakken, Tahoe Clty,
    California, 17-21 March 1980
```

MYERS, W. D. and W. J. Swlatecki
Droplet Model Theory of the Neutron Skin
LBL-9306, June 1979
Nuc1. Phys. A336 (1980) 267
MYERS, W. D. (See HERNANDEZ, E. S., LBL-9761)
NAGAMIYA, S.
Central Nuelear Collisions: the Past and the Future
LBL-10956, May 1980
Presented at the Hakone Seminar on High Energy Nuclear
Interaetins and Properties of Dense Nuclear Matter".
Hakone, Japan, July 7-11, 1980
NAGAMIYA, Shoji
Topics in Relativistie Heavy-Ion Collisions
LBL-9611, August 1979
Nuel. Phys. A335 (1980) 517
NAGAMIYA, S. and D. J. Morrissey
The Geometrical Aspect of High-Energy Heavy Ion
Collisions
LBL-10461. February 1980
Phys. Letts. B
NAGAMIYA, S. (See CHIBA, J., LBL-8699)
NAGAMIYA, S. (See NAKAI, K., LBL-10936)
NAGAMIYA, S. (See TANIHATA, LBL-9352)
NAKAl, K., J. Chiba, I. Tanihata, M. Sasao, H. Bomman,
S. Nagamiya, and J. O. Rasmussen
Low-energy Pion Production in High-energy
Nucleus-nueleus Collisons
LBL-10936, 1979
Phys. Rev. C20 (1979) 2210

NAKAI, K. (See CHIBA, J., LBL-8699)
NEESE, R. E., M. W. Guidry, R. Donangeio, and J. O. Rasmussen Surface Strueture of Deformed Nuclei by Radial and Angular Localization in Heavy Ion Seatteriag No LBL number Phys. Letts. 85B (1979) 201

NEESE, Richard (See RASMUSSEN, J. O., no LBL number)
NGUYEN, Ven Sen (See SANDOVAL, A., LBL-8771)
NITSCHKE, J. M., M. Fowler, A. Ghiorso, R. E. Leber, M. J. Nurmia, L. P. Somerville, K. E. Williams, E. K. Hulet, J. H. Landrum, R. W. Lougneed, J. F. Wild, C. E. Bemis, Jr., R. J. Silva, and P. Eskola Search for an $80-\mathrm{ras}$ Spontaneous Fission Activity in Bombardments of $249^{\text {Bk with }} 15 \mathrm{~N}$ LBL-10173, January 1980 Nuc1. Phys. A.

NITSCHKE, J. M. (See HULET, E. K., LBL-9844)

NUCLEAR SCI ENCE DIVISION
Nuctear Science Division Annual Report 1978-1979 LBL-9711, UC-34, Hareh 1980

NUPMIA, M. J. (See NITSCHKE, J. M., LBL-10:73)
OLIVEIRA, L. F. (See MORRISSEY, LBL-8964)
PANG, W. (See VAN BIBBER, K., LBL-9979)
PARRY, R. F. (See AYSTO, J., LBL-11193)
PARRY, R. F. (See CERNY, Joseph, LSL-9876)
PARRY, R. F. (See MOLTZ, D. M., LBL-9721)
PEKER, L. K. (See RASMUSSEN, J. O., LBL-8540)
POSKANZER, A. M. (See SANDOVAL, A., LBL-8771)
PRICE, P. B. (See STEVENSON, d. D., LBL-10054)
PRUESS, K.
Amplitude for Transitions between Molecular (Two-Center) Channels LBL-7747, June 1978
Nucl. Phys. A330 (1979) 209
RAE, W. D.s R. G. Stokstad, B. G. Haryey, A. Dacal, R. Legrain, J. Mahoney, M. J. Murphy, and T. J. M. Symons Molecular Resonances and the Production of fast a-Particles in the Reaction of 160 with 12 , $13^{3} \mathbf{C}$ Nuclei LBL-11135, June 1980 Phys. Rev. Letts.

RAMON, Ceon and Elizabeth A. Rauscher Superluminal Transformations in Complex Minkowski Space LBL-9752, November 1979 Foundation of Phys.

RANDRUP, J. Multiple Nueleon Transfer in Damped Nuclear Collisions LBL-9638, December 1979 Notes for a lecture given at the Enrico Fermi Summer School on Nuelear Physies, Varenna, Italy, July 9-?!, 1979

RANDRUP, J.
