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Abstract

Immersed Boundary Methods for High-Resolution Simulation of Atmospheric
Boundary-Layer Flow Over Complex Terrain

by

Katherine Ann Lundquist

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Fotini Katopodes Chow, Co-Chair

Professor Philip S. Marcus, Co-Chair

Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are in-
creasingly used for high resolution simulations, particularly in complex terrain, but errors
associated with terrain-following coordinates degrade the accuracy of the solution. Use of an
alternative Cartesian gridding technique, known as an immersed boundary method (IBM),
alleviates coordinate transformation errors and eliminates restrictions on terrain slope which
currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed
boundary method is developed for use in numerical weather prediction. Use of the method
facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale
model.

First, the errors that arise in the WRF model when complex terrain is present are pre-
sented. This is accomplished using a scalar advection test case, and comparing the numerical
solution to the analytical solution. Results are presented for different orders of advection
schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For
comparison, results from the same simulation are presented using the IBM.

Both two-dimensional and three-dimensional immersed boundary methods are then de-
scribed, along with details that are specific to the implementation of IBM in the WRF
code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions.
Additionally, a method for coupling atmospheric physics parameterizations at the immersed
boundary is presented, making IB methods much more functional in the context of numerical
weather prediction models. The two-dimensional IB method is verified through comparisons
of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canon-
ical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero
gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic
winds, is used to validate the use of flux (non-zero) boundary conditions. This anabatic flow
set-up is further coupled to atmospheric physics parameterizations, which calculate surface
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fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations
in atmospheric models.

Additionally, the IB method is extended to three dimensions, using both trilinear and
inverse distance weighted interpolations. Results are presented for geostrophic flow over a
three-dimensional hill. It is found that while the IB method using trilinear interpolation
works well for simple three-dimensional geometries, a more flexible and robust method is
needed for extremely complex geometries, as found in three-dimensional urban environments.
A second, more flexible, immersed boundary method is devised using inverse distance weight-
ing, and results are compared to the first IBM approach. Additionally, the functionality to
nest a domain with resolved complex geometry inside of a parent domain without resolved
complex geometry is described. The new IBM approach is used to model urban terrain from
Oklahoma City in a one-way nested configuration, where lateral boundary conditions are
provided by the parent domain.

Finally, the IB method is extended to include wall model parameterizations for rough
surfaces. Two possible implementations are presented, one which uses the log law to recon-
struct velocities exterior to the solid domain, and one which reconstructs shear stress at the
immersed boundary, rather than velocity. These methods are tested on the three-dimensional
canonical case of neutral atmospheric boundary layer flow over flat terrain.
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Chapter 1

Introduction and overview

1.1 Motivation

The atmospheric boundary layer (ABL) is defined as the bottom layer of the atmosphere
that is directly in contact with the earth’s surface [Stull, 1988]. It is characterized as a
region whose structure is strongly dependent on surface fluxes of momentum, heat, and
moisture. It is also the portion of the atmosphere that we inhabit, and as such, there is
great interest in modeling the physical processes of the ABL. As the availability of large
computing platforms increases, simulations of the ABL are becoming more widely used for a
variety of applications including weather and storm forecasting, predictions of air quality and
contaminant transport, and wildfire modeling. Additionally, the output from meteorological
models is used to analyze wind loads on structures such as buildings and wind turbines, and
even in snow dynamics models which predict avalanches on snow covered mountain peaks.

For each of these applications accurate prediction of velocity fields and scalars are re-
quired in the presence of complex terrain. Terrain significantly affects the flow direction and
structure of the ABL. One effect of topography is to divert or channel mean flow horizon-
tally around topographic obstacles. Perhaps more significant is the effect of topographically
induced vertical velocity. Because our atmosphere is stably stratified and laden with water
vapor, vertical motion results in phenomena such as mountain lee waves and orographic
precipitation. Yet, despite the impact that flow predictions have on our lives, the task of
including topography in today’s numerical weather prediction models is still challenging and
a large source of uncertainty and error.

Complex terrain exists at every scale, and larger terrain features (relative to the grid
spacing) are resolved in the numerical model, while unresolved features are parameterized.
At the microscale (2 mm to 2 km), where it is possible to resolve urban scale terrain, ac-
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curate flow fields can be used to predict dispersion of hazardous substances such as those
released in an industrial accident or malicious attack. Accurate plume predictions are vi-
tal in densely populated urban areas where they are used to aid in emergency response
planning. Current mesoscale models cannot explicitly resolve the terrain in urban regions,
thereby missing important three-dimensional heterogeneous processes such as the generation
of turbulent kinetic energy and mechanical dispersion of the contaminant by the buildings.
Urban parameterizations (where the buildings are treated as roughness elements) can over-
predict wind velocity and shear. These over-predicted quantities lead to faster transport and
increased dispersion, and consequently an underestimation of the contaminant concentration
and associated risks.

At the mesoscale (2 to 2000 km), where mountainous terrain is resolved, flow predictions
are used in the planning of wind farms. Currently, average power production is system-
atically over-predicted by 11% to 13% [Jones and Randall, 2006; Jones, 2008]. The main
causes of this over-prediction are biases in the assessment of wind availability, wind resource
prediction, and energy loss prediction [Johnson et al., 2008]. Examples of wind resource
prediction biases are errors in wind flow modeling (especially the inclusion of topographic
effects), errors associated with vertical extrapolation to the turbine hub height, and inaccu-
rate assessments of velocity shear and turbulence generated in the boundary layer (possibly
by complex terrain). Walter et al. [2009] demonstrated that up to 3% of the over-prediction
could be accounted for by including the effects of velocity shear over the span of the rotor.
Improved simulations with complex terrain address the wind resource prediction errors, and
can lead to better turbine design, wind farm layouts, and predictions of operational power
output. Clearly an accurate and robust method for modeling complex terrain would enhance
simulation capabilities and improve our ability to forecast for a variety of applications.

1.2 Background

1.2.1 Differences between computational fluid dynamics and nu-

merical weather prediction

Both computational fluid dynamics (CFD) models and numerical weather prediction
(NWP) models (also known as mesoscale, limited area, or regional models) solve the Navier-
Stokes equations. Yet, despite solving the same basic governing equations, these two types
of models were designed for use at different length scales. As discussed in Wyngaard [2004],
in mesoscale modeling, turbulence is not resolved because the length scale of the energy
containing turbulence is much smaller than the grid scale, which is used as an implicit filter
length for the turbulence closure. In computational fluid dynamics, and specifically large-
eddy simulations (LES), turbulence is resolved because the filter width is much larger than
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the turbulent length scales. In the past, the ratio of turbulent length scale to filter width
was either very large or small, however, advances in computing have led to simulations
where the ratio is on the order of one. Simulations at this resolution have been coined
as the “Terra Incognita” by Wyngaard, and many open research questions exist regarding
numerical modeling at this scale. The method developed in this dissertation is an example
of how this modeling gap can be bridged, and therefore is also the scale at which many of
the simulations described here take place.

Microscale simulations of flow in complex geometries have traditionally been preformed
with CFD codes that solve the incompressible Navier-Stokes equations with an elliptical
Poisson equation for pressure gradients. Buoyancy effects are included with the Boussinesq
approximation, and other atmospheric physics such as differential surface heating, moisture,
and unresolved surface roughness are neglected. These models often use boundary-fitted
grids that are either curvilinear or unstructured, and handle complex terrain well. Lateral
boundaries conditions are idealized, so that the boundaries are forced with idealized inlet
profiles which neglect regional weather effects. Furthermore, rigid lids are often used at
the top boundary so that while the domain top is much less than the height of the ABL,
vertical fluxes are not permitted. These models most commonly use an eddy viscosity type
of turbulence closure, either based on a Reynolds Averaged Navier-Stokes (RANS) or LES
approach.

On the other hand, non-hydrostatic mesoscale simulations solve the fully compressible
Navier-Stokes equations, because the domain height is generally larger than the scale height
of the atmosphere (7 to 8 km), so that compressibility effects must be considered. Fast
(acoustic and Lamb) modes are commonly dealt with through a combination of time-split
integration schemes and filtering. A conservation equation for potential temperature is
solved, and pressure values are diagnosed from an equation of state. Additional conservation
equations are solved for moisture (vapor, cloud, rain, ice, etc.) as well as any other scalars to
be considered, such as chemical species. Surface fluxes of heat, moisture, and momentum are
calculated by atmospheric physics parameterizations that model solar radiation, soil physics,
cumulus formation, etc. Mesoscale models use equations which are written for spherical coor-
dinates on the globe, and then they are projected onto planar surfaces using a map projection
(conical, cylindrical, etc.). Vertical coordinates can be based on pressure, height, or poten-
tial temperature, and are commonly mapped to follow the terrain (called ‘sigma’ coordinates
for the variable used to represent the mapping function). Sigma coordinates are inherently
limited in their ability to handle complex terrain, as steep slopes cause large skewness in
the computational cells. Lateral boundary conditions are provided by actual meteorological
data that has been assimilated and reanalyzed by a global model. Planetary boundary layer
schemes parameterize vertical mixing, while high-order scale selective computational mixing
is added in the horizontal dimensions.

Nesting higher-resolution ‘child’ domains within coarser ‘parent’ domains is common
practice in mesoscale modeling. This functionality is the main feature which is enabling
mesoscale models to be used at increasingly finer scales, and blurring the distinction between
mesoscale and large-eddy simulations. For this reason, research-focused mesoscale models
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include LES turbulence closures. Chow et al. [2006] used a mesoscale model at LES scales
to model flow in a valley. Moeng et al. [2007] examined the effect of two-way nesting on
LES within LES simulations. Other open research questions include the effects of nesting
LES simulations within simulations using a PBL scheme [Lundquist et al., 2008a, 2009a],
modifications for using atmospheric parameterization at multiple scales [Talbot et al., 2010],
and the use of icosahedral grids with gradually decreasing effective diameters to eliminate
the need for nesting [Ringler et al., 2010]. In this work, we focus on methods for seamlessly
representing complex terrain as more small scale terrain features are captured at increasingly
higher resolutions. This behavior is illustrated in figure 1.1, where a slice of mountainous
terrain, along with the resulting slope, is plotted at three different horizontal resolutions.

1.2.2 Complex terrain in numerical weather prediction

Terrain-induced mesoscale systems include features such as sea and land breezes,
mountain-valley winds, urban circulations, and forced advection over topographic obstacles
[Pielke, 1984]. Terrain is frequently represented in mesoscale models by mapping the vertical

coordinate to the terrain. The most frequently used mapping function, z̄ = σ = ztop(z−zht(x,y))

ztop−zht(x,y)
,

was first proposed in Gal-Chen and Somerville [1975]. This function maps a domain with an
irregular lower boundary onto a Cartesian grid, thereby simplifying the application of lower
boundary conditions. Due to this advantage, this mapping function (or similar variants
based on pressure or potential temperature and those using a non-dimensional formulation)
is utilized in most modern mesoscale models. The disadvantage of this coordinate trans-
formation is that it introduces additional terms into the governing equations. For example,
the covariant velocity vectors which are perpendicular to coordinate surfaces (figure 1.2) are
given by equation 1.1.

 ūv̄
w̄

 =

1 0 ztop−z̄

ztop

∂zht

∂x

0 1 ztop−z̄

ztop

∂zht

∂y

0 0 ztop−zht

ztop


uv
w

 (1.1)

In the above equation, the overbar denotes the quantity in the transformed coordinate,
ztop is the top of the domain, and zht(x, y) is the terrain height. The extra terms are not
difficult to handle numerically, as long as the transformation is well-behaved. As noted by
Gal-Chen and Somerville this transformation is only well-behaved for terrain with continuous
second derivatives, and when the determinant of the Jacobian ( ztop−zht

ztop
) is close to unity.

Therefore, there is a wide variety of terrain, for which this transformation should not be
used.

Inaccuracies from the coordinate transformation are present in each spatially discretized
term of the Navier-Stokes equations. Errors in the computation of horizontal pressure gradi-
ents [Janjić, 1977, 1989], diffusion [Zängl, 2002, 2003], and horizontal advection [Schär et al.,
2002] terms have been noted in the presence of sloping coordinate surfaces and steep topog-
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Figure 1.1. Terrain is sampled at three different resolutions (1823 m, 912 m, and 18
m) for a slice of terrain in Owens Valley, CA. As resolution increases, more fine scale
terrain features are captured. This leads to increased terrain slopes (shown on the
bottom for each of the three resolutions) which need to be represented in simulations
of the ABL.
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Figure 1.2. In a non-orthogonal coordinate system, the contravariant basis vectors
are defined as tangent to the coordinate surfaces, and the covariant basis vectors are
defined as perpendicular to coordinate surfaces.

raphy. Furthermore, Mahrer [1984] notes that the common practice of stretching the grid
towards the bottom boundary to achieve fine vertical resolution near the surface, exacerbates
these errors. Numerically inconsistent horizontal derivatives arise when the distance between
two vertical grid points (∆z) is smaller than the elevation difference between two horizon-
tally adjacent points, even when the metric term is included in the calculation (computing
horizontal gradients along sloping surfaces without consideration for the metric terms is also
commonplace). In the transformed coordinate, a horizontal derivative is calculated as:

∂

∂x

∣∣∣∣
z

=
∂

∂x

∣∣∣∣
z̄

+
∂z̄

∂x

∣∣∣∣
z

∂

∂z̄
.

In a forward finite differencing scheme, this derivative is approximated as:

∂F

∂x

∣∣∣∣
z

=
F (i+ 1, j)− F (i, j)

∆x
+
∂z̄

∂x

∣∣∣∣
i,j

F (i+ 1, j + 1)− F (i+ 1, j)

∆z̄
.

The stencil used in this finite difference scheme is shown in figure 1.3. It can clearly be
seen that for a true horizontal derivative in physical space, it would be more appropriate to
use the computational points located at F (i + 1, j + 3) and F (i + 1, j + 4). Mahrer [1984]
demonstrated a reduction in errors when using this modified stencil.

Geometrically, these errors are more likely to occur at large aspect ratios, when the
horizontal grid spacing is much larger than the vertical grid spacing, making it more common
for the vertical change in height over the horizontal grid spacing to be larger than the vertical
grid spacing of the computational cell. This point is illustrated in figure 1.4, which depicts
the skewness of computational cells as a function of terrain slope and aspect ratio. The
gray area delineates the parameter space where numerical inconsistencies occur in horizontal
derivatives. In practice, mesoscale modelers often stretch the grid towards the surface,
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Figure 1.3. A schematic of the stencil used in a forward finite difference approximation
of a horizontal derivative.
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Figure 1.4. The magnitude of errors arising from the use of terrain-following coor-
dinates is a function of terrain slope and aspect ratio. Example computational cells
are shown at a variety of terrain slopes and aspect ratios. The shaded region denotes
the parameter space where the use of terrain-following coordinates is questionable
because the change in height over two horizontally adjacent points is larger than the
vertical grid spacing ∆z.
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using very large grid aspect ratios. For example, a grid with 1 km horizontal spacing may
have the first vertical grid point located at 50 m, leading to an aspect ratio of 20. From
experience most modelers believe that the use of terrain-following coordinates is limited to
approximately 30 degree slopes (shown as green in figure 1.1), however, at an aspect ratio of
20 the guidelines of Mahrer are violated with just a 2.9 degree terrain slope. It is clear from
this plot that decreasing the aspect ratio or horizontal grid spacing (∆x) can reduce these
errors.

1.2.3 Improvements for numerical simulations of flow over com-

plex terrain

This research seeks to improve the ability of a numerical weather prediction model to
predict flow over complex terrain (such as mountainous and urban terrain). Improvements
to the mesoscale model are accomplished by modifying the approach used for meshing the
computational domain by representing the bottom boundary conditions with an immersed
boundary method (IBM). IBM allows the boundaries of complex surfaces to be represented on
a Cartesian grid, eliminating difficulties arising from the terrain-following vertical coordinate
system in the mesoscale model. Rather than creating or transforming a grid which conforms
to the terrain, the effects of the boundaries are represented by an additional forcing term
in the momentum equation. This is achieved by applying boundary conditions to nodes
neighboring the immersed terrain boundary that enforce the desired boundary condition on
the surface.

It will be possible to model flow over complex terrain, including an urban environment, in
detail using a mesoscale model combined with the immersed boundary method. This will be
the first time that a mesoscale model will include the functionality needed to model a domain
at the urban scale by accurately representing complex building surfaces. Improved results
from urban simulations will lead to more accurate numerical representations of physical
processes such as contaminant dispersion. Once heterogeneous urban environments can be
explicitly modeled, they can be nested into much larger mesoscale domains. This means that
the larger mesoscale model will provide lateral boundary conditions with the correct forcing
to the nested urban scale model. Regional mesoscale weather features will then be included
in the urban-scale model instead of just simplified boundary conditions. Such seamless
integration between the larger mesoscale model and the urban scale does not currently exist,
so the IBM approach will have large impacts in the atmospheric modeling community.
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1.3 Overview

The goal of this research is to develop improved surface representations that are suitable
for accurately dealing with complex terrain. This will be accomplished by adding immersed
boundary method capabilities to the Weather Research and Forecasting (WRF) model, and
eliminating use of the terrain-following coordinate in complex terrain.

Several different implementations of IBM have been posed by researchers, and these
are outlined in chapter 2. Common formulations of the forcing term and boundary recon-
struction techniques are discussed. This chapter also includes a description of boundary
conditions for large-eddy simulations, including a review of approximate boundary condi-
tions (wall models). The different boundary conditions that can be achieved with IBM are
described. IB methods are primarily used in direct numerical simulations (DNS) to impose
no-slip boundary conditions for velocity, however, some previous literature exists in which
the method is used in LES and extends the method for flux boundary conditions or allows
the use of approximate boundary conditions to represent rough surfaces.

The mesoscale model used in this research, WRF, is described in chapter 3. This chapter
includes a derivation of the governing equations used in WRF, which have been transformed
into a terrain-following pressure-based coordinate system. Information is also included on
temporal and spatial discretization schemes, and available native bottom boundary condi-
tions.

Chapter 4 illustrates and analyzes the errors that arise in the WRF model when complex
terrain is present. This is accomplished using the scalar advection test case of Schär et al.
[2002], and comparing to the analytical solution. Results are presented for different orders
of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain
slope. For comparison, results from the same simulation are presented using IBM. This
allows us to quantify the error reduction from using our new gridding technique, providing
justification for further development of the IBM method.

A two-dimensional immersed boundary method is described in chapter 5, along with
details that are specific to the implementation of IBM in the WRF code. A new boundary
condition option (no-slip) for the native terrain-following version of WRF is described, and is
added to enable direct comparisons between solutions computed on the IBM grid and those
computed using the terrain-following coordinate. Finally, as noted in Zängl [2003], previous
Cartesian grid methods were not coupled to boundary layer parameterizations, and it was
unknown how to accomplish this. A method for coupling atmospheric parameterization
at the immersed boundary is presented in this chapter, making IB methods much more
functional in the context of numerical weather prediction models.

The two-dimensional IB method is verified in chapter 6. This is accomplished through
comparisons of solutions for gentle terrain slopes when using IBM and terrain-following
grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the
basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley,
producing anabatic winds, is used to validate the use of flux (non-zero) boundary conditions.
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This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which
calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface
parameterizations in atmospheric models. Finally, results are presented for flow over a two-
dimensional urban skyline.

The method described and validated in chapters 5 and 6 is extended to three dimensions
in chapter 7. Results are presented for flow over a three-dimensional hill. While, the IB
method used in chapters 5 and 6 works well for simple three-dimensional geometries, a more
flexible and robust method is needed for extremely complex geometries, as found in three-
dimensional urban environments. A second, more flexible, immersed boundary method is
devised, and results are compared to the first IBM approach. Additionally, the functionality
to nest a domain with resolved complex geometry inside of a parent domain without resolved
complex geometry is described. The new IBM approach is used to model urban terrain from
Oklahoma City in a one-way nested configuration where lateral boundary conditions are
provided by the parent domain.

In chapter 8 the IB method is extended to include wall model parameterizations for
rough surfaces. Two possible implementations are presented, one which uses the log law to
reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress
at the immersed boundary, rather than velocity. These methods are tested on the three-
dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

Chapter 9 summarizes the work presented here, and includes a detailed discussion of
future work needed to fully integrate IBM into numerical weather prediction models. Ad-
ditionally, this chapter includes information about plans to further validate our method.
Specifically, the results for flow over Oklahoma City presented in chapter 7 will be validated
against observations. Field data exists for this urban environment from the Joint URBAN
2003 field campaign. The field data is extensive and includes measurements of velocity pro-
files, temperature, turbulent kinetic energy, and concentration from releases of a passive
tracer. Using input data from the intensive observation periods in Oklahoma City, compar-
isons are planned between predicted and real measurements of velocity fields, temperature,
turbulent kinetic energy, and scalar concentrations.

1.4 Summary of contributions

In summary the main contributions of this research are:

1. An investigation of error arising from the terrain-following coordinate transformation
in numerical weather prediction models caused by the presence of steep topography.

2. Improvement or elimination of these errors using the immersed boundary method.

3. Two different original and unique three-dimensional ghost-cell immersed boundary
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methods, which function in WRF with the native time dependent pressure-based co-
ordinate system.

4. Formulations of each immersed boundary method for two-dimension terrain, reducing
computational effort for idealized terrain.

5. A method for coupling the immersed boundary method to atmospheric physics param-
eterizations.

6. Validation of the immersed boundary method with Dirichlet and Neumann boundary
conditions, as well as validation of the representation of unresolved physical processes.

7. Application of the method in real three-dimensional urban terrain in a nested config-
uration.

8. Representation of surface fluxes of momentum, including the original option of recon-
structing shear stresses at the immersed surface.
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Chapter 2

Background of LES boundary

conditions and the immersed

boundary method

Air is a viscous fluid, and therefore, must come to rest at the point where it contacts the
earth’s surface. This requirement is known as the no-slip boundary condition. The structure
of the atmospheric boundary layer is then dominated by the viscous effects of friction at
the surface. The computational cost of simulating fluid flows is dependent on the need to
capture the effects of these near-wall turbulent structures on the outer flow, but resolving
these structures is extremely challenging. This chapter details the structure of the turbu-
lent boundary layer, and the computational challenges associated with resolving this region.
Alternative methods for modeling the near-wall region are presented, which circumvent the
need to directly resolve this layer. Additionally, the atmospheric boundary layer is compli-
cated by the presence of complex terrain. The immersed boundary method is deployed as a
method for dealing with the effects of terrain, and the background of IBM is included here.
Finally these two techniques, wall modeling and the immersed boundary method, must be
used in combination for large-eddy simulations of atmospheric flows. Attempts at combining
these techniques are reviewed.
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2.1 Large-eddy simulation of wall bounded turbulent

flows

Most engineering and geophysical flows have Reynolds numbers on the order of 106 to
109, while direct numerical simulation is presently limited to Reynolds numbers on the order
of 104. Therefore, there is a great disparity between the flows that we can directly calculate
and the flows that we wish to calculate. In order to close this gap, several techniques have
been invented which take advantage of the statistical nature of turbulence. These methods
include Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES). Results
from RANS are often criticized as too inaccurate because the turbulence models require
parameters which are not universal to all flows. Improved results can be achieved with LES,
but at a very high (and often prohibitive) computational cost.

As well resolved LES is often too expensive, techniques have been used to reduce the cost.
Zonal grids are one technique that is often used, in which the domain is decomposed into
grids of various resolutions, with the finest grids placed near boundaries. Often researchers
choose to resolve grids only in the wall normal direction. Fine resolution in only the wall
normal direction ignores the need for increased tangential resolution near boundaries. Many
researchers preform LES on grids that are coarse, letting the turbulence model account for a
large portion of the Reynolds stresses in the near wall regions. While this is not the optimal
way to use the large eddy simulation technique, it enables engineers and meteorologists to
model flows that could not otherwise be modeled. The no-slip boundary condition cannot be
used in the case of coarse LES because it would under predict the surface stresses. Therefore
coarse LES almost always requires some sort of averaging treatment of the boundary layer in
order to calculate the correct mean surface stresses. Such parameterization of the boundary
layer is known as a wall model or approximate boundary condition.

2.1.1 Structure of the turbulent boundary layer

Much of what is known of turbulent boundary layers has been gained through computa-
tion or experimentation. Reynolds numbers for our application, the atmosphere, are much
higher than what can currently be achieved through direct simulation or novel experimental
design. In this section the structure of the turbulent boundary layer is described at lower
Reynolds numbers than are found in the atmosphere, due to the availability of data and
documentation. The extrapolation of low or moderate Reynolds number results to very
high Reynolds numbers can be problematic, and is the subject of ongoing study. A series
of field experiments on atmospheric boundary layers have been conducted at the Surface
Layer Turbulence and Environmental Science test facility located in the Utah Great Salt
Lake Desert, with the goal of understanding Reynolds number dependence of structure and
statistics of the boundary layer [Metzger and Klewicki, 2001; Priyadarshana and Klewicki,
2004; Kunkel and Marusic, 2006; Morris et al., 2007; Klewicki et al., 2008]. In this series of
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studies it was found that the mean streamwise velocity profile in the surface layer, normalized
by the inner viscous scales, exhibited Reynolds number similarity. Morris et al. [2007] show
a near perfect fit of the neutral atmospheric surface layer mean velocity with the log law,
while the location of peak turbulent momentum flux was shown to exhibit Reynolds number
dependence. Visualization of the ABL by Hommema and Adrian [2003] indicates that the
near-wall coherent structures (hairpin vortex packets) seen at lower Reynolds numbers are
also present in the ABL with scale similarity. Thus, knowledge about turbulence boundary
layers gained at lower Reynolds numbers is still useful at much higher Reynolds numbers.

In any turbulent flow there is a balance of production, dissipation, pressure work, and
transport in the turbulent kinetic energy (TKE) budget. Away from walls or boundaries pro-
duction generally balances dissipation. This assumption is so common that many turbulence
models have been based on this idea of a local equilibrium. In contrast, direct numerical
simulations of channel flow show that the TKE budget is more complicated in the near wall
region. Distance from wall can be defined in term of viscous wall units y+ = u∗y/ν, where ν
is the kinematic viscosity, u∗ =

√
τw/ρ is the friction velocity, τw is the wall stress, and ρ is

the density. Furthermore, it should be noted that y is the coordinate in the wall normal direc-
tion in this chapter, while in the other chapters, the z coordinate represents the wall normal
direction. The largest production of TKE occurs at y+ ≈ 12, while the maximum dissipation
occurs at the wall. The scaling for the location of peak production is relatively independent
of the Reynolds number [Bernard and Wallace, 2002]. While this structure is accurate for
geometrically simple cases, like channel flow or a zero pressure gradient boundary layer, it
is not known how these results extend to more complex flows.

The near wall region can be divided and classified according to the importance of pro-
cesses (terms in the TKE equation) for a given region, which are shown in figure 2.1. The
region closest to the wall (y+ < 5) is called the viscous sublayer. This is the region where
molecular diffusion transports TKE toward the wall where it is dissipated. In the buffer
region (5 < y+ < 30) production peaks. Turbulent transport is important in this region,
and much of the production of TKE in the buffer layer is transported towards the wall. The
region outside of the buffer layer is known as the overlap, logarithmic, or intermediate layer.
This region begins at y+ = 30, and encompasses 10% to 30% of the boundary layer. In
the intermediate region, the scaling laws used for both the inner and outer layer are valid.
In the inner layer the scaling used is the law of the wall, and in the outer layer it is the
velocity defect law. The logarithmic law that is valid in this overlap layer can be derived by
matching the velocity gradients of these two scaling laws (or by dimensional considerations
alone). Finally, the outer layer extends from the logarithmic layer to the full depth of the
boundary layer.

One of the earliest insights into the complexity of the turbulent boundary layer came
from flow visualization work performed by Kline et al. [1967], which showed the presence of
coherent structures called low speed streaks. These structures were visualized by stretching
a wire spanwise across the flow, and electrifying it to form hydrogen bubbles which advect
with the flow. Coherent structures are flow elements or eddies which show a considerable
degree of organization and repetitiveness [Bernard and Wallace, 2002]. Turbulent statistics
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Figure 2.1. The turbulent boundary layer is divided into several regions based on the
terms that dominate the TKE budget.

are highly correlated over the length scale of these structures. This correlation suggests
that while turbulence was previously thought of as random and only suitable for statistical
analysis, there may instead be order within the chaos.

Low speed streaks have been shown to have lengths of up to 1000 viscous wall units (y+),
and are spaced at 100 y+ apart. These streaks are known to lift up into the buffer layer
causing a localized shear layer in the velocity profile. This instability causes the streak to
undergo oscillations. The oscillations eventually cause the structures to break up, which is
called turbulent bursting, and a parcel of slow moving fluid is ejected into the faster moving
fluid above it. Out of phase with ejections, parcels of high speed fluid are observed to rush
into the region of low speed fluid. These events are called sweeps. Furthermore, it has been
discovered that nearly all production of turbulent kinetic energy in the near wall region
occurs during these bursting and sweeping events [Bernard and Wallace, 2002]. It should
be noted that a burst is consistent with negative Reynolds stress (u′v′ < 0), because low
speed fluid (u′ < 0) is moving away from the wall (v′ > 0). Likewise a sweep, which is high
speed fluid approaching the wall, causes negative Reynolds stresses. Here, a prime denotes
a fluctuation from the mean, and an overbar is an averaging operator.

For perspective, in neutral atmospheric flows, the typical boundary layer depth is 1000 m,
the log layer extends for 100 m, and the viscous sublayer is 0.5 mm [Garratt, 1992]. A typical
viscous length scale y+ is on the order of 0.1 mm. With the logarithmic layer spanning a
100 m depth, it would extend to 2500 y+ units at a Reynolds number of 106, and to more
than a million y+ at higher Reynolds numbers. This non-dimensional distance is greater
than indicated in figure 2.1, which is typical of lower Reynolds numbers. The nominal streak
spacing of 100 y+ has been shown to hold for the smallest structures, even for atmospheric
boundary layers at very high Reynolds numbers [Klewicki et al., 1995]. A constant streak
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Figure 2.2. This diagram shows channel flow with streamwise follow in the x direction.
The flow is bounded in the vertical extent. These boundaries cause the largest eddies
(yellow) to scale with the physical dimensions of the domain, while the smallest eddies
(red) occur at the viscous scale.

spacing indicates that these features become increasingly small in comparison to large scale
motions in the logarithmic layer at high Reynolds numbers. This is supported by the model
of Landahl [1990], who hypothesizes that streak dynamics are initiated within the viscous
sublayer (as opposed to the log layer). Hommema and Adrian [2003] document near-wall
coherent structures in the lowest 3 m of the atmosphere which lift with an angle of 3◦ to
35◦ with respect to the wall; consistent with the lift angle found at much lower Reynolds
numbers.

In summary, the bottom 1% of the boundary layer is comprised of extremely complex
dynamical processes. Coherent structures are evidence of this, and the mechanisms for pro-
ducing turbulence in laboratory scale flows remains intact for atmospheric flows. Turbulent
flow cannot be modeled without accounting for the effects of these structures and processes
on the mean flow. These structures exist on the viscous scale, making them difficult to ob-
serve experimentally or resolve numerically. Turbulent flow in complex geometries is further
complicated by the presence of separated flow. Coherent structures that are present in at-
tached flows do not exist in regions of separation, which behave essentially like low Reynolds
number flows Cabot and Moin [1999].

2.1.2 Resolution requirements for DNS and LES

Turbulent channel flow is an often used example of a flow that has a wide range of length
scales present. Figure 2.2 depicts a channel that has walls at the top and the bottom of the
domain, but is considered infinite in the horizontal extents. The presence of the wall has a
profound effect on the turbulent flow. The length scale of the largest eddies in the flow is
bounded by the physical presence of the boundaries. The smallest length scale in the flow
is based on viscosity. In numerical simulations, the domain must be large enough to contain
several vortical structures, while the grid spacing must be small enough to resolve individual
structures.
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Shih [2003] completed LES and DNS runs of channel flow and found that vortices have
a streamwise length of 200 y+, spanwise spacing of 100 y+, and a vertical height of 50 y+.
Although the streamwise length of an individual vortical structure was found to be 200 y+,
it was also noted that the streamwise streaks created by their downstream advection may
exceed 1000 y+. Therefore, 1100 y+ is commonly used as a streamwise length scale. Shih
found that an overall domain size of 4000 y+ in the streamwise direction, and 1000 y+ in the
spanwise direction was sufficient. This total domain size would include at least 4 streamwise
structures, and 5 vortex pairs in the spanwise direction. Interestingly, it was found that the
coherent structures near the boundary are so essential for maintaining turbulence that if the
domain is too narrow the flow collapses to a laminar state.

