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Chapter 4
Equilibrium Theory of Bidensity
Particle-Laden Flows on an Incline

Sungyon Lee, Jeffrey Wong and Andrea L. Bertozzi

Abstract Thebehaviour of inhomogeneous suspensions in a viscous oil is relevant in
the context of oil spill and other oil-related disasters which may lead to the unwanted
mixture of sand grains and oil. This warrants the fundamental study of the dynamics
of solid particles in a thin film of viscous fluid. Specifically, sheared concentrated
suspensions in a viscous fluid are subject to a diffusive mechanism called shear-
induced migration that consists of “drift diffusion” and “self or tracer diffusion”.
Drift diffusion causes particles to move from high to low concentrations, while tracer
diffusion dictates mixing between particles of the same size. The latter mechanism
becomes important in polydisperse slurries. In this chapter, we incorporate the effects
of shear-induced migration and sedimentation to develop a model for the gravity-
driven thin film of bidensity suspensions.We use this mathematical model to validate
recent experimental results.

4.1 Introduction

Particle-laden flows are ubiquitous in nature and in industrial applications; however,
the nonlinear coupling between particles and fluid motion presents challenges in the
development of mathematical models. In the case of monodisperse slurries, there
have been advances both in experiments and modelling based on diffusive flux phe-
nomenology [12] and,more recently, suspension balance approach [17]. In particular,
[12] developed a diffusive model to justify the behaviour of sheared monodisperse
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suspensions in a Couette device [6]. In the presence of shear, particles undergo a
random walk that results in no net displacement. This source of diffusive flux is
called “shear-induced self or tracer diffusion” [12, 13]. In the case of non-uniform
concentrations in shear, particles tend to drift from regions of high to low particle
concentrations due to particle collisions, which is referred to as “drift diffusion” [13].
While effective shear diffusivity consists of both drift diffusion and aforementioned
tracer-diffusion, drift diffusion dominates in the case of concentrated monodisperse
suspensions.

While both diffusive flux models and suspension balance models have been suc-
cessful in capturing the particle migration behaviour under shear, they differ substan-
tially in their derivation of particle flux. The diffusive flux phenomenology consists
of semi-empirical laws that describe particle migration based on irreversible particle
collisions and does not account for the non-Newtonian viscosity of the particle-
fluid mixture. The suspension balance approach, on the other hand, relies on the
non-Newtonian normal stresses induced by shear, which give rise to the particle
migration. Therefore, viscously generated normal stresses are crucial in the suspen-
sion balance approach. In particular, the anistropic normal stresses have been shown
to be important in predicting correct secondary flows in a pressure-driven tube flow
[20]. Thus, the neglect of normal stress differences in the diffusive fluxmodel is prob-
lematic especially in the non-dilute concentration limit, as Couturier and co-authors
[3] experimentally demonstrated the significance of normal stress differences for the
volume fraction greater than 0.17.

Despite the apparent limitations, the diffusive flux approach is “contained” within
the suspension balance model and can yield the same set of equations in the unidirec-
tional, fully-developed flows [17]. For instance, Timberlake and Morris [24] exper-
imentally and theoretically studied the gravity-driven, free-surface flow containing
neutrally buoyant particles. They observed the deformation of the free surface and
particle migration, which sufficiently matched their mathematical model. Although
their model was based on the suspension balance approach, the resultant equations
for the flux of particles were essentially identical to those derived based on diffusive
flux approach of [16]. More recently, [21] observed the accumulation and depletion
of the particles on the advancing meniscus and found that, based on the suspension
balance model, this depended on the balance between gravitational flux and shear-
induced migration. This particular result corresponds exactly to the findings of [15]
who identified different particle regimes at varying inclination angles and particle
volume fractions based on the diffusive flux approach, further demonstrating the
validity of the simpler diffusive flux model in primarily unidirectional flows.

