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ABSTRACT OF THE DISSERTATION

The effects of pre-formed plasma on the generation and transport of
fast electrons in relativistic laser-solid interactions

by

Bhooshan S. Paradkar

Doctor of Philosophy in Engineering Sciences (Engineering Physics)

University of California, San Diego, 2012

Professor Farhat Beg, Chair
Professor Sergei Krasheninnikov, Co-Chair

In this thesis we present the dynamics of relativistic fast electrons produced

in the laser-solid interactions at the intensities greater than 1018 W/cm2. In par-

ticular, the effects of pre-formed plasma in front of a solid target on the generation

and transport of these fast electrons is studied. The presence of such a pre-formed

plasma is ubiquitous in almost all the present short pulse high intensity laser-solid

interaction experiments.

First, the generation of fast electrons in the presence of pre-formed plasma

of varying density scale-lengths is studied with the help of Particle In Cell (PIC)

simulations. It is shown that the fast electrons energy increases with the increasing

xiii



pre-formed plasma, consistent with the experimental observations. The possible

mechanism of generation of such energetic electrons is studied. It is proposed that

the interaction of plasma electrons with the laser in the presence of ambipolar elec-

tric field, generated due to the laser heating, can result in the electron acceleration

beyond laser ponderomotive energy. The analytical and numerical studies of this

heating mechanism are presented.

In the second part of thesis, the influence of pre-formed plasma on the

fast electrons transport is studied. Especially the physics of refluxing of these

fast electrons due to the excitation of electrostatic sheath fields inside the pre-

formed plasma is investigated. It is shown that this refluxing is responsible for

the ‘annular ring shaped’ copper Kα x-ray emission observed in the recent high

intensity laser-solid experiments.
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Chapter 1

Introduction

1.1 Background

Intense electron beams produced by relativistic laser interaction with solid

targets are studied extensively, both theoretically and experimentally, by the plasma

physics community. The interests are mainly driven by the potential use of these

electron beams in a number of applications such as fast ignition [Key et al., 2008,

Tabak et al., 1994] , ion acceleration [Hatchett et al., 2000, Wilks et al., 2001],

electron-positron pair production [Liang et al., 1998], high energy Kα and Gamma

ray source [Courtois et al., 2009, Park et al., 2006], table-top electron accelera-

tion [Tajima and Dawson, 1979] etc. The electron energies needed for optimal

performance depend upon the application under consideration. For example, the

required electron energy is in the range 1-3 MeV [Key et al., 2008] for fast ignition;

whereas typically much higher electron energies are needed for pair production.

Therefore, clear understanding of generation and transport of these electrons is

crucial for optimal performance of each of the above-mentioned application.

The present work concerns the dynamics of such relativistic electrons pro-

duced in laser-solid interactions. In particular, the influence of ‘pre-formed plasma’

[Adumi et al., 2004] in front of a solid target on fast electron generation and trans-

port is studied here. The name ‘pre-formed plasma’ is derived from the fact that

such plasma is created before the arrival of main relativistic intensity laser due

to the ablation of solid target by the laser pre-pulse [Chen et al., 2007], i.e. the

1
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nano second time scale pedestal in front of main laser. Such studies are extremely

important for understanding the dynamics of fast electrons in laser-solid interac-

tions as pre-formed plasma of varying scale-length is almost always present in the

experiments. Here, we have performed the theoretical and numerical investigation

of the role of such a pre-formed plasma in relativistic laser-solid interactions.

1.2 Motivation

Recent experiments suggest that the presence of pre-formed plasma in front

of solid target can strongly influence the fast electrons generation and transport.

The density scale-length of such plasma could be as high as 10-15 µm for a typical

energy contrast of 10−5 between the pre-pulse and energetic main pulses of energies

10-100 kJ. The experiment with planar targets [Yabuuchi et al., 2010] showed that

the energetic fast electrons with energies much greater than the ponderomotive

potential [Wilks et al., 1992] are generated in the presence of pre-formed plasma

with a density scale-length of approximately 10 µm (see figure 1.1). The electrons

spectrum in red here is produced in presence of long scale-length pre-formed plasma

and gray and blue spectrum are produced when there no significant pre-formed

plasma.

Also, the experiments with the cone shaped targets [Baton et al., 2008,

MacPhee et al., 2010, Van Woerkom et al., 2008] have shown that the fast electron

generation is significantly modified by the presence of long scale pre-plasma inside

the cone. The fast electrons coupling to the solid target was affected due to the

presence of pre-formed plasma inside the cone [Baton et al., 2008]. This was due

to the increased transport distance for the fast electrons caused by the expansion

of plasma in front of the target. This resulted in shifting of critical density surface

away from the solid target. In case of proton acceleration experiments, increase in

maximum proton energy was reported with increase in pre-pulse energy [Kaluza

et al., 2004, Yogo et al., 2007]. This increase in maximum energy was attributed

to the increase in absorption efficiency of the main pulse due to the presence of

longer pre-formed plasma in front of a target.
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Figure 1.1: Experimentally measured electron spectrum with and without long
scale-length pre-formed plasma (laser intensity = 2 × 1018 W/cm2 ) [Yabuuchi
et al., 2010].

The generation of fast electron in presence of pre-plasma is addressed in

number of theoretical and numerical publications [Andreev et al., 2003, Cai et al.,

2010, Kemp et al., 2009, Lee et al., 2004, Lefebvre and Bonnaud, 1997, Mishra

et al., 2009, Nuter et al., 2008, Pukhov et al., 1999, Sentoku et al., 2002]. In

many cases the fast electrons spectrum generated during laser plasma interaction

is characterized by a mean energy of electrons that is referred as ‘hot electron

temperature’, Thot. In general, Particle In Cell (PIC) simulations predict increase

in Thot and laser absorption with increase in pre-plasma scale-length (e.g. [Kemp

et al., 2009, Mishra et al., 2009]), consistent with the experimental observations.

The fast electrons mean energy is found to be below ponderomotive energy for

extremely steep density gradients, [Sherlock, 2009] whereas in the case of long pre-

plasma scale-lengths, the observed mean energies are well beyond ponderomotive

energies (refer figure 1.2) [Kemp et al., 2009] .

In addition to the discrepancy about the mean energy of the generated

fast electrons, the situation is further complicated by the fact that the measured

electrons spectrum shows distinct departure from single temperature maxwellian

distribution. This may be attributed to the different heating mechanisms that
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Figure 1.2: Numerically simulated fast electron energy spectrum for (a) Long
density gradient (3.25 µm) (b) Small density gradient (0.85 µm).[Kemp et al.,
2009] .

might be playing dominant role depending upon the pre-plasma scale-length. It is

proposed that dominant heating mechanism for small and long scale-length pre-

plasma can be J×B heating and stochastic heating respectively [Nuter et al., 2008].

In case of steep density profiles, the electrostatic potential well is produced due

to the charge separation near relativistic critical density surface play a crucial role

in decreasing the energy of the fast electrons entering into solid targets [Sherlock,

2009]. For the steep density gradients, PIC simulations have reported the small-

scale ( ∼ c/ωpe , collisionless skin-depth) blob-like formation close to critical density

[Mishra et al., 2009]. It is also pointed out that the ‘high-energy tail’ of fast

electrons distribution can be due to the combination of counter-propagating EM

waves and longitudinal plasma waves [Kemp et al., 2009, Lefebvre and Bonnaud,

1997].

Thus, although the experimental evidences clearly demonstrate that the

presence of pre-formed plasma can significantly affect the relativistic intensity laser-

solid interaction, the clear theoretical understanding about the role of pre-formed

plasma is yet to emerge. In this thesis, we have addressed some of these issues

theoretically and numerically with the help of Particle In Cell (PIC) simulations.

In particular, the role of ambipolar electric field, present inside pre-formed plasma,

on electron heating is investigated for the first time. The discussion in this thesis
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is mainly applicable for the picosecond time scale laser interaction with plasma

where such ambipolar fields can be created due to the laser heating.

1.3 Dissertation outline

Outline of the thesis is as follows :

1.3.1 Chapter 2 : A brief review of theory of relativistic

intensity laser-solid interaction

This chapter gives a short review of basic physics of fast electron generation

and transport relevant to laser-solid interaction. Topics such as single electron

motion in an electromagnetic field, laser propagation in plasma, different laser

absorption mechanisms, the setting up of return current due to fast electron beam

propagation through plasma are covered. This physics is considered essential to

understand the dynamics of fast electrons in the presence of plasma.

1.3.2 Chapter 3 and 4 : Fast electron generation in the

presence of pre-formed plasma

These chapters address the role of pre-formed plasma on the generation of

fast electrons in laser-solid interactions. Chapter 3 describes the systematic study

of fast electron generation for different pre-formed plasma scale-lengths (1 µm , 5

µm, 15 µm ) and laser intensities ( 1019 W/cm2, 1020 W/cm2, 1021 W/cm2) per-

formed with the help of 1-D PIC code LSP [Welch et al., 2001, 2006]. Increase in

the fast electron mean energy with increasing pre-formed plasma scale-length is re-

ported. Detailed dynamics of electrons in pre-plasma and their heating mechanism

is given in this chapter.

The role of longitudinal ambipolar electric field on pre-formed plasma elec-

tron heating is addressed in chapter 4. The theoretical study of stochastic heating

of electrons in the presence of this electric field is performed by analyzing the single

electron motion. The transition from regular(periodic) to stochastic regime due to
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the presence of longitudinal electric field is demonstrated. Finally, it is shown that

the electrons in pre-formed plasma can be heated beyond the laser ponderomotive

energies in the stochastic regime.

This work is also described in the following papers :

(1) B.S.Paradkar, M.S.Wei, T. Yabuuchi, R.B.Stephens, S.I. Krasheninnikov

and F.N.Beg, “Numerical modeling of fast electrons generation in presence

of pre-formed plasma in laser-matter interaction at relativistic intensity”,

Phys. Rev. E 83 046401, 2011.

(2) B. S. Paradkar, S. I. Krasheninnikov and F. N. Beg, “Mechanism of pre-

formed plasma electrons heating in relativistic laser-solid interaction”, sub-

mitted to Phys. Rev. Lett..

1.3.3 Chapter 5 : Effect of pre-formed plasma on fast elec-

tron transport

This chapter describes numerical modeling of fast electron transport in pres-

ence of pre-formed plasma. Specifically, the physics of the annular ring observed

in Copper Kα x-ray emission [Yabuuchi et al., 2010] due to the fast electrons

transport through multilayered solid target is explained. Such emission was seen

in the experiment only in presence of long scale-length pre-formed plasma. The

reflection of fast electrons in the pre-formed plasma when fast electron density

becomes comparable to background density due to space-charge electric field is

clearly demonstrated with the help of numerical simulations performed with the

hybrid PIC code LSP. This work is published in:

(1) B.S.Paradkar, M.S. Wei, T. Yabuuchi, R. B. Stephens, J. T. Larsen and

F. N. Beg, “Numerical modeling of fast electrons transport in short pulse

laser-solid interactions with long scale-length pre-formed plasma”, Plasma

Physics and Controlled Fusion 52 125003, 2010.
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1.3.4 Chapter 6: Summary and Conclusions

Finally summary and conclusion of this thesis is given in chapter 6. Also,

the future work in this topic the author would like to pursue is mentioned here.



Chapter 2

Review of theory of relativistic

intensity laser-solid interaction

Laser-solid interaction studies have made great progress in the last two

decades since the invention of Chirped Pulse Amplification (CPA) technique [Maine

et al., 1988, Strickland and Mourou, 1985]. This technique allowed construction

of modern day lasers with intensities above 1018 W/cm2. Lasers with such high

intensities have enabled us to probe the interaction of matter with light where

the electron motion is relativistic. This can be seen from observing that a single

electron in presence of oscillating electric field, E = E0 sinωt will quiver with a

velocity, Vosc given by

Vosc
c

=
eE0

mωc
cosωt = a0 cosωt (2.1)

Note that a0 = eE0

mωc
is the normalized vector potential. Therefore, when a0 & 1

the electron oscillation velocity becomes relativistic i.e. Vosc . c. Since the laser

intensity (Poynting flux) is given by IL = cE2
0/(8π), the relativistic regime can be

estimated as

a20 =
IL (W/cm2)λ2L (µm2)

1.37× 1018
& 1 (2.2)

Therefore for 1 µm laser with intensities greater than 1018 W/cm2, the relativistic

corrections must be added to the electron motion. With this intensity range in

8
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mind, we now review some of the basic physics of short pulse high intensity laser

plasma interactions.

2.1 Single electron motion in laser field

We begin our discussion by reviewing the single electron motion in pres-

ence of electromagnetic radiation. Understanding this ‘single particle’ description

is very important although in plasma physics typically ‘collective effects’ are consid-

ered to play a dominant role. Especially for the interaction of relativistic intensity

laser with the underdense plasma, the single particle approach is very helpful.

The Lagrangian for a charge (charge e,mass m) in an electromagnetic field

is given by [Landau and Lifshitz, 2010]

L
(
~V ,~r, t

)
= −mc2

√
1− V 2

c2
+
e

c
~A · ~V − eφ (2.3)

where ~A (~r, t) and φ (~r, t) are the vector and scalar potentials of the field respec-

tively. Then the canonical momentum, ~P is defined as

~P =
∂L

∂~V
=

m~V√
1− V 2

c2

+
e

c
~A = ~p+

e

c
~A (2.4)

Here ~p = γm~V is the ordinary (mechanical) momentum of the electron, γ being

the Lorentz factor. Remembering the momentum equation d~P/dt = ∂L/∂~r, we

now can write equation of mechanical momentum as [Angus and Krasheninnikov,

2009]

d

dt

[
γm~V

]
= −e∇φ+

e

c

[
∇ ~A · ~V − d ~A

dt

]
(2.5)

Note that by substituting E = −∇φ − 1
c
∂ ~A
∂t

and d ~A
dt

= ∂ ~A
∂t

+ (~V · ∇) ~A we recover

usual Lorentz force equation.

