Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Microbial engineering of nano-heterostructures; biological synthesis of a magneticallyrecoverable palladium nanocatalyst

Permalink https://escholarship.org/uc/item/4bh8d18g

Author

Coker, V. S.

Publication Date 2010-04-30

Peer reviewed

1	Microbial engineering of nano-heterostructures; biological synthesis of a
2	magnetically-recoverable palladium nanocatalyst
3	
4	Victoria S Coker ^{1*} , James A Bennett ² , Neil Telling ¹ , Torsten Henkel ¹ , John M Charnock ¹ ,
5	Gerrit van der Laan ^{3,1} , Richard AD Pattrick ¹ , Carolyn I Pearce ¹ , Richard S Cutting ¹ ,
6	Ian J Shannon ² , Joe Wood ⁴ , Elke Arenholz ⁵ , Ian C. Lyon ¹ & Jonathan R. Lloyd ¹
7	
8	¹ School of Earth, Atmospheric & Environmental Sciences and Williamson Research
9	Centre for Molecular Environmental Science, University of Manchester, Manchester M13
10	9PL, UK
11	² School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
12	³ Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
13	⁴ School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
14	⁵ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
15	USA
16	*vicky.coker@manchester.ac.uk
17	
18	Abstract
19	Precious metals supported on ferrimagnetic particles form a diverse range of
20	catalysts. Here we show a novel biotechnological route for the synthesis of a
21	heterogeneous catalyst consisting of reactive palladium nanoparticles arrayed on a
22	biomagnetite support. The magnetic support was synthesised at ambient temperature by
23	the Fe(III)-reducing bacterium, Geobacter sulfurreducens, and facilitated ease of

24 recovery of the catalyst with superior performance due to reduced agglomeration. Arrays of palladium nanoparticles were deposited on the nanomagnetite using a simple one-step 25 26 method without the need to modify the biomineral surface most likely due to an organic 27 coating priming the surface for Pd adsorption. A combination of EXAFS and XPS showed the particles to be predominantly metallic in nature. The Pd⁰-biomagnetite was 28 29 tested for catalytic activity in the Heck Reaction coupling iodobenzene to ethyl acrylate 30 or styrene and near complete conversion to ethyl cinnamate or stilbene was achieved 31 within 90 and 180 min, respectively.

32

33 Introduction

34 Nanoparticles make highly desirable catalysts, often offering unique properties 35 linked to their very high surface area. Palladium, placed on a suitable support material 36 makes an exceptional catalyst well known for mild reaction conditions and exhibiting 37 excellent compatibility with many polar functional groups and a high degree of chemo-, regio- and even stereoselectivity¹. Magnetic nanoparticles are particularly useful support 38 39 materials for catalysts as they can combine the advantages of high dispersion through a liquid with ease of recovery ^{2,3}. Thus, coating magnetic nanoparticles with precious 40 metals such as palladium results in a highly functional catalyst ⁴⁻⁷. Conventional chemical 41 42 approaches to make these materials have achieved varying degrees of success, as loss of 43 precious metal during recycling can be a problem, and complicated protocols are often employed to functionalise the support material surface ^{3,4,6,8-10}. 44

45

46	Building on earlier work ¹¹ , recent studies have revealed biosynthetic routes can
47	be harnessed to make nanoparticles of magnetite (Fe ₃ O ₄) efficiently and at low cost with
48	control over the magnetic properties by substitution of transition metals other than iron
49	into the spinel ferrite structure ¹²⁻¹⁴ . Two routes are possible for the biological synthesis
50	of nanoscale magnetite. In the first, magnetotactic bacteria synthesise intracellular
51	crystals of single domain magnetite. These are used by the bacteria to orientate the cell
52	within the Earth's magnetic field, helping the organism to guide itself to the sediment-
53	water interface, its preferred ecological niche ^{15,16} . However, for this route growth yields
54	and indeed, final yields of intracellular magnetite are very low. In the second route,
55	dissimilatory Fe(III)-reducing bacteria such as Geobacter species can produce copious
56	quantities of extracellular nanoscale magnetite through the respiration of poorly
57	crystalline Fe(III) oxides and oxyhydroxides ¹¹ . These specialist anaerobic bacteria live in
58	environments depleted of oxygen and therefore conserve energy for growth by
59	transferring electrons from the oxidation of simple carbon sources, such as acetate, to
60	Fe(III) or Mn(IV)-bearing minerals ¹⁷ . This mechanism of nano-magnetite formation
61	involves the extracellular reduction of Fe(III)-oxyhydroxides causing the release of
62	soluble Fe(II), resulting in complete recrystallisation of the amorphous mineral into the
63	new, relatively reduced, highly crystalline magnetic phase ^{18,19} . Especially relevant to
64	manufacturing, these enzyme-driven reactions take place on the scale of hours, at ambient
65	pressures and temperatures and use inexpensive feedstocks ¹⁸ . Thus, nanoscale
66	biomagnetite is a potential support material for industrial catalysts, especially if
67	simplified protocols for functionalising the bionanomineral surface can be developed.
68	

