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USING C WRAPPERS IN XLISP-STAT

JAN DE LEEUW

Abstract. This paper discusses incorporating C (and FORTRAN)
functions into the XLISP-STAT statistical computing environment,
by using shared libraries loaded at runtime. We provide a number
of examples that can be used as templates. They can be used (as in
S-plus) to speed up XLISP-STAT programs, but also (as in SWIG)
to produce graphical user interfaces for existing C and FORTRAN
programs. The appendices discuss a number of completed projects
following these lines which considerably extend XLISP-STAT.
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1. Introduction

XLISP-STAT [Tierney, 1990] can be extended in two different ways.
By far the most common one is to write additional code in Lisp, which
is read into the interpreter at run-time. Much less common is to extend
the system by writing additional code in C.

There are basically two reasons to use C. In the first place, we may
have legacy C code, for instance from books such as Press et al. [1988],
and we may not have the time or the resources to translate this C to
Lisp. Secondly, we may have a project, or a part of a project, which
needs to run very fast, faster than is possible in the interpreted Lisp
environment of XLISP-STAT. In the interpreted environment we can
do fast prototyping, and we can write elaborate and elegant graphical
interfaces. Fast floating point computation, however, is only possible
if the necessary functions are already linked as object code into the
XLISP-STAT executable.

There are two ways to incorporate C in XLISP-STAT. It can be done
at compile-time, when the XLISP-STAT executable is build. One simply
writes additional functions in C, and one uses the XLISP-STAT applica-
tion programmer interface to make them accessible to the interpreter.
This is not hard to do, but it has a major disadvantage. Anybody who
does this will have created a personal copy of XLISP-STAT, different
from all other copies in the world. It will be difficult to maintain and
to upgrade, unless the extensions are incorporated (by Luke Tierney)
in the canonical XLISP-STAT source tree. Extending at compile-time
also means you need the tools to build a complete XLISP-STAT distri-
bution. On the Mac, for instance, this implies you need to have the
Metrowerks CodeWarrior Pro tools, because that is the only supported
development environment.

Alternatively, it is possible to load precompiled C code at run-time.
This is what we discuss in this note. It requires you to have utilities for
building shared libraries, but this can be done with many different sets
of tools. On the Mac, for instance, the free MPW and GNU environments,
with the MrC and gcc compilers, can be used.

The Lisp tools and XLISP-STAT “wrapper” extensions to build these
shared libraries have been developed by Luke Tierney. The techni-
cal aspects and the implementation are discussed in detail by Tierney
[1998c]. Background information on dynamic loading, native pointers,
and shared libraries is in Tierney [1998b,d,f]. Applications that create
a regular expression library and a socket interface for XLISP-STAT are
in Tierney [1998e,g].



USING C WRAPPERS IN XLISP-STAT 3

In this paper we strip away as much of the technical detail as pos-
sible, and concentrate on simple computational examples. For a real
understanding of the implementation on the various operating systems,
we refer to Tierney’s papers. They can all be found at the URL

www.stat.umn.edu/~luke/xls/projects/

2. Lisp Code , Byte Code, Object Code

We can be a little bit more specific here. Let us take the inner
product function as an example. The inner product is defined in the
file linalg.lsp in the XLISP-STAT distribution. That file gets byte-
compiled during installation, and normally it sits as a byte-compiled
function in the XLISP-STAT workspace. We can show this by looking
in the function slot of the inner-product function.

> (symbol-function ’inner-product)
#<Byte-Code-Closure-INNER-PRODUCT: #54ae758>

Byte-compilation transforms Lisp code into instructions for the XLISP-STAT
virtual machine, which runs on the various platforms that XLISP-STAT
has been ported to. Usually, byte-compiled code is considerably faster
than interpreted Lisp code. But much less fast than the native objec-
t code for the specific processor that regular C or FORTRAN compilers
produce.

Fortunately, the inner-product function is just a high-end interface
to the blas-ddot function. It does some error testing in Lisp, and then
calls blas-ddot to do the work. And if we look in the corresponding
function slot, we see

> (symbol-function ’blas-ddot)

#<Subr-BLAS-DDOT: #548aa18>

Thus blas-ddot is a subr, which means a compiled function living
in object code in the XLISP-STAT executable. It is taken from the
C version of the BLAS Anderson et al. [1992], which is a library of
highly efficient building blocks for numerical linear algebra. In the
XLISP-STAT distribution it is in the file blas.c. Thus the critical
parts of inner-product, which is where the computation happens, are
efficient.

Let us illustrate with an example. The autocovariance (of lag �) of
a sequence x1, . . . , xT is given by

γ�(x) =
1

T

T−�∑

t=1

(xt − x)(xt+� − x)
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Thus we take x, put it in deviations from the mean, chop off the first �
elements to get, say, x-tail, chop off the last � elements to get x-head,
take the inner product of x-tail and x-head, and divide by T . Here
it is in Lisp.

(defun conv (lag x)
(inner-product (butlast x lag) (butfirst x lag))
)

(defun butfirst (x &optional (n 1))
(select x (which (<= n (iseq (length x)))))

)

If we want to compute the first maxlag autocovariances, we use map-
ping and say

(defun autocovar (x maxlag)
(let ((n (length x))

(z (- x (mean x))))
(/ (mapcar #’(lambda (k) (conv k z)) (iseq maxlag)) n)

))

It seems that this should be quite efficient, because as we have seen
most of the computation is done in blas-ddot, which is the engine of
inner-product. So let’s give it a try. The machine is a 300 MHz G3
with 128 MB of RAM, with MacOS 8.6, adn with XLISP-STAT 3.52.9
(beta). We apply it to the Zürich sunspot data, a series of length 2820,
first by using raw Lisp.