Now, we consider simple one dimensional case where ~A ≡ ~A (z, t) ≡ (A⊥, Az),

φ ≡ φ (z, t) and ~r ≡ (r⊥, z). Noting that
(
∇ ~A · ~V

)
j

=
3∑
i=1

(∂Ai/∂rj)Vi, we get
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following relations for parallel (z) and perpendicular (r⊥) directions.

d

dt

[
γmV⊥ +

e

c
A⊥

]
= 0 (2.6)

d

dt
[γmVz] = eEz +

e

c

[
V⊥
∂A⊥
∂z

]
(2.7)

This shows that in one dimensional case, canonical momentum is conserved in the

perpendicular direction. Integrating Eq. (2.6) and taking V⊥ (0) = A⊥ (0) = 0 we

can reduce Eq.(2.7) into

d

dt
[γmVz] = eEz −

e2

2γmc2
∂A2
⊥

∂z
(2.8)

The second term on the right hand side represents the nonlinear ‘relativistic pon-

deromotive force’ on the charge particle. The time averaging of this force is typi-

cally associated with the the potential called ‘ponderomotive potential’, φp. Finally

the energy conservation equation can be written as

d

dt

[
γmc2

]
= e ~E · ~V = eEzVz +

e2

2γmc2
∂A2
⊥

∂t
(2.9)

For an electromagnetic radiation (ω, k), we apply normalization as : t → ωt,

z → kz, p→ p/mc, V → V/c, Â→ eA/(mc2) and E → eE/(mcω). With this we

can write relativistic electron dynamics in non-dimensional form as

d

dt

[
γV⊥ − Â⊥

]
= 0

d

dt
[γVz] = −Ez −

1

2γ

∂Â2
⊥

∂z
(2.10)

dγ

dt
= −EzVz +

1

2γ

∂Â2
⊥

∂t

For Ez = 0 and plane electromagnetic wave Â⊥ ≡ Â⊥ (t− z), the parallel

momentum equation and energy conservation equation can be combined to give

another constant of motion as

d

dt
[γ − pz] =

d

dt
[γ (1− Vz)] = 0 (2.11)
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Thus combining the constant of motion, γ−pz = ∆ with the relation γ2 = 1+p2z+p
2
⊥

we get

pz =
1−∆2 + p2⊥

2∆
(2.12)

Noting that p⊥ = Â⊥ (from conservation of canonical momentum in the perpen-

dicular direction), for an electron initially at rest (∆ = 1) and linearly polarized

light
(
Â⊥ = a0 cos (t− z) = a0 cos τ

)
, we can calculate pz and p⊥ as

pz =
a20
4

[1 + cos 2τ ]

p⊥ = a0 cos τ (2.13)

The above equation demonstrates that the longitudinal momentum of electron

in the presence of linearly polarized light has a secular component and a non-

stationary component which oscillates at twice the light frequency. This so called

‘2ω’ oscillation is characteristic of a linearly polarized light. On the other hand,

for the circularly polarized light
(
Â⊥ = a0√

2
[cos τ x̂± sin τ ŷ]

)
, we get Â2

⊥ = con-

stant. In other words, ‘2ω’ oscillations are absent for the circularly polarized light.

Therefore, for circular polarization we have,

pz =
a20
4

px =
a0√

2
cos τ (2.14)

py = ± a0√
2

sin τ

Thus, because of the constant drift along the longitudinal direction, the pondero-

motive potential can be defined as φp ∼ 0.5
(√

1 + a20 − 1
)

. For example, for a

circularly polarized laser with intensity of 1019 W/cm2, the electron should acquire

the energy E ∼ φp ∼ 960keV.

2.2 Laser propagation in plasma

Having analyzed the electron motion in the presence of relativistic inten-

sity laser, we now turn our attention to the topic of propagation of laser through



12

plasma. Due to the presence of pre-formed plasma of varying density scale-length in

almost all the laser-solid experiments, the laser has to propagate through plasma

before it finally hits the solid surface. Therefore, understanding of light propa-

gation through plasma is very important. This topic is extensively reviewed by

William Kruer[Kruer, 2003].

The dispersion relation for an electromagnetic wave (ω, k) propagating

through plasma is given by

ω2 = ω2
pe + k2c2 (2.15)

ωpe is the electron plasma frequency. Therefore, the refractive index of the plasma

ηr can be expressed as

ηr ≡
√
ε ≡

√
1−

ω2
pe

ω2
(2.16)

ε is the dielectric constant of the plasma.This naturally leads to the definition of

‘critical density’ ncr beyond which the laser with frequency ωL can’t propagate

(k = 0) as

ncr =
meω

2
L

4πe2
(2.17)

in practical units, the above equation can be written as

ncr
(
cm−3

)
=

1.1× 1021

λ2µm
(2.18)

For the relativistic intensity lasers considered in this thesis, relativistic correction

is needed. This gives expression for relativistic critical density is ncr|relativisitc=
γoscncr. Here γosc is the Lorentz factor due to the oscillatory motion of electrons

in presence of laser as discussed in the earlier section.

Now, for the case of inhomogeneous plasma which may be more relevant

for this thesis, analytical solution can be obtained with WKB method. Equivalent

result can be obtained from simple energy flux conservation argument. Since the

group velocity of the light
(
Vg/c =

√
1− ω2

pe/ω
2 =
√
ε
)

decreases with increase in
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the plasma density, we see that the laser electric field must increase as it approaches

the critical density surface from the low density region. This can be shown as

Vg|ELaser (z) |2

8π
=

cE2
0

8π
⇒ |ELaser (z) |=

E0

ε1/4
(2.19)

Here E0 and ELaser (z) are the laser electric fields in vacuum and inhomogeneous

plasma respectively. Finally it should be pointed out that since wave propagation

vector becomes imaginary beyond critical density surface, the electric field dies

down exponentially in the overcritical region. Exact analytical solution for linear

density profile can be expressed in terms of Airy functions [Kruer, 2003]

Laser propagation through pre-formed plasma can also be subjected to var-

ious parametric instabilities such as Stimulated Raman Scattering (SRS), Stimu-

lated Brillouin Scattering(SBS), ‘2ωpe’ instability, laser beam filamentation, laser

self focussing etc. These instabilities are discussed in great detail by William Kruer

[Kruer, 2003]. Out of these instabilities, probably the most important ones in the

context of short pulse laser with relativistic intensity are laser filamentation and

self-focussing. The essential physics of these two instabilities can be summarized

by the following schematic figure.

Laser ponderomotive force 

! "pe 

Change in plasma refractive 
index 

! Elaser , ! Vph ! "

Change in plasma refractive 

Elaser

Figure 2.1: Schematic for laser filamentation and self-focusing instability .

Here change in plasma frequency ωpe can be introduced due to the various

factors such as transverse density profile of the pre-formed plasma, radial intensity

profile of the laser beam, small perturbations in the directions transverse to the

laser propagation. On the other hand, change in the local phase velocity of the light
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will lead to either beam filamentation or self-focusing. Recent PIC simulations

[Kemp et al., 2010, MacPhee et al., 2010] of laser interaction with cone targets

which are filled with pre-formed plasma demonstrate laser filaments (see Figure

2.2). As can be seen from these simulations, filamentation and self-focusing can

increase the local intensity of laser inside pre-formed plasma. Hence, these effects

will have implications on the generation of relativistic electrons in the pre-formed

plasma.

Figure 2.2: PIC simulations of laser filamentation while propagating through
pre-formed plasma. [MacPhee et al., 2010]

2.3 Laser absorption mechanisms and fast elec-

trons generation

The topic of laser absorption and fast electrons generation is extensively

studied both theoretically and experimentally. Since electron while oscillating

in an infinite electromagnetic radiation gains exactly same amount of energy in

one half cycle as it looses in the other half cycle, the net energy gain from an
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electromagnetic radiation is always zero [Woodward and Lawson, 1948]. Therefore

in order for the electron to gain energy from laser, this symmetry of oscillation

must be broken. This is the essence of all the laser absorption mechanisms. This

also means that the generated electron spectrum is closely associated type of laser

absorption mechanism.

In the context of relativistic intensity lasers, two widely used scalings to

predict the fast electrons energy spectrum are experimentally determined ‘Beg

scaling’ [Beg et al., 1997] and numerically found ‘Wilks scaling’ or ‘ponderomotive

scaling’ [Wilks et al., 1992]. Both these scalings attempt to characterize the fast

electrons energy distribution function with a ‘slope temperature’ Thot by assuming

Maxwellian distribution. Thot in ‘Beg scaling’ depends upon [ILλ
2
L]

1/3
whereas the

‘Wilks scaling’ predicts it as [ILλ
2
L]

1/2
where IL and λL are laser intensity and

wavelength respectively. The energy scaling of fast electrons with laser intensity

is still a topic of active research and this thesis makes an attempt to contribute to

this on going discussion.

Typically, collisional absorption and resonance absorption are the dominant

heating mechanisms for the low intensity (< 1017) W/cm2, long pulse (hydrody-

namic time scales) lasers [Kruer, 2003]. In collisional absorption, the electron-ion

collisions break the symmetry of the electrons oscillation, thereby resulting in laser

absorption. In high power short pulse lasers, plasma becomes almost collisionless

due the high temperatures and large oscillation velocity (compared to the thermal

velocity) of electrons. Generally collisional absorption is considered to play impor-

tant role up to the intensities 1015 W/cm2. The resonance absorption occurs when

p-polarized light is incident obliquely on the plasma with its electric field compo-

nent parallel to the density gradient. This oscillating component of electric field

excites electrostatic plasma waves (Langmuir waves) which mostly travel down

the density gradient. These waves eventually are damped either collisionally or

through Landau damping, thereby giving energy to the electrons. The generated

electrons are typically ‘superthermal’ with temperature which scales as [ILλ
2
L]

1/3
,

curiously similar to the experimentally measured Beg scaling.

In case of sharp density gradient overcritical plasma, the mechanism called
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‘vacuum heating’ or ‘Brunel absorption’ [Brunel, 1987] explains collisionless absorp-

tion of high intensity laser incident. In this case, the component of electric field

of obliquely incident laser, drags and accelerates thermal electrons into vacuum.

These electrons eventually enter overcritical plasma on the reversal of polarity of

accelerating electric field. Since the energy of accelerated electrons is proportional

to the component of laser electric field normal to the surface, the Thot for this mech-

anism scales with [ILλ
2
L]

1/2
. Similar to vacuum heating, reflection of the electron

inside the electrostatic sheath in front of overcritical plasma can break the symmet-

ric of oscillation for an electron in a laser field. This may result in laser absorption.

Based on this effect, heating mechanisms such as ‘anomolous skin effect’ [Gamaliy

and Tikhonchuk, 1988, Weibel, 1967] and ‘sheath inverse-bremsstrahlung’ [Catto

and More, 1977] are proposed.

Another important absorption mechanism in the context of short pulse laser

matter interaction with steep density gradients is ‘J × B heating’ [Kruer and Es-

tabrook, 1985]. Here, the oscillating component of the relativistic ponderomotive

force plays a role similar to the component of laser electric field normal to the sur-

face in case of resonance absorption and vacuum heating. As we have seen earlier in

this chapter, since this ponderomotive force oscillates at twice the laser frequency,

the fast electrons are accelerated and pushed into the target with characteristic

‘2ω’ bunches [Mishra et al., 2009]. This mechanism leads to ‘ponderomotive scal-

ing’ i.e. [ILλ
2
L]

1/2
for Thot which is confirmed by PIC simulations [Wilks et al.,

1992].

Thus we see at that the applicability of these absorption mechanisms in

laser-solid interactions may depend upon various factors such laser intensity, pre-

formed plasma density scale-length, target material etc. Not so surprisingly the

distribution function of the generated fast electrons in such interactions shows

distinct departure from the ‘ideal’ Maxwellian distribution.
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2.4 Electron beam transport through plasma

The topic of transport of fast electrons though plasma in relativistic inten-

sity laser matter interaction is very important for the fast ignition studies. Such

interactions generate relativistic electron beams carrying very high currents. The

currents can be estimated for typical laser parameters. For a given laser intensity

ILaser and conversion efficiency α of laser to fast electrons we can estimate fast

electron current density Jfast as

Jfast
[
A/cm2

]
=
αIL [W/cm2]

Thot [eV ]
(2.20)

For the laser intensity of 1019 W/cm2 and Thot ∼ 1 MeV (ponderomotive scaling),

taking conversion efficiency of 10% , we can estimate the fast electrons current

density as ∼ 1012 A/cm2. Assuming that this electron beam is approximately

cylindrical with a radius of 10 µm, the total fast electrons current turns out to

be 3 MA. Now let us compare this current with the ‘Alfven current limit’ [Alfvén,

1939, Dodin and Fisch, 2006]. The ‘Alfven current’ IA is the maximum current

than can be transported through a medium due to the self-pinching effect of beam

magnetic field. It’s expression is given by

IA =
mc3

e
γVz

IA|electron[kA] = 17γVz (2.21)

Here Vz is the normalized velocity of the particle in beam. For a electron beam of

average energy of 1 MeV, this current limit is≈ 50 kA. Thus the total current in the

relativistic electron beam generated in typical short pulse laser matter interaction

experiment exceeds the ‘Alfven current limit’ by a factor of 600 !! This anomaly

can be resolved by considering that such high current must be compensated by a

backward current from background plasma so that the net current is close to zero

i.e. Jnet = Jfast + Jplasma ≈ 0 [Bell et al., 1997]. This current is generally referred

as ‘return current’.
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Naturally such return current would set up a resistive electric field due to

collision of electrons in the return current with the background plasma ions. This

resistive electric field for a background plasma with resistivity η can be estimated

using Ohm’s law as

E = ηJplasma (2.22)

Based on work by Lee and More [Lee and More, 1984], for a solid density of

aluminum target at 200 eV temperature and mean ionization state 10, we can

apply Spitzer resistivity formula
(
η = 5.22× 10−3Z log ΛT

−3/2
plasmaΩ− cm

)
. Taking

log Λ = 2 we get η = 3.69 × 10−5Ω − cm. Therefore, for current density of 1012

A/cm2, the resistive electric field is ≈ 3.7 × 10−3 MV/µm. Correspondingly the

stopping distance for 1 MeV electron is ∼ 270 µm which is considerably smaller

than the classical stopping distance of electron in the solid. Although these sim-

ple estimates are far from exact, they demonstrate that the dynamics of such

high current density fast electrons beam is significantly altered when it propagates

through plasma. The dynamics of these fast electrons is also affected by the mag-

netic fields generated by resistive electric fields. Taking curl of Eq. 2.22 and noting

that Jplasma ≈ −Jfast, we can write the equation for resistive magnetic fields as

1

c

∂ ~B

∂t
' ∇η × ~Jfast + η∇× ~Jfast (2.23)

This means that magnetic fields can be generated either in case of non-uniform

current density or if there is a resistivity gradient in the path of fast electrons

beam. For example, such fields can be excited at the interface of two different

materials due to gradient in resistivity [Bell et al., 1998].

We see that the fast electrons transport through plasma is strongly affected

by the strong electric and magnetic fields produced by the interplay of forward

of fast electrons and backward current of background plasma. The physics of

transport is further complicated by the fact that this set up of counter-propagating

currents is unstable to various electrostatic and electromagnetic instabilities. In

particular, the weibel like electromagnetic instability [Califano et al., 1997, Weibel,
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1959] which may cause the filamentation of fast electron beam can significantly

influence the transport.

Thus we see that the relativistic fast electrons generation and transport

is rich topic in physics with very interesting phenomena. After reviewing this

basic essential theory of the subject, we now begin our exploration of influence of

pre-formed plasma on these fast electrons when the laser interacts with the solid

target.



