
Lawrence Berkeley National Laboratory
LBL Publications

Title
TRIAN User Guide

Permalink
https://escholarship.org/uc/item/4dk8d490

Authors
Wu, Kesheng
Simon, Horst

Publication Date
1999-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dk8d490
https://escholarship.org
http://www.cdlib.org/

LBNL-42953

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

TRIAN User Guide

Kesheng Wu and Horst Simon

Computing Sciences Directorate
National Energy Research
Scientific Computing Division

March 1999

" ."

j

::0
",

("')O""T1
...... 0 ",
, co ::0
(")111,,,
c: Z
--'z("')
wO",
c-+C-+
co ("')

o
OJ "U
--' -< 0. __ _

IQ

("')
o
"0
C<

r
OJ:
Z
r
I'
~
N
ID
tn,
W

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

TRLAN User Guide

March 1999

Kesheng Wu
Horst Simon

Edition 1.0 for TRLAN version 1.0

This work was supported by the Director, Office of Science, Office of Laboratory Policy
and Infrastructure Management, of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098. -

The development and testing of this software used resources of the National Energy Re
search Scientific Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy.

Table of Contents

1 Overview &I ••••••••• II • • • • • • • • • • •• 1

2 Installation............... 3

3 A small example. .. 4

4 TRLJNFO module. .. 7
4.1 Initialization. .. 7
4.2 Setting debug parameters. .. 8
4.3 Setting initial guess options. .. 9
4.4 Checkpointing... 10
4.5 Printing functions. .. 11
4.6 The elements of TRL_INFO_T 13
4.7 TRLAN error code 14

5 Main function interfaces 20
5.1 Interface of trlan 20
5.2 Operator interface 21

6 Recommended parameter choices 24
6.1 Selecting the maximum basis size (maxlan) 24
6.2 Selecting the tolerance 25
6.3 Selecting a restarting scheme , 2~
6.4 Selecting the maximum iterations 25

7 Miscellaneous issues 26
7.1 Workspace requirement 26
7.2 Variations of TRLAN 26
7.3 Calling from other languages 27
7.4 Debugging ... 28
7.5 Contacting the authors 28

8 References.............. 29

Index eo • • • • • • • • • • • • • • • • •• 30

TRLAN Ver 1.0 1

1 Overview

TRLAN is a program designed to find a small number of extreme eigenvalues and their
corresponding eigenvectors of a real symmetric matrix. Denote the matrix as A, the eigen
value as A, and the corresponding eigenvector as x, they are defined by the following equa
tion,

Ax = Ax.

There are a number of different implementations of the Lanczos algorithm available l .

Why another one? Our main motivation is to develop a specialized version that only
target the case where one wants both eigenvalues and eigenvectors of a large real symmetric
eigenvalue problems that can not use the shift-and-invert scheme. In this case the standard
non-restarted Lanczos algorithm requires one to store a large number of Lanczos vectors
which can cause storage problem and make each iteration of the method very expensive.
The underlying algorithm of TRLAN is a dynamic thick-restart Lanczos algorithm. Like
all restarted methods, the user can choose how many vectors can be generated at once.
Typically, the user choose a moderate size so that all Lanczos vectors can be stored in
core. This allows the restarted methods to execute efficiently. This implementation of the
thick-restart Lanczos method also uses the latest restarting technique, it. is very effective
in reducing the time required to compute a desired solutions compared to similar restarted
Lanczos schemes, e.g., ARPACK2

.

When solving most problems, the three most time-consuming procedures in the Lanczos
method are the matrix-vector multiplication, re-orthogonalization and computation of the
Ritz vectors. To make this package as small as possible, we have delegated the task of per
forming the matrix-vector multiplication to the user. This is a reasonable approach because
there is simply too many possible ways of performing the operation and the user usually can
construct a specialize version that is better than a generic matrix-vector multiplication rou
tine. In addition, there are high quality matrix-vector multiplication routines available as
parts of larger packages, for example, P _SPARS LIB , AZTEC, BLOCKSOLVE and PETSc,
see Section 5.2 [operator interface], page 21, for details. To reduce the amount of the time
spent in re-orthogonalization, we only perform re-orthogonalization if it is necessary. The
Ritz vectors are computed as during the restarting process, in TRLAN, we only compute
those that are determined to be needed. This reduces the number of Ritz vectors computed.
To compute them efficiently, we call the BLAS library to perform the actual computation.

The program is implemented in Fortran 90. The main advantages of using Fortran 90
compared to Fortran 77 is that Fortran 90 offers dynamic memory management which
make it more flexible in terms of allocating temporary work arrays. If there is an array
not used for other task, it can be passed into TRLAN, else the user can simple let TRLAN
allocate its own work arrays. TRLAN internal allocate all the space it requires up front to
avoid repeated call to allocated small pieces of workspace.

Similar to other languages, such as CjC++, Fortran 90 offers data encapsulation which
makes it convenient to pass a significant amount of information cleanly. TRLAN packages

1 Many mathematical packages are available from NETLIB (http://www . net lib . org/)
and ACM TOMS (http://www.acm.org/toms/).

2 ARPACK can be found at http://www . caam. rice. edu/software/ ARPACK/.

TRLAN Ver 1.0 2

a large amount of information in a single object to reduce the size of the external user
interface. See Chapter 4 [TRL-INFO module], page 7, for details. A significant advantage
of using Fortran compared to CjC++ is the ease of using computational libraries such as
BLAS and LAPACK. In fact, most numerical computations of TRLAN are performed using
those library functions. Because most machines have vendor optimized BLAS and LAPACK,
being able to effectively use them is crucial to the effectiveness of TRLAN package.

Fortran 90 also provides some utility functions such as query function for the machine
precision, random number generator and timing functions. They make the program more
portable across different platforms.

Parts of this document contains details about the software package which may not be
of interest to every user. Here are some advice on how to use this document. If you
just want to get a feel of how TRLAN looks like in a program, take a look at Chapter 3
[Example], page 4 or the examples come with the software package. Chapter 3 contains a
short example that uses mostly default parameters. To assert more control over TRLAN, see
Chapter 4 [TRL-INFO module], page 7, and Chapter 5 [TRLAN interface], page 20. If you
are somewhat puzzled about how to choose the parameters, see Chapter 6 [Parameters],
page 24, for our recommendations. If you don't use Fortran 90, see Section 7.3 [other
languages], page 27, for what to do. For most users, there is no need to read everything in
Section 4.6 [elements], page 13, and Section 4.7 [error code], page 14. If you read the entire
document and are still puzzled, contact the authors, see Section 7.5 [contacting authors],
page 28.

TRLAN Ver 1.0

2 Installation

The source code of the package is available at
http://wwv.nersc.gov/-kewu/trlan.tar.gz.

This document is distributed with the package and is also separately available at
http://wwv.nersc.gov/-kewu/ps/trlan-ug.ps.

The package may be unpacked by

tar -xzf trlan.tar.gz

If you tar program does not recognize flag z, you can unpack it in two steps

gunzip trlan. tar .gz
tar -xf trlan. tar

After this, the files in the package will be unpacked into a directory called 'TRLan'.

3

To install the package, you will need a Fortran 90 compiler, the BLAS and LAPACK
libraries. On parallel machines, MPI is also needed. The compiler name and the options
used are specified in the file called 'Make. inc'. A number of examples are provided in the
file for different machines. If your compiler name and library locations are same as one of
the examples, you can uncomment the section, comment out the default values, and use
the settings. If your compiler has a different name or the libraries are located at a different
place, you will need to modify the file to refer to their correct values. The package may
be compiled into one of the two library files libtrlan. a and libtrlan_mpi. a where the
former is the sequential version of the package and the latter is the parallel version. To
generate them go to 'TRLan' and type

make libtrlan.a
or

make libtrlan_mpi.a .
To compile the examples, go to the appropriate subdirectory in 'examples'. If you are

on a sequential or a shared memory computer and there is no subdirectory that matches
your computer, the source code in the SUN directory can be used. The examples in 'T3E'
and 'psp' can be run on parallel machines that support MPI. 'Makefile' in the 'T3E' and
'psp' directories are only tested on a Cray T3E. They will need modification in order to
be used elsewhere. The examples in directory 'psp' also need a special supporting library
called P -BPARSLIB, read the file 'README' before try to use it.