Piomelli and Balaras [2002] state that to accurately represent structures in a direct nu-
merical simulation of the near wall region, the first off wall grid point should be located at
y+ < 1. Resolution in the horizontal dimensions must be ∆x+ ≈ 15 and ∆z+ ≈ 5. This
means that an absolute minimum of 20 grid points is needed in each direction to resolve a
structure. Furthermore, as the Reynolds number approaches infinity, an increasing number
of grid points must be used to resolve a layer of decreasing thickness.

Resolution requirements are slightly more relaxed in large-eddy simulations where the
larger eddies are resolved, and the smaller scales are modeled. Piomelli and Balaras suggest
that for LES, a horizontal grid spacing of ∆x+ ≈ 50 − 150 and ∆z+ ≈ 15 − 40 can be
used. At this resolution, there would be 3 to 20 points needed in each dimension to resolve
a coherent structure. LES work presented in Shih [2003] used a grid spacing of ∆y+ ≈ 3
in the vertical, and ∆x+ ≈ 40 and ∆z+ ≈ 4 in the horizontal. This created a well resolved
LES with about 20 grid points resolving a streak in each direction. The total domain size
of this large-eddy simulation was 128 x 256 x 129 grid points, for a total of 4.2 million grid
points. The highest Reynolds number used was Reτ = 720.

If the no-slip boundary condition is used at the wall, then the convective term uiuj is
known, and differentiation of the velocity profile is used to determine the viscous stresses.
This is only accurate when the wall layer is well resolved. When the grid is not fine enough
to resolve the near wall gradients, then the wall layer must be modeled by specifying a
correlation between the velocity of the outer flow, and the stress at the wall. This can
decrease the resolution needed to ∆y+ ≈ 30− 150, ∆x+ ≈ 100− 600, and ∆z+ ≈ 100− 300,
or even more.

2.1.3 Classes of wall models

Deardorff [1970] performed the first coarse LES of turbulent channel flow with approx-
imate boundary conditions. Deardorff worked at the National Center for Atmospheric Sci-
ence, and therefore was motivated to model high Reynolds number flows. Computational
resources limited him to 6720 grid points, and due to this coarse resolution his first grid
point was well outside the viscous sublayer. Realizing that the no-slip boundary condition
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at the wall was inappropriate, Deardorff implemented boundary conditions based on the law
of the wall.

Even with the increases in computing power that have occurred since 1970, resolution
of the near wall region is still the largest obstacle to performing well-resolved simulations of
turbulent flows. Since this time, many researchers have proposed wall models for use in coarse
LES. Nearly all of these models work by estimating the stress at the wall, and supplying this
stress to the outer flow as a boundary condition. Current wall models generally fall into three
classes. The first of these is equilibrium stress models. In this type of model a logarithmic
profile is imposed on the mean or instantaneous horizontal velocities. The second class of
models are zonal approaches, where different equations are applied to the outer and inner
flows. Finally, the third class of methods attempts to incorporate our knowledge of coherent
structures by using a linear stochastic correlation to supply shear stress at the wall based on
off wall velocity statistics. Each of these methods has had limited success. Some researchers
such as Baggett [1997] question whether it is even sufficient to supply the shear stress to the
outer flow, or if velocities are needed instead.

Equilibrium models

The simplest way to relate stresses at the wall to velocities in the outer flow is to neglect all
of the terms in the streamwise momentum equation except for the gradient of the Reynolds
stress [Piomelli and Balaras, 2002]. It is assumed that the first grid point is far enough
from the wall that viscous effects are negligible, and additionally that the acceleration and
pressure gradient terms can be neglected at the first off wall point. If the first off wall grid
point is located in the constant flux region then the velocity profile will follow the log law.
In terms of viscous wall units, this is given by equation 2.1a for an aerodynamically smooth
wall or 2.1b for a rough wall, where κ is the von Kármań constant and yo is the roughness
length scale.

u+ =
u

u∗
=

1

κ
ln y+ + C (2.1a)

u+ =
1

κ
ln
y

yo

(2.1b)

Deardorff [1970] first modeled turbulent channel flow neglecting molecular viscosity, and
using a sub-grid scale (SGS) model to evaluate the turbulent stresses. Deardorff used the
Smagorinsky model which subsequently became well-known and often used Smagorinsky
[1963]; Smagorinsky et al. [1965]. Recognizing the need for approximate boundary condi-
tions, and noting that the first off wall grid point was located in the logarithmic region,
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Deardorff set the second derivative of the velocities at the first off wall grid point to be:

∂2ū

∂y2
= − 1

κ(∆y)2
+
∂2ū

∂z2
(2.2a)

∂2w̄

∂y2
=
∂2w̄

∂x2
. (2.2b)

Additionally, there must be no wall normal flow so that v̄ = 0 on the wall. Here overbars
denote filtered quantities, and velocities and coordinates have been non-dimensionalized by
u∗ and the channel height, respectively. The above boundary conditions require that the
horizontally plane averaged velocities satisfy the log law at ∆y, and that the turbulent
fluctuations be isotropic. Deardorff preferred equation 2.2 because it is independent of
the roughness length scale. His results did not match experimental results, however, it is
believed that the primary sources of error were the coarse resolution and SGS model, not the
approximate boundary conditions. Thus, this work inspired many subsequent researchers to
pursue the development of approximate boundary conditions or wall models.

Schumann [1975] used an alternative method of relating shear stress at the wall to the
velocities in the outer flow. Schumann calculated the plane averaged streamwise velocity at
the first off wall grid point to be:

〈ū(x,∆y, z)〉 =
〈τw〉1/2

κ
[ln(∆yE)− 1], (2.3)

where E is a constant that accounts for a roughness length scale, the over bars denote filtered
quantities, and the angled brackets represent horizontal plane averaging. The shear stress
at the wall is then calculated iteratively with the velocity according to the relationship:

τxy(x, z) =
〈τw〉

〈ū(x,∆y, z)〉
ū(x,∆y, z) (2.4a)

τyz(x, z) =
1

Reτ

ū(x,∆y, z)

∆y
. (2.4b)

This model assumes that deviations from the mean velocity profile correlate linearly with
deviations from the mean wall stress. Schumann’s simulations had good agreement with
experimental results. With this success, several subsequent researchers have used similar
iterative methods to calculate mean wall stresses.

Alternatively, the log law can be enforced instantaneously by applying equation 2.5 at
the first off wall grid point, where ū is the filtered non-dimensional velocity, essentially the
derivative of equation 2.1. This assumes local equilibrium in the first grid cell.

∂ū

∂y
=

ū

∆y ln(∆y/yo)
(2.5)

Deardorff [1970], Cabot and Moin [1999], and other researchers have used this approach,
and found the results just as accurate as when the log law is applied in an averaged sense.
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The power law can be used in the same manner. These wall models (and others of the
equilibrium type) work best when there is very coarse resolution or very high Reynolds
numbers. In this case, the first computational cell is large in comparison to the eddies,
so that many eddies are contained within the cell. The time step is also large compared
to the lifespan of the viscous eddies. This makes an averaging approach to modeling the
bulk effects of the boundary layer more appropriate than when the near wall structures
are partially resolved. Piomelli and Balaras [2002] found success with grid spacing of 1500
viscous units in the streamwise direction, and 700 viscous units in the spanwise direction.
It is noted that in this case, the root-mean-square of the difference between the log law and
the instantaneous velocity profile is less than 10%.

Zonal models

Zonal models are based on the idea that different governing equations should be used
for the inner and outer layers. In an approach proposed in Balaras et al. [1996] the filtered
Navier-Stokes equations are solved for the outer flow, while the boundary layer equations are
solved for the inner flow. This is referred to as the two-layer model (TLM). In the two-layer
model, the boundary layer equations are used to solve for the flow from the wall to the first
off wall grid point. The equation is as follows, where i = 1, 3:

∂ūi

∂t
+
∂(ū2ūi)

∂xi

= −∂P̄
∂xi

+
∂

∂x2

[(ν + νt)
∂ūi

∂x2

]. (2.6)

For the boundary layer equation, the boundary conditions used are no-slip at the wall,
and the velocity from the first grid point, called the interface velocity. The shear stress is
then calculated at the wall, and this is used as the boundary condition for the outer flow.
Results from the TLM are in good agreement with results from DNS and resolved LES. The
drawback of this method is that the cost is higher than implementing an equilibrium model.
Additionally, Cabot and Moin [1999] compared the TLM with the instantaneous log law wall
model and found little difference.

Both equilibrium models and the TLM have been used on separated flows, but the
validity of these wall models is rightly in question for this use. Equilibrium models are based
on a local equilibrium of production and dissipation, and therefore do not take the localized
pressure gradients causing the separation into account. The boundary layer equation solved
in the TLM is valid only for attached flows, and assumes a weak interaction between the inner
and outer layers which breaks down in separated flows. Detached Eddy Simulation (DES) is
another type of zonal model, which was developed to address separated flows [Spalart et al.,
1997; Spalart, 2009]. DES uses a single grid, but uses two different turbulence models by
combining RANS and LES. The RANS equations are used in the attached boundary layer
regions, while LES is used in the separated regions. This approach has had mixed results
which seem to be dependent on geometry and Reynolds number. It works well, if it is known
in advance where the RANS assumption can be successfully used.
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Other types of wall models

Several researchers have used DNS data as off wall boundary conditions for coarse LES
with success. The drawback of this method is obvious, it requires that DNS data exist for the
specific flow geometry. Baggett [1997] tests the application of velocity boundary conditions,
rather than a wall stress, by providing a time series of velocity data from a coarse DNS to
the plane consisting of the first off wall grid points in a coarse LES. Perfect agreement was
achieved between the DNS, and the DNS-driven LES.

The most recent wall models that have had some success are based on control the-
ory. Control theory is used to force the velocity profile to take a logarithmic shape.
Piomelli and Balaras [2002] notes that these types of wall models yield improved agreement
over simple models, but at excessive cost (20 times the cost of the standard LES).

2.1.4 Wall models for atmospheric applications

Cabot and Moin [1999] conclude at the end of their review of approximate boundary
conditions that ‘... with regard to numerical resolution, it appears in many cases that
the old adage, “you get what you pay for”, still applies.’ However, keeping in mind that
resolution of the near-wall region is not an option for atmospheric flows, the use of a wall
models is a necessity. Equilibrium models, and in particular the instantaneous log law, are
the most common wall models used in meteorology (including the WRF model).

For meteorological applications the logarithmic law is often modified to account for strat-
ification. Modifications generally consist of corrections for the wall heat flux or temperature
gradient. For example, Moeng [1984] used equation 2.7 as a wall model in LES simulations
of the ABL, where ΦM is the Monin-Obukhov stability function and L is the Obukhov length
scale.

∂ū

∂y
=
u∗
κy

ΦM (2.7a)

ΦM = 1 + β
y

L
(2.7b)

The parameter β is empirically determined, based on stability regimes. For a neutral atmo-
sphere, the function ΦM(0) = 1, and the log law is not modified. For a stable atmosphere
ΦM > 1, and for unstable conditions ΦM < 1.

Cabot and Moin [1999] demonstrated that simple equilibrium models work fairly well,
especially when their low cost is taken into consideration. This is especially true for high
Reynolds number flows, such as atmospheric flows, where several eddies are contained within
the grid cell nearest to the wall, making an averaging approach especially appropriate. The
use of equilibrium models is questionable with complex geometries (i.e. with regions of flow
separation). In these more complex flows, better results are often achieved with a more
complex wall model, although these models become increasingly difficult to implement with
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complex terrain. For example, methods that enforce the log law in a mean sense by including
horizontal plane averaging, such as in equations 2.2 and 2.3, are particularly difficult to apply
to flows over complex terrain.

Currently, WRF has five implementations of surface layer schemes. Each is based on
the instantaneous log law, but differ in the treatment of momentum, heat, and moisture
fluxes at the surface. For instance, one scheme might use the same roughness length scale
for both momentum and heat, while another scheme allows these two length scales to differ.
Generally, each surface layer scheme is intended for use with a specific PBL scheme that
characterizes vertical mixing. When a LES closure is used instead of a PBL scheme, WRF
recommends using the MM5 surface layer scheme. For our purposes, we have implemented
an instantaneous log law that does not include a Monin-Obukhov stability function. A
description is provided in section 3.4. In section 2.2.3 the use of wall models with the
immersed boundary method is discussed. In chapter 8 our basic wall model is used to
simulate neutral boundary layer flow with terrain-following coordinates, and the results are
compared to results from simulations using an IBM in combination with a wall model.

2.2 Background of the immersed boundary method

The numerical simulation of atmospheric flow over complex geometries, especially those
geometries found in mountainous and urban environments, requires effective and efficient
computational techniques. Terrain following grids have found common use in atmospheric
codes as a method for dealing with complex geometries. Although this method is effective, it
cannot be successfully used to represent geometries with extreme slopes, such as buildings.
An alternative in this case is the immersed boundary method (IBM). When using IBM,
numerics are solved on a Cartesian grid, and boundaries that are immersed within the grid
are represented with the addition of a forcing term in the Navier-Stokes equations (see figure
2.3). This section gives a brief history of the development of IBM.

The immersed boundary method was first proposed by Peskin [1972] and [1977], who
developed the method to simulate blood flow through the mitral valve of the heart. In the
original formulation of IBM, the incompressible Navier-Stokes equations as given by (2.8) are
solved on a two-dimensional Cartesian grid. The effects of the external forcing of the fluid
by the boundaries are represented by the addition of a body force term F in the equation
for the conservation of momentum.

ρ(ut + u · ∇u) = −∇p+ µ∇2u + F (2.8a)

∇ · u = 0 (2.8b)

The forcing term takes a non-zero value at grid points that are in the vicinity of the boundary,
but has no effect on the computation of grid points away from the boundary. The magnitude
of the force term is calculated by modeling the boundary (the elastic heart walls) as a set of
interconnected springs. It is then assumed that the solid boundary has no mass so that these
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Figure 2.3. Cartoon sketch of an immersed boundary.

forces are transferred to the fluid flow. The main difficulty with this method, as noted by
Peskin, is the determination of the forcing field because it requires modeling of the stresses
and strains internal to the solid boundary. In addition, the computational cost of resolving
flow in the region of the immersed boundary is high, and limited Peskin to low Reynolds
number flows.

Peskin’s application is extremely complex because the heart valve and walls are elastic
and move with the fluid flow. Beginning in the late 1980’s several researchers studied the use
of the immersed boundary method to represent rigid boundaries. The rigid boundary case
is much simpler because the location of the boundary is known. In theory, Peskin’s method
could be used to represent rigid walls in the limit of zero elastic deformation. In practice, this
can lead to a numerically stiff problem that requires small time steps [Iaccarino and Verzicco,
2003].

2.2.1 Formulation of the forcing term

Feedback forcing methods

IBM was first employed for rigid boundary applications by Briscolini and Santangelo
[1989] and Goldstein et al. [1993]. Briscolini and Santangelo modeled two-dimensional flow
in a square cavity with one moving wall and flow around circular and square cylin-
ders. Goldstein et al. modeled two-dimensional flow around circular cylinders and three-
dimensional channel flow with smooth and ribbed surfaces. In both studies a spectral method
was used and spurious oscillations appeared at the boundary unless the forcing was smoothed

24



over several grid points, diffusing the location of the boundary and reducing the accuracy.
Saiki and Biringen [1996] eliminated the spurious oscillations by using feedback forcing in a
finite difference scheme to simulate flow over stationary, rotating, and oscillating cylinders.
The feedback forcing term as appears in Saiki and Biringen [1996] is given by equation (2.9).
In this equation xs represents the location of nodes coincident with the boundary, and U
is the fluid velocity at those points. The desired surface velocity used to set a Dirichlet
boundary condition is v.

F(xs, t) = α

t∫
0

(U(xs, t)− v(xs, t))dt+ β(U(xs, t)− v(xs, t)) (2.9)

If the forcing term is balanced by the unsteady term in the Navier-Stokes equation, as shown
in (2.10), it can more clearly be seen that the forcing term acts as a damped oscillator where
α acts as the spring constant and β is the damping coefficient. In this case, u = U− v, and
the forcing term works to set the fluid velocity equal to the Dirichlet boundary value so that
u tends to zero.

∂u

∂t
≈ α

t∫
0

udt+ βu (2.10)

The disadvantage of feedback forcing is that the formulation contains parameters α and
β which the user must tune empirically according to the fluid flow. Additionally, highly
unsteady flows cause these coefficients to become large, so that the problem is numerically
stiff. Goldstein et al. [1993] found that the time step must decrease by one to two orders of
magnitude to ensure stability.

Direct forcing methods

An alternative forcing formulation developed by Mohd-Yusof [1997] does not affect nu-
merical stability or require a smoothing function. In the IB approach used by Peskin [1972],
Briscolini and Santangelo [1989], and Goldstein et al. [1993] the forcing function represents
the action of the boundary on the flow, while the forcing in Mohd-Yusof [1997] is equiva-
lent to setting a velocity boundary condition, and often referred to as direct forcing. The
forcing term can be represented by (2.11), but need not be calculated in the IB implementa-
tion. Instead, the desired Dirichlet boundary value v is directly imposed on the boundary.
Mohd-Yusof used direct forcing in a spectral method scheme to simulate laminar flow over
a ribbed channel.

F =
v −Un

∆t
+ U · ∇U +

1

ρ
∇p− ν∇2U (2.11)

Fadlun et al. [2000] used both feedback forcing and direct forcing in a finite difference
method to represent three-dimensional complex flows including formation of a vortex ring
from a nozzle, flow around a sphere, and the flow in the cylinder of an internal combustion
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Figure 2.4. Figure from Fadlun et al. [2000] depicting velocity reconstruction inter-
polation methods: (a) stepwise geometry, (b) volume fraction weighting, (c) linear
velocity interpolation. Reprinted from Fadlun et al. [2000], with permission from
Elsevier.

(IC) engine. The IC piston simulation is at a high enough Reynolds number to require the
use of a subgrid-scale turbulence model, and is the first instance of IBM being used with LES.
Fadlun et al. [2000] found that the two forcing methods produced similar results, however,
the direct forcing method is advantageous because there are no flow dependent parameters
and the additional forcing term does not limit stability. Also, unlike with the feedback
forcing term which oscillates, the boundary condition can be satisfied exactly at each time
step with direct forcing. For these reasons, the IB methods presented in this dissertation use
direct forcing. Additionally, the remainder of this discussion focuses on direct forcing IBM
implementations.

2.2.2 Interpolation methods for boundary reconstruction

The forcing formulations found in section 2.2.1 are derived in the case that the grid
locations coincide with the boundary. The discrete grid points are not generally coincident
with the boundary nodes xs, and in particular this alignment is impossible on a staggered
grid. Therefore, an interpolation method must be used to determine the forcing needed at
actual computational nodes.

Fadlun et al. [2000] present results for three methods: stepwise geometry, volume frac-
tion weighting, and linear velocity interpolation, as illustrated in Figure 2.4. In the stepwise
geometry method, forcing is imposed at the closest grid point to the boundary, regardless
of the node being interior or exterior of the boundary. No interpolation is needed for this
procedure. In volume fraction weighting the force is scaled by ψb/ψ, the ratio of the volume
of the cell occupied by the boundary ψb to the total cell volume ψ. The forcing is then
applied to the closest fluid node to the boundary. In the velocity interpolation method, a
velocity is imposed for the first fluid point using linear interpolation between the bound-
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Figure 2.5. Figure from Iaccarino and Verzicco [2003] proposing several ghost point
extrapolation methods: (a) linear one-dimensional, (b) linear multi-dimensional, (c)
quadratic multi-dimensional. Reprinted from Iaccarino and Verzicco [2003], with per-
mission from the American Society of Mechanical Engineers.

ary condition and the velocity at the second fluid point. Methods that satisfy the boundary
conditions by setting the velocity at fluid nodes are often called velocity reconstruction meth-
ods, because the desired velocity field is being reconstructed in the vicinity of the boundary.
Using Richardson extrapolation, Fadlun et al. determined that the stepwise geometry recon-
struction converges slower than first order. The error decreases slightly better than first
order for volume fraction weighting, and slightly worse than second order for linear velocity
interpolation.

Iaccarino and Verzicco [2003] present three additional interpolation schemes: linear one-
dimensional, linear multi-dimensional, and quadratic multi-dimensional. These are illus-
trated in Figure 2.5. All of these schemes belong to a class of IB approaches known as ghost
cell methods, where the velocity is set on a node that is inside of the boundary. In all of the
cases, the velocity at the node labeled (1) is found by extrapolation using the boundary value
(0) and the fluid velocity at nodes that are marked as (2) or higher. In general this means that
the fluid velocity at node (1) inside of the boundary is in the reverse direction of the exterior
flow in order to enforce a no-slip boundary condition on the surface. The main difference
between the three schemes is the increasing stencil size. Iaccarino and Verzicco [2003] found
that one-dimensional interpolation was accurate for boundary geometries that were largely
aligned with grid lines, however, for curvilinear geometries the multi-dimensional methods
showed improved performance. Using the ghost cell approach, Iaccarino and Verzicco [2003]
modeled flow around a cylinder, flow in a wavy channel, flow in a piston/cylinder assembly,
and flow in a stirred tank.

Tseng and Ferziger [2003] also use the ghost cell approach to model flow past a cylinder,
flow in a wavy channel, and geophysical flow over a three-dimensional Gaussian bump. In the
ghost cell method, a common problem is large negative variable values when the immersed
boundary is very near the fluid nodes in the interpolation stencil, and far from the ghost
point. Tseng and Ferziger [2003] present two methods (illustrated in Figure 2.6) for dealing
with this difficulty. In the image method, the interpolation scheme is used to solve for the
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Figure 2.6. Figure from Tseng and Ferziger [2003] proposing two treatments to
minimize numerical instability: (a) image method, (b) piecewise approximation.
Reprinted from Tseng and Ferziger [2003], with permission from Elsevier.

fluid properties at the image point (I), which is the reflection of the ghost point across the
boundary in the surface normal direction. Linear interpolation is then used to assign a
value to the ghost point using φG = 2φO − φI . In the piecewise linear approximation, the
boundary is simply moved to the fluid node. The fluid node coinciding with the boundary is
now the ghost node In this case the boundary condition is assigned to the ghost node, and
no interpolation is necessary.

Balaras [2004] develop a multi-dimensional velocity reconstruction method, applying forc-
ing at the first fluid point. This method is appropriate for two-dimensional convex geome-
tries, and is extended to three dimensions in Gilmanov et al. [2003]. In this method, the
solid geometry is described using an unstructured triangular mesh, as shown in figure 2.7.
Nodes defining the cut-cell are numbered, with nodes 2, 3, and 6 residing in the solid domain.
A surface normal vector is projected from the first fluid node, which in this case is the node
labeled both 8 and b, to the immersed surface. Additionally, the location of a ‘virtual’ second
fluid node is found by extending the surface normal until it intersects a computational cell
face where all nodes making up the face are fluid nodes. The virtual second fluid node is
marked c in figure 2.7, where it can be seen that the concept of a virtual point is similar
to that of an image point. Linear interpolation between nodes α, β, δ, and γ is used to find
the value at point c, and an additional linear interpolation is used between points a and c
to reconstruct the velocity at the first computational node b. Gilmanov and Sotiropoulos
[2005] extend this method to moving boundaries, and also utilize quadratic interpolation in
the surface normal direction.

While the simulations in Gilmanov et al. [2003] are laminar, Balaras [2004] simulate
turbulent flows using a LES closure with a test filter width of 2∆ to determine turbulent
eddy viscosities. Near the immersed boundary the stencil of this filter requires use of solid
nodes, therefore the turbulent eddy viscosity at the first fluid node is reconstructed rather
than calculated with the subgrid stress model. In this case, the eddy viscosity is reconstructed
in the same manner as used for velocity, and a linear relationship is assumed between the
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Figure 2.7. Figure from Gilmanov et al. [2003] proposing a multi-dimensional velocity
reconstruction method for the first fluid node, to be used with three-dimensional
geometries. Reprinted from Gilmanov et al. [2003], with permission from Elsevier.

eddy viscosity at the second virtual node, and the immersed boundary where it is set to
zero. Balaras [2004] note that the use of a linear eddy viscosity reconstruction is most likely
only acceptable because very fine grids are used near the immersed boundary.

Peller et al. [2006] reconstruct the velocity in the fluid domain using higher-order La-
grange and least squares interpolations. In this method, a higher-order polynomial based
on either of the two interpolation methods is used along the surface normal, instead of a
linear relationship. Several fluid points are required to calculate the coefficients of the poly-
nomial. With curvilinear boundaries in two or three dimensions, polynomials are developed
independently for each direction on the Cartesian grid, using the locations of computational
nodes. The coefficients for the Cartesian polynomials are then geometrically weighting for an
interpolation in the surface normal direction. This method eliminates the use of virtual fluid
points and the associated interpolations, however, a large stencil of fluid nodes is required
in each dimension for this method. This requirement limits the complexity of the geometry
which can be handled with this method.

Gao et al. [2007] use inverse distance weighted interpolation with a ghost cell IBM to
simulate flow past cylinders and spheres. In this method, a Taylor series expansion about
the boundary point, given by equation 2.12 for two dimensions, relates the ghost node value
ϕG to the boundary value ϕB.

ϕG = ϕB +
∂ϕB

∂x
∆x+

∂ϕB

∂y
∆y +

1

2

(
∂2ϕB

∂x2
∆x2 + 2

∂2ϕB

∂x∂y
∆x∆y +

∂2ϕB

∂y2
∆y2

)
+O(∆x3,∆y3) (2.12)

The value ϕB is known from the boundary condition, and the inverse distance weighted
interpolation method is used to evaluate each derivative in the Taylor series on the boundary.
Further details of this method are included in chapter 7. Additionally, an IBM method using
inverse distance weighted interpolation is presented in chapter 7, however, our method uses
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Figure 2.8. Figure from Mittal et al. [2008] proposing a ghost cell method using bilin-
ear interpolation. Reprinted from Mittal et al. [2008], with permission from Elsevier.

the interpolation to find the velocity at an image point, rather than reconstructing derivatives
on the immersed boundary.

A ghost cell IBM is combined with bilinear interpolation in Ghias et al. [2007] for com-
pressible flow solvers using either Cartesian or curvilinear grids. The method is used to
simulate flow around two-dimensional cylinder and airfoil geometries. The method is ex-
tended to incompressible flows around moving three-dimensional geometries in Mittal et al.
[2008], and used to simulate flow over a fish and dragonfly, as well as canonical geometries.
The interpolation method used in Mittal et al. [2008], shown in figure 2.8, makes use of an
image point reflected from the ghost point in the surface normal direction. The neighbors
chosen for the bilinear or trilinear interpolation are the nearest computational nodes, and for
some cases the boundary point. If the neighbors for the interpolation are also ghost points,
as in the left most case depicted in the figure, an iterative procedure is used to solve for the
weighting coefficients and ghost point values.

The interpolation method used to represent a rigid boundary is obviously an integral part
of the overall immersed boundary method, as demonstrated by the many options presented
above. Interpolations for boundary reconstruction have been as much the focus of active
research as the formulation of the forcing term. The above discussion on interpolation
methods is by no means exhaustive, however, the ideas presented are the basis for the
majority of the IBM literature. In our experience, the interpolations methods presented in
this section did not work for our model and/or application, and new interpolation methods
were required. The development and validation of the new IBM methods for use in WRF
and with highly complex geometries, such as urban terrain, are presented in chapters 5, 6,
7, and 8.
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2.2.3 Combining the immersed boundary method with wall mod-

els

When the immersed boundary method is used, it is nearly impossible to control the
resolution of the near-wall region. As the boundary passes through the grid in a arbitrary
manner, there may or may not be grid points within the viscous sub-layer or buffer layer.
Furthermore, the grid cannot be refined in the wall normal direction, as it is not generally
aligned with the immersed boundaries. A no-slip boundary condition is the most commonly
used boundary condition at an immersed surface, effectively limiting its use to low Reynolds
number flows. To extend use of the immersed boundary method to high Reynolds number
flows, the method must be combined with a wall model. Previous attempts at combining
wall models with the immersed boundary method are presented in this section.

An early attempt at combining wall models with IBM in an LES is presented in
Tessicini et al. [2002], where a two-layer wall model is used to solve a simplified version
of the boundary layer equations near the immersed boundary. This method was used to
model flow over the trailing edge of an airfoil. In the method, flow is reconstructed at the
first fluid point by solving a version of the boundary layer equations in which all terms are
neglected, except for the viscous terms. By neglecting the unsteady, advective, and pressure
gradient terms, this model reverts to an equilibrium stress model. The turbulent eddy viscos-
ity is obtained through a damped mixing length model that is a function of y+. An iterative
procedure is used to solve for y+, as it is dependent on the wall shear stress. A virtual second
fluid point (as in Balaras [2004], which is not coincident with a computational node) provides
boundary conditions to the boundary layer equations, as does the no-slip boundary condi-
tion at the surface. The virtual fluid point is defined by drawing a wall normal vector that
intersects the first fluid point, and doubling the distance between the immersed boundary
and the first fluid point. The velocity, tangential to the immersed boundary, at the virtual
point is determined through interpolation. Tessicini et al. [2002] compared the results to a
resolved LES with boundary-fitted coordinates, and found better agreement with the IBM
simulations when the wall model was used than when it was not.

Senocak et al. [2004] propose a wall model with an immersed boundary method and use
it to model neutral atmospheric boundary layer flow. We present a similar implementation
in chapter 8 to model the same flow using the WRF code. The method used in Senocak et al.
[2004] assumes that the first two fluid nodes reside in the logarithmic layer, and enforces
a logarithmic velocity profile at the first fluid node above the terrain surface through the
relationship given in equation 2.13.

U1 = U2
ln(z1/zo)

ln(z2/zo)
(2.13)

Here, U2 is the horizontal velocity of the second fluid node, which is known, and zo, z1, and
z2 are the roughness length scale and the heights of the first and second nodes above the
immersed boundary. Further details of this method are given in chapter 8.
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Choi et al. [2007] use a method similar to that of Gilmanov et al. [2003] and
Gilmanov and Sotiropoulos [2005], but additionally introduce a concept which they term
‘tangency correction’. In this method, the velocity is decomposed along the surface normal
into tangential and normal components. The tangential component is reconstructed at
the first fluid node using a power law function in the wall normal direction. The normal
component is reconstructed using a cubic function, which is chosen so that the second
derivative of the normal velocity vanishes at the immersed surface.

Additionally, our own methods for using the immersed boundary method with high
Reynolds number flows are developed. Two methods for combining the immersed bound-
ary method with equilibrium wall models are presented in chapter 8. The first method
is a velocity reconstruction approach based on the method of Senocak et al. [2004]. The
second method reconstructs the wall shear stress at a ghost point. To the author’s knowl-
edge this is the first instance of a combined wall model and IBM method using a ghost cell
approach. Both models enforce an instantaneous logarithmic velocity profile. As we are
modeling complex terrain, this mean velocity profile is not valid at every point along the
boundary. However, we still feel that this type of model is the best choice for coupling to an
immersed boundary method because it is already used at the bottom boundary in meteoro-
logical models (including WRF) with terrain-following coordinates, and it is the most cost
effective implementation of a wall model.
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Chapter 3

Details of the Weather Research and

Forecasting model

The WRF model is used for the simulations presented in this work. There are two
main reasons for choosing this code. First, while we are extending the use of WRF to com-
pletely new applications and scales, the WRF dynamical core and its surrounding software
framework and physics interfaces are well suited to our application of atmospheric boundary
layer flows. WRF has been validated for numerical weather prediction [Klemp et al., 2007;
Skamarock and Klemp, 2008], and the software framework for parallelization and grid nest-
ing has been extensively developed [Michalakes et al., 2005]. The WRF model includes the
important ability to nest from the mesoscale to LES scales, and includes basic eddy viscosity
type LES turbulence closures. Secondly WRF is widely distributed, with well over 5,000
subscribed users, and 10,000 visitors to the code repository. Contributions to the WRF code
have a large and far reaching effect on the atmospheric modeling community.