Chapter 3

Fast electron generation in the

presence of pre-formed plasma

As we discussed in Chapter 1, the pre-formed plasma density scale-length

could be as high as 15-20 µm (in planar targets) for a typical energy contrast of

10-5 between the pre-pulse and energetic main pulses of energies 10-100 kJ. Even in

the case of a laser system with a high energy contrast ratio (∼ 10-8), considerable

plasma can be expected to build up in front of a dense target due to plasma

expansion for a relatively long pulse (∼ 20 ps), high intensity, high power lasers,

especially in the fast ignition relevant experiments. Therefore, the interaction of

the short pulse laser with pre-formed plasma is inevitable in laser-solid interaction

experiments, particularly with 1µm lasers.

Typically, laser plasma interaction (LPI) generated fast electrons are char-

acterized by the slope temperature, Thot, of their energy spectrum. The two most

widely used scaling for the fast electrons mean energies (Thot) are the experimen-

tally determined Begs scaling [Beg et al., 1997] and Wilks numerically modeled

ponderomotive scaling [Wilks et al., 1992]. These scalings do not address the de-

pendence of Thot on a finite scale-length pre-formed plasma in front of the target.

However, as discussed in chapter 1, the recent experiments and numerical model-

ing suggest that the presence of pre-formed plasma can significantly affect the fast

electron energy distribution. In general, these studies have reported an increase

in the fast electrons mean energy with increasing pre-formed plasma scale-length.

20
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However, the physics of such increase in the fast electron energy with increasing

pre-formed plasma is still not well-understood.

In the this chapter, we discuss the fast electron generation in the presence

of pre-formed plasma in laser-matter interaction in the intensity range of 1019-1021

W/cm2 in a 1-dimensional slab approximation. Results of numerical simulations

with PIC code LSP are presented here. Three different pre-formed plasma density

scale-lengths of 1 µm, 5 µm and 15 µm are considered. The choice of simplified

1-D approximation, because it is computationally cheap, allows us to simulate the

laser plasma interaction over a wide range of pre-formed plasma scale-lengths and

laser intensities. Consistent with the earlier reported work, it is found that both

the mean and the maximum energy of the generated fast electrons increase with

an increase in the pre-formed plasma scale-length (in the range 1-15 µm).

The simulations are performed with both mobile and immobile ions assump-

tion. In the majority of our simulations, the ions are considered to be immobile

in order to keep the interaction independent of solid target material. The effect of

ion mobility and ponderomotive steepening of plasma density profile [Kemp et al.,

2009] is studied by performing separate simulations for the case of fully ionized

aluminum. The multi-dimensional effects of laser plasma interaction like laser self-

focusing [Kelley, 1965, Sun et al., 1987] and filamentation[Max et al., 1974] may

play a role in experiments. However, these effects are neglected in the present work

for simplicity.

3.1 PIC modeling with immobile ions

The simulations are performed with the PIC code, Large Scale Plasma

(LSP), used in 1D3V phase-space. LSP, being an implicit PIC code, allows the

use of the grid resolution greater than the Debye length without causing excess

numerical heating. This feature makes it suitable for simulating laser-solid inter-

actions at relativistic intensities. For example, the Debye length for plasma at a

density of 1023 cm-3 and 5 keV electrons temperature is approximately 1.6× 10−3

µm. LSP relaxes the stringent computational requirement of resolving such small
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spatial scales. A spatial resolution of 80 cells per laser wavelength (= 1 µm) with

300 particles per cell is used in the simulations. The cell size, ∆z = 1.25 × 10−2

µm, ensures that the collisionless skin depth and lowest pre-plasma scale length

(1 µm) are well resolved. The time step c∆t = 10−3 µm is chosen to satisfy the

Courant stability criterion [Welch et al., 2001]. The initial plasma density profile

is taken as [Sherlock, 2009].

ne(z) =
Zinsolid

1 + exp [1 + 2(z − z0)/Lp]
(3.1)

where Lp denotes pre-formed plasma scale length, Zi is the ion charge state and

nsolid is the solid ion density. Fully ionized aluminum plasma with initial temper-

ature of 5 keV is used in the simulations. The selection of aluminum would only

affect mobile ion simulation results through its ion inertia. Of course, the implicit

assumption here is that the slow ion motion can be neglected on the time scales

of fast motion of electrons in the laser field and ion motion would affect the LPI

only through the modification of pre-formed plasma profile. The linearly polarized

laser enters the simulation box from the left boundary (figure 3.1) with the laser

pulse reaching maximum intensity in 10 laser cycles (i.e. 33 fs). The simulations

are run with three different laser intensities of 1019 W/cm2, 1020 W/cm2 and 1021

W/cm2. The direction of laser propagation is defined as Z-direction, whereas the

laser electric and magnetic fields are pointed in the X and Y direction respectively.

The fast electron energy spectrum is obtained by analyzing the electrons behind

the relativistic critical density surface (inside the counting box B as shown by

dotted lines in figure 3.1). Figure 3.1(b) shows the temporal variation of Poynt-

ing flux through plane AA for the case of I=1020 W/cm2. Quasi-steady state of

the simulation is defined as the time when laser net forward energy flux becomes

approximately constant and equal to the particle energy flux entering the solid

target. The estimate of the fast electrons mean energy based on electron distribu-

tion functions is obtained when this quasi-steady state is reached. For example,

in figure 3.1(b), quasi-steady state is reached approximately after 400 fs. Fast

electron refluxing from the back of the target is avoided by choosing longer target
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Figure 3.1: Schematic of simulation set-up. (a)The linearly polarized laser enters
the simulation box from the left boundary and travels in +Z direction. The fast
electrons generated by laser plasma interaction are counted inside the solid in box
B for the analysis of electron energy distribution . (b) The temporal variation of
laser forward energy flux through plain AA is shown.

dimensions. Therefore, results presented here are valid under the thick target ap-

proximation with no refluxing of electrons from a foils rear surface into the LPI

region. Such electron refluxing could significantly modify these simulations [Chen

and Wilks, 2005].

One issue that is critically important in high intensity laser-matter interac-

tion is to characterize correctly the fast electrons energy spectrum. In general, the

most important quantity of interest is the mean energy (Emean) of generated fast

electrons going into the target. Typically this quantity is determined by fitting

the electron distribution function, f(E) (shown in figure 3.2(a)) by a function of

the form A0 exp (−E/Thot) where Thot is called slope temperature. The electron

distribution function f(E) is normalized as:

n =

∫ ∞
0

f(E)dE (3.2)

where, n is the electron density and E is the kinetic energy of an electron. But this

direct correlation between Emean and Thot breaks down when the electron energy
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spectrum is non-Maxwellian, which is usually the case with the high intensity laser-

matter interactions. Therefore, the mean energy of fast electrons obtained from this

method is very sensitive to the energy range chosen to fit the spectrum, especially

in the low energy part of the spectrum [Sherlock, 2009]. The more meaningful

estimate of the fast electron mean energy, especially for fast ignition [Tabak et al.,

1994] studies, can be made based on the electron energy flux distribution function

or heat flux, w(E) defined in the following way:

q(E) =

∫ E

0

w(E)dE =

∫ E

0

f(E)EVzdE (3.3)

where q(E) is the heat flux carried along the laser propagation direction by the

electrons with energies less than E, and Vz is the electron velocity in the laser

propagation direction. Thus, the total heat flux qT carried by the electrons inside

the target is given by

qT =

∫ ∞
0

w(E)dE =

∫ ∞
0

f(E)EVzdE (3.4)

Now, we define the mean energy Emean of the fast electrons spectrum as energy

at which half of the total electron heat flux (0.5qT) is captured. Figure 3.2(b)

illustrates the method of calculating the mean energy in this work. This method

gives us a direct quantitative estimate of the energy at which the incident laser

energy is converted into the fast electrons energy without the introduction of any

arbitrary lower energy cutoff, which was used in Ref. [Sherlock, 2009].

The fast electron energy spectra obtained for the three pre-formed plasma

scale-lengths (Lp = 1, 5, and 15 µm) at three laser intensities (I = 1019, 1020, 1021

W/cm2) are analyzed by the above-mentioned method. Figure 3.3 (a) shows the

fast electron energy spectra at the laser intensity of 1020 W/cm2. The dependence

of the mean electron energy on laser intensity and pre-formed plasma scale-length

is plotted in figure 3.3(b). It can be seen that the longer scale-length pre-formed

plasma results in the higher mean energy of fast electrons, in agreement with earlier

published experimental and numerical work. For the long pre-formed plasma cases
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Figure 3.2: (a) Electron energy distribution inside the target for laser intensity of
1020 W/cm2 and 15 µm pre-plasma scale-length (b) Cumulative heat flux carried
by the electrons inside the target.

(viz 5 and 15 µm), the Emean obtained is higher than the laser ponderomotive

energy, Ep for the corresponding laser intensity. In addition, we also observe that

the maximum energy of fast electrons in the spectrum (Emax) increases with an

increase in the pre-formed plasma scale-length. For example, for the laser intensity

of 1020 W/cm2, the mean energies for 1, 5 and 15 µm cases are approximately 3.1

MeV, 6.3 MeV and 14 MeV respectively, whereas the ponderomotive energy at this

intensity is 3.8 MeV. The corresponding maximum energies for these scale-lengths

are 25 MeV, 75 MeV and 100 MeV respectively.

Finally, we performed the chi-square minimum fitting on the mean energies

obtained for the various intensities and pre-formed plasma scale-lengths with a

fitting function of the form , where IL and Lp are the laser intensity normalized by

1.37 × 1018 W/cm2 and pre-formed plasma scale-length in µm respectively. This

fitting gives Emean as

Emean(MeV ) = (0.72± 0.13)I
(0.36±0.02)
L L0.5±0.06

p (3.5)

Note that above fitting is obtained for the laser intensity range of 1019 − 1021
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Figure 3.3: (a) Electron energy distribution inside the target for three pre-formed
plasma scale-lengths for a laser intensity of 1020 W/cm2. (b) The mean energy of
electrons obtained by the method described in figure 3.2(b). The increase in both
the mean and maximum energy with increasing pre-formed plasma scale-lengths
is evident from these plots.

W/cm2 and pre-formed plasma scale-length range of 1-15 µm.Thus, we find that

both the mean and the maximum energies of the generated fast electrons increase

with an increase in the pre-formed plasma scale-length. In order to understand the

underlying physics of the above-mentioned results, we have analyzed the dynamics

of the electrons as the laser starts interacting with the pre-formed plasma. In the

next section, we discuss the dynamics in detail.

3.2 Dynamics of electrons in the pre-formed plasma

As described above, the mean electrons energy and spectra are affected

by the pre-formed plasma scale-lengths. Now, the key question is what is the

mechanism of the plasma electrons heating which leads to such varying spectra

with pre-formed plasma scale-lengths? In this section, we will address this question.

The essential feature of electron heating by an EM wave is the phase randomization
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of electrons in an oscillating field of the wave. This is due to the fact that a single

electron oscillating coherently with the electric field of a plane wave gains zero

cycle averaged energy since the electron energy gain in one half cycle is exactly

equal to the energy loss in the next half cycle. This is generally referred to as

Woodward-Lawson theorem [Woodward and Lawson, 1948]. The various causes

of this breaking of phase coherence in laser plasma interaction results in electron

heating or laser absorption mechanism as discussed in Chapter 2. In this section ,

we investigate the electron heating process by analyzing the electron phase-space

(Pz vs z) dynamics at various stages of the interaction. Figure 3.4 describes the

dynamics of laser interaction with pre-formed plasma during the initial stages for

the case of laser intensity of 1020 W/cm2 and pre-formed plasma scale length of 5

µm. The phase space density, D(z,Pz) shown in figure 3.4 (a), (c) and (e) gives a

number proportional to the number of electrons found between z and z+dz having

longitudinal momentum in the range Pz and Pz+dPz. The normalized electrostatic

potential due to longitudinal electric field Ez is also shown in the red curve. The

electron momentum is plotted in the usual dimensionless units of γβ. Figures

3.4 (b), (d), and (f) are the electron (red line), ion (blue line) densities and the

laser electric field, Ex corresponding to the times shown in figure (a), (c), and (e)

respectively. In very early stages of laser propagation through under-dense pre-

formed plasma (refer figure 3.4(a) and 3.4(b)), all the electrons are swept away

in the forward direction (+Z-direction) by the laser ponderomotive force, leaving

behind immobile ions. This forward electron acceleration by the ponderomotive

force is evident from 2ω electron oscillations. The electrostatic potential due to

charge separation in the under-dense plasma tries to pull the electrons in the

backward direction. As the laser propagates further towards a critical density

surface (refer figure 3.4(c) and 3.4(d)), the electrons experience stronger backward

pull due to increasing electrostatic potential. Negative values of momentum in

figure 3.4(c) illustrate the backward movement of some of the electrons. Now,

the reversal of longitudinal electric field polarity (in the Z direction) in response

to this backward movement of electrons can be seen from the potential curve in

this figure. Finally, we observe the strong phase-space mixing when part of the
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incident light is reflected back from the relativistic critical density (γoscnc) surface

which is present at 48 µm for this simulation (refer figure 3.4(e) and 3.4(f)).

Here, γosc for laser vector potential a0 is defined as γosc =
√

1 + a20/2 . The

phase-space mixing occurs in the region (between 30 µm and 50 µm) where we

have two counter propagating EM waves (incident and reflected laser light). The

increase in the electron energy with the disappearance of distinct 2ω oscillations

in this region demonstrates the stochastic electron heating [Bourdier et al., 2007,

Sheng et al., 2004] by these two counter-propagating waves. We also observe

strong non-linear electrostatic plasma waves produced by the laser ponderomotive

force, travelling pre-dominantly down the density gradient (against the direction

of incident laser propagation, i.e. Z direction) as in the resonance absorption. But

the contribution of these waves to electron heating via wave-particle interactions

like Landau damping is found to be insignificant. The peak value of electrostatic

potential of these plasma waves is much smaller than the actual energy gain by the

electrons seen in the simulations. Therefore, for the laser intensities simulated in

this work, we find that the stochastic heating by counter-propagating EM waves

is the dominant mechanism.

As the electrons heating continues, the stochastic motion of electrons in

counter propagating EM waves leads to the mixing of phase-space fluid. This

results in homogenization of phase-space density in the region of mixing. This

physical picture can be seen in the later time phase-space density plots shown in

figure 3.5. The colors in these plots show the local phase-space density. Also, this

representation of phase-space density indicates how the electrons energy spectrum

varies with spatial co-ordinates; e.g. the flow of phase-space fluid. Thus, from

figure 3.5 we can infer that the very high-energy tail (shown by blue color) of the

electron distribution inside the target is essentially due to the electrons in the low-

density region of the pre-formed plasma. Here, we would like to emphasize the fact

that this phase-space fluid trajectory should not be mistaken as the trajectory of

an individual electron in that region of phase-space. This is especially true in the

phase-space mixing region.

