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Abstract 

To improve current spatiotemporal interpolation methods for public health applications (Li et al., 
2010), we combine the extension approach (Li and Revesz, 2004) with machine learning 
methods, employ the efficient k-d tree structure to store data, and implement our method on 
Apache Spark (Spark, 2016). Preliminary results demonstrate the computational power of our 
method, which outperforms the previous work in terms of speed and generates comparable 
results in terms of accuracy (Li et al., 2014). Future research will continue exploring this method 
to improve the interpolation accuracy and efficiency, with the long term objective of establishing 
associations between air pollution exposure and adverse health effects. 

1. Introduction 
To implement the spatiotemporal interpolation method, Li and Revesz (2004) proposed an 
extension approach, which resolves the spatiotemporal interpolation into a higher-dimensional 
spatial interpolation by treating time as an asymmetric dimension in space. Unfortunately, 
modern work on spatiotemporal interpolation (Pebesma, 2012; Gräler et al., 2013; Losser et al., 
2014; Li et al., 2014, etc) utilizes simplistic methods to scale the range of the time dimension. In 
recent work, Li et al. (2014) extended the inverse distance weighted (IDW) method (Shepard, 
1968) to model the PM2.5 exposure risk by scaling the time domain with a parameter !, which is 
a similar concept to the spatiotemporal anisotropy parameter (Gräler et al., 2014).  

In applying the extension approach to the spatial IDW method to interpolate the spatiotemporal 
data, we arrived at the following formulae  

" #, %, !& = ()"),
*

)+,
									() =
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where " #, %, !& 	represents the unknown value to be calculated at the un-sampled location 
(#, %) and time instance t, ! is the spatiotemporal anisotropy parameter, 6 is the exponent that 
influences the weighting of "), and n is the number of nearest neighbors. Applying k-fold cross 
validation (k-CV) to the training set can discover the optimal parameters !, 6 and 7 for this data 
set in order to estimate the daily PM2.5 concentration values at unknown points. Building upon 
this work, our method parallelizes the implementation of the original IDW algorithm using 
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Apache Spark (Spark, 2016) (Figure 1), which is a lightning-fast cluster computing framework 
and represents the avant-garde of big data processing tools.  

In short, our parallelized IDW process broadcasts structured data (the k-d tree) to worker nodes 
for distributed nearest-neighbor queries and, thus, rapid estimation of pollution levels at 
unmeasured locations. Naturally, the accuracy of the IDW method for pollution level estimation 
depends on certain model parameters. Previous work (Li et al., 2014) might search a few dozen 
parameterizations because of limited computational resources. Our system can search tens of 
thousands of parameterizations in a manageable amount of time.  We attempt to learn the best 
model parameters with brute force, and Apache Spark allows for the application of tremendous 
force.  

 
Figure 1.  Spark Ecosystem (Spark, 2016) 

 

2. Data Sets 
To demonstrate the efficacy and efficiency of our new method, we explored three daily PM2.5 
data sets for comparison with the results from Li et al. (2014). The first data set was air pollution 
data from the EPA’s AQS (Air Quality System) which provided 146,125 PM2.5 measurements 
collected at 955 monitoring sites on all 365 days of the year 2009 (Figure 2).  

 

 
 

 
 

 
 

 
 

 
Figure 2. PM2.5 Sample Locations 
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The second and third data sets contain centroid locations of 3109 counties and 207,630 census 
block groups in the contiguous U.S., respectively. Census block groups (the smallest 
geographical unit for which the Census Bureau publishes sample data) contain roughly 
600~3000 people and are commonly used spatial units to explore population health variables 
(Iceland and Steinmetz, 2003, Krieger et al., 2002).  
We train our IDW-based model to estimate the daily PM2.5 concentration values in 2009 at the 
centroid locations (the second and third data sets) for the contiguous U.S., using the existing 
PM2.5 measurements (the first data set) as the training set.  