In this chapter, further details are given on the WRF model. The immersed boundary
forcing is added to the governing equations; therefore, it is useful to understand these equa-
tions in detail. The governing equations are derived in section 3.2. The derivation begins
with the compressible Euler equations, and ends with the perturbation form of the equations
that have been transformed into the terrain-following pressure coordinate used in WRF. Sec-
tion 3.3 discusses the time advancement scheme used in WRF, and section 3.4 details the
treatment of lateral and vertical boundary conditions in WRF. It is especially important to
examine the surface boundary condition, as this condition is the focus of the discussion in
subsequent chapters on the implementation of the immersed boundary method.
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3.1 General description of WRF

WRF is an open source community model that is designed to be used for a variety of pur-
poses ranging from operational weather prediction to idealized geophysical flow simulations.
The software is designed to be flexible and modular, which facilitates development of the code
by the broad academic community. Currently, there are two dynamic solvers, called cores,
that operate within the WRF software framework. These are the Non-hydrostatic Mesoscale
Model (NMM) core and the Eulerian Mass (EM) core. The NMM core is used operationally
(i.e. in weather forecasting by the National Weather Service), and the EM core is gener-
ally used for research purposes. The EM core is also known as Advanced Research WRF
(ARW), and is the focus of the following discussion. ARW has principally been developed
by the National Center for Atmospheric Research (NCAR). As of 2010, NCAR continues to
develop the model, as well as provide user support. The EM core solves the non-hydrostatic
compressible Euler equations, although a hydrostatic option is included. The code is fully
portable, designed to operate in a massively parallel environment, and includes directives
for both MPI and OpenMP.

ARW is a conservative finite difference model that is spatially discretized using an
Arakawa-C staggered grid. Uniform grid spacing is used in the horizontal directions, and
a terrain-following pressure coordinate is used in the vertical direction. Additionally, a
stretching function may be applied to the vertical coordinate. Second to sixth order advec-
tion schemes are available in the WRF model. Even orders are centered, while odd orders
are upwind biased. A time-split integration scheme is used to deal with the full range of
frequencies admitted by the Euler equations. In this scheme a third order explicit Runge-
Kutta method is used for time advancement of meteorologically significant low frequency
physical modes, while a smaller time step is used to account for higher frequency modes
such as acoustic and Lamb waves. Horizontally propagating acoustic modes are integrated
using a forward-backward scheme, and vertically propagating acoustic modes and buoyancy
oscillations are treated implicitly. One and two way grid nesting, as well as moving nests are
supported.

Periodic, open, symmetric, and specified boundary conditions are allowed in the lateral
directions. The bottom boundary condition sets the contravariant or normal velocity to zero,
and allows free slip of the covariant velocities. The top boundary is a surface of constant
pressure, and enforces the Cartesian vertical velocity w to be zero. Damping functions may
be applied at the top boundary to control the reflection of waves.

3.2 The governing equations of WRF

WRF uses a terrain-following pressure coordinate, shown in Figure 3.1. Historically, it
was convenient in many meteorological applications to use hydrostatic pressure as an inde-
pendent variable instead of height. This notion of pressure as an independent coordinate in
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Figure 3.1. Plotted on the left is an example of the η coordinate used by WRF,
which is a pressure-based terrain-following coordinate. On the right, the decay of the
amplitude of the terrain signature is shown with respect to elevation for η (pressure-
based) and σ (height-based) coordinates. It can be seen that the amplitude of the
disturbance of the coordinate is larger for the η coordinate, and does not decay as
rapidly with elevation when compared to the σ coordinate, which decays linearly.

meteorology has been around since at least 1910, when it was published by Bjerknes and Coll.
in Dynamic Meteorology and Hydrography. Later, Eliassen [1949] framed the hydrostatic
primitive equations using an isobaric vertical coordinate. Eliassen and others explained that
in this framework, the vertical velocity can be diagnosed from the continuity equation using
the instantaneous horizontal velocities and the thermodynamic fluid properties. This unique
property would eventually lead to the development of many atmospheric numerical models
with isobaric coordinate systems, because of the ease of implementation and significant com-
putational savings arising from diagnosing the vertical velocity. Phillips further advanced
the use of pressure coordinates when in 1957 he proposed the σ coordinate system. In the
previous pressure system, the terrain surface did not coincide with a coordinate surface. In
the σ system, σ = p/π, where π is the pressure at the Earth’s surface. The non-dimensional
σ coordinate ranges from unity at the surface to zero at the top of the atmosphere, and
provides the important property of aligning the lower coordinate surface with the terrain.
Kasahara [1974] synthesized all of these developments, and succinctly posed the equations
of motion in terms of height, isobaric, and isentropic σ coordinates. Additionally, Kasahara
transformed the equation for conservation of energy into each of the three coordinate systems.

As computational power increased and meshes became finer, it became clear that the hy-
drostatic assumption that worked so well at synoptic scales (100’s of kilometers) did not work
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well at the mesoscale (10’s of kilometers). In fact, Laprise [1992] notes that non-hydrostatic
effects become perceptible when the spatial scale of interest falls below 100km, and must
be incorporated at scales of 10km. For this reason, Laprise developed a transformation of
the fully compressible non-hydrostatic Euler equations into a terrain-following hydrostatic
pressure coordinate. In this transformation the advantage of a diagnostic continuity equa-
tion is lost, and it once again becomes prognostic. However, the equations of Laprise [1992]
revert to the form given by Kasahara [1974] in the hydrostatic limit. The work of Laprise
became the foundation for the framework of WRF, which solves the perturbation form of
these equations for a moist atmosphere.

3.2.1 The compressible Euler equations

The prognostic equations governing the WRF model are given in Skamarock et al. [2007],
however, it is worthwhile to investigate their derivation. They differ from the compressible
Euler equations by the transformation to the terrain-following pressure coordinate, inclusion
of moisture, map projections, and transformation to a perturbation form. The WRF form
of the governing equations can be derived beginning from the inviscid and compressible
Navier-Stokes equations given by (3.1).

∂~V

∂t
+ ~V · ∇~V + α∇p+ ~g = F

∂ρ

∂t
+∇ · (ρ~V ) = 0

(3.1)

Here α is the specific volume, and F includes Coriolis effects and any additional forcing
terms such as turbulent mixing or model physics. In order for the Navier-Stokes equations
to be used in WRF, they must first be transformed into a vertical terrain-following pres-
sure coordinate. This is accomplished in two parts. First the equations are transformed
to a pressure based coordinate system, and the hydrostatic assumption is imposed as the
coordinate definition. Then the transformation to the terrain-following coordinate system
is made. Finally, the perturbation form of the governing equations is discussed. For the
purposes of this discussion the addition of moisture and mapping factors, which project the
computational domain onto the Earth’s surface, are not included.
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3.2.2 Transformation to pressure coordinates

Following the transformation given by Kasahara [1974], and taking the pressure coordi-
nate to be π, derivatives take the following form for any scalar a:(
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(
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The subscript denotes the vertical coordinate that is being held constant for the partial
differentiation. After substitution of the relationship ∂a

∂z
= ∂a

∂π
∂π
∂z

the temporal and spatial
derivatives for the π coordinate take the form of equations (3.2a) and (3.2b) respectively.(
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Using the above transformations, the material derivative can be determined to take the form:
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Rearranging the terms of the material derivative by distributing the u and v velocities to
the terms inside of the square brackets forms equation (3.4).(
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)
π

=

(
∂a

∂t

)
π

+ u

(
∂a

∂x

)
π

+ v

(
∂a

∂y

)
π

+

[
w −

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y

)
π

]
∂π

∂z

∂a

∂π
(3.4)

The material derivative can then be arranged in the familiar form of (3.5a), where the
expression for π̇ or ∂π

∂t
is defined to be of the form (3.5b).(
Da

Dt

)
π

=

(
∂a

∂t

)
π

+ u

(
∂a

∂x

)
π

+ v

(
∂a

∂y

)
π

+ π̇
∂a

∂π
(3.5a)

π̇ =
∂π

∂t
=
∂π

∂z

[
w −

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y

)
π

]
(3.5b)
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Equation (3.5b) can be solved for the vertical velocity w, which yields equation (3.6).

w =

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y

)
π

+ π̇
∂z

∂π
(3.6)

Additionally, after many instances of the chain rule, the vertical derivative of w is also found
to be equation (3.7).

∂w

∂z
=
∂w

∂π

∂π

∂z
=

∂π

∂z

[[
∂

∂t

(
∂z

∂π

)
+ u

∂

∂x

(
∂z

∂π

)
+
∂u

∂π

∂z

∂x
+ v

∂

∂y

(
∂z

∂π

)
+
∂v

∂π

∂z

∂y

]
π

+ π̇
∂

∂π

(
∂z

∂π

)
+
∂π̇

∂π

∂z

∂π

]
(3.7)

Using the definition of the material derivative in the π coordinate system given by the set of
equations in (3.5), the vertical derivative of w can be significantly simplified from the above
form. Once simplified, the vertical derivative of w is expressed as (3.8).

∂w

∂z
=
∂w

∂π

∂π

∂z
=
∂π

∂z

[
D

Dt

(
∂z

∂π

)
+
∂u

∂π

∂z

∂x
+
∂v

∂π

∂z

∂y

]
π

+
∂π̇

∂π
(3.8)

With the determination of temporal and spatial derivatives complete, the continuity
equation may now be transformed into a pressure coordinate system. This is accomplished
by substituting the transformations for the partial derivatives in x, y, z and time into the
continuity equation. The temporal and horizontal spatial partial derivatives were given above
by equation (3.2), and the partial derivative with respect to z is given by equation (3.8).
After these substitutions, the continuity equation in the pressure coordinate system is (3.9).(

∂ρ

∂t

)
π

− ∂ρ

∂π

∂π

∂z

(
∂z

∂t

)
π

+

(
∂(ρu)

∂x

)
π

− ∂(ρu)

∂π

∂π

∂z

(
∂z

∂x

)
π

+

(
∂(ρv)

∂y

)
π

− ∂(ρv)

∂π

∂π

∂z

(
∂z

∂y

)
π

+
∂ρπ̇

∂π
+
∂π

∂z

[
D

Dt

(
ρ
∂z

∂π

)
+
∂(ρu)

∂π

∂z

∂x
+
∂(ρv)

∂π

∂z

∂y

]
π

= 0 (3.9)

The equation above then simplifies (after many more instances of the chain rule) to the much
more familiar form of the continuity equation given by Kasahara [1974].[

∂

∂t
(ρ
∂z

∂π
) +

∂

∂x
(ρu

∂z

∂π
) +

∂

∂y
(ρv

∂z

∂π
)

]
π

+
∂

∂π

(
ρπ̇
∂z

∂π

)
= 0 (3.10)

Next, the momentum equation can be transformed into the pressure coordinate system
using the same substitutions for the partial derivatives. As is standard in the literature on
coordinate transformations for atmospheric applications, the horizontal and vertical momen-
tum equations are given separately. In this case the vector ~V includes only the horizontal
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u and v velocities. The horizontal momentum equation in the pressure coordinate system is
found to be (

D~V

Dt

)
π

+ α∇πp− α
∂π

∂z
(∇πz)

∂p

∂π
= F, (3.11)

and the vertical momentum equation is(
Dw

Dt

)
π

+ α
∂p

∂π

∂π

∂z
+ g = F. (3.12)

The effects of the transformation on the unsteady and advective terms in the momentum
equations are accounted for by the definition of the transformed material derivative for the
new π pressure coordinate. The changes to the pressure term obviously follow the spatial
derivative transformation. It should be noted that the material derivative in the vertical
momentum equation is operating on w, while the definition of the material derivative given
by (3.5a) includes the vertical velocity π̇ in the last term. Assuming the pressure coordinate
π to be hydrostatic, the vertical gradient of the coordinate can be determined as:

∂π

∂z
= −ρg.

The use of the hydrostatic assumption above yields the following definitions shown in (3.13)
for temporal and spatial derivatives in the vertical pressure coordinate system, where the
operator ∇π represents the horizontal gradients and D/Dt is the three-dimensional material

derivative. As before ~V includes only the horizontal velocity components. In equations (3.13)
geopotential has been introduced, and is defined as φ = gz.(

∂

∂t

)
π

=

(
∂

∂t

)
z

− ρ

(
∂φ

∂t

)
π

∂

∂π
(3.13a)

∇πa = ∇za− ρ(∇πφ)
∂a

∂π
(3.13b)

∇π · ~V = ∇z · ~V − (ρ∇πφ) · ∂
~V

∂π
(3.13c)(

D

Dt

)
π

=

(
∂

∂t

)
π

+ ~V · ∇π + π̇
∂

∂π
(3.13d)

When the hydrostatic assumption is imposed for the pressure coordinate, the unsteady term
in the continuity equation vanishes. The continuity equation simplifies from the form given
in (3.10) to be

∇π · ~V +
∂π̇

∂π
= 0, (3.14)

and the horizontal and vertical momentum equations are(
D~V

Dt

)
π

+ α∇πp+
∂p

∂π
∇πφ = F (3.15)(

Dw

Dt

)
π

+ g

(
1− ∂p

∂π

)
= F. (3.16)
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The set of equations above consisting of (3.14), (3.15), and (3.16) are the fully compressible
non-hydrostatic Euler equations given by Laprise [1992].

3.2.3 Transformation to terrain-following pressure coordinates

WRF uses a terrain-following hydrostatic pressure coordinate or mass coordinate η given
in terms of the dry hydrostatic pressure Phs. The coordinate η is defined such that it is
zero at the top of the model, and unity at the surface of the terrain. The mass of the fluid
in the column per unit area is then µ. This yields the coordinate definition η =

Phs−Phstop

µ
,

where µ(x, y) = Phs surface − Phs top. The transformation to the terrain-following coordinate
system uses the same formulation for the temporal and spatial derivatives as used previously.
Following the derivative formulation, the temporal and spatial derivatives in (3.17) for the
η coordinate are analogous to those in (3.2) for the π coordinate.(
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)
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∂t

)
π

+
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(
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η
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(3.17b)

The material derivative in the η coordinate is(
D

Dt

)
η

=

(
∂

∂t

)
η

+ ~V · ∇η + η̇
∂

∂η
, (3.18)

where

η̇ =
∂η

∂t
=
∂η

∂π

[
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∂t
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∂π
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∂π
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)
η

]
. (3.19)

The physical meaning of η̇ is the contravariant velocity of the vertical coordinate. Following
the derivation of the continuity equation developed by Kasahara [1974] and explained in de-
tail in the previous section, the continuity equation in terrain-following coordinates becomes
equation (3.20).[
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)
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∂
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u
∂π

∂η

)
+

∂

∂y

(
v
∂π

∂η

)]
η
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∂
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(
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∂π

∂η

)
= 0 (3.20)

This form of the continuity equation was given by both Kasahara [1974] and Laprise [1992].
The horizontal and vertical momentum equations are then found to be(

D~V

Dt

)
η

+ α
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∂η
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∂p
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∂π

)
= F. (3.21b)
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In addition it is noted that the definition of the dry hydrostatic η coordinate used in WRF
yields the relationships ∂η/∂π = 1/µ and ∂φ/∂η = −αµ. When these relationships are
substituted into the continuity equation (3.20), its form simplifies substantially. The simpli-
fied continuity equation below is equivalent to the equation given in the WRF description
by Skamarock et al. [2007], where the notation differs slightly. Kasahara and Laprise use
the del notation to operate only in the horizontal dimensions (as was used above), while
Skamarock et al. uses a three-dimensional del operator.(

∂µ

∂t
+
∂(µu)

∂x
+
∂(µv)

∂y

)
η

+
∂(µη̇)

∂η
= 0 (3.22)

The above relationships for the η coordinate can also be utilized to simplify the momentum
equations. After multiplying the horizontal momentum equations by µ, the following form
is found:

µ

(
D~V

Dt

)
η

− ∂φ

∂η
∇ηp+

∂p

∂η
∇ηφ = F. (3.23)

Some manipulation is required to get the momentum equation into the strong conservation
form, as it appears in [Skamarock et al., 2007, Section 2.2]. From the continuity equation,

we know that ∂µ
∂t

= −∇η · (µ~V ) − ∂(µη̇)
∂η

. The terms on the left and right hand side are

added and subtracted respectively from the momentum equation. The term p ∂
∂x

(∂φ
∂η

) is also
added and subtracted to the horizontal momentum equation, while the order of the partial
differentiation is interchanged. These manipulations yield the strong conservation form of
the momentum equations appearing in the WRF description. In this equation the semicolon
notation represents the dyadic product.(

∂(µ~V )

∂t

)
η
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∂

∂η
(µη̇~V )− ∂
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(
p
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)
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p
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)
= F (3.24)(

∂(µw)

∂t

)
η

+∇η · (µ~V w) +
∂

∂η
(µη̇w)− g

(
∂p

∂η
− µ

)
= F (3.25)

In addition to the conservation of mass and momentum, an equation for potential temper-
ature is solved. Potential temperature θ is a conserved quantity when the atmosphere is
assumed to be adiabatic, so the governing equation takes the form used for a conserved
scalar. (

∂(µθ)

∂t

)
η

+∇η · (µ~V θ) +
∂

∂η
(µη̇θ) = Fθ (3.26)

Pressure is then diagnosed from the equation of state below, where γ is the ratio of heat
capacities of dry air Cp/Cv and Rdry is the universal gas constant.

p = po

(
Rdryθ

poαdry

)γdry

(3.27)
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3.2.4 Perturbation form of the governing equations

It is advantageous to recast the governing equations into a perturbation form that is
a departure from the hydrostatic state. This removes large canceling contributions from
the horizontal pressure gradients, and reduces numerical error. It is assumed that pressure,
specific volume, geopotential, and column mass per unit area take the form p = p̄(z) + p′,
α = ᾱ(z)+α′, φ = φ̄(z)+φ′, and µd = µ̄d(x, y)+µd′ where the perturbation is the deviation
from the hydrostatic and time invariant reference state given by ∇p̄ = g/ᾱ. The hydrostatic
reference state variables p̄, ᾱ, and φ̄ are strictly functions of z in Cartesian coordinates, but
are functions of (x, y, η) in the transformed terrain-following coordinate. After substituting
in the mean and perturbation values, the reference state may be subtracted. That is, ᾱ∇ηp̄ =
∇ηφ̄ may be subtracted. It is also noted that the following relationships exist within the
framework of the perturbation formulation ∂p̄/∂η = µ̄, ∂φ̄/∂η = −µ̄ᾱ, and ∂φ′/∂η =
−µ̄α′ − µ′α. Now the time invariance of the base state is used, and the equation for mass
conservation becomes (

∂µ′
∂t

+
∂(µu)

∂x
+
∂(µv)

∂y

)
η

+
∂(µη̇)

∂η
= 0. (3.28)

To develop the perturbation form for the horizontal momentum equations, the form given
in (3.29) is used as a starting point.(
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∂t

)
η

+∇η · (µ~V ; ~V ) +
∂

∂η
(µη̇~V ) + µα∇ηp+

∂p

∂η
∇ηφ = F (3.29)

Substitution of the base and perturbation variables changes only the pressure gradi-
ent in the horizontal conservation of momentum, and both the pressure and gravity
terms in the vertical. In the horizontal momentum equation, the pressure term becomes
µᾱ∇ηp̄+ µα∇ηp′+ µα′∇ηp̄+ µ∇ηφ̄+ µ∇ηφ′+ ∂p′

∂η
(∇ηφ)− µ′(∇ηφ). When the base state is

subtracted, the perturbation form of the horizontal momentum equation is(
∂(µ~V )

∂t

)
η

+∇η · (µ~V ; ~V ) +
∂

∂η
(µη̇~V )

+ µα∇ηp′+ µα′∇ηp̄+ µ∇ηφ′+ (∇ηφ)

(
∂p′
∂η

− µ′
)

= F. (3.30)

Substitution of the base state and perturbation quantities into the vertical momentum equa-
tion yields(

∂(µw)

∂t

)
η

+∇η · (µ~V w) +
∂

∂η
(µη̇w)− g

(
∂p̄

∂η
+
∂p′
∂η

− µ̄− µ′
)

= F (3.31)

The contribution from the base state cancels out, and the perturbation form of the vertical
momentum equation becomes(

∂(µw)

∂t

)
η

+∇η · (µ~V w) +
∂

∂η
(µη̇w)− g

(
∂p′
∂η

− µ′
)

= F. (3.32)
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The equation for the conservation of potential temperature remains unchanged. The diagnos-
tic relationship for pressure is non-linear, and therefore cannot be represented in perturba-
tion form without approximation. Therefore, the final perturbation form of the transformed
compressible Euler equations is the set of equations (3.28), (3.30), and (3.32).

3.3 Time integration

After the perturbation equations are temporally and spatially discretized, they are further
divided into low frequency and high frequency acoustic terms for the time-split advancement
scheme, which is documented in Wicker and Skamarock [2002]. The low frequency terms
are meteorologically significant physical modes such as Rossby waves, gravity waves, and
simple advection. High frequency modes such as acoustic and Lamb waves are integrated on
a smaller time step to maintain numerical stability. This is a common strategy for achieving
computational efficiency, because the most expensive terms to evaluate are calculated on the
large time step.

A three step explicit Runge-Kutta (R-K) method is used to advance the large time step.
Horizontally propagating acoustic modes are advanced using a forward-backward explicit
scheme. In the forward-backward scheme the momentum equations are advanced using a
forward scheme relative to the pressure term. Then the updated velocities are used with a
backwards scheme to advance the pressure term. The vertical acoustic modes and buoyancy
oscillations are advanced implicitly. This removes any restrictions on the time step for
vertically propagating acoustic waves and the buoyancy frequency. Implicit treatment in the
vertical direction is needed because the vertical grid spacing is generally much smaller than
the horizontal grid spacing, and therefore supports higher frequency modes.

Both the large time step and the acoustic time step can be user defined or calculated by
WRF. It is common to use six to twelve acoustic time steps per large time step. When n
acoustic time steps are used, one is taken in the first R-K step, n/2 in the second R-K step,
and n in the third R-K step. The time advancement scheme proceeds with the loop for the
small acoustic time step nested into the larger Runge-Kutta loop. The time advancement
sequence used in WRF is outlined in Table 3.1.

3.4 Boundary conditions

Several options for lateral boundary conditions are available to WRF users. These are
detailed in the NCAR technical note by Skamarock et al. [2007] and include periodic, open
or radiative, symmetric, and specified options. The first three boundary conditions are often
used in idealized cases, where as specified boundary conditions are common in cases with
real external data. Additionally, WRF supports one and two way horizontal nesting. Nested
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Table 3.1. The time advancement sequence used in WRF. The Runge-Kutta loop is
preformed three times.

Begin Runge-Kutta Loop
1. For the first R-K step only: Compute F (turbulence and physics terms)
2. Compute the tendencies for advection and pressure
Begin Acoustic Loop

3. Advance the horizontal momentum equations
4. Advance the continuity equation
5. Advance the conservation of potential temperature
6. Advance the vertical momentum equation
7. Diagnose acoustic step perturbations of pressure and density

End Acoustic Loop
8. Advance scalar equations
9. Diagnose pressure and density perturbations on the R-K step

End Runge-Kutta Loop

domains can be run in a serial fashion, where the simulation of a parent domain must be
complete before the simulation of the child domain. This type of nesting is equivalent to
producing two simulations with an intermediate processing step. Alternatively, the domains
can be run concurrently, where the child and parent domain run at the same time. Vertical
nesting is implemented for nested domains which are run serially because vertical interpo-
lation occurs during the intermediate processing step; however, vertical nesting cannot be
used in concurrent runs. This means that for domains run concurrently, an interior nested
domain may have finer resolution in the horizontal extents, but the resolution in the vertical
dimension remains fixed. In a one-way nest, the fine domain receives boundary conditions
interpolated from the coarse domain. In a two-way nest, which can only be used with con-
current simulations, the solution from the fine domain additionally replaces the solution on
the coarse domain at each time step.

The Arakawa-C staggered grid, shown in Figure 3.2, begins with a u velocity point in
the x dimension and a v velocity point in the y dimension. This results in (nx) u grid points
in x, and (nx− 1) v and w grid points in x, where (nx) is the user specified number of grid
points in the x direction. Conversely in the y direction there are (ny) v grid points, and
(ny − 1) u and w grid points. WRF includes six extra grid points outside of the domain in
each of the horizontal extents (for a total of 12 extra points in each direction), used to set
the lateral boundary conditions. When MPI is used, WRF passes the information for up to
six lateral grid points between processors in a so-called halo exchange.

In the vertical direction the top boundary condition is specified to be isobaric, and the
Cartesian vertical velocity w is set to zero. Additionally, gravity waves can be absorbed
with a diffusion or Rayleigh damping layer. The Rayleigh damping layer can be applied
to all three velocity components, or just to the vertical velocity [Klemp et al., 2008]. At
the bottom boundary the contravariant coordinate velocity is set to zero, and a kinematic
boundary condition is used for the Cartesian vertical velocity. The set of equations given by
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Figure 3.2. A plan view and elevation view of the WRF staggered grid.

(3.33a) and (3.33b) create a free slip bottom boundary condition.

η̇surf = 0 (3.33a)

wsurf = usurf
∂h

∂x
+ vsurf

∂h

∂y
(3.33b)

In equation (3.33b) h is a function specifying the terrain height. The u and v velocities are
extrapolated to the surface using a quadratic Lagrange polynomial. The shear stress at the
boundary is implicitly set to zero, unless the effects of friction are taken into account with
an atmospheric surface layer scheme or a user specified coefficient of drag.

In the case of a rough terrain surface, a wall model is used as discussed in chapter 2. The
wall model provides an estimate of the shear stress at the wall so that a Neumann boundary
condition can be imposed on the velocity field, rather than the no-slip boundary condition.
The shear stress at the wall is calculated using (3.34), where Cd is the coefficient of drag
and |U | is the magnitude of the horizontal velocities. No adjustments are made for the use
of terrain-following coordinates, so it is assumed that the horizontal velocities are tangent
to the land surface. This is a source of error in sloping terrain, that becomes larger with
steeper slopes.

τwxz = Cd|U |u, τwyz = Cd|U |v (3.34)

If a surface layer scheme is used, then it is usually an equilibrium stress model. The
surface layer scheme returns a value for the friction velocity u?, which is based on a roughness
length scale defined by the land use and vegetation type of the surface, and the atmospheric
stability conditions. The coefficient of drag is then defined as Cd = (u?/|U |)2. If a surface
layer scheme is not used, then the coefficient of drag must be specified as a constant for the
entire domain in the user input file. Drag coefficients are provided in references such as Arya
[1988].

We have added two additional boundary condition options for use with terrain-following
coordinates, described in chapters 5 and 8. The first is for a no-slip boundary condition.
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Figure 3.3. WRF sets τw to model a rough surface.

The second is a very simple equilibrium stress model that calculates the drag based on a
user specified roughness parameter zo. In this formulation, the coefficient of drag is given by
Cd = (κ/ ln z

zo
)2.

Effects of the shear stress at the wall τw are reflected in the calculation of the diffusion
terms in the horizontal momentum equation. For example, the discretized u momentum
equation would be calculated as in (3.35).

∂(µu)

∂t

∣∣∣∣
1

= . . .+ µ
[ τ2
∆z

− τw
∆z

]
(3.35)

Diffusion terms are calculated in physical space, so the use of the z coordinate (instead of
η) is appropriate here. Grid points for u and v are located at one-half of the vertical grid
spacing ∆z above the surface, as shown in figure 3.3. Equation (3.35) along with equation
(3.33) models a rough terrain surface.

In the vertical direction the staggered grid begins and ends at a w point, meaning that
there are (nz) w points and (nz − 1) u and v points. There are no halo points needed
for boundary conditions. WRF never decomposes the domain in the vertical direction for
parallel processing. This means that there is no need for boundary condition updates or to
use MPI to exchange halos in the vertical dimension.
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Chapter 4

Analysis of numerical errors arising

from complex terrain

4.1 Introduction

Most mesoscale numerical models use terrain-following coordinates to accommodate com-
plex terrain. Terrain-following or sigma coordinates conform to the bottom topography and
the coordinate lines gradually become smoother and flatter with distance from the ground.
Coordinate lines retain a signature of the underlying surface shape even when very far away
from the ground. Coordinate transformations are introduced into the discretized equations
and produce numerical truncation errors in addition to those associated with the chosen
discretization scheme.

Several methods have been proposed to reduce the truncation error arising from terrain-
following coordinates. Schär et al. [2002] proposed a modified sigma coordinate in terms of
height in which grid distortion due to small scale terrain features decays with height more
rapidly than distortion caused by large scale features. The modified coordinate flattens
quickly with height and improves the accuracy of the solution. Zängl [2003] extended this
method to pressure based coordinates. Klemp et al. [2003] investigated the errors that arise
when numerical treatment of the metric terms is inconsistent with the discretization of
other terms in the governing equations. Distortion seen in topographically induced gravity
waves was reduced with consistent numerical treatment. Adcroft et al. [1997] used a shaved
cell approach to represent topography on a Cartesian grid. This method eliminates grid
distortion, but introduces complications in the numerical solution at the ground because the
computational cells must be modified (shaved) where they intersect the topography.
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Here we introduce an alternative gridding technique for flow over complex terrain using
an immersed boundary method (IBM) in the Weather Research and Forecasting (WRF)
model. With this method, the terrain surface intersects the grid, and variables are adjusted
near the immersed boundary so that the flow is diverted by the boundary. Grid distortion
and the associated truncation errors are thus avoided. Additionally, the method does not re-
quire modification of the computational stencil in the vicinity of the topography. Boundary
conditions are imposed on the immersed surface for velocities and scalar quantities through
interpolation. The implementation and validation of IBM in WRF in two dimensions is
described in chapters 5 and 6. Here we focus on errors resulting from the coordinate trans-
formation and the behavior of the flow far above steep topography.

The scalar transport test case of Schär et al. [2002] is presented in section 4.3. Schär et al.
solved the advection-diffusion equation, but specified the underlying velocities. Zängl [2003]
examined the case when the momentum equations are solved in addition to the advection-
diffusion equation using the MM5 mesoscale model. In this chapter, comparisons are made
between simulations using standard terrain-following coordinates and those using IBM. Large
truncation errors are present in the native coordinate, and it is demonstrated that the im-
mersed boundary method can be used within WRF to alleviate these errors. Truncation
errors can be attributed to either the finite differencing scheme or the metric terms. Further
analysis in section 4.4 apportions the error attributable to each cause.

4.2 Numerical method

Relevant details of the WRF coordinate, governing equations, and discretization are
provided in this section, along with an introductory description of the immersed boundary
method used here. Further details of the WRF governing equations and discretization tech-
niques are found in Klemp et al. [2007] and Skamarock and Klemp [2008]. Skamarock et al.
[2007] provides a complete description of the model, including default settings and model
parameterizations.

4.2.1 Coordinate definitions

Terrain-following coordinates were first introduced by Phillips [1957] for numerical
weather forecasting models using pressure as an independent variable representing the verti-
cal coordinate. Gal-Chen and Somerville [1975] use a height-based sigma coordinate to map
non-orthogonal coordinates onto a Cartesian grid. Most modern mesoscale models employ
one of these two options to accommodate terrain, both of which introduce terrain-induced
grid distortion.

A pressure or mass based vertical coordinate η is used in WRF, and is given in terms of
the dry hydrostatic pressure Phs. The coordinate is defined such that it is zero at the top

48



Figure 4.1. Terrain-following coordinates shown in the top figure, and coordinates
where the immersed boundary method is used are show in the bottom figure. These
grids are used for the idealized advection test in section 4.3. Every other coordinate
line is shown.
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of the computational domain and unity at the terrain surface. This yields the coordinate
definition η =

Phs−Phs top

µ
, where the column mass per unit area of the fluid is µ(x, y) =

Phs surface−Phs top. The grid used in the idealized advection test (section 4.3) is included in
figure 4.1, where the η coordinate is shown in the top figure.

When the immersed boundary method is used, the grid is not transformed to align
with the topography. Instead, the terrain is allowed to arbitrarily pass through the grid as
shown in the bottom domain in figure 4.1. The effects of the solid boundaries on the fluid
are represented by the addition of a body force term FB in the conservation equations for
momentum and scalars (4.1). Mathematically, the forcing term takes a non-zero value in the
vicinity of the immersed boundary, but has no effect away from the boundaries.