Contrary to themonodisperse case, tracer diffusion becomes important in polydis-
perse suspensions. Reference [25] investigated the resuspension of heavy particles in
a Couette device, with the addition of neutrally buoyant particles of the equal size. At
a given shear rate, they found that an increasing concentration of neutrally buoyant
particles caused the heavy particles to rise higher to mix with neutrally buoyant ones
on the free surface. Based on diffusive flux phenomenology, Tripathi and Acrivos
derived a continuum model to match the experimental observations and found that
the tendency of particle species to mix is attributed to tracer diffusivity.
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In the current work, we extend the equilibrium model of [15] to thin free surface
flows of bidensity suspensions. This equilibrium theory is a crucial component of the
dynamic problem, since the leading order dynamic equations have shock solutions
whose structure is determined by the equilibrium profiles [14, 26]. This warrants
a careful study of the equilibrium problem before proceeding to the dynamic case,
analogous to the work of [16]. Distinct from themonodisperse case, tracer diffusivity
is included in the bidensity model and compared to recent experimental results by
[9]. This work provides an important theoretical framework for segregating particles
of different densities, which has industrial applications.

This chapter is organized as follows. In Sect. 4.2, we introduce the governing
equations for bidensity suspensions and develop the equilibrium model by applying
lubrication approximations. In Sect. 4.3, we obtain the solution to the equilibrium
model for varying parameters to validate previous experimental results. The chapter
concludeswith the summary of results and discussion of future directions in Sect. 4.4.

4.2 Problem Formulation

We consider the dynamics of a bidensity slurry flowing down an incline, in which
the mixture consists of a viscous fluid with density ρl and viscosity μl and two
species of negatively buoyant particles (See Fig. 4.1). The two particle types have
uniform diameter d but variant densities, ρ1 and ρ2, such that ρ2 > ρ1 > ρl . The
local volume fractions of each species are denoted as φ1 and φ2, respectively, while
φ = φ1 + φ2 is the total volume fraction. By assuming a sufficiently small particle
size, the particle-fluid mixture is modelled as a continuum and is governed by the
following momentum equations:

ρ (∂t u + u · ∇u) = ∇ ·
(
−pI + μ(∇u + ∇u�)

)
+ ρg, (4.1)

where u and p are the velocity vector and pressure, respectively, and g denotes the
gravitational acceleration vector. As in [15, 16], the mixture density, ρ, is given by
ρ = ρ1φ1 + ρ2φ2 + ρl(1 − φ), while effective viscosity μ = μl (1 − φ/φm)−2,
where φm is the maximum volume fraction. In addition to momentum, we have mass
conservation of the mixture:

∂tρ + ∇ · (ρu) = 0. (4.2)

The velocity satisfies the no-slip condition (u = 0) on the bottom of the channel,
while the stresses vanish both in normal and tangential directions on the free sur-
face: n · (−pI + μ(∇u + ∇u�)

) = 0. The free surface also satisfies the kinematic
boundary condition, n · u = 0.
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The conservation equation for particles is given by

∂tφ + u · ∇φ + ∇ · J = 0, (4.3)

which accounts for the advection of particles due to flow (u · ∇φ) and particle
diffusion (∇·J),whereJ is the particle fluxvector that is semi-empirically constructed
[13, 19]. For particle-laden flows down an incline, effects of gravity and shear flow
govern the particle dynamics inside the thin film, leading to sedimentation [4] and
shear-induced migration [13, 19] of particles that opposes settling. The expressions
for J that account for these competing effects have been derived and experimentally
validated for the monodisperse case [2, 15, 16]. For a bidensity slurry in the same
geometry, the same physical effects of gravity and shear are present, with added
complexities due to the presence of two particle species. By combining previous
works [7, 15, 16, 25] and recent experimental results [10], we construct a new
particle flux vector J that accounts for the mixing and sedimentation of two particle
species at varying rates.

Based on the formulation by [22, 25], the flux of the i th particle species due to
sedimentation corresponds to

Jgrav,i = gd2φi

18μl

⎡
⎣M0(ρi − ρl) + MI

2∑
j=1

(ρ j − ρl)
φ j

φ

⎤
⎦ , (4.4)

where i = 1, 2. Thefirst term inEq. (4.4) refers to the self-mobility of particles, M0 ∼
1 − φ/φm [25]. The second contribution to sedimentation comes from interaction
mobility, MI ∼ f (φ) − M0, where the hindrance function f (φ) = μl(1− φ)/μ(φ)

[13, 15, 16]. The total flux due to sedimentation, Jgrav, is given by Jgrav = Jgrav,1 +
Jgrav,2.

