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To one who might have sung;
who only listened.

- Adapted from an early work of F. Scott Fitzgerald.
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ABSTRACT OF THEDISSERTATION

On Advantages of Cooperation in Cellular Systems:
Throughput and Heavy Traffic Performance

by
Sumit Bhardwaj

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2008
Professor Anthony S. Acampora, Chair

Professor Ruth J. Williams, Co-Chair

The object of interest in this dissertation is a cellulared@ss system with coop-

eration among base stations. We study such systems fronss-lerger point of view.

In the first part of the dissertation, we investigate the mmaxn throughput of
such a system. Assuming that the relative traffic of each lmabispecified in advance
and some simplifying assumptions on the underlying chanmelshow that the maxi-
mum stable throughput can be expressed in terms of the ¢gpéthe channel. We then
formulate a queueing model for this system and propose adimgut-achieving service
policy. We then propose a fixed-point approximation as afimothe performance anal-

ysis of this policy. We then proceed, via simulations, to dastrate the advantage of

Xiii



cooperation over the traditional operation of such syste®isce the proposed policy is
computationally expensive, we propose a practical, akadioptimal, scheme for large
systems. We quantify, again by means of simulations, thargdge of the proposed

scheme over the traditional operation.

We next study the performance of the queueing network inyh&aific. Specif-
ically, we prove limit theorems justifying a diffusion agximation for a heavily loaded
system operating under the policy proposed earlier. We g$insitv that for a two-user
system,the renormalized queuelength process converghstiibution to a Semimartin-
gale Reflecting Brownian Motion (SRBM) living in a two-dinganal quadrant. Using
different techniques, we next show that for an arbitrangdisystem, the renormalized
workload process converges in distribution to an SRBM tiMimthe N-dimensional pos-

itive orthant whereV is the number of users in the system.
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CHAPTER 1

Introduction

Cellular wireless networks have been in operation for theebetrt of the last two
decades, with improvements all along the way. (An exceil@nbduction to the subject
matter is the book by Schwart36]; also see the references therein.) These networks
have traditionally operated in accordance with a simplestimonored approach: divide
the overall region to be served into individual radio celach with its own base station
or access point, and serve all mobile stations within thépidat of each given cell from
that cell’s base station. With the possible exception ofteenysient that may briefly occur
during an intercell hand-off, at which time a mobile statioay be in simultaneous com-
munication with two base stations, communications withilicw@arently deployed cellular
and wireless internet access systems are strictly betwaamiadividual mobile station
and its respective serving base station. In fact, in moshefstystems, communications
between the base stations in other cells and their mobil@stelients represent a source
of interference with regard to mobile-to-base station camitations within any given

cell.

A different approach would be to let each of the mobile steiwithin the foot-
print of a set of base stations be served by all base statiotigat set. Corresponding to
the fact that the base stations constitute the infrastrectithe cellular wireless systems,
this is known in the literature as “infrastructure coopemat [40]. (In the sequel, we

may sometimes refer to infrastructure cooperation by “Iségon cooperation” as well.)

Specifically, we consider a cellular wireless access ndtwowhich the base sta-



tions can cooperate over noise-free, wireline links wittinite capacity. Such links do,
in fact, effectively exist within portions of today’s celar infrastructure in the form of
the buried fiber optical cabling used to connect base swtioth the Mobile Switching
Center (MSC). However, these fiber links are, today, usedtlgtitic enable communi-
cations between the MSC and each base station, as opposeablong transmit/receive

cooperation among base stations.

Infrastructure cooperation seeks to better utilize théis&s by allowing them to
carry complex analog waveforms (or the digital represemahereof) between a central
processing/control station and each base station in a stssdiciated set. This central
processing and control node computes the signal that mustitteby each base station
to optimize some mobile station delivery objective andexdilvely processes the signals
received from all base stations. In effect, each mobile igexkby an array of macro-
diversity antennas. In the sequel, we may sometimes refeetoooperating base stations

as the “Composite Base Stations” (CBS).

In the forward direction, the signal radiated by each bas#ost antenna is a com-
posite constructed from the individual data streams that@be sent concurrently to the
mobile stations collectively served by the set of basemtati The central node constructs
an individual composite signal for each base station amsteuch that each mobile then
optimally receives its own data in accordance with the chadgective criterion. In the
reverse direction, each base station antenna receives@mnosite superposition of the
signals sent by the mobile stations, and the central processforms a joint detection of

all signals. The focus of this dissertation will be on the dbnk.

Physical layer aspects of infrastructure cooperation leenlstudied in earlier
works (see, for example, Shamai and Zai®&d|[ Ng et al. 30], Choi and Andrews§],
etc.). From the literature on physical layer aspects oBstiiucture cooperation, we know
that the cooperative base station approach is superiors, Without requiring a great

deal of improvements in the infrastructure (the fiber linkscecting each base station



with the MSC are assumed to be already in place), the deble@pacity of a cellular

network can be greatly improved.

However, the literature on infrastructure cooperationsdonet consider network
traffic issues such as delay performance, optimal througlepect In this dissertation, we
study some of the topics related to the cross-layer anabfsiellular wireless systems
enabled with infrastructure cooperation. Here by crogsilanalysis we mean viewing
the physical and the network layers as one entity, unlikedBé model #f, Chapter 1.3]

where the two layers are studied separately.

While the modern communications networks have packet-b@astid, one of the
key assumptions, and therefore a key limitation, in theietudf base station cooperation
has been the assumption that the traffic is stream-type.efdrer towards the next step
in the study of cooperative cellular wireless systems, is thissertation, we consider a
packet-oriented traffic modélTo this end, in the sequel, we seek to establish bounds on
the performance of the downlink of the cellular wirelessteyss with packet-based traffic

and cooperation among base stations.

To establish the performance bounds, we use results frortiuseit information
theory. (A good treatment of recent results on multiusesrimiation theory can be found
in Goldsmith [L5].) We start with the problem of finding the maximum absoliieugh-
put to the mobile stations when the relative needs of eack@eeified in advance. The
next step would be finding a queueing discipline that minesithe overall average delay,
where delay is defined by a suitable metric. However, the lealupature of the resulting
gueueing network precludes an answer to this problem. Netets, we propose a sim-
ple queueing discipline that achieves the maximum throughfgain, the coupled nature
of the resulting queueing network does not allow analysithefthroughput-maximizing

gueueing discipline. Therefore, we take an empirical apgindo study the performance

L A packet model allows us to develop and study interestingyjiiays between queueing service disci-
pline (a higher layer issue in the OSI model) and physicallehannel conditions (a lower layer issue in
the OSI model).



of the queueing discipline. In lieu of exact analysis, wepmse two different approxima-
tions to the performance analysis of the queueing dis@pMie first propose a fixed-point
approximation, a useful approximation for heavily as wellightly loaded systems. We
next, as a measure of performance of the queueing networktpgunder this discipline

in the heavy traffic, develop a diffusion approximation.

A limitation of multiuser information theory based apprbas its computational
complexity for real-world systems. As a remedy to this ingpicality, we propose a
scheduling policy that is suboptimal, but easy to implemantd gives a performance

improvement over the traditional operation.

Since we are interested in establishing performance boweelsassume perfect
network synchronization with regard to bit timing and carphase at each base station.
Moreover, we assume that the channel transfer matrix, septeng the attenuation and
relative phase shift occurring between the antenna at eash &tation and the antenna
at each mobile station, is known at the central node. We glsore the effect of time
dispersion in the channel. In the sequel, we make some additassumptions about the

channel to facilitate analysis.

Admittedly, these are indeed optimistic assumptions amiagmations, but our
goal here is to explore the potential benefits of base statoperation, leaving both the
real-world innovations needed to achieve these benefit ttean assessment of perfor-
mance degradation arising by any real world deviations ftbese optimistic assump-

tions, for future.

1.1 Organization of the Thesis

The rest of the dissertation is organized as follows. Chaptiewestigates the
problem of providing a descriptor of maximum throughput eflglar wireless systems

with infrastructure cooperation. We begin with a quastistaystem with simplistic as-



sumptions on the channel model. We first develop the queuotdgithat will be studied

throughout the dissertation. Then we show that there is plsiexpression for the maxi-
mum throughput of this queuing model relating the throughpuhe capacity of the un-
derlying channel. We then propose a service policy thateselsi the throughput. In both
these cases, we are providing results linking the netwgrgrlgqueueing) to the physical
layer (the channel). Since an exact analysis is not possi@@ropose an approximation

to help in the analysis of the average delay under this policy

We then propose a policy that is applicable and implemeaténi large real-
sized systems. Through simulations, we show that, undenemmthannel models, this
policy doubles the throughput of a cellular system with astructure cooperation over

one without cooperation among base stations.

A multi-input multi-output (MIMO) downlink system can beeseas a generaliza-
tion of the downlink of the cellular wireless network withfiastructure cooperation, the
object of study in Chapte2. Moreover, the service policies that are throughput-optim
for the latter are throughput-optimal for the former as wall Chapter3, we analyze the
performance of such a policy for quasi-static MIMO downlisfstem in heavy traffic.
We begin with the simple case of a two-user system where theatipn points are enu-
merable. In this case, using the results on the Skorokhoolgmmo (Sectior3.3.1.9), we
show that the diffusion-scaled queuelength process cgasen distribution to an SRBM

(Theorem3.3.12 in the two-dimensional positive orthant.

We next analyze the performance of such a policy for an ailygrsized system.
As will be seen, in this case there @€ — 1 operation points wheré/ is the number
of users. Therefore, the techniques used for the two-usss can not be applied. By
using results from the applied probability theory, we arkedb show a result analogous
to the two-user case. Specifically, Theordm.6states that the diffusion-scaled workload

process converges in distribution to an SRBM in falimensional positive orthant.



CHAPTER 2

Maximizing Throughput

As mentioned in Chaptel, our objective in this Chapter is to quantify the maxi-
mum throughput of the downlink of a cellular system with cergiion among base sta-

tions and to devise schemes that achieve this throughpuprédéeed in multiple steps.

We first provide a methodology to quantify the maximum thrigogt of the down-
link of a cellular system with infrastructure cooperatiobnder some simplifying as-
sumptions, we show that the maximum throughput of the dawrdrf a cellular network
with cooperating base stations is related to the capadifipmneof the underlying channel

(Section2.1.3.2.

The next question we answer is whether or not there is a pthiaycan achieve
this maximum throughput. Under the same assumptions agreave propose a policy
that achieves this objective (Secti@ril.4. Using an empirical approach, we quantify
the advantage, in maximum throughput, of a system with biatieis cooperation over a

traditional cellular system.

Unfortunately, we do not know of numerical or analytic teicjues to compute the
maximum throughput for even moderately sized systems (saye than five(5) users).
Therefore, we propose a practical, but suboptimal, schehehgives a higher through-
put (Sectior2.2). We then quantify, again by means of simulations, the atdgnof the

proposed scheme over the traditional operation of celkyatems.
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Figure 2.1 System model)M base stations anl users; each have one antenna.

2.1 Upper Bound on the Throughput

2.1.1 System Model

The model that we adopt to describe our system of cooperbtisg stations ap-
pears in Figure.1 Shown there ard/ antenna elements, each connected to a central
node via a two-way, zero noise, infinite capacity link. Aldown are/N hon-cooperating
mobile stations. The maximum power available to the cemivde isP. We assume that
the central node can distribute this power among the cotipgraase station antennas in

any proportion it decides.

Arriving at the central node ar& packet streams, each containing packets ad-
dressed to a single mobile station. Each packet containeragjeically distributed num-
ber of bits with mean valu& [b]. The central node contain$ queues, each holding the
bits awaiting delivery to a particular mobile station. Petclrrivals for thej-th mobile

station are characterized by a Poisson process with aret@h;. If we define

@éi?j:LZ“WN, (2.1)



then we can represent the arrival processes by the vector
A= \Ek (2.2)
where
k= {1,k ko ... Ekn}. (2.3)

Since each packet contains a geometrically distributedomurof bits, the remaining ser-
vice time for a given packet in thgth queue can be modeled as an exponentially dis-

tributed random variable with mean value

(2.4)

where c; is the current rate at which thgth queue is being emptied (expressed in

bits/sec). Then, the instantaneous departure rate frogrtheueue is

& == (2.5)

We represent the current set &fdeparture rates by a vector
l‘l’é {M17M27"'7MN}’ (26)

The channel between the base station antennas and the rattiten antennas
is described by a channel matriX = [h; ;] whereh;, represents the amplification or
attenuation of the waveform signal(t) originating at base stationas observed at mobile
stationk, 7 =1,2,...,M; k=1,2,..., N. Added at mobile statioh is white Gaussian
noise,n(t), independent from the noise added at every other mobil@stathe spectral
height of the noise is assumed to Ng/2 and the system bandwidth is assumed tdibe

Letr.(t) be the composite waveform arriving at mobile statioit = 1,2,..., N. Then,



r(t) = Hs(t) + N(t) (2.7)

where the received signal vectoft) = {r(t),r2(t),...,rn(t)}, the transmitted signal
vectors(t) = {si(t), s2(t),...,sum(t)}, and the additive noise(t) is given byn(t) =
{n1(t),na(t),...,nn(t)}.