> (symbol-function ’autocovar)
#<Closure-AUTOCOVAR: #57eb358>
>(time (autocovar a 100))
The evaluation took 4.47 seconds; 2.88 seconds in gc.

The large amount of garbage collecting indicates there is not enough
memory available in the workspace. We say

>(expand 100)
100
>(time (autocovar a 100))
The evaluation took 2.20 seconds; 0.42 seconds in gc.

In this case, byte compiling does not make a difference.

> (compile ’autocovar)
AUTOCOVAR
> (symbol-function ’autocovar)
#<Byte-Code-Closure-AUTOCOVAR: #57dbc58>
> (time (autocovar data 100))
The evaluation took 2.58 seconds; 0.68 seconds in gc.
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In all cases, the computations seem to take about 1.6 − 1.8 seconds.
This includes the mapping and the selection from the list.

It is well known, for instance Newton [1988, pag 24], that the auto-
covariance can be computed by applying two Fourier transforms to the
sequence. This is implemented in the function below.

(defun autocovar (x maxlag)
(let* ((n (length x))

(m (+ n maxlag))
(y (append (- x (mean x)) (repeat 0 maxlag)))
(r (/ (squared-abs (fft y)) m))
(a (* (/ m n) (/ (realpart (fft r)) m))))
(select a (1+ (iseq maxlag)))

))

(defun squared-abs (x)
(let ((r (realpart x))

(c (imagpart x)))
(+ (* r r) (* c c))
))

We now find
> (time (autocovar data 100))
The evaluation took 0.12 seconds; 0.02 seconds in gc.

This is a dramatic difference. It is due to the fact that now almost all of
the computing is done on the C level, with virtually no manipulation of
lists. Besides that, the subr fft implements the fast Fourier transform,
which seems to be living up to its name.

3. Shared Libraries: Example 1

Let us discuss a simpel first example of using shared libraries and
the wrapper system. We share write a C version of the function conv

we earlier did in Lisp. The file cconv.c looks like this.

double cconv (int l, int n, double * x)
{
double s = 0.0, * y = x + (n - l), * z = x + l, * u = x;
while (u < y)

s += *u++ * *z++;
return (s);
}

Writing the additional glue code that links the C function to the XLISP-STAT
application is the next step. This is OS dependent and not very simple.
Tierney has written XLISP-STAT functions that writes these “wrapper-
s” for you.
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In our application the wrapper is in the file conv.wrp below.

(wrap:c-lines "double cconv (int, int, double *);")
(wrap:c-function base-conv "cconv"

(:integer :integer (:cptr "double")) :flonum)

(defun conv (lag vec)
(let ((n (length vec))

(vec (coerce vec ’(vector c-double))))
(base-conv lag n

(wrapptrs::cast-c-double (array-data-address vec)))
))

The first two lines are the critical ones, the second part is an XLISP-STAT

function that calls the C function in the library. If we run conv.wrp

through the make-wrappers function, using

(wrap:make-wrappers "conv.wrp")

it generates a file conv.lsp and a file conv.c. The conv.lsp file has a
byte-compiled version of the Lisp code in the wrapper file, but instruc-
tions to load the shared library. The conv.c file contains the glue to
link the C function to the XLISP-STAT system. The wrap:c-lines and
wrap:c-function are two macros in the wrap package that determine
the structure of the conv.c file. Observe that wrap:c-function gives
the Lisp symbol name given to the C function, and it explains the type
of the arguments and the result. Also observe the handling of pointers
in the conv Lisp function, using macros from the wrapptrs package.
In order for everything to work you need to load the file wrap.lsp,
which creates the wrap package, and to load the file wrapptrs.lsp,
which loads the shared library wrapptrs.dll and creates the pack-
age wrapptrs. The wrapptrs package itself is already and example of
applying wrap:make-wrappers to the file wrapptr.wrp.

Now link conv.c and cconv.c into a shared library conv.dll. In the
link you should also include the XLISP-STAT interpreter, and whatever
libraries from your development system needed. Loading conv.lsp

into the XLISP-STAT interpreter makes the shared library (and thus
the C function) available. And here is the result.

> (time (autocovar data 100))
The evaluation took 0.43 seconds; 0.20 seconds in gc.

We see an improvement compared to the raw Lisp with a factor of 5.
Not as good as using the fft, but surprisingly good anyway. It seems
that the Lisp inner-product function, which is a Lisp wrapper for
blas-ddot, does introduce quite a bit of overhead.
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4. Shared Libraries: Example 2

We can expect more gain in situations where the Lisp function we
are replacing have many loops and list manipulations. In this example
we take a function, written by Rick Schoenberg, to make contours on
a scatterplot. XLISP-STAT has a contour-function, which draws the
contours of a function of two variables. So in order to draw contours
in a scatterplot, using n data-points (xi, yi, zi), we need a smoother
that interpolates the function and the use contour-function on this
smoother. Schoenberg uses a low-pass Gaussian two-dimensional filter
to do the interpolations. Here is the Lisp code.