As well as settling due to gravity, particles are subject to shear flow inside the
thin film and undergo two types of shear-induced diffusion processes [11, 13]. The
first type—shear-induced “drift” diffusion—refers to the net drift of particles from
the regions of high to low total particle concentration and also from high to low
shear stress [12, 19]. In the thin free-surface flows, this diffusive mechanism causes
particles to aggregate near the free surface where shear stress vanishes [2, 15, 16].
Since drift diffusion does not distinguish between particle types of equal size, we
use the empirical model for particle flux, Jdrift, as used in [2, 15, 16]:

Jdrift = −d2φ

4

[
Kc∇(γ̇ φ) − Kv

φγ̇

μ(φ)

dμ

dφ
∇φ

]
, (4.5)

where Kc and Kv are empirically determined constants, and γ̇ = 1
4‖∇u + ∇u�‖ is

the shear rate. The corresponding flux for each species is Jdrift,i = Jdriftφi/φ.
The second type of shear-induced diffusion is known as shear-induced “tracer”-

(or self-) diffusion [1, 5, 7, 13, 23, 25]. Distinct from drift diffusion, it refers to the
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random motion of particles in shear that occurs even in the absence of concentration
gradient and leads to zero net drift of particles. While tracer diffusion does not affect
φ, it governs how one particle species mixes with the other in bidensity suspensions,
resulting in the flux of individual species:

Jtracer,i = − γ̇ d2

4
Dtr(φ)φ∇

(
φi

φ

)
, (4.6)

where Dtr(φ) is the tracer diffusivity and dictates the extent of mixing in our model.
In the limit of dilute suspensions, [11, 13] proposed the empirical expression Dtr =
φ2/2. For large concentrations, numerical simulations and experiments [23] suggest
that the tracer diffusivity becomes constant beyond a value φtr ≈ 0.4. Therefore, we
use the expression: Dtr(φ) = 1

2 min{φ2, φ2
tr}.

Combining Eqs. (4.4)–(4.6) yields the total flux of the i th species, Ji ,

Ji = Jgrav,i + φi

φ
Jdrift + Jtracer,i , (4.7)

and the total flux J of both species simply corresponds to J = Jgrav + Jdrift. Notably,
tracer diffusion drops out of the total particle flux (i.e. Jtracer,1 + Jtracer,2 = 0),
justifying its neglect in modelling monodisperse slurries [2, 15, 16, 19]. In addition,
Brownian diffusion is not included in particle fluxes by assuming a large Péclet
number, or Pe = γ̇ d2/D � 1, where D is the solvent diffusivity.

4.2.1 Thin Film Approximations and Equilibrium Theory

A thin film geometry [18] gives us the following dimensionless variables:

(̂x, ẑ) = 1

H
(δx, z) , û = 1

U0

(
u,

w

δ

)
, ̂J = H2

d2U0

(
Jx

δ
, Jz

)
,

p̂ = H

μlU0
p, μ̂ = μ

μl
, ρ̂s,i = ρi − ρl

ρl
,

where H and L are the characteristic film thickness and axial length scale, respec-
tively, and U0 = H2g sin α/νl . Hats denoting the dimensionless quantities will be
subsequently dropped for brevity. In the thin film limit of δ ≡ H/L 	 1, the
momentum equation in the axial direction reduces to

σ ′ = −(1 + ρs,1φ1 + ρs,2φ2), (4.8)

where σ = μ(φ)∂u/∂z is the dimensionless shear stress, and the prime denotes
the derivative with respect to z. In addition, we assume δ 	 (d/H)2 	 1, which
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reduces Eq. (4.3) to J ′
z = 0 at leading order. This scaling indicates that particles must

rapidly equilibrate in the the z-direction [16]. Integrating J ′
z = 0 with respect to z

and applying Jz(z = 0) = 0 yields Jz = 0, or

0 = φσ ′ + σφ′
[
1 + c1

φ

φm − φ

]
+ c0(1 − φ)

[
ρs,1X + ρs,2(1 − X)

]
, (4.9)

where X ≡ φ1/φ, while c0 ≡ 2 cot α/(9Kc) and c1 ≡ 2(Kv − Kc)/Kc are constants.
As expected, Eq. (4.9) exactly matches the monodisperse model of [15, 16], when
X is set to 0 (i.e. φ1 = 0) or 1 (i.e. φ2 = 0). For equilibrium inside the thin film, we
also require zero net flux of each particle species in the z-direction, Jz,i = 0, and set
Jz,1φ2 − Jz,2φ1 = 0, which leads to

X ′ = c2
X (1 − X)

σ Dtr

(
φm

φm − φ

)
, (4.10)

where c2 = 2(ρs,2 − ρs,1) cot α/9.
The Eqs. (4.8)–(4.10) form a system of ODEs for the unknowns: φ, X and σ .