There are three examples in most example directories (except 'psp'), simple, simple77
and simplec. These are three programs should be doing the same thing using three different
languages. The executables can be generated by make

make simple simplec simple77

They should output the same eigenvalues, however the actual printout may differ slightly
due floating-point round-off errors.

For further questions, consult the 'README' files in the directories. To report errors in the
installation procedure or suggest improvements, the authors can be reached at kwu@lbl. gov
(Kesheng Wu) and hdsimon@lbl.gov (Horst Simon).

TRLAN Ver 1.0 4

3 A small example

This is a simple example in Fortran 90. It is short because we have used a very simple
matrix and used default parameters wherever possible. It uses MPI to handle data com
munication required by TRLAN. This example comes with the distribution of the source
code in directory 'examples/T3E'. The name of the file is 's1.f90' and on T3E is can be
compiled by make sl which generates the executable s1.

! !! a really simple example of how to use TRLAN
Program simple

Use trl_info
Use trl_interface
Implicit None
Include 'mpif.h'
! local variable declaration
Integer, Parameter :: nrow=100, 10hi=-1, ned=5, maxlan=40, mev=10
Double Precision .. eval(mev), evec(nrow, mev)
Type (trl_info_t) info
Integer :: i
External diag_op name of the matrix-vector multiplication routine
Call MPI_INIT(i) initialize MPI
! initialize info -- tell TRLAN to compute NED smallest eigenvalues
Call trl_init_info(info, nrow, maxlan, lohi, ned)
! call TRLAN to compute the eigenvalues
Call trlan(diag_op, info, nrow, mev, eval, evec, nrow)
Call trl_print_info(info, nrow+nrow)
If (infoY~y_pe .Eq. 0) Then

write (6, FMT=100) (i, eval(i), i=l,info%nec)
End If .

100 Format('E(', 11, ') = " lPG25.17)
Call MPI_finalize(i)

End Program simple
!!!
! a simple matrix-vector multiplications routine
! defines a diagonal matrix with value (1, 4, 9, 16,25,36, ...)
!!!
Subroutine diag_op(nrow, ncol, xin, ldx, yout, ldy)

Implici t None
Integer, Intent(in) :: nrow, ncol, ldx, ldy
Double Precision, Dimension(ldx*ncol), Intent(in) xin
Double Precision, Dimension(ldy*ncol), Intent(out) :: yout
Include 'mpif.h'
! local variables
Integer :: i, j, ioff, joff, doff
Call MPI_COMM_RANK(MPI_COMM~WORLD, i, j)
doff = nrow*i
Do j = 1, ncol

ioff = (j-l)*ldx
joff (j-l)*ldy
Do i 1, nrow

TRLAN Ver 1.0 5

yout(joff+i) = (doff+i)*(doff+i)*xin(ioff+i)
End Do

End Do
End Subroutine diag_op

There are two parts in this example, the main program and the matrix-vector multi
plication subroutine. The main program sets up the info variable to carry information to
and from TRLAN, calls TRLAN, and prints the information carried out in inf 0 and the
eigenvalues computed. Here is a short explanation of the arguments to trl_init_info.

call trl_init_info(info, the variable to be set
nrow=100, there are 100 rows on each processor
maxlan=40, maximum Lanczos basis size is 40
10hi=-1, compute the smallest eigenvalues
ned=5) compute 5 eigenvalues

The calling sequence of TRLAN is fairly simple because all the gory details are hidden
inside info. The following listing describes the information required by TRLAN to solve
an eigenvalue problem.

call trlan(diag_op,
info,
nrow,
mev,

eval,

evec,

matrix-vector multiplication routine
what eigenvalues to compute, etc.
100 rows on this processor
number of eigenpairs can be stored in
eval and evec
real(8) :: eval(mev)
array to store eigenvalue
real(8) :: evec(lde,mev)
array to store the eigenvectors

Ide) the leading dimension of evec

The content of info and the eigenvalues are printed separately. The content of info is
printed by calling trl_print_info which accepts two arguments, info to be printed and
the number of floating-point operations used for one matrix-vector multiplication on this
processor. The second parameter is needed because the matrix-vector multiplication is user
supplied. The information is used to compute the speed of the matrix-vector multiplication
and the speed of the whole program. It can be ignored, in which case trLprint_info will
leave the related fields blank.

The short matrix-vector multiplication routine, diag_op, performs multiplication with a
very simple matrix, diag (1, 4, 9, ...). The example tries to find 5 smallest eigenvalues
of this matrix, 1, 4, 9, 16, 25. The following is the output from a run on a T3E/900 located
at the National Energy Research Supercomputing Centerl.

TRLAN execution summary (exit status
Number of SMALLEST eigenpairs:
Times the operator is applied:
Problem size:

1998/09/24 18:37:16.834 (-07:00)
= 0) on PE 0

6 (computed), 5 (wanted)
2000) 847 (MAX:

100 (PE: 0), 400 (Global)
Convergence tolerance:
Maximum basis size:

1.490E-08 (reI),
40

2.384E-03 (abs)

1 Information about the National Energy Research Supercomputing Center can be found
on the web at http://www . nersc . gov /.

TRLAN Ver 1.0

Restarting scheme: 0
Number of re-orthogonalizations 847
Number of (re)start loops: 36
Number of MPI processes: 4
Number of eigenpairs locked: 0
OP(MATVEC): 9.35440E-03 sec,
Re-Orthogonalization:
Restarting:
TRLAN on this PE:
-- Global summary

2.12016E-Ol sec,
2.36795E-Ol sec,
5.29851E-Ol sec,

1.81091E+Ol MFLOPS
4.68742E+Ol MFLOPS
2.02369E+Ol MFLOPS
3.00020E+Ol MFLOPS

Overall MATVEC Re-orth Restart
Time(ave) 5.2985E-Ol 9.4129E-03 2.1143E-Ol 2.3685E-Ol
Rate(tot) 1.2001E+02 7.1990E+Ol 1.8801E+02 8.0930E+Ol
E(l) 0.99999999997742750
E(2) = 3.9999999999816311
E(3) = 8.9999999999916049
E(4) = 16.000000000026944
E(5) = 25.000000000089663
E(6) = 36.000000000367905

6

In short, to use TRLAN to find some extreme eigenvalues, the user defines a matrix
vector multiplication routine with the same interface as diag_op, calls trl_ini t_info to
specify what eigenvalues to compute and calls trlan to perform the bulk of the computation.
The remainder of this manual will explain the user interface and how to control TRLAN
in more detail. How to Write a particular matrix-vector multiplication for an operator
is beyond the scope of this manual. Some packages containing distributed matrix-vector
multiplications routines are listed in Section 5.2 [operator interface], page 21.

TRLAN Ver 1.0 7

4 TRL-INFO module

The example in previous chapter uses two modules, TRLJNFO and TRLJNTERFACE.
As the name suggested, TRLJNTERFACE contains the user interface for accessing TR
LAN. The module TRLJNFO only contains the definition of the Fortran 90 derived type
TRLJNFO_T. To make it easy to access, we have provided six access functions, trl_
init_info, trl_set_debug, trl_set_iguess, trl_set_checkpoint, trl_print_info,
and trl_ terse_info. The first four are for manipulate input parameters to TRLAN and
the last two are for printing the content of TRLJNFO_T. We will discuss these access
functions in this chapter. The remaining interface functions are described in the next
Chapter. The last two sections of this chapter may be skipped if the reader is only seeking
information on how to use the package.