(defun rsmooth-2d (i j x y z b1 b2)
(let* ((w (/ (* (exp (/ (- (^ (- x i) 2)) (* 2 b1 b1)))

(exp (/ (- (^ (- y j) 2)) (* 2 b2 b2))))
(* 2 pi b1 b2))))

(/ (sum (* z w)) (sum w))
))

(defun rcontour (x y z
&key levels (xnum 5) (ynum 5)

(x1 (min x)) (x2 (max x)) (y1 (min y)) (y2 (max y))
(b1 (/ (- x2 x1) (log (length z))))
(b2 (/ (- y2 y1) (log (length z))))
(smoother #’rsmooth-2d))

(contour-function #’(lambda (i j)
(funcall smoother i j x y z b1 b2))

x1 x2 y1 y2 :num-points xnum :levels levels)
)

Clearly it is essential to make the smoother efficient. Here is a C version,
in the file cgauss.c.
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#include <math.h>
#define pi 3.141592653589793
#define SQUARE(x) ((x) * (x))

double gaussian_2_smooth (int n, double x0, double y0,
double b1, double b2, double * x, double * y, double * z){

int i; double sum1 = 0.0, sum2 = 0.0,
term1, term2, term3, weight;

for (i = 0 ; i < n ; i++) {
term1 = exp (- SQUARE(x0 - *(x + i)) / (2.0 * SQUARE(b1)));
term2 = exp (- SQUARE(y0 - *(y + i)) / (2.0 * SQUARE(b2)));
term3 = 2.0 * pi * b1 * b2;
weight = (term1 * term2) / term3;
sum1 += weight * *(z + i);
sum2 += weight;}
return (sum1 / sum2);}

The wrapper file gauss.wrp is

(wrap:c-lines "double gaussian_2_smooth
(int, double, double, double, double, double *, double *, double *);")

(wrap:c-function rsmooth-2d-base "gaussian_2_smooth"
(:integer :flonum :flonum :flonum :flonum
(:cptr "double") (:cptr "double") (:cptr "double")) :flonum)

(defun rsmooth-2d (i j x y z b1 b2)
(let ((n (length x))

(x (coerce x ’(vector c-double)))
(y (coerce y ’(vector c-double)))
(z (coerce z ’(vector c-double))))

(rsmooth-2d-base n i j b1 b2
(wrapptrs:cast-c-double (array-data-address x))
(wrapptrs:cast-c-double (array-data-address y))
(wrapptrs:cast-c-double (array-data-address z)))
))

(defun rcontour (x y z
&key levels (xnum 5) (ynum 5)
(x1 (min x)) (x2 (max x)) (y1 (min y)) (y2 (max y))
(b1 (/ (- x2 x1) (log (length z))))
(b2 (/ (- y2 y1) (log (length z))))
(smoother #’rsmooth-2d))

(contour-function #’(lambda (i j)
(funcall smoother i j x y z b1 b2))

x1 x2 y1 y2 :num-points xnum :levels levels)
)
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If we link gauss.c and cgauss.c, we must make sure that code for
the exp function is also linked in, by using some sort of C math library.
After loading gauss.lsp we have

> (symbol-function ’rsmooth-2d-base)
#<Subr: #40b9888>
> (symbol-function ’rsmooth-2d)
#<Closure-RSMOOTH-2D: #40bbb18>

Now for the time comparison. The example

(def x (* (uniform-rand 1000) 10))
(def y (* (uniform-rand 1000) 10))
(def z (+ (* (- x 3) (- x 3)) (* (- y 5) (- y 5))))
(rcontour x y z :levels (iseq 20))

takes 1.68 seconds on the G3 in the Lisp version, and 0.18 seconds in the
C version. Almost ten times faster, and in many applications, possibly
much larger than this example, that can make a huge difference.

5. Shared Libraries: Example 3

In this example, we use FORTRAN to replace C. Given the enormous
amount of legacy numerical code in FORTRAN, this is an important ex-
tension. Obviously using FORTRAN presupposes we have a development
system that compiles and links both languages. We shall use the Absoft
compilers, running in the MPW environment.

In FORTRAN, we can write external functions and subroutines. Exter-
nal functions return a value, so they seem especially appropriate, but
we shall look at using subroutines as well. One important property of
FORTRAN is that arguments to subroutines or functions are passed by
reference and not by value. This means that if we call FORTRAN rotuines
from C, we pass pointers to the parameters, but in the FORTRAN routine
itself we calculate as if values were passed. This makes life just a tiny
bit more complicated.

Again, we will use the same convolution example. The FORTRAN

source, in the file fconv.f, is

real*8 function cconv (l, n, x)
integer*4 l, n
real*8 sum, x(n)
sum = 0.0
do 10, i=1,n - l

10 sum=sum + x(i) * x(i + l)
cconv = sum
return
end
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As a wrapper file we use

(wrap:c-lines "double cconv (int *, int *, double *);")
(wrap:c-function base-conv "cconv"

((:cptr "int") (:cptr "int") (:cptr "double")) :flonum)

(defun conv (lag vec)
(let ((n (coerce (list (length vec)) ’(vector c-int)))

(lag (coerce (list lag) ’(vector c-int)))
(vec (coerce vec ’(vector c-double))))
(base-conv (wrapptrs:cast-c-int (array-data-address lag))

(wrapptrs:cast-c-int (array-data-address n))
(wrapptrs:cast-c-double (array-data-address vec)))

))

This works exactly the same as the C version. But observe that it needs
the hack, where scalars are converted to one-element vectors (which we
need to do in order to use array-data-address).