Nuclear Collisions at E/A $=\mathrm{T}_{\mathrm{F}}$ LBL-9520, July 1979
Invited talk given at the "Symposium on Heavy-Ion Physics from 10 ta $200 \mathrm{MeV} / \mathrm{AMJ}^{\prime}$," Brookhaven National Laboratary, July 16-20, 1979

RANDRUP, Jorgen
Nuclear Collisions at Several Tens of MeV per Nucleus LBL-9902, Oetober 1979
Notes for lectures given at the Serre-Chevallier Summer School, Serre-Chevaliler, France, September 10-14, 1979

RANDRUP, J.
Nuclear Proximity Forces
LBL-9569, October 1979
Notes for a lecture given at the Enrico Fermi Sumber School of Nuclear Physics at Varenna, Italy

RANDRUP, J. and $C . M$. Ko Kaon Production in Relativistic Nuelear Collisions LBL-10530, January 1980 Nuel. Phys. A343 (1980) 519

```
RANDHUP, J. and If. J. Swiatecki
    One-Body Dissipation and Nuclear Nynamies
    LBL-10495, October 1978
    Ann. of Phys. 125 (1980) 193
RANDRUP, J. (See HERNANDEZ, E. S., LBL-9761)
RANIIRUP, Jørgen (See MYFERS, Willifm D., LBL-10688
RANDHUP, J. (See SCIRODER, W. U., LHL-10529)
RASMUSSFN, J. O., N1. M. Guidry, T. E. Ward, C. Castaneda,
    L. K. Peker, L. Leber, and J. H. Hamilton
    Rotational Energy Fxpressions and Least-Squares Fitting
    or Backbenders and Similar Nuclei
    LBL-8540, June 1979
    Nucl. Phys. A332 (1979) 82
RASWUSSEN, John, Peter Moller, Mike Guidry, and Richard Neese Giant Resonance Polarization Terms in the Nucleus-Nucleus Potential* No Lobl number, 1980 Nue!. Phys. A34! (1980) 149
RASMUSSEN, J. O. (See ALABERGER, J., no LBL number)
KASUUSSEN, J. O. (See (111RA, J., LBL-8699)
RASA-JSSEN, Johri O. (See LANDAU, Rubin Hes LB1.-8654)
RASM1LSSEN, J. O. (See MA, A, Y., LBL-9689)
RASMUSSEN, J. O. (See MORRISSEY, LBL-8964)
RASTUUSSEN, John O. (See NAKAI, K., LBL-10936)
RASAUSSEN, J. O. (See NEESE, R. E., no LBL number)
RASAUSSEN, J. O. (See VAN BIBBER, K., LBL-8939)
RATTAZZI, G. U. (See SCHMITT, R. P., LBL-9512)
RAUSCHER, Filizabeth A. (See RAliON, Ceon, LBL-9752)
hegimbart, R. (See SCHMITT, R. P., LBL-9512)
REMALD, B. and E. S. Hernandez Damping of the Wave Packet Motion in a General Time-Dependent Quadratic Field LBL-9506, September 19'9 Journ. of Phys.
REMAUD, B. (See hERNANDEZ, F. S., LRL-9558)
REMAUD, B. (See HERNANDEZ, E. S., LBL-976I)
RICHARDSON, L. W., G. J. Wozniak, M. R, Maier and L. G. Moretto Neutron-Gamma Discriminetion Using Nat(Tl) Scintillators with Application for Measurement of the Gamma-Ray Multiplicity bistribution in Heavy-lon Reactions LBL-10146, No vember 1979 NucI. Inst. end Meth.
RITTER, H. G. (See MAIER, M. R., LBL-1006E)
ROULET, C. P. (See HILLIS, D. L., LBL-9519)
ROY, R. (See STEPHENSON, E. J., LBL-9531)
```

```
SALAMON, Aljehael I!.
    A Range-Energy Program for Helativistic Heavy lons in
    the Region I< E< 3000 sev/amu
    LBL-10446, January 1980)
SANDOVAL, A.
    4\pi Physics
    LBL-10721, Mareh 1980
    Presented at the Korkshop on Nuclear Dyammics,
    Grandibakken, Lake Tahoe, Nevada, Mareh 24-28, 1980
SANDOVAL, A., H. II. Gutbrod, W. G. Meyer, A. .f. Poskanzer,
    R. Stock, J. Gasset, J.-C. Jourdain, C. H. King,
    G. King, Ch. Lukner, Nguyen Van Sen, G. !. Nestfall, and
    K. L. Wolf
    Spectra of p, d, and t from Helativistic Nuclear
    Collisions
    LHL-8771, September 1979
    Phys. Rev. C21 (1980) 132!