For this section, the elements Bf are assumed to be independent complex Gaus-
sian random variables, each with independent real and maagparts. Such a matrix
corresponds to that produced by a flat multipath Rayleigingachodel. Therefore, at
present, we are not considering path-loss and other lamg-<tkannel variations. We will

introduce long-term channel variations later in this Chapte

We define the signal-to-noise Ratio (SNR) as follows. SupmkspowerP is
allocated to thej-th base station for the purpose of communicating only wli it-th

mobile station, and suppose further that
E [[Re (h)])* + [Im (h))*] =1 (2.8)
whereRe () andIm () denote real and imaginary parts, respectively. Then, SNR is

defined to be the actual SNR observed at mobile statjdhat is,

P

SNR 2 .
NW

(2.9)

2.1.2 Multiuser MIMO Downlink Capacity Region and its Properties

For a given SNR and channel matiH, the system shown in Figu1 can be
characterized by aiW-dimensional capacity surface. A representative capatitface,
drawn for N = 2, appears in Figur@.2 Each point on this surface corresponds to an
allowable rate pair, that is, an allowable combination téséc;, c) at which information

can be reliably delivered from the central node to mobiléiats 1 and2, respectively.
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Ay

Figure 2.2 Outline of a representative capacity surface

For example, if all resources are allocated to the delivégformation to mobile station

1, then, for the channel matrix and SNR underlying the capasitface of Figure2.2,
information can be delivered to mobile statibrat rate A;, with the rate of delivery to
mobile2 set at zero. Similarly, if all resources are allocated todbkvery of information

to mobile 2, then information can be delivered to mobile statibat rate A,, with the
rate of delivery to mobile statioh set to zero. In fact, for the channel matrix and SNR
underlying the capacity surface of Fig#2, resources can be allocated to mobile stations

1 and2 such that any point on the capacity surface can be achieved.

In fact, the downlink channel depicted in Figl2el has been well-studied in the
literature and is known as the multi-user MIMO broadcasincteh The problem of find-
ing the capacity region of such a channel has also been tueliesl. Based on the notion
of Dirty Paper Coding (DPC)10], an achievable rate region for this channel was pro-
posed §], [46], and it has been shown that the DPC region is, in fact, thaagpregion
of a multi-user MIMO broadcast channdd. Furthermore, it has been shown that the
capacity region of the MIMO broadcast channel can be writteterms of the capacity
region of the dual multiple access chanrg)][ [42]. Since the capacity region of the dual
multiple access channel is easily computable, the capeegign of the primal broadcast

channel can be computed by using the duality. Thus, as showigure2.3, the two-
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Figure 2.3 Two-user MIMO broadcast channel Capacity region is compusaag dual-
ity.



12

dimensional broadcast channel capacity region is obtaasdate convex hull of the dual
multiple access channel regions over the set of power ditotasuch that the sum of
allocated powers is the same as the broadcast power. Ndtéhthaumber of receive
antennas per user can be more than one without changingdbedure of determining

the capacity region or affecting the properties of the céapaegion.

The capacity region of a multi-user MIMO broadcast chan@ekorresponding
to a N-user MIMO downlink system with fixed channé&l and total transmit powepP

has the following properties:

(i) C is a non-empty connected closed subset of Skdimensional nonnegative or-

thant,
(i) Cis convex,

(iii) C has(N + 1) boundary pieces of whiclv are the intersections @f with planes

passing through the origin on which exactly one of Mi&omponents is zero.

We call the(N + 1)-th boundary ofC the capacity surface All of the components of
an outward pointing unit normal at each point of the capasitsface are nonnegative.
Note that there might not be a unique outward pointing norooidlthe abovementioned

property holds for each normal. Moreover, the capacityaethas a functional form

flei,eo,.en) =k (2.10)

where, from property (ii),f(-) is a convex function ofV variables and: is a constant.

We do not make any other assumptions about the fungtion

Associated with a convex capacity region is the conceiftérentiated service
capacity (DSC). For every convex capacity region, there is a uniquatpehere the
capacity surface is intersected by a ray from the origin opsk = (1, ko, k3, ..., kn).

We call this point the DSC for the givda In Figure2.4, ray L, is the ray from the origin
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Figure 2.4 A representative 2-user MIMO BC capacity region. The peinis the DSC
for k = (1,2). The capacity surface for traditional operation is indécaby the dashed
lines.

with slopeR, = 2R;. It intersects the capacity surface at the paint Thus,c, is the
DSC for the vectok = (1,2). Note that symmetric capacit3{] is a special case of the

differentiated service capacity with= (1,1,...,1).

2.1.3 Queueing Network and Maximum Throughput

In this section, we develop and study the queueing modehtosystem described
in Sec.2.1.1 We establish a limit on the maximum throughput that can Ippstted while
keeping the system stable. We then propose a service pbltys throughput-optimal
where a service policy is throughput-optimal if the poli@sults in a stable queueing

system for all allowed loads.

In this section, we only consider quasi-static fading, iteatve assume that the
channel matrixH is fixed for the period of interest. Note that this reducesfting

MIMO broadcast channel to a Gaussian MIMO broadcast channel
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2.1.3.1 Queueing System

As explained in Sectiof.1.1 by modeling the exogenous traffic as a packet-based
traffic, instead of stream-based traffic, we can considenitiows, one for each user, at
the transmit end a& queues, one for each user. The arrival process for each dgiane

independent Poisson process where the average arrivaleretiar is given by 2.2),

A= \Ek. (2.11)

Packets for each user are stored in their order of arrival.agg&ime that all the queues
have infinite buffer so that no packets are lost. When sendgcgivien to a queue, it
goes to the packet at the front, that is, we only considerifirfirst-out (FIFO) service
disciplines. Each queue is served by a single server withageeservice rate vector at
timet, pu(t), given by

p(t) = (pa(t), pa(t), .. un(t)). (2.12)

The service rate vector is related to the transmission ratégs) by @.5), but at any
given time there are infinitely many possible combinatiohgransmission rates, and
thus, infinitely many possible ways of choosing the servates. Thus, we restrict our
attention to work-conserving policies. A policy vgork-conservingf it serves at full
rate whenever data is present in any of the queues. For oueqesystem, this would
correspond to choosingon the capacity surface only. Then fro&1%) and .10, at all

times the components @f(¢) must satisfy a functional relationship of the form

g(/ulmu%"'a:uN):k: (213)

whereg(-), again, is a convex function becauge) is an affine transform of (-) and

convexity is affine-transformation invariant.

Since in this queueing system, the packet arrival and seraies are different for
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different users, each user can be seen as a separate classitifelass queueing system,
thereby making this queueing system a multi-class queugystem. Furthermore, the
instantaneous (and average) service rate of a queue depetits state (service rate and
the number of packets in the buffer) of every other queue énnetwork. Thus, we are

considering a system of coupled queues.

Such queueing systems are not easy to study. Even the siag@ettwo coupled
gueues has many open questions. One case which has beed stwdives a coupled
two-queue system where the arrival processes to the twoeguare two independent
Poisson streams of equal rate and the queues are servedardtreof-arrival by a sin-
gle server 25]. For such a system, an explicit expression for joint prolitgtgenerating
function was found in terms of an elliptic function but thepability density of the sta-
tionary distribution was not expressed in closed-form. &a@oupled two-queue system
where the two service rates are different and the processources are shared when a
gueue is inactive, the diffusion approximation was congde¢o analyze the performance

in heavy traffic p4).

2.1.3.2 Maximum Stable Throughput

In this subsection we show that the maximum throughput thagjoeueing system
can support without becoming unstable is equal to the DS@eotbrresponding capacity

region for vectork.

We say that a queue sableif the time-average delay is bounded. This leads to
a natural definition for the stability of a queueing systemgueueing systerns stable
if each individual queue in the queueing system is stable.s€qurently, we can define
themaximum stable throughp(¥1ST) of a queueing system to be the supremum over all
arrival rate vectors for which the queueing system remaiails. (Note that one has to
work with the supremum, rather than maximum, in defining Mi&&a¢ause it i| priori

unknown whether the system is stable at the MST or not.) Forsgstem, since the
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average arrival rates are proportional, as givendg)( MST can be equivalently defined
as the supremum of all such that the system remains stable when the average arrival

rate is less than or equal tdk.

A service policy is a function that maps the current systeatedb a set of service
rate vectors{ul}{is1 where Ng is the number of operating points in the policy. We say

that a service policy is giable policyif it satisfies the following conditions:

() If a queue is empty, it is not served. That is, if the numbepackets in the-th

gueue is zero, then the associated service rate fartingueue is zero.

(i) There exists8 > 0 such that for all loada\ = ak < Sk, the queueing system has

a steady state.

The first condition can be thought of as a “sanity-check coodi in the sense that a
gueue is not served if there are no packets waiting. Conségutre zero vectorp =
(0,0,...,0), must be one of the operating points for a viable policy. Téeosd condition
allows us to define a viable policy without being concernethwie system load. An
example of a non-viable policy for a two-user system would pelicy that always serves

one of the two users, and never serves the other user.

The following lemma states the relationship between the RB@e vectork and

the MST of our queueing system.

Lemma 2.1.1.For the queueing system of interest, if the average arrigtds are related
by A = A1k, the maximum stable throughput is the differentiated sereapacity for the

corresponding capacity region.

Remark.This lemma only requires that the capacity region be coragxpperty that all

capacity regions have due to the convex hull operation.

Proof. For our queueing system, the MST is the supremum over alleipblicies of

the load supported by a viable policy. Consider a viable pdiic= {u’},]isl; from the
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second condition, there is a load for which a steady-statebeadefined. Lef f'},*5 be
the steady-state probability distribution, wheffel = 1,2, ..., Ng, is the probability of
serving at ratgu! in the steady-state anff is the probability of serving at zero rate in
the steady-state. Sindg'}," is a probability distributionf! > 0,71 = 0,1,..., Ng and

fiso f! = 1. In the steady-state, the average service rate must be &xtra average
arrival rate, that isy_'* f'u! = A where the vector equality is component-wise (the term
corresponding tg® is 0). It follows from the definition of the DSC that the MST for the
gueueing system is the DSC for the givien O

Here we have used the fact that for a given veg&tathe DSC is unique for a con-
vex capacity region. Note that strict convexity is not reqdifor the uniqueness of DSC
and the uniqueness holds even when some of the entries afthark are zero. An inter-
esting problem is that of efficiently computing the DSC for altruser MIMO broadcast
channel. To this end, Lee and Jinda6] have proposed an algorithm to efficiently cal-
culate the DSC (and symmetric capacity) for a multi-user M droadcast channel for a
fixed channel matrixH , and total transmit poweP, but even their algorithm is not very

effective for more than five (5) users.

2.1.4 Throughput Maximizing Service Policy

Based on Lemma.1.1 we consider the following service policy. If any queue
is empty, set the service rate for that queue at zero. If oogue; is non-empty; =
1,2,..., N, operate at the point = (0,0,...,¢;,0,0,...,0) wherec; is the rate at
which thej-th queue would be served if all resources were allocatetealelivery of
information to thej-th mobile station. If only two queuegsand/ are non-empty, operate
atc = (0,0,...,0,¢;,0,...,¢,0,...,0)wherec;/¢; = k;/k; and(c;, ¢;) is a point on the
two-dimensional capacity surface produced when all ressiare allocated to delivering
information only to the usergand(. This two dimensional capacity surface corresponds

to the intersection of thév-dimensional capacity surface with the plafie = 0,i =
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1,2,...,N,i # j,i # [}. Similarly, if only d out of N queues are non-empty, choose
the service rate vector corresponding to the DSC for the @gpaurface produced by
allocating resources to serve only theusers with non-empty queues (set tNe— d
corresponding entries d¢ to zero while computing the DSC). If none of the queues is

empty, choose the DSC for the vectoas the operating point.

It is easy to see that for all loads below the MST, the systemanes stable under
this policy and therefore, this policy is throughput-opaimThe stability of the system can
be seen from the fact that at all times when there are padketgueue, the instantaneous
average service rate for that queue is greater than thegaaraival rate. In fact, it can
be shown that a quadratic Lyapunov functi@8][of the form 3>~ | Q2(t), whereQ;(t)

is the number of packets in thigh queue at time, has a negative drift at all times.

This policy is an on-off policy where the instantaneous mervate depends only
on the empty/non-empty status of each of Meueues. For &'-user system, there are
2N — 1 service points, each corresponding to one of 2Nepossible empty/non-empty
combinations of théV queues. The case where all queues are empty is irrelevarams

as a service point is concerned.