69	Here we describe the bio-production of such a catalyst comprising of
70	biomagnetite functionalised with palladium nanoparticles and involving a minimal level
71	of downstream processing. The effectiveness of this catalyst is demonstrated for the Heck
72	coupling of iodobenzene with styrene or ethyl acrylate. Heck chemistry is of wide-
73	ranging industrial importance, providinga single step route to the arylation, alkylation or
74	vinylation of various alkenes ^{20,21} . Traditionally a palladium-phosphine catalyst is used,
75	although a large amount of literature is devoted to the study of a variety of different
76	catalysts for these reactions ^{20,22} . This work opens the door to the development of an
77	energy efficient, environmentally friendly route to manufacture novel magnetic
78	heterostructures which can be employed in a wide range of applications.
79	
80	Main text
80 81	Main text A biogenic nanoscale magnetite support was first produced by anoxic washed cell
81	A biogenic nanoscale magnetite support was first produced by anoxic washed cell
81 82	A biogenic nanoscale magnetite support was first produced by anoxic washed cell suspensions of <i>Geobacter sulfurreducens</i> challenged with Fe(III)-oxyhydroxide, an
81 82 83	A biogenic nanoscale magnetite support was first produced by anoxic washed cell suspensions of <i>Geobacter sulfurreducens</i> challenged with Fe(III)-oxyhydroxide, an electron donor (sodium acetate) and a redox mediator [9,10-anthraquinone-2,6-
81 82 83 84	A biogenic nanoscale magnetite support was first produced by anoxic washed cell suspensions of <i>Geobacter sulfurreducens</i> challenged with Fe(III)-oxyhydroxide, an electron donor (sodium acetate) and a redox mediator [9,10-anthraquinone-2,6- disulphonate (AQDS)]. After approximately 8 h, the Fe(III)-oxyhydroxide had been
81 82 83 84 85	A biogenic nanoscale magnetite support was first produced by anoxic washed cell suspensions of <i>Geobacter sulfurreducens</i> challenged with Fe(III)-oxyhydroxide, an electron donor (sodium acetate) and a redox mediator [9,10-anthraquinone-2,6- disulphonate (AQDS)]. After approximately 8 h, the Fe(III)-oxyhydroxide had been completely converted to magnetite. Production of the functionalised Pd-coated magnetite
 81 82 83 84 85 86 	A biogenic nanoscale magnetite support was first produced by anoxic washed cell suspensions of <i>Geobacter sulfurreducens</i> challenged with Fe(III)-oxyhydroxide, an electron donor (sodium acetate) and a redox mediator [9,10-anthraquinone-2,6- disulphonate (AQDS)]. After approximately 8 h, the Fe(III)-oxyhydroxide had been completely converted to magnetite. Production of the functionalised Pd-coated magnetite was concluded through the addition of a solution of NaPdCl ₄ to the water-washed nano-
 81 82 83 84 85 86 87 	A biogenic nanoscale magnetite support was first produced by anoxic washed cell suspensions of <i>Geobacter sulfurreducens</i> challenged with Fe(III)-oxyhydroxide, an electron donor (sodium acetate) and a redox mediator [9,10-anthraquinone-2,6- disulphonate (AQDS)]. After approximately 8 h, the Fe(III)-oxyhydroxide had been completely converted to magnetite. Production of the functionalised Pd-coated magnetite was concluded through the addition of a solution of NaPdCl ₄ to the water-washed nano- magnetite suspension under an anoxic atmosphere (N ₂ :H ₂ =97%:3%); optimisation

91	Detailed examination was undertaken of a nano-magnetite functionalised with a
92	\sim 5 mol% Pd loading, produced by mixing the Pd(II) solution and biomagnetite for 12 h
93	prior to washing in deionised water. Transmission electron microscope (TEM) images of
94	the material produced before (Fig 1a) and after (Fig 1b) precipitation of Pd onto the
95	surface of biomagnetite are shown. Fig. 1(a) shows the magnetite to have a consistent
96	particle size range of 20 nm to 30 nm. However, after addition of Pd, two sizes of particle
97	became clearly visible; the high-resolution inset in Fig. 1b shows how smaller particles
98	(~5 nm) are attached to the larger particles (~20 nm). Energy dispersive X-ray (EDX)
99	analysis using a relatively unfocussed beam showed the bulk sample (Fig 1b) to contain
100	~3.5 at% Pd. Using an EDX spot size of 5-6 nm, analyses (Fig 1b inset, point 1) indicated
101	that the larger particles contained less than 1 at% Pd whereas analyses centred on the
102	smaller particles (Fig 1b inset, point 2) suggested that they were enriched for the precious
103	metal (9-10 at% Pd). These results indicate that the larger particles are the biomagnetite
104	crystals decorated with small Pd particles. Both small and large particles displayed
105	continuous lattice fringes, indicative of well-crystalline single crystals. TEM selected
106	area electron diffraction (SAED) analysis (Fig. 1c) of the particles with supporting data
107	from powder X-ray diffraction (PXRD) (Fig. 1d) confirmed that the material contained
108	Bragg reflections consistent with the presence of magnetite with less pronounced
109	reflections consistent with Pd metal; the latter are broader than those for magnetite owing
110	to their smaller particle size. Crystallite size was estimated by applying the Scherrer
111	equation to the (311) peak of magnetite in Fig. 1(d) which resulted in a mean crystallite
112	size of 27.2 nm consistent with the size estimate from electron microscopy imaging. In
113	addition, although much weaker it was possible to obtain an estimate of the Pd crystallite

size from the Pd (311) peak which gave a value of ~5 nm, again in good agreement with
TEM images.