∂t
~V + ~V · ∇~V = −α∇p+ νt∇2~V + ~g + ~FB (4.1a)

∂tϕ+ ~V · ∇ϕ = νt∇2ϕ+ FB (4.1b)

The forcing method used in this work is referred to as direct or discrete forcing, which
was first introduced by Mohd-Yusof [1997]. With this method the velocity or scalar value
is modified at forcing points near the terrain to enforce the boundary condition, eliminating
the need for explicit calculation of the body force term. Terrain passes through the grid,
and a bilinear interpolation method is used to determine the forcing needed at discrete grid
points. The implementation of this method in the WRF model is documented in chapter 5.

4.2.2 Metric terms in the governing equations

The mesoscale model WRF solves the non-hydrostatic compressible Euler equations
which have been transformed into a pressure-based terrain-following coordinate. Two co-
ordinate transformations are required for the vertical coordinate. The first transforms the
equations into the hydrostatic pressure coordinate, and the second transforms the equations
into the terrain-following coordinate. An additional velocity is introduced in these transfor-
mations, and is defined as the contravariant velocity of the vertical coordinate η̇. Therefore,
WRF solves the transformed Navier-Stokes equations plus an additional equation represent-
ing η̇. The coordinate velocity is relevant here because the definition contains terms from the
Jacobian matrix for the coordinate transformation. The equation defining η̇ is rearranged
so that it appears in WRF as a prognostic equation for the geopotential φ. The transformed
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equations are given in 4.2.

∂tµ+∇ · (µ~V ) + ∂η(µη̇) = 0 (4.2a)

∂t(µ~V ) +∇ · (µ~V ; ~V ) + ∂η(µη̇~V )

−∇(p∂ηφ) + ∂η(p∇φ) = ~F
(4.2b)

∂t(µw) +∇ · (µ~V w) + ∂η(µη̇w)

−g (∂ηp− µ) = F
(4.2c)

∂tφ+ ~V · ∇φ+ η̇∂ηφ− gw = 0 (4.2d)

In the above equations ~V only includes horizontal velocities, and ∇ operates on coordinate
surfaces in the horizontal dimension. Geopotential is defined as φ = gz, so that ∇φ and ∂ηφ
are surrogates for the Jacobian terms ∇z and ∂ηz.

Terms created by the change of coordinates may be evaluated analytically if the terrain
function is differentiable and the Jacobian matrix is invertible. Instead it is often more
practical to compute the metric terms numerically, as is the case in WRF. The Jacobian
maps the physical topography onto a rectangular domain, but in WRF the terms are also
affected by movement of the vertical coordinate during the time integration. Therefore,
the Jacobian terms appearing in WRF must be evaluated numerically at each time step
(making an analytical evaluation impractical). The terms are evaluated with an even-order
finite difference scheme that is greater than or equal to the order of the advection scheme.
Advection schemes range from 2nd to 6th order, therefore if a 3rd or 4th order advection scheme
is used, the Jacobian terms are evaluated with a 4th order scheme. Turbulent diffusion and
computational mixing are not used in the test case presented in this work.

When the immersed boundary method is used the coordinates are still changed into
pressure coordinates, but the transformation to terrain-following coordinates is eliminated.
Horizontal gradients of the coordinate are substantially reduced with IBM, but the magnitude
of the gradients may not be exactly zero due to time variability of the grid arising from the
transformation to pressure coordinates.

4.3 Idealized advection test

The idealized advection test presented in Schär et al. [2002] is used here to demonstrate
the effects of truncation errors in the WRF model. In this section, truncation errors arising
from both the finite-differencing scheme and the coordinate transformation are considered.
It is shown that these errors are made to be negligible when the immersed boundary method
is used.

For this test case, highly variable topography (with a maximum slope of 49 degrees)
resides in a quiescent air mass, with a uniform horizontal flow aloft, as shown in figure
4.2. A shear layer in the velocity sounding persists without mixing due to the absence of
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Figure 4.2. Set-up of the idealized advection test from Schär et al. [2002]. Topography
is placed within a stagnant air mass, with uniform flow above. The analytic solution
is shown for advection of a scalar cloud at three different times.

viscosity. The shear layer isolates the effects of the terrain from the flow aloft, so that when
a scalar anomaly is introduced it advects over the terrain without distortion or diffusion.
The analytical solution for the advection of a scalar cloud is presented in figure 4.2 at three
different times. When terrain-following coordinates are used, the horizontal grid lines retain
the signature of the topographic features. Discretization of the terrain-following coordinates
leads to an additional truncation error which is a function of the Jacobian. These truncation
errors cause distortion of the scalar as it advects through the domain as illustrated below.

4.3.1 Model set-up and initialization

In this test, the topography is specified as the product of two oscillatory functions. The
first function has a large-scale wavelength of 50 km, and the second perturbation function
has a wavelength of 8 km. The equation for the topography is given as 4.3, where ho = 3
km, a = 25 km, and λ = 8 km.

hx(x) =

{
ho cos2(πx

2a
) cos2(πx

λ
) for |x| ≤ a

0 for |x| > a
(4.3)

Velocity, potential temperature, and water vapor mixing ratio are specified with a vertical
sounding. Velocity is specified by equation 4.4, where uo = 10 m s-1, z1 = 4 km, and z2 = 5
km.

u(z) =


uo for z > z2

uo sin2(π
2

z−z1

z2−z1
) for z1 ≤ z ≤ z2

0 for z < z1

(4.4)

The grid, terrain height, and initial velocity profile are identical to those used in
Schär et al. [2002]. Zängl modified the set-up by using a three-dimensional domain with
different horizontal and vertical dimensions, shorter and wider topographic features that are
a function of both x and y, and distributed the shear layer over 3.3 vertical kilometers.
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The atmosphere is neutrally stable with a potential temperature of 288 K, although a
stable atmosphere is considered in appendix A. Schär et al. did not include temperature
effects, and Zängl considered a standard (stable) atmosphere. The analytical solution is
independent of the background atmospheric stability, although in practice it makes a large
difference in the numerical solution by modifying dynamic stability (as indicated by the bulk
Richardson number). A dry atmosphere is considered here. Zängl uses moisture rather than
a passive scalar in his tests.

The total domain size is (X, Y, Z) = (300 km, 2 km, 25 km) for the simulation with
terrain-following coordinates. When the immersed boundary method is used, the domain is
extended 1 km in the vertical dimension to (X, Y, Z) = (300 km, 2 km, 26 km). The vertical
domain ranges from -1 km to 25 km, allowing for computational nodes below the zero terrain
height. These extra nodes are used as forcing points in the immersed boundary method. The
number of grid points in the terrain-following coordinate case is (nx, ny, nz) = (301,3,51), and
with the immersed boundary method it is (nx, ny, nz) = (301,3,54). Horizontal resolution in
the base case is ∆X = ∆Y = 1 km, and vertical resolution is ∆Z = 0.5 km. Schär et al.
[2002] use a 25 s time step; however, a smaller time step of 20 s is needed in WRF to achieve
numerical stability.

The scalar cloud is defined by equation 4.5, where the maximum amplitude is ϕo = 1,
the horizontal half width is Ax = 25 km, and the vertical half width is Az = 3 km.

r =

[(
x− xo

Ax

)2

+

(
z − zo

Az

)2
]1/2

(4.5a)

ϕ(x, z) =

{
ϕo cos2(πr

2
) for r ≤ 1

0 for r > 1
(4.5b)

The scalar is initialized at the location (Xo, Zo) = (-50 km, 9 km). It is centered in the
domain at t = 5000 s, and the center is located at (X,Z) = (50 km, 9 km) when the time
integration ends at t = 10000 s.

4.3.2 Results using the default WRF settings

A comparison is made between two WRF simulations, the first with the native terrain-
following coordinates, and the second with the newly implemented immersed boundary
method. Default WRF options are used, and include a 3rd order Runge Kutta time step-
ping scheme, 5th order horizontal advection, and 3rd order vertical advection. The odd-order
advection schemes are upwind-biased and diffusive. Default constants are used for filtering
in time, and include a divergence damping coefficient γd = 0.1, external mode damping
coefficient γe = 0.01, and acoustic time step off-centering of β = 0.1.

Figure 4.3 shows contours of u and w velocity at t = 10000 s, with results using terrain-
following coordinates on top, and those using IBM below. In the analytical solution there
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Figure 4.3. Contours of the u and w components of velocity in m s-1 for terrain-
following coordinates (top) and the immersed boundary method (bottom) at t =
10000 s. Analytically, the velocity should equal the initial sounding throughout the
duration of the simulation. Axes indicate domain size in km, and are not to scale.

is no interaction with the topography, and the velocity field is specified by equation 4.4 at
all times. When terrain-following coordinates are used it is clear that the distortion of the
grid makes it impossible to isolate the flow aloft from terrain effects. Waves, induced by
errors in the coordinate transformation, form above the mountain range. Horizontal velocity
should range from 0 to 10 m s-1, and vertical velocity should remain zero. However, horizontal
velocities of -5.8 to 14.1 m s-1 and vertical velocities greater than ±4 m s-1 are present. These
errors are negligible in the IBM-WRF simulation. At the end of the simulation, horizontal
velocity ranges between -0.04 and 10.08 m s-1, and vertical velocity between -0.04 and 0.06
m s-1.

While Schär et al. prescribed the velocity field, Zängl allowed the velocity to evolve.
Zängl reported maximum vertical velocities of 0.19 m s-1 using the native MM5 coordinate.
One reason why his results are much better than the WRF results using the native coordinate
is his favorable set-up. As described in section 4.3.1 his topography was shorter and wider
leading to less distortion of the grid, and his shear velocity layer spanned a larger distance,
allowing additional resolution. The largest difference is that his atmosphere was stable (see
appendix A for WRF simulations with a stable atmosphere), while ours is neutral, so that
the growth of waves due to perturbations caused by numerical errors is effectively damped
by the stable stratification. Zängl reported vertical velocities of 0.02 m s-1 using a modified
coordinate that flattens quickly with height.

Snapshots of the scalar cloud are included in figure 4.4, along with the associated errors.
Three different times (t = 0, 5000, and 10000 s) are depicted as the scalar advects from left
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Figure 4.4. On the left, the scalar concentration is shown at t = 0, 5000, and 10000 s.
Scalar units are non-dimensional with a range of 0 to 1. Contour intervals are in 0.1
increments. Error is shown on the right, and is calculated as the difference between
the numerical and analytical solutions. Contour intervals are 0.01. The zero contour
is suppressed. Axes indicate domain size in km, and are not to scale.

Figure 4.5. Error is shown for the immersed boundary method case at t = 0, 5000,
and 10000 s. Contour intervals are 0.0005. The zero contour is suppressed. Axes
indicate domain size in km, and are not to scale.
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Table 4.1. Summary of errors at t = 10000 s for the WRF simulations with the default
advection scheme and those presented in Schär et al. [2002] and Zängl [2003] (at t
= 4 hours). Analytical values of ϕmin and ϕmax are 0 and 1. ∆ϕ is the difference
between the numerical and analytical solutions.

Coordinate Order of ϕ ∆ϕ
Advection Scheme min max min max

WRF Sigma h:5th, v:3rd -0.039 0.856 -0.766 0.673
Schär et al. Sigma 1st 0.000 0.284 -0.700 0.213

2nd -0.168 0.953 -0.174 0.162
4th -0.058 1.001 -0.057 0.052

Zängl Sigma 2nd -0.12 0.10

IBM-WRF h:5th, v:3rd -0.002 0.992 -0.002 0.002
Schär et al. No Topography 1st 0.000 0.762 -0.220 0.141

2nd -0.023 0.985 -0.023 0.021
4th -0.002 0.984 -0.002 0.002

Zängl No Topography 2nd -0.02 0.02

to right in the domain. Significant distortion of the scalar anomaly occurs as it advects over
the terrain features in the simulation with sigma coordinates. At the last time the shape of
the cloud is not only distorted, but the center has advected 4.5 km less than in the analytical
solution. Error is calculated as the difference between the numerical and analytical solution,
and is shown with contour intervals of 0.01. At the last time shown, error ranges between
-0.766 and 0.673. These errors are on the order of the analytical scalar concentration, which
ranges from 0 to 1, indicating large errors arising from the use of sigma coordinates. In the
simulation using the immersed boundary method, distortion of the cloud is eliminated. No
contours appear in the IBM-WRF error plot, because the error is less than the threshold
of the first contour (0.01). Errors in the IBM-WRF simulation are included in figure 4.5
with appropriate contour levels. In IBM-WRF the deviation from the analytical solution
ranges from -0.002 to 0.002. Contour intervals are 0.0005. The results of these simulations
indicate that the truncation error is dominated by the term arising from the transformation
to terrain-following coordinates, and errors from the pressure coordinate transformation and
the finite differencing scheme are negligible in comparison, as illustrated in the IBM-WRF
solution.

A comparison of the WRF and IBM-WRF results and those presented in Schär et al.
[2002] and Zängl [2003] is included in table 4.1. Schär et al. published results for simulations
with 1st, 2nd, and 4th order advection schemes (among others which are not included here).
For reference, both papers also included a set of simulations with no topography. Error
in the reference simulations is exclusively caused by the finite differencing schemes. As
expected, higher order advection schemes decrease error for both sigma coordinates and the
reference cases of Schär et al.. The IBM-WRF simulation (with topography) performs as
well or better than the 4th order reference case with no topography. This is a logical result,
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Table 4.2. Summary of errors at t = 10000 s for the WRF and IBM-WRF simulations
with advection schemes of increasing order. Analytical values of ϕmin and ϕmax are
0 and 1. ∆ϕ is the difference between the numerical and analytical solutions.

Coordinate Order of Advection Scheme ϕ ∆ϕ
min max min max

WRF Sigma 3rd -0.028 0.735 -0.746 0.480
4th -0.373 0.885 -1.073 0.867
5th -0.064 0.893 -0.857 0.852
6th -0.439 1.325 -1.050 0.820

IBM-WRF 3rd -0.004 0.991 -0.004 0.005
4th -0.003 0.992 -0.003 0.003
5th -0.002 0.992 -0.002 0.002
6th -0.002 0.992 -0.002 0.001

as the immersed boundary method alleviates the need for a coordinate transformation and
the simulation is of a similar order.

WRF with sigma coordinates produces more errors than originally expected. Despite
the higher order scheme, WRF does not perform as well as the 2nd order sigma cases of
Schär et al. and Zängl. The main difference between the simulations is that the wind is
prescribed in Schär et al., but allowed to evolve in the WRF simulations. Prescribing the
velocity field eliminates the explicit vertical advection of the scalar field that occurs in WRF
due to errors in the vertical velocity component. In Zängl, instability from perturbations
(non-physical errors due to the coordinate) are suppressed by intentionally prescribing a
stable atmosphere. This is not the case in our simulations with WRF, where the atmosphere
is neutral. The large differences in the models and set-ups probably account for the larger
errors in the WRF simulations. It is important to note then that IBM-WRF correctly
evaluates the flow field and transport of the scalar cloud. Additionally, both Schär et al. and
Zängl demonstrate error reductions with their modified terrain-following coordinate systems.
These results are not included here.

Schär et al. cite several causes of error in the idealized advection tests, first reasoning
that, “Schemes with implicit diffusion suffer particularly large coordinate transformation er-
rors. Diffusion spreads out the solution in computational space, rapidly broadens the initial
anomaly, and thereby makes the scheme more susceptible to coordinate transformations.” In
a grid refinement study, Schär et al. found that the solution was extremely sensitive to hori-
zontal resolution, and large gains in accuracy could be achieved through increased horizontal
resolution. The solution was shown to be insensitive to vertical resolution. Additionally, as
shown in table 4.1, Schär et al. found that increasing the order of the advection scheme had
a beneficial impact on the quality of the solution. Accuracy was largely gained from an
increase in the order of the horizontal scheme, whereas the vertical scheme had little effect.
These possible types of error reduction are investigated in the following section.
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4.4 Analysis of truncation errors

Schär et al. [2002] carried out a theoretical analysis of truncation errors in a generalized
transformed coordinate. The analysis considers the transformed one-dimensional advection
equation (4.6).

∂ρ

∂t
+ J

∂(ρu)

∂x̄
= 0 (4.6)

Here J = ∂x̄/∂x is the Jacobian of the transformation and the overbar indicates the trans-
formed coordinate.

After applying a Taylor series expansion, the error term is derived in computational
space. Using the transformation back to physical space (∆x̄ = J∆x), the total truncation
error is given by 4.7.

E =
∆x

2
J
∂

∂x

(
uJ−1 ∂ρ

∂x

)
+O(∆x2) (4.7)

Applying the chain rule, the truncation error may be split into two parts. Efd is attributed
to the finite differencing scheme, and Et to the coordinate transformation. Errors are given
in 4.8 for a first order upwind scheme.

Efd =
∆x

2

∂

∂x

(
u
∂ρ

∂x

)
+O(∆x2) (4.8a)

Et = −∆x

2
u
∂ρ

∂x
J−1∂J

∂x
+O(∆x2) (4.8b)

It is seen here that the leading term for the error due to each cause is of the same order
of magnitude O(∆x). Large Jacobian terms as well as large gradients in the Jacobian
lead to significant increases in the transformation truncation error. In the limit of the
Jacobian approaching zero, the truncation error reduces to the theoretical form from the
finite differencing scheme.

In this section the effects of the advection scheme, horizontal and vertical resolution,
and terrain slope are studied. It is shown that the error produced by the finite differencing
scheme is negligible in comparison to the error caused by the coordinate transformation used
in WRF.

4.4.1 Effect of advection scheme

Schär et al. noted that a second order (even) advection scheme produced better results
than a first order (odd) scheme which included numerical dissipation. As the default scheme
in WRF is an odd order, we tested the next highest even order scheme for improved accuracy.
Truncation errors for an odd order advection scheme include those from the next higher-
order centered scheme, plus an upwind term that is dissipative. The dispersive terms in the
truncation error of an odd order scheme and the next highest even order scheme are identical.
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Figure 4.6. As in figure 4.4, but with error contour increments of 0.1. 3rd and 4th order
advection schemes are used in a WRF simulation with terrain-following coordinates.

The even order scheme (in WRF fourth or sixth order) should advect a well-resolved smooth
Gaussian shaped scalar plume without dissipation. The effects of the choice of advection
scheme are presented here, where each available option is tested in WRF. For comparison,
simulations are included with both terrain-following coordinates and the immersed boundary
method.

Table 4.2 includes the error for each advection scheme with each type of coordinate (sigma
and IBM). It can be seen here that in WRF with sigma coordinates, the odd order advection
schemes produce less error than even order schemes, although the accuracy of both types is
poor. Additionally, it is not clearly beneficial to increase the order of the advection scheme
when the native WRF coordinate is used in this test case example. Both of these results are
contrary to the findings of Schär et al..

In contrast to the large errors produced with sigma coordinates, errors in the IBM-
WRF simulations are extremely small. With IBM it is clear that the solution benefits from
increasing the order of the advection scheme. A preference is not shown for even or odd
advection schemes in the simulations using IBM. For comparison, simulations in WRF with
no topography yielded almost identical results to those with IBM. As found in the results
with default settings, truncation error due to the finite differencing scheme is negligible in
comparison to that of the coordinate transformation.

Figure 4.6 gives insight into the behavior of odd and even order advection schemes when
used with the sigma coordinate in WRF. This figure depicts the scalar anomaly at three
instances in time, along with error contours for each of the instances. The 3rd order advection
scheme is shown in the top figures, with a 4th order scheme used in the figures below. The
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Figure 4.7. As in figure 4.4, but with error contour increments of 0.0005. 3rd and 4th

order advection schemes are used in a WRF simulation with the immersed boundary
method.

odd order scheme is upwind biased and thus dissipative. As the scalar advects over the
peaks in the terrain, significant distortion of the cloud occurs. The numerical diffusion
seems to be beneficial in the odd order scheme, in that it counteracts other errors (from the
grid transformation and dispersive truncation error terms) and allows the cloud to remain
a cohesive mass. In the even order scheme the scalar cloud disperses as it advects over the
terrain, and variability is not smoothed out. This leads to large errors in the location of the
cloud, as well as significant magnitudes of negative scalar concentration.

Figure 4.7 provides the same information for simulations where IBM is used. In this
case the odd and even order advection schemes produce accurate results with similar error
magnitudes. While one scheme is diffusive and the other is dispersive, the effect of these
errors are not obvious in the solution. The results illustrate that a vast improvement in the
solution can be achieved using IBM to eliminate the need for the terrain-following change of
coordinate.

4.4.2 Effect of spatial resolution and grid aspect ratio

Schär et al. found that significant improvements in accuracy could be achieved through
increasing horizontal resolution, while sensitivity to vertical resolution was limited. In fact,
it was noted that increasing the resolution from ∆x = 1000 m to ∆x = 500 m reduced the
error from 21% to 4%, while decreasing the resolution to ∆x = 1500 m led to 78% error.

The effects of spatial resolution are examined in WRF using the default advection scheme,
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Table 4.3. Summary of errors at t = 10000 s for WRF simulations with sigma coordi-
nates at various spatial resolutions. The default advection scheme is used (5th order
horizontal and 3rd order vertical).

∆x (m) ∆z (m) ϕ ∆ϕ
min max min max

1000 500 -0.039 0.856 -0.766 0.673
1000 250 -0.128 0.897 -1.040 0.897
1500 500 -0.071 0.699 -0.832 0.588
500 500 -0.030 0.300 -0.983 0.300

which is 5th order in the horizontal and 3rd order in the vertical. The results of the base case
along with three additional simulations are presented in table 4.3. First, vertical resolution
was increased from ∆z = 500 m to ∆z = 250 m. In the next two simulations, horizontal
resolutions of ∆x = 1500 m and ∆x = 1000 m are used. Unlike in the Schär et al. re-
sults, it is not clearly beneficial to increase the resolution. In fact, the solution deteriorated
more by increasing the horizontal resolution from ∆x = 1000m to ∆x = 500 m, than it
deteriorated from decreasing the resolution to ∆x = 1500 m. The solution also deteriorated
with increased vertical resolution. In conclusion, while increased horizontal resolution should
reduce errors from the coordinate transformation by improving the accuracy of horizontal
derivatives, the solution is unstable to perturbations so that decreasing (or increasing) the
magnitude of the numerical error does not significantly effect the accuracy of the overall
solution. Furthermore, increased resolution supports higher frequency waves, and may fur-
ther deteriorate accuracy. In contrast, IBM-WRF produces an accurate solution without the
need for additional resolution.

4.4.3 Effect of coordinate transformation

The effect of the magnitude of the Jacobian on the accuracy of the solution is evaluated
with a series of simulations with decreasing terrain height. In these simulations the terrain
is still defined by equation 4.3, but the maximum amplitude of the terrain ho ranges from
0 to 3000 m. The half width of the terrain is held constant. This results in a maximum
terrain slope that ranges from 0 degrees to 49 degrees, when a 3000 m peak height is used.
Analytically the solution for the scalar cloud should be independent of the terrain because
it is isolated by the inviscid shear layer. Therefore, decreasing the terrain height affects
the solution aloft by decreasing the grid distortion aloft caused by the terrain-following
coordinate.

Results are presented in figure 4.8 for simulations with 2nd and 3rd order advection
schemes. In this plot error is defined by equation 4.9.

E = max |ϕnumerical − ϕanalytical| (4.9)
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Figure 4.8. Error is plotted as a function of terrain slope for simulations with 2nd and
3rd order advection schemes.
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It can be seen in this plot that error grows quickly with increasing terrain slope. In fact, a
slope of just one degree will cause error of over 10% with the 2nd order scheme, and almost
70% with the 3rd order scheme. Beyond a one degree slope the error is very large regardless
of the advection scheme.

Large errors are produced when the grid is not orthogonal in the region of the shear
velocity layer. A very small coordinate slope in this region will lead to large truncation
errors in the velocity field. This induces a wave in the flow, as was shown in figure 4.3, with
a wavelength on the order of that specified in the equation for the terrain. The point that
should be made here is that even with shallow terrain slopes the truncation error can have
devastating effects on the accuracy of the solution when large gradients and discontinuities
exist in the flow field.

4.5 Conclusions

The scalar advection test case is sensitive to perturbations, but nonetheless useful in
illustrating sensitivity to coordinate errors. For example, orographic precipitation in moun-
tainous terrain is sensitive to model dynamics. It is shown in Zängl [2004] that calculating
diffusion along sloping coordinate surfaces, rather than truly horizontal, increases the average
precipitation by 35% for a heavy-precipitation case over alpine terrain.

It has been demonstrated in this chapter that the immersed boundary method is an
effective tool not only for representing the complex terrain boundary, but also for eliminating
errors far from the boundary caused by the terrain-following coordinate transformation. An
idealized advection test was used to illustrate the effectiveness of the immersed boundary
method in eliminating the errors associated with terrain-following coordinates. Error in the
simulations with sigma coordinates could not be reduced to the level of error in the IBM
simulations. Attempts were made to decrease error in simulations with the sigma coordinate
by increasing the order of the finite difference scheme, refining the grid resolution, and even
reducing the terrain slope. This test case is sensitive to stratification, although the analytical
solution is independent of stratification. Imposing a stable atmosphere can reduce error,
but use of the immersed boundary method eliminated errors due to the terrain-following
coordinate under all stability conditions. Ultimately, the IBM-WRF simulations reproduced
the analytical solution with the highest accuracy.
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Chapter 5

Implementation of the immersed

boundary method∗

This chapter describes a new implemetation of the immersed boundary method which
facilitates explicit resolution of complex terrain within the Weather Research and Forecast-
ing (WRF) model. Simulations with this approach may be performed in three dimensions;
however, the method described in this chapter is limited to two-dimensional terrain. Val-
idation cases are presented in chapter 6. These cases show near perfect agreement when
flow over shallow terrain using the immersed boundary method is compared to results using
a terrain-following grid. This method is extended to handle three-dimensional terrain in
chapter 7.

5.1 Introduction

Most mesoscale numerical weather prediction (NWP) models use terrain-following co-
ordinates, which accommodate complex terrain by transforming the physical domain onto
a Cartesian grid. This formulation simplifies the application of lower boundary conditions
by aligning the lowest coordinate with the topography. Coordinate lines gradually become

∗This chapter is a reproduction (with minor modifications) of a portion of the paper “An Im-
mersed Boundary Method for the Weather Research and Forecasting Model” by Katherine A.
Lundquist (the principal author), Fotini Katopodes Chow, and Julie K. Lundquist, published
in Monthly Weather Review, March 2010, Volume 138(3), pages 796-817 [Lundquist et al.,
2010], c©Copyright 2010 American Meteorological Society. The full copyright notice is in-
cluded as appendix C.
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smoother and flatter with distance from the ground, but retain a signature of the underlying
surface shape throughout the entire height of the domain. Metric terms from the terrain-
following coordinate transformation are introduced into the governing equations, and when
discretized these terms produce additional numerical errors [Janjić, 1977, 1989; Klemp et al.,
2003; Schär et al., 2002; Zängl, 2002, 2003, 2004; Zängl et al., 2004]. As mesoscale models
are increasingly being used for high resolution flows over complex terrain, these coordinate
transformation errors can significantly degrade the quality of the numerical solution.

Several methods have been proposed to increase the fidelity of simulations with complex
terrain, ranging from methods that reduce errors arising from coordinate transformations to
methods which eliminate the need for coordinate transformations. Mahrer [1984] noted that
the standard computational stencil used to calculate horizontal gradients is inappropriate
when the vertical grid spacing is less than the elevation change over the horizontal dimension
of the cell. In this case, the accuracy of horizontal gradients can be improved by modify-
ing the stencil to include nodes which more closely follow a Cartesian grid. Schär et al.
[2002] proposed a modified sigma coordinate in which grid distortion due to small scale ter-
rain features decays with height more rapidly than distortion caused by large scale terrain
features. The modified coordinate flattens quickly with height and improves the accuracy
of the solution by reducing grid distortion aloft. As terrain slopes approach the vertical
limit, coordinate transformation errors grow, making reductions of these errors increasingly
difficult.

In environments with very steep slopes, such as urban or mountainous environments, it is
desirable to completely eliminate the coordinate transformation. One approach is to repre-
sent topography by fitting it to a Cartesian grid, thereby creating a step approximation of the
boundary. Large errors have been documented when a zeroth order terrain approximation is
used to model topographically induced circulations [Fast, 2003], while higher order boundary
representations alleviate these errors by eliminating the sharp corners [Adcroft et al., 1997].
Structured or unstructured body-fitted grids are often employed for complex geometries, as
these methods are capable of higher order boundary representations. Hanna et al. [2006]
present simulations of downtown Manhattan with five different urban computational fluid
dynamics (CFD) models, each using conforming grids. While imposing boundary conditions
on these grids is straightforward, there are drawbacks. Body-fitted coordinates require time
consuming manual manipulation to ensure that the grid conforms to the boundaries while
minimizing grid skewness. Unstructured grids produce an irregular data structure which
increases computational cost. In addition to these gridding issues, CFD models are tradi-
tionally forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to
synoptic scale weather patterns. Furthermore, CFD codes do not generally include options
for representing atmospheric processes such as surface fluxes of heat and moisture.

In this chapter, we introduce an immersed boundary method (IBM) which combines
the favorable properties of a NWP code with the ability to handle complex terrain. The
IBM enables flows with complex terrain to be simulated on non-conforming grids, while
retaining the efficiency of a structured solver and the features of a NWP code. Terrain
is included by modifying the treatment of nodes near the immersed boundary to impose
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the effects of the surface. Numerous methods employ this technique, and are known by
a variety of names including immersed boundary, embedded boundary, fictitious domain,
penalty, and Cartesian grid methods. The methods differ in the treatment of the nodes near
the immersed or embedded boundary. The review articles by Iaccarino and Verzicco [2003]
and Mittal and Iaccarino [2005] provide a comprehensive overview of existing methods for
non-conforming grids, while focusing on variants of the immersed boundary method.

The IBM presented here represents a rigid interface at the boundary using direct forcing,
as first suggested by Mohd-Yusof [1997]. This IBM is uniquely formulated to handle com-
pressible viscous flows and work with the native isobaric terrain-following coordinate in the
Weather Research and Forecasting (WRF) model. The newly developed algorithm accom-
modates movement in the vertical pressure coordinate while remaining well conditioned, and
avoids numerical instabilities noted in other immersed and embedded boundary approaches
[Saiki and Biringen, 1996; Tseng and Ferziger, 2003; Kirkpatrick et al., 2003]. Details of the
WRF model and the IBM implementation are provided in sections 5.2 and 5.3. The IBM
is capable of enforcing either Dirichlet or Neumann boundary conditions. A comparison of
the native WRF and IBM-WRF boundary conditions is made in section 5.4, along with the
details of a new no-slip option for terrain-following coordinates.

An additional feature distinguishing the IBM described here is that it includes coupling
to a land-surface model which provides realistic surface forcing. IBM has been used for
atmospheric flows in CFD codes [Tseng et al., 2006; Smolarkiewicz et al., 2007; Shi et al.,
2008], however, these implementations do not handle generalized geometries and to the
authors’ knowledge this is the first IBM which interfaces with atmospheric parameterizations.
Modifications required to include the atmospheric physics options are discussed in section
5.5. By retaining the native isobaric coordinate and coupling the IBM to the land-surface
model, NWP features such as grid nesting and atmospheric physics function seamlessly with
the IBM. Domains where IBM is used to explicitly resolve complex terrain can be nested
into larger mesoscale domains which use the terrain-following coordinate.

5.2 Formulation of the numerical solver

This work uses the Advanced Research WRF (ARW) dynamics solver, which is described
in detail by Skamarock et al. [2007]. Background information relevant to the IBM implemen-
tation is presented in this section, including descriptions of the sigma WRF and IBM-WRF
coordinates, governing equations, and discretization schemes.

5.2.1 Coordinate definition

The WRF model is based on a pressure coordinate, which Laprise defines in terms of
the dry hydrostatic pressure Phs. The coordinate is defined such that it is zero at the top
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Figure 5.1. Nested domains can be used to resolve both coarse and fine scale terrain.
Terrain-following coordinates conform to the gently sloping valley, while fine scale
terrain (in this case urban features) is resolved with the immersed boundary method.

of the computational domain and unity at the terrain surface. This yields the coordinate
definition η = (Phs−Phs top)/µ, where the column mass per unit area of the fluid is µ(x, y) =
Phs surface − Phs top. Note that we refer to the coordinate as ‘eta’ to be consistent with
Laprise and the WRF documentation [Skamarock et al., 2007], though the coordinate is
more commonly referred to in the literature with the variable sigma (σ).