As an example, consider a two-user system where the undgrtgpacity region
is given by Figure2.4. For a two-user system, there g2 — 1) = 3 operating points.
The proposed policy will serve dt;,0) when the second queue is empty and(at})
when the first queue is empty. M, = 2\, this policy will serve with rates, = (¢, ¢2)

whenever both the queues are non-empty.

2.1.5 Fixed-point Approximation

As mentioned in SectioR.1.3 the queueing system of interest is a coupled queue-
ing system with time-varying service rates which dependherinstantaneous state of the
gueues. Such systems are not very amenable to analysigtimi are not even aware

of any work on the exact analysis of such systems. (In Ch&ptse analyze the perfor-
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mance of this policy in heavy traffic, an approximation thigeg certain insights.)

Since we do not have an expression for the system average aetadevelop
a fixed-point model for this policy which gives an approximatto the average delay.
Fixed-point models for queueing systems are well known i literature (see, e.g.,
Kelly [22] and the references therein). We first illustrate the medhagly of FPA by
developing the fixed-point model for a two-user (and thusy-tueue) system in Sec-

tion 2.1.5.1 We then extend the method to an arbitrary number of usersgticé2.1.5.2

2.1.5.1 Two-User System

The fixed-point approximation for the coupled two-queuetaysreplaces the
M/G/2 coupled queueing system by two M/M/1 queues whereHerapproximated sys-
tem, the arrival processes are the same as that of the cospdteim but the coupled
servers are replaced by two independent servers. Noteathat,the original system, the
arrival processes are assumed to be independent. Thees@racess of each server in
the approximated system is a Poisson process with constarsige service rate which is
a function of the service rates of the original system anatthgling between the servers

in the original system.

Fori = 1,2, let Q; denote the number of packets in théh queue. Then by
the M/M/1 assumption of the approximated system, the pritibathat there are(q;, ¢2)

packets in the approximated system is given by

M A\
P e = 1— _ _
@ =a ( ui) (u‘i) ’
Ao\ /A2
P = = 1— _ _—
Q2 = e} ( ué) (m)

whereu® = (u$, 15), the effective service rate vector for the approximatedesys is

(2.14)
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defined as

p5 = iy Pri{Q: = 0} + m Pr{Q: # 0},

(2.15)
p5 = 15 Pr{Qs = 0} + pa Pr{Qs # 0}
where from @.5),
0 i [ -
1= ) 1= )
E [o] E [o (2.16)

Since we do not have an exact expression for the probabflgjtleer of the queues being
empty, we approximate the probability of a queue being erogtusing the expression
for M/IM/1 queues. As a result, the average service rates efapjproximated system
need not be the same as that of the coupled queueing systethe diverage service
rates are the same, then the FPA gives a lower bound on thaegevdelay 29, Appendix
C]. Furthermore, in that case, the bound becomes tight whespked of service rate
variation goes to zero or infinity corresponding, in our sysf to high-load and low-load
operation, respectively. Although the theorem28][is not applicable to our system (the
average service rates of the actual and approximated systeed not be the same), our
simulation results show that, for the parameters consitjetree FPA produces a lower

bound on the average delay.

Fori = 1,2, define

Then from @.14),
91:Pr{q1:O}:1—/\—i,
~ (2.18)

A
QQZPT{(]QZO}:l——i.
Ha



21
Substituting 2.18 in (2.15 and rearranging the terms, we obtain:

:U’iu; — /JJ’{/VL; —+ )\2(,“1 - /j{)7 (219)

pipy = popy + A (p2 — p3),
which can be solved fou° by iterative methods. Note that® is a function of the arrival
and service rates of the original system. Thus, the apprabtachservice rate will change
when any of the system parameters is changed but will scalgopiionally when all
parameters in the original system are scaled proportipnaife thus have two M/M/1
qgueues with average arrival rates : = 1,2 and average service ratgg ¢ = 1, 2. Then,

we can compute the average delay using the standard resutsjfieueing theory.

2.1.5.2 FPA for N-User system

We next develop the fixed-point model forN&user system operating under the

policy proposed in Se@.1.4 We represent the proposed service policy in matrix form as

I 2 [p]7 (2.20)

where the matridI has2” — 1 columns, each corresponding to one of the 2he— 1

empty/non-empty states of thié queues. Furthermore, one can write a queue-state vector

st & (st sh, .., sh) (2.21)

wheres! = 0 if the i-th queue is empty ang = 1 if the i-th queue is non-empty. For
exampleu! = (11,0,0,...,0) corresponds to only the first queue being non-empty, that
is, st = (1,0,0,...,0) while > = (0,3,0,0,...,0) corresponds to only the second
queue being non-empty, that is? = (0,1,0,...,0). As with the two-user case, for
1=1,2,...,N, define

0; = Pr{Q; = 0} (2.22)
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where(); is the number of packets in thigh queue. Then, by the M/M/1 assumption of

the approximated system,

Gizl—A—i,izl,Q,...,N, (2.23)
where
peE (s, ps, - ) (2.24)
is the approximated service rate vector. Also,fet 1,2,..., N, define
0 £ Pr{Q; #0} = (1—0)). (2.25)

Then, generalizing.15, for: = 1,2,..., N, we obtain:

2N 1
pi= > ni (2.26)
l:l:ué;éo
where! is the service rate of theth queue when the point of operation is the vegtbr
andp! is the probability that the packets for useare served at the rajé. Note that for
a fixed!, p! need not be the same for all For the service policy of interest, due to the

M/M/1 assumption of each queue in the approximated sysfahe gueue-state vector is

s!, then
N N
pi= ] o J] @-6x) (2.27)
k=1 k=1
k:sk:O k:sfﬁ:l
ki ki

where the first product is over the set of queues that are emlpitg¢ the second product
is over the set of queues that are non-empty. Note ¥igt, ' p! > 1butY>, 5! = 1
which corresponds to the fact that in computing the appratéu service rate, the fraction

of time when a queue is not served should not be considered.

The nonlinear equation®23—(2.27 can be numerically solved fgu® using
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non-linear optimization techniques such as Gauss-Newtathod. Again, the approxi-
mated service rate is a function of each arrival and senatein the original system and

scales proportionally when all rates in the original sysemscaled proportionally.

2.1.6 Simulation Results

We now present some numerical results demonstrating thenéalye of base sta-
tion cooperation over the traditional operation. Beforesanting our results, we first
explain what we mean by the traditional operation of a catlaletwork. For meaningful
comparisons, we assume that the total power with the toawitioperation is the same as
that for the cooperative system. Moreover, we assume ttheitraditional operation the

total power is equally divided among all base stations.

Under traditional operation, each mobile is assigned tdotiee station with the
strongest signal strength. When more than one mobiles aignasisto the same base
station, the base station is time-shared in a way that tffectta the mobiles satisfies the
constraint on the arrival rates given b®.2). Then, for a given configuration of active

users, the rates at which data can be transferred to diffasmmns are fixed.

We next illustrate the computation of MST for traditionalesgtion. To keep the
exposition simple, we consider a system with two base statiamd two users. For this
system, representative achievable rate region for tathtiand cooperative operation are
illustrated in Figure2.4, where the dashed line is the achievable rate region fortiwadl
operation. A queueing model similar to that for cooperatiperation can be developed
for traditional operation, with the only difference beirigt the service rates are fixed for
the traditional operation once a particular mobile assignitio base stations is chosen.
As shown in Figure.4, the MST is given by the intersection of (1) the ray througigior
with slopek, and (2) the convex hull of the operation points. This candmputed by

exploiting the geometric properties of the achievable raggon.

We next define the system parameters for the simulationbéoge¢neral case of
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users. In the following, we normalize the system bandwidthit = 1Hz. Furthermore,

we define the system load as

AEND k=) N (2.28)

and the average system delay as

5o icy kiD;

Ei]il h (2.29)

where D; is the average delay for theth user,i = 1,2,..., N. This corresponds to
weighing the user average delays proportional to the amofutidita to be transmitted to

the users. In all our simulations, we have set the mean patdesto 100 bits.

2.1.6.1 Quasi-static Systems

We now present the simulation results for traditional andpayative operation
when the channel realization is frozen, that is, the elemehthe H matrix are ran-
domly chosen but fixed. Figu&5shows the gain in throughput achieved by base station
cooperation for systems with two base stations and two respglotted as a function of
SNR. It can be seen that for a fixed traffic vector, the throug/lgain increases with SNR.
Though, not true in general, for this particular channelizaéion, the throughput gain is
higher when the relative traffic vector is symmetric. Fors@@able SNRs (between 10

and 20dB), the gain is approximatel9%.

We next plot the average system delay against the system loaBigure 2.6,
we have plotted the average system delay against the syséehidr a two base station,
two user cellular network for two different channel matece. Thought the plots in
Figure 2.6 are for specific channel realizations, they are, qualiédfiwwepresentative of
the family of channel realizations. As shown in the plot® #verage system delay is

drawn for each of several relative traffic vectors. It can bersthat cooperation leads
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Throughput gain achieved by cooperation
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Figure 2.5 Throughput gain achieved by cooperation for a two user gystih two base
stations: Channel is fixed.
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to a higher throughput, as expected, but that the througbaur is not the same for
different channel realizations. In the plots, the maximimoughput can be observed
from the graph of load against delay by looking at the limitazds as the system delay
asymptotically approaches infinity (corresponding to We&tesm approaching instability).
We also see that the fixed-point approximation provides pgeod approximation of the

system delay.

In Figures2.7 and2.8, we plot the average system delay against the system load
for both the three base station/three user case and the &ser siations/four user case.
Again, this is shown for two different channel realizati@rs several representative rel-
ative traffic vectors. Again, we conclude that cooperatiesds to lower average delay
and substantially higher system throughput, and that tleelfpoint approximation gives
a very good approximation to system delay. Thus, for larggesys which may be diffi-
cult to simulate, we conclude that the fixed-point approxioramay be safely applied,
especially for the important high load regime since the mmaxn throughput predicted

by FPA and the actual system are the same.

We note that the gain in maximum throughput shown in Figiigis between
20% and70% depending on traffic vector and channel. For FigRi& the gain is approx-
imately a factor for3 for all cases. We attribute this “gain stabilization” to theeater
diversity offered by the fours base station system of Figu8and expect that a higher,

more predictable, gain would be offered as the number of bi@t®n increases.

2.1.6.2 Outage Results

We next present results showing the outage probability iiderént system con-
figurations. For a fixed channel realization and a relatigffitr vectork, we say that an
outagehas occurred if the MST of the system for that channel retidinas less than the
load. In our simulations, for each system configuration, westdered!0, 000 or more

channel realizations. For each channel realization, wedonsi\pute the MST for cooper-
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ative and traditional operation. Then the MST can be usedngptite the maximum load

that can be supported at a given outage probability.

In Figure2.9, we plot the probability of outage against the offered loaddif-
ferent system configurations. We note that for both cooperaind traditional operation,
the increase in throughput as the probability of outageeiases is not very significant.
For example, consider the system with three base staticth$haee users, wherein the
throughput for cooperative operation increases by ab@fitfor a tenfold increase in out-
age probability (froml% to 10%), and the throughput for traditional operation increases
by about50%. Similar observations hold for other system configuratidisreover, the
gain in throughput is more pronounced at low outage. To shusvrhore clearly, for
different system configurations, we plot in FigutelOthe throughput gain achieved by
cooperation at the base station against the outage praipahg can be seen, the through-
put gain decreases as the outage probability increaseptdrcehe?2 x 2 system where

it is almost constant.

Another quantity of interest for quasi-static systems & ttaximum number of
users that can be supported for a given load and outage plibbathen the number of
base stations is fixed. To this end, in Fig@ré1we plot the maximum load for a specific
user that can be supported by a two base station system witachgower (and thus, by
our definition, fixed SNR) for different outage probabilgigAlso shown by dashed lines
is the system load.) As expected, at low outage the maximanhtoat can be supported
per user is low but it does not decrease by much when the nuailsers is increased;
on the other hand, at high outage the maximum load per useeakss rapidly with an

increase in the number of users.