116

117 In most examples of supported Pd catalyst manufacture, an organic ligand or silica shell is used to aid attachment of the Pd to the support ^{4,5} for example 3-118 aminopropyl triethoxysilane (APTS)⁵. However, in the case of biogenic magnetite no pre-119 120 coating with a ligand was required to aid attachment of Pd. Thus, to characterise the 121 surface of biogenic magnetite, samples prior to Pd(II) addition were analysed using Time-122 of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), as this technique is very 123 sensitive to both organic and inorganic compounds. Images of different secondary ions 124 (SI) associated with either Fe, Al or organic material on the surface of a washed biogenic 125 nanomagnetite (Fig. 2(a)) were compared to the maps from a synthetically produced 126 nanomagnetite (Alfa Aesar, Heysham, UK) (Fig. 2(b)). Fig. 2 illustrates that there is a 127 significant quantity of organic material associated with the biogenic magnetite, as the 128 representative secondary ion images of organic molecules spatially correlate with the Fe 129 map, whereas the inorganic magnetite showed no significant organic signature 130 corresponding to the spatial distribution of Fe. Depth profiling of the organic layer using 131 C_{60} primary ions (PI) indicated that the organic layer is indeed a coating on the nanomagnetite. One bombardment of $\sim 10^{15}$ PI/cm² resulted in a decrease of the SI-signals 132 133 associated with the organic material by a factor of approximately 100 (Fig 2(c)) whereas 134 the SI-signals associated with the nanomagnetite stayed almost constant. Some of the 135 secondary ion ratios for the Fe-bearing clusters in Fig 2(c) are below a value of one, as 136 ionisation efficiencies change slightly with decreasing amounts of organic material. The

presence of an organic coating explains the ability of the nanomagnetite to adsorb Pd
without the need to pre-coat the washed nanoparticles prior to introducing the Pd
solution. A likely source of the organic material is extracellular polymeric substance
(EPS), a common product of bacterial pure cultures and communities, as this has
previously been found bound to biogenic uranium nanoparticulate material²³. We are not,
however, excluding the presence of other cell exudates or constituents released after lysis
of dead cells.

144

Using X-ray absorption (XA) spectroscopy, the Fe K-edge absorption spectra of 145 146 biomagnetite before and after the addition of Pd were collected to provide the extended 147 X-ray absorption fine structure (EXAFS) [Fig. 3a (i, ii); Table 1] and their corresponding 148 Fourier transform [Fig. 3b (i, ii); Table 1]. The EXAFS data provided an excellent fit for 149 a magnetite structure for both samples, with the bond lengths for the tetrahedral (T_d) and 150 octahedral (O_h) sites showing slight shortening after addition of Pd from 1.85 to 1.80 Å 151 and from 2.03 to 2.00 Å, respectively. Incorporating Pd atoms did not improve the fit, 152 indicating that the nanoparticulate Pd attached directly to the iron cations in magnetite or 153 via bridging oxygens was below the limit of detection. XA was additionally used to 154 obtain the Fe $L_{2,3}$ -edge within a magnetic field and thus provide the X-ray magnetic circular dichroism (XMCD) difference spectra of these samples (Fig. 4a). The Fe $L_{2,3}$ -155 156 edge XMCD can distinguish between the three Fe cation environments present in ferrite 157 spinel structures to a depth of ~ 65 Å as the intensities of the peaks labelled in Fig. 3a(i) relate to the amount of $Fe^{2+}O_h$ (octahedral), $Fe^{3+}T_d$ (tetrahedral), and $Fe^{3+}O_h$ 158 respectively (see ²⁴⁻²⁶ for details). Fig. 4a(i) displays the Fe $L_{2,3}$ -edge XMCD spectrum for 159 biomagnetite without addition of Pd that after fitting gave an Fe^{2+}/Fe^{3+} ratio of 0.64, 160

161 indicating an excess of Fe^{2+} compared to a typical stoichiometric magnetite which would 162 have a ratio of 0.50, consistent with previous results for biogenic magnetites ^{27,28}. The 163 addition of Pd resulted in an increase in the amount of Fe^{2+} , forming a spinel with a 164 Fe^{2+}/Fe^{3+} ratio of 0.70 (Fig. 3b). The reduction of Fe^{3+} to Fe^{2+} in the spinel relates, most 165 likely, to the ability of Pd⁰ nanoparticles to absorb large quantities of hydrogen which 166 then interacts with the outer Fe atoms causing reduction to Fe^{2+} .

167

168 EXAFS and X-ray photoelectron spectroscopy (XPS) were used to determine the 169 nature of the Pd particles deposited on the surface of the magnetite. EXAFS and the 170 related fourier transform from the Pd K-edge [Fig. 3(a,b)(iv)] for Pd-biomagnetite could 171 be fitted with 5 coordination shells of atoms the first shell containing 12 Pd scatterers in at 2.74 Å and the second shell 6 Pd scatterers at 3.84 Å (see Table 1); these data have an 172 173 excellent correspondence to values for Pd metal foil [Fig. 3(a,b)(iii)]. Fitting the Pd 3d 174 XPS spectrum (Fig. 4b) indicated that the main Pd peak had a binding energy of 335.3 eV 175 with a minor peak (6% intensity) at a binding energy of 336.8 eV. These compare well with literature values that show the main peak to be Pd^{0} and the weak peak to be a 176 second phase that may be PdO or PdO_2^{30} . Pd-oxide could be present due to either 177 178 oxidation of the surface of the metallic Pd or the Pd nanoparticles could be attaching to 179 the magnetite via 'bridging' oxygens. Additional XPS data (not shown) indicated that the 180 surface of the nanoparticles had an Fe:Pd ratio of 1.00:0.22. Thus the TEM, XAS and XPS data are consistent and confirm the presence of Pd⁰ nanoparticles attached to a 181 182 biomagnetite support. Samples were kept under anoxic conditions throughout the

preparation and measurement when using the surface sensitive techniques XMCD andXPS to ensure that the samples were not air oxidised.