The same result can be attained by using a FORTRAN subroutine. The
code is

subroutine cconv (l, n, x, sum)
integer*4 l, n
real*8 sum, x(n)
sum = 0.0
do 10, i=1,n - l

10 sum = sum + x(i) * x(i + l)
return
end

and the wrapper code is

(wrap:c-lines "void cconv (int *, int *, double *, double *);")
(wrap:c-function base-conv "cconv"

((:cptr "int") (:cptr "int")
(:cptr "double") (:cptr "double")) :void)

(defun conv (lag vec)
(let* ((n (coerce (list (length vec)) ’(vector c-int)))
(lag (coerce (list lag) ’(vector c-int)))
(vec (coerce vec ’(vector c-double)))
(sum (coerce (list 0.0) ’(vector c-double))))
(base-conv (wrapptrs:cast-c-int (array-data-address lag))

(wrapptrs:cast-c-int (array-data-address n))
(wrapptrs:cast-c-double (array-data-address vec))
(wrapptrs:cast-c-double (array-data-address sum)))

(aref (pointer-protected (array-data-address sum)) 0)
))
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Appendix A. Introduction

In the Appendices we give documentation and references necessary
to use the various ports to XLISP-STAT we have made so far. Generally,
each of these libraries defines a package, and we give documentation
for the external symbols.

It is best to set up the packages using the new autoload system Tier-
ney [1998a].

The documentation below is incomplete, because documentation strings
have not been added to all external functions yet. The appendices will
be updated regularly if more documentation (and more modules) are
added. We plan to add modules for generalized eigenvalue and sin-
gular value computation for nonsymmetric matrices, for writing pdf,
for producing pdf and ps plots. We also plan to add functions to the
optimization, solving, and smoothing modules. But this may take a
long time.

If you are interested in obtaining the wrappers and libraries for these
modules, just drop me an email. Of course you can only use the com-
piled versions if you have a PowerMac of some sort. But the wrapper
files, the autoidx.lsp index files, and the code for the libraries will
make it possible to compile your own versions.
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Appendix B. cephes

The cephes library is written, in C, by Stephen Mosier. The material
is discussed extensively in the book Mosier [1989]. The source code is
on netlib, at

www.netlib.org/cephes/index.html

We have not used all of cephes, only the special function part. The
documentation below is copied in many cases from the source code.