2.2 A Throughput-Increasing Scheme for Large Systems

As mentioned in SectioR.1.2 computing the DPC region is computationally

expensive and almost infeasible for even moderately-systems - in fact, the runtime to



31

Outage Proability as a function of load: Equal traffic; SNR = 10dB
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Figure 2.9 Probability of outage for a given load is plotted for diffatesystem configu-
rations withk = 1. Average arrival rate is the throughput at a given outagéaidity.
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Figure 2.10 Throughput gain is plotted against the probability of oetdgr different
system configurations.
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Maximum throughput vs number of users: 2 Base stations; SNR = 10dB
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Figure 2.11 System load and user load is plotted against the number of ugeere the
number of base stations is fixed. Dashed lines indicate tteisyload.

compute the capacity region for a system with five (5) usessiwdays - while real-world
systems have hundreds of users. Moreover, the number chtopeipoints increases as
2N —1 whereN is the number of users in the system. In light of these reasqmmying the
policy proposed in SectioR.1.2is not feasible for real-world systems. Therefore, in this
Section, we propose a practicable modification of that galibich, thought suboptimal,
has a higher throughput than the traditional operation. riiweaat the modified policy,
we build upon several observations on the properties of thi&®broadcast channel

capacity region and the queueing network of the Se@idn

The first observation is that the gain in throughput is dudédtact that the capac-
ity of MIMO channel is higher than that of the single-inpuigle-ousput (SISO) channel.
But for a MIMO channel withV; transmit andV; receive antennas, the gain in capacity
is min(Ng, Nr). In the downlink of cellular system with cooperation, batsiens act

as the transmit end and, since, the base station are far teaerthe mobiles, the gain
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in throughput that our policy can achieve is severely liohiby the number of base sta-
tion antennas in a cooperating base station set. Therefees, if there was a method to
compute the DPC region, the advantage of cooperation waakbmewhat limited. (It
should be noted that the base stations can have multiplarsageand therefore, it is not
correct to say that the possible gain in throughput, werl symractical method available,
is insignificant.)

Our next observation is based upon the conclusion of Lee aad&lJ26]. They
observed that the symmetric capacity of a MIMO broadcashicbkis higher when the
channel is symmetric. Since the gain in throughput is prilypaue to higher symmetric
capacity, if possible, it is preferable for the correspogdiIMO broadcast channel to be
symmetric. Unfortunately, the conclusion &§ does not have a logical equivalent for

the differentiated service capacity.

Our next observation is based upon a property of the DPC medio a MIMO
broadcast channel, the sum of service rates is higher whee nsers are being served.
For example, consider a system witlransmit antennas andusers. In this system, the
capacity when all users are being served will be higher than whenafor fewer) users
are being served. A precise mathematical statement of tbpgepty can be seen i3(66)
and @.57). As a consequence of this property, any policy shouldestiavserve the users
that have data to transmit rather than serving an arbitnalpget of users who may or may

not have data to transmit.

We are now ready to describe the modified policy. The key idda group the
users in small subgroups and use the service policy fromd@eztl.4for each subgroup.
The important step in this procedure is dividing the usersubgroups. As an example
of import of grouping the users, consider a policy that ranfjogroups users into small
subgroups of, say, size four (4). This policy will be fairlggsy to implement. But random
grouping of users often results in asymmetric channels -etiomes highly asymmetric.

As a consequence of the second observation, this will resalinuch lower than expected
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symmetric capacity. In fact, in our simulations, sometirtiessperformance of a random
grouping policy was not much of an improvement over tradiiocoperation. Moreover,
the variance in performance of random grouping was high ghda make the policy

unreliable for operation in practical systems.

Thus, our goal is to find a method to group the users so thatitherz| for each
subgroup is highly symmetric. Unfortunately, good metfmsthe symmetry of channel
are not available. As a substitute, we use the strength aftaenel from the base stations
to the users as a metric to form the subgroups. Formally,idens received signal
model of the form 2.7) with no assumptions on the entries Hf. (While presenting the
simulation results, we will specify the model used for th&ries of H.) Then the channel

to thej-th user is given by the-th column of H, that is,
hj=[hij, haj, - haryl (2.30)

where M is the number of base stations in the system. To form the group sort the
users on the basis of their channel strength where chaneagsh is defined by the norm
of h;:

M
Ihsl &> k2 (2.31)
1=1

In Algorithm 2.1, we present the service policy for arbitrary, but constarzed
cellular systems with possible cooperation among basessat We are assuming that
all users need data at the same rate and that the channelssstptzc. LetG be the
size of subgroup. (In our simulations, we will work with = 3 andG = 4.) We first
sort the users on the basis of their channel strength as ddiyn¢2.31). Here, we are
assuming that there is no entry to or exit from the system. giA@wvn in Algorithm2.2,

a straightforward modification to allow for the possibility entry/exit from the system
will be to sort the users after each iteration of the algonith We then select the first

G users to form the subgroup to be served. If there are lessGhasers to serve, we
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G - the size of subgroup.

Sort the users by their channel strencg2tB8().

repeat
Select the firstG users.{If there are less tha@' users, select all useis.
Transmit their data as per the policy proposed in Se@id
Remove these users from the list of users to be served.

until All users are served.

Algorithm 2.1 Service policy for constant sized cooperating cellulatesys

G - the size of subgroup.
repeat
Sort the users by their channel strencg2tB8().
Select the firstG users.{If there are less tha@' users, select all useis.
Transmit their data as per the policy proposed in Se@idm
Remove these users from the list of users to be served.
until All users are served.

Algorithm 2.2 Service policy for variable sized cooperating cellularteyss

group them all together. Since we have assumed that all neesdata at the same rate,
all the selected users have same amount of data to transumihelfmore, when all users
have data to transmit, the policy given in Sectidi.4reduces to serving all users at a
constant non-zero rate. Moreover, when all users have samearg of data to transmit
(thatis,k = (1,1,...,1), the service rates are equal (to the symmetric capacityeof th
corresponding channel matrix) and therefore, all of theugiseempty at the same time.
After the selected users have been served, remove themlfmhst of users to be served.

We repeat this procedure till all users have been served.

2.2.1 Simulation Results

We next present simulation results showing the efficacy efpblicy proposed in
Algorithm 2.1 Before doing so, we describe what we mean by traditionatadjme and

the system model.

Under traditional operation, each mobile is assigned toezifip cell and there-

after all communications to/from that mobile is via the gasid base station. In our
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simulations, we assign the mobile to the base station fromtwihcan get the best signal.
That is, if the channel from all base stations to a specificitaab given by .30, we

assign that mobile to the cell given by
arg max | ;| . (2.32)

We assume that at any given time, the only communicationdrsét of cells comprising
the composite base station, is between a mobile and itsspmneling base station and

therefore, all transmissions are inter-cell interferefiee.

In our simulations, we consider a cellular system with falrifase stations (each
having one antenna) a0 users. The placement of the base stations is shown in
Fig. 2.12 As shown in the Figure, the base stations are at the centd#reo$quares
comprising the grid. The mobiles are placed randomly on ticesyich that they are uni-
formly distributed in the two-dimensional space. The clemoefficienth, ; between the
i-th base station angtth mobile has three components. The first component carreisp
to the path-loss. We assume that the path-loss expondnt T$e second component
corresponds to the shadow fading which is assumed to be ardogh random variable
of variance 6dB. As in SectioR.1, the short-term variations in the channel are assumed
to be captured by a complex Gaussian component of Mieard variancel /2 in each

component@N (0, 1)). We define the SNR as it was defined in Secfah1

We first compare the effect of grouping size. As we increasegtiouping size,
G, there are more antennas on the receive side and therdf@@xpected that a higher
grouping size should give a higher gain in throughput. Orother hand, with an increase
in G, computing the capacity region gets computationally esperand the coordination

between the transmit and receive end gets more complex.

In the first set of results, we compare the gain in throughpith & = 3 and
G = 4 where SNR id0 dB (see Sectio@.1.1for the definition of the SNR). As shown in
Table2.1, the gain in throughput foff = 4 is about’% more than the gain in throughput
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Figure 2.12 Location of Base Stations and Mobiles in a cellular systerth wicells.
Base stations are denoted by “x” while the mobiles are dehoye'o”.

Table 2.1 Gain in Throughput for different Grouping Size§: base stations angl0
mobiles. SNR in both cases18 dB.

Average gain Standard Deviation Standard Deviation/Average (in %)
3 1.991 0.0334 1.68
4 2.151 0.0378 1.76

G
G

for G = 3, a not very significant gain. Moreover, from the last entrpoth rows, it is

evident that in both cases, the standard deviation, as tidinaaf the average gain, is low
enough to give us confidence that the results are representatt outliers. Since there
is no significant loss of gain in throughput by changi@grom 4 to 3 and the above-
mentioned computational issues are simplerGot 3, in the next simulation we work

with G = 3.

We next compare the effect of SNR on the gain in throughpuflalbie 2.2, we
show the average gain in throughput and the standard daviafithe gain for different
SNRs withG = 3. Here again, the system hdsase stations an200 mobiles. As
expected, it can be observed that the gain increases withg@iRhat the variance of the

gain decreases with SNR. Here again, in all cases the variariow enough to give us
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Table 2.2 Gain in Throughput for different SNRs! base stations an2)0 mobiles.
Group size(5, is 3.

SNR | Average gain| Standard Deviation Standard Deviation/Average (in %)
5dB 1.840 0.0428 2.33
10 dB 1.991 0.0334 1.68
20 dB 2.308 0.0259 1.12

confidence in our results.
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CHAPTER 3

Heavy Traffic Performance

3.1 Introduction

As described in Chapté&, the cellular wireless network with infrastructure coop-
eration has a corresponding queueing system formulatierayleven in the simple case
of Poisson arrivals, independently for each user, it is maivkn how to minimize the av-
erage delay for a given load. Furthermore, closed-formesgions for average delay are
unavailable for many simple policies; usually, this mednas any meaningful comparison
has to be done via simulations. However, when the ratio oatleeage arrival rates (also
known as the relative traffic rate) is specified in advanae ptlaximum possible through-
put can be computed and a simple policy can be shown to beghpot-optimat under
Markovian assumptions (see Chap®r But an exact expression for the performance
of this policy is not available. In this Chapter, as a meastingeoformance, we prove
limit theorems justifying a diffusion approximation for a&wily loaded system operating

under this policy.

We are not aware of analysis of other policies that have beewrsto be through-
put-optimal for a general convex (rather than a convex padiyal) capacity region. How-
ever, scheduling policies for certain heavily loaded vassl systems with convex poly-

hedral capacity regions have been studied3ir) B9] (also see references therein) under

I'For a Markovian system, throughput-optimal means the langaverage departure rate exists and
equals the long run average arrival rate whenever the ndiaiad lies inside the capacity region, ci4
p. 26].

39
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restrictive assumptions. 1189, Stolyar considered a generalized switch. He showed that
under MaxWeight scheduling and certain restrictive caodg, including a resource pool-
ing condition, in heavy traffic there is state space collg[®®C), the workload process
converges to a one-dimensional Reflecting Brownian MotRBNI), and MaxWeight
asymptotically minimizes the workload. Shakkotai et al][study a throughput-optimal
scheduling rule, which they call an exponential schedululg, and show that under re-
source pooling condition it is asymptotically pathwiseioptl in the sense that there is
SSC, the workload process is asymptotically minimized antvemes to a one-dimen-
sional RBM. In the following, we point out some of the diffaces between our assump-
tions and those ind7, 39]. The Maxweight policy 9] is designed for the case when the
capacity region is a convex polyhedron while the policy wesider is designed for more
general convex capacity regions. We elaborate upon thistti&3.3.4where we define
the heavy traffic conditions. Moreover, a complete resopaaing (CRP) condition is
assumed in39] which requires that there is a unique outward pointing ralrto the sys-
tem stability region at the point corresponding to the meamal rate vector for a critical
load; by comparison, we do not assume a CRP condition. Theabpiocess in39] is
assumed to be an ergodic Markov process while we assumehthatiival process is a
renewal process. I18[7], the capacity region is a convex polyhedron and a CRP camditi
similar to [39] is assumed; however, service is given to only one queue iatewhile

here we can serve more than one queue at the same time.

3.2 Organization of the Chapter

We first consider the case where there are only two users ifothtprint of the
cooperating base stations. For such a system, the poligr@odsideration has only four
(4) operating points which makes it amenable to an exhastimmeration. We present

such an approach in SectiGrB.

Unfortunately, for a system withvV users, our policy hag" — 1 operation points
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and the approach taken in Secti8r8 is not amenable to scaling. In Secti8, we
use other results from applied probability to analyze thégomance of an arbitrarily-
sized system. Though the main results in the two sectionsiariéar, the reader will
notice that the result in Sectidh3is for the queuelength process, which is a counting
process associated with the workload process (defined isgtyeel), while the result in

Section3.4is for the workload process.

We would like to mention that to maintain the completenegtefndividual sec-
tions, so that an interested reader can restrict her aftetaia particular section, we have
some redundancy in the sequel. For example, we could contineotations and pre-
liminaries for the two sections, but this will, unfortunbteequire a user interested in the

result for the two-user case to read through unnecessaayiootrequired for Sectio8.4.

3.3 Two-User System: Queuelength

3.3.1 Notation and Preliminaries

We will use the following notation throughout this sectidret Z denote the set
of all integers,Z. the set of all non-negative integei®,denote the set of real numbers,
andRR, denote the non-negative half-line, which is also denote@by). Ford > 1,
R will denoted-dimensional Euclidean space and the positive orthantisnsiace will
be denoted bR? = {z € R? : z; > 0for: =1,2,...,d}. All vectors and matrices are
assumed to have real valued entries. et (0,0,...,0) € R%. The usual Euclidean
norm onR¢ will be denoted by|-|| so that||z| = (Zle %2)1/2 for r € R?. We denote
the inner product olR? by (-, -), i.e., (z,y) = S0, z,y;, forz,y € R% Let B(R?) denote
the o-algebra of Borel subsets &“. The symboll 4 denotes the indicator function of a

setA, i.e.,1a(x) =1ifx € Aandl (z) =0if = ¢ A.