The electron heating near the relativistic critical density surface results in
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Figure 3.4: Laser interaction with pre-formed plasma during initial stages of laser
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an increase in electron pressure (neTe) in the region of laser absorption. The pres-

sure gradient causes the heated plasma expansion from the absorption region. The

electrostatic potential well (solid red line in figure 3.5) self-consistently appears in

response to the plasma electrons expansion from this region. In other words, the

plasma electrons’ heating causes the setting up of this longitudinal electrostatic

potential well to maintain quasi-neutrality. The progressive increase in the maxi-

mum value of potential (from figure 3.5 (a) to (c)) and corresponding decrease in

the electrons escaping to the lower density side (from 0 to 30 µm, in figure 3.5)

demonstrates how plasma potential changes in order to maintain quasi-neutrality.

It should be noted that this potential also brings the cold, fresh electrons from

the solid target into the interaction region. The cold electrons finally enter the

target as heated electrons. This explains how the quasi-steady state is achieved

in these simulations (typically in 200 to 400 fs depending upon the pre-formed

plasma scale-length). With this picture of the pre-formed plasma electrons heat-

ing in mind, we now try to investigate the differences in the electron energy spectra

inside the target for different pre-formed plasma scale-lengths by comparing the
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quasi-steady state phase-space density plots of different scale-lengths (5 and 15

µm) for the same laser intensity of 1020 W/cm2 (see figure 3.6). Note that the

relativistic critical density surface is defined as Z = 0 in these figures. Clearly, we

see an extension of the phase mixing region in the case of a shallower density profile

(Lp = 15 µm) with wider potential well due to the reduced longitudinal electric

field. Here, the electric field is weakened because of the long scale-length of the

pre-formed plasma . The increase in electron energy for the same phase-space

density (shown by the same colors found in figure 3.6(a) and 3.6(b)) indicates the

increase in mean energy in the case of long scale-length pre-formed plasma com-

pared to the short scale-length pre-formed plasma. Also, the maximum energy of

electrons seen inside the target is greater for the 15 µm scale-length case. Thus,

these observations are consistent with the results reported in section II. From this

we conclude that the extension of the phase-space mixing region in the presence

of a wider potential well leads to higher mean and maximum fast electron ener-

gies for the case of long scale pre-formed plasma. In addition, we observe that

the mean energies for these two cases are higher than the ponderomotive energy

Ep at the given laser intensity (refer figure 3.3). For example, for laser intensity
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1020 W/cm2, Ep is 3.8 MeV; whereas mean energies for 5 µm and 15 µm are

6.37 MeV and 17.25 MeV respectively. These results indicate that the electron

heating process is strongly influenced by this longitudinal electrostatic potential

well. In order to investigate the exact physics behind this increase in electron

energies in the presence of long scale pre-plasma with mean energies greater than

ponderomotive energy, we performed a separate set of simulations with counter

propagating EM waves with and without the electrostatic potential well. Note

that the counter propagating EM wave and electrostatic potential well associated

with the expansion of heated plasma electrons are found to be essential features

of the laser-plasma interaction for all the pre-formed plasma scale-lengths. The

width and the depth of this well are decided by various factors such as plasma

heating, pre-formed plasma scale-length, ion mobility (this will be demonstrated

in section V), etc. The numerical results and physics of electron heating in the

presence of a potential well are discussed in the next section.

3.3 Electron heating due to synergetic effects of

EM radiation and electrostatic potential well

The phase-space dynamics in counter propagating EM waves with or with-

out the presence of an electrostatic potential well can be understood by first ana-

lyzing the motion of a single electron in such a field. We have studied such motion

by numerically solving 1D3V electron equation of motion with the standard Boris

algorithm [Birdsall and Langdon, 1985]. Figure 3.7 shows the phase-space tra-

jectories of a single electron under various conditions. The intensity of both the

counter propagating linearly polarized EM waves is taken as 1020 W/cm2. Figure

3.7(a) shows the trajectory of the electron in the absence of a longitudinal electric

field. The characteristic feature of electron motion consisting of trapping (shrink-

ing of phase-space area, i.e. adiabatic invariant) and de-trapping of the electron is

clearly evident from this figure. The maximum normalized longitudinal momen-

tum seen is around 30. Next, in figure 3.7(b), we introduce a constant longitudinal

electric field (i.e. linearly increasing normalized potential represented by blue line)
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in addition to these counter propagating EM waves. Because of the constant elec-

tric field, which pushes the electron continuously in +Z direction in this case, the

phase-slippage of electron with respect to the forward propagating wave is reduced

and therefore the electron starts moving with the forward propagating (+Z) EM

wave. We define this process as electron locking with the forward wave. Note that

the energy gain of the electron is much greater than the electrostatic potential.

Thus, the longitudinal electric field helps in reducing the phase-slippage of an elec-

tron with respect to one of the EM waves, thereby causing the non-linear increase

in energy of the electron due to locking with that wave. In the next three cases

(figure 3.7(c) to (e)), we analyze electron motion for different initial positions (at

t = 0) in a quadratic electrostatic potential well (shown by blue line). These cases

mimic the situations in the actual simulations described in the previous section.

In each of these cases the electron starts from rest with the initial positions (Z =
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0 µm, -20 µm, -30 µm for Fig. (c), (d) and (e) respectively). From figure 3.7(c) to

7(e), we see that the electron, once de-trapped, oscillates in the potential well by

alternately getting locked with the forward and backward going EM wave. During

this process it also gains energy continuously, thereby climbing up the potential

during each cycle of forward and backward motion. This feature can be seen from

figure 3.7(e) where the electron starts from Z = -30 µm, but after one cycle of

oscillation climbs up in the potential at Z = -35 µm. Also, note the increase in

the maximum energy of the electron, as it starts from a region of stronger electric

field. The stronger electric field acts as a moderator in reducing phase-slip of the

electron with respect to the EM wave, thereby causing higher acceleration due to

increased locking distance with either wave. This is consistent with the results in

actual simulations where the maximum energy component of the spectrum inside

the target comes from the electrons accelerated from the under-dense plasma which

is also a region of higher electrostatic potential (refer figure 3.6). Also, large pre-

formed plasma allows longer acceleration length to these electrons locked with the

forward wave, thereby resulting in an increase in the maximum energy. Keeping

the single particle dynamics in mind, it is now easy to interpret the results of PIC

simulations performed to explain plasma heating in two counter propagating EM

waves with and without electrostatic potential well.

The numerical set up and results demonstrating plasma heating due to

counter propagating EM waves in a potential well (at steady state) are shown

in figure 3.8. The two linearly polarized EM waves with equal intensity of 1020

W/cm2 enter the simulation box from the left and right boundaries (figure 3.8(a)).

The plasma density in these simulations is 1016 cm-3. This extremely low value

of plasma density ensures that the self-consistently excited longitudinal electric

fields (including plasma waves) are negligible and plasma heating is entirely due to

the counter propagating EM waves and externally imposed electrostatic potential

well. As can be seen from figure 3.8(a), simulations are run for two different

potentials (potential A (red curve) and potential B (blue curve)). In addition, we

also performed a simulation without the potential well for comparison. The phase-

space densities for the cases without potential (figure 3.8(b)) and with potential
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Figure 3.7: Single electron phase-space trajectories with counter propagating
EM waves and longitudinal electric field. (a) Stochastic electron motion without
longitudinal electric field. (b) The electron motion in the presence of constant
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quadratic potential well (shown by blue line) for the electron initial positions of 0,
-20 and -30 respectively. The electron, starting higher up (for example figure (e))
in the potential, gains more energy due to locking with either of the waves.
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A (figure 3.8(c)) show the increase in electron energies in the presence of the

potential well. Note the different Pz range for the Y-axis in figure 3.8(b) and (c).

The comparison of electron momentum distribution is given in figure 3.8(d). For

the no electrostatic potential case (black curve in figure 3.8(d)), we find that the

full width of the distribution is approximately twice the normalized ponderomotive

potential (∼ 3.8 MeV). The phase-space trajectory of a single electron in counter

propagating EM waves, shown in figure 3.7(a), is consistent with the phase-space

density plot of figure 3.8(b). Also, the maximum energy obtained (γ ∼ 30) is

consistent in both these simulations. On the other hand, the simulations with a

potential well show a larger width of the momentum distribution function (blue

and red curve in figure 3.8(d)) indicating higher mean energy. Also, note that

increasing the width and depth of potential well results in an increase in electron

mean energies. The maximum energy with a potential well is also significantly

larger than the case without a potential well. Both these results are consistent

with the actual pre-formed plasma scale-length simulation results reported in the

previous section. The concentric island-like structures with increasing width along

both Pz and Z axes seen in the phase-space density plot (figure 3.8(c)) are due to

the increase in energy gain by an electron due to the larger locking distance with

either of the waves in the presence of a longitudinal electric field. Again, this trend

is clear from the single particle dynamics explained in figures 3.7(c) - (e).

Thus we can explain the plasma heating mechanism for the counter- prop-

agating EM waves in the presence of an electrostatic potential well. The higher

mean and maximum energies seen with the longer pre-formed plasma scale-length

case can also be explained with this heating mechanism. The larger potential

well in the case of long scale-length pre-formed plasma results in the extension of

phase-space mixing region, thereby causing an increase in the mean energy with

an increase in pre-formed plasma scale-length. The higher maximum energy is

essentially due to the longer locking distance with the forward going wave. The

longitudinal electric field plays the role of moderator in locking an electron with

one of the EM waves by reducing the phase-slippage of the electron with that wave.

Finally, we apply this physical picture to the simulations with mobile ions. The
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results of mobile ion simulations are discussed in the next section.

3.4 PIC modeling with mobile ions

We now turn our attention to the dynamics in the presence of mobile ions.

Fully ionized Aluminum (Zi = 13) is chosen for these simulations. The results of

the simulation for an initial 5 µm pre-plasma density scale-length and laser inten-

sity of 1020 W/cm2 are shown in figure 3.9. In the case of mobile ion simulations,

ions are free to respond to the longitudinal electric field on the time scales decided

by the charge to mass (Zi/M) ratio of the ion. The steepening of the plasma den-

sity profile near the relativistic critical density surface, similar to recently reported

results [Kemp et al., 2009], is observed (figure 3.9(a)). This steepening and the

formation of the low-density shelf in front of the relativistic critical density surface

can be explained by looking into ion motion (figure 3.9(d)) in the presence of a
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longitudinal electric field (figure 3.9(b)) induced due to plasma heating and the

resulting electron pressure gradient. The ions near the potential minima (Z ∼ 45

µm) are pushed in both Z-directions, thereby causing a uniform low-density shelf

in front of a relativistic critical density surface. Note that the maximum energy of

the forward going ions (∼180 MeV) is consistent with the maximum electrostatic

potential (Zeφ). The density of this lower shelf decreases as it expands towards

vacuum. This extension of the low-density shelf toward the vacuum results in

the widening of the potential well. Extension of the phase-space mixing region of

electrons (refer figure 3.9(c)) in the pre-formed plasma due to the wider poten-

tial well results in stronger heating of the plasma, which also causes deepening

of the potential well (due to increase in plasma electron pressure). The ions are

accelerated by the longitudinal electric field caused by the electron pressure gra-

dient. The comparison of mobile ion simulations (figure 3.9(b) and 3.9(c)) with

immobile ions simulations (figure 3.6(a)) demonstrates this mechanism. Naturally,

we find higher laser absorption in the case of mobile ion simulations compared to

immobile ion simulations. For example, for the initial 5 µm pre-formed plasma

density scale-lengths and laser intensity of 1020 W/cm2, we find approximately 30

% absorption with mobile ions compared to 10 % absorption with immobile ion

simulations. Note that laser absorption is determined from laser poynting flux as

explained in section-II (refer figure 3.1). The comparison of cumulative electron

heat flux going into the target is plotted in figure 3.9(f). The electron heat flux

for mobile ion simulations (blue line) is 16 % whereas it is 10 % for immobile ions

(red line). The ions carry the rest of the absorbed energy (i.e. 14 % of the total

laser energy) in mobile ion simulations. Also, note that almost 80 % of the total

electrons heat flux is carried by electrons having energy below 5 MeV for mobile

ions due to an increase of the number of fast electrons (refer figure 3.9(e)) in this

range.

This trend of increase in the laser absorption with mobile ions continues for

other initial pre-formed plasma scale-lengths as well. In figure 3.10 we give laser

absorption percentage for various initial pre-formed plasma scale-lengths and laser

intensities. In general, we find an increase in the laser absorption with increasing
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pre-formed plasma scale-length as in the case of immobile ion simulations. This

is consistent with the physical picture described in this chapter, i.e. larger phase-

space mixing region with longer pre-formed plasma due to a wider potential well.

Here, we would like to mention that although we see significant increase in laser

absorption with mobile ions, the underlying physics of this increase for electrons is

the same as that of plasma heating due to counter-propagating EM waves and the

presence of an electrostatic potential well described with the help of immobile ion

simulations. Also, for the case of laser with 1021 W/cm2, we observe slightly higher

absorption at 1 µm scale-length compared to 5 µm scale-length. Similar trend is

reported in earlier work [Lefebvre and Bonnaud, 1997]. Detailed investigation of

this phenomenon will be addressed in future work.

3.5 Conclusions

1-D numerical modeling of laser matter interaction predicts the increase in

both the mean and maximum energy of generated fast electrons with the increas-

ing pre-formed plasma scale length for the ranges of laser intensities (1019 − 1021

Wcm2). The stochastic heating of electrons due to counter propagating EM waves
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(incident and reflected waves) is found to be the dominant pre-formed plasma

heating mechanism. The longitudinal electrostatic potential well, developed self-

consistently in the pre-formed plasma, plays a crucial role in the further heating

of the electrons. The constant push in one direction by this longitudinal electric

field causes reduction in the phase-slip between the electron and one of the EM

waves. This finally results in higher energy gains by the locking of the electron

with one of the two EM waves. This is found to be the underlying physics behind

the higher energy gain in the presence of a longitudinal electric field. The extent of

potential well is decided by the pre-formed plasma scale-length. The potential well

gets wider with an increase in the pre-formed plasma scale-length, thereby causing

extension of the phase-space mixing region. This explains the stronger heating

and higher mean energy of generated fast electrons in the presence of a larger

pre-formed plasma scale length. The electrons contributing to the high-energy tail

of the spectrum come from the under-dense region of pre-formed plasma. These

electrons, after getting locked with the forward going EM wave, gain more energy

due to longer interaction time (and distance) with the wave. This explains the

increase in maximum energy of electrons with the increasing pre-formed plasma

scale-length. The effect of ion motion is studied by performing separate simulations

with mobile ions. The ions respond to the longitudinal electric potential produced

due to plasma electrons heating, which results in the steepening of plasma profile

near critical density surface (generally referred to as ponderomotive steepening).