Following [16], we define the scaled height s = z/h, where h is the dimensionless
film thickness, so that φ̃(s) = φ(hs), X̃(s) = X (hs), and σ̃ (s) = σ(hs)/h; tildes are
subsequently dropped from the text. In addition, the average particle concentration
φ0 and proportion of lighter particles X0 correspond to:

φ0 =
∫ 1

0
φ(s)ds, X0 = 1

φ0

∫ 1

0
X (s)φ(s)ds. (4.11)

For given φ0 and X0 with 0 ≤ φ0 < φm, the system has a unique solution for
s ∈ [0, 1]. Solutions in Sect. 4.3 are computed via shooting in MATLAB, with an
inclination angle fixed at α = 30◦ unless otherwise noted.

4.3 Results

We begin by briefly reviewing the monodisperse theory described by [15]. For the
monodisperse system which consists of (4.9) and (4.8) with X = 0 or 1, there
is a critical particle concentration φc such that φ(s) is monotone increasing (i.e.
φ′ > 0) when φ0 > φc and monotone decreasing (i.e. φ′ < 0) when φ0 < φc.
The constant solution φ = φc separating the two regimes is an unstable equilibrium.
This bifurcation is illustrated in Fig. 4.2. In [15], the two regimes are referred to as
‘ridged’ and ‘settled’, respectively. Physically, ridged solutions describe aggregation
of particles at the fluid surface, while a settled solution describes particles settling to
the substrate, which leaves a clear fluid layer above. As there are two particle species
to consider here, we denote as φc,i the critical concentration for the i th species in the
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corresponding monodisperse problem (X = 1 for i = 1 and X = 0 for i = 2) and
note that φc,1 < φc,2 since the second particle is heavier. For α = 30◦, these values
are φc,1 = 0.459 and φc,2 = 0.521 based on [15].

For the bidisperse system, we begin by discussing the structure of X (s) and the
mixing behaviour between particle species. As s increases from 0 to 1, X (s) consists
of an interval with X ≈ 0, followed by a transition region centred at s = str , such
that X (str) = 1/2, and finally an interval with X ≈ 1. The ODE (4.10) can be
approximated near str as

X ′ ≈ C−1X (1 − X), (4.12)

which has an explicit solution, X (s) = 1 − (
1 + exp

( str−s
C

))−1
. Here C is the

constant given by evaluating all other variables at s = str:

C = 9 tan α

2(ρs,2 − ρs,1)
Dtr(φ(str))σ (str)

(
1 − φ(str)

φm

)
.

In order to quantify the amount of mixing between two particle species, we define
the width of the mixing layer, w, to be the interval for which 0.05 < X < 0.95.
Based on the solution to (4.12), we find that w ≈ 5.9C , valid for w 	 1. Since
the value of C primarily depends on tan α, it can be shown that the mixing layer
width, w, scales with tan α (Fig. 4.3, right), and is approximately linear where the
solution profiles are insensitive to changes in angle. This suggests that there will be
littlemixing for small inclination angles. Experimentally, [10] observed the bidensity
slurry at low inclination angles to stratify into three layers of heavy particles, light
particles, and clear fluid. This results in three distinct fronts flowing down the plane
(Fig. 4.1, bottom right). At higher inclination angles they observed a ‘ridged’ regime
with more mixing of particles, consistent with our theoretical predictions (Fig. 4.1,
top right).