3. Preliminary Results 
Two pilot experiments using our general approach have been built. Preliminary results 
demonstrate that our method and implementation is extremely fast compared to previous work 
while achieving better prediction accuracy. Since our current method follows the work by Li et 
al. (2014), the main contributions are the larger learning ranges for the parameters in the model 
and the employment of the cutting-edge technique – Spark. The experiment details are shown as 
follows. The summaries also include runtimes on Spark with the equivalent time it would have 
taken in a sequential procedure (a statistic tracked by Spark). 
Experiment 1: We exactly follow the work by Li et al. (2014), where the spatiotemporal 
anisotropy parameter c was fixed as 0.1086 and 45 parameter configurations were selected for 
inspection. The learning task in our system only took 2.3 minutes on Spark (70 minutes in 
sequential time). Since Li et al. (2014) did not provide time consumptions for this learning 
process, we are not able to compare our result with their outcome. For the prediction stage, 
where the daily PM2.5 concentration values at the centroids of counties and census block groups 
are estimated, our implementation only took about 8% of Li et al. (2014)’s record. 
Experiment 2: Instead of fixing the spatiotemporal anisotropy parameter c, we search for the 
optimal value. The parameters considered here include c, n, and p. Furthermore, each parameter 
configuration was run across three 10-CV partitions with the resulting error statistics averaged 
(to reduce the effect that using a particular partition might have). This set up amounted to 16,848 
configurations that were tested in 144.6 hours (4,694.3 hours in sequential time). As expected, 
the prediction accuracy, measured by MARE, is increased from 1.2058 to 0.3791. This result is 
actually better than the current best accuracy under the 10-CV, which is 0.3866 and was 
produced by Li et al. (2012)’s shape-function-based method.  
We are confident that our experiments will efficiently learn the optimal parameters, and thus 
improve the estimation accuracy of the interpolation model, helping us to definitively establish 
more accurate associations between air pollution exposure and adverse health effects.  

4. Future Work 
Future research will extend our machine learning approach on Spark in the following four 
directions: (1) scanning a wider parameterization space and further optimizing search methods 
for the parameter configurations, (2) exploring alternate machine learning methods such as 
leave-one-out cross validation and random forest, (3) attempting other spatiotemporal methods 
such as shape function and Kriging based methods, and (4) analyzing other data sets such as real-
time hourly air pollution data from the AirNow government website service that provides hourly 
updates of pollution measurements data from sites across North America. 

GIScience 2016 Short Paper Proceedings

314



Acknowledgements 
We would like to thank Brandon Kimmons, Director of Computational Research Technical 
Support at Georgia Southern University, for helping us set up Spark. Franklin, Tong and Zhou 
were supported in part by funds from the Office of the Vice President for Research & Economic 
Development at Georgia Southern University.  

References 
Gräler B, Rehr M, Gerharz LE and Pebesma E, 2013. Spatio-temporal analysis and interpolation of PM10 

measurements in Europe for 2009. ETC/ACM Technical Paper.   
Iceland, J, and Steinmetz, E, 2003. The effects of using census block groups instead of census tracts when 

examining residential housing patterns. Bureau of the Census. 
Krieger, N, Chen, JT, Waterman, PD, Soobader, MJ, Subramanian, SV, and Carson, R, 2002. Geocoding and 

monitoring of US socioeconomic inequalities in mortality and cancer incidence: does the choice of area-based 
measure and geographic level matter? The Public Health Disparities Geocoding Project. American journal of 
epidemiology, 156(5):471--482. 

Li L and Revesz, P, 2004. Interpolation methods for spatiotemporal geographic data. Computers, Environment and 
Urban Systems, 28:201–227. 

Li L, et al., 2012. Estimating Population Exposure to Fine Particulate Matter in the Conterminous U.S. using Shape 
Function-based Spatiotemporal Interpolation Method: A County Level Analysis. GSTF: International Journal 
on Computing, 1:24–30. 

Li L, Zhang, X and Piltner, R, 2010. An application of the shape function based spatiotemporal interpolation method 
on ozone and population exposure in the contiguous U.S. Journal of Environmental Informatics, 12:120–128. 

Li L, Losser T, Yorke C and Piltner R, 2014. Fast Inverse Distance Weighting-based spatiotemporal interpolation: a 
web-based application of interpolating daily fine particulate matter PM2.5 in the Contiguous U.S. using parallel 
programming and k-d tree. International Journal of Environmental Research and Public Health, 11(9): 9101-
9141. 

Losser L, Li L and Piltner R, 2014. A spatiotemporal interpolation method using radial basis functions for 
geospatiotemporal big data. In Proceeding of the 5th International Conference on Computing for Geospatial 
Research and Application, Washington DC, USA, 17-24. 

Pebesma E, 2012. Spacetime: spatio-temporal data in R. Journal of Statistical Software, 51(7):1–30. 
Shepard D, 1968. A two-dimensional interpolation function for irregularly spaced data. In Proceedings of the 23nd 

National Conference ACM, 517-524. 
Spark, 2016. https://databricks.com/spark/about. 
 

GIScience 2016 Short Paper Proceedings

315