All stochastic processes used in this section will be asstmbave paths that are

right continuous with finite left limits (r.c.l.l.). We det®byD? the space of r.c.l.I. func-
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tions from[0, co) into R and we endow this space with the usual Skorokliptbpology
(see Ethier and Kurtz12, Chapter 3, Section 5]). We denote B the space of continu-
ous functions from0, co) into R?, also endowed with the Skorokhofi-topology under
which convergence of elements@f is equivalent to uniform convergence on compact
time intervals. Ther-algebra induced ofv? (or C?) by the Skorokhod/;-topology will

be denoted byM?. The abbreviatiomw.o.c.will stand foruniformly on compactand will

be used to indicate that a sequence of functioififor C¢) is converging uniformly on
compact time intervals to a limit if? (or C?). A d-dimensional process is a measurable
function from a probability space intb?. ConsiderQ!, Q?,...,Q, each of which is a
d-dimensional process (possibly defined on different prdibalspaces). The sequence
{Q"}e°, is said to beight if the probability measures induced by the sequef@e} >,

on (D4, M) form a tight sequence, i.e., they form a weakly relativelynpact sequence
in the space of probability measures @, M?). The notation " = Q" will mean
that “Q™ converges in distribution tQ asn — ~”. The sequence of processgg"}°° ,

is calledC-tightif it is tight, and if each weak limit point (obtained as a wedahit along

a subsequence) is iy’ almost surely.

3.3.1.1 Skorokhod Problem

Skorokhod problems are used in the study of approximatiomreitain queueing

networks. LeD? (resp.C%) denote those functionse D“ (x € C?) satisfyingz(0) > 0.

Definition 3.3.1(Skorokhod Problem (SP)Fix = € D% and ad x d matrix R. We say
that (z, y) solves the Skorokhod problem fowith respect taR, if z,y € D¢ with

(i) 2(t) =2(t) + Ry(t) forall t € Ry,
(i) 2(t) e R forall t € R,
(iii) for i = 1,2,....d,

(@) v:(0) =0,
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(b) ; is non-decreasing,
(©) f(O,oo) zi(s)dy;(s) = 0.

The pathz is called the driving path.

Harrison and Reimarif] specified some conditions on the matfdunder which
there is a unique solution of the Skorokhod problem for each C<. In fact these

conditions also yield a unique solution for eacke D.

Definition 3.3.2 (Harrison-Reiman (HR) Condition)A d x d matrix R satisfies the HR
condition if R = I — P, where[ is thed x d identity matrix, P has zeros along the
diagonal, all of the entries of are nonnegative and has spectral radius strictly less

than one.

WhenR = I — P where P has zeros on the diagonal and the entrie®adre
nonnegative, the HR condition is equivalent to the requéaetthatR is a non-singular
M-matrix. Such matrices are discussed for example in BeramalhPlemmons3, Chapter

6].

Proposition 3.3.1. Letd be a positive integer an& be ad x d matrix satisfying the HR
condition. Then for each € D¢, there arey, = € D? such that(z, y) is the solution of
the Skorokhod problem farwith respect tak. Furthermore, the mapping : D% — D2
given byd(x) = (z,y) is continuous wheréz, y) is the solution of the Skorokhod problem

for .

Proof. The proof is given forr € C4 in [16] and alluded to for: € D?. A complete

proof can be found in44] for example. ]

Fix a positive integerl, § € R?, I ad x d symmetric strictly positive definite
matrix and ai x d matrix R satisfying the HR condition. We can use the solvability @ th
Skorokhod problem to construct a Semimartingale Refled@iragvnian Motion (SRBM)

associated with the daf&? , 0, T, R) as follows.
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Given a Brownian motiotX starting from the origin with drift vectof and covari-
ance matriX’, consider the pair of processgg, Y') that solve the Skorokhod problem for
X with respect tak. Then,Q is an SRBM associated with the dd&’ , 6, I, R) starting
from the origin. Here&) = X + RY where{ X (t) —0t, t > 0} is a continuous martingale
(with respect to the filtration generated BY) and{RY () + ¢, ¢t > 0} is a continuous
locally bounded variation process adapted to the filtratjenerated byX'. HenceQ is a

semimartingale.

3.3.2 System Model

In this subsection we specify the communication system ucatesideration. We
consider a cellular wireless network where base statioop@@te over noise-free infinite
capacity links. We do not make any distinction between alsiogll cellular system
having multiple base-station antennas and the traditicglallar system with cooperating
single-antenna base stations. Here, by cooperation we thaathe base stations can
perform joint beamforming and/or power control but thereaisonstraint on the total
power that the base stations can share. We do not make amgpaissus about the number

of receive antennas per user.

In this section, we restrict our attention to the case whesestare just two mobile
stations (also called users) in the footprint of the coojegabase stations. Then the
downlink channel can be modeled as a two-user MIMO broaddastnel. We assume
that the channel is fixed for all transmissions over the pedbinterest (some authors
refer to this as a quasi-static channel). Moreover, we asdiat the transmit end (the

cooperating base stations) has perfect channel stateriafmn (CSI).

Weingarten et al.43] have shown that for such a system, Dirty Paper Coding
(DPC), introduced by Cost4 )], achieves the capacity. Furthermore, the capacity region
can be computed by using the duality of the MIMO multiple ascehannel and the

MIMO broadcast channel[)]. Figure 3.1 illustrates the capacity region for an example
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of a two-user MIMO broadcast channel with two transmit and teceive antennas. Here
the broadcast channel capacity region is obtained by takiegonvex hull of the union
over the set of capacity regions of the dual MIMO multipleegxchannels such that the

total multiple access channel power is the same as the povilee ibroadcast channel.

Let ¢} (¢3) be the maximum rate at which data can be transmitted (ingats
second (bps)) to usdr(2) when the rate of transmission to use(1) is set at zero. If
(c1,¢9) > 0is a point in the capacity region then the rate at which datebestransmitted
to userl (2), ¢; (c2), is strictly less thanry (¢3). This corresponds to the fact that when
the wireless resources are dedicated to a single user, thatravhich that user can be
served is higher than the rate for that user when the ressareeshared by the users but
this higher rate comes at a cost to the sum of the rates. Indéwsoh both users are being
serviced, the sum of the rates is strictly greater than thvasérvice dedicated to a single

user, that is¢; + co > ¢}, ¢;.

For a two-user system the capacity region is a two-dimeisicnsed convex set
in R3 where the convexity follows because of the convex hull opena The capacity
region contains the origin and it has three boundary pie€¢eghach two are along the
coordinate axes while the third boundary piece is in theriotef R2 . We call this third
boundary theapacity surfaceThe following lemma states a key property of the capacity

surface of the two-user MIMO broadcast channel.

Lemma 3.3.2.For any point(z, y) on the capacity surface of a two-user MIMO broadcast
channel, the following holds,

il 3.1)

a6
Proof. As stated earlier, the capacity region is a convex s@nit contains the origin
and it has the line segmen(s 0) to (¢}, 0) and(0,0) to (0, ¢5) along the two coordinate
axes as two boundaries. Since the line segnfénty) € R? : £ + % = 1} lies in the
1 2

capacity region (by convexity), the capacity surface migstdlong or above” this line
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Figure 3.1 An example of a capacity region of a 2-user MIMO broadcashobkéfor a
fixed channel wher®, andR, are the rates of usérand2, respectively.
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segment and so for any point on the capacity surface we have

> 1. (3.2)

S| 8
SRS

From 3.2) and the convexity of the capacity region, if there is a paintthe capacity
surface whered.1) holds, it holds for every point on the capacity surface. \Wetrshow

that there is at least one point on the capacity surface wBelteholds.

The sum-rate capacity of the MIMO broadcast channel is defisehe maximum
of the sum of a pair of rates that can be transmitted. (Seeafiath et al.42] for details.)
If the sum-rate capacity of the MIMO broadcast channel isthgrgreater than the single-
user capacities; andcs, then 8.1) holds at the point(s) achieving sum-rate capacity. This
follows by noting that if only equality held in3(2), at a point where sum-rate capacity
is achieved, the maximum sum rate would be achieved with éneos y equal to zero
(i.e., at an end-point of the line segmeit, y) € R : x/c} + y/c; = 1}) but then the
sum-rate equals; or c¢3, a contradiction. From42, Theorem 3], the sum-rate capacity of
MIMO broadcast channel is the Sato upper boudl {vhich is greater than the single-
user capacities. Thus, there is a point on the capacitysidnere 8.1) holds, and the

lemma follows. U

At the transmit end, packets arrive for each user and arestadfbefore trans-
mission. The ratio of anticipated average bit arrival ratedled relative traffic rate and
denoted byks, is specified in advance, that is, it is expected that, onaaeeruser 2 will
havek, times as much data as user 1. The actual traffic rate will teefiiam the aver-
age due to stochastic fluctuations. Naturally, when thermidata for one of the users
to transmit (the corresponding queue for that user is emgiy) data for the other user
should be transmitted at the maximum possible rate. Thahésdata should be trans-
mitted to userl (2) at the rate ofc] (¢;) when only the first (second) user has data to
transmit. In Chapte2, we have shown that under Markovian assumptions on therayste

the policy that transmits at the rat@, c;) at all other times, wherg:;, ¢,) is the point on
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the capacity surface such that/c; = k,, is throughput-optimal. Figur2.4 illustrates a

few such operation points for sample valueg:ot= 3,1, 0.5.

3.3.3 Queueing Analogue

In this subsection we develop a queueing analogue for thiersydescribed in
Section3.3.2 To this end, we describe the physical structure, the packietls and sizes.
Then we formalize the service discipline and specify theagyic equations satisfied by

the queuelength process.

3.3.3.1 Physical Structure

A queueing system describing our setup has two queues ifigdaxdere each
queue buffers packets intended for a given user. We assuahedbh of the queues has
infinite buffer capacity. The queues are served by a singleseorresponding to the

cooperating base station.

3.3.3.2 Stochastic Primitives

We assume that the system starts empty and that there isditvemsional packet
arrival processy = {(E\(t), Ex(t)), t > 0} whereE;(t) is the number of packets that
have arrived to theé-th queue in(0,¢]. (Here £ is used to indicate that the arrivals are
exogenous.) For= 1,2, E;(-) is assumed to be a (non-delayed) renewal process defined
from a sequence of strictly positive i.i.d. random variadle;(k), £k = 1,2,...}, where
for k = 1,2,...,u;(k) denotes the time between the arrival of tiie— 1)st and thek-
th packet to the-th queue. Each;(k), £ = 1,2,... is assumed to have finite mean
1/\; € (0,00) and finite squared coefficient of variation (variance dididiy the mean
squaredy? € [0, c0). The packet lengths (in bits) for the successive arrivatgieue are

given by a sequence of strictly positive i.i.d. random Vialéa{v;(k), k = 1,2,... } with
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average packet lengthy; € (0, 00) and squared coefficient of variatiol € [0, c0),i =
1,2. We assume that all interarrival and service time proceasemutually independent.
Note that the average bit arrival rate for ugeés b; = \;/u;, ¢ = 1,2 and we have let
ke = by/by. Fori = 1,2, we associate a renewal counting proc&ss) with {v;(k)}2,
such thatS;(t) = sup{n > 0: >} _, v;(k) <t} fort > 0. We refer to the processés-)

andS(-) asstochastic primitive$or the system model.

3.3.3.3 Service Discipline

When service is given to a queue, it goes to the packet at the dfethe line,
where it is assumed that packets are queued in the orderioathgal to the queue. The
service rate is a simple function of the number of packetsarheof the queues. A pair
(01, 02) indicates the rates (in bps) of serving the two queuesgi,és, the rate for queue
1 andoy, is the rate for queue. Here, given the queuelengih= (q1, ¢2), the rates are
given by(ay, 02) = A(q) for the functiort A : R2 — R? defined by

.
(c1,¢2) if g >0,q0 >0,

c;,0 if g >0,q2 =0,
OSSR (3.3)

<O7 C;) If qQ1 = OJ q2 > 07

(0,0) ifqg =0,q0=0.

\

Herec,; andc, are chosen such thét;, ;) lies on the capacity surface ang/c; = k.
Also, ¢y, ¢, ¢ andc} satisfy the following conditions) < ¢; < ¢}, 0 < ¢ < ¢, and
cr,c5 < e+ ca.