1 DRAND:
2 Args: (&optional (n 1))
3 Returns a typed vector with n uniform random numbers between
4 1.0 and 2.0 using the Wichman-Hill generator.
5
6 ZETA:
7 Args: (x)
8 inf.
9 - -x
10 zetac(x) = > k , x > 1,
11 -
12 k=2
13
14 is related to the Riemann zeta function by
15
16 Riemann zeta(x) = zetac(x) + 1.
17
18
19 PSI:
20 Args: (x)
21 d -
22 psi(x) = -- ln | (x)
23 dx
24
25 is the logarithmic derivative of the gamma function.
26
27
28 DAWSON:
29 Args: x
30 x
31 -
32 2 | | 2
33 dawsn(x) = exp( -x ) | exp( t ) dt
34 | |
35 -
36 0
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37
38
39 INVERSE-INCOMPLETE-BETA:
40 Args: (a b y)
41 Given y, the function finds x such that
42 x
43 - -
44 | (a+b) | | a-1 b-1
45 ----------- | t (1-t) dt = y.
46 - - | |
47 | (a) | (b) -
48 0
49
50
51 INCOMPLETE-GAMMA:
52 Args: (a x &key (complement nil))
53 If complement is nil
54 x
55 -
56 1 | | -t a-1
57 igam(a,x) = ----- | e t dt.
58 - | |
59 | (a) -
60 0
61 else
62 igamc(a,x) = 1 - igam(a,x)
63
64 inf.
65 -
66 1 | | -t a-1
67 = ----- | e t dt.
68 - | |
69 | (a) -
70 x
71
72
73 FRESNEL:
74 Args (x)
75 x
76 -
77 | |
78 C(x) = | cos(pi/2 t**2) dt,
79 | |
80 -
81 0
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82
83 x
84 -
85 | |
86 S(x) = | sin(pi/2 t**2) dt.
87 | |
88 -
89 0
90 Returns a typed vector with (s c).
91
92 COMPLEMENTARY-ERROR-FUNCTION:
93 NIL
94
95 RECIPROCAL-GAMMA:
96 Args: (x)
97 Returns one divided by the gamma function of the argument.
98
99 MODIFIED-BESSEL-THIRD-KIND:
100 Args: (x &key (exp nil) (order 0))
101 Modified Bessel functions of the third kind,
102 of order 0 or 1 or of integer order.
103 For the functions of order 0 or 1, one can choose to
104 use exponential scaling.
105
106 BESSEL:
107 Args: (x &key (order 0))
108 Bessel functions of order 0 or 1 or of integer or
109 non-integer order.
110
111 SPENCE:
112 Args: (x)
113 x
114 -
115 | | log t
116 spence(x) = - | ----- dt
117 | | t - 1
118 -
119 1
120
121
122 BESSEL-SECOND-KIND:
123 Args: (x &key (order 0))
124 Bessel functions of the second kind of order 0 or 1 or
125 of integer and non-integer order.
126
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127 FAC:
128 Args (x)
129 Returns the factorial of (the integer) x.
130
131 GAUSS-HYPERGEOMETRIC-2F1:
132 Args: (a b c x)
133 hyp2f1( a, b, c, x ) = F ( a, b; c; x )
134 2 1
135
136 inf.
137 - a(a+1)...(a+k) b(b+1)...(b+k) k+1
138 = 1 + > ----------------------------- x .
139 - c(c+1)...(c+k) (k+1)!
140 k = 0
141
142
143 MODIFIED-BESSEL:
144 Args: (x &key (exp nil) (order 0))
145 Modified Bessel functions of order 0 or 1 or of non-integer order.
146 For the functions of order 0 or 1, one can choose to
147 use exponential scaling.
148
149 INCOMPLETE-BETA:
150 Args: (a b x)
151 x
152 - -
153 | (a+b) | | a-1 b-1
154 ----------- | t (1-t) dt.
155 - - | |
156 | (a) | (b) -
157 0
158
159
160 COMPLETE-ELLIPTIC-FIRST-KIND:
161 Args: (m)
162 pi/2
163 -
164 | |
165 | dt
166 K(m) = | ------------------
167 | 2
168 | | sqrt( 1 - m sin t )
169 -
170 0
171
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172
173 ELLIPTIC-FIRST-KIND:
174 Args: (phi m)
175 phi
176 -
177 | |
178 | dt
179 F(phi_m) = | ------------------
180 | 2
181 | | sqrt( 1 - m sin t )
182 -
183 0
184
185
186 STRUVE:
187 Args (v x)
188 Computes the Struve function Hv(x) of order v, argument x.
189
190 JACOBIAN-ELLIPTIC:
191 Args (u m)
192 Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
193 and dn(u|m) of parameter m between 0 and 1, and real
194 argument u. These functions are periodic, with quarter-period on the
195 real axis equal to the complete elliptic integral
196 ellpk(1.0-m). Relation to incomplete elliptic integral:
197 If u = ellik(phi,m), then sn(u|m) = sin(phi),
198 and cn(u|m) = cos(phi). Phi is called the amplitude of u.
199 Returns a typed vector with (sn cn dn phi).
200
201 COMPLETE-ELLIPTIC-SECOND-KIND:
202 Args: (m1)
203 pi/2
204 -
205 | | 2
206 E(m) = | sqrt( 1 - m sin t ) dt
207 | |
208 -
209 0
210
211
212 SINE-COSINE-INTEGRALS:
213 Args: (x &key (hyperbolic nil))
214 Approximates the integrals
215
216 x
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217 -
218 | cos t - 1
219 Ci(x) = eul + ln x + | --------- dt,
220 | t
221 -
222 0
223 x
224 -
225 | sin t
226 Si(x) = | ----- dt
227 | t
228 -
229 0
230
231 where eul = 0.57721566490153286061 is Euler’s constant. If
232 HYPERBOLIC is t, then hyperbolic sines and cosines are used.
233 Returns results in a typed vector (c s).
234
235
236 ERROR-FUNCTION:
237 Args: (x)
238 x
239 -
240 2 | | 2
241 erf(x) = -------- | exp( - t ) dt.
242 sqrt(pi) | |
243 -
244 0
245
246
247 CONFLUENT-HYPERGEOMETRIC-1F1:
248 Args: (a b x)
249 1 2
250 a x a(a+1) x
251 F ( a,b;x ) = 1 + ---- + --------- + ...
252 1 1 b 1! b(b+1) 2!
253
254
255 INVERSE-COMPLEMENTED-INCOMPLETE-GAMMA:
256 Args: (a p)
257 Given p, the function finds x such that
258
259 inf.
260 -
261 1 | | -t a-1
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262 p = ----- | e t dt.
263 - | |
264 | (a) -
265 x
266
267
268 GAMMA:
269 Args: (x)
270 Returns the gamma function of x.
271
272 EXPONENTIAL-INTEGRAL:
273 Args: (n x)
274 inf.
275 -
276 | | -xt
277 | e
278 E (x) = | ---- dt.
279 n | n
280 | | t
281 -
282 1
283
284
285 AIRY:
286 Args: x
287 Solves the differential equation y’’(x)=xy. The two independent
288 solutions a and b, and their derivatives a’ and b’, at x are returned
289 in the typed vector (a a’ b b’).
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Appendix C. gd