With our implementation of the immersed boundary method, the sigma coordinate is
retained. The grid is transformed to align with gently sloping background topography, but
does not conform to terrain which is explicitly resolved by the IBM. Topography is defined
by superposition of small and large scale features in domains using IBM. This concept is
illustrated in figure 5.1, where urban scale terrain is centered in a shallow valley. Pressure-
based terrain-following coordinates are used to resolve the valley features in an outer, coarser
grid domain. In a finer, nested domain, the valley floor is defined by the sigma coordinate,
while the buildings are represented with the IBM.

IBM is often used to eliminate coordinate transformations; however, in the case of flows
within complex terrain it is beneficial to use a hybrid methodology that combines the use
of IBM with a transformed background coordinate. As the background sigma coordinate
conforms only to gently sloping terrain, grid skewness and the associated errors are largely
eliminated by using this IBM, although metric terms appear in the discretization for both
sigma WRF and IBM-WRF. Use of a hybrid coordinate facilitates grid nesting and increases
flexibility of the model. Hybrid techniques for using IBM on a curvilinear grid have been
pursued in aeronautical [Ghias et al., 2007] and cardiovascular [Ge and Sotiropoulos, 2007]
applications as well. A difference here is that additional complexities arise in the treatment
of nodes near the immersed boundary due to the time-dependent pressure coordinate.

5.2.2 Governing equations

This work uses the Advanced Research WRF (ARW) dynamics solver, which is a con-
servative finite-difference model that solves the non-hydrostatic compressible Navier-Stokes
equations [Skamarock et al., 2007]. The moist Euler equations are transformed into the iso-
baric terrain-following coordinate η, while additional terms such as diffusion, Coriolis, and
parameterized physics (represented by F ) are computed in physical space. A velocity η̇,
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defined as the contravariant velocity of the vertical coordinate, is introduced in the coor-
dinate transformation, necessitating the solution of an additional equation. Perturbation
variables are introduced to reduce numerical errors; the perturbations are defined as the
deviation from a time invariant hydrostatically balanced reference state. Pressure p, specific
volume (moist αm and dry αd), geopotential φ, and dry column mass µd are cast as mean
and perturbation values as ϕ = ϕ̄+ϕ′, where ϕ represents a generic variable and the overbar
indicates the hydrostatic base state. After substitution into the momentum equations, the
hydrostatically balanced terms cancel out. The transformed equations are given in equation
(5.1).

∂tµ
′
d +∇η · (µdV) = 0 (5.1a)

∂t(µdVH) +∇η · (µdVH ⊗V) + µd(αm∇ηp
′ + α′

m∇ηp̄)

+
αm

αd

(µd∇ηφ
′ + (∇ηφ)(∂ηp

′ − µ′
d)) = F

(5.1b)

∂t(µdw) +∇η · (µdVw)− g

(
αm

αd

∂ηp
′ +

αm − αd

αd

µ̄d − µ′
d

)
= F (5.1c)

∂tφ
′ + V · ∇ηφ− gw = 0 (5.1d)

In the above equations the velocity vector is V = (u, v, η̇), VH includes the horizontal
velocities, and ∇η = (∂x, ∂y, ∂η) operates on coordinate surfaces. Geopotential is defined as
φ = gz, so that ∇ηφ is a substitute for the Jacobian term ∇ηz.

In addition to conservation of mass and momentum, a conservation equation (5.2) is
solved for additional scalar quantities, such as potential temperature θ, water vapor qv, ice
qi, and passive scalars.

∂t(µdϕ) +∇η · (µdVϕ) = Fϕ (5.2)

Pressure is then diagnosed from the equation of state below, where γd is the ratio of heat
capacities of dry air Cp/Cv, po is the surface pressure, and Rd is the universal gas constant.

p = po

(
Rdθ

poαd

)γd

(5.3)

5.2.3 Discretization schemes

The governing equations are discretized on an Arakawa-C staggered grid. Uniform grid
spacing is used in the horizontal directions, and the grid may be stretched in the vertical
direction. Second through sixth order finite-difference schemes are available for discretization
of the advective terms. For the simulations presented here the default finite-difference scheme
for advection is used, which is fifth order for horizontal derivatives and third order for vertical
derivatives. Diffusive terms are calculated with a second order scheme.

A conservative split-explicit time integration scheme handles the full range of frequen-
cies admitted by the compressible Navier-Stokes equations [Wicker and Skamarock, 2002;
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Klemp et al., 2007]. In this scheme a third order explicit Runge-Kutta method is used
for time advancement of meterologically significant low frequency physical modes, while a
smaller time step is needed to account for the higher frequency modes such as acoustic
waves. Variables from the Navier-Stokes equations and the prognostic equation for potential
temperature are split into the value from the most recent Runge-Kutta time step t and a
perturbation on the acoustic time step τ , so that ϕ = ϕt + ϕτ . Horizontally propagating
acoustic modes are integrated using an explicit forward-backward scheme, and vertically
propagating acoustic modes and buoyancy oscillations are treated implicitly.

5.3 Treatment at the immersed boundary

IBM is used to represent the effects of boundaries on a non-conforming structured grid.
Boundary conditions are imposed with the addition of a body force term FB in the conserva-
tion equations for momentum and scalars (5.4). The body force term takes a zero value away
from the boundaries, but modifies the governing equations in the vicinity of the boundary.

∂tV + V · ∇V = −α∇p+ ν∇2V + g + FB (5.4a)

∂tϕ+ V · ∇ϕ = νt∇2ϕ+ Fϕ + FB (5.4b)

The exact details of this modification have varied among researchers since IBM was intro-
duced by Peskin in 1972. Generally IBM methods include a determination of the forcing
term, and an interpolation scheme to reconstruct the boundary condition at a surface that
is not coincident with computational nodes.

5.3.1 Flow reconstruction at the immersed boundary

The IBM used in this work falls into a category commonly referred to as discrete or
direct forcing which first appeared in the work of Mohd-Yusof [1997]. With this method
the velocity or scalar value is modified at forcing points near the boundary to enforce the
boundary condition, eliminating the need for explicit calculation of the body force term in
the numerical algorithm. The method is especially adept at handling rigid boundaries, and
produces a sharp representation of the fluid-solid interface. Within the direct forcing class of
methods, we have adopted a finite-difference approach where forcing is applied at ghost cells
located in the solid domain. This method has several advantages, most notably the straight-
forward extension from two to three dimensions. One drawback of this method is that it is
not strictly conservative at cut cells. Despite errors in local conservation, successful results
using this method have been reported extensively in the literature [Mittal and Iaccarino,
2005; Ghias et al., 2007].

In the case that the boundary is coincident with computational nodes, the boundary
condition can be imposed by assigning it at the coincident node. However when the boundary
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passes through the grid in an arbitrary manner, the grid points are not generally aligned
with the boundary. This is always the case with staggered grids, such as the Arakawa-C
grid used in WRF. An interpolation method must be used to determine the forcing needed
at actual computational nodes. The first step in reconstructing the flow around a boundary
is to specify the terrain independently of the grid. For implementation into the WRF model
we have allowed specification of terrain height at twice the resolution of the horizontal grid.
Terrain elevation is specified as a function of x and y, which is compatible with the typical
format of raw lidar and digital elevation data.

The next step is to identify cells which are cut by the immersed boundary. With a
staggered grid, cut cells must be determined for each flow variable that will have a boundary
condition imposed. Each node, located at the cell center and on each face of the staggered
grid, is marked as a solid or fluid node. Cells containing both types of nodes are defined
as cut cells. Flow variables can be reconstructed at fluid nodes as in Fadlun et al. [2000],
Gilmanov et al. [2003], Balaras [2004], Choi et al. [2007], or at solid nodes as in Gao et al.
[2007], Ghias et al. [2007], Mittal et al. [2008]. In this work flow variables are reconstructed
at solid nodes, a technique known as the ghost cell method. Ghost points are identified as
the layer of nodes belonging to cut cells that are within the solid region of the domain, as
shown in figure 5.2.

The value of the variable at the ghost cell which will enforce either a Dirichlet (5.5a) or
Neumann (5.5b) boundary condition at the immersed surface Ω must be computed.

ϕ = ϕΩ (5.5a)

n · ∇ϕ =
∂ϕ

∂n

∣∣∣∣
Ω

(5.5b)

Several different interpolation methods have been employed by researchers for the purpose
of making this calculation, ranging from linear interpolation to inverse distance weighting
schemes [Iaccarino and Verzicco, 2003]. For the pressure-based compressible flow equations
in WRF and the associated scalar equations, we have developed a unique bilinear reconstruc-
tion scheme appropriate for two-dimensional terrain. Three-dimensional terrain is included
by extending the method to use a trilinear interpolation scheme, as researchers have also
done in CFD codes [Mittal et al., 2008].

The bilinear interpolation method used in this work is illustrated in figure 5.2. First, the
location of the ghost point is reflected across the boundary in the surface normal direction,
and this is labeled an image point. When a Dirichlet boundary condition is used, the ghost
point value is related to the image point value with ϕG = 2ϕΩ−ϕI . For a Neumann boundary
condition the relationship is ϕG = ϕI−GI ∂ϕ

∂n

∣∣
Ω
, where GI is the distance between the ghost

and image points.

The value of the image point is calculated by using interpolation over the shaded region
in figure 5.2, where the interpolant is:

ϕ = c1 + c2x+ c3z + c4xz. (5.6)
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A B

C D

Figure 5.2. Four examples of the interpolation scheme used to reconstruct the im-
mersed boundary. Ghost nodes are marked with open circles, and image points with
open squares. The normal vector to the immersed surface connects the ghost and
image points. Interior nodes are indicated with a solid circle, and the neighbors used
in the interpolation scheme are marked with a solid square. The interpolation region
is shaded.

Four neighboring points are used to define the interpolation region, and are chosen as either
computational nodes or as points on the boundary. For Dirichlet boundary conditions,
the neighbors nearest to the image point are chosen. For Neumann boundary conditions,
neighbors nearest to the intersection of the surface normal with the boundary are chosen.

Because the boundary may intersect the computational cell in an arbitrary manner, the
IBM algorithm must include logical directives to choose neighbors for a variety of geometric
cases. Examples of the choices made for a Dirichlet boundary condition are shown in figure
5.2, but this illustration is not exhaustive. It can be seen in case A that if all four nodes
surrounding the image point belong to the fluid domain, then these are chosen as the nearest
neighbors. In case B, one of the surrounding computational nodes lies within the solid
domain, so in this case the boundary point in the surface normal direction is chosen as a
nearest neighbor. If two of the neighboring computational nodes are solid points, then two
boundary points are chosen, as in case C. In case D the ghost point is in close proximity to
the boundary, and with the time variant grid this point can move between the solid and fluid
domains. In close proximity cases, flexibility is added to the reconstruction scheme so that it
is applied at this node, regardless of being in the solid or fluid domain. If the ghost node lies
in the fluid domain, then it is excluded from being used as a neighbor, as solid or ghost nodes
are never used as neighbors in the interpolation scheme. Additionally, because the WRF
grid remains curvilinear as it follows large scale terrain features, we found that special care
must be exercised in determining the interpolation neighbors by accounting for horizontal
gradients in the vertical coordinate. This is done by searching for neighbors in each vertical
column of nodes independently, as adjacent nodes will not have identical vertical heights.
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The constants c from the interpolant (5.6) are determined by solving a system of equa-
tions (5.7) for each ghost point, where the rank is equal to the number of neighbors.

c = A−1ϕ (5.7)

The matrix A and the vector ϕ are dependent on the neighbors chosen for the interpolation
and the type of boundary condition being imposed. For Dirichlet boundary conditions,
equation (5.6) appears in the matrix equation. If the neighbor represented by equation
(5.6) is a computational node, ϕ takes the calculated value at the node. If the neighbor
is a boundary point, then the boundary condition (5.5a) is assigned to ϕ. For Neumann
boundary conditions, the gradient of the interpolation function (5.6) is substituted into the
boundary condition (5.5b), and equation (5.8) results.

∂ϕ

∂n
= c2nx + c3nz + c4(nzx+ nxz) (5.8)

For neighbors on the boundary, this equation is used in (5.7) instead. Once the interpolation
constants are determined, the value of the image point is found with equation (5.6). As a
last step, the variable value at the ghost node is calculated and assigned.

The method proposed here is similar to the interpolation schemes used by
Tseng and Ferziger [2003] and Mittal et al. [2008], but has additional favorable proper-
ties. Tseng and Ferziger used a linear interpolation scheme with three neighbors. The
boundary point and the two nearest computational nodes to the ghost point were used
for determining the weighting coefficients used in calculating the ghost point value. Large
extrapolation coefficients result when the nearest neighbors are close to the boundary point
and the ghost point is relatively far away. When large gradients exist in flow variables,
such as in velocity when a no-slip boundary condition is used, large weighting coefficients
cause the IBM to assign unphysical velocity values to the ghost points, often leading to
numerical instabilities. Our method eliminates this problem by choosing neighbors which
are closest to the image points when a Dirichlet boundary condition is used, and closest to
the boundary point when a Neumann boundary condition is used. This ensures that the
flow variable assigned at the ghost point has a physical value, and numerical stability is
maintained. Mittal et al. [2008] allow neighboring solid nodes to be chosen as interpolation
neighbors. These solid nodes are ghost nodes, leading to a coupling of the solution. An
additional iterative procedure is used to deal with the coupling of ghost cell values. Our
method avoids this additional step by only choosing neighbors in the fluid domain.

5.3.2 IBM in WRF

Initialization

Standard preprocessing routines are used to create domain input data for the IBM-WRF
model, creating a terrain-following grid based on the large scale topography. Variables are
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initialized throughout the entire domain, even though some points will be reclassified as solid
points during integration. Changes to WRF’s preprocessing procedure include defining small
scale terrain, which will be resolved with the IBM, separately from the large scale terrain,
to which the terrain-following coordinates conform. For cases with atmospheric physics the
land surface properties are modified to reflect the new location and properties of the small
scale terrain.

An additional domain initialization routine exists in the run time portion of the WRF
executable, and is called for all domains including the parent domain, newly created nested
domains, and moving domains. This initialization routine is where the IBM initialization
is added, and the immersed boundary condition is set for the prognostic variables. For the
simulations presented in this paper, velocity fields are initialized with a no-slip condition
and scalar fields are initialized with a zero flux condition.

During initialization, the IBM procedure begins with the determination of ghost points
and ends by assigning values at ghost points. The full values (base state plus perturbations)
of u, v, w, θ, and all scalars are used. First, nodes must be marked as interior or exterior to
the domain. To make this determination, the elevation of each grid cell must be converted
from geopotential by combining the base and perturbation states and dividing by gravity
z = (φ̄ + φ′)/g. Geopotential is defined on the horizontal faces of a computational cell,
coincident with the w velocity. Height is averaged to the locations of the other variables
which are located at the cell center and on vertical cell faces. Solid nodes, which are internal
to the terrain, are set to zero for velocity variables but the values of temperature, moisture,
and passive scalars are not modified at these points.

Several variables are not modified at the immersed boundary. Pressure and density are
defined by equations of state, and do not require a boundary condition. The equation for
perturbation geopotential (5.1d) is obtained by rearranging the definition of the coordinate
velocity η̇. As the coordinate is allowed to evolve independently of the immersed boundary,
an immersed boundary condition is not applied.

Integration

As noted in section 5.2, a time-split scheme is used for numerical integration. Velocity
and potential temperature are advanced on the small acoustic time step, while advection-
diffusion equations for moisture and passive scalars are integrated exclusively on the large
Runge-Kutta time step. IBM routines must be called on both time step frequencies to
enforce boundary conditions for the separate integrations. Additionally, because the isobaric
coordinate in WRF evolves in time, the IBM procedure of reconstructing the boundary with
geometric interpolation must be completed for each iteration of the solver.

During integration u, v, w, and θ must be updated during the acoustic time step, on
which the coupled perturbation variables are advanced (µdu)

τ , (µdv)
τ , (µdw)τ , (µdθ)

τ . IBM
routines are called after advancement of all variables on the acoustic time step. In order
to set the immersed boundary condition, the full uncoupled variable is calculated as ϕ =
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((µdϕ)τ+∆τ + (µdϕ)t)/µd, and the full grid height is calculated as z = (φ̄ + φ′t + φ′τ+∆τ )/g.
Full variable values are used at nodes included in the interpolation which determine the ghost
point value ϕG. The value of the coupled acoustic perturbation at the ghost point is then
calculated as (µdϕ)τ+∆τ

G = µdϕG − (µdϕ)t
G, and this coupled value is used at the ghost point

to enforce the boundary condition. Again, a boundary condition is not set at the immersed
boundary for φ′τ , and p′τ and α′

d
τ are diagnosed from state equations.

Scalar variables are advanced on the large Runge-Kutta time step. Potential temperature
and scalars are colocated, so that if the same type of boundary condition is used for all of
these variables, then the grid elevation, ghost point locations, and interpolation points from
the last acoustic time step are still valid. This information must only be recalculated if the
type of boundary condition varies. The IBM procedure as previously explained is used to
set the boundary condition on each scalar, which for this work only includes water vapor.
Lundquist et al. [2008b] performed simulations using the IBM with a passive tracer.

During integration the reconstructed solution is enforced at the first grid point within the
solid domain, but several options exist for the treatment of additional interior nodes. When
higher order finite-difference schemes are used, solid nodes are included in the stencil of fluid
nodes, and can affect the accuracy of the derivatives at these nodes. Iaccarino and Verzicco
[2003] used both a second order and a high order upwind finite-difference scheme, and
found that with the direct forcing type of IBM the treatment of interior nodes has little
or no effect on the external flow solution. A fourth order finite-difference scheme is used in
von Terzi et al. [2001] along with four different interior treatments. This study found that in
many cases the interior treatment did not affect the outer fluid flow, but when the accuracy of
near-wall gradients is critical to obtaining the correct flow solution, greater accuracy can be
achieved by using a one-sided finite-difference at the immersed boundary. We implemented
various treatment options for solid nodes, and tested both second order and higher order
advection schemes, and concluded that there was little effect for the test cases presented in
this manuscript. Therefore, we allow prognostic variables to evolve in accordance with the
governing equations within the solid domain, and use the default advection scheme (5th order
horizontal, 3rd order vertical). Options for eliminating this issue in the future are to reduce
the order of the finite-difference scheme at the immersed boundary, apply the reconstruction
scheme to multiple layers of ghost nodes, or use one-sided differences at the boundary.

5.4 Boundary conditions

Our current IBM implementation is capable of Dirichlet boundary conditions, as well as
Neumann conditions for scalar quantities in the surface normal direction. The sigma WRF
model uses a free slip bottom boundary condition or a wall model to approximate surface
fluxes of momentum. To verify the IBM implementation, a direct comparison of the sigma
WRF and IBM-WRF results is needed, with a common bottom boundary condition. A
discussion of the boundary conditions for both the sigma WRF and IBM-WRF models is
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included in this section, including a new no-slip boundary condition which we have added
to the existing WRF options.

5.4.1 Comparison of native and immersed boundary conditions

The native bottom boundary conditions in the sigma WRF model set the contravariant
coordinate velocity to zero and use a kinematic boundary condition for the Cartesian vertical
velocity. The set of equations given by (5.9a) and (5.9b) create a free slip bottom boundary
condition.

η̇surf = 0 (5.9a)

wsurf = V · ∇h (5.9b)

In equation (5.9b) h is a function specifying the terrain height. Horizontal velocities are
extrapolated to the surface using a quadratic Lagrange polynomial. The shear stress at the
boundary is implicitly set to zero, unless the effects of friction are taken into account by using
log-law similarity theory. Vertical gradients of scalars are zero unless forcing is provided by
the atmospheric physics parameterizations.

Our IBM implementation uses a no-slip bottom boundary condition which is commonly
used in CFD simulations over complex topography, such as urban simulations with explicitly
resolved buildings. To enable comparisons between IBM-WRF and WRF, we have added a
no-slip condition to WRF. This boundary condition is also useful for high resolution simu-
lations performed with the WRF solver, and enables comparisons between WRF and other
CFD codes that use a no-slip boundary condition. The no-slip implementation is described
in the following section, and this boundary condition is used for the verification simulations
presented in chapter 6.

Wall models which approximate surface fluxes of momentum are commonly used in NWP,
and have also been applied at immersed boundaries. Cristallo and Verzicco [2006] use a two-
layer model with the IBM, which reconstructs the velocity field at the first fluid point by
solving a simplified boundary layer equation. Choi et al. [2007] reconstructs the velocity
field by fitting the tangent component to a power law. These studies show promising results,
and the development of a wall model for IBM-WRF is in progress, with preliminary findings
reported in chapter 8.

When specifying surface fluxes, our IBM implementation can apply fluxes in either the
surface normal or vertical direction. It is critical that flux boundary conditions be enforced
in the surface normal direction over steep slopes, such as vertical building surfaces. WRF
prescribes vertical fluxes at the surface; therefore, the vertical flux boundary condition can be
used when simulations with IBM are compared directly to WRF, as is done in the idealized
valley simulation. To further simplify comparisons between WRF and IBM-WRF, we have
used a constant eddy viscosity. Turbulent viscosity is needed to compute surface fluxes, and
variation in this quantity would lead to differences in the enforced boundary condition.
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Figure 5.3. The Arakawa-C staggered grid used in WRF

5.4.2 Implementation of the no-slip boundary condition

As part of this work, a no-slip bottom boundary condition has been added to WRF as an
additional option beyond the standard boundary conditions available in the code. To add the
no-slip option, several modifications were made to the original WRF boundary conditions,
which are given in the previous section as (5.9). The first equation (5.9a) is still appropriate,
as it sets the contravariant velocity of the bottom coordinate to zero. This ensures that the
bottom coordinate follows the terrain, and does not change position in time. The kinematic
boundary condition given by (5.9b) is no longer valid, and is replaced with the requirement
that the Cartesian vertical velocity w = 0 on the boundary. The need to extrapolate the
horizontal velocities to the surface is eliminated, therefore no approximations are made in our
formulation of the no-slip boundary condition. With these changes, the no-slip boundary
condition is satisfied for the advective fluxes in the continuity and momentum equations.
The use of an Arakawa-C staggered grid (illustrated in figure 5.3) eliminates the need to
explicitly set the u and v velocities equal to zero on the surface. In the case of the vertical
derivative in the advective term of the horizontal momentum equation (5.1b) it can be seen
that because η̇ and VH are both zero at the surface, a one-sided vertical difference is sufficient
for calculating this term at the bottom boundary of the domain.

Boundary conditions must be imposed on the diffusive flux terms in the momentum
equation in order to achieve a no-slip condition. WRF employs eddy viscosity type turbulence
models so that the turbulent mixing terms take the form given by (5.10), and the stress tensor
is (5.11).

Fi = −∂τij
∂xj

+
∂

∂z
(∇Hz · τij) (5.10)
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τij = −µνtDij (5.11)

Diffusive flux terms are calculated in physical space, so that the second term in equation
(5.10) arises as the Jacobian of the coordinate transformation, where z is the physical height
of the coordinate. The variable µ is the column mass per unit area, νt is the turbulent eddy
viscosity, and Dij is twice the strain rate or deformation tensor and is defined as

Dij =
∂ui

∂xj

+
∂uj

∂xi

− (∇Hz)j
∂ui

∂z
− (∇Hz)i

∂uj

∂z
(5.12)

The locations of the components of the deformation and stress tensors are shown in figure
5.3. Diagonal elements of each tensor are located at the cell center, and off-diagonal elements
are located at vorticity points which are centered on the cell edges.

The presence of the Jacobian terms complicates the implementation of the no-slip bound-
ary condition by adding partial derivatives in the vertical direction to each term. The native
WRF boundary condition (which is free slip) uses a quadratic Lagrange polynomial to esti-
mate the u and v velocity at the surface for the purpose of calculating D11, D22, and D12.
This step is eliminated for the no-slip boundary condition, and a value of zero is used for u
and v on the surface. In the native WRF boundary condition D13 and D23 are zero because
they are located on the surface. For the no-slip boundary condition, the surface values are
calculated using a one sided difference. These new values of the deformation tensor are used
for calculating the turbulent stresses.

Finally, the equation for the diffusion terms includes additional terms arising from the
Jacobian of the coordinate transformation, as seen in equation (5.10) above. With a free slip
boundary condition, τij is zero on the surface. To satisfy the no-slip boundary condition,
certain elements of τij must now be calculated at various locations on the surface, such as
below the cell center, below u points, etc. The calculation of these additional surface stress
terms is consistent with the procedure previously described for evaluating deformation at
the surface, and the methods employed are one-sided differences, setting velocities to zero
at the surface, and averaging surface values to intermediate locations.

5.5 Inclusion of atmospheric parameterizations

Atmospheric parameterizations often provide surface forcing in NWP models. Surface
physics interact with the lowest model level when terrain-following coordinates are used,
therefore, it was necessary to modify these routines to couple them to the immersed bound-
ary. The set of schemes that have been coupled to the immersed boundary are the Rapid
Radiative Transfer Model (RRTM) for longwave radiation, the MM5 (Dudhia) model for
shortwave radiation, the MM5 surface layer scheme, and the NOAH land-surface model.
Documentation of these schemes can be found in Skamarock et al. [2007] and the references
within.
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5.5.1 Radiation models

The radiation schemes currently used in WRF are column models, where each column is
treated independently. The terrain is treated as if it is a horizontal plane at each column.
To couple this model with the immersed boundary method, the vertical integration limits
are modified to exclude any portion of the atmosphere below the terrain. Additionally,
variables such as temperature, pressure, and grid spacing must be modified in the vicinity
of the immersed boundary by extrapolating these values onto the surface using data from
fluid points above the immersed terrain. The modified data for the atmospheric column is
then used in the existing radiation routines.

5.5.2 Surface physics

WRF calculates exchange coefficients of heat, moisture, and momentum using the MM5
surface layer model which is based on Monin-Obukhov similarity theory. Stability regimes
are determined by the bulk Richardson number, defined by equation 5.13, where g is the
gravitational constant, z is a reference height above the terrain, zsurf is the terrain level, θv

is virtual potential temperature, and V is the horizontal wind speed which has been modified
by a vertical convection velocity.

Rib =
g(θv(z)− θv(zsurf ))(z − zsurf )

θv(z)V (z)2
(5.13)

WRF chooses the reference height z to be height of the first computational cell, so that the
vertical grid spacing defines the offset zo between the reference height and the surface. For
the immersed boundary method, the reference height must be modified so that it is located
above the terrain, rather than at the first grid point in the domain. With IBM-WRF, the
offset zo is added to the terrain height zsurf , as shown in figure 5.4. This modified reference
height is above the immersed boundary, but unlike in the WRF case, it does not coincide with
a computational node. Velocities and temperature, as well as those quantities needed for
the conversion to virtual temperature must be interpolated to the modified reference height.
Additionally the surface values must be replaced with values on the immersed boundary. The
Monin-Obukhov length scale is then calculated based on the stability class. Next, the 2 m and
10 m reference height data are calculated. Finally, the exchange coefficients are calculated for
heat and moisture. Again, the values used in these calculations are modified for the immersed
boundary following the example given above for the bulk Richardson number. It is important
to note that while scalar fluxes are calculated with this approach, surface momentum fluxes
are not based on Monin-Obukhov theory when the no-slip boundary condition is used, as
these conditions are incompatible. This is true of both the native WRF and IBM-WRF
computations shown here.

WRF uses the NOAH land-surface model to provide heat and moisture fluxes at the land
surface, using radiative and atmospheric forcing from the radiation and surface layer schemes,
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Figure 5.4. Examples of the modified reference height z used at the immersed bound-
ary. Ghost nodes are marked with open circles, and modified reference heights with
open squares.

as well as land-surface properties to determine the fluxes. These fluxes serve as the bottom
boundary conditions for potential temperature and water vapor. This model also calculates
a water budget over four model layers, including physical effects like evapotranspiration and
runoff. Many of the quantities used by the land-surface model have already been modified
to include the effects of the immersed boundary by the models discussed above. The NOAH
model also makes use of similarity theory. As before, the reference height is added to the
height of the immersed boundary, and the variables used in the calculation are modified
accordingly.

5.6 Conclusions

We have developed an immersed boundary method for WRF which is sufficiently flex-
ible to work with the time variant isobaric sigma coordinate which is native to WRF and
accurately enforces Dirichlet and Neumann boundary conditions within the mode splitting
time integration scheme. A unique interpolation scheme is used for the IBM, which avoids
problematic numerical instabilities and the need for an iterative procedure to decouple the in-
terior and exterior solutions as in previous methods [Tseng and Ferziger, 2003; Mittal et al.,
2008].

Our IBM-WRF implementation is capable of handling highly complex terrain, while
maintaining atmospheric parameterizations included in the WRF mesoscale model. We
coupled a set of surface parameterizations to the immersed boundary, providing realistic
land-surface forcing. These parameterizations may be appropriate for some scales where
IBM is used, such as in mountainous terrain, but may need to be modified in urban terrain
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(where traditional similarity theory may not be applicable). Regardless, the capability exists
to couple IBM-WRF to surface parameterizations when they are available. This means
that IBM-WRF can be used in a grid-nesting configuration to accommodate synoptic scale
lateral boundary conditions in an urban environment with grid resolution fine enough to
explicitly resolve flow around buildings. We can therefore combine the best properties of
CFD (capable of resolving buildings) and mesoscale codes (capable of handling atmospheric
physics and boundary conditions). A standard terrain-following WRF simulation can be
used at mesoscales, with a seamless transition to IBM-WRF at finer scales. Furthermore,
IBM eliminates grid distortion which is present high above the land surface when using sigma
coordinates over steep terrain.

Drawbacks to this approach are that it can be expensive to maintain fine near-surface
grid resolution of the immersed boundary at elevated heights, such as at mountain peaks.
The hybrid sigma and IBM coordinate may reduce this constraint by allowing gentle slopes
in topography to be represented with sigma coordinates, while steep slopes are represented
with the IBM. This could allow for increased resolution near the ground, while minimizing
the number of nodes below the terrain. There are increased computational costs associated
with the IBM algorithm, however, the IBM allows simulations of flow over terrain which
could not otherwise be handled by WRF. Opportunities exist for optimization as the code
is developed further.

The ability to integrate IBM simulations within a mesoscale model with full atmospheric
physics is a significant milestone in the progress of atmospheric boundary layer simulations.
The development of IBM-WRF enables a range of applications, including building-resolving
simulations of urban dispersion for emergency response efforts or even urban air quality
modeling. Similarly, simulations of flow in highly complex mountainous terrain with near-
vertical slopes can now be accommodated without compromising the accuracy or stability
of the solution. Extension to three dimensions is been relatively straightforward and is
demonstrated in chapter 7. The extension simply requires a larger interpolation stencil for
the IBM algorithm. Incorporation of similarity theory for surface momentum fluxes is also in
progress (Chapter 8) and will allow even more realistic application to atmospheric boundary
layer flows.
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Chapter 6

Validation of the immersed boundary

method∗

The accuracy of the immersed boundary solver is examined in this chapter by comparing
the sigma-coordinate WRF and IBM-WRF solutions for canonical flows. Validation cases
include two-dimensional pressure driven flow over an isolated hill and idealized valley simu-
lations with both specified and parameterized surface fluxes. Results are also presented for
flow over two blocks of the New York City skyline, which demonstrate the method’s ability
to handle extremely complex terrain with sharp corners and vertical terrain gradients.

6.1 Introduction

Simulations are presented for canonical cases with shallow terrain slopes, and compar-
isons between simulations with the native terrain-following coordinates and those using the
immersed boundary method show excellent agreement. Validation cases demonstrate the
ability of the immersed boundary method to handle both Dirichlet and Neumann boundary
conditions. Additionally, realistic surface forcing can be provided at the immersed boundary
by atmospheric physics parameterizations, which are modified to include the effects of the

∗This chapter is a reproduction (with minor modifications) of a portion of the paper “An Im-
mersed Boundary Method for the Weather Research and Forecasting Model” by Katherine A.
Lundquist (the principal author), Fotini Katopodes Chow, and Julie K. Lundquist, published
in Monthly Weather Review, March 2010, Volume 138(3), pages 796-817 [Lundquist et al.,
2010], c©Copyright 2010 American Meteorological Society. The full copyright notice is in-
cluded as appendix C.
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immersed terrain. Using the immersed boundary method, WRF is capable of simulating
highly complex terrain, as demonstrated by a simulation of flow over an urban skyline.

6.2 Witch of Agnesi hill simulations

The performance of the IBM method is examined in this section by considering flow over
a two-dimensional hill defined by the Witch of Agnesi curve. This case is often used to verify
that topographic forcing is correct at the bottom boundary, and is chosen here because the
terrain slopes are shallow enough so that a direct comparison can be made between WRF
and IBM-WRF.