The expansion of the low-density shelf towards the vacuum causes the extension

of the region of phase-space mixing. Therefore, significant higher absorption is

found in the mobile ion simulations compared to immobile ion simulations. The

multi-dimensional effects of laser propagation through under-dense plasmas like fil-

amentation, self-focusing, defocusing, etc are neglected in the present 1-D studies.

Also, 1-D representation cannot be applied when pre-formed plasma scale-length

becomes considerably larger than the laser spot size, which is typically 10-20 µm.

Furthermore, it should be noted that results presented in this paper are mainly

applicable in the pre-formed plasma scale-length range of 1-15 µm and different

laser absorption and fast electrons energy coupling can be expected with extremely
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large pre-formed plasma scale-lengths. The strong pre-pulse can damage the solid

target. This may constrain the maximum pre-formed plasma scale-length one can

expect in the experiments. Finally we would like to point out that, although we see

increase in fast electrons energy with increasing pre-formed plasma scale-length,

for applications like fast ignition [Tabak et al., 1994] large pre-formed plasma can

be detrimental due to shift of relativistic critical surface away from the core. Some

these limitations of present work, especially the multi-dimension effects will be

addressed in future studies.

Chapter 3 uses material from the following publication and the dissertation

author was the primary investigation and first author of the publication :

B.S.Paradkar, M.S.Wei, T. Yabuuchi, R.B.Stephens, M.G. Haines, S.I. Krashenin-

nikov and F.N.Beg, “Numerical modeling of fast electrons generation in presence

of pre-formed plasma in laser-matter interaction at relativistic intensity”, Phys.

Rev. E 83 046401, 2011.



Chapter 4

Mechanism of heating of

pre-formed plasma electrons

In the last chapter, we saw that ambipolar electric field present inside pre-

formed plasma can play a significant role in the electrons heating. With the help

of PIC simulations we demonstrated that the electrons are heated strongly in the

presence of longitudinal electrostatic potential well and counter-propagating EM

waves. Numerical simulations with the ‘particle pusher’ of a single electron mo-

tion in presence of counter-propagating EM waves and potential well demonstrated

the stochastic motion of the electron. In this chapter, the detailed study of this

stochastic motion and its implication on plasma heating are presented. In par-

ticular, we show that such heating can occur even with the presence of a single

electromagnetic wave.

This heating resembles the ‘Fermi acceleration mechanism’ [Fermi, 1949]

which is generally referred to heating caused by the phase randomization resulting

from repeated elastic reflections of particle between fixed and oscillating bound-

aries [Lichtenberg and Lieberman, 1983]. Similarly, in the case of electron present

in the pre-formed plasma, its motion becomes stochastic due to the presence of

electromagnetic wave while moving back and forth inside the electrostatic potential

well. First we analyze the electron motion inside a ‘V’ shaped infinite potential

well (figure 4.1(a)) to demonstrate how a longitudinal electric field influences the

stochastic heating of an electron. The constant longitudinal electric field for this

42
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‘V’ type potential well allows us to treat this problem analytically by exploiting

the constants of motion. It should be noted that in reality the ambipolar electric

field may not be constant inside pre-formed plasma. But as far as the physics

of phase randomization during the repeated reflections is concerned, it provides a

very simple and concrete framework to study this stochastic heating quantitatively.

Finally since in practice the electric field almost vanishes beyond relativistic criti-

cal density surface, we extend our results to the finite depth potential well (Figure

4.1(b)) to make quantitative estimates of kinetic energy for electrons leaving out

of such potential well and entering the solid as a relativistic electron beam.

00

(b) : Finite Potential Well(a) : Infinite Potential Well

U(z)

z z

U
max

 = E
z
 L

L

Figure 4.1: Electrostatic potential well chosen for the analysis of electron motion.
Fig. (a) represents infinite potential well whereas finite potential well shown in Fig.
(b) is used to analyze electron spectrum entering the solid. Perfectly reflecting
‘potential wall’ is assumed at z = 0.

4.1 Electron motion inside deep potential well

In this section, we will analyze the motion of the electron inside the deep

potential well. By ‘deep’ we mean that the electron can never escape from such

potential well.As we reviewed in chapter-2, the relativistic electron dynamics in the

presence of a plane laser wave with vector potential a(t,z), propagating along the

z-direction and longitudinal electric field Ez, the z-momentum and energy equation
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can be written as

d(γVz)

dt
=
−1

2γ

∂a2

∂z
− Ez (4.1)

dγ

dt
=

1

2γ

∂a2

∂t
− EzVz (4.2)

where Vz is the electron velocity component along z direction and the relativistic

factor γ is defined as γ = γAγz with γA =
√

1 + a(t, z)2 and γz = 1/
√

1− V 2
z .

Note that standard normalization is used in the above equations, viz. t → ωt,

z → kz, Vz → Vz/c and Ez → eEz/mωc

For a single propagating plane wave of the form a(t, z) = a(t−z), combining

Eq. (4.1) and Eq.(4.2) we find

d

dt
[γAγz(1− Vz)] = Ez(1− Vz) (4.3)

Now, for a constant electric field, the above equation can be integrated to give

γAγz(1− Vz) = δ0 + Ez(t− t0 − z) (4.4)

where t0 is the time at which the electron crosses the boundary z = 0 and δ0 =

γAγz(1−Vz)|t=t0 . Note that for the highly relativistic case, δ0 ' γA
2γz

. For simplicity

we consider ‘V’-shaped normalized electrostatic potential U(z) (see figure 4.1(a))

which is characterized by a constant electric field, Ez for z > 0 and ‘potential wall’

at z = 0 where electron is just reflected back preserving its energy. Choice of such

a potential well allows us to analyze the electron motion semi-analytically using

integrals of motion without loosing essential physics of this heating mechanism.

The trajectory of the electron, z(t) at positive z can be found by introducing

a local time τ = t− z as

dz

dτ
=
dz/dt

dτ/dt
=

Vz
1− Vz

(4.5)
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Then using Vz from Eq. (4.4) we get

dz

dτ
=
f 2(τ)− 1

2
(4.6)

where f(τ) = γA(t0 + τ)/(δ0 + Ezτ) Using the above equation, the dynamics of

the electron in presence of a ‘V’-shaped electrostatic potential and one plane wave

can be studied. The consecutive times t0 and t1 at which the electron crosses the

boundary z = 0 are related by the following equation :

∫ t1−t0

0

[γA(t0 + τ)]2

(δ0 + Ezτ)2
dτ = t1 − t0 (4.7)

and the corresponding parameter δ1 = γAγz(1 − Vz)|t=t1 can be expressed as fol-

lowing

δ1 =
[γA(t1)]

2

δ0 + Ez(t1 − t0)
(4.8)

Note that, we have used a perfectly reflecting potential wall at z = 0, i.e. Vz(t1 +

0) = −Vz(t1 − 0).For the case of linearly polarized wave, a(t, z) = a0 cos(t −
z) and δ0 << 1 (which corresponds to very large energy) the integral in Eq.

(4.6) can be solved analytically with the required accuracy of O(δ0) << 1. The

detailed derivation is given in Appendix A. Hence, introducing a parameter Ĝi =

[γA(ti)]
2/(Ezδi) where i = 0, 1, 2..., Eq. (4.6) and (4.7) simplify to the following

recurrence relations.

Ĝi = Ĝi−1−
(
a0
Ez

)2
{
π

2
cos(2ti−1) +

[
ln

(
Ĝi−1E

2
z

2(γA(ti−1))2

)
− C

]
sin(2ti−1)

}
(4.9)

ti = ti−1 + Ĝi (4.10)

where C is the Euler constant. Note that in the limit δ0 << 1, Ĝ is proportional to
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the non-dimensional electron kinetic energy, ε = γAγz >> 1.The mapping (4.8,4.9)

is rather similar to the ‘Chirikov Standard Map’ [Chirikov, 1979]. Comparing this

mapping with the ‘standard map’ we get a0/Ez as the parameter governing the

degree of stochasticity. In particular, the motion becomes stochastic when a0 & Ez.

This can be seen from Eq. (4.4). The phase slip at which electron stops and gets

reflected back can be estimated as τstop ' a0/Ez. Thus for a0/Ez ' 1, the electron

bounce frequency inside the potential well becomes comparable with the laser

frequency thereby resulting in a transition to stochastic motion. Also, note that the

maximum energy step-size can be estimated from Eq. (4.7) as ∼ (a20/Ez) ln
(
Ez

2δ0

)
.

This can be seen by observing that inside the potential well, the change in the

electron energy, ∆ε(τ) is given by ∆ε = γA(τ)γz(τ) + Ezz(τ) − γA(0)γz(0) which

simplifies into

∆ε(t1 − t0) =
1

2

∫ t1−t0

0

d(γA(t0 + τ))2/dτ

(δ0 + Ezτ)
dτ ∼ a20

Ez
(4.11)

Thus the above equation shows that, depending upon the initial phase t0 of the

wave at z = 0, the electron will gain or loose energy. Also, for a highly relativistic

electron (δ0 << 1), most of the energy is gained when τ << 1 i.e. within the first

cycle of the wave. The phase shift introduced by the longitudinal electric field is

essential for the electron to gain energy in one laser cycle. Thus, the relativistic

electrons already traveling at a speed close to the speed of light gains more energy

by getting ‘locked’ (i.e. small τ ) with the wave.

The analytical predictions discussed above are verified numerically by solv-

ing the electron equation of motion for an ensemble of test electrons randomly

placed inside the potential well. Figure 4.2 shows the comparison of the Poincare

map in (γ, φ) space through z = 0 obtained numerically with the analytical map-

ping given by Eq. (4.8) and (4.9) . Here the phase φ, is defined as φi = ti−π[ti/π]

, where [x] is the integer part of x.

This agreement shows that mapping Eq. (4.9) and (4.10) correctly describe

the electron dynamics for large energies. Mapping given by Eq. (4.9) and (4.10)

(refer figure 4.3) demonstrate the transition from regular ( Figure 4.3(a), 4.3(b))
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Figure 4.2: Comparison of poincare map obtained from numerical calculations
and analytical results obtained from Eq. (8) and (9).

to stochastic (Figure 4.3(d)) motion, with increasing a0/Ez ratio. The effective

threshold of this transition, given by a0/Ez ∼ 1, can also be seen in figure 4.3.

Physically this means that when a0 & Ez , the electron sees a random initial phase

of the electromagnetic wave for each successive arrivals at z = 0. On the hand,

for the case of a0/Ez << 1, the phase varies adiabatically for successive reflections

resulting in regular motion.

For the highly stochastic regime i.e. a0 � Ez, electron heating can be de-

scribed by diffusion [Chirikov, 1979] in energy space ε, (γ � 1). For this case,

the elementary step-size in energy space δγ, and time δt, can be estimated as

δγ ∼ (a20Λ)/Ez and δt ∼ γ/Ez where Λ ∼ constant, is a slowly varying logarithmic

function on the right hand side of Eq. (4.9). As a result, the energy diffusion coef-

ficient can be estimated as Dγ ∼ (δγ)2/δt ∼ (a20Λ)2/(γEz). With such a diffusion

coefficient, the asymptotic time evolution of the averaged electron energy 〈ε〉 , and

the electron distribution function, f(ε, t), is given by the following expressions :

〈ε〉 ∼ 〈γ〉 ∼ (Dγt)
1/3 (4.12)

f(ε, t) ∼ t−1/3 exp

(
−ε3

9Dγt

)
(4.13)

The analytic estimates for this regime which correspond to the case of a large scale-
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Figure 4.3: Poincare map in (γ, φ) space for different values of a0/Ez. Transition
from strictly periodic motion (Fig. (a) and (b)) to stochastic motion (Fig. (d))
with increasing values of a0/Ez is clearly demonstrated here.

length pre-formed plasma are verified numerically. The temporal dependance of

the average energy of the test electrons, placed inside an infinite potential well, is

plotted in figure 4.4 which is in agreement with Eq. (4.12).

1 2 3 4 5 6
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1.3

1.5

1.7

log t

lo
g
 <

 ε
 >

 

log < ε >    =  0.32 (log t) − 0.24

Figure 4.4: Average energy of electrons inside potential well vs time (numerical
calculations) confirming t1/3 dependance predicted by Eq.(4.12).
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4.2 Electron heating in finite depth potential well

To address the issue of the energy of electrons generated in the pre-formed

plasma and entering the solid target, we need to consider the potential well of finite

depth (see fig. 4.1(b)) and analyze the energy distribution of electrons coming out

of the well. We will assume that the ‘depth’ of the potential well, Umax = EzL

is larger than the energy space diffusion step-size, i.e. Umax > δγ ∼ a20/Ez and

electron motion in the well is stochastic i.e. a0 > Ez. The electron inside such a

potential well will get heated up while performing a ‘random walk’ in energy space

until it is thrown out of the well. The energy gained by the electron during the last

transit from z = 0 can be estimated from Eq.(4.11). Thus, the total energy of the

electron beam leaving the potential well can be estimated as γ = 1 + α(a20/Ez)Λ,

where α ∼ 1 is the numerical factor and Λ is the logarithmic function described

before.
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Figure 4.5: Energy distribution functions for total energy (Fig. (a)) and parallel
energy (Fig. (b)) of electrons escaping the finite depth potential well for different
a0 values such that elementary energy-step size, a20/Ez is constant.

In our model, the escaping electron has both perpendicular ( γA ∼ a0) and

parallel (γz ∼ a0/Ez) energy components. In reality, beyond relativistic critical

density (z = L), the laser field quickly goes to zero which in 1-D case results
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in conversion of perpendicular energy into parallel energy. This process causes

additional ponderomotive acceleration with the energy gain' βa0. β is a numerical

factor ∼ 1. Thus the electron beam enters the solid with only the parallel energy

given by γbeam = 1 + α(a20/Ez)Λ + βa0 which in highly stochastic regime can be

much greater than the laser ponderomotive energy γponder =
√

1 + a20 in agreement

with experimental and numerical results. Note that beam energy can not exceed

Umax. Numerical calculations for a finite potential well confirm these predictions.

The distribution of the electrons at the end of the potential well for different values

of a0, Ez and L, but keeping δγ ∼ a20/Ez constant show that the maximum γ and

γz at z = L scales proportional to a20/Ez and a0/Ez respectively (see figure 4.5).