SANUOVAL, A. (See K. G. Meyer, LBL-9151)
SASAO, M. (See NAKAI, K., L.RL-I0936)
SCHMTHT, R. P., G. J. Nozniak, G. U. Rattazzi, G. J. Mathews,
    R. Regimbart and L. G. Moretto
    Fast Particle Fmission in the Deep Inelastic Reaction
    nat}\textrm{Cu}+20\textrm{Ne}\mathrm{ at 12.6 MeV/Nucleon
    J,BL-9512, January 1980
    Phys. Letts.
SCHMATT, Riehard P. (See AORETTO, Lueiano G., LBL-8656)
SCHNETZER, S. (See TANIHATA, LBL-9352)
SCHRÖDER, N. U., J. R, Birkelund, J. R. Huzenga, N. W. Hilcke
    and J. Kandrup
    Effeci of Pauli Blocking on Exchange and Dissipation
    Mechanisms Operating in Heavy-IOn Reactions
    LB1,-10529, October 1979
    Phys. Rev. Letts. 44 (1980) 30G
SCHROEDER, L. S. (See GFAGA, J. V., LBL-10265)
SCHROEDER, L.. S. (See VAN BIBBER, K., LBL-8939)
SOOTT, D. K. (See VAN BIBBER, K., LBL-3939)
SCOTT, D. K. (See WESTFALL, G. D., IBL-9926)
SEABORG, Glenn T.
    The New Elements
    LBL-I1364, 1980
    Americen Scientist 68 (1980) 279
SEABORG, Glenn T.
    The Periodic Table, Tortuous Path to Man-Made Flements
    LBL-9074
    Chem. Engin. News 57 (1979) 46
SEABORG, G. T. (See LOVELAND, W., LBL-10010)
SEABORG, G. T. (See MORRISSEY, D. J., LBI.-8964)
SEABORG, G. T. (See MORRISSEY, D. J., LBL-8983)
SEN, S. T. (See MA, A. Y., LBL-9689)
SHAPIRO, G. (See TANIHATA, LBL-9352)
SHIH, S. (See HILLIS, D. L., LBL-95I9)
```

SHOTTER; A. C. (See WESTFALL, G. D.. LBL-9926)
SIEMENS, Philip J.
Heavy Ion Callisions
LBL-9595, December 1979
Prosented at the Eighth International Conference on High Energy Physics and Nuclear Structure, Vancouver, BC, Canada, August 1979

SILVA, R. J. (See NITSCHKE, J. M., LBL-10173)
SLOBODRIAN, R. J. (See LAMONTAGNE, C. R., LBL-8555)
SOBOTKA, L. G., G. J. Mathews, and L. G. Boretto A Theoretical Investigation of Shell Effects in Deep Inelastic collisions
LBL-8512, May 1979
Zietschrift fur Physik A292 (1979) 191
SOATERVILLE, L. P.
New Spontaneous Fission Activities Produced in the Bombardments of $24{ }^{8} \mathrm{Cm}$ and 249 Bk by $1 \mathrm{~K}^{\circ} \mathrm{C}$. 15 H ,
160 , and 180 I ons
LBL-9754, Septerber 1979
Further Directions in Studies of Nuelei far from Stabiljty. J. H. Hamjiton, et el.. (eds.) North-Holland Publ. Company 337 (1980)

SOAERYILLE, L. P. (See N1TSCHKE, J. M., LBL-10173)
STAHFL, Dieter Paul
Nuclear Reactions Producing ${ }^{2}$ He and Excited States of
${ }^{4} \mathrm{He}$ as Unbound Outgoing systems
LBL-9706, September 1979
Ph.D. thesis
STAHEL, D. P., R. Jahn, G. J. Wozniak and Joseph Cerny Charge-Exchange Reaction ($\mathrm{d}, \mathbf{2}^{2} \mathrm{He}$)
LBL-8636, May 1979
Phys. Rev. C20 (1979), 580
STEINBERG, E. P. (See LOVELANL, W., LBL-i0010)
STE INER, H. (See TANIHATA, LBL-9352)
STEPHENS, F. S.
Gamm-Rays from Deep Inelastic こollisions LBL-10356, January 1980
Presented at the Varenna Conforence, Varenna, italy, July 9-25, 1979

STEPHENS, F. S.
Nuclear Structure at High Angular Momentum LBL-10957, June 1980
Presented at the Nuclear Physics Workshop, Tandar Project, Comision Nacional de rrergia Atomica, Argentina, April 7-18, 1980

STEPHENS, F. S.