Our model is a single server, two-class queueing systementiner two classes

correspond to the two users. The following scaling propefty(-) is a mathematical

2We only need\(-) defined orZ? for the moment, but we extend the domain\df) to R? so that later
when we rescale the queuelength prockss is well-defined for the rescaled process.
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statement of the property of the scheduling policy that thant of service given to
the queues in any state does not change when all queueleargtitscreased/decreased

proportionally.

Lemma 3.3.3.For anyq € R? andz > 0, A(zq) = A(q).

Proof. The proof follows easily from the definition df(-). ]

3.3.3.4 Queuelength Process

Fori = 1,2, the length of theé-th queue at time is
Qi(t) = Ez(t) - Di(t)a (3.4)

whereD;(t) is the number of packet departures from ikte queue in0, ¢|. Here,D,(t)
is given by

D;(t) = Si(Ti(1)), (3.5)

whereT;(t), the cumulative amount of service given to queuws to timet, is given by

02 [ AQE)ds
/0 (3.6)

t t
= Ci/ L@, (s)>0 forall j} S + ¢ / L{Q:(5)>0; Q;=0 forall ji} AS.
0 0

3.3.4 Heavy Traffic Assumptions
3.3.4.1 Assumptions

We consider the operation of our queueing system in the amtiopegime where
it is heavily loaded. (Kelly and Laws2B] have argued that in this regime “important
features of good control policies are displayed in sharpsf”.) For this purpose one

may regard a given system as a member of a sequence of sygiproaching the heavy
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traffic limit. To obtain a reasonable approximation, the uglength process is rescaled
using diffusion scaling. This corresponds to viewing thetegn over long intervals of
time of orderr? (wherer will tend to infinity in the asymptotic limit) and regarding a
single packet as only having a small contribution to the aveongestion level, where
this is quantified to be of orddr/r. Formally, we consider a sequence of systems indexed
by r, wherer tends to infinity through a sequence of valueg(noo). These systems

all have the same basic structure as that described in thedasection; however, the
arrival rates may vary withr and for determining: we assume that an estimate of the
ratio k», € (0, c0) of the bit arrival rates is known and is used to determine Hypacityc

for the whole sequence. We assume that the interarrivaktimehe system indexed by

are givenforeach=1,2,k=1,2,..., by

ur (k) = A%m(k) (3.7)
where thei; (k) do not depend on, have mean one and squared coefficient of variation
a?. The packet lengthéuv;(k)}72,, i = 1,2, do not change with. [The above structure

is convenient for allowing the sequence of systems to agprbaavy traffic by simply
changing arrival rates and keeping the underlying sour€esrability «;(k) andwv;(k)
fixed asr varies. This type of set-up has been used previously by ®théreating heavy-
traffic limits (see, e.g., PetersoB1] and Bell and Williams 2]). For a first pass, the
reader may like to simply choos€ = )\, for all .] All processes and parameters that

depend on will from now have a superscript of Define\; £ ¢, i = 1, 2.

Assumption 3.3.4(Heavy Traffic Assumption)For i = 1,2, there isf; € R such that
r(A] — \;) — 6; asr — oo, (3.8)

Remark.This assumption does not restrict the direction in whichhiavy traffic limit is

approached, unlike that in Gans and Van RyZif[ Hered; could be positive, negative
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or zero for each. Thus, each queue may have an arrival rate that is greatereélaal to

or less than the rate yielding exact balance.

Here we may regard as the nominal average packet arrival rate used to set the
service rates(c;, c2) = (b1, be), for the throughput-optimal policy. Theth system has
a perturbed average packet arrival ratefor which the average bit arrival raté : b] =

A i = 1,2, is close to(cy, ¢a).

3.3.4.2 Connection to Complete Resource Pooling (CRP)

To make a connection with the work of Stoly@89 (and others), consider the
two-user queueing system where the server is able to timeeskimongst finitely many
operation points chosen from the closure of the capacitiasarand the origin. (To allow
for viable operation when one or both queues are empty, werasthat the pointd), 0),
(¢3,0), and(0, ¢3) are included amongst the finitely many operation points.ppresen-
tative capacity surface for a two-user MIMO broadcast clehimshown in Fig3.2 For
this system, the system stability region is the closed comnal of the set of operation
points. For example, if the operation points &g 0), (0,c3), c' = (ci,cb), & = (2, 3),

A = (c3,¢3), and(0,0) as indicated in Fig3.2, then the upper surface of the system

stability regionC, is shown by the dashed curve.

Recall that the ray from the origin of sloge intersects the boundary @f, the
capacity region, at the poirt= (¢, ¢;). Suppose thaf is strictly convex at, i.e., the
capacity surface is not flat at The following lemma shows that then the pointust
be one of the operation points, otherwise the system will gtable in heavy traffic.

Furthermore, when is amongst the operation points, the CRP condition does ridt ho

Lemma 3.3.5. Suppose that the point= (cy, ¢2), where the ray from the origin of slope
ko intersects the capacity surface, is an extreme poirt.offhenc must be one of the
operation points of any policy that is stable whenever thévatrate is(1 —1/r) for all

r € (1,00). Furthermore, there is then more than one normaltat ¢, and the complete
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resource pooling condition does not hold.

Proof. Consider a policy that time shares amongst finitely many djpergoints not
includingc. The average bit arrival rate vectdrassociated with the average arrival rate
of (1—1/r)Aforr € (1, 00), approaches the poinialong the ray from the origin of slope
ky. Sincec is an extreme point of andc is not an operation point, is outsideC. Thus,
there is an* such that for- > 7, b is in the capacity regiod but not inC (as illustrated

in Fig. 3.2). Thus, the time sharing policy is not stable foriélsuch that- > r.

Now, if ¢ is one of the finitely many operation points of a time-shanajcy,
sincec cannot be written as a convex combination of the other opgrabints, there is
not a unique normal to the boundary®ft c. This is illustrated in Fig3.2wherec! is

one of the extreme points but there is no unique normélac'. ]

The analysis performed irBf] depends critically on the (CRP) assumption that
there is a unique normal 10 at the point where the ray in the direction of the average
bit arrival rate vector intersectd. Except in the special situation wherds a convex
combination of two other operation points, this assumptighnot be satisfied at and

hence the analysis based on the assumption that the CRPicoriditds does not apply.

3.3.5 Scaling and Standard Limit Theorems
3.3.5.1 Scaling

We first consider a fluid scaled version of the system where 8galing corre-
sponds to viewing the system over long intervals of time ofeor? and simultaneously
reducing the contribution of a single packet to the congestievel by a factor ofl /7.
The behavior of solutions of a limiting fluid model will play@mportant role in establish-
ing a limit for the diffusion scaled system where diffusi@abkng corresponds to looking
over time intervals of order? but only diminishing packet contributions to the congestio

measures by a factor @f'r. We define the following fluid and diffusion scaled processes
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Fluid Scaling Fluid (or functional law of large numbers) scaling is ind@@ by placing

a bar over a process. Foe= 1,2,t > 0, andr > 0, define

Ti(t) £ 77T (r*), (3.9)
Q7 (t) = r2Qi (r*t), (3.10)
ET() £ r 2Bl (%), (3.11)
SI(t) £ r 28] (r*t) (3.12)

There are in fact two kinds of fluid scaling. In addition tottivadicated above,
one could simply accelerate time byand scale the process Iéy(in place ofr? and}z,

respectively). Here we shall only need the first form of fluzdlgng described above.

Diffusion Scaling Diffusion (or functional central limit theorem) scaling iisdicated
by placing a hat over a process. kGt 1,2, andr > 0, define
Q; (1)

(.2
2 Q07 oy (3.13)
.

as the diffusion scaled version ¢f;(-). To apply diffusion scaling to the primitive
stochastic processés, S, we must center them before scaling. Accordingly,fer 1, 2,

t > 0andr > 0, we define

By 2 20 (3.14)

and

SI(t) & : (3.15)
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3.3.5.2 Functional Limit Theorems for Stochastic Primitives

We will use the following functional central limit theore®RCLT) for the stochas-

tic primitives in the sequel.

Proposition 3.3.6(FCLT). The diffusion scaled process@s’(-), 57(-)) jointly converge

in distribution to(Bg(+), Bs(+)) asr — oo, i.e.,
(E7(),57()) = (Bp(), Bs(-)) asr — oo, (3.16)

where Bg(-) and Bs(-) are independent two-dimensional driftless Brownian motions
starting from the origin with diagonal covariance matricBg = diag(\;02, \,a2) and

s £ diag(p1 /37, 1203 ), respectively.

Remark.As there is a single source of variability (not depending-pfior each of £},
S, 1 = 1,2, only the finiteness of the second momentsigf) andwv;(k) is required
for the FCLT. Furthermore, since a Brownian motion is a candims process, the weak-

convergence of E"(-), S"(+)) to a Brownian motion implies C-tightness of the sequence

{(E(),5"(D)}

Proof. By results of Iglehart and Whittlg], functional central limit theorems for the
renewal counting processés (-) and S”(-) can be inferred from those for the partial
sums of{u! (k)}¢2, and{v;(k)}2,, respectively. Functional central limit theorems for

the latter follow from Theorem 3.1 of Prokhoro87). n

As a corollary, we have the following functional law of langembers (FLLN) for

the stochastic primitives. For this section, from now om,gacht > 0, let () = A\t and

p(t) = pt.

Corollary 3.3.7 (FLLN). The fluid-scaled processé&"(-), S"(-)) jointly converge in
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distribution to(A(-), u(+)) asr — oo, i.e.,
(E"(-),57()) = (A(), p(-)) asr — oc. (3.17)

Remark.The weak-convergence ¢f="(-), S"(-)) to a continuous process implies C-
tightness of the sequengeE"(-), S™(+))}.

Proof. Proposition3.3.6implies that

(%Er(.% %ST()) = (0,0) asr — oo. (3.18)

The desired result follows from this and the fact that— \; asr — oo by (3.8) for

i=1,2. O

3.3.6 Fluid Model

Applying fluid scaling to the dynamic equatio8.4) satisfied by the queuelength

process for the system indexed fyywe obtain forr > 0,i=1,2,¢ > 0,

Q7 (t) = Ej (t) — S} (T7 (1)) (3.19)

1

We next consider the behavior of (-), the fluid-scaled version &f"(-):

T (t) = /OHA(QT(S»CJS, £>0. (3.20)

r2

By the change of variables= 3, fort > 0, (3.20 becomes

T (t) = /OtA (M) ds = /OtA (Q"(3)) ds. (3.21)

r2

where the second equality follows from the definitionf(-) and the scaling property of
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A(+) (see Lemma.3.3. The following lemma follows from3.21) and the fact thad,(-)

is bounded by which is less tham; + ¢, for: = 1, 2.

Lemma 3.3.8.For eachr > 0, almost surely” (-) is uniformly Lipschitz continuous with

Lipschitz constant less than + c,.

Remark.This lemma is used to prove the C-tightness of the fluid-scstlechastic pro-

cesses.

For a continuous functiom : [0,00) — R, we say that € (0,00) is aregular
point for x if z is differentiable att. If x is absolutely continuous, almost every=
(0, 00) is a regular point and can be recovered from its almost everywhere (a.e.) defined
derivatives:

t
x(t) = x(0) —i—/ x(s)ds, t>0. (3.22)
0
A (uniformly) Lipschitz continuous function : [0, c0) — R is absolutely continuous.

Lemma 3.3.9.The sequence of procesgs:” (), 57(-),7"(-), Q"(+)) } converges in dis-
tribution to (£(+), S(-),T'(-), Q(-)) asr — oo where

E()=A(), S()=pn(), Q()=0, T()=c(), (3.23)

andc(t) £ (cit, cot), t > 0.