4.3 Conclusions

In summary, we analyze the heating mechanism of pre-formed plasma elec-

trons due to the relativistic laser radiation and longitudinal electric field with a ‘V’

shaped potential well. Based on our theoretical results and numerical simulations,

we conclude that: i) For a0/Ez & 1, the electron motion in the laser and longitudi-

nal electrostatic field becomes stochastic for deep potential well. ii) In the highly

stochastic regime (a0/Ez & 1), the electron undergoes energy space diffusion with

the characteristic step-size ∼ a20/Ez and the energy of the electron beam entering

the solid is estimated as γbeam = 1 + α(a20/Ez)Λ + βa0 which is much larger than

the ponderomotive energy.

Chapter 4 uses material from the following publication and the dissertation

author was the primary investigation and first author of the publication :

B. S. Paradkar, S. I. Krasheninnikov and F. N. Beg, “Mechanism of pre-formed

plasma electrons heating in relativistic laser-solid interaction”, submitted to Phys.

Rev. Lett..



Chapter 5

Fast electron transport studies in

presence of long scale length

pre-formed plasma

In last two chapters we discussed the fast electrons generation in presence of

pre-formed plasma. Now, we look into the problem of influence of this pre-formed

plasma on the transport of this energetic relativistic electrons into the solid target.

In particular, the results of numerical modeling of the experiment [Yabuuchi et al.,

2010] carried out to investigate the effect of long scale pre-plasma on fast electron

transport are presented. A peculiar ring-like structure in Cu Kα x-ray emission

was seen in this experiment when a short pulse laser (intensity ∼ 3×1018 W/cm2)

interacted with a long scale pre-plasma. The long scale pre-plasma was produced

by irradiation of a long pulse laser on a flat target having copper fluorescence

layer sandwiched between aluminum layers. The details of radiation hydrodynamic

simulations (for the production of pre-formed plasma), hybrid-PIC modeling (for

the fast electrons transport) along with the physics of this experimentally seen ring

structure is discussed in this chapter.
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5.1 Introduction

Understanding the transport of fast electron is extremely important for

the successful realization of electron fast ignition scheme of inertial confinement

fusion. The efficiency with which the fast electrons deposit their energy into the

compressed core depends upon the transport of these electrons from the pre-formed

plasma into the high density core. Since the critical density surface moves away

from compressed core due to expansion of pre-plasma into vacuum, fast electrons

have to travel a longer distance before they deposit their energy in the core. Also,

due to divergence of the generated fast electrons beam, increase transport distance

will result in reduction of effective intensity of the beam when it reaches the core

region. These effects can be detrimental for the success of fast ignition. Espe-

cially for the full scale cone guide fast ignition, we should expect long scale-length

pre-formed plasma inside the cone due to geometric effects based on present day

experiments[Baton et al., 2008, MacPhee et al., 2010, Van Woerkom et al., 2008].

But in these experiments the presence of the cone precludes direct observation of

the pre-plasma created by the pre-pulse. This problem can be eliminated by per-

forming the experiments with flat foils instead of cone shaped targets and creating

a long scale-length pre-formed plasma with the separate long pulse laser which

irradiates the target before the arrival of short pulse laser. The fast electrons

transport can then be diagnosed by measuring the Kα x-ray emission from the

copper fluorescence layer sandwiched between two solid targets. This line x-ray

emission (from n = 2 to n = 1) is due to the vacancies created in the inner shells

of copper atoms by the energetic fast electrons.

Taking these things into considerations, an experiment [Yabuuchi et al.,

2010] (see figure 5.1(a)) was carried out at the GMII laser facility at Osaka Uni-

versity. Long scale length pre-plasma was created by focusing a separate long

pulse laser (1 µm wavelength, 0.5 J, 200 µm dia. spot, 0.5ns (FWHM)) on a

multilayered flat target (transverse dimension: 1mm) comprised of aluminum (10

µm)/copper (25 µm)/ aluminum (1 mm). The pre-formed plasma density profile

was measured with an optical (laser) interferometer. Fast electrons produced from

the short pulse laser (1 µm wavelength, 12 J, 20 µm FWHM spot, 600 fs FWHM
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duration, peak laser intensity ∼ 3× 1018 W/cm2) interaction with the target were

investigated by measuring Cu Kα x-rays emission from the Cu fluorescence layer

with a 2D spatial imager from the target front side. The angles of incidence of

short and long pulse laser with respect to the target normal are 25◦ and 30◦ re-

spectively. One interesting feature observed in the 2D Cu Kα imaging was the

annular ring-like Cu Kα x-ray emission pattern (as shown in figure 5.1(b)) which

was observed only when the target was irradiated with the short pulse laser in the

presence of the large pre-plasma formed by the long pulse laser. A radial lineout

(figure 5.1(d)) shows that the ratio of peak intensity of central spot to the intensity

of outer annular ring is approximately 15:1. This ring structure was not seen in a

short pulse only interaction, which lacks a large pre-plasma (figure 5.1(c)). Also,

it should be noted from figure 5.1(d) that the outer ring has the diameter of about

450-500 µm whereas the central Kα spot has the diameter of around 50 µm (of

the same order of short pulse laser spot size).
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Figure 5.1: (a) A schematic of the target with both long and short pulse laser
beams.(b) Annular ring-like structure was seen in Cu Kα x-ray emission in the
presence of pre-plasma. (c) No outer ring was observed without pre-plasma. (d)
Lineouts of the fluorescence image for shots with and without pre-plasma are shown
by solid red and dotted blue lines respectively. These lineouts are taken along the
white dashed lines drawn in (b) and (c).
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In case of short pulse ultrahigh intensity (∼ 1019 W/cm2) laser matter

interaction, an annular ring was observed in the experiments [Koch et al., 2001].

According to theoretical model [Davies et al., 2006] suggested for this experiment,

the self consistently generated magnetic fields that push the electrons towards

higher resistivity regions lead to hollowing of the beam. However, laser intensities

used in these simulations were much higher (∼ 5 × 1019 W/cm2) than in the

experiment mentioned above; high fast electron current density is required to create

a low resistivity region by Ohmic heating in the central region. But, as mentioned

earlier, in our experiment no ring structure was seen when only the short pulse

laser was irradiated on the solid target. Therefore, the mechanism proposed by

Davies et al is not relevant to explain our experimental observation.

Ring-like structures in x-ray emission were also observed with an x-ray

pinhole camera in some of the early long pulse laser matter interaction experiments

where the laser intensity was on the order of 1015− 1016 W/cm2 [Amiranoff et al.,

1982, Burgess et al., 1985, Jaanimagi et al., 1981, Kieffer et al., 1983, Luther-

Davies et al., 1987]. Numerical simulations by Forslund and Brackbill [Forslund

and Brackbill, 1982], followed by several other publications [Fabbro and Mora,

1982, Wallace, 1985, Wallace et al., 1986] attributed this experimental observation

to lateral spreading of thermoelectric azimuthal magnetic field [Max et al., 1978].

According to these simulations, the observed rings are produced during the coronal

plasma expansion into vacuum. During this phase, the supra-thermal electrons

(∼ 10 − 20 keV), generated mainly due to the resonance absorption, undergo

lateral transport in coronal plasma due to the E × B drift. The electric field

(E) in this case, is generated during the self-similar expansion of coronal plasma

into vacuum [Crow et al., 1975, Mora and Pellat, 1979] and therefore is directed

normal to the plasma boundary. The azimuthal magnetic field is produced by usual

∇T ×∇n mechanism [Max et al., 1978]. Thus, presence of this radially expanding

magnetic field effectively shields these supra-thermal electrons from interacting

with high density solid.Therefore, the electrons initially travelling laterally during

the phase of expansion of coronal plasma are eventually pulled back to the solid

target at a radial distance away from the laser spot where shielding is ineffective
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due to the reduced magnetic field. Hence, this mechanism could explain not only

the formation of a ring but also the experimental observation of an increase in

ring radius along with the expansion of coronal plasma in vacuum. Also, these

simulations suggested that the fast electrons would return back to the target at

the pre-plasma edge. But since the pre-plasma density was assumed to be uniform

in the transverse direction, the fast electrons were always reflected at the distinct

plasma-vacuum boundary introduced in these numerical simulations.

Here, we have modeled the ring-like x-ray emission seen in our experiment

with realistic a pre-plasma having both longitudinal and transverse density gradi-

ents. Therefore, this work revisits the earlier mechanism for the lateral transport

of fast electrons with more accurately modeled pre-formed plasma density profile.

A detailed investigation of mechanism of fast electron reflection near the transverse

plasma-vacuum boundary is presented in this chapter. A radiation hydrodynamic

code is used to simulate pre-plasma creation including the thermoelectric B-field,

and a hybrid PIC code is used to investigate fast electron transport in the solid

target with the presence of the pre-formed plasma.

5.2 Hydrodynamic modeling of the pre-plasma

creation

We have simulated pre-formed plasma creation with a 2-D three fluid La-

grangian radiation hydrodynamic code, h2d1. The code solves the basic fluid con-

servation equations of mass, momentum and energy [Braginskii, 1965] with MHD

approximation in Lagrange coordinates. The three fluids are designated as the free

electrons, the material species (fully/partially ionized or neutral) and the radia-

tion field. The electron and ions species are coupled to each other via Coulomb

collisions. Mass conservation is guaranteed since h2d is a Lagrangian code. The

electron and ions fluid momentum conservation equation contains J × B term

due to magnetic fields apart from the usual stress tensor term of Navier-Stokes

1h2d is a commercial product of Cascade Applied Sciences Incorporated, 6325, Trevarton
Drive, Longmont, CO,80503, USA (e-mail: Larsen@casinc.com).
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equation. A magnetic induction equation [Braginskii, 1965] is used to advance

magnetic field in time. The electron and ions thermal energy transport is modeled

with Spitzer/Braginskii transport coefficients. The code uses the various models for

Equations Of State (EOS) such as ideal gas model, Thomas-Fermi model, SESAME

EOS tables, etc. Finally radiation transport is treated with either single group

(Gray diffusion) approximation or multi-group approximation. The radiation field

is essentially coupled to electron fluid. Simulations are run in axi-symmetric R-Z

cylindrical geometry with the Z-axis aligned in the direction of laser propagation.

The 0.5 ns (FWHM) long pulse laser (wavelength 1 µm) with energy of 0.5 J and

spot diameter of 200 µm (FWHM) is incident on a flat solid target comprising of

front aluminum ablator and back copper layer. Here, we would like to point out

that although in the actual experiment the long pulse laser was incident on the

target with a 25 angle relative to the target normal direction, in these simulations

we have modeled the normally incident laser due to the cylindrical symmetry em-

ployed in the code. The 1 mm thick aluminum back layer is not included since the

long pulse laser energy is too low for its shock front to reach this layer prior to the

arrival of the short pulse beam (this thick Al layer is included in the hybrid PIC

modeling described in the next section to prevent refluxing of the fast electrons).

h2d simulation results confirm this assumption. The intensity of the long pulse

beam is about 1013 W/cm2. SESAME EOS 2 tables are used for both aluminum

and copper. Multi-group radiation transport model is used with 30 photon groups,

arranged logarithmically between energies of 5 eV to 10 keV. Thomas-Fermi ion-

ization model and electron conduction flux limiter of 0.06 [Goncharov et al., 2006]

is used in the simulations. Also, azimuthal thermoelectric magnetic fields gener-

ated by mechanism are computed self-consistently. Figure 5.2 shows the contour

plots of the simulated plasma electron number density, temperature and azimuthal

magnetic fields generated at the time of short pulse injection (260 fs after the peak

of the long pulse laser). The hydro simulations suggest that the on-axis pre-formed

plasma density (ne) scale length, defined as L ∼ ne/∇ne, near the critical surface

2See National Technical Information Service Document No DE94011699 SESAME database
by Johnson J D Los Alamos National Laboratory Report No LA-UR-94-1451, 1994. Copies may
be ordered from National Technical Information Service, Springfield, VA 22161, USA
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Figure 5.2: Simulated pre-formed plasma with the radiation hydrodynamic code,
h2d at the time of injection of short pulse laser. Initial target front surface is at z =
0µm. (a) Plasma electron density profile (b) Plasma electron temperature profile
and (c) Azimuthal thermoelectric magnetic field. A negative value of magnetic
field implies that the field is going into the plane of the paper (clockwise direction
around the z-axis ).

is about 9 µm when the short pulse laser beam is injected. The critical density

surface is 17 µm in front of the target surface. The two dimensional (2-D) nature

of coronal plasma expansion is evident from figure 5.2(a) which shows the gradient

of density is much higher in the transverse direction (beyond laser spot size) than

the longitudinal direction.

The axial, as well as radial lineouts of the simulated plasma density, match

well with the experimentally measured density determined by laser interferometery

[Yabuuchi et al., 2010] in the range of 5 × 1019 − 5 × 1018 cm-3. The average

ionization level in the front aluminum layer calculated from h2d simulations is

2-3 whereas most of the coronal plasma is fully ionized. The coronal plasma pre-

dominantly expands isothermally with electron temperature in the range of 300-

500 eV. The 2-D nature of its expansion can be seen from the fall in temperature

beyond laser spot radius (i.e. 100 µm) in the coronal plasma. The simulated peak

azimuthal magnetic field of 0.21 MG is consistent with steady state estimates for

thermoelectric magnetic fields [Max et al., 1974]. The steady state magnetic field

is established by the balance of the ∇T ×∇n source term and convection of this

magnetic field due to coronal plasma flow.Thus, steady state magnetic field scales
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For fully ionized aluminum with Te 300 eV, temperature scale length LT 200

µm ( long pulse laser spot size), the steady state magnetic field would be around

0.17 MG; this agrees well with the simulated peak magnetic field value of 0.21 MG

(figure 3(c)). Also, it can be seen from simulations that the ablation front is still in-

side the front aluminum layer, which means that the copper layer is protected from

direct short pulse laser illumination. The calculated plasma conditions (density,

temperature and magnetic field) are then included in the hybrid PIC simulation

as its initial condition.

5.3 Fast electron transport modeling with hy-

brid PIC code, LSP

5.3.1 LSP simulation set up

The hybrid PIC code, LSP [Welch et al., 2001, 2006] is used to model the

fast electron transport. The simulations are run in 2-D axi-symmetric R-Z cylin-

drical geometry with the Z-axis aligned with the direction of laser propagation.