1 GDIMAGESETBRUSH:
2 Args: (gd gd_brush)
3 GD and GD_BRUSH are gdImagePtrs. The image in GD_BRUSH is
4 used as a brush in the image in GD. Returns NIL.
5
6 GDIMAGEGETINTERLACED:
7 Args: (gd)
8 GD is a gdImagePtr, the function returns T if the
9 image is interlaced and NIL if it is not.
10
11 GDIMAGECOLORTRANSPARENT:
12 Args: (gd color)
13 Sets the index of the transparent color in the image
14 pointed to by GD to COLOR. If there are no transparent
15 colors, call this function with COLOR = -1. Returns NIL.
16
17 GDIMAGEPOLYGON:
18 Args: (gd x y color)
19 GD is a gdImagePtr, and COLOR is an integer corrsponding to
20 one of the colors of the image. X and Y are lists with the
21 coordinates of the vertices of the polygon. A polygon is drawn
22 in the image. Returns NIL.
23
24 GDIMAGEINTERLACE:
25 Args: (gd interlace)
26 If INTERLACE is T, the image pointed to by GD will be interlaced, if
27 INTERLACE is NIL it will not. Returns NIL.
28
29 GDIMAGECOLORDEALLOCATE:
30 Args: (gd color)
31 Deallocates the color indexed by COLOR in the image
32 pointed to by GD. Returns NIL.
33
34 GDIMAGEDASHEDLINE:
35 Args: (gd start_x start_y end_x end_y color)
36 Draws a dashed line from (START_X,START_Y) to (END_X,END_Y) in the image pointed
37 to by GD. Deprecated. Use gdImageSetStyle instead. Returns NIL.
38
39 GDIMAGECHAR:
40 Args: (gd gf x y char color)
41 GD is a gdImagePtr, and COLOR is an integer corrsponding to
42 one of the colors of the image. X and Y are the starting
43 coordinates of the character CHAR which is drawn horizontally
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44 from left to right in size GF. Returns NIL.
45
46 GDIMAGECOLOREXACT:
47 Args: (gd r g b)
48 Returns the index of the allocated color in the image
49 pointed to by GD that has RGB-values R, G, and B. Returns
50 -1 if there is no such color.
51
52 GDIMAGECREATEFROMGIF:
53 Args: (filename)
54 Reads GIF file from FILENAME, and returns
55 a gdImagePtr to an image. Returns NIL.
56
57 GDIMAGECOPYRESIZED:
58 Args: (gd_dst gd_src dst_x dst_y src_upper_left_x src_upper_left_y dst_width dst_h
59 Copies and possibly resizes a rectangular region from the image pointed to by GD_S
60 by GD_DST. The region copied has the upper left corner (SRC_UPPER_LEFT_X,SRC_UPPER
61 and width SRC_WIDTH and height SRC_HEIGHT. The region is copied to the point (DST_
62 width DST_WIDTH and height DST_HEIGHT. Returns NIL.
63
64 GDIMAGECOPY:
65 Args: (gd_dst gd_src dst_x dst_y src_upper_left_x src_upper_left_y width height)
66 Copies a rectangular region from the image pointed to by GD_SRC to the image point
67 by GD_DST. The region copied has the upper left corner (SRC_UPPER_LEFT_X,SRC_UPPER
68 and width WIDTH and height HEIGHT. The region is copied to the point (DST_X,DST_Y)
69
70 GDIMAGESETSTYLE:
71 Args: (gd style)
72 GD is a gdImagePtr and STYLE is a list of allocated colors of the
73 image. Defines a style color for dashed lines. Returns NIL.
74
75 GDIMAGEFILL:
76 Args: (gd start_x start_y color)
77 Floods a portion of the image pointed to by GD with COLOR. The
78 portion flooded is the surrounding region of the point (START_X,START_Y)
79 with the same color as the starting point. Returns NIL.
80
81 GDIMAGEDESTROY:
82 Args: (gd)
83 Destroys the image pointed to by GD. Returns NIL.
84
85 GDIMAGECOLORSTOTAL:
86 Args: (gd)
87 GD is a gdImagePtr, the function returns the number of
88 currently allocated colors in the image.
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89
90 GDIMAGESTRING:
91 Args: (gd gf x y string color)
92 GD is a gdImagePtr, and COLOR is an integer corrsponding to
93 one of the colors of the image. X and Y are the starting
94 coordinates of the STRING which is drawn horizontally
95 from left to right in characters of size GF. Returns NIL.
96
97 GDIMAGEGETPIXEL:
98 Args: (gd row col)
99 Returns the color value of the pixel in ROW and COL
100 of the image pointed to by GD.
101
102 GDIMAGECOLORALLOCATE:
103 Args: (gd r g b)
104 Allocates a color in the image pointed to by GD, with
105 RGB-values R, G, and B. Returns the color index.
106
107 GDIMAGEBLUE:
108 Args: (gd color)
109 GD is a gdImagePtr, and COLOR is one of its allocated colors.
110 The function returns the blue component of the color.
111
112 GDIMAGEGREEN:
113 Args: (gd color)
114 GD is a gdImagePtr, and COLOR is one of its allocated colors.
115 The function returns the green component of the color.
116
117 GDIMAGESETTILE:
118 Args: (gd gd_tile)
119 GD and GD_TILE are gdImagePtrs. The image in GD_TILE is
120 used as a tile in the image in GD. Returns NIL.
121
122 GDIMAGERECTANGLE:
123 Args: (gd upper_left_x upper_left_y lower_right_x lower_right_y color)
124 Draws a rectangle in color COLOR with upper left corner at (UPPER_LEFT_X,UPPER_LEF
125 and lower right corner at (LOWER_RIGHT_X,LOWER_RIGHT_Y) in the image pointed to by
126
127 GDIMAGERED:
128 Args: (gd color)
129 GD is a gdImagePtr, and COLOR is one of its allocated colors.
130 The function returns the red component of the color.
131
132 GDIMAGEFILLTOBORDER:
133 Args: (gd start_x start_y color)
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134 Floods a portion of the image pointed to by GD with FLLOD_COLOR. The
135 portion flooded begins at the point (START_X,START_Y)and stops at border
136 with color BORDER_COLOR. Returns NIL.
137
138 GDIMAGECOLORCLOSEST:
139 Args: (gd r g b)
140 Returns the index of the allocated color in the image
141 pointed to by GD that is closest to the color with
142 RGB-values R, G, and B.
143
144 GDIMAGECREATE:
145 Args: (nrow ncol)
146 Returns a gdImagePtr to an (empty) image with a height of NROW pixels
147 and a width of NCOL pixels.
148
149 GDIMAGEGD:
150 Args: (gd filename)
151 GD is a gdImagePtr. The corresponding image is written
152 in GD format to the file FILENAME. Returns NIL.
153
154 GDIMAGEARC:
155 Args: (gd start_x start_y end_x end_y color)
156 Draws a segment of an ellips in color COLOR centered at (CENTER_X,CENTER_Y),
157 of width WIDTH and height HEIGHT, starting at BEGIN_DEGREE and ending at
158 END_DEGREE in the image pointed to by GD. Returns NIL.
159
160 GDIMAGELINE:
161 Args: (gd start_x start_y end_x end_y color)
162 Draws a line from (START_X,START_Y) to (END_X,END_Y)
163 in the image pointed to by GD. Returns NIL.
164
165 GDIMAGESX:
166 Args: (gd)
167 GD is a gdImagePtr, the function returns the width of the
168 image in pixels.
169
170 GDIMAGESY:
171 Args: (gd)
172 GD is a gdImagePtr, the function returns the height of the
173 image in pixels.
174
175 GDIMAGESTRINGUP:
176 Args: (gd gf x y string color)
177 GD is a gdImagePtr, and COLOR is an integer corrsponding to
178 one of the colors of the image. X and Y are the starting
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179 coordinates of the STRING which is drawn vertically
180 from bottom to top in characters of size GF. Returns NIL.
181
182 GDIMAGEGETTRANSPARENT:
183 Args: (gd)
184 GD is a gdImagePtr, the function returns the current
185 transparent color of the image.
186
187 GDIMAGESETPIXEL:
188 Args: (gd row col)
189 Sets the color value of the pixel in ROW and COL
190 of the image pointed to by GD. Returns NIL.
191
192 GDIMAGECREATEFROMGD:
193 Args: (filename)
194 Reads GD file from FILENAME, and returns
195 a gdImagePtr to an image.
196
197 GDIMAGECHARUP:
198 Args: (gd gf x y char color)
199 GD is a gdImagePtr, and COLOR is an integer corrsponding to
200 one of the colors of the image. X and Y are the starting
201 coordinates of the character CHAR which is drawn vertically
202 from bottom to top in size GF. Returns NIL.
203
204 GDIMAGEGIF:
205 Args: (gd filename)
206 GD is a gdImagePtr. The corresponding image is written
207 in GIF format to the file FILENAME. Returns NIL.
208
209 GDIMAGEFILLEDRECTANGLE:
210 Args: (gd upper_left_x upper_left_y lower_right_x lower_right_y color)
211 Draws a filled rectangle in color COLOR with upper left corner at (UPPER_LEFT_X,UP
212 and lower right corner at (LOWER_RIGHT_X,LOWER_RIGHT_Y) in the image pointed to by
213
214 GDIMAGECREATEFROMXBM:
215 Args: (filename)
216 Reads XBM file from FILENAME, and returns
217 a gdImagePtr to an image.
218
219 GDIMAGEFILLEDPOLYGON:
220 Args: (gd x y color)
221 GD is a gdImagePtr, and COLOR is an integer corrsponding to
222 one of the colors of the image. X and Y are lists with the
223 coordinates of the vertices of the polygon. A filled polygon
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224 is drawn in the image. Returns NIL.
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Appendix D. pppack