4.1 ~Initialization

This initialization routine is' equivalent to a generator function in c++. It is intended
to be called before any other TRLAN functions. Any parameter not explicitly set by the
caller is set to its default value and all internal counters are set to zero. Its Fortran 90
interface block is as follows,

Subroutine trl_init_info(info, nrow, mxlan, lohi, ned, t~l,&
& trestart, maxmv, mpicom)

Use trl_info
Integer, Intent(in) :: lohi, mxlan, ned, nrow
Integer, Intent(in), Optional maxmv, mpicom, trestart
Real(8), Intent(in), Optional tol
Type(TRL_INFO_T), Intent(out) info

End Subroutine trl_init_info

We have seen the mandatory arguments in the example, however, there are four optional
arguments that were not used before. For completeness, we will give a short description of
all arguments here.

info: The Fortran 90 derived type that will carry the information to the trlan sub-
routine. It is set by this subroutine. Any prior content will be cleared.

nrow: The local problem size. The vectors are assumed to be distributed conformally,
i.e., if 10 elements of a Lanczos vector are located on a processor, the same 10
elements of all other Lanczos vectors are located on the same processor. The
variable nrow refers to the number of rows located on the current processor. It
may vary from processor to processor.

maxlan: The maximum Lanczos basis size. This determines the maximum memory re
quirement of trlan. The restarted Lanczos algorithm will store up to maxlan
Lanczos vectors and one (1) residual vector. An additional memory of size
maxlan* (maxlan+l0) is required to perform the Rayleigh-Ritz projection to
compute the approximate solutions. Generally, the larger maxlan is, the fewer
matrix-vector multiplications are needed. See Section 6.1 [basis size], page 24,
for further discussion on this parameter. "

TRLAN Ver 1.0 8

lohi:

ned:

This parameter indicates which end of the spectrum to compute. The Lanczos
algorithm is only able to compute the extreme eigenvalues effectively. The
choices are either to compute the smallest ones (lohi < 0), or the largest ones
(lohi > 0), .or whatever converges first (lohi = 0).

The number of eigenvalues and eigenvectors desired.

The parameters, nrOlJ, max lan, lohi, and
ned, are mandatory when calling trl_init_info. The following parameters
are optional because a reasonable value can be determined by trl_init_info.

tol: The relative tolerance on the residual norms. The Lanczos algorithm computes
the approximate solution to the eigenvalue problem. As more steps are taken,
the solutions become more accurate. For symmetric eigenvalue problems, the
residual norm is one of the most commonly used measure of the solution accu
racy. If the approximate eigenvalue is A, and the approximate eigenvector is x,
the residual norm is defined to be r = IIAx - Axil. In TRLAN, the convergence
test is relative the norm of the matrix A. If

r < tolliAII,

then the approximate solution is considered converged. If this argument is not
present, it is set to the square root of the unit round-off error. If the 8-byte
IEEE floating-point arithmetic is used, this default value is roughly 1.49 x 10-8 •

restart: The flag to indicate which thick-restart scheme to use. In version 1.0 of TRLAN,
there are five choices for this parameter, 1, 2, 3, 4, 5. If this parameter is not
provided, the default choice is 0 which is treated same as 1 in the current imple
mentation. See Section 6.3 [restarting scheme], page 25, for further discussion
on this parameter.

maxmv: The maximum number of matrix-vector multiplications allowed. The purpose of
this parameter is usually to make sure the program stop eventually in case of
stagnation. The default value is ned*ntot where ntot the global problem size.

mpicom: The MPI communicator to be used by trlan. This parameter is only meaningful
if MPI is used. If the sequential version is used, this variable is simply ignored
internally. If MPI is used and this variable is not set, trl_init_info will
duplicate MPCCOMM_WORLD and use the resulting communicator for its internal
communication operations.

4.2 Setting debug parameters

There are cases we would like to monitor the progress of the restarted Lanczos algorithm.
We can do this by setting a few logging parameters. Since the debug information may
be voluminous, trlan writes them to files. Each MPI process will write its own debug
information to a separate file. The name of the file and how much debug information to
write is controlled by calling trLset_debug.

Subroutine trl_set_debug(info, msglvl, iou, file)
Use trl_info

TRLAN Ver 1.0 9

implicit none
Type(TRL_INFO_T), intent(inout) :: info
integer, intent(in) :: msglvl, iou
Charaeter*(*), Optional :: file

End Subroutine trl_set_debug

info: The TRL_INFO_T type variable to be modified. The function trl_init_info
should have been called before calling trl_set_debug.

msgl vI: This parameter controls how much debug information to print. If it is zero or
less, nothing is printed. When its value is between 1 and 10, the larger it is, the
more information is printed. When it is larger than 10, it has the same effect
as 10.
The function trl_ini t_info sets it to zero as the default value.

iou: The Fortran I/O unit number to be used when writing debug information. The

file:

user should choose an I/O unit not used for anything else during the time trlan
is being used.

Trl_ini t_info sets it to 99 as the default value.

The leading part of the debug file names. The debug file names are form by
appending the MPI processor rank to this string. In sequential environment,
MPI processor rank is always zero (0). This is an optional argument to trl_
set_debug. When it is not set, the corresponding element of TRL_INFO_ T is
not changed.

Trl_ini t_info sets this elements to 'TRL_LOG_' by default.

4.3 Setting initial guess options

TRLAN program can either use a user-supplied initial guess, generate an arbitrary initial
guess or read a set of checkpoint file to get starting vectors. The thick-restart Lanczos may
start with arbitrary number of vectors, however, the starting vectors have to satisfy a strict
relation. The simplest way to start the algorithm is to simply provide one starting vector. If
the function trl_set_iguess is not called, the starting vector is set to [1, ... , 1] by default.
The checkpoint option is implemented to enable a user to continue improve the accuracy of
the solutions progressively.

info:

nee:

Subroutine trl_set_iguess(info, nee, iguess, oldepf)
Use trl_info
Implici t None
Type (TRL_INFO_T) :: info
Integer, Intent(in) :: iguess, nee
Charaeter(*), Intent(in), Optional :: oldepf

End Subroutine trl_set_iguess

The TRL_INFO_T type variable to be modified. The function trLinit_trl
should have been called before calling trLset_iguess.

The number of eigenvalues ,and eigenvectors already converged. If nee is greater
than zero (0), the first nee columns of array evee should contain eigenvectors of
the operator and the first nee elements of eval should contain the corresponding

TRLAN Ver 1.0 10

eigenvalues. This is designed to allow the user to return to trlan to compute'
more eigenvalues and eigenvectors.

Trl_init_info sets this value to zero to indicate no converged eigenvalues.

iguess: The parameter to indicate option for initial guess vector.

<1: TRLAN will generate an arbitrary starting vector for the Lanczos
algorithm. If it is zero (0), vector [1, 1, ... , 1] is used. When
iguess is less than zero, a random perturbations will be added to
this vector before it is taken as the starting vector.

1 : The user has supplied a starting vector. It will be used.

>1: TRLAN will read a checkpoint file and use its content to start the
Lanczos process. The idea of checkpoint is explained later.

oldcpf : The leading portion of the existing checkpointing file names. As with the log
files, the checkpoint files are named by concatenating this leading portion and
the MPI processor rank. The default value set by trl_ini t_info for this is
'TRL_ CHECKPO INT _' .

NOTE: Reading the checkpoint files are done through I/O unit cpio. Trl_init_info
sets this value to 98 by default. If I/O unit is used for another task already, use trl_set_
checkpoint to set cpio to an unused I/O unit number.

4.4 Checkpointing

TRLAN has implemented a scheme of checkpointing to allow the user to stop and restart.
The checkpoint files of the thick-restart Lanczos algorithm contains all the information
necessary for it to continue the Lanczos iterations. To minimize the size of the files, the
checkpoint files are written at the end of the restart process because the basis is the smallest
in size at this point. For efficiency reasons, each MPI processor writes its own checkpoint
file in FORTRAN unformatted form. These checkpoint files can only be read on the same type
of machines and using the same number of MPI processors. The function trl_set_iguess
controls whether the checkpoint files are read. The following function controls when to
write the checkpoint files.

Subroutine trl_set_checkpoint(info, cpflag, cpio, file)
Use trl_info
Implicit None
Type (TRL_INFO_T) :: info
Integer, Intent(in) :: cpflag, cpio
Character(*), Optional :: file

End Subroutine trl_set_checkpoint

info: The TRL_INFO_ T type variable to be modified. The function trl_ini t_ trl
should have been called before calling trLset_checkpoint.

cpflag: If this value is greater than zero, then TRLAN will write cpflag set of check
pointing files in maxmv iterations. If it is less or equal to zero, no checkpoint
file is written. Checkpointing files are only written if TRLAN runs correctly.
If cpflag is greater than zero, at least one set of checkpoint files is written

TRLAN Ver 1.0 11

cpio:

file:

when TRLAN completes successfully. To debug the program, turn on verbose
printing by using trl_set_debug.