Due to the approximate symmetry of coronal plasma expansion about the laser

propagation axis, the cylindrical geometry used in our simulation provides a rea-

sonably realistic 2-D representation of the actual 3-D problem. The 2-D Cartesian

geometry on the other hand, assumes either no variation in the third dimension

or infinite third dimension; neither of which is a valid assumption when the long

pulse laser spot size (200 µm FWHM) is comparable with the transverse target

dimension (1 mm). LSP employs an implicit differencing scheme, which unlike

conventional explicit algorithms allows a grid resolution (∆x) greater than Debye

length (λD) without causing excess numerical heating. Hence, this approach is

ideally suitable for simulating high-density plasmas. The hybrid algorithm allows
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energy and momentum conserving fluid description of background plasma along

with kinetic treatment of the fast electrons. Thus, good overall energy and mo-

mentum conservation can be obtained without the need to resolve the plasma

Debye length. Accordingly, the time step constraint turns out to be c∆t < ∆x

where c is velocity of light. For the present simulations we have employed uniform

grid resolution of 0.5 µm in both R and Z direction and time step of c∆t ∼ 0.05

µm. The numerical results are verified by running a high-resolution simulation

(0.1 µm in both directions) for a relatively smaller duration (∼ 1 ps). Perform-

ing laser-plasma interaction simulations is extremely difficult even for modern day

super-computers due to the large extent of pre-plasma (∼ 200 µm in both ra-

dial and axial directions) formed during long pulse interaction. Such long scale

problems can be effectively handled with hybrid PIC simulation approach [Evans,

2007]. Since we are mainly interested in fast electron transport in the presence of

pre-formed plasma, transport can be studied by injecting fast electrons at the rel-

ativistic critical density surface. Possible changes in the electron source divergence

caused by laser interaction with the plasma-self-focusing, filamentation, etc. have

been addressed by performing a series of simulations with different fast electron

divergence angles (ranging from 10◦ to 60◦ half angles) as described later. The

typical spectrum of these injected electrons can be obtained from various scaling

laws such as the ponderomotive scaling[Wilks et al., 1992] and Begs empirical scal-

ing[Beg et al., 1997]. The intensity profile in the short pulse laser beam focal spot

is modeled, as usual, with a double Gaussian-like spatial distribution, i.e., high

intensity in a small spot (a few times the diffraction limit) containing most of the

laser energy and a low intensity large spot to count for the energy in the wing

region. The laser beam is modeled by superposition of two Gaussian beams, each

carrying 50 % of the total laser energy. For the high intensity central spot a narrow

Gaussian beam (20 µm FWHM, 2.5×1018 W/cm2 peak intensity) extending up to

20 µm is used; the low intensity outer wing is modeled by another Gaussian beam

(50 µm FWHM, 3 × 1017 W/cm2 peak intensity) extending up to 50 µm. The

superposition of these two Gaussian profiles effectively gives on axis (R = 0 µm)

peak laser intensity of 2.8 × 1018 W/cm2 with central spot of 20 µm containing
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65 % laser energy and the rest of the 35 % of energy in the outer halo (from R

= 20 µm to R = 50 µm). Therefore, the energy contributions by broad Gaussian

to the central region and narrow Gaussian to the wing region are insignificant.

The laser to fast electron energy conversion efficiency and mean electron energy

(Thot) are calculated based on peak intensity of individual Gaussian beams. Two

fast electron beams are injected corresponding to each of these Gaussian profiles.

The laser energy to fast electron energy conversion efficiency (η) is taken as 13

% for central narrow Gaussian and 7 % for broad Gaussian, computed from the

experimentally determined scaling[Town et al., 2005]

η = 0.000175× I0.2661Laser (5.2)

Hence for short pulse laser energy of 12 J, the energy contained in narrow and

broad Gaussian electron beams is 0.78 J and 0.42 J respectively. This gives an

overall conversion efficiency of 10% and the electron energy in the central 20 µm

spot comes out to be 0.9 J. In the next step, the mean energy of fast electrons

(Thot) is calculated from Beg scaling[Beg et al., 1997] using the formula

Thot(keV ) = 100

(
I(W/cm2)λ(µm)2

1017

)1/3

(5.3)

Here, it should be noted that in our calculations both the estimates of conversion

efficiency and average fast electron temperature are based on the peak intensity

of two Gaussian beams. The mean energy of fast electrons in narrow and broad

Gaussians is about 300 keV and 170 keV respectively. Also, it should be noted

that some of the generated electrons in the presence of long scale-length pre-formed

plasma can have energies significantly greater than that given by ponderomotive

scaling or Beg scaling. These electrons are not included in the present injection

model. Finally, the total fast electron beam current density can be calculated by

dividing the total fast electron energy flux by the mean fast electron energy using

the formula,

Jhot = η(ILaser)/Thot (5.4)
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The corresponding peak fast electron current densities are 1.13× 1012 A/cm2 and

1.23×1011 A/cm2 respectively. In modeling this situation, the fast electron energy

distribution is assumed to be of form exp−E/Thot. The electrons are randomly

injected within a divergence half-angle of θ1/2. The results shown in section 5.3.2

are for the case with the fast electron beam divergence θ1/2 = 30◦ [Stephens et al.,

2004]. Thus, two electron beams with 0.5 ps FWHM Gaussian temporal variation

are injected at 3 times the relativistic critical surface for better numerical stability.

The relativistic critical density is calculated using the formula

ncr(cm
−3) = γosc

(
1.1× 1021

λµm

)
(5.5)

where the relativistic Lorentz factor,γosc is defined as γosc =
√

1 + a20/2, a0 being

the normalized vector potential of the laser field. The plane of electron beam

injection is located at Z = 5 µm where background plasma density is around

4 × 1021 cm-3. The background plasma density variation in the plane of injection

i.e. from (R,Z) ≡ (0, 5) µm to (R,Z) ≡ (50, 5) µm is negligible due to large spot

size (FWHM = 100 µm) of long pulse laser (refer figure 5.2). The LSP calculations

with injection model were found to be numerically stable when peak density of fast

electrons (∼ 3×1020 cm-3) was at least ten times less than the background plasma

density. Since the relativistic critical density surface is located on axis at Z = 8 µm,

the plane of injection (Z = 5 µm) is moved by 3 µm from the actual fast electron

source. Hence, injecting fast electron beam at 3 times the relativistic critical

density surface allowed us to perform stable calculations without compromising

much on the exact location of the relativistic critical density surface.

Figure 5.3 shows the initial set up and background plasma condition used

in the LSP simulations. A Perfectly Matched Layer (PML) free-space boundary

condition is employed to take out all the particles and fields extending to the

edge of the simulation box. Due to the long pre-plasma density scale length in

the axial (Z) direction, one can expect no significant electrostatic field excitation

by fast electrons travelling in this direction into the low-density plasma. This

assumption was validated by running 1-D LSP simulations using a fully extended
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background plasma (∼ 600 µm) having density gradient scale-lengths equal to axial

density scale-length predicted by hydro-simulations.Therefore the PML free-space

boundary condition can be applied at the right side of simulation box (.e. at Z

=120 µm as shown in figure 5.3). Since mass inside the mesh is conserved in a

Lagrangian code, the size of the mesh increases as it expands into vacuum to form

the low-density plasma. This results in poor numerical spatial resolution of very

low-density coronal plasma, simulated by hydro-code. Therefore, while inputting

densities obtained from hydro-code into LSP calculations we have extended the pre-

plasma down to densities on the order of 1014 cm-3 in the transverse (R) direction

with an exponential fall of the form n (Z,R) = nedge exp−R/LT where nedge is

the well resolved density of pre-plasma at the plasma transverse edge obtained

from hydro-simulations and LT is the scale length of the extended plasma density

gradient. LT is taken to be equal to the scale length of pre-plasma density gradient

in the transverse direction at the plasma edge, i.e. 1
LT

=
(

1
nedge

) (
∂n
∂R

)
|Redge,Z . As

mentioned in the previous section, the aluminum layer behind the copper layer is

included in these simulations.

Figure 5.3: Initial background plasma condition used in the LSP simulation.
Fast electrons are injected at 3×relativistic critical density surface. Thermoelectric
azimuthal magnetic fields (shown in figure 5.2(c)) are represented by white contour
lines.
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5.3.2 Hybrid PIC simulation results and discussion

The early stage of electron beam injection is shown in figure 5.4. In this

figure we have zoomed in on the beam injection region in order to clearly identify

the fields. A strong axial electric field is excited due to charge separation at

the relativistic critical density surface (figure 5.4 (b) and (e) at time 0.1ps and

0.3 ps respectively). Positive ions left behind at the relativistic critical surface are

responsible for this charge separation.Therefore, this longitudinal electric field (EZ)

is directed away from the plane of injection (shown by dotted lines in figure 5.4(b)).

Similar longitudinal electric fields are discussed in recent laser-plasma interaction

simulations [Kemp et al., 2009, Sherlock, 2009]. In addition, azimuthal magnetic

field (of positive polarity) seen in figure 5.4(c) in between Z ∼ 4 µm and Z ∼ 6 µm

is produced by uncompensated fast electron beam current
(
∇× ~B = (4π/c) ~Jbeam

)
in this region. These magnetic fields (∼ 5-20 MG) are large compared to the

thermoelectric magnetic field (∼ 0.2 MG) produced in long pulse interaction. This

crossed electric and magnetic field results in a radial spread of fast electrons as

can be clearly seen from figure 5.4(d). Note that the negative polarity magnetic

fields on either side of the positive magnetic field in figure 5.4(c) are consistent

with corresponding radial currents produced by E × B drifts. Due to the finite

extent of this region (∼ 2 µm), only the low energy electrons undergo this radial

drift resulting in the transport parallel to target surface. The electrons having

higher parallel energy enter the target without any significant deflection in radial

direction. For example, 80 keV electrons will have relativistic Larmour radius of 1

µm for a typical azimuthal magnetic field 10 MG. Since the spatial extent of these

magnetic fields is approximately 2 µm, one can expect that electrons with energy

greater than 80 keV will pass through this region without any significant deflection.

Also, although the electron beam is injected into the plasma in the direction of the

laser propagation, some of the lower energy electrons are reflected back into coronal

plasma due to strong electric and magnetic fields in the injection region. Similar

bottlenecking of fast electrons is seen in earlier laser plasma interaction simulations

[Wei et al., 2008]. The alternating polarity of the azimuthal magnetic field seen

in figure 5.4(f) suggests the electrons would filament in the radial direction due
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to electromagnetic Weibel instability [Yoon, 1989] in a counter-propagating beam-

plasma system.

Fast Electron Density  Ez  B! 

 0.1 ps 

 0.3 ps 

 (a)  (b)  (c) 

 (d) 
 (e)  (f) 

Figure 5.4: Early stages of fast electron transport. Fast electron spread in radial
direction( figure (a) and (d)). Figure (b) and (e) show the axial electric field due to
charge separation directed away from relativistic critical density surface (between
4 µm and 6 µm). The dotted line in (b) shows the fast electron plane of injection.

The next stage of fast electron transport is shown in figure 5.5. Fast elec-

trons travelling along the surface, are deflected towards low density coronal plasma

by thermo-electric magnetic fields produced by the long pulse laser (figure 5.5(a)

at 0.6 ps). Also, as the fast electrons travel in the coronal plasma shown in figure

5.5(d) (time: 0.9 ps), the Weibel instability [Weibel, 1959] causes strong filamen-

tation of fast electrons and produces large self-generated magnetic fields. Each of

these filaments contains a fast electron current at the core surrounded by return

current supplied by the background plasma. The typical width of these filaments

is ∼1 µm. The lower limit for growth of the Weibel-like filamentation instability

for fast electron beam having parallel (VZ) and perpendicular (V⊥) velocities in a

cold plasma background can be derived using kinetic as well as fluid models [Bret

and Deutsch, 2006, Silva et al., 2002].
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nfast

nplasma

> γfast
V 2
⊥

V 2
z

(5.6)

where nfast/nplasma is the ratio of fast electron density to background plasma den-

sity, γfast is the relativistic Lorentz factor for fast electrons. Thus, for a given

set of fast electron beam parameters, the Weibel instability is more likely to

grow in under-dense plasma compared to over-dense plasma. In our simulations,

stronger filamentation of electron beam in the under-dense background plasma can

be clearly seen from figure 5.5(d).

!

Figure 5.5: Early stages of fast electron transport. Dotted line represents target
edge. (a) At 0.66 ps, some of the fast electrons are traveling back into coronal
plasma. Also, deflection of fast electrons moving along the target front surface by
magnetic field can be seen at R ∼100 µm. At 0.9 ps excitation of radial electric
field with peak magnitude of 1× 109 V/m is seen at (Z,R) ∼ (60,240) µm in figure
4(e) .

Fast electrons travelling in the coronal plasma eventually reach the low-

density plasma region where their density becomes comparable with the coronal

plasma density (nfast/nplasma ∼ 0.4).This excites strong electrostatic fields due to
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charge separation (see figure 5.5(e)) at the coronal plasma transverse boundary

near (Z, R) ∼ (60,240) µm. The peak value of this electric field is about 109 V/m.

Also, it should be noted that initially the radial component of the electric field, ER

(∼ 1 × 109 V/m) is higher than the axial component, EZ (∼ 3 × 108 V/m) since

these fast electrons are mainly moving in the radial direction.

!

Figure 5.6: Fast electron refluxing in the coronal plasma back to solid target. At
1.33 ps, fast electrons filament splitting in axial direction (Z-direction) can be seen
at (Z, R) ∼ (70,260) µm in (a) accompanied by excitation of axial electric field
of alternating polarity (c).This field splits the beam in a axial direction. (d) Fast
electrons are pulled back to the target at R ∼ 250 µm (time = 1.66 ps)

As fast electrons move further into the under-dense plasma towards the

transverse plasma boundary, the local fast electron density becomes greater than

the background plasma density. Interesting dynamics of axial electric field (EZ)

are seen at late time (figure 5.6(c)). The excited axial electric field now becomes

comparable to the radial electric fields. The peak magnitude of the electric field in

either direction is around 2× 1010 V/m. Its orientation is such that fast electrons

initially travelling in the radial direction are now deflected by the electric field into

the axial direction. Thus, a fraction of the fast electrons in the coronal plasma

now start traveling back toward the solid target as can be clearly seen in the
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fast electron density plots in figure 5.6(d). The location of region of reflection

where these fields are excited in the coronal plasma depends upon the pre-plasma

scale length in the transverse (radial) direction which, in turn, would depend upon

energy in pre-pulse, long pulse laser spot size, etc. In addition, figure 5.6(e) and

5.6(f) also show the occurrence of strong electric fields at target edges, arising due

to the transverse loss of fast electrons from the target. These fields contribute

towards pulling back some of the fast electrons which are initially traveling away

from the target in coronal plasma.

Figure 5.7: Axial line out at R= 260 µm of various density profiles and axial
electric field (EZ) at 1.25ps and 1.33ps. (a) ,(c): Red (solid), blue (dash-dotted) and
black (dotted) lines represent fast electrons, ions and background plasma electron
densities respectively. (b),(d): The corresponding axial electric field of alternate
polarity is directed towards the center of fast electron beam (Z ∼ 75 µm) that
pulls electrons away from the center.

The growth and polarity of axial electric field, which is important for axial

(along Z-direction) diverting of the beam, can be explained with the help of figure

5.7. Figure 5.7 shows the axial line out at R = 260 µm of the axial electric field

along with the density of fast electrons (nf), background plasma electrons (np) and

ions (Zini) at 1.25 ps and 1.33 ps. Note that the peak fast electron density is about

1017 cm-3 whereas the initial background plasma density is of the order of 1016 cm-3.