185

186 The definitive test of the usefulness of the 5 mol% Pd-coated biomagnetite is its 187 catalytic potential and therefore Heck Reaction coupling of iodobenzene to styrene or 188 ethyl acrylate was performed. Identical catalytic testing was also carried out on colloid stabilised nanoparticulate palladium³¹⁻³³ as a means of comparing the Pd-coated 189 190 biomagnetite to a highly active conventional catalyst. The Pd-coated biomagnetite was 191 found to be active in the coupling of both olefins, with the complete conversion of the 192 iodobenzene (plus ethyl acrylate or styrene) to ethyl cinnamate or stilbene within 90 and 193 180 min, respectively. Rates of reaction were equal or superior to those obtained with an 194 equimolar amount of Pd from the colloidal palladium catalyst. However, the advantage of 195 the magnetite-based catalyst was that it could be readily recovered at the end of the 196 reaction by simply decanting the solution from the reaction vessel while retaining the 197 solid catalyst by applying a magnetic field to the base of the flask. The solid was washed 198 and dried before use in subsequent reactions.

199

Successive runs were performed for the Heck coupling of iodobenzene and ethyl acrylate to test the Pd-coated magnetite for recyclability. Although a small decrease in initial reaction rate was observed in each successive cycle, virtually quantitative conversions were reached in 120 min for each run, up to a fourth cycle (Fig. 5), an improvement on some literature values for conventional catalysts ⁵. These experiments were conducted without attempting to exclude air and the decrease in activity is attributed

206 to the loss of a small amount of material due to oxidation of some of the magnetite 207 support to a non-magnetic phase material which was not recovered between runs, rather 208 than direct loss of Pd to solution. Indeed, ICP-AES analysis of the supernatant in each 209 cycle confirmed that there was negligible loss of Pd or indeed Fe to solution (data not 210 shown). By comparison although the palladium colloids remained catalytically active for 211 a second cycle of the ethyl acrylate coupling the halide conversion was only 89 % 212 compared to > 99% for Pd-coated biomagnetite (Fig. 5). In addition more than 75% of 213 the mass of the catalyst was lost during the recovery step, most likely due to the tertiary 214 butyl ammonium bromide capping layer dissolving in the solvent. This would lead to the 215 remaining palladium aggregating, reducing the active surface area substantially. Further 216 recycling after the second run was unfeasible due to the very low mass of remaining 217 material.

218

219 These results demonstrate that a novel biomagnetite-supported Pd-nanoparticle 220 catalyst has several major advantages over conventional colloidal Pd catalysts. First, 221 recovery and recycling is facile and, second, the biomagnetite support keeps the Pd 222 dispersed and prevents it from agglomerating and losing vital surface area. The 223 preparation method, apart from its novelty, provides an organics-coated ferrite particle in 224 a one-step process, allowing Pd nanoparticles to be attached to the support material 225 without further processing. Bacterial production is a low cost environmentally-friendly 226 biotechnological route of manufacture, which opens up a route to the manufacture of 227 other precious metal nanocatalysts. Recent success at applying gold and platinum derived 228 materials to biogenic magnetite as supported nanoparticles (unpublished data) indicates

the versatility of bacterial production of nanocatalysts, which could be applied to a widerange of catalytic reactions.

231

232

233 Methods

234 As previously described, magnetite production was achieved by the reduction of Fe(III)-oxyhydroxide in the presence of AODS using G. sulfurreducens 13 , under an 235 atmosphere of N₂–CO₂ (80:20). Bottles were incubated in the dark at 30 \degree C for two days 236 237 after which magnetite had been produced. The resulting magnetite was washed twice in 238 degassed deionised water and then re-suspended in water using its magnetic properties to 239 separate the mineral from the supernatant. An aliquot of a solution of sodium 240 tetrachloropalladate (Na₂PdCl₄, Sigma-Aldrich CAS no. 13820-53-6) was then added so 241 that the final concentration of Pd was 5% by mass of the magnetite. The magnetite suspension was left overnight in a shaking incubator at 150 rpm and 20°C. The sample 242 243 was then washed again twice using degassed, distilled deionised water twice before 244 drying under anoxic conditions.

245

The Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) analyses were carried out using the IDLE instrument³⁴ which was equipped with a C_{60} primary ion gun³⁵. Chemical damage by C_{60} primary ions is far less than by any other primary ion species so that depth profiling of organic samples becomes feasible³⁶. Analysis of inorganic material is also improved³⁷ enabling comprehensive investigation of mixed samples. Only a few atomic layers are sputtered during each measurement making TOF-

252 SIMS an ideal method to study thin layers on sample surfaces with sensitivities high 253 enough to analyze trace element abundances. As the beam is rastered over the measured 254 area a complete mass spectrum is recorded at each point allowing for comprehensive 255 offline analysis. Secondary ion distribution images have been reconstructed for all 256 interesting mass intervals and background-corrected count integrals for all these mass 257 intervals have been used for quantitative analysis. The magnetite samples have been 258 mounted on Al stubs in a thick layer of around one hundred micro-metres and analyses 259 have been carried out with a lateral resolution of 2µm and a field-of-view of 260 $480 \times 365 \mu m^2$.