Trl_init_info sets this value to zero.

The FORTRAN I/O unit number to be used for writing checkpoint files. The value
of cpio is set to 98 by default (trl_init_info).

The leading portion of the checkpoint files. The checkpoint file names are formed
by concatenating the value of this variable and the MPI processor rank. If this
argument is not present internally, the corresponding element of TRL_INFO_ T is
not modified.

T~l_init_info sets this variable to 'TRL_CHECKPOINT_' by default.

4.5 Printing functions

Upon returning from trlan, the user may wish to exam the progress of trlan. One
simple way to do this is to printout the content of info. There are two printing functions
trLprint_info and trL terse_info. Function trLprint_info is the one that printed
the results in Chapter 3 [Example], page 4. The following is the same information printed
using trl_ terse_info.

NOTE: The eigenvalues are not stored in info. The following printout is from a different
run of the same example, there is slight difference in time.

MAXLAN: 40, Restart: 0, -NED: 5, NEC: 6
MATVEC: 847, Reorth: 847, Nloop: 36, Nlocked: 0
Ttotal:0.535910, T_op:0.008962, Torth:0.209496, Tstart:0.238200

The Fortran 90 interface of the two subroutines are as follows.

info:

mvop:

Subroutine trl_print_info(info, mvop)
Use trl_info
Implicit None
Type(TRL_INFO_T), Intent(in) info
Integer, Intent (in) :: mvop

End Subroutine trl_print_info

Subroutine trl_terse_info(info, iou)
Use trl_info
Implicit None
Type(TRL_INFO_T), Intent(in) info
Integer, Intent(in) :: iou

End Subroutine trl_terse_info

The TRL_INFO_ T variable to be printed. In addition of keeping track of how many
eigenvalues have converged and how many are wanted. There are significant
amount of information about how many matrix-vector multiplications have been
used, how much time is used in various parts of the program, and so forth.
The verbose version of the printing function will printout most of the recorded
information that are deemed to be useful. The terse version only printout the
12 most important fields.

The number of floating-point operations performed on one processor during one
matrix-vector multiplication. This information is used by the printing function

TRLAN Ver 1.0 12

trl_print_info to determine the speed of the matrix-vector multiplication and
the speed of the overall eigenvalue program. If this information is not present,
the relevant fields are left blank in the printout. The variable info contains
timing information and floating-point operations performed inside the trlan.
Since the matrix-vector multiplication is a user-supplied function, the user has
to provide information about its complexity.

iou: The terse printing function trl_ terse_info is allowed to print to any valid
FORTRAN I/O unit. This is different from the verbose printing function where
the printout is always sent to the I/O unit that is used for logging debugging
information.

In addition to the differences mentioned already, the function trl_print_info requires
every processor to participate but trl_ terse_info can be called by each processor individ
ually. Because of this reason, trl_print_info can provide global performance information
but not trl_ terse_info.

The verbose version of the printout is designed to be self-explanatory. The rate fields for
floating-point operations are in MFLOPS. The rate of Read and Write refers to the speed
of reading and writing checkpoint files, they are in MegaBytes per second. Since the simple
example shown does not use checkpointing, no information regarding Read and Write is
presented in the printout.

The heading for the terse version of the printout is bit cryptic. They are

MAXLAN: The maximum Lanczos basis size.

Restart: The flag of restarting scheme to be used, 0, ... , 5.

NED: Number of eigenvalues desired. It also contains an one-character sign which can
be +, -, or a to indicate which end of the spectrum is being computed.

NEC : N umber of eigenvalues converged.

MATVEC: number of times the operator has been applied, i.e., the number of matrix-vector
multiplications, also the number of iterations.

Reorth: Number of times re-orthogonalization has been applied. Each time the Gram
Schmidt procedure is called, this counter is incremented by one.

Nloop: Number of outer/restarted iterations.

Nlocked: Number of Ritz pairs that have extremely small residual norms (< epsilon II A
II). Because the residual norms are so small, we lock the Ritz pairs to reduce
the among of arithmetic operations needed in Rayleigh-Ritz projection.

Ttotal: The total time (seconds) used by TRLAN.

T_op: The time (seconds) spent in performing matrix-vector multiplications.

Torth: The time (seconds) spent in performing re-orthogonalizations.

Tstart: The time (seconds) spent in restarting including performing Rayleigh-Ritz pro
jections.

TRLAN Ver 1.0 13

4.6 The elements of TRL_INFD_T

In some instances, it might be necessary to directly access the status information in info
rather than print out the information. Whether trlan terminated because of some kind of
error, the two elements of TRL_INFO_T that are most like to be useful after returning from
trlan are stat and nec, where the first one is the error flag of trlan and the second one
indicates how many eigenvalues and eigenvectors have converged.

The input parameters to TRLAN have appeared in the calling sequence of trLinit_
info, trl_set_debug, trl_set_iguess and trl_set_checkpoint are described earlier in
this chapter. The following are elements of TRL_INFO_T are counters set by trlan. To the
user, they are part of the output from TRLAN.

my_pe
npes The PE number and the number of PEs.

ntot The global size of the problem. ntot = LallPEs nrow.

matvec The number of matrix-vector multiplications used by the restarted Lanczos al
gorithm. It will not significantly exceed the value of maxmv.

nloop The number of restarting loops, i.e., the number of times trlan has reached the
maximum size and restarted.

north The number of times the Gram-Schmidt process is invoked to perform re-
orthogonalization.

nrand The number of times trlan has generated random vectors in attempt to produce
an vector that is orthogonal to the current basis vectors.

locked The number of eigenpairs that has extremely small residual norms (< epSilon
I I A I I). The accuracies of these eigenpairs can not be further improve by
more Rayleigh-Ritz projection, therefore they are locked to reduce arithmetic
operations, they are only used to perform re-orthogonalization but nothing else.
TRLAN locks not only the wanted eigenpairs with small residual norm, it also
locks unwanted ones depending the restarting strategy. The rational is that if
they converge quickly, it is not good idea to throw them away because they will
reappear in the next basis built.

elk_rate The clock rate of as measured by Fortran 90 intrinsic function system_clock.

clk_max The maximum clock ticks before it rolls over.

clk_tot tick_t clk_op tick_o clk_orth tick_h clk_res tick_r
These set of integer and floating-point variables are used to keep track of
time spend in performing matrix-vector multiplication (clk_op, tick_o), re
orthogonalization (clk_orth, tick_h), restarting (clk_res, tick_r), and the
whole trlan (clk_tot, tick_t). The four integer counters, clk_op, clk_orth,
clk_res, and clk_tot, are output from Fortran 90 intrinsic function system_
clock. Since it is likely the integer counters will overflow in some cases, each
of them has a floating-point counterpart. If they become larger than a quarter
of the maximum counter value clk_max, they are added to the floating-point
counters and reset to zero.

TRLAN Ver 1.0 14

flop rflp flop_h rflp_h flop_r rflp_r
These set of counters are for counting the number of floating-point operations
used by TRLAN. Flop and rflp are for counting the total floating pointer
operations excluding those used by matrix-vector multiplications. Flop_h and
rflp_h are for counting the re-orthogonalization procedure. Flop_r and rflp_r
count operations used in restarting. The integer counters are used initially until
they become larger than clk_max/4. Once they become too large, their values
are added to the corresponding floating-point counter and they are reset to zero.
Since the matrix-vector multiplication routine is supplied by the user, TRLAN
can not account for the floating-point operations used in that procedure.

crat tmv tres trgt
This set of variables are used to track the convergence factor of the eigenvalue
method. The variable crat is the convergence factor. It is measured after tmv
number of matrix-vector multiplications are used. The value of the target at tmv
was tres. The convergence factor is updated as follows. Among the Ritz values,
search for the one that is closest to trgt. This Ritz value is regarded as the
updated version of the previous target Ritz value. Let res be the residual norm
of the Ritz value, the convergence factor is computed as crat = Exp(Log(res
I tres} / (matvec - tmv)}.