Phenomena at Very High Spins
LBL-10645, March 1980
Prezerted at the Conference on Band Siructure and Nuclear Dynamics, New Orleans, Louisiana, February 27-March 1, 1980

STEPHENS, F. (Sce DIANOND, R. M., LBL-10325)
STEPHENS, F. (See HILLIS, D. L., LBL-9519)
STEPHENS; F. (See WARD, D., no LBL number)

```
STEPHENSON, E.J., H. E. Conzett, R. M. Larimer, B. T. Leemann,
    R. Roy and P. von Rossen
    Tensor Analyzing Powers in 4He(d,d)4He Etasliz
    Scattering between it ano 45 MeV
    LAL-953!, August tere)
    Phys. Rev. C2I (19a0) 44
STEVENSON, J. D., P. B. Price end M. P. Rudiansky
    Imaging and Identification of Reintivistic Projecifie
    Fragments with Lexen Spectrometry
    LE1,-10054, October 1979
    Nuc1. Insi. and Meth.
STOCK, R. (See SANDOVAL, A., LBL-B771)
STOKSTAD, R. G. (See RAE, W. D., LSL-11135)
SHIATECKI, H. J.
ilie Dy namies of Nuclear Coalescence or Reseparation LBL-10911, June 1980 Presented at the Nobel Symposium on High-Spin States, Orenas, smeden, June 22-25, 1980; and submitied to Physica Scripra
SW1ATECKI, W. d. (Sce anters, w. D., LBL-9306)
SWIATECKJ, W. J. (See RANDRUP, J., LBL-10495)
SYMONS, T. J. M. (See RAE, W. D., LBL-II135)
Smons, T. J. M. (Sce hestrall, G. D., LBL-9926)
TA-Chung, Sleng (See KO, Che-Ming, LBL-8933)
TANIHATA, I., S. Nagemiyd, O. Chamberlain, M.-C. Lemaire, S. Schnetzer, G. Shapiro and H. Steiner Negative Pion producition by 800 MeV/A \(C\), Ne, and Ar Beams LBL-9352, June 1979 Phys. Leit. 照 (1979) 349
TANIHATA, I. (See CHIBA, J., 1.BL-8699)
TAN IHATA, 1. (See NAKAI, K., LBL-10936)
thomas, Kenneth Eugene, III
Transfer Products from the Reactions of Heavy Ions with Heavy Nue lei
LBL-9886, November 1979
Ph.D. thesis
TIEDJE, J. M. (See FIRESTONE, R. B., LBL-10919)
TREUHAFT, R. N. (See GEAGA, J. V., LBL-l0265)
TREUHAFT, R. (See VAN BIBEER, K., LBL-8939)
VAN BIBBER, K., D. L. Hendrí, D. K. Seott, H. H. Wieman,
L. S. Schroeder, J. Y. Geaga, S. A. Chessin, R. Treuhaft, J. Y. Grossiord, J. J. Rasmussen and C. Y. Wong Eyidence for Ortitiei Dispersion in the Fregmentation of 160 at 90 and \(120 \mathrm{MeV} / \mathrm{Nucleon}\) LBL-8939, March 1979
Phys. Rev. Letts. 43 (1979) 840
VAN BIBBER, K., W. Pang, M. Avery and E. Bloemhof Use of a Streamer Chamber for Low Energy Nuclear Physics LBL-9979, Oetober 1979 Invited talk at the Nuclear Science Symposium, San Franciseo, California, October 17-19, 1979 leEE Teans. on Nuel. Sci. NS-27 (1980) 86
```

```
YAN BIBAER, K. (See GFAGA, J. V., LBL-10265)
VAN OERS, w. T. H. (See B|RCIALL, J., LBI,-1|I2I)
VIEIRA, D. J. (See MOLTZ, D. N., LBI,-9476)
VON DINCKLACE, R. D. (See CERNY, Joseph, LPL,-9876)
VON DINCKLAGE, R. D. (See mDLTZ, D. M., JBL-!%21)
VON ROSSEN, P., U. von Rossen, and H. F.. Conzett
    Test of Parity Conservation in pp Seatterng at to HeV
    LBL,-11122, June 1980
    Presented at the 5th International Symposium on
    Polarization in Nuclear Physies, Santa Fe, Nw, August
    11-15, 1980
VON ROSSEN, P. (Sec B1RCHAl.L., J., LB1.-11121)
VON ROSSIN, P. (See STEPHENSON, E. J., LB1-953I)
VON ROSSEN, U. (See VON RUSSEN, P. L.BL-11122)