1 REINSCH-SMOOTHING-SPLINE:
2 Args: (x y &key (dy (repeat 1.0 (length x))) (s (float (length x))))
3
4 PIECEWISE-POLYNOMIAL-VALUE:
5 NIL
6
7 PIECEWISE-POLYNOMIAL-FROM-B-SPLINE:
8 NIL
9
10 ALL-B-SPLINE-VALUES:
11 Args: (knot jhigh x left)
12 Computes the values of all non-zero B-splines with knots KNOT of order JHIGH at X.
13 Here LEFT is the index such that KNOT[LEFT] < X < KNOT[LEFT+1], and KNOT has
14 length LEFT + JHIGH. We must have JHIGH <= 20.
15
16 CUBIC-SPLINE-INTERPOLANT-VALUE:
17 NIL
18
19 B-SPLINE-VALUE:
20 NIL
21
22 CUBIC-SPLINE-INTERPOLANT:
23 Args: (x y jderiv &key (plot t) (min (min x)) (max (max x)) (numpoints 100))
24 Plots the JDERIV-th derivative of the cubic interpolating spline through the scatt
25 sequences x and y.
26
27 B-SPLINE:
28 Args: (knot bcoef jderiv &key (min (min knot)) (max (max knot)) (numpoints 100))
29 Plots the JDERIV-th derivative of the B-spline with (n + k) knots KNOT and n coeff
30 Note: k = length (KNOT) - length (BCOEF) is the order of the spline. KNOT is suppo
31 be nondecreasing.
32
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Appendix E. specfun

The specfun library is another collection of special functions, which has
a great deal of overlap with cephes. The code was written, in FORTRAN, by
W.J. Cody. The source code is on netlib, at

www.netlib.org/specfun/index.html

There is also a version in

www.netlib.org/toms/715

which corresponds with Cody [1993].
Of special interest, perhaps, is the function machar, which dynamically

computes machine parameters Cody [1988]. If called from XLISP-STAT, we
obtain

ibeta 2
it 53
irnd 5
ngrd 0
machep -52
negeps -53
iexp 11
minexp -1022
maxexp 1024
eps 2.220446049250313E-16
epsneg 1.1102230246251565E-16
xmin 2.2250738585072014E-308
xmax 1.7976931348623157E+308