The test flow case is startup flow over a two-dimensional hill. The terrain height ht

is defined by the Witch of Agnesi curve given in equation 6.1 using a peak height hp and
mountain half-width a of 100 m each.

ht(x) =
hp

1 + (x/a)2 (6.1)

The flow is initialized with a neutral and quiescent sounding, and driven with a constant
pressure gradient in the x direction. The number of grid points used in each direction is
(nx, ny, nz) = (120,2,172) for a total domain size of (X, Y, Z) = (595 m, 5 m, 600 m). In
the horizontal dimensions a constant 5 m grid spacing is used. In the vertical direction the
grid is not stretched in η, however, the pressure coordinate naturally results in stretching in
physical space. The WRF and IBM-WRF grids are shown in figure 6.1. At initialization the
minimum vertical grid spacing in the WRF grid is ∆zmin ≈ 2.85 m, and occurs at the peak
of the hill, while the maximum spacing is ∆zmax ≈ 3.52 m at the domain top. In the IBM
domain the vertical grid spans the entire 600 m domain height, giving a more uniform (and
slightly coarser) grid resolution, with ∆zmin ≈ 3.42 m and ∆zmax ≈ 3.60 m.
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Figure 6.1. The WRF grid with terrain-following coordinates is shown (left) in con-
trast with the IBM-WRF grid (right). Terrain-following coordinates map to the
bottom boundary, while with IBM the coordinates remain flat. Every fifth grid line
is shown.
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Table 6.1. Location of minimum and maximum velocities for steady state flow over a
hill in the sigma WRF simulation. Velocity values at this location for both IBM-WRF
and sigma WRF. Differences between the IBM and WRF solutions are given as both
absolute and relative values.

Location [m] Velocity [m s-1] Difference
x z IBM WRF Absolute [m s-1] Relative

umin 122.5 49.6 -0.203 -0.208 0.005 2.4%
umax 402.5 500 10.736 10.713 0.023 0.2%
wmin 192.5 71.6 -0.077 -0.083 0.012 14.5%
wmax 272.5 107.6 0.192 0.192 -4.7e-5 0%

Periodic boundary conditions are used at the lateral boundaries. A no-slip boundary
condition is set on velocity at the terrain surface, along with a zero flux condition on tem-
perature. At the top of the domain, the native WRF boundary condition is used (isobaric
and a material surface), with a diffusive damping layer 50 m in depth.

The solution is integrated until a steady state solution is obtained. Figure 6.2 shows
the u velocity at the domain center for three different heights for 7 days of simulation time.
Evolution of the velocity field is nearly identical between the WRF and IBM-WRF solutions,
indicating that the rate of convergence toward steady state is not affected by the IBM.

Steady state results are shown for the hill case after 7 days (168 hours) of simulation
time. Figure 6.3 shows u and w velocity profiles at several locations across the domain. It
can be seen that the IBM solution matches the no-slip WRF solution almost exactly. To
compare the results further, the IBM and WRF solutions are linearly interpolated onto a
common terrain-following grid. Differences in the simulations are quantified in table 6.1,
where maximum and minimum velocity values for the no-slip WRF solution are presented
along with velocity values for the IBM-WRF solution at the same location. Given the
different vertical grid spacing in the two simulations and the presence of errors associated
with terrain-following coordinates in the sigma WRF simulation, the excellent agreement is
remarkable.

Contours of the same data are shown in figure 6.4, where contours of velocity and the
difference between the IBM and WRF solutions are included. The u velocity increases as
it crests the hill, and areas of weak recirculation are observed in the troughs. In the IBM
solution a reverse flow develops under the terrain. This flow can be seen in figure 6.3, however
in figure 6.4 data below the hill is omitted because the IBM solution is interpolated onto
a common terrain-following grid. The maximum differences present in figure 6.4 are 0.039
and -0.021 m s-1 for the u and w fields, respectively. The domain averaged differences are
smaller, with ∆Uave = 0.017 and ∆Wave = 6e-4 m s-1.
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Figure 6.2. The u velocity component is plotted at the domain center for three
different heights indicated by stars (left). The first point is 10 m above the terrain
peak hp, the second is 200 m, and the third is 400 m. IBM-WRF is plotted with
a black line, while WRF is shown in grey (right). Markers are placed at 12 hour
intervals. The WRF and IBM-WRF solutions are virtually indistinguishable .

0 100 200 300 400 500
0

100

200

300

400

500

Width [m]

E
le

va
tio

n 
[m

]

0 5 10 0 5 10 0 5 10

 

 
IBM−WRF

WRF

0 100 200 300 400 500
0

100

200

300

400

500

Width [m]

E
le

va
tio

n 
[m

]

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1

 

 
IBM−WRF

WRF

Figure 6.3. Profiles of u and w velocity [m s-1] are shown for steady state flow over a
hill at 168 hours.
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Figure 6.4. Contours of u (top left) and w (bottom left) velocity are shown for IBM-
WRF for steady state flow over a hill at 168 hours. Contour intervals are 1 m s-1 for
u and 0.02 m s-1 for w. Contours of the difference between the IBM-WRF and WRF
solution are shown for u (top right) and w (bottom right) with intervals of 0.005 and
0.004 m s-1 respectively.

86



0 100 200 300 400 500
0

100

200

300

400

500
E

le
va

tio
n 

[m
]

Width [m]

θ [K]

288 288

288

288288

288

0 100 200 300 400 500
0

100

200

300

400

500

Width [m]

Absolute Difference in θ [K]

−0.00015−0.00013

−0.00013

−0.00017

−0.00017
−0.00017
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Contours of potential temperature for the IBM solution, and differences in the IBM and
WRF solutions are shown in figure 6.5. It can be seen that with no surface heating, the
IBM solution maintains the initialization temperature of 288 K, while there is a very slight
increase in temperature in the WRF domain. It was found that small errors developed in
the WRF solution due to the native bottom boundary condition, which uses a Lagrange
polynomial to extrapolate temperature to the surface.

6.3 Idealized valley simulations

In the previous section it was shown that our IBM implementation is able to reproduce
results from numerical simulations using the native terrain-following coordinate in WRF.
A no-slip boundary condition was imposed on the velocity at the terrain surface and a
zero gradient boundary condition was used for potential temperature. These two boundary
conditions are adequate for studying a variety of flows, and are commonly the only boundary
conditions available in a traditional CFD code. For realistic atmospheric flows it is necessary
to represent non-zero fluxes at the surface, such as those of heat and moisture. Here we
examine non-zero gradient boundary conditions on the immersed boundary in the context
of thermally induced slope flows in an idealized valley.

The idealized valley terrain and initialization are similar to those used in the valley winds
studies of Rampanelli et al. [2004] and Schmidli et al. [2008]. The valley terrain is defined
by ht = hp ∗ hx, where the peak height is hp = 1.5 km and the valley profile hx is given
by equation 6.2. In this equation, the valley floor half-width is Vx = 0.5 km, and the hill
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half-width is Sx = 9 km.

hx(x) =



0 |x| ≤ Vx

0.5− 0.5 cos
(
π |x|−Vx

Sx

)
Vx < |x| < Vx + Sx

1 Vx + Sx ≤ |x| ≤ Vx + Sx + Px

0.5 + 0.5 cos
(
π |x|−(Vx+Sx+Px)

Sx

)
Vx + Sx + P + x < |x| < Vx + 2Sx + Px

0 |x| ≥ Vx + 2Sx + Px

(6.2)

Again, the terrain slopes are gentle enough that a direct comparison can be made between
WRF using terrain-following coordinates and IBM-WRF. This case is more challenging for
the immersed boundary method because the flow is induced by the approximate boundary
conditions at the immersed surface itself, instead of being induced by a large scale pressure
gradient or mean flow.

The domain is initialized with a quiescent sounding that is moist and stably stratified.
The sounding prescribes a constant 40% relative humidity and the potential temperature is
specified by θ(z) = θs + Γz + ∆θ [1− exp(−βz)], where θs = 280 K, Γ = 3.2 K km-1, ∆θ =
5 K, and β = 0.002 m-1.

For the WRF simulation with terrain-following coordinates, the total domain size is
(X, Y, Z) = (60 km, 0.6 km, 10 km), where the number of grid points used in each direction
is (nx, ny, nz) = (301,3,60). When IBM-WRF is used, the bottom of the domain is lowered to
200 m below the zero level, so that the domain size is (X, Y, Z) = (60 km, 0.6 km, 10.2 km).
This allows a minimum of two grid points below the immersed terrain, and the number of
grid points becomes (nx, ny, nz) = (301,3,62). In each simulation the horizontal grid spacing
is ∆X = ∆Y = 200 m. For the terrain-following coordinate, the minimum vertical grid
spacing occurs at the mountain peaks (∆Zmin = 95.6 m), and the maximum at the domain
top (∆Zmax = 307.8 m). For the IBM-WRF grid the minimum vertical grid spacing occurs
at the lowest grid level which is below the terrain (∆Zmin = 101.9 m), and the maximum at
the domain top (∆Zmax = 307.4 m).

Total integration time for the simulation is 12 hours, starting at 6:00 UTC and ending at
18:00 UTC. A constant eddy viscosity of 60 m2 s-1 is used in the turbulent diffusion terms,
which is consistent with the typical range of daytime eddy diffusivites of 10 to 100 m2 s-1

[Yasuda, 1988]. When this eddy diffusivity is used the mixing is strong enough to maintain
a neutral stability profile during surface heating, therefore avoiding the formation of thermal
convection cells and making instantaneous comparisons between simulations possible.

Both uncoupled and coupled cases are considered. In the uncoupled cases, the surface
heating is specified as a function of time, and there are no surface or land attributes such as
vegetation or soil type. This allows verification of the surface flux condition at the immersed
boundary without the added complexity of the land-surface model. In the coupled cases, the
surface fluxes are prescribed by atmospheric parameterizations, which have been modified
to recognize the immersed boundary as the terrain surface. Periodic boundary conditions
are used at the lateral boundaries. A diffusive damping layer 3.8 km thick is used at the top
of the domain, and a no-slip boundary condition is used at the terrain surface .
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Figure 6.6. Profiles of u (top) and w (bottom) velocity [m s-1] for IBM-WRF and
WRF with terrain-following coordinates at 12:00 UTC.

6.3.1 Specified surface heating

In this case the land-surface model is turned off and a Neumann boundary condition is
applied to potential temperature by defining the surface heat flux to be Q(t) = Qmax sin(ωt),
where the maximum sensible heat flux is Qmax = 200 W m-2 and a period of ω = 2π/24 hrs
is used to represent a daytime heating cycle.

Figure 6.6 depicts profiles of u and w velocity at 12:00 UTC, the time of maximum
radiative forcing. A clear circulation pattern forms with anabatic winds converging at the
mountain peaks, and subsidence at the valley center. The profiles match very well, and
show that the boundary condition at the immersed boundary is actually achieved. Figure
6.7 shows instantaneous profiles of potential temperature at the valley center as it evolves
in time. The evolution of the profiles for the IBM and WRF simulations compare well, and
excellent agreement is achieved in the development of the mixed layer.

To further analyze the differences between the IBM-WRF and WRF solutions, both time
and domain averaged differences are calculated on a common and time-independent terrain-
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Figure 6.7. Profiles of potential temperature [K] at the valley center for times 6:00,
9:00, 12:00, 15:00 and 18:00 UTC. IBM-WRF is shown as a black line, and WRF with
terrain-following coordinates is shown in grey. Markers are placed at every fourth data
point.

following grid. Once the two solutions are on a common grid they may be compared directly,
although the error introduced by the interpolation is unknown. Spatial variations in the two
solutions are calculated for a given variable φ with equation (6.3a). Temporal variations are
calculated with equation (6.3b).

∆φ(x, η) = φIBM(x, η, t)− φWRF (x, η, t)
t

(6.3a)

∆φ(t) = |φIBM(x, η, t)− φWRF (x, η, t)|
x,η

(6.3b)

The results of the time averaged spatial differences are presented in figures 6.8 and 6.9.
Figure 6.8 shows time averaged differences in θ, where ∆θmax = 0.099 K and ∆θmin = -
0.023 K. The IBM simulation predicts a higher temperature than WRF at the surface with
the maximum difference occurring on the valley slopes, and a slightly cooler atmosphere
aloft in the valley center. The higher surface temperature is attributed to differences in the
vertical grid spacing. In the sigma WRF case, the average spacing between the first potential
temperature node and the surface is ∆zave = 51.0 m, where as the spacing is ∆zave = 63.5
m for IBM-WRF. As the vertical grid spacing increases, a larger temperature increment is
needed between the surface and the first vertical grid point in order to maintain the specified
flux boundary condition. Differences in θ contribute to the differences in velocity shown in
the next two figures. Velocity differences are ∆Umax = ∆Umin = ±0.254 m s-1 and ∆Wmax

= 0.133 m s-1 and ∆Wmin = -0.068 m s-1. In u the largest differences are seen on the valley
slopes, specifically inside of the valley. Additionally, the largest differences in w are seen at
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Figure 6.8. Time averaged differences between IBM-WRF and WRF for potential
temperature. Differences are absolute with units of Kelvin.

the valley peaks, where there is a slight offset in the location of the buoyant plumes. These
differences are small considering that the simulations have different grids, and use different
methods for specifying boundary conditions.

Differences between the simulations can also be viewed as a function of time, as in figure
6.10. It can be seen here that the potential temperature fields are different at initialization.
This difference is due to interpolation errors from both interpolating a non-linear initial
sounding profile onto the WRF and IBM-WRF grids, and interpolating the solutions onto a
common grid for comparison. Excellent agreement is seen in the potential temperature field,
and the differences are on the same order of magnitude at the end of the simulation as at
initialization. The velocity fields are initialized as quiescent, therefore they are identical at
initialization. The differences in velocity rise during the first thirty minutes of the simulation,
and then rapidly decrease. A stair step type appearance in the flow is observed in the first
thirty minutes of the IBM simulation, as velocities at discrete points adjust to the smooth
immersed boundary. As flow patterns develop, the stepped appearance quickly smoothes
out and disappears. This peak indicates that differences could be reduced by adding spin-up
time to the simulation. It is important to note that the differences do not grow in time,
and in fact trend downwards as simulation time increases (even though the solution is time
dependent).
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Figure 6.11. Domain-averaged downward longwave and shortwave radiation for the
coupled simulations. Markers are placed at 15 minute intervals.

6.3.2 Coupled surface heating

In this section the simulations are fully coupled, meaning that the surface fluxes are
calculated by the radiation and land-surface schemes. The domain set-up is as described
for the cases with specified heating, however, in the coupled cases soil properties are also
initialized. The valley is located at 36◦ North, 0◦ East. The simulation date is March 21,
2007, and the period is again from 6:00 to 18:00 UTC. The soil is initialized with uniform
properties, with a soil type of sandy loam, vegetation type Savannah, and vegetation fraction
0.1. The soil temperature is initialized at equilibrium with the atmospheric temperature at
the surface, and soil moisture is set at a 20% saturation rate. Four vertical levels are used
in the soil model with depths of 0.1, 0.3, 0.6, and 1 m for a total depth of 2 m. The Rapid
Radiative Transfer Model (RRTM) is used for longwave radiation, and the MM5 (Dudhia)
scheme is used to model shortwave radiation. The MM5 surface layer model is used along
with the NOAH land-surface model. As described in section 5.5 these schemes have been
modified so that they are coupled to the immersed boundary.

Domain averaged longwave radiation varies slightly between the two simulations., as seen
in figure 6.11. The WRF and IBM-WRF cases match almost exactly at the first data point
(6:15), but diverge slightly during the simulation. At the end of the simulation (18:00) the
difference in longwave radiation is 1.15 W m-2, or 0.44%. Differences are even smaller for
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Figure 6.12. Instantaneous spatial variation in downward longwave and shortwave
radiation at 12:00.

shortwave radiation, where nearly perfect results are achieved. The maximum difference
between the two solutions is 0.50 W m-2 or 0.06%, and occurs at 14:00 UTC.

The spatial variations in longwave and shortwave radiation are documented in figure 6.12,
where they are shown at 12:00 UTC. There is a difference of about 56 W m-2 in longwave
radiation from the valley floor to peak. In comparison, at noon there is a maximum difference
of 1.17 W m-2 in the two simulations. This shows that any error created by coupling the
radiation scheme to the immersed boundary is negligible in comparison to variations due to
terrain height. Shortwave radiation varies by about 31 W m-2 from valley peak to trough,
with a maximum difference of 0.54 W m-2 between the simulations.

Domain averaged heat and moisture fluxes from the land-surface model are plotted in fig-
ure 6.13. The peak domain averaged heat flux occurs at 12:30. In the IBM-WRF simulation
this peak is 193.80 W m-2, and in the WRF simulation it is 193.31 W m-2. The maximum
difference between the two simulations occurs later in the day at 14:30, and is a difference of
1.10 W m-2 or 0.68%. Differences in moisture fluxes are also minimal. The maximum mean
difference in the simulations occurs at 12:30, and is 5.39e-8 kg m-2 s-1 in magnitude, which
is 0.82% of the WRF value.

Figure 6.14 shows the spatial variation in the heat and moisture fluxes at three different
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Figure 6.13. Domain averaged upward heat and moisture flux for the coupled simu-
lations. Markers are placed at 15 minute intervals.
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Table 6.2. Maximum and minimum values of prognostic variables for the uncoupled
and coupled idealized valley cases at noon. Differences are instantaneous, and calcu-
lated at the location of the indicated maximum or minimum value. Units are in m
s-1 for velocity, Kelvin for potential temperature, and kg kg-1 for water vapor mixing
ratio.

Difference
IBM WRF Absolute Relative

uncoupled

umin -2.029 -1.913 -0.116 6.1%
umax 2.029 1.913 0.116 6.1%
wmin -0.226 -0.243 0.018 7.4%
wmax 1.400 1.369 0.032 2.3%
θmin 293.689 293.684 0.005 0%
θmax 316.337 316.328 0.009 0%

coupled

umin -2.011 -1.912 -0.098 5.1%
umax 2.011 1.912 0.098 5.1%
wmin -0.194 -0.215 0.021 9.7%
wmax 1.198 1.253 -0.054 4.3%
θmin 293.149 293.135 0.015 0%
θmax 316.338 316.328 0.010 0%
qv min 1e-4 1e-4 2e-7 0.2%
qv max 0.002 0.002 7e-7 0%

times (9:00, 12:00, 15:00). At 12:00 UTC, spikes in the heat flux are seen near the valley
peaks. The cause of this variation is the interpolation of variables to a modified reference
height for use in the similarity parameters, as described in section 5.5. The modified reference
height in the IBM case may lie between the immersed surface and the first grid point above
the immersed surface or between the first two computational nodes above the surface. This
interpolation difference occasionally leads to errors in the calculated heat flux in the IBM-
WRF simulations. These spikes in heat flux do not affect the flow in this case, and plots of
the velocity fields look nearly identical between the uncoupled and coupled cases. This is
demonstrated in the data given in table 6.2, where the values and differences for the IBM and
WRF simulations are given for the prognostic variables in both the uncoupled and coupled
cases. The approximately 5% difference in u velocity is expected due to the differences in
grids, application of the boundary conditions, and the added difficulty of forcing the flow
at the immersed boundary rather than at a larger scale. The largest difference of 9.7% is
seen in w when the values are small, and a small absolute difference leads to a large relative
difference.

Land-surface models for soil moisture can be used independently of atmospheric simu-
lations, but when coupled the top boundary conditions of the land-surface model are set
with inputs from the atmosphere. When IBM is used, it provides boundary conditions to
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each model (WRF and NOAH) simultaneously. A comparison of soil moisture is shown in
Figure 6.15 for the IBM-WRF and WRF simulations. At initialization the soil moisture
has a constant volumetric water content of 0.0868 m3 m−3. During the simulation the soil
begins to dry as moisture is transferred to the atmosphere. The depth to which this occurs
is affected by the terrain height, and it can be seen that the soil remains slightly more moist
at the terrain peaks in comparison to the valley floor and the terrain outside of the valley.
Similar results are achieved in both of the simulations.

6.4 Two-dimensional urban terrain simulations

The IBM allows resolution of urban terrain, enabling WRF to simulate flows which
cannot be computed using a standard terrain-following coordinate. To demonstrate this
capability, we have modeled flow over a two-dimensional slice of downtown New York City.
The tallest building that is included has a height of 248m. The domain size is (X, Y, Z) =
(698m, 4m, 600m) with ∆x = 2m, ∆y = 2m, and ∆z ≈ 2.4m. The total number of grid
points in each direction is (nx, ny, nz) = (350, 3, 250). At initialization the atmosphere is at
rest, and the flow is driven by a constant horizontal pressure gradient. Boundary conditions
are identical to those previously used.

Figure 6.16 shows flow streamlines and the velocity magnitude at three different snapshots
in time. After 30 minutes of flow spin up, recirculation regions form behind several of the
buildings. By 2 hours there is a large area of recirculation between the buildings, and the
flow velocities are fairly weak in these regions.

This case demonstrates the ability of our IBM algorithm to handle a wide variety of
geometric cases while retaining numerical stability. Several configurations of ghost points
and nearest neighbors are tested in this case, which were not present in the idealized hill
and valley cases. As the isobaric coordinates evolve it can be challenging to maintain a well
conditioned interpolation matrix in equation (5.7); however, this case demonstrates that we
have developed a capable and robust IBM algorithm.

The focus of this work is the development and accuracy of boundary conditions at the
immersed surface; however, for complex cases such as with urban terrain there are many
factors which impact the accuracy of the simulation beyond the treatment of the lower
boundary. Subfilter scale turbulence models and near-wall stress models play a large role in
obtaining accurate solutions of flow in complex terrain. This is true for all types of grids
regardless of being body or non-body conforming. Some of these additional challenges for
high-resolution simulations of complex flows in the WRF model have been addressed in
the work of Mirocha et al. [2007] and Lundquist et al. [2007], where the use of improved
turbulence models is investigated.
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Figure 6.16. Velocity contours [m s -1] and streamlines of startup flow over two-
dimensional building data from New York City using IBM-WRF. Three different
times are shown: 30 min (top), 2 hrs (middle), and 10 hrs (bottom).
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6.5 Conclusions

The canonical cases of pressure driven flow over a hill and thermally driven flow in a
valley were used to validate the implementation of the IBM by comparing the results to
those achieved with the native WRF terrain-following coordinate. In the hill case, the
domain averaged differences between the simulations at steady state were ∆Uave = 0.017
and ∆Wave = 6e-4 m s-1. In the valley case the domain averaged differences were ∆Uave =
0.010 and ∆Wave = 0.002 m s-1 (uncoupled), and ∆Uave = 0.011 and ∆Wave = 0.002 m s-1

(coupled) when averaged over the duration of the daytime diurnal cycle.

These errors are remarkably small when considering that there were unavoidable differ-
ences in the grids and application of boundary conditions in the WRF and IBM-WRF cases.
This success was only achieved after careful development of our IBM within the WRF com-
putational framework. Considerations were made to accommodate the fully compressible
Navier-Stokes equations, the transformation of these equations into time variant pressure-
based sigma coordinates, and the discretization of the equations with a time-split integration
scheme. A simulation of flow over urban terrain demonstrated the ability of IBM-WRF to
handle highly complex terrain, which could not be simulated using sigma coordinates.
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Chapter 7

Extended implementations of the

immersed boundary method

This chapter describes a three-dimensional immersed boundary method (IBM) that facil-
itates the explicit resolution of complex terrain within the Weather Research and Forecasting
(WRF) model. Two different interpolation methods, trilinear and inverse distance weighting,
are used at the core of the IBM algorithm. Functional aspects of the algorithm implementa-
tion and the accuracy of results are considered. Simulations of flow over a three-dimensional
hill are preformed with both WRF’s native terrain-following coordinate and with both IB
methods. Comparisons of flow fields from the three simulations show excellent agreement,
indicating that both IB methods produce accurate results. When ease of implementation
is considered, however, inverse distance weighting (IDW) is superior. Furthermore, inverse
distance weighting is shown to be more adept at handling highly complex urban terrain,
where the trilinear interpolation algorithm breaks down. This capability is demonstrated by
using the inverse distance weighting core of the IBM to model atmospheric flow in downtown
Oklahoma City. Flow in the Oklahoma City domain is simulated concurrently with an outer
domain with flat terrain using one-way nesting.

7.1 Introduction

A version of our IBM suitable for two-dimensional terrain is presented in chapter 5. In
this chapter, the method has been extended to accommodate fully three-dimensional ter-
rain and is now capable of running on highly parallelized machine architectures. A key
component of the immersed boundary method is the formulation of the forcing term used
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to impose the correct boundary condition at the immersed surface. Because the immersed
surface is not coincident with the grid, an integral part of the immersed boundary algorithm
is the interpolation method used in the calculation of the forcing term. In this chapter, we
examine the use of two different interpolation methods. In the first interpolation method,
which is trilinear, weighting coefficients are determined by inverting a Vandermonde matrix.
This method is chosen here because one or multi-dimensional linear interpolation methods
were the first interpolation methods to appear in the IBM literature, and are still commonly
used. In the second interpolation method, weighting coefficients are determined as a function
of inverse radial distance. This method provides more flexibility in both the number and
location of points influencing the interpolation because the Vandermonde matrix is elim-
inated, thereby eliminating the constraint that a fixed number of interpolation points be
used and that the matrix be well-conditioned. Each method is used in simulations of flow
over a three-dimensional hill, and the results are compared to those using terrain-following
coordinates. Additionally, results are presented for flow in downtown Oklahoma City using
one-way nested domains.

7.2 Interpolation in three dimensions

Several different interpolation methods have been employed by researchers for the purpose
of interpolating the forcing needed on the immersed boundary to the nearby computational
nodes where the forcing is actually applied. Interpolation methods used with IBM have
included multi-dimensional linear and quadratic interpolation [Tseng and Ferziger, 2003],
inverse distance weighting [Gao et al., 2007], and Lagrange and least squares interpolations
[Peller et al., 2006]. The methods presented in this chapter are unique from those used by
other researchers. Our three-dimensional trilinear interpolation method shares the benefits
of the two-dimensional method, which are outlined in section 5.3.1. Mainly, our method
eliminates the occurrence of numerical instabilities, does not require the use of an itera-
tive solver, and works with moving pressure coordinates. Our inverse distance weighting
method requires fewer applications of the interpolation method than the method described
in Gao et al. [2007], even for the same order of accuracy at the boundary. Furthermore,
Gao et al. [2007] only addressed the use of Dirichlet boundary conditions, while we addition-
ally address the use of Neumann boundary conditions in this chapter.

7.2.1 Trilinear interpolation

In trilinear interpolation the interpolant is the product of three linear functions, one in
each dimension. The value of the image point is calculated using the interpolant given by
equation 7.1.

ϕ = c1 + c2x+ c3y + c4z + c5xy + c6xz + c7yz + c8xyz (7.1)

103



Figure 7.1. Ghost points are a layer of computational nodes just underneath the
terrain. Here, a portion of terrain (the green surface) is shown with the computational
cells that it cuts through. A ghost point is marked with a solid circle. An image
point, marked with an open circle, is found by reflecting the ghost point across the
terrain in the surface normal direction. A line connecting the ghost and image points
is the surface normal. Eight neighbors marked by squares are chosen for use in
determining the coefficients of the trilinear interpolant. In this case, six neighbors
are computational nodes and two are located on the surface of the immersed boundary
at the intersection of the boundary and one face of the cut cell.

Eight neighboring points are used to define the interpolation region, and are chosen as
either computational nodes or boundary points. An example of this is shown in figure 7.1.
The constants c in the interpolant are determined by solving a linear system of equations
c = A−1ϕ for each ghost point, where the rank is equal to the number of neighbors.

The matrix A and the vector ϕ are dependent on the neighbors chosen for the interpola-
tion and the type of boundary condition being imposed. For Dirichlet boundary conditions,
equation 7.1 appears in the matrix equation. If the neighbor is a computational node, then
ϕ takes the value calculated at the node. If the neighbor is a boundary point, then the
boundary condition is assigned to ϕ. For Neumann boundary conditions, the gradient of the
interpolation function is substituted into the boundary condition, and equation 7.2 results,
where n = (nx, ny, nz) is the unit vector in the surface normal direction.

∂ϕ

∂n
= c2nx + c3ny + c4nx + c5(nyx+ nxy) + c6(nzx+ nxz) + c7(nzy + nyz)

+ c8(nzxy + nyxz + nzxy) (7.2)

For neighbors on the boundary, equation 7.2 is used in the matrix equation, instead of
equation 7.1. Once the interpolation constants are determined, the value of the image point
is found with equation 7.1. As a last step, the variable value at the ghost node is calculated
and assigned.
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Figure 7.2. Weighting coefficients cn for inverse distance weighted interpolation as a
function of radius, normalized by the maximum radius Rmax. Three different power
parameters (p=2, 1, and 0.5) are shown here.

7.2.2 Inverse distance weighted interpolation

With the inverse distance weighted interpolation proposed in Franke [1982], the value of
the image point is calculated with the interpolant given by equation 7.3, which is simply a
weighted average of the neighboring points.

ϕ =

∑
n cnϕn∑

n cn
(7.3)

This method was developed for geometrically scattered data sets, and any number of neigh-
boring points can be used to define the interpolation region. Weighting coefficients c, given
by equation 7.4, are a function of radial distance from the interpolation point, which in our
method is the image point. In equation 7.4, Rmax is the maximum radius from the interpo-
lation point of the group of neighbors, and Rn and cn are the radial distance and weighting
coefficient for the nth neighbor.

cn =

(
Rmax −Rn

RmaxRn

)p

(7.4)

This function, which is shown in figure 7.2, produces an infinite weight for a node that
is coincident with the image point, while the node located furthest away at Rmax is used
to define the sphere of influence for the interpolation, but has no influence itself with a
weighting factor of zero. The variable p is a power exponent that controls the rate of decay
of the weighting coefficient with increasing radial distance. Gao et al. [2007] used a power
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parameter of 2. Numerical instabilities occurred for certain geometries of cut-cells in our
simulations with the power parameter set to 2. These instabilities arose when the ghost cell
was far from the boundary (≈ 80-90% ∆x), so that once reflected across the boundary the
image point was much closer to the second fluid node from the boundary than the first. The
image point was very near the second fluid node, so that its weighting coefficient was much
larger than the weighting coefficient at the first fluid node. The second fluid node influenced
the solution so disproportionately that the value at the second fluid node was nearly equal
in magnitude (when using a no-slip boundary condition) to the value of the ghost point.
The first fluid node essentially had no influence on the interpolation, so that its value could
grow in magnitude and destabilize the entire solution. These instabilities were eliminated
completely by using a parameter of either 1 or 1/2, so that each node in the interpolation
contributed more equally to the interpolation. For the simulations presented here, p is set
to 1/2.

In our algorithm, the first step in identifying neighbors to be used in the interpolation is
searching the 64 computational nodes surrounding the image point (i.e. a distance of 2 nodes
in each direction from the image point, which is not coincident with a computational node,
which defines a 43 cloud of nodes surrounding the image point). Potential neighbors are
identified as those residing in the fluid domain, eliminating those nodes in the solid domain.
Potential neighbors are sorted by increasing radial distance, and eight neighbors are chosen
by proximity for use in the interpolation. The particular choice of eight neighbors is arbitrary,
and was chosen here because eight neighbors are used in the trilinear interpolation algorithm.
Gao et al. [2007] note that they found that 3 to 4 nodes in two dimensions and 4 to 5 nodes
in three dimensions provided sufficient accuracy.

When Dirichlet boundary conditions are used, the first neighbor is on the immersed
boundary along the surface normal vector connecting the image and ghost points. The
remaining seven neighbors are computational nodes, as illustrated in figure 7.3. Inverse
distance weighting preserves maxima and minima, even during extrapolation. Therefore, it
is guaranteed that the interpolated image point value will be bounded by the values of the
boundary condition and neighboring computational nodes.