Proof. From the uniform Lipschitz continuity of 77(-)} established in Lemm&.3.8

it follows that {77 (-)} is C-tight. Since{E"(-)} and{S"(-)} are also C-tight (see the
remarks following Corollan3.3.7), using 3.19 together with the random time change
theorem of Billingsley 5, p. 151], we conclude that the sequere¢&”(-), S"(-),7"(-),
Q"(+))} is C-tight as well. SupposgE(-), S(-), T(-),Q(+)) is a weak limit point of this
sequence. By invoking the Skorokhod representation timedsee, e.g.,12, Theorem
3.1.8, p. 102]), we may assume without loss of generalityfthraa subsequencg } of
{r}, {(E™ (), S™(-), T(-),Q™(-)) } ,_, andT(-) are defined on a common probability
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space such that
Qrr(t) = E*(t) — S[*(T7*(t)) fort > 0,i = 1,2 (3.24)

and almost surely as — oo,

(E™ (), 8™ (), T (), Q™ () = (M), u(), T(-),Q(")) u.oc. (3.25)

where almost surely);(t) = N\t — p;Ti(t), t > 0,47 = 1,2. The limit T'(-) inherits
the Lipschitz property of 77(-)} almost surely. Fixo such thatl’(-,w) is uniformly
Lipschitz continuous. In the following, we suppress explitdication of the dependence
onw, butw is fixed throughout. Let > 0 be a regular point foil;, i = 1,2, thenQ is

differentiable at and

=X — Wi

i=1,2. (3.26)

We consider the following cases fa¥;(t):
Case |: Q;(t) = 0 for i = 1,2. Fixi. SinceQ;(-) > 0, Q;(t) = 0 andt > 0 is a regular

point for 7" andq), it follows from a simple analysis argument théd; (¢) /dt = 0. Then,

dT;(t)
=\ — [ 27
0= A = pi— = (3.27)
which implies that )
dTi(t) = A = ¢. (3.28)
t i

Case Il: Q;(t) > 0for i = 1,2. Let0 < u < v < oo be such that € (u,v) and for
i=1,2,Q;(s) > 0forall s € [u,v]. Then, by the uniform convergence @f (-) to Q(-)

on [u, v], we have for all sufficiently large, fori = 1,2, Q7 (s) > 0 forall s € [u,v]. So
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forall s > ¢ in [u, v] we have

Ti(s) = Ti0) = him (7706) = 77)) = Jim | [ s (@1()) ]

T—00 r—00

= lim [/ cidz} =ci(s —1),
T—00 t

where we have used the fact thatq) = ¢;, i = 1,2 wheng > 0. Dividing by (s —¢) and

(3.29)

taking the limit ass — ¢, we obtaindT;(t)/dt = c; for i = 1,2. Note that this implies
thatdQ;(t)/dt = 0 for i = 1,2, by (3.26) and since\; = p;c;.

Case lll: There is i € {1,2} such thatQ;(t) > 0 and Q,(t) = 0 for j # 4. Since for
j#1i,Q;(-) >0,Q;(t) = 0andt > 0 is a regular point, it follows thafQ;(t)/dt = 0

which implies thatdTj(t)/dt = ¢;. Let0 < u < v < oo be such that € (u,v) and

Qi(s) > 0 forall s € [u,v]. Then, for all sufficiently large, Q7 (s) > 0 for all s € [u, v],

which implies by the definition of;(Q"(-)) that

ci(s —t) <TI(s) =T/ (t) < ci(s—t) forall s > tin [u,v]. (3.30)

7

Lettingr — oo yields
ci(s —t) < Ty(s) — Ti(t) < cf(s —t), forall s > tin [u,v]. (3.31)

Dividing by (s — t) and lettings — ¢, we conclude that; < dT;(t)/dt < c;. Thus
from (3.26), since)\; = pu;c;,
dQq(t)/dt < 0. (3.32)

Combining cases (I)—(lIl) we see that at each regular poin® for 7(-),

d = 2 o | A dQ1IE) A dQs(t)
- (Q1(t) +Q3(t)) =2 Qut) = + @Q(t)——| <0 (3.33)

SinceQ?(0) + Q3(0) = 0 andQ3(-) + Q3(-) > 0, it follows thatQ3(t) + Q5(t) = 0 for
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all £ > 0. Hence,Q;(t) = Q»(t) = 0 forall t > 0 and case (I) implies thak,(t) = ¢,
at each regular point > 0 for i = 1,2. Such regular pointg, occur almost everywhere
andT; can be recovered from its a.e. defined derivative to @ive) = c;t for all t > 0,
i=1,2.

Finally, since (E(-), S(-),T(-),Q(-)) was an arbitrary weak limit point and is
unique (as shown above), it follows thetE7 (t), Sr(t), T7 (), Q:(t)) } converges in dis-

tribution to (E(-), S(+), T(-), Q(+)) as described by3(23. O

3.3.7 Diffusion Approximation
3.3.7.1 Pre-limit process

From 3.4), (3.5, (3.9), (3.14, and @.15, the diffusion scaled queuelength pro-

cess can be written far=1,2,¢ > 0, as

Q7 (t) = (ET(t) + Nort) — (SI(TT () + T (t
(t) (A() A ) — (SP(T7 (1)) : (t)) (3.34)
= B (t) = 5;(T7 (1) + r(Nit — w7 ().
Expanding the last term ir8(34), we have
2\T¢ g 2T
r(Nt = 7 (1) = AL T
g r2t r2t (335)
A= X))t + N [y ds — i [y A(Q7(s))ds

r

Considering four different types of states for the queuelengctor))” and sub-
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stituting the corresponding values foy(Q"(+)) from (3.3), we can rewrite 3.35 as

r(ANjt = w7 (1) = (A = Ai)rt

2
1 ret
+—(&—m@/)1wmwﬂ8
r 0
r2t
+ (N — Micf)/o 1{Qg(s)>o;Q§(s):o,j¢i}d5 (3.36)

2

7t
A /0 1{Q§(s>=o;Q;<s)>o,y‘¢z’}d$

r2t
i Ai/o 1{@;(3):0 forallj}d5] .

Define fort > 0,

2
R 1 r“t
T A~
Ui(t) = /0 Haro=00;90,2} 95

t (3.37)
= TA 1{@2(5):0§Q§'(3)>0,j5£i}d87 1 = ]_7 27

r2t t
Z"(t) = ;/0 1{@;(3):0 forallj}ds = 7”/0 1{@;(3):0 forallj}ds’ (3.38)

Then, using the fact that; = u;¢; and combining 3.34—(3.38), we obtain for
i=1,2,t>0,

Q7 (t) = X7 (t) + NUF (8) + (A — ) UT (1) + N 27 (1), (3.39)
wherej =i + 1 (mod 2) and

XI(t) = EN(t) — ST(TI (1) + (N7 — \i)rt. (3.40)

2
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This can be expressed in vector form for 0 as

. R A AN — | M| -
O () = X"(1) + ! IR ey | 2. (3.41)
)\2 — 'LLQCE )\2 )\2
Define thereflection matrixR as
1 Al_ﬂlcT
R2 ) A2 (3.42)
)\2*,“4202 1
A1

and fori € {1,2}, j # i andt > 0, define

Ve 2 n (0re) + €< t) 3.43
020 (0104 2 (3.43
Then, @.41) can be written as

Q" (t) = X"(t) + RY"(t), t > 0. (3.44)

Note thatcic, + 1 — cici > 0 (from Lemma3.3.2 andY;", i = 1,2, can increase only

when the corresponding’ = 0.

We next state and prove the C-tightness of the sequence oégwes{ X" (-)}

which will be used in proving the C-tightness of the sequeriaiffusion-scaled queue-

length processe&)"(-)}.

Lemma 3.3.10.The sequencéX”(-)} converges in distribution to a Brownian motion
with diagonal covariance matriX £ diag(\,(a? + 37), \a(a2 + 3%)) and drift vector

0 = (6, 0), that starts from the origin.

Proof. Letd”(t) £ r(\" — \)t, ¢t > 0. By combining PropositioB.3.6 Lemma3.3.9and
Assumption3.3.4 we have that the sequence of procee{séér(-), ST, T (), 9”"(-)) }
converges in distribution t0Bx(-), Bs(-), c(+),0(-)) whereBg(-) and Bs(+) are indepen-
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dent two-dimensional driftless Brownian motions startiregn the origin with covariance

matricesl'r andI's respectively¢(t) = ct, 0(t) = 0t for all ¢ > 0.

Then from .40, using the random time change theorefiX"(-)} converges
in distribution to a two-dimensional Brownian motion witiagonal covariance matrix
diag(Aiaf + pici 57, A2ai + piaca33) = diag(Mi(af + 67), Aa(@3 + B7)) (sinced; = pe;
fori = 1, 2), drift vector(6,, 6,) and starting point0, 0). O]

3.3.7.2 Limit Theorem

We next discuss the properties of the reflection maftiand use these properties

to state and prove the limit theorem, which is the main resiulbis section.

Define
B 0 M
PEI-R=| | e (3.45)
H2cs—A2 0

A1
where! is the2 x 2 identity matrix. Fori = 1,2, u;c; — X\; > 0, sinceu;c; = A; and
¢; < ct. Thus all of the entries of are nonnegative. We next show that the matkix

satisfies the HR condition described in Sects8.1.1

Lemma 3.3.11.The reflection matrix? satisfies the HR condition.

Proof. SinceP has zeros on the diagonal and all of its entries are nonwegittsuffices
to show thatP has spectral radius strictly less than The eigenvalues of are the

solutions of the equation

2 e — A;i ;ﬁsz% —X) _ g (3.46)

Using\; = ¢;ui, @ = 1,2, and the fact that] > ¢y, ¢§ > co, we have

e=af(3-1) (2-1), a7
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Thus the spectral radius d@? is strictly less tharl iff (c¢; — ¢;)(c5 — ¢3) < cico. By
assumptiong; + c2 > ¢, ¢, ThusO < (¢f —¢1) < o and0 < (5 — ) < ¢1. SO
(¢ — ¢1)(cs — ¢2) < c1co and the spectral radius @f is strictly less than one. Thug

satisfies the HR condition. ]

We next state and prove the main result of this section.

Theorem 3.3.12(Main Theorem) The diffusion-scaled queuelength procéé$-) con-
verges in distribution to an SRBM, i.€)” = Q asr — oo, whereQ is an SRBM

associated with the dat@R?, 0, I', R) that starts from the origin.

Proof. Recall the results on the Skorokhod problem stated in Se&ti®.1.1 For each

r >0, X"(-) has paths if)> andQ", X", V" satisfy 3.44. By definition,Q"(-) has paths

in R2. Furthermore, a.s}"(0) = 0, Y”(-) is nonnegative, non-decreasing, continuous
and fori = 1,2, Y/(-) increases only whe®); () = 0, i.e., i, ., @i (s)d¥/ (s) = 0.
Thus, a.s.(Q"(-), Y"(-)) is a solution of the Skorokhod problem fa¥"(-) with respect to

R. SinceR satisfies the HR condition, by Propositi8rB.1, (Q"(-),Y"(:)) = ®(X"(-))

a.s. where the mapping : D> — D7 is continuous. By Lemma.3.1Q the sequence
{X"(-)} converges in distribution a8 — oo to a Brownian motion with drifty and
covariance matriX’ that starts from the origin. Then by the continuous mappirep+t
rem,{(@’“(-), X7(+), Y"(-))} converges in distribution as— oo to (Q(-), X(), Y(-))
where (Q(-),Y (-)) = ®(X) is a.s. the unique solution of the Skorokhod problem for
X () with respect taR. HereQ is a representation of the SRBM associated with the data

(R2,0,T', R) that starts from the origin. ]

3.3.7.3 Properties of the Limit Process

The SRBM structure of) enables us to use results from the theory of SRBMs to

state some properties of the limit of the diffusion-scaladuglength processes.
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Time Spent at the Origin  An important quantity for a queueing system is the time that
the system is idle. It can be shown that almost suf&spends zero Lebesgue time at the

origin. Stated formally,

Proposition 3.3.13.Almost surely, the Lebesgue measure of the time spe(@\tan)(o, 0)

is zero.

Proof. Varadhan and Williams41] have shown that whefi = 0 and the covariance
matrix is the identity matrix, the associated SRBM spends te&besgue time at the
origin almost surely. By a scaling of the coordinates, we mayclude that the SRBM
with drift & = 0 and a diagonal covariance matrix, spends zero Lebesguatithe origin
almost surely. Note that with the scaling, we end up applgsgmilarity transformation
to the R matrix which does not alter the fact that the HR conditionatisdied. Then,
by a Girsanov transformation (se®, 9.4]) to change the drift of the driving Brownian
motion, it follows that the Lebesgue measure of the time spgid) at the origin is zero

almost surely. O

Stationary Distribution  Harrison and Williams17] have shown that there is a station-
ary distribution for the SRBM if and only i~'6 < 0 where the inequality is understood

to hold component by component. As an illustration, a sidumain which this condition

1 _

is satisfied is depicted in Figu@3 with § = (—1,0) and R = o where
Y 1

T o= % and~, = %:AQ For two-dimensional SRBMs, Avram et al][studied a

variational problem (VP) arising from the study of SRBMs.eldptimal value of the VP
describes the tail behavior of the stationary distributgon the corresponding optimal
paths characterize how certain rare events are most likedg¢ur. Dai and Harrisorifl]
have identified a numerical procedure for computing quistiassociated with the sta-
tionary distribution for a class of SRBMs. This can be usedumerically approximate
the mean of the stationary distribution of the SRBM that isflusion approximation of

our system.
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Figure 3.2 The solid curve indicates the capacity surface while théaserof the system
stability region is shown by the dashed line.

Q24

Figure 3.3 Directions of reflection and drift for an example of an SRBMiwi, =
MO ) = 12G70 andh = (—1,0).

A2 o A1
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3.4 Systems with Arbitrary Number of Users: Workload

3.4.1 Notation and Preliminaries

We will use the following notation throughout this sectioe will use N to
denote the sefl1, 2,..., N} whereN is a finite positive integeC to denote an arbitrary
subset of\/, andK“ to denote the complement &fin /. We will useP(.A) to indicate
the power set of an arbitrary st We will use|.A| to denote the cardinality of the sdt
The symboll 4, denotes the indicator function of a sédt i.e., 14(z) = 1if x € A and
la(z) =0if z ¢ A.