As the fast electron density is greater than background plasma density, background

electrons are pushed aside creating net positive charge surrounding the negative
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charge of fast electrons. This is apparent from the dip in the background plasma

density profiles (black dotted curve) in figure 5.7(a) (Z=70 µm). We now have

axial electric field with alternating polarity. The direction of this electric field is

such that the fast electrons are pulled into the axial direction from both sides.The

diverting of the beam pushes background plasma electrons further away leading to

the enhancement of axial electric field. Note that the dip in the background plasma

density has increased with minimum plasma density dropping from 1016 cm-3 at

1.25 ps to 5 × 1015 cm-3 at 1.33 ps. This creates a positive feedback mechanism,

which produces the axial field to deflect some of the fast electrons back towards

the target.

Later time (3ps) simulations (see figure 5.8(a)) show the fast electrons en-

tering the Copper layer at a radial location of around 250 µm. Figure 5.8(b) shows

the time integrated radial line out of the number of fast electrons passed through

the copper layer. While counting these electrons we have only considered the fast

electrons having energy greater than 20 keV i.e. only those capable of producing

Cu Kα x-rays. The increase in fast electron number at R ∼ 250 µm in figure 5.8(b)

is consistent with the 400-500 µm diameter outer ring seen in the experiment.

The robustness of the proposed mechanism for annular ring structure for-

mation is tested by running additional simulations with different divergence angles

for the injected fast electron beams : 10◦ and 60◦(see figure 5.9). In all these simu-

lations we see fast electron reflection near the transverse plasma vacuum boundary

where the plasma density drops below the fast electron density. The radius of the

ring observed in the simulations lies in the range of 220 to 270 µm, which is again

consistent with the experimentally observed ring radius.

Finally we compared the above results with a case that did not have a

pre-formed plasma. Extremely small pre-plasma was added in front of the target,

consistent with the pre-pulse expected from the short pulse laser. As can be seen

in figure 5.10(a), fast electrons travelling along the target front surface accumulate

at the target edges due to the sheath fields produced by the lateral escape of

fast electrons. The radial line out of time-integrated number of electrons passed

through the Cu layer shows a small bump at the target edge (figure 5.10(b)) (R ∼
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Figure 5.8: Later time (3 ps) simulation results for fast electron transport in
presence of pre-plasma. (a) Reflected fast electrons passing through the copper
layer (region between red lines) can be seen at R ∼ 250 µm. (b) Radial profile
of the total number of fast electrons (energy, E > 20 keV) passing through the
copper (time integrated). The small bump around R ∼ 250 µm is consistent with
outer radius of ring observed in the experiment.

300 µm). However, no ring-like structure was seen in this simulation at R ∼ 250

µm, which is consistent with the experimental observation where Kα emission was

seen mainly from the central region (figure 5.10(b)). We have confirmed that the

small bump seen close to R ∼ 300 µm is only due to the reflection at target edge

by performing additional LSP simulations using extended transverse dimension.

5.4 Conclusions

Modeling with radiation hydrodynamic and hybrid-PIC code is performed

to explain the ring-like Cu Kα x-ray emission arising from fast electron transport in

presence of the long scale pre-plasma and thermoelectric B-fields produced by 1 J

level long pulse irradiation. Simulations suggest that during early stage of electron

transport, some of the fast electrons are pulled back into coronal plasma due to

strong electric and magnetic fields at interaction region. Also, azimuthal magnetic

field, generated during long pulse interaction deflects the fast electrons travelling

along the target surface into coronal plasma. Filamentation of fast electrons occurs



70

Fast Electron Density (cm-3) 
(log)  

10° half angle beam 
divergence  
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divergence  

Figure 5.9: Fast electron density comparison at 1.8 ps for 10◦ and 60◦ half angle
beam divergence. Note that the thick aluminum layer behind Copper is excluded
in these simulations.

!

Figure 5.10: Later time (3ps) results of without pre-plasma simulations.(a) Fast
electron density at 3 ps. Reflection of electrons from target edge can be seen at
R=300 µm. (b) total number of fast electrons (time integrated) through copper
doesnt show the annular ring-like structure seen in the pre-plasma case.

as they travel further into low-density corona. Strong electrostatic fields are excited

near the transverse plasma-vacuum boundary where fast electron density becomes

comparable with background plasma density. In later stages, when fast electrons
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density becomes greater than background density, the strong excitation of axial

electrostatic fields lead to refluxing of these electrons back to the target. This

explains the outer ring structure in the Cu Kα emission spot seen in the experiment.

Thus, plasma density gradient in the transverse (radial) direction, fast electron

density and energy are the important deciding factors for the occurrence of such a

ring structure.

Thus, in this chapter we demonstrate one of the effects of long scale length

pre-formed plasma on the fast electrons transport. In addition to this, the re-

duction in coupling of forward going fast electrons flux due to presence of large

pre-formed plasma can pose a serious threat to the prospects of electron fast igni-

tion scheme. Detail study of this topic is necessary in the future work.

Chapter 5 uses material from the following publication and the dissertation

author was the primary investigation and first author of the publication :

B.S.Paradkar, M.S. Wei, T. Yabuuchi, R. B. Stephens, J. T. Larsen and F. N.

Beg, “Numerical modeling of fast electrons transport in short pulse laser-solid

interactions with long scale-length pre-formed plasma”, Plasma Physics and Con-

trolled Fusion 52 125003, 2010.



Chapter 6

Conclusions

In last five chapters we have discussed the influence of pre-formed plasma

on relativistic fast electrons generation and transport in laser-solid interaction.

This problem is of considerable importance, especially for successful realization

of the fast ignition concept of Inertial Confinement Fusion. Also, fundamental

understanding of this topic is very important for the interpretation of experimental

results in almost all of the laser-solid interactions. We approached this problem

both numerically and analytically. Numerical calculations were mainly performed

with the help of PIC code LSP [Welch et al., 2001, 2006]. The summary, important

conclusions and scope for future work in this topic will be discussed in this chapter.

6.1 Summary and Conclusions

• In chapter three and four we studied the problem of fast electrons generation

in presence of pre-formed plasma. The problem is studied systematically

by performing PIC simulations for wide range of pre-formed plasma scale-

lengths (1-15µm) and laser intensities (1019-1021 W/cm2), relevant to present

day experiments. We showed that long scale-length pre-formed plasma can

result in generation of very high energetic electrons with energies greater than

laser ponderomotive energy consistent with the experimental observations.

Detailed investigation showed that the ambipolar electric field inside pre-

formed plasma plays a crucial role in the fast electrons heating. In chapter

72
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four, we addressed this issue quantitatively by studying the dynamics of

electron in presence of longitudinal electrostatic potential well (for a constant

electric field) and a plain electromagnetic wave. This mechanism suggests

that electron motion in laser radiation becomes stochastic due to the presence

of longitudinal electrostatic potential well. The stochasticity is introduced

when the electron bounce time inside the potential becomes comparable with

the laser time period. Analytical calculations and numerical simulations

showed that the electrons initially placed inside the finite depth potential

well can indeed escape with energies greater than the laser ponderomotive

energy in a deeply stochastic regime.

• In chapter five, we discussed the effect of pre-formed plasma on the fast elec-

trons transport. In particular, we simulated one specific experiment where

presence of long pre-formed plasma in front of the solid target resulted in

a characteristic annular ring-like transport of fast electrons. It was shown

that the reflection of backward going (with reference to laser propagation)

electrons due to the excitation of sheath fields inside the pre-formed plasma

is responsible for such transport. This provided indirect evidence of back-

ward going fast electrons in the pre-formed plasma in laser-solid interactions.

Such electrons going in the backward directions will not be useful since it

will result in reduction of coupling of the fast electrons into the dense core.

Clearly this thesis demonstrates that the presence of pre-formed plasma can sig-

nificantly alter the laser-solid interaction at relativistic intensities. The presence

of such plasma of long density scale-length can seriously hamper the prospects

of Fast Ignition. On the other hand, the applications like electron-positron pair

productions may find long pre-formed plasma favorable due to the production of

very energetic electrons with energies well beyond laser ponderomotive potential.

6.2 Future Work

One of the obvious extension of this work would be to investigate this prob-

lem in 2-D and 3-D cases. Although the PIC simulations for higher dimensions
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can be computationally very demanding, it is important to analyze the importance

of the mechanism proposed in this thesis for these cases. The influence of laser

filamentation, self-focussing on this heating mechanism needs a detailed investiga-

tion. Again, analyzing single electron motion in 2-D/3-D can be a very rewarding

approach from the physics understanding point of view.

In the proposed heating mechanism, the stochasticity is introduced in two

ways : 1) by counter-propagating E.M. waves 2) by motion of electron inside the

potential well in the presence of E.M. wave. The second problem is addressed

analytically in this thesis. But it would be interesting to investigate further the

introduction of stochasticity by counter-propagating E.M. waves and it’s implica-

tions on overall heating of pre-formed plasma electrons.



Appendix A

Derivation of Poincare Mapping

equations 4.9 and 4.10

Using standard normalization described in the earlier chapters, the con-

stants of motion in the perpendicular and parallel direction with respect to laser

propagation for the laser vector potential a (t, z) and constant longitudinal electric

field Ez can be expressed as

P̂⊥ − a (t, z) = 0 (A.1)

γ − P̂z − Ezτ = δ0 (A.2)

Here, P̂⊥ = γV⊥ and P̂z = γVz are the normalized momenta in the perpendicular

and parallel directions. Note that τ = t − z is the phase-slip of the electron with

respect to electromagnetic wave. Also, we have assumed zero initial perpendicular

momentum and δ0 = (γ − P̂z)|τ=0= γA/ [γz (1 + Vz)]. Here γA =

√
1 + P̂⊥

2
and

γz = 1/
√

1− V 2
z . Therefore, for the relativistic electron δ0 simplifies to δ0 '

γA/2γz. Combining Eq. (A.2) with the equation for total kinetic energy of the

electron i.e. γ2 = 1 + P̂⊥
2

+ P̂z
2

we get
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γ =
1

2

[
1 + P̂⊥

2

δ0 + Ezτ
+ (δ0 + Ezτ)

]
(A.3)

P̂z =
1

2

[
1 + P̂⊥

2

δ0 + Ezτ
− (δ0 + Ezτ)

]
(A.4)

Now, the electron motion can be described using Eq. (A.2) as

dz

dτ
=
dz/dt

dτ/dt
=

Vz
1− Vz

=
P̂z

δ0 + Ezτ
(A.5)

Substituting P̂z from Eq. (A.4) we get

dz

dτ
=

1

2

[
γ2A

(δ0 + Ezτ)2
− 1

]
(A.6)

U(Z)

0 Z

Figure A.1: Electrostatic potential well chosen for the analysis of electron motion.
Perfectly reflecting ‘potential wall’ is assumed at z = 0.

At this point, we introduce the electrostatic potential well U(z) as shown above

with constant longitudinal electric field Ez. Since we are only interested in the

physics of phase randomization of the electron, we have assumed infinite potential

wall at z = 0 for the case of simplicity and clarity. This means that the electron

is re-injected in the potential well at z = 0, preserving it’s energy.
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Now, the motion of the electron, present initially at z = 0 and time, t = t0

inside such potential well can be described by integrating Eq. (A.6) as

z =
1

2

∫ τ

0

[γA (t0 + τ ′)]2

(δ0 + Ezτ ′)
2 dτ

′ − τ

2
(A.7)

Therefore, the time t1 when the electron returns back to z = 0 can be expressed

as

t1 − t0 =

∫ t1−t0

0

[γA (t0 + τ ′)]2

(δ0 + Ezτ ′)
2 dτ

′ (A.8)

Integrating by parts we get

t1 − t0 = − γ2A(t1)

Ez (δ0 + Ez (t1 − t0))
+
γ2A(t0)

Ezδ0
+

1

Ez

∫ t1−t0

0

d
dτ ′

[γ2A(t0 + τ ′)]

δ0 + Ezτ ′
dτ ′ (A.9)

Considering the dynamic for the ultra-relativistic electron (δ0 = O(ε) << 1) we

can simplify the first two terms of the RHS of the above equation as follows:

γ2A(t0)

Ezδ0
=
γ(t0) [1 + Vz(t0)]

Ez
∼ 2γ(t0)

Ez
γ2A(t1)

Ez [δ0 + Ez (t1 − t0)]
=
γ(t1) [1 + Vz(t1)]

Ez
∼ O(ε)

Note that Vz(t0) ∼ 1 and Vz(t1) ∼ −1 are used in the above equations.Also, the

term
γ2A(t0)

Ezδ0
is proportional to the energy of the fast electron. Therefore, introducing

the new notation Ĝ0 =
γ2A(t0)

Ezδ0
we can write Eq. (A.9) as

t1 − t0 = Ĝ0 +
1

Ez

∫ t1−t0

0

d
dτ ′

[γ2A(t0 + τ ′)]

δ0 + Ezτ ′
dτ ′ +O(ε) (A.10)

The above equation can be rearranged in the form of ‘Chirikov Standard Map’

[Chirikov, 1979] as folloews:

Ĝ1 = Ĝ0 +
1

Ez

∫ t1−t0

0

d
dτ ′

[γ2A(t0 + τ ′)]

δ0 + Ezτ ′
dτ ′ +O(ε) (A.11)
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t1 = t0 + Ĝ1 (A.12)

Now, for a plain E.M. wave, γ2A(t0 + τ ′) = 1 + a20 cos2 (t0 + τ ′), the equation (A.11)

reduces to

Ĝ1 = Ĝ0−
a20
Ez

[
sin (2t0)

∫ t1−t0

0

cos (2τ ′)

δ0 + Ezτ ′
dτ ′ + cos (2t0)

∫ t1−t0

0

sin (2τ ′)

δ0 + Ezτ ′
dτ ′
]

+O(ε)

(A.13)

Finally, simplifying the integrals on the RHS and neglecting the higher order terms

(O(ε)), we recover the mapping equation (4.9).

Ĝ1 = Ĝ0 −
a20
E2
z

{
π

2
cos(2t0) +

[
ln

(
Ez
2δ0

)
− C

]
sin (2t0)

}
+O(ε) (A.14)

Here, C is the Euler’s constant. Finally expressing δ0 in terms of Ĝ0 we can write

recursive equation described by equation (4.9) and (4.10).

Ĝi = Ĝi−1 −
(
a0
Ez

)2
{
π

2
cos(2ti−1) +

[
ln

(
Ĝi−1E

2
z

2(γA(ti−1))2

)
− C

]
sin(2ti−1)

}
(A.15)

ti = ti−1 + Ĝi (A.16)
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