261

262 X-ray absorption (XA) spectra were collected for the Fe and Pd K edges on 263 beamline 9.3 at the Synchrotron Radiation Source (SRS), Daresbury Laboratory. A 264 double crystal Si(311) monochromator was used, detuned to 70% transmission for 265 harmonic rejection. Pd K-edges were collected at 80 K in fluorescence mode using a 9-266 element Ge detector. Fe K-edges and a standard palladium foil were collected at 80 K in 267 transmission mode. Background subtracted EXAFS spectra were analyzed in EXCURV98 using full-curved-wave theory as described in Henderson et al. $(2007)^{38}$, which allows the 268 269 proportion of metal in each site to be refined as a single parameter. The metallic-phase Pd 270 K-edge spectra were analysed in EXCURV98 using a model based on the crystal structure of Pd³⁹ the Fermi energy correction and the absorber-scatterer distances and 271 272 Debye-Waller factors were refined to minimise a least squares residual.

273

274	XA spectra for XMCD were collected on beamline 4.0.2 at the Advanced Light
275	Source (ALS), Berkeley, CA, using the octopole magnet endstation ⁴⁰ . Powders were
276	mounted on carbon tape attached to the sample manipulator and kept in O ₂ -free
277	conditions throughout. XA was monitored in total-electron yield mode, which gives an
278	effective probing depth of ~4.5 nm. At each energy point the XA was measured for the
279	two opposite magnetisation directions by reversing the applied field of 0.6 T. The XA
280	spectra of the two magnetisation directions were normalised to the incident beam
281	intensity and subtracted from each other to give the XMCD spectrum ²⁴ . Spectra were
282	fitted by means of a non-linear least-squares analysis, using calculations for each of the
283	Fe sites ²⁴ . In these calculations, as described elsewhere ⁴¹ , the Hartree-Fock Slater
284	integrals for the $3d-3d$ and $2p-3d$ Coulomb and exchange interactions were scaled to 70%
285	and 80%, respectively, and the crystal fields for the O_h and T_d sites were taken to be
286	10Dq = 1.2 eV and -0.6 eV, respectively. The calculated spectra were convoluted by a
287	Lorentzian of Γ = 0.3 (0.5) eV for the L_3 (L_2) edge to account for intrinsic core-hole
288	lifetime broadening and by a Gaussian of $\sigma = 0.15$ eV to account for instrumental
289	broadening.

TEM was conducted using a Phillips/FEI CM200 equipped with a field emission Gun, EDX system (Oxford Instruments UTW ISIS) and a Gatan imaging filter. All TEM images presented here are bright-field images obtained using an operating beam voltage of 200 keV. Selected area electron diffraction (SAED) patterns were acquired using an appropriate diffraction aperture. A droplet of washed sample was placed on a carbon grid (Agar Scientific) and allowed to dry before imaging.

298	X-ray photoelectron spectroscopy (XPS) data were recorded using a Kratos Axis
299	Ultra employing a monochromated Al $K\alpha$ X-ray source and an analyser pass energy of
300	20eV, resulting in a total energy resolution of ~0.9eV. Uniform charge neutralisation of
301	the photoemitting surface was achieved by exposing the surface to low energy electrons
302	in a magnetic immersion lens system (Kratos Ltd.). The system base pressure was 5×10^{-10}
303	¹⁰ mbar. All samples were dried anaerobically and the resulting powders were loaded into
304	the spectrometer via a dry nitrogen glove box to avoid exposure to atmospheric oxygen.
305	Photoelectron binding energies (BE) were referenced to C1s adventitious carbon
306	contamination peaks set at 285eV BE. The electron energy analyser was calibrated using
307	elemental references: Au4 $f_{7/2}$ (83.98eV BE), Ag3 $d_{5/2}$ (368.26eV BE) and Cu2 $p_{3/2}$
308	(932.67eV BE). An appropriate (Shirley) background was removed from all spectra ⁴² .
309	
309 310	To test the catalytic properties of the Pd-coated biomagnetite dry DMF (15 mL),
	To test the catalytic properties of the Pd-coated biomagnetite dry DMF (15 mL), 5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and
310	
310 311	5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and
310311312	5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and trienthylamine (0.21 mL, 1.5 mmol) were added to a 2-necked round bottomed flask,
310311312313	5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and trienthylamine (0.21 mL, 1.5 mmol) were added to a 2-necked round bottomed flask, equipped with reflux condenser under a nitrogen atmosphere, and the mixture heated to
 310 311 312 313 314 	5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and trienthylamine (0.21 mL, 1.5 mmol) were added to a 2-necked round bottomed flask, equipped with reflux condenser under a nitrogen atmosphere, and the mixture heated to 120 °C with stirring. Olefin substrate (1.5 mmol) was added and the mixture stirred at 120
 310 311 312 313 314 315 	5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and trienthylamine (0.21 mL, 1.5 mmol) were added to a 2-necked round bottomed flask, equipped with reflux condenser under a nitrogen atmosphere, and the mixture heated to 120 °C with stirring. Olefin substrate (1.5 mmol) was added and the mixture stirred at 120 °C under nitrogen. Samples were taken from the reaction periodically for analysis by high
 310 311 312 313 314 315 316 	5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and trienthylamine (0.21 mL, 1.5 mmol) were added to a 2-necked round bottomed flask, equipped with reflux condenser under a nitrogen atmosphere, and the mixture heated to 120 °C with stirring. Olefin substrate (1.5 mmol) was added and the mixture stirred at 120 °C under nitrogen. Samples were taken from the reaction periodically for analysis by high performance liquid chromatography using a Dionex Summit HPLC (with Chromeleon