After crat is updated, the current target value is identified as the first Ritz value
that is not converged yet. The value of tmv and the corresponding residual norm
tres are recorded.

anrm The estimated norm of the matrix. This is the largest absolute value of any Ritz
value ever computed by TRLAN. After a number of steps, this is a good estimate
of the matrix 2-norm. This variable is primarily used in the convergence test.
If the user specifies a tolerance tol, all the Ritz pairs with residual norm less
than tol * anrm are considered converged.

stat The error flag. The next section describes the meaning of the error codes in
detail.

4.7 TRLAN error code

This section lists all error numbers defined in TRLAN and discusses possible remedies
to the errors. Currently (TRLAN version 1.0), defines the follow error numbers,

o No error.

It is possible that trlan has not computed all wanted eigenpairs, check the
value of nec to see exactly how many wanted eigenpairs have converged. In
case you have not computed all wanted eigenpairs, the possible solutions are:

• If checkpoint files were written, restart with the checkpoint files.

• If no checkpoint files were written, make a linear combination of the ap
proximate eigenvectors and use the resulting vector as the initial guess. In
addition, make sure to set appropriate options with trLset_checkpoint
to generate checkpoint files for future use.

TRLAN Ver 1.0 15

• Increase the maximum basis size maxIan, See Section 6.1 [basis size],
page 24 for more details.

• Increase the maximum number of iterations allowed maxmv, See Section 6.4
[maximum iterations], page 25 for more details.

• Use a different restarting strategy, See Section 6.3 [restarting scheme],
page 25 for more details.

-1 The internal record of local problem size (nIoc) does not match the value of
nrow used when calling trIan. Most likely the user has used the info variable
defined for a different problem.

SOLUTION: Make sure trl_ini t_info is called before trIan and the arguments
to both functions are correct for the intended eigenvalue problem.

-2 The leading dimension of the eigenvector array evec is smaller than local problem
size, Ide < nrow. There isn't enough space in evec to store the eigenvectors
correctly.

SOLUTION: Allocate the array evec with leading dimension larger or equal to
nrow.

-3 The array size of eval is too small to store the eigenvalues, mev < info%ned.
There isn't enough columns in evec either.

SOLUTION: Increase the size of array eval and increase the number of columns
III evec.

-4 TRLAN failed to allocate space for storing the projection matrix, etc.. The size
of this work array (internally called misc) is maxlan * (maxlan + 10). TRLAN
tries to allocate its own workspace if the user has not provided enough workspace
to store the Lanczos basis vectors and the projection matrix, et al.

SOLUTION:

• If there is addition workspace not used, given TRLAN more workspace.

• Decrease the size of maxI an. This will decrease the among of workspace
required.

• If you have control over the swap file/partition size, increase it will also
solve this problem.

-5 TRLAN failed to allocate space to store the Lanczos vectors. The workspace
(internally called base) size required here is (maxlan + 1 - mev) * nrow.

SOLUTION: See solutions for error code -4.

-11 TRLAN does not have enough workspace to perform Gram-Schmidt procedure
which is used to perform re-orthogonalization. This should not happen un
less the caller directly calls lower level routine trIanczos with insufficient
workspace. '

SOLUTION: Increase workspace provided.

-12 TRLAN does not have enough workspace to compute eigenvalues of a symmetric
tridiagonal matrix. This ~hould not happen unless the caller directly uses the
lower level routine trlanczos with insufficient workspace.

SOLUTION: Increase workspace provided.

TRLAN Ver 1.0 16

-101 The orthogonalization routine of TRLAN does not have enough workspace. This
should not happen unless trl_orth is directly called outside of TRLAN with
insufficient workspace.

SOLUTION: Increase workspace provided.

-102 The norm of the residual vector of Lanczos iterations is not a set of valid finite
floating-point numbers. Unless the operator norm is exceeding large, say large
than lE160, this error code should not be generated. If it is, normally it is
an indication of other errors. For example, the workspace given by the user is
not as large as the user indicated to trlan, the array evec is actually smaller
than (Ide, mev) , the first nec columns of evec are not orthonormal vectors on
input, or you have encounter a bug in TRLAN or one of the libraries used by
TRLAN.

SOLUTION:

• Make sure the workspace array given to trlan is as large as claimed, i.e.,
the actual size of wrk is at least as large as lwrk. If wrk is present but not
lwrk, the actual size of wrk should be no less than mev.

• Make sure there is enough space to store the eigenvalues and eigenvectors
even if you think trlan is not going to compute all the eigenvectors be
cause trlan uses the space in evec to store the Lanczos vectors during its
computations.

• If the initial nec is not zero, make sure that the known eigenvectors are
stored in the first nee columns of evee and the eigenvalues in the first nee
elements of eval.

The above solution should be considered applicable to all the following error
conditions. If you have checked everything suggested here, then you may have
found an error in TRLAN program. Report the problem to the authors.

-111 Insufficient workspace to one of a lower level routine used by TRLAN to reduce
the arrowhead of the projection matrix into tridiagonal matrix. This should
not happen unless the user directly calls the low level routine.

SOLUTION: Report the problem to the authors.

-112 TRLAN has failed to generate an orthogonal transformation to reduce the pro-
. jection matrix into a tridiagonal matrix, i.e., LAPACK routine dsytrd/ssytrd

has failed. This is extremely unlikely to happen.

SOLUTION: Check to make sure you have a correct version of the LAPACK. If
your LAPACK is installed correctly, see suggestions for error -102.

-113 TRLAN has failed to apply the orthogonal transformation to reduce the projec-
tion matrix into a tridiagonal matrix, i.e., LAPACK routine dorgtr/sorgtr has
failed. This is extremely unlikely to happen.

SOLUTION: See solutions to error -102.

-121 Insufficient workspace to compute the eigenvalues of a tridiagonal matrix. This
error should not occur if the size of workspace wrk passed to trlan is no less
than lwrk.

SOLUTION: See solutions to error -102.

TRLAN Ver 1.0 17

-122 TRLAN has failed to computed the eigenvalues of a tridiagonal matrix. This is
extremely unlikely to happen.

SOLUTION: See solutions to error -102.

-131 Insufficient workspace to compute the eigenvectors of a tridiagonal matrix. This
error should not occur if workspace of correct size was provided to TRLAN.

SOLUTION: See solution to error -102.

-132 TRLAN has failed to compute the eigenvectors of the projection matrix, more
specifically, LAPACK routine dstein/sstein has failed. Normally, if this hap
pens, TRLAN will switch to a different method of computing the eigenvectors.
It is very unlikely the user will see this error flag. If it does show up, it might
be an indication of error in the program.

SOLUTION: See solutions to error -102.

-141 Insufficient workspace to compute the eigenvectors of a tridiagonal matrix. This
error should not occur if workspace of correct size was provided to TRLAN.

SOLUTION: See solutions to error -102.

-142 TRLAN has failed because LAPACK routine dsyev/ssyev has failed to compute

-143

the eigenvalues and eigenvectors of the projection matrix.

SOLUTION: Check to make sure LAPAC~ is installed correctly. See solution to
error -102.

-144 TRLAN is unable to match the Ritz values selected to be saved with the eigen-
value found by dsyev/ssyev.

SOLUTION: See solutions to error -102.

-201 The Gram-Schmidt procedure is called with insufficient workspace.

-202

SOLUTION: Increase the workspace size. If you did not call trl_cgs directly,
make sure workspace size lwrk matches the actual size of wrk when calling
trlan.

-203 The Gram-Schmidt process has failed to orthogonalize the given vector to the
. current basis vectors. This is unlikely to happen. If it does, it indicates two
possibly source of problem, the current basis vectors are not orthogonal, or the
random vectors generated by TRLAN fall in the space spanned by the current
Lanczos vectors.

SOLUTION: One possible solution to this problem is to call FORTRAN 90 random
number generator to set each processor with a different seed value. For exam
ple, the following code segment will cause random_number to generate different
random numbers on each processor the next time it is used and it also produces
an random vector as initial guess for the Lanczos iterations.

call random_number(evec(1:nrow,1))
do i = 1, infoi.my_pe

call random_number(evec(1:nrow,1))
end do

TRLAN Ver 1.0 18

If reseting the seed of the random number generator does not fix the problem,
then there might be a more serious problem.

See also solutions to error -102.

-204 . The vector norm after orthogonalization is not a valid floating-point number.

SOLUTION: See solutions to error -102.