WaNG, Y. S. (See MA, A. Y., LB1.-9689)
WAH), O., H. R. Andrews, O. Hausser, Y. EI Masri,
    M. s. Aleonard, I. Yang-Lee, K. M. Diamond,
    F. S. Stephens, and P. A. Hutler
        licasurements of Lifetimes and Feeding Times for High
        Spin States in l5GDy
        No l.BI, number
        Nucl. Phys. A332 (1954) 433
WAIU, T. E. (See RASMWSSEN, J. O., LRI.-8540)
WATSON, J. (See [3!KCTIALI., J.. LBL-III2I)
WATSON, J. (See 7.Isilin, M. S., LBL-9405)
WATSUN, J. (Sce 7.ISMLAN, M. S., I.RL-10204)
WEISS, M, S. (See DAVIES, K. T. R., L.BL-i02G9)
MESTFALL, G. D., T. J. M. Symons, D. E. Rreiner, l!. H. Heckman,
        P. J. Lindstrom, J. Mahoney, A. C. Shotter, D. K. Scott,
        Il. J. Crawford, C. MePb;land, T. C. Iwes, C. H. Gelbke,
        and J. M. Kidd
        Production of Neutron-Rich Nuelides by Fragmentation of
        212-MeV/amu 48Ca
        LRt.-9926, October 1979
        P...;. Rev. Letts. 43 (1979) 1859
WESTFAlI, Ggry D. (See myERS, Williame D., LBL-106B8)
WESTFALL, Gary D. (See SANDOVAL, S., LBL-8771)
WIEDENBECK. M. E,, D. E. Greiner, F. S. Bieser, H. J. Crawford,
        H. H lieckman and P. J. Lindstrom
        A bleasurement of the Isotopic Composition of Galactit
        Cosmic Ray rarbon, Nitrogen and Oxygen
        LBL-8920, June 1979
        Presented at the Ifth International Cosmic Ray
        Conference, Kyoto, Japan, August 8-19, 1979
\becauseIEMAN, H. H. (See VAN BIBBER, K., LBL-8939)
W1LCKE, W. W. (See SCHRÖDER, w. U., LBL-10529)
WILI, d. F. (See HULET, E. K., LBL-9844)
WlLU, J. F. (See N1TSCHKE, J. M., LBL-10173)
```

```
WILKINS, B. D. (Sec LOVEIAND, R., LSL, 10010)
WILLIAMS, K. E. (Sec NITSCHKE, J. N., LBI-10.73)
WILSON, Lance N. iSee GIMLASSY, S., LBL-8759)
WOLF, K. L., (See SANDOVAL, S., LBL-gTZI)
WONG, C. Y. (See VAN BIBBER, K., (.B1,-8939)
WOUTERS, J. M. (Spe AYSTO, J.. LEL-III93)
HOUTERS, J. M. (See CERNY, Joseph, LRL-9876)
HOUTERS, J. M. (Sce MOLTZ, N. M., LBL-9%2!)
IHOZNIAK, G. J. (See RICHARNSON. I.. N.; IGL,-1014G)
WOZN1AK, G. J. (See St7I1]TT, R. P., LBL-S512)
WOZNIAK, G. J. (Sec STAIIEL, D. P.. I.BL-8535)
NU, X. Z. (See NLA, A. Y., LBL-9689)
YANG, F. C. (See MA, A. Y., 1.BL-9689)
YANG-LEE, I, (See Ward, D. no LBI, number)
YARIV, Y. (See NORRISSEY, D. J., LBL-89B4)
ZHANG, G. S. (See Mta, A. Y., L.BL-9689)
ZlSMIAN, M. S., J. F. (ramer, D. A. Galdberg, J. W. Natson, and
        H. M. Devries
        Dominance of Strong Absorption in 9Be + 28Si Elastie
        Scattering
        LRL-10204, December 1979
        Phys. Kev. C
7ISMAN, M. 3., J. G. Cramer, D. A. Goldbert, J. N. hatson, and
        R. M. Devries
        Dominance of Strong Absorption in 9}\mp@subsup{\mathbf{Be}+}{+28Si flastie}{
        Seattering
        LBL-9405, June 1980
        Phys. Rev, C, 2I, 6
ZISMAN, M. S. (See MOLTZ, D. M., LBL-9476)
```


Author Index

ABEGG, R. 63
AHLEN, S. P. 106, 197, 199
ALBISTON, C. R. 153, 156
ALEXANDER, J. M. 89
ALEKLETT, K. 131, 132
ALMBERGER, J. 78
ANDERSEH, 0 . $\quad 1$
ANDER SSOM, B. 108
ÅYรึ̃̈̆, ய゙. 57, 58, 182

BACHER, A. D. 65
BADEN, A. 138, 202, 204
BAISDEN. P. A. 87
BALL, J. W. 89
BANNERJEE, B, 17.