320	gradient of 100 % water to 100 % MeCN over 40 min, hold for 10 min, and then back to
321	100 % water for 10 min. At the end of the reaction, the mixture was allowed to cool to
322	room temperature before decanting the solution from the flask whilst retaining the
323	catalyst by applying a magnetic field to outside of the flask. The solid was washed (5 mL
324	DMF followed by 5 mL acetone) and the solid dried for use in the next run.
325	
326	Acknowledgements
327	This work was supported by the EPSRC grants EP/D057310/1 & EP/D058767/1 and
328	BBSRC grant BB/E003788/1. We would like to thank P Wincott for XPS analysis, M
329	Ward for TEM support and J Waters for XRD support. We thank the STFC, Daresbury
330	for beamtime and S Fiddy for assistance with EXAFS. The Advanced Light Source is
331	supported by the Director, Office of Science, Office of Basic Energy Sciences, of the
332	U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and is thanked for
333	XMCD beamtime.
334	
335	
336	

338 339 340		References
341 342		
343 344	1.	D'Souza, D. M. & Muller, T. J. J. Multi-component syntheses of heterocycles by
345		transition-metal catalysis. Chem Soc Rev 36, 1095-1108 (2007).
346	2.	Lu, AH., Salabas, E. L. & Schuth, F. Magnetic nanoparticles: synthesis,
347		protection, functionalization and application. Angewandte Chemie 46, 1222-1244
348		(2007).
349	3.	Baruwati, B., Guin, D. & Manorama, S. V. Pd on surface-modified NiFe2O4
350		nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions.
351		Organic Letters 9, 5377-5380 (2007).
352	4.	Rossi, L. et al. Superparamagnetic nanoparticle-supported palladium: a highly
353		stable magnetically recoverable and reusable catalyst for hydrogenation reactions.
354		Green Chemistry 9, 379-385 (2007).
355	5.	Wang, Z. L., Shen, B., Aihua, Z. & He, N. Synthesis of Pd/Fe ₃ O ₄ nanoparticle-
356		based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chemical
357		Engineering Journal 113, 27-34 (2005).
358	6.	Wang, Z., Xiao, P., Shen, B. & He, N. Synthesis of palladium-coated magnetic
359		nanoaprticle and its application in Heck reaction. Colloids and Surfaces A:
360		Physicochem. Eng. Aspects 276, 116-121 (2006).
361	7.	Mizukoshi, Y., Sato, K., Konno, T. J., Masahashi, N. & Tanabe, S. Magnetically
362		Retrievable Palladium/Maghemite Nanocomposite Catalysts Prepared by
363		Sonochemical Reduction Method. Chemistry Letters 37, 922-923 (2008).

364	8.	Kinoshita, T., Seino, S., Mizukoshi, Y., Nakagawa, T. & Yamamoto, T.
365		Functionalization of magnetic gold/iron-oxide composite nanoparticles with
366		oligonucleotides and magnetic separation of specific target. Journal of Magnetism
367		& Magnetic Materials 311 , 255-258 (2007).
368	9.	Mandal, M. et al. Magnetite nanoparticles with a tunable gold or silver shell.
369		Journal of Colloidal and Interface Science 286, 187-194 (2005).
370	10.	Auer, E., Freund, A., Pietsch, J. & Tacke, T. Carbons as supports for industrial
371		precious metal catalysts. Applied Catalysis A: General 173, 259-271 (1998).
372	11.	Lovley, D. R., Stoltz, J. F., Nord Jr, G. L. & Phillips, E. J. P. Anaerobic
373		production of magnetite by a dissimilatory iron-reducing microorganism. Nature
374		330 , 252-254 (1987).
375	12.	Moon, JW. et al. Magnetic response of microbially synthesized transition metal-
376		and lanthanide-substituted nanosized magnetites. J Magn Magn Mater 313, 283-
377		292 (2007).
378	13.	Coker, V. S. et al. Probing the site occupancies of Co, Ni and Mn substituted
379		biogenic magnetite using XAS and XMCD. Am. Mineral. 93, 1119-1132 (2008).
380	14.	Staniland, S. et al. Controlled cobalt doping of magnetosomes in vivo. Nature
381		Nanotechnology 3 , 158-162 (2008).
382	15.	Blakemore, R. Magnetotactic bacteria. Science 190, 377-379 (1975).
383	16.	Frankel, R. B., Blakemore, R. & Wolfe, R. S. Magnetite in freshwater magnetic
384		bacteria. Science 203, 1355-1357 (1979).