-211 The leading dimension of the arrays are not large enough for storing the vectors
in a checkpoint file. This error should have been caught earlier as error -2
<unless the checkpoint files are not for the same problem or not produced with
the same number of processors.

SOLUTION: Make sure the checkpoint files are generated on the same type of
machines and for the same problem using the same number of processors.

-212 Unable to open checkpoint files to read.

SOLUTION: Make sure the checkpoint files exist, the names are correct, and the
I/O unit number cpio is not used for something else already.

-213 The array size stored in checkpoint file is different from passed in by user. The
checkpoint file is probably for a different problem or was generated with different
number of processors.

SOLUTION: Make sure the checkpoint files are generated for the same problem
and using the same number of processors.

-214 There are more vectors stored in the checkpoint file than maxlan.

SOLUTION: Increase the size of maxlan.

-215 Error was encountered while reading the content of the checkpoint files.

SOLUTION: Make sure the checkpoint files are generated for the same problem
on the same type of machines.

-216 Error was encountered while trying to close the checkpoint file after completed
reading.

SOLUTION: This error probably can be ignored. Consult you system adminis
trator.

-221 Unable to open checkpoint files for writing.

SOLUTION: Make sure the I/O unit number specified to be used for writing
checkpoint files are not used for other tasks and make sure you have permission
to write files in the location where the program is running.

-222 Error was encountered while writing the checkpoint files.

SOLUTION: Make sure there is enough space on the disk to store the checkpoint
files. If there is k Lanczos vectors to be written out, the number of bytes
is 8* (2+2*k+nrow* (k+1)) for each processor. The maximum value for k is
maxlan.

-223 Error was encountered while trying to close the checkpoint files after write them.

SOLUTION: This error probably can be ignored. Consult you system adminis
trator.

TRLAN Ver 1.0 19

This list represents all error code defined in TRLAN version 1.0. The function trlan
should never return an error code not listed here. If you encountered one and you are
sure that all the arguments to TRLAN functions are correct, you have uncovered a flaw
in TRLAN, contact the authors with a description of your problem. A short example is
always welcome.

TRLAN Ver 1.0 20

5 Main function interfaces

The majority of the arithmetic computations to solve .an eigenvalue problem are executed
in the main function of TRLAN package and the user's own matrix-vector multiplication
function. This section gives a more detail description of the interfaces of these two functions.

5.1 Interface of trlan

The main computation kernel of TRLAN package is named trlan. We have see a short
description of its arguments in Chapter 3 [Example], page 4. To provide a different view of
the interface, we show its Fortran 90 interface block.

Subroutine trlan(op, info, nrow, mev, eval, evec, Ide, wrk, lwrk)
Use trl_info
Implicit None
TypeCTRL_INFO_T) :: info
Integer, Intent(in) :: Ide, mev, nrow
Integer, Intent(in), Optional :: lwrk
Double Precision, Intent(inout) :: eval(mev), evec(lde,mev)
Double Precision, Target, Dimension(:), Optional :: wrk
Interface

Subroutine OP(nrow, ncol, xin, ldx, yout, ldy)
Integer, Intent(in) :: nrow, ncol, ldx, ldy
Double Precision, Dimension(ldx*ncol), Intent(in) xin
Double Precision, Dimension(ldy*ncol), Intent(out) :: yout

End Subroutine OP
End Interface

End Subroutine trlan

Most of the arguments of this subroutine are explained before in Chapter 3 [Example],
page 4. However for completeness, we will list all of them here.

op

info

nrow

mev

The operator routine. It applies the operator on xin and stores the resulting
vectors in yout. In linear algebra terms, this is a matrix-vector multiplication
routine. The vectors to be multiplied are stored in xin and the resulting vectors
are stored in yout.

A variable of Fortran 90 derived type TRL_INFO_T. It carries the information
to and from TRLAN. See Chapter 4 [TRL1NFO module], page 7, for more
details.

The number of rows on this processor if the problem is distributed using MPI,
else the number of total rows in a Lanczos vector.

The number of elements in array eval and the number of colunins in array evec.
It denotes the maximum number of eigenpairs that can be stored in eval and
evec.

NOTE: Since the array evec will be used internal to store
mev Lanczos vectors, even if you do not think TRLAN is able to compute mev
eigenvectors at the end, you still declare evec as large as (nrow, mev).

TRLAN Ver 1.0 21

eval

evec The arrays used to store the eigenvalue values (eval) and the eigenvectors (evec).
On entry to trIan, if info%nec is greater than zero (O), the first info%nec
elements of eval shall contain the eigenvalues already known and the first
info%nec columns of evec shall contain the corresponding eigenvectors. These
eigenpairs are assumed to have zero residual norms and will not be modified by
TRLAN. On exit from trIan, the converged solutions are stored in the front
of eval and evec, i.e. the first info%nec eigenvalues in eval contains the
converged eigenvalues and the first info%nec columns of evec are the corre
sponding eigenvectors.

Ide The leading dimension of array evec. It is expected to be no less than nrow,

wrk

otherwise the eigenvectors can not be stored properly and trIan will abort
with error code info%stat = -2.

Iwrk These two are optional arguments. If both are present, wrk will be used as
workspace inside and Iwrk shall be the number 9f elements in array wrk. TR
LAN will try to use this workspace if it is large enough for either misc {size
maxlan * (maxlan + 10)) or base {size (maxlan + 1 - mev) * nrow). If wrk is
present but not Iwrk, the workspace size is assumed to be mev. It does not
make sense to have only lwrk without argument wrk. If it is the case, lwrk is
ignored.

If argument wrk is present and there is enough space to store the residual norms
of the solutions, the first info%nec elements of wrk will contain the residual
norms corresponding to the info%nec converged solutions.

5.2 Operator interface,

TRLAN program require the user to provide his/her own matrix-vector multiplication
routine. The matrix-vector multiplication routine needs to have the following interface.

nrow

ncol

xin

Subroutine OP{nrow, ncol, xin, ldx, yout, ldy)
Integer, Intent(in) :: nrow, ncol, ldx, ldy
Double Precision, Dimension(ldx*ncol), Intent(in) xin
Double Precision, Dimension(ldy*ncol), Intent(out) :: yout

End Subroutine OP

The number of rows on this processor if the problem is distributed using MPI,
otherwise the number of total rows in a Lanczos vector.

The number of vectors (columns in xin and yout) to be multiplied.

The array to store the input vectors to be multiplied. The following two decla
rations are equivalent on most machines,

Double Precision, Dimension(l:ldx,l:ncol), Intent(in)::xin
Real*8 xin(l:ldx, l:ncol)

The ith column of xin is xin«i-1)*ldx+1 : (i-1)*ldx+nrow) if xin is de
clared as one-dimensional array. If the user routine actually declare it as a
two-dimensional array, the i th column should be xin (1 : nrow, i). TRLAN

TRLAN Ver 1.0 22

calls OP using Fortran 77 style argument matching, only starting address of
xin will be passed.

For those who are familiar with C/C++: xin is actually passed as double *
that points to the first element of array. Elements in a column are ordered
consecutively and the ith column starts at (i-i)*ldx.

ldx The leading dimension of the array xin when it is declared as two-dimensional
array ..

yout The array to store results of the multiplication. It can be equivalently declared
as

Double Precision,Dimension(l:ldy,l:ncol),Intent(out)::yout
Real*8 yout(l:ldy, l:ncol)

The usage notes on xin also apply to yout.

ldy The leading dimension of the array yout when it is declared as two-dimensional
array.

This simple interface only has enough information to describe the input and output
vectors. Here are some possible ways of passing the matrix information to this subroutine.
In Fortran 90, we recommend using a module to encapsulate information related to the
matrix. If Fortran 77 is used, a common block may be used for the same purpose. Normally,
if another language like C or c++ is used, the matrix can be packaged in a struct or a class,
and accessed through a global variable.