BAUER, R. 53
BENEHSON, W. 110
BERMAN, B. L. 135
BETLACH, M. R. 142
BICE, A. N. 69, 73, 191
BIESER, F. 201
BIRCHALL, J. 75
BIRKELUND, J. R. 148
BISTIELICH, J. A. 110
BLAU, 5. K. 151, 152
BOGUTA, J. $175,176,177$
BOIRMANN, S. 162,164
EUVMAN, H. 109, 110, 111
BRANDAH, M. E. 71
BRANNIGAN, J. P. 115, 116, i19, 137. 195

BROWN, R.E. 75
BROLNE, E. I40
BRUCHLE, W. 93
BUDIANSKY, M. P. 106
BURMAN, R. L. 189

CABIE, M. D. 57, 58, 182
CAFROLL, J. 8. 123, 202
CASTENEDA, C. 76
CERNY, J. i, 5, 57, 58, 69, 73,

182, 191

CHESSIN, S. A. 124
CHIBA, J. 109, 111
CHIOU, J. H. 113
CHO, Y. C. 113
CHUPP, W. 187
CINCHEZA, J. 108
CLARK, D. J. 40, 186, 187
COHEN, J. 108
COOMBES, H. 63
CONZETT, H. E. 9, $61,62,63,65$, 75
CRAMER, J. G. 72
CRAFFORD, H. J. 135. 201
CRAHLEY, G. M. 110
CREBSIN, K. C. 199
CROCKER, G. D. 189
CROHE, K. M. 26, 110
CUGNOH, J. 163
CLMMING, J. 8. 131

DACA, A. 67. 71. 119. 195
DAIRIKI, J. H. 36
DAVIES, K. T. R. 158
DAYISOW, H. E. 63
DELAGRATIE, H. 89
DELEPLAMQSE, H. A. 51
de SIMIARSKI. R. 65
De VRIES, R. H. 72
DIMNWD, R. H. B, 38, 51. 53, 54, 92, 102
DOMANGELO. R. 79
DYER, P. 94

EGGERS, R. C. 84
E!IOFF, T. 46
ELLEGARO, C. 51
ELOLA, H. A. 196

FERGUSON, F. L. 93
FIRESTONE. M. K. 142
FIRESTONE, R. B. 140, 142
FLOCARD, H. 157, 158
FOSSAN, D. B. 51
FRAKK, J. S. 189
FRANKEL, K. A. 110
FREEDNH, M. 138
FRIEDLAMER, E. 108, 128

GAGGELER, H. 93
GALINDA, A. 71
GAMEZER, K. 123
GANSAUGEE, E. 128
GAREET, J. D. 51
GEACA, J. Y. 115, 116. 119, 124, 137, 195
GHIORSO, A. $12,83,84,85,88,93$
GIHPEL, R. W. 128
GLENDEFNING. H. K. 29, 170, 171, 173
GOLDBERG, D. A. 72
GOSSET, J. 107, 134
GONGH, R. A. 40
GGULOING, F. S. 34
GREENIAKS, G. 63
GRE IKER, D. E. 32, 126, 135
GROSSIORD. J. Y. 124
GUIDRY, H. H. 76, 79, BO
GUTBROD, H. H. 16, 107, 134, 138, 201, 202
GYULASSY, H. 166, 168, 171, 174

HFHR, R. L. 93
HAMAYOTO, 1. 78
HAMILTON, J. H. 76
HARRIS, J. W. $115,116,119,174$,
137, 195
HARVEY, B. G. $7,66,67,71$
HASHIMNTO, 0.110
HAUSTEIN, P. E. 131
НЕСКНАН, Н. H. 18, 128, 135

HEHDERSOH, I. J. 138
HENDRIE, D. L. 124
HERNANDEZ, F. S. 149
HERRMANN, 5. 93
HERSKIND, B. 51, 53
HERZ, A. J. 108
HILLIS, D. L. 51
HINKSON, J. A. 185
HOFFMAN, D. C. 82, 83
HOLT, R. J. 189
HSEUH, H. C. 131
HSU, C. C. 92, 97, 98, 99, 100 102, 103
HUBEL, H, 53
HUIZENGA. J. R. 148
HULET, E. K. 87, 93

IGO, G. 123
[NGERSOLL, J. 109, 110

JACAK, B. Y. B2, B7
JAKOBSSON, B. 108
JANSEN, J. 110
JUDEK, B. 128

KAPLAN, M. 89
KARADJEY, K. 138
KARANT, Y. J. 128, 178
KASHY, E. 110
KAUFFMANN, S. K. 166, 168
KAUFMAN, S. B. 131,138
KING, C. H. 107, 134
KING, G. 107, 134
KLUGE, H. $51,92,102$
KNOLL, J. 160, 162, 163
KO, C.-M. 163, 164
KOIKE, H. 110
KOOMIN, S. E. 161
KRATZ, J. V. 93
KRIEGER, S. 158

LARDAU, R. 114
LARINER, R. M. 75
LASZEWSKI, R. M. 189
LEANDER, G. 78