In order to investigate the bifurcation behaviour of bidensity slurries, we now
consider the total concentration φ(s) and the individual concentrations, φ1(s) and
φ2(s). Analogous to the monodisperse system, we call a solution ‘settled’ if neither
species of particles are present up to the surface (i.e. φ = 0 for some s ∈ [0, 1]), and
‘ridged’ if particles (of either kind) aggregate at the surface (φ → φm as s → 1).
Like the monodisperse case, the settled regime (S) corresponds to the case where φ

is monotone decreasing. Monotonicity of solutions is important for analysis of the
dynamic problem, which motivates a careful description of the equilibrium profiles
in [26]. For the bidisperse system, φ is not necessarily monotonic in the ridged
regime, but the individual concentrations φ1 and φ2 undergo similar transitions from
decreasing to increasing as in the monodisperse case.Within the ridged regime, there
exist critical concentrations φA, φB and φC as functions of X0, such that the profiles
for φ, φ1, and φ2 change from decreasing to mixed signs to increasing. This further
partitions the ridged regime into three distinct sub-regions (RA, RB , and RC ), as
summarized in Fig. 4.4. We now discuss each region in greater detail.
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Fig. 4.1 (top left) Schematic of the experimental apparatus; (bottom left) The thin film of fluid
of ρl and μl that contains two particle species of equal diameter d and variant densities, such that
ρ2 > ρ1 > ρl . Two sets of experimental results are shown on the right. In the bottom right panel,
as time evolves (images from left to right), clear fingers form on the flow front, indicating that both
particle species have settled to the channel walls with a clear fluid layer on top that moves ahead.
On the other hand, the particles appear to remain aggregated and well-mixed on the front in the
‘ridged’ regime, as shown in the top right panel

0 0.5 1
0

0.2

0.4

0.6

0 0.5 1
0

0.2

0.4

0.6

Fig. 4.2 Transition from settled to ridged solutions in φ for the monodisperse system, for X = 1
(left) and X = 0 (right). The critical concentrations are φc,1 = 0.459 and φc,2 = 0.521

Settled (0 < φ0 < φA): In the settled regime, the heavy particles settle to the
substrate, with a layer of the lighter particles above, and then a clear fluid layer up to
the free surface. The upper bound for the settled region, φA decreases from φc,2 to
φc,1 as X0 increases from 0 to 1. If φ0 < φc,1, then the ODE system guarantees that
φ is monotonically decreasing regardless of X0.
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Fig. 4.3 Dependence of the width w of the mixing region (where 0.05 < X < 0.95) on tan α; the
relationship, shown on the left, is approximately linear. The right panel shows the X profiles for
α = 10, 30, 50◦

Fig. 4.4 The left panel shows a phase diagram of solution regimes determined by total and relative
concentrations (X0, φ0), separated by transition curves φA, φB and φC . Profiles in each region are
shown below, for total concentration φ (left) and for the individual concentrations φ1, φ2

Ridged A (φA < φ0 < φB): When φc,1 < φ0 < φc,2, the monodisperse theory
suggests that the lighter species φ1 is more likely to aggregate on the free surface
(φ1 → φm as s → 1) due to shear-induced migration while φ2 favours settling.
Therefore, in this regime, φ1 is monotonically increasing (i.e. φ′

1 > 0) with the
lighter particles mostly confined to a top region [str, 1]. The heavier particles settle
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so that φ′
2 < 0, with negligible but non-zero concentration beyond str . Focusing

on the top layer [str, 1] where X ≈ 1, we view this as a perturbed version of the
monodisperse bifurcation. As φ0 is increased across φA, the average concentration
of lighter particles in [str, 1] becomes large enough to produce a ridged solution.

Ridged B (φB < φ0 < φC ): If φ0 > φc,2, then φ is always monotone increasing
(φ′ < 0), which defines this second ridged regime, RB . The heavier particles still
settle to the substrate as in the RA case, so that φ′

2 < 0. Note that, in the absence
of tracer diffusivity (no mixing layer), φB = φc,2, unless X = 1 exactly, leading to
φB = φc,1. This (discontinuous)φB closely approximates the actual curve in Fig. 4.4,
which curves due to the mixing of particle layers but retains the same endpoints.
There are two situations for φ0 < φc,2 in which tracer diffusion can produce a ridged
solution. First, if φ0 is very close to φc,2, then even a small concentration of lighter
particles can perturb the otherwise settled solution in the heavier layer so that φ′ > 0.
Second, if X0 is close to 1 and φ0 > φc,1, then there is no well-defined settled layer
of heavier particles, so the ridged behaviour of the lighter layer ensures that φ′ > 0.