385	17.	Caccavo Jr, F. et al. Geobacter sulfurreducens sp. nov., a hydrogen and acetate-
386		oxidising dissimilatory matal reducing. Appl Environ Microb 60, 3752-3759
387		(1994).

- 18. Coker, V. S. et al. Time-resolved synchrotron X-ray powder diffraction study of
 magnetite formation by the Fe(III)-reducing bacterium, *Geobacter sulfurreducens*. *Am Mineral* 93, 540-547 (2008).
- 391 19. Hansel, C. M. et al. Secondary mineralization pathways induced by dissimilatory
- iron reduction of ferrihydrite under advective flow. *Geochim Cosmochim Ac* 67,
 2977-2992 (2003).
- Beletskaya, I. P. & Cheprakov, A. V. The Heck Reaction as a Sharpening Stone
 of Palladium Catalysis. *Chemical Reviews* 100, 3009-3066 (2000).
- Polshettiwar, V. & Molnár, Á. Silica-supported Pd catalysts for Heck coupling
 reactions. *Tetrahedron* 63, 6949-6976 (2007).
- 398 22. Wang, Z., Chen, Z., Gu, J., Li, Y. & Li, W. Occurrence and environmental
- 399 implications of magnetic iron sulfides in stiff muds from the continental shelf of

400 the East China Sea. *Geo-Marine Lett* **25**, 300-305 (2005).

- 401 23. Marshall, M. J. et al. Microorganisms that catalyze changes in oxidation states of
 402 metals can be used to decontaminate environments of radionuclides. Here, *c*-type
 403 cytochromes on the outer membrane of a dissimilatory metal reducing bacterium
- 404 are shown to be essential for the reduction of uranium(VI). *PLoS Biol* **4**, e268
- 405 (2006).

406	24.	Pattrick, R. A. D. et al. Cation site occupancy in spinel ferrites studied by X-ray
407		magnetic circular dichroism: developing a method for mineralogists. Eur. J.
408		<i>Mineral.</i> 14 , 1095-1102 (2002).
409	25.	Pearce, C. I., Henderson, C. M. B., Pattrick, R. A. D., van der Laan, G. &
410		Vaughan, D. J. Direct determination of cation site occupancies in natural ferrite
411		spinels by $L_{2,3}$ x-ray absorption spectroscopy and x-ray magnetic circular
412		dichroism. American Mineralogist 91, 880-893 (2006).
413	26.	Coker, V. S. et al. XAS and XMCD evidence for species-dependent partitioning
414		of arsenic during microbial reduction of ferrihydrite to magnetite. Environmental
415		Science & Technology 40, 7745-7750 (2006).
416	27.	Carvallo, C. et al. Biogenic vs. abiogenic magnetite nanoparticles: A XMCD
417		study. Am Mineral 93, 880-885 (2008).
418	28.	Coker, V. S. et al. Cation site occupancy of biogenic magnetite compared to
419		polygenic ferrite spinels determined by X-ray magnetic circular dichroism. Eur J
420		Mineral 19, 707-716 (2007).
421	29.	Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F. & Muilenberg, G. E.
422		Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer Corporation, Eden
423		Prairie, Minnesota, 1979).
424	30.	Kim, K. S., Gossmann, A. F. & Winograd, N. X-ray photoelectron spectroscopic
425		studies of palladium oxides and the palladium-oxygen electrode. Analytical
426		Chemistry 46, 197-200 (1974).

427	31.	Bonnemann, H., Brinkmann, R. & Neiteler, P. Preparation and catalytic properties
428		of NR ⁺ ₄ -stabilized palladium colloids. Appl Organometallic Chem 8, 361-378
429		(1994).
430	32.	Reetz, M. T., Breinbauer, R. & Wanninger, K. Suzuki and Heck reactions
431		catalyzed by preformed palladium clusters and palladium/nickel bimetallic
432		clusters. Tetrahedron Lett 37, 4499-4502 (1996).
433	33.	Reetz, M. T. et al. Visualization of surfactants on nanostructured palladium
434		clusters by a combination of STM and high-resolution TEM. Science 267, 367-
435		369 (1995).
436	34.	Henkel, T., Tizard, J., Blagburn, D. & Lyon, I. IDLE - Interstellar Dust Laser
437		Explorer. A new instrument for elemental and isotopic analysis and imaging of
438		interstellar and interplanetary dust. Review of Scientic Instruments 78, 055107
439		(2007).
440	35.	Hill, R. & Blenkinsopp, P. W. M. The development of C ₆₀ and gold cluster ion
441		guns for static SIMS analysis. Applied Surface Science 231-232, 936-939 (2004).
442	36.	Fletcher, J. S. et al. TOF-SIMS analysis Using C ₆₀ . Effect of impact energy on
443		yield and damage. Analytical Chemistry 78, 1827-1831 (2006).
444	37.	Henkel, T., Rost, D. & Lyon, I. C. Improvements in quantification accuracy of
445		inorganic TOFSIMS analysis of silicate materials by using C_{60} primary ions.
446		Rapid Communications in Mass Spectrometry, in print (2009).
447	38.	Henderson, C. M. B., Charnock, J. M. & Plant, D. A. Cation occupancies in Mg,
448		Co, Ni, Zn, Al ferrite spinels: a multi-element approach EXAFS study. Journal of
449		Physics: Condensed Matter 19, 076214 (2007).