LEBER, E. 76
LEDERER, C. H. 56, 140
LEE, D. 82, 83, 87
LEGRAIN, R. 67, 71
LE[GH, J. R. 54
LEINO, M. E. $84,85,88$
LEITCH, M. J. 1B]
LEMAIRE, M.-C. 118
LINCKVIST, B. 108
L! IMOSTROM, P. J. 135
LJGAN, D. 89
IUMBARD, R. 11B
LOUGHEED, R. W. 87, 93
LOVELAMD, W. 129, 131, 132
LUKNER, Ch. 134
LUMBROSO, A. 173
LUD, C. 129

MA, Z. Y. 113
MAHONEY, J. 67, 71
MAIER, M. R. 138, 292, 202, 203, 205

HAMO. Y. 138
MMTZOURMIS, G. 150, 153
MRIN, A. 108
HARTOFF, C. J. 110
HATHELS, 6. J. 96
HCDOMALD, R. J. 92, 97. 99. 100. 102, 104
HCFARLLNO, R. M. 85, 87
HCEALCHEY, P. I. 87, 129, 132, 159
HKPARLANO, C. 200
MEMCHACA-ROCHY A, 71
MEYER, H. G. 107, 134
HIAKE, Y. 123
MIL:ER, J. 110, 195
HOELLER, E. 118
MÓLLER, P. 80
HOODY, K. J. 87. 188
MORETTO, L. G. $10,92,95,97,98$. $99,100,102,103,104,151,15 ?$, 153, 154, 156
MORRISSEY, D. J. 92, 97, 98, 102, 103. 129. i31, 132. 154, 159

HOSES, 3. D. 189
MOSS, G. A. 63
MULERA, T. A. 123, 196
MKRPHY, D. L. 110
MJRPHY. H. J. 67. 71
HYERS, H. D. 149, 150

NAGNHIYA, S. 24, 109, 111, 118, 121,201
NAKAI, K. 109, 111
HEESE, R.E. 79, 80
NEIMRH, H. 51
NENTON, J. 0.54
HITSCHKE, 3. M. 12, 63, 93, 181, 184,185
NOACK, C. C. 166,178
HOLEN, J. A., 3r. 110
Ti JRHIA, M. 82, 83, 84, 88, 188

OLSON, D. L. 135
OOSTEMS, J. 123
OTTERLUHD, I. 108
OHO. C. B2

PACHECO, A. J. $92,99,100,102$,
104, 151
PARRY, R. F. 57, 58, 182
PEKER, L. K. 76
PEREZ-MENDEZ, Y. 123, 196
PERRY, M. 87
PETER, J. 110, 138, 202
POSKANZER, A. M. 16, 107, 134
PRICE, P. 8, 28, 106, 127
PUGH, H. G. $21,45,46,115,119$, 195
PUĨ̛h, R. J. 34

QuEbERT. : 110

RAE, H. D. H. 67, 71
RAJAGOPALAN, M. 89
RANDRUP, J. $148,149,150,160$, 161. 163

RASMUSSEN，J．0．26，76，78，79． B0，109，120，111，113， 114
RATTAZZI，G．U．96，99． 100
REGIMBART，R． 96
REMAUD，E． 149
RENFORDT，R．E．115，116，119， 195
RESMINI，F．G． 65
RICHARDSON，L．H．97．98，103， 192
RJCHTER，R． 187
RITTER，H．G．1．78，202， 203
RIVET，M．F． 89
ROSENBERG，L．J．115，116， 195
ROULET，C．P． 51
ROY，G． 63
RUCK，H．M． 169

SAGLE，A，L． 123
SALAMON，M．H．197，198， 199
SANDOVAL，A． $21,107,115,116$ ，
$119,134,137,195$
SASAO，M．110， 111
SCHADEL，M． 93
SCHMITT，R．P． 96
SCHNETJER，S．118， 121
SCHRODETR，W．U． 148
SCHROEDER，L．S．115，116，119， 124，137， 195
SCHUCK，C．92， 102
SEABORG，G，T．14．82，87，129，
131，132，159， 188
SEAMSTER，A． 72
SEN，N．V．107． 134
SEN，S．T． 113
SHAPIRO，G． 118
SHIH，S．51，92， 102
SHOTTER，A，C．69，73， 191
SIE，S．H． 54
SIMON，R．S． 51
SOBOTKA，L．G．92，99，100， 102
SOMERVILLE，L．P． 84
SPECHT，J．R． 189
STAKEMANN，R． 93
STAPLES，J． 187
STEIMBERG，E．P．131， 138
STEINER，H．24，118， 121
STELZER，H．E．116，137，138，195，
202， 204
STENLUND，E．108
STEPHENS，F．S． $8,51,53,92,102$
STEPHENSON，E．J． 189
STEVENSON，J．B．123，130，120， 127
STOCK，R．21，107．115，116，134， 137． 195
STOKSTAO，R，G．7， 67
STROEBELE，H．119， 195
SULLIVAN，J．D． 110
SUMNERER，K． 93
SWIATECKI，H．S． 147

STMDNS．J． 201