When Neumann boundary conditions are imposed, a boundary point is not used be-
cause the value on the immersed surface is unknown. In this case, all eight neighbors are
computational nodes. Without a point on the boundary, the image point can lie outside of
the interpolation region, usually when the ghost node is near the surface, as in figure 7.3.
If extrapolation is used, the calculated value of the image point may not properly account
for gradients in the variable field because the extrapolated value will be bounded by the
values at the neighbors. In this case, the image point is modified by relocating it to be at
the intersection of the surface normal with a face of the computational cut-cell, as shown
in figure 7.3. Although the image point is no longer a true reflected image, the relationship
ϕG = ϕI − GI ∂ϕ

∂n
|Ω can still be used to achieve the Neumann boundary condition, where

GI is the new distance between the ghost and image points and Ω represents the immersed
surface.
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(a) Dirichlet (b) Neumann

Figure 7.3. Eight neighbors marked by squares are chosen for use in determining the
coefficients of the inverse distance weighting interpolant. In (a) points are shown for
a Dirichlet boundary condition, and in (b) points are shown for a Neumann boundary
condition.

In either case (Dirichlet or Neumann), if eight or fewer potential neighbors exist, as
may be the case for convex surfaces, then the sorting routine is skipped, and the algorithm
proceeds using all available neighbors within the search area that also reside in the fluid
domain. As with trilinear interpolation, once the value at the image point is calculated, the
last step is to enforce the boundary condition by calculating and assigning the ghost point
value.

Our inverse distance weighted IBM method differs significantly from the method pro-
posed in Gao et al. [2007]. Our method retains the use of an image point, whose value is
found through interpolation, and a relationship between the image point and the boundary
condition is used to solve for the ghost point value. Gao et al. [2007] use the inverse dis-
tance weighting method along with a Taylor series expansion, where the origin of the Taylor
series is the interpolation point, and is located on the immersed boundary (not at an image
point). For Dirichlet boundary conditions the variable value on the boundary is known,
so that inverse distance weighting is used to reconstruct both first and second derivatives
on the boundary (origin of the series) for the first and second order terms in the Taylor
series expansion. Therefore, the inverse distance weighting interpolation scheme must be
applied once for each term in the Taylor series, which is five times for each ghost point for
two-dimensional cases, and nine times for each ghost point for three-dimensional cases. If
the calculated derivatives are colocated for a single variable, then the weighting coefficients
can be calculated once, only applying equation 7.3 multiple times. Our method only applies
the interpolant once, to the image point, for a linear approximation at the immersed bound-
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ary. As noted earlier, Gao et al. [2007] did not extend their method to the application of
Neumann boundary conditions.

7.3 Verification case

In this section, we verify the implementation of our three-dimensional immersed bound-
ary method in the WRF model, and evaluate the accuracy of the two interpolation methods.
Verification is performed by simulating flow over a three-dimensional hill with the native
terrain-following coordinate and with each of the immersed boundary methods, and com-
paring the results.

7.3.1 Model set-up and initialization

The test flow case is geostrophic flow over a three-dimensional hill. The terrain height
ht is defined by the Witch of Agnesi curve (equation 7.5), using a peak mountain height hp

of 691 m and a mountain half-width a of 800 m.

ht(x, y) =
hp

1 + (x/a)2 + (y/a)2 (7.5)

The flow is initialized with a neutral sounding of 288 K, so that the perturbation temperature
is -12 K off of the base state of 300 K. Additionally, the sounding specifies a constant velocity
of 10 m s-1 for u, and 0 m s-1 for v. The flow is driven by a pressure gradient that would
balance a geostrophic wind of 10 m s-1 in the x direction. The Coriolis parameter f is set to
a constant value of 1 x 10-4 s-1. The number of grid points in each direction is (nx, ny, nz) =
(60,60,91) for the terrain-following case, and (nx, ny, nz) = (60,60,95) for the cases using the
immersed boundary method. Four additional points are used in the vertical direction in the
immersed boundary method to account for the fact that nodes are needed underneath the
terrain, therefore the domain begins at z = -200 m in the IBM cases (rather than at z = 0 m
in the terrain-following case). In the horizontal dimensions, a constant 100 m grid spacing
is used. In the vertical dimension, the grid points are equally spaced in physical space, so
that ∆z = 50 m. The top of the domain is located at a height of 4500 m. A constant eddy
viscosity of 20 m2 s-1 is used.

Periodic boundary conditions are used at the lateral boundaries. A no-slip boundary
condition is set on velocity at the terrain surface, along with a zero flux condition on tem-
perature. At the top of the domain, the native WRF boundary condition is used (isobaric
and a material surface), with a Rayleigh damping layer that acts only on vertical velocity at
the top 500 m of the domain.
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Figure 7.4. Domain averaged values of u and v plotted as a function of time for
the original WRF coordinate and for IBM-WRF using trilinear and inverse distance
weighted interpolations. Points underneath the terrain (for the IBM cases) are ex-
cluded from the domain average. The two IBM-WRF solutions are nearly identical,
and also show good agreement with the terrain-following case.

7.3.2 Results

The flow is integrated for 120 hours, and inertial oscillations are present as the pressure
gradient, Coriolis force, and surface friction terms come into balance. The damping of these
oscillations are show as a function of time in figure 7.4, and on a hodograph in figure 7.5.
It can be seen that the oscillations for the terrain-following and IBM cases are nearly equal
in magnitude and are just slightly out of phase. The two IBM solutions using trilinear and
inverse distance weighted interpolations are nearly identical, so much so that it is difficult to
see both IBM lines. At 120 hours the oscillations are sufficiently damped that the solution
is considered to be at a steady state. Results presented in the remainder of this section are
instantaneous at a time of 120 hours.

Contours of velocity magnitude, along with quivers indicating the velocity direction are
shown at a height of 400 m in figure 7.6 for each simulation. The region of separated flow in
the lee of the hill is largest for the WRF simulation, and smallest for the IBM-WRF IDW
simulation. Velocity contours using IBM-WRF with trilinear interpolation appear most
similar to the terrain-following grid case. Profiles of each velocity component are shown
in figure 7.7 for several locations along the x dimension. The locations of these slices are
marked by two black lines in figure 7.6. From the perspective given in figure 7.7, the two IBM
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Figure 7.5. Domain averaged values of u and v plotted on a hodograph for the original
WRF coordinate and for IBM-WRF using trilinear and inverse distance weighted
interpolations. For our purposes the solution is considered steady state at a time of
120 hours.

solutions appear nearly indistinguishable, with the exception of the w velocity component
located at y ≈ 4500 m. In these plots the two IBM solutions tend to be identical, even when
they differ from the WRF solution. This is most obvious in the profiles of v velocity, and
the profile of w velocity located at the mountain peak. In the w profiles behind the hill (y ≈
4500 m), the peak w values seem to be captured more accurately by the IBM-WRF IDW
solution than the IBM-WRF trilinear solution.

For a more quantitative comparison, the WRF and IBM solutions are interpolated onto a
common time invariant terrain-following grid, so that they may be compared directly. This
new grid uses the same horizontal spacing as the grid for the solution, however, the vertical
grid spacing is independent of the computational grid. The IBM solution is subtracted from
the WRF solution for each variable, and the minimum and maximum magnitudes of the
differences in velocity are included in table 7.1. It can be seen that the minimum differences
are very small, so that the solutions are nearly identical in those locations (as well as many
other locations). Not surprisingly, the locations of the minimum differences are all above
z = 1100 m, which is above the maximum terrain height. Additionally, the fact that the
solutions are nearly identical in the the top three-fourths of the domain indicates that the
phase difference in the inertial oscillation is negligible, and does not contribute significantly
to the differences in the WRF and IBM-WRF solutions at t = 120 hours. The maximum
differences are all located at 546 m ≤ z ≤ 720 m, which is near the terrain peak of hp = 691
m. Additionally, the maximum differences between the WRF and IBM solutions are slightly
larger for the inverse distance weighted scheme, than the trilinear interpolation method.

The average height of the maximum difference included in table 7.1 is 642 m. To examine
the solutions where the largest differences occur, contour plots are included in figure 7.8 at
this height. Blue dots are placed at the locations in x and y of the maximum differences
from table 7.1. Both sets of dots, from trilinear and inverse distance weighted interpolations,
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Figure 7.6. Contours of velocity (u, v, and w) magnitude (m s-1) and quivers of
velocity (u and v only) direction at a height of 400 m and a time of 120 hours for (a)
WRF (b) WRF-IBM trilinear and (c) IBM-WRF IDW. The black lines indicate the
locations of the velocity profiles shown in figure 7.7
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Figure 7.7. Profiles of u, v, and w velocity are shown for several horizontal locations
located along a slice in the y dimension (slice locations are shown in figure 7.6).
Profiles are located at y ≈ 3000 m on the left and y ≈ 4500 m on the right.
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Table 7.1. The locations in the domain for the maximum and minimum differences
between the WRF and IBM solutions for each velocity component. Velocity for each
solution is given at that location, along with absolute and relative differences.

Location [m] Velocity [m s-1] Difference
x y z WRF IBM Absolute Relative

IBM
Trilinear

∆umin 750 4750 1182 10.34 10.34 7e-8 7e-7%
∆umax 4050 3350 692 2.85 4.83 1.98 69%
∆vmin 5550 4350 2148 -0.04 -0.04 6e-7 2e-3%
∆vmax 2550 3150 546 2.78 1.60 1.19 43%
∆wmin 1750 750 3121 0.03 0.03 9e-8 3e-4%
∆wmax 2550 2850 660 1.55 2.10 0.56 36%

IBM
IDW

∆umin 550 5650 4030 10.02 10.02 3e-8 3e-7%
∆umax 4550 3650 600 1.85 3.95 2.10 114%
∆vmin 1150 2150 2280 -0.02 -0.02 3e-7 2e-3%
∆vmax 2750 3150 636 2.52 0.76 1.76 69%
∆wmin 5250 3950 1406 -0.27 -0.27 3e-7 1e-4%
∆wmax 2750 2950 720 1.42 0.90 0.52 107%

are included on the figure for the solution using terrain-following coordinates. The dots in
the wake of the hill are where the largest differences in u occur, the dots in front of the hill
and offset in y are for v, and the dots almost directly in front of the hill are for w. The
maximum differences between the WRF and IBM solutions occur in the same regions for
both interpolation methods, indicating that the behavior of the two IB methods is similar.
Furthermore, while the extent of the wake region behind the hill appears most similar to the
WRF solution using IBM-WRF trilinear, the other velocity contours appear most similar
using IBM-WRF IDW. Velocity profiles shown in figure 7.7 are representative of the regions
which differ most. While the largest differences in table 7.1 seem large, the velocity profiles in
figure 7.7 put these numbers in perspective and show that the solutions are nearly identical.

Contours of velocity differences are included in figure 7.9 for each velocity component.
These slices are located at the average y value for the maximum velocity difference of the
two methods presented in table 7.1, with each velocity component considered separately. It
can be seen clearly here that the maximum differences for the two IBM methods occur in
similar locations, and that the behavior of the two interpolation methods is similar. The
main difference between the WRF and IBM solutions is the height of the shear layer in the
velocity profile just behind the hill. The gradient in the velocity profile is very steep in
the shear layer, so that a slight difference in the height of this flow feature causes a large
difference in the velocity at a fixed location.
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Figure 7.8. Contours of velocity (u, v, and w) magnitude (m s-1) and quivers of
velocity (u and v only) direction at a height of 642 m, which is approximately where
the largest differences in the solutions occur. Blue dots indicate the (x, y) location of
the largest differences.
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(a) u velocity

(b) v velocity

(c) w velocity

Figure 7.9. Contours of absolute velocity differences in units of m s-1 between the
WRF and IBM solutions for each velocity component, located at the location in y
where the differences are the largest. IBM-WRF Trilinear is shown in the left column,
and IBM-WRF IDW is shown in the right column.
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Table 7.2. Domain averaged differences and velocity values for each velocity compo-
nent. All quantities have units of m s-1.

∆ϕave ϕIBMave ϕWRFave

IBM Trilinear
u 0.07 9.14 9.09
v 0.05 0.82 0.80
w 0.02 3e-5 5e-4

IBM IDW
u 0.14 9.12 9.09
v 0.08 0.82 0.80
w 0.05 3e-3 5e-4

Domain averaged differences between the WRF and IBM solutions, as well as domain
averaged velocity values are included in table 7.2 for each velocity component. When the
data is viewed in an averaged sense, the differences are larger for IBM-WRF IDW than for
IBM-WRF Trilinear. While the differences for IBM-WRF IDW are approximately twice that
of the trilinear method, all of the differences are relatively small. It should be remembered
that errors due to the use of terrain-following coordinates are present in the original WRF
solution, and although we are comparing our IBM solution to the WRF solution, it cannot be
considered the ‘exact’ solution. The terrain is relatively steep in this case, with a maximum
slope of 30 degrees. Furthermore, it is possible that the IDW method can be improved
through further refinement of the method. While IBM-WRF IDW appears to be the least
favorable of the two IBM options for this flow case, the method has additional favorable
properties, discussed earlier. For the urban geometry in the following section, inverse distance
weighted interpolation worked, while trilinear interpolation did not. For that reason, the
IDW core of the IBM method is used in section 7.4.

7.4 Flow in urban environments

The Joint Urban 2003 field campaign took place in Oklahoma City over a period of one
month, and is detailed in Allwine and Flaherty [2006]. Over 20 institutions participated in
the study, providing an extensive data set of urban atmospheric flow and dispersion. During
the campaign, the city was instrumented with lidars, sodars, radars, sonic anemometers,
aircraft-based meteorological sensors, fast-response tracer analyzers, and helicopter-based
remote tracer detectors. This data provides an excellent test case for verifying the use
of IBM in a numerical weather prediction model. In preparation for simulating intense
observation periods (IOPs) from this field campaign, we have modeled flow over a portion
of Oklahoma City using an idealized model set-up. Our set-up utilizes the one-way nesting
capabilities in WRF, and additionally uses a large-eddy simulation (LES) turbulence closure.
Both features are new to our IBM-WRF implementation.
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7.4.1 Model set-up and initialization

In this simulation, a domain with the Oklahoma City terrain is nested within a parent
domain with flat terrain. Flow is driven in the parent domain with a pressure gradient in
the y direction. Periodic lateral boundary conditions are used, so that the flow on the parent
domain is fully developed turbulent channel flow over flat terrain. One-way nesting is used
in a concurrent simulation run, so that boundary conditions are passed from the channel
flow domain to the Oklahoma City domain at the frequency of the parent domain time
step. This set-up is similar to that used in Golaz et al. [2009] to model flow over Askervein
hill. Our decision to use nested domains has two main purposes. First, it provides fully
developed turbulent inflow conditions to the Oklahoma City domain, and eliminates the
need for periodic boundary conditions which are only appropriate for surface conditions that
are homogeneous or periodic. Secondly, the use of one-way nesting allows us to examine
how IBM works with nested domain configurations. Here terrain that is not resolved (or
parameterized) on outer domains is explicitly resolved on the inner most domain using IBM.

One alternative for lateral boundary conditions is the perturbation recycling method of
Mayor et al. [2002], where mean conditions are perturbed at the inlet with turbulent fluctua-
tions that have been ‘recycled’ from fully-developed downstream flow. A second alternative,
used in Chow and Street [2009], is to perform a separate LES of turbulent channel flow with
periodic boundary conditions, and then impose this solution at the domain inlet at each time
step. Our method is similar, in that solutions on two domains with separate topography are
produced, but has additional benefits. First, our method is simple to implement in models
with nesting capabilities. Second, our method is independent of the inflow direction. One
possible drawback of our method is that the outlet flow (and the flow on all lateral edges) is
forced to match the turbulent channel flow conditions. This condition is not imposed in the
set-up of Chow and Street [2009], where zero-gradient boundary conditions are used at the
outlet, allowing flow features such as wakes to exit the domain.

A two-dimensional array of terrain data for the Oklahoma City case is created by overlay-
ing the horizontal WRF grid for the nested domain with an ERSI (Environmental Systems
Research Institute) shapefile of the downtown region. A shapefile spatially describes geome-
tries as sets of points, polylines, or polygons. For the Oklahoma City shapefile, the buildings
are defined as sets of overlapping polygons, where each polygon is assigned a unique height.
Once the WRF grid is overlaid on the shapefile, the building heights that are coincident
with the nodes on the WRF grid are sampled to create a two-dimensional array of terrain
heights. The shapefile data and resulting three-dimensional terrain are shown in figures 7.10
and 7.11.

The parent domain is initialized and spun-up for several hours before the inner domain
is started. At initialization the atmosphere is neutral with a constant v velocity of 10 m s-1.
The flat plate, located at a height of 0 m, is represented with the inverse distance weighted
immersed boundary method. Terrain-following coordinates can also be used on the parent
domain, in lieu of the immersed boundary method. The ability to nest an IBM domain within
terrain-following coordinates has been implemented, but is not used in this case, which is an
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Figure 7.10. ERSI shapefile data for the buildings included in the Oklahoma City domain.
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Figure 7.11. A two-dimensional array of terrain heights sampled from the ERSI
shapefile is used to define the terrain used in the IBM-WRF simulation.
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Figure 7.12. The domain averaged velocity profile for the parent domain at steady state.

IBM domain nested within another IBM domain. Flow is driven with a constant pressure
gradient in the y direction, and periodic lateral boundary conditions are used. The number
of grid points in each direction is (nx, ny, nz) = (96,123,170). In the horizontal directions,
a constant 6 m grid spacing is used. In the vertical dimension, the grid points are equally
spaced in the η pressure coordinate over the domain height of 435 m, which spans z = -10 to
425 m. The minimum vertical grid spacing is ∆z = 2.53 m, and the maximum is ∆z = 2.62
m. These dimensions result in a total domain size of 570 x 732 x 435 m3. The Runge-Kutta
time step is ∆t = 1/20 s, with six acoustic time steps per Runge-Kutta step. A Rayleigh
damping layer on w only is used at the top 40 m of the domain. The standard Smagorinsky
turbulence model in the WRF distribution is used, and Coriolis forcing is neglected.

Small perturbations were added to the horizontal velocities at initialization, so that a
turbulent flow would develop on the parent domain. Nonetheless, the flow was not turbulent
after three hours of simulation. Therefore, a square ridge was added in the spanwise direction,
to trip the flow. This ridge was subsequently removed after approximately 30 minutes, and
the turbulent channel flow was spun-up until the mean velocity profile was steady (shown
in figure 7.12). A larger pressure gradient is needed to drive the turbulent flow, once it
transitions from being laminar. Therefore, several trial-and-error iterations were performed
of modifying the pressure gradient, and checking the resulting mean profile, until the pressure
gradient and frictional effects were in balance and the flow was steady in a mean sense.

A grid nesting ratio of 1:3 is used, so that the nested Oklahoma City domain has a
horizontal resolution of ∆x = ∆y = 2 m, and a time step of ∆t = 1/60 s. Nesting is
not used in the vertical, and cannot currently be used in WRF for concurrent simulations.
Nesting can be used for serial simulations; however, running in a serial mode severely limits
the frequency at which lateral boundary conditions are updated on the nested domain. With
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our small time steps (fractions of a second), the simulations must be run concurrently to
effectively pass information on the time scale of turbulent fluctuations between domains.
The nested domain has (nx, ny, nz) = (259,340,170) grid points, for a total size of 516 x 678
x 435 m3. The nested domain starts on the fifth grid point of the parent domain in both the
x and y directions. Our parent domain is only slightly larger than our nested domain because
this simulation is being done for demonstration purposes, and we wanted to minimize the
required computational effort as much as possible. When the nested domain is started, the
solution from the parent domain is interpolated onto the nested grid. The inverse distance
weighted IBM is used to represent the Oklahoma City terrain, and the velocities within
the solid domain are set to zero when the nest is initially spawned. Additionally, the IBM
routines are used to impose no-slip boundary conditions on the buildings before integration
of the nest begins.

7.4.2 Results for flow through urban terrain

Figure 7.13 shows contours of v velocity from a top view for the parent and nested
domains, 18 minutes after initialization of the inner nest. This view is at a height of approx-
imately 9 m, and the extent of the inner nest is depicted by black dashed lines on the outer
domain. On the inner nest, the solution is masked by buildings with heights greater than
the height of the plane shown. In this figure, the inlet flow is considered to be the southern
edge of the domain. Here, it can be seen that the velocity features from the outer nest also
appear at the inlet of the inner nest. At the outlet (the northern domain edge), the solution
on the inner domain is forced to match the solution on the parent domain, even though
there is clearly a wake region behind the northern most buildings that is being truncated.
This mismatch of velocities and pressure gradient contaminates a portion of the solution
near the outlet of the Oklahoma City domain. This may be acceptable because the scalar
release in the IOP that we plan to simulate (IOP 3) is located in the southern portion of the
domain, at approximately (x, y) = (150 m, 200 m) on the inner nest, but future investigation
is required.

Figure 7.14 shows contours of velocity magnitude and quivers indicating flow direction
in the plane shown for several locations within the domain. Many flow features are present
in the simulation, including high speed jets at contractions of urban canyons and separation
zones behind buildings.

This case was simulated using the inverse distance weighting core of the immersed bound-
ary method. We were unable to successfully use trilinear interpolation with this terrain data.
Common problems were the inability to find eight appropriate neighbors and ill-conditioned
Vandermonde matrices. Additionally, in some cases (such as at corners) the direction of the
flux boundary condition is ambiguous or prescribed in an unintended direction.
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Figure 7.13. The v component of velocity for the outer nest (left) and the inner nest
(right) at a height of ≈ 9 m. The dashed line in the outer domain indicates the
horizontal extent of the inner nest.

7.5 Conclusions

We have developed an IB method for the WRF model which is capable of handling
highly complex urban terrain, as demonstrated by our semi-idealized Oklahoma City test
case. We first extended the two-dimensional IB method presented in Lundquist et al. [2010]
into three dimensions, and validated the implementation by simulating flow over a hill and
comparing the solution to results achieved using the native terrain-following coordinate.
Additionally, a new IBM method was developed using an inverse distance weighted interpo-
lation method. This second method was also validated with the canonical case of flow over
a three-dimensional hill. We found that while the trilinear interpolation algorithm provided
accurate results for flow over a smooth hill, the algorithm was not robust enough to be used
with real urban terrain. The alternative method based on inverse distance weighted inter-
polation provided additional flexibility, and was also shown to produce accurate results for
the hill test case. Additionally, the method proved to be robust enough to allow simulations
of flow over real urban terrain data.

Additional work is in progress to enable comparisons with the Joint Urban 2003 field
campaign. First, the pressure gradient used to drive the flow in the parent domain was
chosen arbitrarily. Velocity data (magnitude and direction) is available for several locations
in the Oklahoma City domain, including the scalar release site for IOP 3. Our plan is to
modify the pressure gradient in the parent domain, to achieve the closet possible velocity
match at the scalar release site in the inner domain. Additionally, some functionality must
be added for using passive scalars in WRF. While we currently have the ability to add a
passive scalar field at initialization, we must add the ability to simulate a continuous source
release. Furthermore, while nested lateral boundary conditions are desired for the inner
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Figure 7.14. Contours are shown for velocity magnitude (m s-1) and quivers indicate
flow direction. Side profiles are shown on the left (y ≈ = 200, 440, and 560 m), and
top views on the right (z ≈ 5, 10, and 50 m) for several locations in the domain.
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nest on velocity and most other prognostic variables, they are not desired for the passive
scalar. The ability to use open boundary conditions for the passive scalar, while using nested
conditions for other variables must be added.

The simulation of flow over the Oklahoma City terrain in a one-way nested configuration
demonstrates the ability to seamlessly integrate the IBM method into the current WRF
framework, enabling simulation of a wide variety of cases with steep terrain. Resolution
of the issues detailed above will allow comparisons with observations from the Joint Urban
2003 field campaign, providing further verification of the method.
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Chapter 8

Wall modeling at the immersed

boundary

8.1 Introduction

Three different surface treatments are examined at the immersed boundary, with the goal
of developing an IBM method that enforces an approximate boundary condition (wall model)
for use with coarse large-eddy simulations of high Reynolds number flows. As discussed in
chapter 2, the vast majority of literature written on IB techniques for rigid bodies focuses on
satisfying a no-slip boundary condition. For high Reynolds number flows, such as those in the
atmospheric boundary layer, this means the thin viscous sublayer should be resolved. This is
of course an impractical computational requirement, and various techniques have been used
to overcome this difficulty. In CFD codes, the mesh is often locally refined near the surface
where IBM is used if the boundary is stationary. In the case of moving boundaries, adaptive
mesh refinement can be coupled with direct forcing IBM. Neither of these two approaches
have been used successfully for atmospheric boundary layer flows. A third approach, which
is commonly used in atmospheric applications, is wall or surface modeling. In this approach,
a coarse grid is used and the effect of turbulent stresses on the outer flow is parameterized
through the use of a wall model treatment at the boundary.

When the no-slip boundary condition appearing in chapters 5 through 7 is used, surface
stresses will be under-predicted for high Reynolds number flows. In this chapter, two imple-
mentations of an IBM combined with an equilibrium wall model are developed and tested,
and comparisons are made to results using the no-slip boundary condition. The first method
is not a ghost-cell IBM, but is instead based on velocity reconstruction as in Fadlun et al.
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[2000], where the IBM forcing is included in the Navier-Stokes equations at the first point in
the fluid domain. This is combined with the log-law modifications of Senocak et al. [2004].
In the second method shear stress is reconstructed at a ghost cell, which is a blending of the
original WRF boundary conditions with a ghost cell IBM. Details of the three implementa-
tions are given in the following sections, and in section 8.3 they are applied to the case of a
neutral boundary layer.

8.2 Wall model implementations

8.2.1 No-slip boundary condition

For the neutral boundary layer case the surface is aligned with the coordinates, and
the version of the no-slip IBM boundary condition has been simplified for use in this case.
Here, one dimensional linear interpolation as proposed by Iaccarino and Verzicco [2003] and
pictured in Figure 8.1 is used with the same accuracy that bilinear or trilinear interpolation
would provide. Of course, for curvilinear terrain a more sophisticated interpolation scheme,
such as those used in previous chapters, must be implemented. The linear interpolation
in the vertical direction is applied to all three velocity components, and the velocity that
enforces a no-slip boundary condition is set at a ghost cell. This implementation is, of course,
not a wall model. This is the base case, and will a point of reference when examining the
wall boundary conditions detailed below.

Additionally, in this chapter the IBM boundary conditions are enforced on the Runge-
Kutta time step, rather than on the acoustic time step. In table 3.1, this is just after the
acoustic loop, but before step eight where the scalar equations are advanced. This is true of
all three implementations in this chapter. Updating the ghost points on the Runge-Kutta
loop provides computational savings in comparison to updating them on the acoustic loop.
The disadvantage is that the boundary condition is imposed on the less frequent large time
step instead of the acoustic time step. This is acceptable for the work in this chapter because
the implementations presented here are preliminary. Results from the neutral atmospheric
boundary layer case will help us determine if each method warrants further development.

8.2.2 Log law velocity reconstruction

In Fadlun et al. [2000] the immersed boundary is modeled by reconstructing the velocities
at fluid nodes. Senocak et al. [2004] suggests a scheme where the tangential flow is recon-
structed at external fluid nodes using the log-law. For a neutrally stratified atmosphere over
flat terrain, a log-law profile of the mean velocity is expected in the bottom ten percent of
the boundary layer, which is usually 100 to 200 meters high [Garratt, 1992, Sec. 3.2]. The
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Figure 8.1. No-slip IBM.

log-law velocity reconstruction method proposed by Senocak et al. [2004] is outlined below
for atmospheric boundary layer flow over a flat plate. It would need to be reformulated and
cast in terms of normal and tangential components in order to extend its use to complex
topography.

The tangential velocity reconstruction for the fluid nodes begins with the log-law given
by (8.1), where U is the magnitude of the velocity at height z, u? is the friction velocity, κ
is the von Kármán constant, and zo is the roughness length.

U

u?

=
1

κ
ln

(
z

zo

)
(8.1)

Within the logarithmic layer, the friction velocity u? is constant in the surface normal direc-
tion [Senocak et al., 2004]. Using this property, the relationship given by (8.2) can be used
to reconstruct the magnitude of the velocity at the first fluid point away from the boundary
based on the velocity at the node above.

U1 = U2
ln(z1/zo)

ln(z2/zo)
(8.2)

Equation (8.2) is given in terms of the magnitude of the horizontal velocity, and it must
be decomposed into u and v components. In order to do this, the direction of the flow is
calculated using (8.3) at the second and third fluid nodes above the boundary.

θ2 = arctan

(
v2

u2

)
, θ3 = arctan

(
v3

u3

)
(8.3)

The direction of the fluid flow θ changes with respect to height. An example of this would the
the Ekman spiral that forms in the atmosphere from Coriolis forcing. Linear extrapolation
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Figure 8.2. Log law velocity reconstruction IBM.

is used to determine the direction of fluid flow θ1 at the ghost cell. Direct forcing can then
be imposed at the cut cell using the relationship given in (8.4).

u1 = U1 cos θ1, v1 = U1 sin θ1 (8.4)

The vertical velocity at the surface is zero, and direct forcing is applied for w1 at the cut cell
using linear interpolation (see figure 8.2). This satisfies the boundary condition wsurf = 0
for a flat plate. However, the complete kinematic boundary condition U · n̂ = 0 would need
to be satisfied for curvilinear boundaries.

Several steps were taken to implement this method into WRF, starting with the addition
of a roughness length variable zo. Originally in WRF the user defined a coefficient of drag.
Equation (8.2) requires that a roughness length be specified instead of a drag coefficient, so
zo was added to WRF for the IBM formulation (this has also been implemented to work with
the sigma coordinate using equation 8.1). Next, cells cut by the boundary are determined,
and the velocity nodes that are just exterior to the terrain are saved as cut cells. Equation
(8.1) is valid for z > zo, therefore, the node for a cut cell must be at least a distance of zo

from the immersed boundary. This distance is checked for each node, and if the distance
is less than zo the next fluid node is assigned to be the cut cell. The velocities at nodes
interior to the domain are initially set to zero, but not controlled further after the iteration
begins. The velocity reconstruction scheme is then applied to the cut cells. In order to use
equations (8.2), (8.3), and (8.4) the u and v velocities must be collocated; however, WRF
uses a staggered grid. Therefore, for a u node a four point horizontal average of v is used,
and conversely for a v node a four point horizontal average of u is used. Finally, the vertical
velocity w is set to zero on the immersed surface using linear interpolation. A slight deviation
from the Senocak et al. [2004] paper is made with respect to setting the w velocity. They
set w at the first fluid node based on linear interpolation with the second fluid node. In the
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version implemented into WRF, linear interpolation is used to set the vertical velocity at a
ghost node.

As in the no-slip implementation, the IBM routines are executed just after the acoustic
time step loop on each of the three Runge-Kutta steps. First halo exchanges, boundary
condition updates, and cut cell updates are performed. Then the velocity reconstruction is
applied. Figure 8.2 illustrates the velocity reconstruction IBM method as implemented in
WRF. To summarize, the velocity at U1 is reconstructed using the magnitude at the second
fluid node U2 in the surface normal direction. No normal flow to the boundary is enforced
by setting the vertical velocity at a ghost point wG using the value at w1.

8.2.3 Shear stress reconstruction

The shear stress reconstruction method blends the IBM ghost cell method with the
original WRF boundary conditions, which set the shear stress at the surface using the log-
law. This methods satisfies the boundary conditions given by equations (8.5a) and (8.5b),
where (8.5a) is the kinematic boundary condition and (8.5b) sets the surface stress τ at the
immersed boundary. In these equations µ is the column mass per unit area.

U · n̂ = 0 (8.5a)

τwxz = −µ

(
κ

ln z1−h
zo

)2

|U|u, τwyz = −µ

(
κ

ln z1−h
zo

)2

|U|v (8.5b)

The shear stress reconstruction IB method is illustrated in Figure 8.3. The kinematic bound-
ary condition is imposed by setting the velocity at ghost nodes using linear interpolation.
In the case of a flat surface this requires wsurf = 0, and the velocity at wG is set using
linear extrapolation from the velocity at the first fluid point and the zero value at the sur-
face. Surface stresses are also imposed at the ghost points. Once the desired surface stress
is found from equation (8.5b), linear extrapolation is used to set the shear stress at τG.
As with the velocity reconstruction method, the shear stress reconstruction method would
need to be reformulated in terms of normal and tangential components for use with complex
geometries.

Like all of the previous methods the first steps are halo exchanges, boundary condition
updates, and determination of the ghost points. For the shear stress method, only the velocity
ghost points are determined during the domain set up. Vorticity ghost points, located on
the edges of computational cells, are also needed for setting the shear stresses. These are
not located during the initial pre-processing IBM routines. Once the velocity ghost points
are determined, the velocity is zeroed at all interior nodes. Then the kinematic boundary
condition is satisfied by setting the velocities at the ghost points.