450	39.	Rao, C. N. & Rao, K. K. Effect of Temperature on Lattice Parameters of Some
451		Silver-Palladium Alloys. Canadian Journal of Physics 42, 1336-1342 (1964).
452	40.	Arenholz, E. & Prestemon, S. O. Design and performance of an eight-pole
453		resistive magnet for soft X-ray magnetic dichroism measurements. Reviews of
454		Scientific Instruments 76, 083908/1-8 (2005).
455	41.	van der Laan, G. & Thole, B. T. Strong magnetic X-ray dichroism in 2p
456		absorption spectra of 3d transition metal ions. Phys Rev B 43, 13401-13411
457		(1991).
458	42.	Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence
459		Bands of Gold. <i>Physical Review B</i> 5, 4709-4714 (1972).
460		
461		

462	Table	Caption

464	Table 1.	Parameters	obtained	from	fitting	the Fe	e and l	Pd <i>K</i> -	edges	EXAFS	S spectra c	of

- 465 biomagnetite samples. *N* is the coordination number, r is the interatomic distance and $2\sigma^2$
- 466 is the Debye-Waller factor.

467

468 Figure caption s

469

470	Figure 1.	TEM images	5 of, a ,	biomagnetit	e and, b ,	, Pd-coated	l biomagnetite	, inset co	ntains
-----	-----------	------------	------------------	-------------	-------------------	-------------	----------------	------------	--------

471 annotation indicating where EDX spectra were taken. **c**, selected area electron diffraction

472 (SAED) pattern for Pd-coated biomagnetite with reflections labelled in black (magnetite)

473 and grey (palladium) and, **d**, X-ray diffraction (XRD) of Pd-coated biomagetite.

474

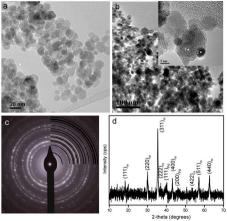
475	Figure 2. TOF-SIMS	images of (a)	washed biogenic	nanomagnetite	produced by
.,.				in an an a start and a start a	

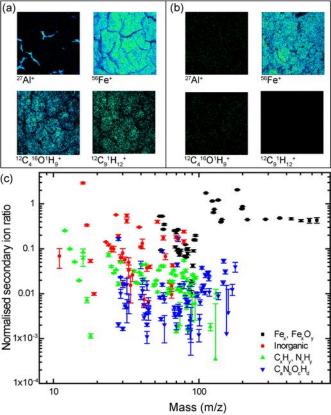
476 *Geobacter sulfurreducens* and (b) commercially available inorganic nanomagnetite.

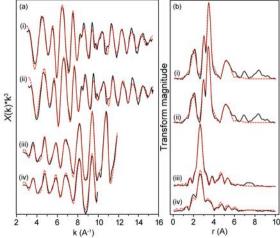
477 Normalised secondary ion ratio of the surface of washed biogenic magnetite before and

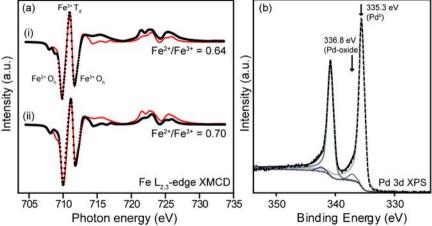
478 after ablation of the surface with a C_{60} gun.

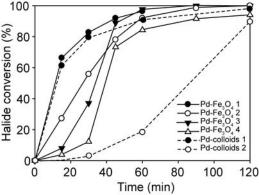
479


480 Figure 3. a, EXAFS and, b, corresponding Fourier transform for the Fe K-edge of (i)


- 481 biomagnetite and (ii) Pd-coated bio-magnetite and Pd K-edge of (iii) Pd foil and (iv) Pd-
- 482 coated biomagnetite. Data (black lines) and fits (dotted red lines).


- **Figure 4. a**, Fe *L*_{2,3}-edge XMCD spectra of (i), biomagnetite and (ii), Pd-coated
- 485 biomagnetite and **b**, XPS of the Pd 3d peaks of biogenic Pd-coated magnetite


- **Figure 5.** Rate of conversion during the Heck coupling of iodobenzene and ethyl acrylate
- 488 catalysed by Pd-coated biomagnetite (solid lines) or Pd colloids (dashed lines). Fresh
- 489 catalyst was used in run 1, runs 2 to 4 used recycled catalyst.


	Atom type	N	r(Å)	2σ²(Å4) 3
	Fe K-6	edge		
Biomagnetite	О	1.3	1.85	0.039494
-	Ο	4	2.03	0.025
	Fe	4	3.00	0.021
	Fe	8	3.50	0.012
	0	4	3.36	0.027
Pd biomagnetite	0	1.3	1.80	0.037
0	О	4	2.00	0.024
	Fe	4	2.99	0.024
	Fe	8	3.48	0.012
	0	4	3.28	0.009
	Pd <i>K</i> -6	edge		
Pd foil standard	Pd	12	2.74	0.012
	Pd	6	3.85	0.020
	Pd	24	4.77	0.020
	Pd	12	5.36	0.012
	Pd	24	6.14	0.029
Pd biomagnetite	Pd	12	2.74	0.014
C	Pd	6	3.84	0.018
	Pd	24	4.79	0.030
	Pd	12	5.42	0.016
	Pd	24	6.08	0.030