SYMOHS，T．J．H．67， 71

TANHKATA，I．109，111，118，121． 123
TARLE，G．106， 199
THDHAS，T．D． 94
TIEUJE，J．M． 142
TOMBRELLO，J．A． 65
TRRUTMARN，H． 93
TREYHAFT，R．H．124， 137
TUTLE，D．D． 199

VAM BIBBER，K． 124
VAMDENBOSCH，R， 94
VAH DERS，H．T．H．63， 75
VAZ，L．C． 89
HISKY，T． 108
VON ROSSEH，P．61， 75
VON ROSSEN，U． 61

WAMG，Y．S． 113
LARD，T．E．76， 110
HARNICK，A．I．138，202， 203
HATSOH，J． 75
NE日日，H．P． 94
WEIK，F．138，202，203，206
NEISS，H．S．157， 158
NELCH，R． 87
WESTFALL，G．D．45，107，134， 135
WIEDEHBECK，H．E．126， 196
WIEMAN，H．138，202， 203
WIL＿KE，W．W． 148
WILKIMS，B．D．131， 138
WIRTH，G． 93
HOLF，K．L． $107,115,116,119$ ， 134，195， 203
WOODHARD，D． 123
HOUTERS，J．H．57，58， 182
HOZNIAK，G．J．92，96，97，98，99， 100，102，103，104， 192
WU，X．L． 113
WYOLER，A．A． 184

YANG，F．C． 113
YAS゙rilta，5． 85,88

ZAJAC，E． 187
ZAJC．H．A． 110
ZARBAKHSH，F． 123
ZHANG，G．S． 113
ZISMAN，H．S． $38,72,73,89,94$

[^0]: F.e'. Nownick with the soattering chamber and garra-aniaotrofit se: ut izel
 in the Noretio-Diamond-Stephens cottaboration. Dote the mo =isizitizs

 -ver:ts.

[^1]:

[^2]: *Graduate students
 $\dagger_{\text {Undergraduate }}$ students

[^3]: alncli,des estimate for a-decay asymmetry.

[^4]: *LBL-11121. Presented at the 5th International Symposium on Polarization Phenomena in Nuclear Physics, Santa Fe, Mis, August 11-15, 1980.
 tDepartment of Physics, University of Manitoda Winnipeg, Manitoba R3T $2 N c$, Canada.

[^5]: Uperer Itmit．

 becribed for elue tent．
 ${ }^{c} \mathrm{cov}_{1}-\sigma_{4} / \theta_{e f}{ }^{\prime}$

[^6]: If we compare our data with the extended exchange model, we would expect the rate of energy loss per exchange to vary as ($\mathrm{D}_{\mathrm{L}} \mathrm{E}_{\mathrm{f}} \mathrm{E}_{\mathrm{re}}$) ${ }^{1 / 2}$, where E_{f} is the Fermi energy and Erel is the available kinetic energy at the tfine of exchange. Our data are plotted in Fig. 2 as a function of this quantity, with $E_{f}=\mathbf{4 0}$ MeV.

[^7]: *Condensed from Ref. 1.
 TOregon State University, Corvallis, Oregon.

 1. R. H. Landas and J. O. Rasmussen, Coments Nuc1. Part. Phys. 9, pp. 1-14 (1979).
[^8]: $a_{\text {Assuming bean }}$ stops in the target.
 bealculated using the ALICE compound nuclear particle evaporation code (Refercnce 3).
 ${ }^{C}$ Mone observed.

[^9]: *Condensed from LBL-11041.
 ton leave of absence from Institut fiir Theoretische Physik der Universität, 6900 Heidelberg, West Germany. Work supported in part by Bundesministerium für Forschung und Technologie, Mest Germany.

[^10]: 2. J. Knoll, Phys. Rev. [20, 773 (1979).
[^11]: *Department of Phy*ics, University of Bremen, Hest Germany.

[^12]: *Abstract of LBL-1098D (Dec. 1979).

[^13]: *Speakers are LBL staff unless otherwise indicated.

[^14]: *Speakers are LBL staff unless otherwise indicated.