In case the user does not want to write his/her own matrix-vector multiplication routine.
There are a number of packages out there that can be used. Useful software depots and
information archives include

ACM TOMS http://www.acm.org/toms/

ACTS Toolkit
http://acts.nersc.gov/

National HPCC Software Exchange
http://nhse.cs.utk.edu/

NETLIB http://www.netlib.org

Scientific Application on Linux
http://SAL.KachinaTech.COM/

Potentially useful packages include

Aztec http://www.cs.sandia.gov/CRF/aztec1.html

BlockSolve
http://www.mcs.anl.gov/sumaa3d/BlockSolve/

P_SPARSLIB

PETSc

http://www.cs.umn.edu/Research/arpa/p_sparslib/psp-abs.html

http://www.mcs.anl.gov/petsc/

SPARSKIT http://www.cs.umn.edu/Research/arpa/SPARS~IT/sparskit.html

TRLAN Ver 1.0 23

NOTE: All of the packages mentioned above have matrix-vector multiplications rou
tines. However some of them are designed for solving linear systems or even larger granu
larity tasks, some effort may be required to directly using their matrix-vector multiplication
routines. .

TRLAN Ver 1.0 24

6 Recommended parameter choices

Before calling trlan, the user needs to decide a few parameters. The most important
parameters are arguments to function trl_init_info. The parameters like nrow, lohi and
ned are determined by the problem to be solved, other parameters to control the execution .
of TRLAN might not be familiar to casual users. This part of the manual will give some
recommendations on how to determine those parameters.

6.1 Selecting the maximum basis size (maxlan)

A few factors come into play when picking the maximum basis size maxlan, for example,
the available computer memory size, the number of eigenvalues wanted, and the separation
of wanted eigenvalues from the others. The first rule of thumb is that maxlan should at
least as large as

ned + mine6, ned).

Generally, the larger it is, the better TRLAN will perform. The limitation on using a very
large basis is that there might not be enough computer memory to store the basis in memory.
Another concern regarding using a large basis is that the Gram-Schmidt orthogonalization
process will be expensive. In addition, if the basis size is larger than 1000, then the time
spent in finding the eigenvectors of the projection matrix may be a substantial portion of
the overall execution time.

If the wanted eigenvalues are easier to compute compared to others, then it does not
matter how large the basis size is, the restarted Lanczos method will find the solutions
fairly quickly. If the wanted eigenvalues converge slower than the unwanted ones, such as
the example in Chapter 3 [Example], page 4, then the above recommended minimum size
is too small to be effective. In this case, the user should look at how many eigenvalues
were locked and compare it with the number of eigenvalues converged. In difficult case, it
is not unusually to see a large number of unwanted eigenpairs converge before the wanted
one are finally computed. In the previous example, the minimum recommended basis size
is 11. Since it is relatively small and we know the eigenvalue problem is relatively hard,
we first tried maxlan = 20. After 2,000 matrix-vector multiplications, there are two wanted
eigenvalues converged, and six eigenvalues were locked. After this first test, we use the
following guidelines to choose the next basis size.

1. Add two to maxlan for each locked eigenvalue.

2. Increase the basis size by a factor of ned / nec.

The first rule suggests the new basis size of about 30 and the second suggest the next choice
could be 50. The basis size used in the example is 40. We are able to find the five smallest
eigenvalues with this choice. Further tests show that using basis size of 30 can compute
the same 5 eigenvalues in 1056 matrix-vector multiplications, and using a basis size of 50
TRLAN only need 777 matrix-vector, multiplications. However, in both cases, more time
was used. This demonstrates the complexity of the choice. In this particular case, either
30, 40 or 50 is a reasonable choice.

TRLAN Ver 1.0 25

6.2 Selecting the tolerance

The convergence test used in this program is r < tal * II A II. Normally, if the matrix
is stored, the accuracy of the matrix-vector multiplication routine is on the order of epsilon
* I I A I I. The unit round-off error (epsilon) of a 64-bit IEEE floating-point number is
approximately 2. 2E-16. The default value of tal is about 1. 49E-8. Typically, if 5 digits
of accuracy is desired for the eigenvectors, tal should be set to 1E-5.

6.3 Selecting a restarting scheme

This is another parameter that can change the execution time dramatically. However,
effective restarting schemes are still subject of active academic researches. On the example
given before, schemes 1 and 2 uses about the same amount of matrix-vector multiplications
which are more than the number of matrix-vector multiplications used with schemes 3
and 4. However, because schemes 3 and 4 perform more restarts and they save more
basis vectors during restarting, their restarting procedures are more expensive. The actual
execution time with schemes 3 and 4 are longer than those with schemes 1 and 2. Based on
these observations, schemes 3 and 4 are better if the matrix-vector multiplication is very
time-consuming, say, one matrix-vector multiplication takes more time than an average
restart. If the matrix-vector multiplication is relatively inexpensive, then schemes 1 and 2
are preferred. Scheme 5 attempts to mimic the restarting strategy in ARPACK, in many
cases, it has comparable performance as the scheme 1.

6.4 Selecting the maximum iterations

TRLAN is stopped usually after it has found all the wanted eigenvalues and the corre
sponding eigenvectors. The other normal stopping condition is to stop after maxmv number
of matrix-vector mUltiplications. Typically, we would allow a fixed number of matrix-vector
multiplications for each eigenvalue, for example, 100 per eigenvalue. When we are try
ing to find the correct value to use for maxlan and restart we may limit the number of
matrix-vector multiplications used to reduce the time consumed. The default value in trl_
ini t_info is very large especially for large problems. An more acceptable limit might be
1000 matrix-vector multiplications per eigenvalue. This should be sufficient for most prob
lems. If more than 1000 matrix-vector multiplications are used to compute one eigenvalue,
other means of computing eigenvalues should be tried. For example, the shift-and-invert
Lanczos method is often able to compute the desired eigenvector in a few steps. The shift
and-invert scheme computes the extreme eigenvalues of (A - >"1)-1 first, then derive the
actual eigenvalues of A. To use this scheme, one need to either invert the matrix or at least
being able to solve linear systems, (A - >..1)u = v. If neither is feasible, then the Davidson
method might be an alternative to consider.

If TRLAN does not return with status 0, consult Section 4.2 [debug parameters], page 8,
to setup a debugging session, and refer to Section 4.7 [error code], page 14, for error en
countered and possible solutions.

TRLAN Ver 1.0 26

7 Miscellaneous issues

7.1 Workspace requirement

Some of the issues related to workspace requirements have been mentioned through out
this manual. This section provide a central location to collect all the information for ease
of reference.

Inside of trIan, there are three large chucks of workspace, evec, base and misc. The user
always provides the array evec, since it is necessary to carry input and output information
for TRLAN. Its size is clearly defined in the calling sequence by Ide and mev. The array
base is used to store the basis vectors if the array evec can not store maxIan+1 vectors.
Given the maximum basis size maxlan, the size of base is (maxlan + 1 - mev) * nrow).
The array misc is used to store the projection matrix, the eigenvalues and eigenvectors of
the projection matrix, workspace required by all lower level routines of TRLAN, library
routines from LAPACK and BLAS. Its size should be no less than maxlan * (maxlan + 10).
If it is larger in size, some library routines might run faster. Thus if there is large amount
of computer memory, the user can let TRLAN use it by. pass in a large array wrk.

If the user provides a workspace ·wrk to trIan, then its size is checked to see either one
of misc or base or both of them can fit inside the workspace. If at lease one of them can fit
into wrk, it would be used. If wrk is large enough for both base and misc, the array base
will use (maxIan + 1 - mev) * nrow) elements and the rest is given to misc. If trIan can
not use wrk, it will allocate workspace of appropriate size internally.

If wrk is provided, its content is not used on input. However before returning, trIan
will copy the residual norms of the converged Ritz pairs in the first nec elements of wrk.

7.2 Variations of TRLAN

We have isolated the communication needs of TRLAN in four subroutines, trl_ini t_
info, trl_sync_flag, trl_g_sum, and trl_g_dot. The four subroutines are located in a
file called 'trl_comm_mpi. f90' for the MPI version and 'trl_comm_none. f90' for sequential
version. If the the matrix-vector multiplication routine and the main program are written
for sequential machine, the user can simply compile with 'trl_comm_none. f90' to get the
sequential version of the program. This setup makes it easy to adopt TRLAN for different
types of eigenvalue problems.

The function trl_ini t_info is used to initialize the TRL_INFO_ T type variable to be used
by trIan. The function trLsync_flag is used to synchronize the status flags used inside
TRLAN. In the current implementation, it computes the minimum value of info%stat on
each processor and reset all info%stat to the minimum value. Given that the error flags
are all less than zero (0), if any processor has detected an error, all of them will be set to
indicate an error. Trl_g_sum computes the global sum of an input array and it returns
the global sum in the same array. The subroutine trl_g_dot computes the dot-products
among the Lanczos vectors.