Ridged C (φC < φ0 < φm): For sufficiently large φ0, the average concentration
of φ2 near s = 0 (where X ≈ 0) is large enough to produce an initially increasing
solution in φ2. Thus, distinct from RA and RB , the heavier particles tend to migrate
away from the substrate in this last ridged regime. However, the lighter particles
displace the heavier particles near the free surface so that φ2 → 0. Hence φ2 is still
not monotone increasing—it eventually decreases sharply to nearly zero around str .

4.4 Conclusions

The same pattern of transitions is also observed for fixed φ0 with varying X0 and α,
both experimentally and theoretically. As with increasing φ0, an increase in α has the
effect of altering the balance of fluxes to favour shear-induced migration, in this case
by reducing the normal component of gravity [15]. The previous discussion applies
to the (X0, α) plane as well, and, in particular, there is a critical αA(X0), analogous to
φA(X0), separating settled and ridged solutions. The predicted bifurcation is shown in
Fig. 4.5 along with experimental results [10] identifying settled or ridged behaviour.
Experiments to date have not measured the particle concentrations inside the thin
film and thus do not distinguish between different theoretically predicted types of
ridged behaviour. Overall, the current theory captures the bifurcation curve obtained
experimentally, although the critical angles predicted by the model are greater than
what is measured in the experiment by about five degrees. This discrepancy can
be attributed primarily to the value of the empirical parameter Kc. While we based
the value of Kc on [15, 16], the types of beads used in [10] differ slightly in size
and texture from the previous experiments and warrant further experiments to better
estimate Kc.

In this chapter, we derive a diffusivemodel of bidensity suspensions flowing down
an incline and use it to describe the normal equilibrium of the suspensions inside the
thin film. The mixture consists of the viscous fluid of density, ρl , and two negatively
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Fig. 4.5 (Left) Bifurcation αA(X0) (dashed line) between settled and ridged regimes for fixed
φ0 = 0.4 with varying α and X0. The symbols indicate experimental results identified as ridged
(star) or settled (circle). The triangles mark results for which the particles did not equilibrate in the
duration of the experiment. (Right) Photographs of the experiment in the settled and ridged regimes
are shown on the right for experimental parameters, (i) α = 20◦, X0 = 0.5 and (ii) α = 50◦,
X0 = 0.5

buoyant particle species of the equal diameter, d, and variant densities, such that
ρ2 > ρ1 > ρl . In the monodisperse case of the same geometry, heavy particles in the
viscous fluidwere shown to either settle rapidly to the channelwalls (‘settled’ regime)
or collect on the free surface (‘ridged’), depending on the channel inclination angle
and the total volume fraction. This bifurcation behaviourwas explained by [2, 15, 16]
by balancing particle fluxes due to sedimentation and drift diffusion. The analogous
bifurcation behaviour was observed in bidensity suspensions experimentally by [10]
and is explained by our current equilibrium model.

Notably, additional complexities arise due to the presence of a second particle
species. For instance, the ridged regime in the bidensity suspensions now consists
of three sub-regimes (RA, RB , and RC ) that display different profiles of φ1 and φ2,
depending on the relative particle volume fraction, X0. It would be interesting to
explore the sub-regimes in future experiments, which would require new experi-
mental techniques to measure the volume concentration of different particle species
through the layer. In addition, themixing behaviour between particle species is inves-
tigated by incorporating tracer diffusion in our model. This mixing effect is shown
to depend on the inclination angle, such that lower angles lead to less mixing. This
behaviour has been observed experimentally in [10] where they found the biden-
sity mixture to stratify into separate layers forming three distinct fronts at smaller
inclination angles. Therefore, our equilibrium model and experimental observations
suggest that particle segregation is more pronounced in the ‘settled’ regime, while
particles remain well-mixed in the ‘ridged’ regime.

Particle segregation is fundamentally important in oil refinement, waste-water
treatment, and mineral processing via a spiral separator. However, these applications
lack quantitative models that are important for predictive design. Recently, [8, 9]
demonstrated that the equilibrium model for monodisperse slurries on an incline is
valid in spiral geometries to leading order and derived a simple steady state model.
We believe the present model could lead to a valid equilibrium theory for more
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general polydisperse slurry segregation models in helical domains. Furthermore,
such equilibrium models are the building blocks for the development of implicit flux
functions for dynamic transport models [14, 16, 26]. The current bidensity theory
may lead to new dynamic models that could predict multilayer stratified flows as
observed in [10].
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