During the iteration process, the diffusive terms are only evaluated on the first step
of the three step Runge-Kutta loop. In Table 3.1 this is step one. If the shear stress
reconstruction method is being used, then additional IBM routines are called at this point.
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Figure 8.3. Shear stress reconstruction IBM.

First, geopotential is determined at the vorticity points using horizontal averaging. Then,
the ghost points for τwxz and τwyz are found. Next, the stresses at the surface are determined
from equation (8.5b). In this equation z1 is the height of the first fluid node above the
surface, h is the height of the immersed boundary, and zo is the roughness length. It must
be verified that (z1 − h) is greater than zo. If it is not, then the next fluid node is used
to calculate the drag coefficient. In addition to the coefficient of drag, the magnitude of
the velocity must be known. Just like in the velocity reconstruction method, this requires
averaging on a staggered grid. Four point horizontal averages of v are used to find v on
a u node, and vise versa. Now, the desired shear stress at the surface is known. Linear
extrapolation is used to determine the value of τG that would enforce the desired boundary
condition, and the value of τG is set. During run time, the kinematic boundary condition
is updated just after the acoustic loop on every large time step, as it is for the other two
IBM implementations. This means that the kinematic boundary condition is set three times
during a full Runge-Kutta loop, while the surface stresses are only set one time during the
first R-K step.

8.3 Neutral atmospheric boundary layer

To test the performance of the IBM methods in WRF, the case of a neutral atmospheric
boundary layer (ABL) is considered. The atmospheric boundary layer is the bottom region
of the troposphere, which is in contact with the Earth’s surface. Flow in the boundary layer
region is greatly affected by surface friction and fluxes. A neutral atmosphere is one with
a constant potential temperature. This means that the temperature decrease with height is
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prescribed exactly by the adiabatic lapse rate. The bottom ten percent of the atmospheric
boundary layer is called the surface layer or constant flux region. If the atmosphere is neutral,
then the mean velocity profile in the surface layer should follow the log-law.

WRF is an LES-capable numerical weather prediction code. It is distributed with three
eddy viscosity turbulence closures including: constant eddy viscosity, Smagorinsky, and
1.5 order TKE models. Implicit filtering is used for the Smagorinsky and 1.5 TKE models,
meaning that the length scale component of the eddy viscosity is provided by the grid spacing.
Each of the closures is explained in detail in a WRF technical note (see Skamarock et al.
[2007, Chap. 4]). For the case of constant eddy viscosity, the analytical solution of rotation
influenced flow over flat terrain is an Ekman spiral. In the fully turbulent case, the log-law
is expected from scale analysis [Garratt, 1992]. The following sections detail the domain
and flow set-up, and the effects of the immersed boundary implementations. The goal is to
capture the original WRF solution when using IBM, so comparisons are made between the
simulation results when using the original WRF boundary conditions and each of the three
IBM techniques. Results are also presented for both the Smagorinsky and 1.5 TKE closures.
Additionally, the no-slip case is modeled with constant eddy viscosity and compared to the
analytical Ekman spiral solution.

8.3.1 Domain and flow set-up

The neutral boundary layer simulations in WRF have a similar flow set-up to those
presented by Andren et al. [1994] and Chow et al. [2005]. Flow is driven by a large scale
constant pressure gradient which would balance a geostrophic wind of (Ug, Vg) = (10,0)
ms−1. The Coriolis parameter f is set to a constant value of 1 x 10−4 s−1. The domain is
horizontally periodic, and has 42 nodes with ∆x = ∆y = 32 m grid spacing in each of the
horizontal dimensions for an overall domain size of 1312 m in each horizontal direction. The
height of the domain is approximately 1500 m or in terms of the pressure coordinate 83.3
kPa, and the flat surface is placed at a height of 100 m. Forty-two grid points are used in the
vertical dimension with an exponential grid stretching function used to bias the coordinate
spacing towards the surface. The grid stretching function satisfies the rule of thumb that
adjacent cells be stretched by no more than ten percent. In the terrain following coordinate,
all 42 grid points are between 100 m and 1500 m. The minimum vertical grid spacing is
∆zmin ≈ 9.5 m and the maximum is ∆zmax ≈ 85.2 m. When IBM is used the 42 vertical
grid points span the entire 1500 m, with ∆zmin ≈ 10.1 m and ∆zmax ≈ 91.6 m. A fifth
order advection scheme is used in the horizontal dimensions, and third order is used in the
vertical.

Flow is initialized with a sounding that includes constant velocities of (u, v) = (10,0)
ms−1, constant potential temperature θ = 288◦ K, and moisture mixing ratio q = 0 g/kg.
The initial u velocity is seeded with small perturbations near the surface, so that the flow
transitions to be fully turbulent. Drag at the surface is modeled using a roughness length zo

= 0.1 m for all cases except the no-slip case where it is not applicable.
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A 0.5 s time step is used for the Runge-Kutta loop, and a 0.05 s time step is used for
the acoustic time step. The simulations were run for 84 hours which is just over 30 non-
dimensional time units tf normalized by the Coriolis parameter. Inertial oscillations are
evident in the flow, and are due to imbalances between the pressure gradient and the Coriolis
forcing while the flow is tending towards a steady state solution. The inertial oscillations
have a period of 2π/f , which is ∼17.5 hours for the prescribed Coriolis force in this model.
Figure 8.4 shows the time evolution of the domain averaged u and v velocities for the original
WRF terrain following coordinate and the three IB methods using the Smagorinsky closure.
Figure 8.5 shows the same information on a hodograph. Results for the TKE turbulence
closure are presented in Figures 8.6 and 8.7.

It is immediately apparent that there is an interaction between the velocity reconstruction
IB model and the 1.5 TKE closure that inhibits damping of the inertial oscillations. With
the exception of this case, the inertial oscillations appear to be sufficiently damped after
two periods or ∼35 hours. For this reason, the results in section 8.3.2 are averaged over a
time period spanning from 36 to 84 hours or approximately 13 < tf < 30 non-dimensional
time units. For reference, a star marks the 36th hour on the hodographs where the time
averaging begins. In comparison Andren et al. [1994] averaged over 7 < tf < 10, and
Chow et al. [2005] averaged over 20 < tf < 30.

8.3.2 Neutral atmospheric boundary layer results

Figures 8.8 and 8.10 show the horizontally and temporally averaged u and v velocity
profiles with the Smagorinsky and 1.5 TKE closures respectively. The height quantity in the
y-axis is also horizontally and temporally averaged over the horizontal coordinate surface for
each case. This is necessary because the height of the pressure coordinate used in WRF is a
function of space and time. The same averaged u and v quantities are used to calculate wind
speed U =

√
ū2 + v̄2, which is shown on a semi-log plot in Figure 8.9 with the Smagorinsky

closure and Figure 8.9 with the 1.5 TKE closure. In these figures the wind speed is non-
dimensionalized by the friction velocity defined as u? =

√
CdU , and the average height

is non-dimensionalized by the roughness length scale zo. The theoretical log-law is also
included and shown as a thick black line. Results from the no-slip IBM simulations are
excluded from the logarithmic plot because this boundary condition does not include a wall
model or roughness parameterization, so a logarithmic velocity profile is not expected due
to inadequate near surface resolution.

It is clear from the figures that the velocity and shear stress reconstruction models do
an excellent job of recreating the original WRF solution with the Smagorinsky turbulence
closure. The no-slip condition would need to be modified to include a roughness parameter-
ization in order to match the results of the original WRF boundary conditions. Looking at
the results from the original WRF boundary condition, it can be seen that the Smagorinsky
turbulence closure does a much better job of recreating the theoretical log-low results than
the 1.5 order TKE model. It is a well known problem in neutral boundary layer simulations

132



0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

Time [hrs]

D
om

ai
n 

A
ve

ra
ge

d 
V

el
oc

ity
 [m

s−
1 ]

 

 

Original WRF u
Original WRF v
No Slip u
No Slip v
Velocity Rec. u
Velocity Rec. v
Shear Stress u
Shear Stress v

Figure 8.4. Time evolution of domain averaged u and v velocities showing the damping
of inertial oscillations with the Smagorinsky closure.
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Figure 8.5. Domain averaged u and v velocity on a time series hodograph showing
the damping of inertial oscillations with the Smagorinsky closure. The red star marks
the time at 36 hours, which is after ∼2 periods.
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Figure 8.6. Time evolution of domain averaged u and v velocities showing the damping
of inertial oscillations with the 1.5 order TKE closure.
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Figure 8.7. Domain averaged u and v velocity on a time series hodograph showing
the damping of inertial oscillations with the 1.5 order TKE closure. The red star
marks the time at 36 hours, which is after ∼2 periods.
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that eddy viscosity models often do not agree with similarity theory in the surface layer
[Chow et al., 2005], so this discrepancy is not entirely unexpected. What is unexpected is
that the velocity and shear stress reconstruction models do not recreate the original WRF
solution with the TKE closure, although, in both the Smagorinsky and TKE models, the
shear stress reconstruction IB method is closer to the original WRF solution than the ve-
locity reconstruction method. TKE models use a bottom boundary condition for the TKE
equation. It is possible that by imposing a boundary condition for TKE at the immersed
boundary, the IBM results would better match the original WRF solution. Despite the
fact that the inertial oscillations did not damp sufficiently when velocity reconstruction was
combined with the TKE model, this solution best matches the log-law very near the surface
when compared to the original WRF boundary conditions or the shear stress IB model with
the TKE closure. This can be explained by the inherent property of the method which forces
the velocities at the first two fluid nodes above the plate to match the log-law. The slope of
the velocity and shear stress reconstruction models matches the log-law well, even though
there is a significant departure from the log-law near the surface.

The implementation of the no-slip method can be further verified by comparing the
simulation results with a constant eddy viscosity νt to the analytical solution of an Ekman
spiral. In the northern hemisphere, where the Coriolis parameter is positive, the Ekman
spiral due to geostrophic winds of ~Vg = (Ug, 0) is given by equations (8.6a) and (8.6b):

u = Ug [1− exp(−aoz) cos(aoz)] (8.6a)

v = Ug exp(−aoz) sin(aoz) (8.6b)

where

a2
o =

f

2νt

.

The boundary conditions for this solution require ~V = 0 at the surface, and ~V → ~Vg as
z →∞.

Figure 8.12 shows the damping of numerical oscillations for the no-slip case with a con-
stant eddy viscosity of 12.5 m2s−1. This simulation ran for ∼20 non-dimensional time units,
therefore temporal averaging is over the range of 13 < tf < 20 or 36 to 54 hours. Figure 8.13
plots the horizontally and temporally averaged u and v velocity against average height. The
theoretical Ekman spiral is also included in the plot. It can be seen that the two solutions
agree well, especially within the boundary layer region. Some error is present in the velocity
profiles near the top of the domain, and it is likely that this is due to different top boundary
conditions. As previously stated, the analytical solution uses ~V → ~Vg as z →∞, and WRF
uses wsurf = 0 and p′ = 0 at the top vertical coordinate. Regardless, the agreement in the
boundary layer provides proof that the no-slip IB method is implemented correctly.
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Figure 8.8. Mean U and V velocity with the three IBM implementations and the
Smagorinsky closure. The flat plate is at 100 meters.

10
2

10
3

10
4

10

15

20

25

30

z/z
o

U
/u

*

 

 
Log−Law
Velocity Rec.
Shear Stress
Original WRF

Figure 8.9. Non-dimensionalized mean velocity on a semi-log plot with the Smagorin-
sky closure.
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Figure 8.10. Mean U and V velocity with the three IBM implementations and the
1.5 order TKE closure. The flat plate is at 100 meters.
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Figure 8.11. Non-dimensionalized mean velocity on a semi-log plot with the 1.5 order
TKE closure.
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Figure 8.12. (a) Time evolution of domain averaged u and v velocities showing the
damping of inertial oscillations for the no-slip boundary condition with constant eddy
viscosity. (b) Domain averaged u and v velocity on a hodograph showing the damping
of inertial oscillations with a red star marking the time at 36 hours, which is after ∼2
periods.
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Figure 8.13. Ekman spiral and mean U and V velocity for the no-slip IBM imple-
mentation with constant eddy viscosity. The flat plate is at 100 meters.
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8.4 Conclusions

Most of the IBM research to date has simulated flow with a no-slip boundary condition.
This has been adequate because the applications have been at low or moderate Reynolds
numbers where the flow domain was highly resolved. Atmospheric simulations involve flows
with very high Reynolds numbers, therefore resolution of the viscous scales is not currently
possible. To overcome this challenge, numerical weather prediction codes employ a surface
roughness parameterization for the bottom boundary condition. This idea could be used in
combination with IBM to successfully represent complex surfaces in atmospheric simulations.
To test this theory, three IBM techniques were tested with the NWP code WRF for the case
of a rotation influenced boundary layer.

The no-slip boundary condition has been tested by many researchers, and extended to
complex boundaries in three-dimensional flows. Many interpolation methods for boundary
reconstruction exist for the no-slip case. In contrast, the velocity and shear stress reconstruc-
tion methods would need to be reformulated in terms of normal and tangential components to
be applied to complex terrain. The methods could be extended to complex terrain and tested
for the canonical cases of two-dimensional flow over an isolated hill and three-dimensional
flow over a Gaussian hill.

It was shown that surface stress models combined with IBM show improved performance
over the traditional no-slip IBM boundary condition in their ability to recreate the expected
logarithmic velocity profile for the case of a neutral boundary layer. Interactions that warrant
further study were seen between the 1.5 TKE closure and the IBM implementations. While
difficulties exist in reformulating these methods for complex terrain, the potential gain in
performance makes further study a worthwhile endeavor.
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Chapter 9

Summary, conclusions, and

recommendations

9.1 Summary

Adding an immersed boundary capability to the Weather Research and Forecasting model
greatly extends the functionality of this code, allowing for more accurate results in steep ter-
rain and enabling simulations of urban terrain which could not previously be performed.
Given the great need for accurate flow simulations in complex terrain, this added function-
ality will affect the modeling of a variety of diverse applications including urban transport
and dispersion, wind energy siting, wildfire forecasting, among others.

Improvements to flow solutions using the IBM, rather than the native terrain-following
coordinate, were illustrated and quantified in chapter 4. As demonstrated over chapters
5, 6, and 7, we successfully developed an immersed boundary method which can be used
within the WRF framework while maintaining features of the code such as pressure-based
coordinates, atmospheric physics, and nesting capabilities. Simulations with the immersed
boundary method were shown to be able to reproduce the results achieved using terrain-
following coordinates for flows over terrain with sufficiently shallow slopes. When inverse
distance weighting is used for interpolation within the immersed boundary method, there
are no limits on the complexity of the terrain that can be represented with our method.

Our IBM capability can be used effectively for studying flows over complex terrain,
especially if it is combined with a wall model. Two possible implementations of wall models
combined with the IBM were tested in chapter 8 for flow over flat terrain. Extension of these
methods to complex terrain will greatly expand the applicability of our immersed boundary
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method. For example, flow in the Owens Valley is presented in appendix B using a no-slip
boundary condition, while a wall model boundary condition would be more appropriate,
especially for mountainous terrain.

9.2 Conclusions

Validation was carried out for flow over two and three-dimensional idealized terrain,
however, additional validation is ongoing for real cases. In chapter 7 the urban geometry
for Oklahoma City, OK was used for a simulation in a one-way nested configuration. The
flow in the parent domain is periodic channel flow, which creates an idealized logarithmic
velocity profile that is imposed as the lateral boundary condition for the nested urban do-
main. This type of inlet profile is sufficient for validation with the Joint Urban 2003 data
set. Chan and Leach [2007] saw good agreement within the urban corridor for intensive
observation periods 3 and 9 using a logarithmic inlet profile with the CFD code FEM3MP.

The obvious goal for the future is to nest domains using the immersed boundary method
into domains at the mesoscale; however, there are still several barriers to running simulations
like this. The primary limitation of running a microscale (i.e. urban) domain nested within a
mesoscale domain that is large enough to capture synoptic weather patterns is computational
cost. Lundquist and Mirocha [2008] note that “Because resolving the effects of individual
buildings demands grid cells on the order of 3 m or lower, typical domains are on the order
of 1 km x 1 km x 400 m.” With uniform grid spacing, as currently required by WRF in
the horizontal, at least 14.8 million grid points are required for a domain of this size and
resolution. Grid stretching in the vertical could reduce the total number of grid points
somewhat.

Nesting from the mesoscale down to the coarse LES scale (∆x ≈ 20 m) is a computa-
tionally tractable problem because the overall size of the domain can decrease at the rate of
the nesting ratio. For example, in a study of LES scale simulations nested within mesoscale
simulations by Lundquist et al. [2009b] seven nests were used in a 1:3 ratio to nest from a
600 km x 600 km x 800 m domain with 12 km horizontal resolution to a domain 800 m x
800 m x 800 m in size with a horizontal grid spacing of 16.5 m. The same number of grid
points can be used on each nest because the horizontal extents of the domain are one third
of the parent domain’s dimensions. In the Lundquist et al. [2009b] simulations, each domain
had an estimated 503 grid points for a total of 875,000 nodes. Further nesting becomes
much more computationally intensive because the smallest domain (800 m x 800 m x 800
m) cannot become any smaller, as the actual size of the urban area now defines the domain
size. Therefore three nests, all 1 km x 1 km x 400 m in size at ∆x = 18, 6, and 2 m, would
require a total of 52 million grid points if isotropic grids are used on each domain (although
isotropic grids are not possible without vertical nesting).

The Oklahoma City domain used in chapter 7 has a domain size of 516 m x 678 m x 435
m. With 2 m resolution, nearly 15 million grid points are needed for just the inner most
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domain. A second domain covering 570 m x 732 m x 435 m at 6 m horizontal resolution
requires an additional 2 million grid points. Use of additional vertical grid stretching beyond
what is naturally produced by the pressure-based coordinate should be investigated further,
and can reduce the total number of grid points. However, even with additional vertical grid
stretching this is still a large computational problem. Additionally, a smaller nesting ratio
(i.e. 1:5 instead of 1:3) could further reduce computational expense. The Oklahoma City
domain used here is much smaller than the domain used in the FEM3MP simulations of
Chan and Leach [2007], where the domain size is 1030 m x 3010 m x 425 m. The FEM3MP
model utilizes a graded mesh combined with a virtual building function, where some buildings
are not explicitly resolved, but instead represented as regions of high drag. These features
allow ∼1 m grid spacing at the boundaries of explicitly resolved buildings and at the ground,
while only using 201 x 303 x 45 (∼2.8 million) grid points. So, while the simulations in
Chan and Leach [2007] have about 600 m of fetch upwind of the IOP 3 scalar release, our
simulation just covers the release area. This means that while their logarithmic input velocity
profile is modified by the presence of buildings upwind of the scalar release, currently ours
is not.

Additionally, even at 2 m resolution, there are many building features which are still not
well resolved. Lidar data of the terrain for the Joint Urban 2003 field campaign exists at
1 m resolution. This data has been processed along with other data sources (such as satel-
lite photographs) to develop a three-dimensional shapefile representation of the buildings.
Within our Oklahoma City domain, the shortest terrain features have elevations of 3 m, and
it can be seen in figure 7.11 that there are many building features on the length scale of 1
or 2 m in width. Additionally, there are several places where the space between buildings or
building features is unresolved. Tseng et al. [2006] found that 6 to 8 grid points are needed
across a bluff body for the immersed boundary method to produce accurate results. The
effects of these under-resolved features should be studied further. Two possible strategies for
dealing with this problem are to adopt a hybrid technique of using both explicitly resolved
and virtual buildings or to develop an algorithm which processes the building data to filter
it with respect to the resolution of the simulation.

Furthermore, guidelines must be developed for domains or terrain features which should
be treated with the immersed boundary method, those which should be treated as virtual
terrain with increased drag, and those which should be completely parameterized with a
surface treatment such as an urban canopy parameterization. Using our previous example of
three nested domains with horizontal resolutions of ∆x = 18, 6, and 2 m, it may be as simple
as treating each domain differently so that an urban canopy parameterization is used on the
18 m domain, a virtual building treatment is used on the 6 m domain, and the immersed
boundary method is used on the 2 m domain. However, it is also possible that a combination
of these methods would be needed within a single domain to deal with terrain features of
various scales. Additionally, the effects of elements that are not included in the terrain file,
such as vegetation, may need to be parameterized.
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9.3 Recommendations for future study

This work has contributed to the development of immersed boundary methods, especially
as they are applicable to mesoscale models, and the WRF code in general. Recommendations
for future study fall into two broad categories: improvements which increase computational
efficiency and those which add functionality.

9.3.1 Recommendations which improve computational efficiency

Tseng [2003] notes that the immersed boundary method can be implemented with no
additional computational cost, however, we found this not to be the case in our model. In
models with a fixed vertical coordinate, the locations of the ghost points and neighboring
points that are included in the interpolation are fixed. The points can be located once
during an initialization processes and stored for the remainder of the run. Additional work
for the interpolation procedure such as inverting the Vandermonde matrix (for trilinear
interpolation) or calculating the radial distance from the image point (for inverse distance
weighting) can also take place before integration of the solution begins. In these cases the
only additional work during integration is matrix multiplication. With a pressure-based
coordinate, the index of the ghost node can vary during integration, although in practice we
found this to be a rare event. Additionally, the height in physical space does vary at each
time step for all points involved in the interpolation, meaning that the Vandermonde matrix
or radial distance change at each time step. During development of the method we choose
to call all of the IBM routines at each acoustic time step beginning with searching for ghost
points and ending with the imposition of forcing. This was done to eliminate uncertainty
associated with grid movement. We were positive during development that the boundary
condition was enforced at each acoustic time step. Certainly, this process could be optimized
further. At a minimum, the searching routine for locating ghost points could be replaced
with a check to determine if the ghost point location is still valid. Additionally, it may
be possible to obtain a solution that is sufficiently accurate, while updating the location
of the interpolation points less frequently (for example only on the first Runge-Kutta time
step). Another option would be to use a mesoscale model with a fixed time invariant vertical
coordinate, such as the Advanced Regional Prediction System (ARPS), which shares many
features with the WRF code.

Current grid nesting techniques also place severe constraints on the ability to nest down
from the mesoscale to microscale. One-way nesting in WRF can be accomplished by running
each domain in serial, in which case the history output file provides lateral boundary con-
ditions to the child domain at the frequency of the times in the history file. Alternatively,
the simulations can be run concurrently, so that boundary conditions on the child domain
are updated at the frequency of the parent domain’s time step. For LES, concurrent sim-
ulations are more effective for transferring high frequency turbulent fluctuations from the
parent grid to the child grid. Serial simulations are limited by the history file size that would
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be required to save data from the entire domain at every time step. One possible solution
for serial simulations is to write boundary files, containing only the information needed to
fill the boundary condition region of the child domain, while integrating the parent domain,
but not requiring history for every point in the grid.

Vertical nesting may be used while running serial simulations, but not while running
concurrent simulations. This means that for concurrent simulations the vertical resolution
desired on the inner most domain must be used on every domain. This is not only a com-
putational burden, but it also produces highly anisotropic cells on the coarsest grids. This
limitation could easily be removed by allowing for vertical nesting in concurrent simulations.

Finally, concurrent runs are not currently parallelized efficiently. Parent and child do-
mains are decomposed onto the same processors, meaning that for the Oklahoma City sim-
ulation the parent domain with 2 million points is decomposed onto the same processors as
the child domain with 15 million points. This is inefficient because the number of processors
used is limited by the number of nodes on the coarsest domain. Additionally, multiple do-
mains now have to fit onto the same processors that could be used to run just the outer most
domain. This is a severe computational constraint for nested LES simulations, and different
domain decomposition techniques should be investigated for concurrent simulations.

9.3.2 Recommendations which add functionality

The most important recommendation is that the rough surface parameterizations pre-
sented in chapter 8 be extended to complex terrain. This will allow for more accurate LES
simulations of high Reynolds number flows without fully resolving the near-wall regions at
immersed boundaries.

In the one-way nested simulation presented in chapter 7 the urban domain using IBM is
nested into another domain using IBM to represent a flat plate. This allows for ghost points
below all of the terrain, because the terrain elevation is always greater than the bottom
of the domain. When an IBM domain is nested within a domain with terrain-following
coordinates, as in figure 5.1, a ghost cell approach cannot be used at all locations. Seamless
nesting requires that the vertical coordinates are aligned at the interface of the two nests.
In the IBM domain, terrain without nodes below can be treated by applying forcing in the
fluid domain. This capability has been added to our IBM, but has only received preliminary
testing, and is therefore not used in the simulations presented here. The implementation
of this feature was straight-forward, therefore, it should be possible to use seamless nesting
between terrain-following and IBM coordinates in the future.

In our IBM, terrain is represented as a two-dimensional piecewise linear function. This
representation was chosen because terrain in mesoscale models is defined as a two-dimensional
array of heights. This representation is, however, somewhat limiting for urban terrain. El-
evation changes must take place over the space of a horizontal grid, meaning that perfectly
vertical surfaces cannot be represented. Furthermore, three-dimensional objects such as
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bridges or sky walks cannot be fully represented. Previous atmospheric urban IBM simu-
lations [Tseng et al., 2006; Shi et al., 2008] align the buildings with the mesh, so that IBM
resorts to a simple masking approach. Our IBM is thus capable of a higher order repre-
sentation of the urban terrain than previous methods. Nonetheless, the boundary could be
represented even more accurately if an unstructured triangulated mesh (such as a .stl file) is
used to describe the urban terrain. Unfortunately, urban terrain is not meshed often because
the descriptions of urban terrain create dirty geometries, creating difficulties with producing
a watertight mesh. IBM methods (particularly our inverse distance weighting IBM) are well
suited to interacting with this type of surface description and even with low-quality non-
watertight grids. The accuracy of the flow solution should increase with the higher-order
boundary representation.

Colette et al. [2003] demonstrated the importance of including the effects of topographic
shading in simulations of valley flows, especially for fine-resolution small-scale simulations
where steep topography is represented. Until version 3 of WRF, which was released in
2008, radiation was idealized as a completely vertical process. This is also how radiation
is treated when coupled to our IBM as described in chapter 5. Current versions of the
WRF code include the effects of the incident angle of radiation on sloped surfaces and topo-
graphic shading. Both of these new features should be coupled to the immersed boundary
for increased accuracy.

For fully three-dimensional radiation effects at the urban scale, a three-dimensional urban
energy balance model must be used instead of the mesoscale radiation parameterizations.
WRF solves a conservation equation for potential temperature, and in the urban simulations
presented in chapter 7, a zero-flux boundary condition is applied on the surfaces of the
buildings. If a three-dimensional urban radiation model were used, such as presented in
Krayenhoff and Voogt [2007], a temperature or flux boundary condition could be assigned
to the building surfaces. However, three-dimensional radiation models still have limitations,
often requiring idealized geometries and being extremely expensive computationally.

The suggested advances beyond the work presented here (surface roughness parameteri-
zations, improvements to parallelizations, adding vertical nesting for concurrent runs, devel-
oping higher-order boundary representations, including three-dimensional radiative transfer,
etc.) are substantial. Nonetheless, given the significant improvements afforded by IBM as
demonstrated herein, and recognizing the demand for accurate simulations in complex ter-
rain required for transport and dispersion, wind energy, and other applications, it is hoped
that opportunities for extending this work will emerge.
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Appendix A

Scalar advection test case under
stable atmospheric conditions

Results are presented in this appendix for the scalar advection test case used in chapter
4 under stable atmospheric conditions. Results are only presented for the case of terrain-
following coordinates, and the default WRF advection options, which are 5th order in the
horizontal and 3rd order in the vertical. The set-up of the simulation is identical to the set-up
used in chapter 4, with the exception of the potential temperature initialization. Potential
temperature is initialized as given in a standard atmosphere, as was also done in Zängl [2003].
The standard atmosphere specifies a temperature of 288 K at sea level, a tropospheric vertical
temperature gradient of -6.5 K km-1, and an isothermal atmosphere above the Tropopause
at a height of 11 km.

Figure A.1 shows contours of u and w velocity for the stable atmospheric case, as in figure
4.3 for the neutral case. At the end of the simulation (t = 10,000 s) horizontal velocities
range from -0.53 to 11.72 m s-1, and vertical velocities range from -0.59 to 0.65 m s-1. This
is much less error than seen in the neutral case, where u ranged from -5.8 to 14.1 m s-1 and
w ranged from more than -4 to 4 m s-1. Errors in the velocity field for the stable WRF case
are still much larger than when IBM is used, where the error is negligible. Additionally, the
errors for this simulation (using terrain-following coordinates and a stable atmosphere) are
larger than seen by Zängl [2003] using the native MM5 terrain-following coordinate.

Figure A.2 shows contours of the scalar concentration, and error calculated as the dif-
ference from the analytical solution. This figure is as in figure 4.4 for the neutral case. At
the end of the simulation, the minimum and maximum scalar concentrations are -0.04 and
0.83, which have non-dimensional units. The absolute error ranges from -0.18 to 0.19 at
t = 10,000 s in the stable case, whereas it ranges from -0.77 to 0.67 in the neutral case.
Again, the errors for this simulation are larger than in Zängl [2003], where errors in scalar
concentration ranged from -0.12 to 0.10 with a stable atmosphere.
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Figure A.1. This figure is as in figure 4.3, except with a stable atmosphere. Contours
of the u and w components of velocity in m s-1 for terrain-following coordinates at t
= 10000 s. Axes indicate domain size in km, and are not to scale.
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Figure A.2. This figure is as in figure 4.4, except with a stable atmosphere. On
the left, the scalar concentration is shown at t = 0, 5000, and 10000 s. Scalar units
are non-dimensional with a range of 0 to 1. Contour intervals are in 0.1 increments.
Error is shown on the right, and is calculated as the difference between the numerical
and analytical solutions. Contour intervals are 0.01. The zero contour is suppressed.
Axes indicate domain size in km, and are not to scale.
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Appendix B

Owens Valley simulations

The IBM allows explicit resolution of steep mountainous terrain, enabling WRF to sim-
ulate flows which cannot be computed using a standard terrain-following coordinate. To
demonstrate this capability, we have modeled flow over a two-dimensional slice of the Owens
Valley in California. The terrain slice, seen in figure B.2, is perpendicular to the valley
axis. The terrain data is from the National Elevation Dataset (NED) at a resolution of
1/3 arc-second or approximately 10 m. As the terrain slice is not aligned with latitudinal
coordinates, it was necessary to interpolate the data onto the grid. After the interpolation,
the terrain resolution used in the simulation is 20 m. As a rule of thumb, terrain-following
coordinates should not be used for slopes over 30 degrees. The slope of the 20 m terrain
data is plotted in figure B.1, and it can be seen that there are several slopes of 60 degrees in
this valley profile.

The domain size is (X, Y, Z) = (58.32 km, 0.04 km, 10 km) with (nx, ny, nz) =
(1459,2,120) grid points. The grid spacing is ∆X = ∆Y = 40 m in the horizontal. The
minimum grid spacing in the vertical is ∆Zmin = 49.0 m, and the maximum is ∆Zmax =
130.6 m. The initialization is the same as in the fully coupled cases in section 6.3.2, and as
in those cases the soil properties are idealized.

Figures B.2 and B.3 are examples of flows in the Owens Valley. Figure B.2 shows a
typical morning upslope flow due to diurnal heating. Figure B.3 shows westerly flow over
the Sierra Nevada mountain range. Mountain waves are seen over the valley.
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Figure B.1. Slope of the Owens Valley terrain data is plotted with the black line.
The green background depicts the typical limits of terrain-following coordinates.

157



Figure B.2. Upslope flow induced by diurnal heating.

Figure B.3. Mountain wave over the Owens Valley from westerly flow over the Sierra
Nevada mountain range.
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Appendix C

American Meteorological Society full
copyright notice

c©Copyright 2010 American Meteorological Society (AMS). Permission to use figures, ta-
bles, and brief excerpts from this work in scientific and educational works is hereby granted
provided that the source is acknowledged. Any use of material in this work that is de-
termined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies
the conditions specified in Section 108 of the U.S. Copyright Act (17 USC 108, as revised
by P.L. 94-553) does not require the AMS’s permission. Republication, systematic repro-
duction, posting in electronic form on servers, or other uses of this material, except as
exempted by the above statement, requires written permission or a license from the AMS.
Additional details are provided in the AMS Copyright Policy, available on the AMS Web
site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copy-
right@ametsoc.org.
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