If desired, one can change these four routines to suit different situations. For example, if
the physical domain of the eigenvalue problem has certain symmetry, usually the discretiza
tion does not contain the whole domain but only a portion of it. Since not every element of a

TRLAN Ver 1.0 27

vector is stored, the dot-product routine needs to be modified. In this case, only trl_g_dot
and trl_g_sum need to be modified in order for TRLAN for function properly.

7.3 Calling from other languages

TRLAN program is implemented in Fortran 90. Since Fortran 90 is backward com
patible with previous versions of Fortran. There should be no problem to use it in any
other Fortran program. However, at the moment, the authors are not aware of a scheme
to reliably access Fortran 90 subroutine with optional arguments, a subroutine with fixed
arguments is created to get around this problem. The fixed arguments subroutine has the
following interface,

subroutine trlan77(op, ipar, nrow, mev, eval, evec, Ide,
& wrk, lwrk)
integer ipar(32) , nrow, mev, Ide, lwrk
double precision eval(mev), evec(lde, mev), wrk(lwrk)
external op

The Fortran 90 derived type TRL_INFO_ T variable is removed from this user interface since
its primary access function trl_ini t_info contains optional arguments as well. Here is a
list showing how the integer array ipar is mapped to the elements of TRL_INFO_T,

ipar(1) = stat,

ipar(2) = lohi,

ipar(3) = ned,

ipar(4) = nec,

ipar(5) = maxlan,

ipar(6) = restart,

ipar(7) = maxmv,

ipar(8) = mpicom,

ipar(9) = verbose,

ipar(10) = log_io,

ipar(11) = iguess,

ipar (12) = cpflag,

ipar(13) = cpio,

ipar(14) = mvop,

ipar(24) = locked,

ipar(25) = matvec,

ipar(26) = nloop,

ipar(27) = north,

ipar(28) = nrand,

ipar(29) = total time in milliseconds,

ipar(30) = MATVEC time in milliseconds.

ipar(31) = re-orthogonalization time in milliseconds.

ipar(32) = restarting time in milliseconds.

TRLAN Ver 1.0 28

Among the parameters, ipar(2 : 14) are input parameters, ipar(1) , ipar(4) andipar(24
: 32) are output parameters.

There are two floating-point number elements in TRL_INFO_T, tol and erato Before
calling trlan77, the first element of wrk should be set to the residual tolerance tol. Inside
trlan77, wrk(1) is transfered to tol. On return from trlan77, the first ipar(4) elements
of wrk store the residual norms corresponding to the converged eigenvalues and eigenvectors.
Element ipar(4)+1 of wrk will store the last known value of erato Caution: Fail to
set wrk(1) to a valid floating-point number will cause TRLAN to produce floating-point
exceptions!

The subroutine trlan77 is relative simple to call from C/C++. The file 'simplee. e' in
the distribution of TRLAN version 1.0 has equivalent functionalities as 'simple. f90' and
'simple. f77'.

7.4 Debugging

Here are a few suggestions on what to watch out for when using TRLAN. Some of
suggestions are simply good programming practices.

Use implicit none in Fortran programs. This is very effective in catching typos. It
is also a good practice to check the programs with automated tools such as lint and
ftnehek.

Make sure the arrays passed to TRLAN have correct dimensions and make sure the
argument lwrk is actually the size of array wrk.

Make sure all input variables to TRLAN are initialized correctly and arguments to
trlan matches arguments to trl_ini t_info.

When encountering problems, turn on debugging options in TRLAN by calling trl_
set_debug prior to calling trlan. Set the ninth and tenth element of array ipar to
appropriate values when trlan77 is used. Consult Section 4.2 [debug parameters],
page 8 to setup a debugging session. Refer to Section 4.7 [error code], page 14 for error
encountered and possible solutions.

If all above have been done and there is still a problem, contact the author at the
address given in Section 7.5 [contacting authors], page 28.

7.5 Contacting the authors

The authors of TRLAN and this document can be contacted at the following email
addresses: kwuCU bl . gov (Kesheng Wu), hds imon@lbl . gOY (Horst Simon). Kesheng
Wu can also be reached at kwuCOieee. org and kwuCOeomputer. org. The authors also
maintain their own research pages on the web at http://wvw.nersc.gov/-kewu and
http://wwv . nersc. gOY /research/SIMDN. The updated software package can also be
found at both web addresses.

TRLAN Ver 1.0 29

8 References

This is a list books and research papers on the Lanczos algorithm and restarting. See
Section 5.2 [operator interface], page 21, for a list of software archives.

1. J. Baglama, D. Calvetti, and L. Reichel. Iterative methods for the computation of a
few eigenvalues of a large symmetric matrix. BIT, 36:400-421, 1996.

2. F. Chatelin. Eigenvalues of Matrices. Wiley, 1993.

3. J. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations: Theory, volume 3 of Progress in Scientific Computing. Birkhauser,
Boston, 1985.

4. J. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations: Programs, volume 4 of Progress in Scientific Computing. Birkhauser,
Boston, 1985.

5. T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for numerical
solution of large sparse generalized symmetric eigenvalue problems. Math. Comp.,
35:1251-1268, 1980.

6. R. G. Grimes, J. G. Lewis, and H. D. Simon. A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl.,
15(1):228-272, 1994.

7. Beresford N. Parlett. The symmetric eigenvalue problem. SIAM, Philadelphia, PA,
1998.

8. A. Ruhe. Rational Krylov sequence methods for eigenvalue computation. Lin. Alg.
Appl., 58:391-405, 1984.

9. A. Ruhe. Rational Krylov algorithm for nonsymmetric eigenvalue problems II: matrix
pairs. Lin. Alg. Appl., 197/198:283-296, 1994.

10. A. Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems III:
Complex shifts for real matrices. BIT, 34:165-176, 1994.

11. Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Manchester Univer
sity Press, 1993.

12. D. S. Sorensen. Implicit application of polynomial filters in a K-step Arnoldi method.
SIAM J. Matrix Anal. Appl., 13(1):357-385, 1992.

13. A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson and
the implicitly restarted Arnoldi methods. Technical Report UMSI 96/123, Minnesota
Supercomputer Institute, University of Minnesota, 1996.

14. K. Wu and H. Simon. Thick-restart Lanczos method for symmetric eigenvalue prob
lems. Technical Report 41412, Lawrence Berkeley National Laboratory, 1998.

15. K. Wu and H. Simon. Dynamic Retarting Schemes For Thick-Restart Lanczos Method.
Technical Report xxxxx, Lawrence Berkeley National Laboratory, 1999.

TRLAN Ver 1.0

Index

A
algorithm. .. 1
authors' email. .. 28

c
C/C++ ' .. 1,28

checkpointing 10
convergence factor , 14

E
eigenvalue problem, set up .. 7

error code. .. 14
example .. 4

F
failure due to workspace. .. 16
failure, Gram-Schmidt. .. 17
Fortran 77 version. .. 27
Fortran 90, advantages 1

G
Gram-Schmidt, failure , 17

I
info, initialization : .. 7

info, modifying 9, 10
info, printing. .. 11
installation .. 3

L
Lanczos basis '. 1

locked. .. 12, 13
long output. .. 5

30

M
matrix-vector multiplication. 21
MATVEC used. .. 12, 13
maximum basis size. .. 24
maximum matrix-vector multiplication 25

o
op count 13
operator interface 21
operator, argument...... .. 20

p
print, long. .. 5
print, short. .. 11

R
references .. 29
residual tolerance. .. 25
restarting schemes. .. 25

s
set debug Hags ~. 8
set up .. 7
short output : 11
small example. .. 4

T
timing _ 12, 13
TRL.lNFO_T elements 13
TRLAN interface. .. 20
troubleshooting 14

w
workspace 26
workspace size problems 15
workspace, argument. .. 21

@m~I:g;.'"1U' ~ ~.J=-~I"§!; @l#lloJ:iI=-Y3\?~ ~

~ ~ ~ !I iDJ'921JY3\?o ~a@~ ~if)jgID

o