1 BESY0:
2 NIL
3
4 BESY1:
5 NIL
6
7 RIBESL:
8 NIL
9
10 EXPEI:
11 NIL
12
13 BESJ0:
14 NIL
15
16 DLGAMA:
17 NIL
18
19 BESJ1:
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20 NIL
21
22 BESK0:
23 NIL
24
25 BESK1:
26 NIL
27
28 BESI0:
29 NIL
30
31 PSI:
32 NIL
33
34 BESI1:
35 NIL
36
37 DERFC:
38 NIL
39
40 DAW:
41 NIL
42
43 DGAMMA:
44 NIL
45
46 MACHAR:
47 NIL
48
49 BESEK0:
50 NIL
51
52 BESEK1:
53 NIL
54
55 BESEI0:
56 NIL
57
58 BESEI1:
59 NIL
60
61 RYBESL:
62 NIL
63
64 RJBESL:
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65 NIL
66
67 RKBESL:
68 NIL
69
70 EONE:
71 NIL
72
73 ANORM:
74 NIL
75
76 DERF:
77 NIL
78
79 DERFCX:
80 NIL
81
82 EI:
83 NIL
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Appendix F. probability

1 NONCENTRAL-CHISQ-CDF
2 Args: (x dfr pnonc)
3 Returns the value of the Noncentral ChiSquare (DFR,PNONC) distribution
4 function at X.
5
6
7 NONCENTRAL-CHISQ-QUANT
8 Args (p dfr pnonc)
9 Returns the P-th quantile of the Noncentral ChiSquare (DFR,PNONC) distribution.
10
11
12 NONCENTRAL-F-CDF
13 Args: (x dfr1 dfr2 pnonc)
14 Returns the value of the Noncentral F (DFR1, DFR2, PNONC) distribution
15 function at X.
16
17
18 NONCENTRAL-F-QUANT
19 Args (p dfr1 dfr2 pnonc)
20 Returns the P-th quantile of the Noncentral F (DFR1, DFR2, PNONC) distribution.
21
22
23 NONCENTRAL-T-CDF
24 Args: (x dfr pnonc)
25 Returns the value of the Noncentral t (DFR,PNONC) distribution
26 function at X.
27
28
29 NONCENTRAL-T-QUANT
30 Args (p dfr pnonc)
31 Returns the P-th quantile of the Noncentral t (DFR,PNONC) distribution.
32
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Appendix G. smoothing

1 CUBIC-SPLINE-DATA-SMOOTHER:
2 Args: (x y &key (d (repeat 1.0 (length x))) (var -1.0) (job 0) (plot t))
3 Interface to Hutchinson’s cubgcv cubic spline smoother. X has N abscissae,
4 Y has N ordinates. D are the relative standard deviations. If unknown, set
5 D = 1.0. If known, then set VAR = 1. If VAR < 0 then generalized cross-validation
6 is used to estimate the smoothing parameter, and VAR returns the error variance.
7 If VAR > 0 then the smoothing parameter is estimated by estimating the MSE and
8 VAR is unchanged. If VAR = 0 an interpolating cubic spline is calculated.
9 If JOB = 0 standard errors are not computed, if JOB =1 they are computed.
10 If PLOT is non-zero, the resulting smoother is plotted.
11
12 LOCAL-POLYNOMIAL-RIDGE-REGRESSION:
13 NIL
14
15 KERNEL-REGRESSION-LOCAL-BANDWIDTH:
16 NIL
17
18 KERNEL-REGRESSION-GLOBAL-BANDWIDTH:
19 NIL
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Appendix H. solving

1 CPOLY
2 Args: (coefs)
3 Computes the roots of a polynomial with complex coefficients COEFS.
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Appendix I. optimization

1 QUADRATIC-PROGRAM
2 Args: (dmat dvec amat bvec meq &key (ierr 0))
3 This routine uses the Goldfarb/Idnani algorithm to solve the
4 following minimization problem:
5
6 minimize -d^T x + 1/2 * x^T D x
7 where A1^T x = b1
8 A2^T x >= b2
9
10 the matrix D is in DMAT, assumed to be symmetric and positive definite
11 and of order n. Vector d is in DVEC. Matrix A, containing both A1 and
12 A2 is in the n x q array AMAT, b is in the q-vector BVEC. MEQ indicates
13 how many of the q constraints are equality constraints. The program
14 returns a list with the optimum value, the number of iterations, the
15 optimum solution, and the vector indicating which constraints are active.
16 FORTRAN by Berwin A. Turlach <bturlach@stats.adelaide.edu.au>.
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Appendix J. transform

1 FCT2D:
2 NIL
3
4 IFCT2D:
5 NIL
6
7 FCT:
8 NIL
9
10 IFCT:
11 NIL
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Appendix K. density

1 LSCV-KD-CRITERION:
2 Args: (data bw)
3 DATA is some 1-d sequence, BW is the bandwidth.
4 Computes the least squares cross validation criterion
5 to be minimized in bandwidth selection for kernel density estimation
6
7 KERNEL-DENS-PLUGIN:
8 Args: (x &key (z (rseq (min x) (max x) 50)) (plot t) (kerndens t))
9
10
11 SHEATHER-JONES-SEQ-BANDWIDTH:
12 Args: (data)
13 Return sheather-jones solve-the-equation bandwidth for kernel density estimation
14 (Journal of the Royal Statistical Society, Series B, 1991, Vol. 53, pp 683-690).
15 To be used with gaussian kernel. Data size must be less than 1600.
16
17 WARPED-HISTOGRAM:
18 Args: (x h m &key (k 3) (plot t))
19 X is a sequence of data. H is the bandwidth, and M is the number of
20 small bins in a large bin. K is the kernel (1: uniform, 2: triangle,
21 3: epanechnikov, 4: quartic, 5:triweight, and PLOT indicates if a plot
22 should be made. KERNDENS adds a dashed kernel-density plot.
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