Let Z denote the set of all integerZ,, the set of all non-negative integeig,
denote the set of real numbers, aRd denote the set of non-negative real numbers,
which is also denoted bj), oo). The symbolR” will denote N-dimensional Euclidean
space and the positive orthant in this space will be denoyel’b = {z € R" : z; >
0 for all « € A'}. All vectors and matrices in this section are assumed to realevalued
entries. Let) = (0,0,...,0) € RY. We denote the inner product & by (,-), i.e.,
(z,y) = SN, x, for z,y € RY. The usual Euclidean norm d&" will be denoted
by ||-|| so that||z|| = +/{z,z) = <Z£V:1 x?)m for z € RY. Let B(R") denote the
o-algebra of Borel subsets & . For any non-empty sét C A/ and anyx € RY, zx
will denote the vector whose components are thosewith indices ink. Letey € RY
denote the vector whose entries arelallForz,y € R”, we shall user A y to denote
the vector whose-th component is the minimum af andy;, for eachi € NV. All vector
inequalities are understood to hold componentwise.aFerRY, we shall useliag(a) to
denote theV x N diagonal matrix whose diagonal entries are given by theemin a.

We will let (-)" denote transpose. For any $ef K C A/, we define the facéy by
Fe2{zeRY :a;=0foralli e K}. (3.48)

For examplel’y, = {0}, the set consisting of the origin Y. WhenkK = {i} fori € N,
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we write F; in place ofFj;; sometimes. We define the index set of any poirt RY by
K(z)&{ieN z;=0} (3.49)

with the convention thak’(w) = 0 if w > 0. A domain inR" is an open connected
subset ofRY. For each continuously differentiable real-valued fumetf defined on

some non-empty domaisi C RY, V f(z) is the gradient off atz € S:

_9f

(Vf(z)); (z), i=1,2,...,N. (3.50)

For any setS C RY, we write S for the closure ofS, S° for the interior of S, and
0S8 =S\ se.

All stochastic processes used in this section will be assutbdnave paths that
are right continuous with finite left limits (r.c.l.l.). Weetiote byD" the space of r.c.L.I.
functions from[0, co) into RY and we endow this space with the usual Skorokhod
topology (see Ethier and Kurti2, Chapter 3, Section 5]) which makes it a Polish space.
We denote byC” the space of continuous functions frdfy o) into RY, also endowed
with the Skorokhod/;-topology under which convergence of element€ tis equivalent
to uniform convergence on compact time intervals. We enBéwor CV) with the Borel
o-algebra induced by the Skorokhdgtopology and denote this-algebra byM?”. The
abbreviationu.o.c. will stand for uniformly on compactand will be used to indicate
that a sequence of functions i¥¥ (or CV) is converging uniformly on compact time
intervals to a limit inD" (or CV). An N-dimensional process is a measurable function
from a probability space int@", M*). Consided?V!, W2, ... W, each of which is an
N-dimensional process (possibly defined on different prditalspaces). The sequence
{Wm}> | is said to beight if the probability measures induced by the sequeieé@ } > |
on (DY, M¥) form a tight sequence, i.e., they form a weakly relativeljnpact sequence

in the space of probability measures @, M"). The notation W" = W” will
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mean that "™ converges in distribution tdl” asn — oo”. The sequence of processes
{Wwm}> | is calledC-tightif it is tight and if each weak limit point (obtained as a weak

limit along a subsequence) is@" almost surely.

A triple (Q, F,{F;,t > 0}) will be called a filtered space i? is a set,F is a
o-algebra of subsets &1, and{F;,t > 0} is an increasing family of sub-algebras of
F,i.e., afiltration. From now on, we will write a filtratiof\F;, ¢ > 0} as simply{F;}. If
P is a probability measure off2, F), then($2, F,{F;}, P) is called a filtered probability
space. AnN-dimensional procesX = {X(t),t > 0} defined on({2, F, P) is called
{F;}-adapted if for each > 0, X (¢) : @ — R” is measurable whef is endowed with
the s-algebraF;, andR” has the usual Boret-algebraB(R"), and X is said to be a

continuous process if its sample paths are continuoass.

3.4.2 Communication System Model

In this subsection we specify the communication system ucalesideration. We
consider a cellular wireless network where base statioop@&@te over noise-free infinite
capacity links. We do not make any distinction between alstagll cellular system
having multiple base-station antennas and the traditioglallar system with cooperating
single-antenna base stations. Here by cooperation we rh@anhe base stations can
perform joint beamforming and/or power control but thereaigsonstraint on the total
power that the base stations can share. We do not make amgpatssus about the number

of receive antennas per user.

The downlink channel for such a system withusers can be modeled as &R
user MIMO Broadcast Channel (BC). We assume that the chanfigedsfor all trans-
missions over the period of interest (some authors refdnigoas a quasi-static channel).
Moreover, we assume that the transmit end (with the cooperagase stations) has per-

fect channel state information (CSlI).

Weingarten et al.43] have shown that for such a system, Dirty Paper Coding
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(DPC), introduced by Costd ()], achieves the capacity. Furthermore, the capacity region
can be computed by using the duality of the MIMO Multiple Ass€hannel (MAC) and
the MIMO BC [20] where the BC capacity region is obtained by taking the crriugl

of the union over the set of capacity regions of the dual MIM®@®4 such that the total

MAC power is the same as the power in the BC.

For an N-user system, the capacity region is Andimensional closed convex
set inRY containing the origin where the convexity follows becaukéhe convex hull

operation. For an example of such a capacity region in theuser case, see Figudel

At the transmit end, packets arrive for each user and arefmdfbefore transmis-
sion. We assume that there is given a nominal average patckel sate (e.g. an estimate
of the true average arrival rate). The ratio of the nomin&rage bit arrival rate for user
1 relative to that for uset is called the relative traffic rate and is denoteddyy(this is
assumed to be strictly positive). This nominal relativdfitaate is specified in advance
with the assumption that; = 1; thus, it is expected that, on average, tkt@ user will
haver; times as much data as udefThe actual traffic rate may deviate from this nominal
average rate due to estimation error and stochastic fluohsatNaturally, when there is
no data for one (or many) of the users to transmit (the coaegipg queue for that(those)
user(s) is empty), the data for the other users should bertrdied at the maximum pos-

sible rate for those users. We formally state these conditio Sectior8.4.3

3.4.3 Queueing Analogue

In this subsection, we develop a queueing analogue for thesydescribed in
Section3.4.2 To this end, we describe the physical structure, and tlehakiic primitives
specifying the packet arrivals and sizes. We formulate dyo@quations satisfied by the
workload process in terms of the stochastic primitives dedaolicy or service discipline

to be used with this system.
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3.4.3.1 Physical Structure

A queueing model describing our communication systemMasieues in parallel
where each queue buffers packets intended for a given useasdlime that each of the
gueues has infinite buffer capacity. The queues are servadsingle server correspond-

ing to a base station with multiple cooperating antennas.

3.4.3.2 Stochastic Primitives

We assume that the system starts empty and that thereN'sdimensional packet
arrival processtl = {(E;(t), Ex(t),..., Ex(t)),t > 0} where E;(t) is the number of
packets that have arrived to tiieh queue in(0,¢]. (HereE is used to indicate that the
arrivals areexogenou3 Fori: € N, E;(-) is assumed to be a (non-delayed) renewal pro-
cess defined from a sequence of strictly positive indeperatashidentically distributed
(i.i.d.) random variable$u;(k),k = 1,2, ...}, where fork = 1,2, ..., the random vari-
ableu;(k) denotes the time between the arrival of {lke- 1)-st and the:-th packet to the
i-th queue (where thé-th arrival occurs at tim®). Eachu;(k), k = 1,2, ..., is assumed
to have finite meari/\; € (0,00) and finite squared coefficient of variation (variance

divided by the mean squaredj € (0, >). Then

Ei(t):max{nZO:Zui(j) St}, ieN,t>0, (3.51)
j=1
where a sum up te = 0 is defined to be zero. The packet lengths (in bits) for the
successive arrivals to theth queue are given by a sequence of strictly positive i.i.d.
random variablegv;(k), k = 1,2,... } with average packet length, = 1/u; € (0, 00)
and squared coefficient of variatiglf € (0,00). We assume that all interarrival and

service time processes are mutually independent: Ea\ andn € Z.,, we define

Vi(n) £ va (3.52)
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We refer to the processds(-) andV/(-) asstochastic primitivesor our system model.
For convenience, to avoid the need to consider exceptiaribsets, we assume without
loss of generality thak’;(t) < oo forall ¢t > 0 andE;(t) — oo ast — oo for eachi € N,

surely.

3.4.3.3 Workload Process

Fori € N, the workloadiV;(t) of thei-th queue at time > 0 is given by

Ei(t)
W;(t) & (7)) — Ti(t
(t) ;vo) (t) 359

I
=

(Ei(t)) — T(b),

whereT;(t) is the cumulative amount of service (measured in bits) gieghei-th queue
up to timet. We next describe the service discipline which, in turn c#pes the functional

form of 7;(-).

3.4.3.4 Service Discipline

When service is given to a queue, it goes to the packet at the dfethe line,
where itis assumed that packets are queued in the orderipétheal with the packet that
arrived the longest time ago being at the head of the line. &orer = (04, 09,...,0x)
indicates the rates (in bits per second) of serving Ahgueues, i.e.g; is the rate for
gueuel, o, is the rate for queu@, and so on. The service rate for each queue is a very
simple function of the vector of workloads. Given a workla#do = (wq, ws, ..., wy),

the set of indices for the empty queues is the index(3et), as defined by3.49. The
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ratess = A(w) are given by the functiohA : RY — R defined by
Aw) & &) (3.54)

wherec® is a fixed vector for eack C A with ¢ = 0if i € K (corresponding to the
fact that an empty queue should not be served)@nd 0 if i ¢ K. The vector of service
ratesc® is chosen such that it lies on the boundary of the capacitpmeand the service
rate for each of the users with positive workload is relatgdhz relative traffic rate as
described below. Recall, from SectiB.2 (x;,i € N) is the given vector of nominal
relative traffic rates. For akC & AV, the non-zero entries of the service rate vectoare

chosen such that

CK C;C
X =2 3.55
= (3.55)

wheneveri, j € K¢, and) ", cX is as large as possible while still keepirigin the capacity
region. (We make the non-degeneracy assumption that tleeitgpegion is such that we
can choose > 0 for all i € K°) When all of the queues are non-empty & 0),
the service rate vector?, lies on the boundary of the capacity region and fori al \V/,

& = r;icl, i.e., & is in the direction of the vectos and is the furthest point along that

direction which lies in the capacity region (see Fig@réfor an example of the capacity

region and the service rates for a two-user system).

The following condition, which corresponds to the fact tbebperation results in

an increase in the sum of the service rates, is assumed taiskessby thec®'’s:

> > D foralL SCKCN. (3.56)
iEN\L JEN\K

Moreover, the service rate for a fixed queue is assumed todueeel as more queues are

3We only need\(-) defined onZ® for the moment, but we extend the domain/of) to R so that
later when we rescale the workload proces§) is well-defined for the rescaled process.
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O'QA

Direction (K1, K2)

o2} 2 o

Figure 3.4 An example of the capacity region for a two-user system. iSemate-t% =
(0,0), ct?t is along the directiofix,, 0) andc!'} is along the directiof0, r»).

served concurrently. Therefore
forall LS K CWN, ¢f < forallie N\ K. (3.57)

For examplec? < ¢ foralli  j,4,j € N.

Our model is a single servek-class queueing system where tNeclasses corre-
spond to theV queues (users). The following scaling property\df) is a mathematical
statement of the property of the scheduling policy that tmnewant of service given to the

gueues in any state does not change when all workloads atgpimdl by the same factor.

Lemma 3.4.1.For anyw € RY anda > 0, A(aw) = Aw).

Proof. The proof follows easily from the fact that-) depends only on which queues are

empty and these are unchanged by the positive scalar factor n
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Fort > 0,7 € N, we can now give an explicit expression fB(t) as

t
T2 [ A ds
0
t
=Y o / Likow (s)=xy ds.
0

KCN

(3.58)

In fact, ¢V = 0 and so the sum could be reduced to that avég NV, includingC = 0.

3.4.4 Heavy Traffic Assumptions

We wish to consider the behavior of the queueing system wheheavily loaded.
(Kelly and Laws R3] have argued that in this regime “important features of gooxirol
policies are displayed in sharpest relief”.) For this pagone may regard a given system
as a member of a sequence of systems approaching the heffieylitrat. To obtain a
reasonable approximation, the workload process is redealmg diffusion scaling. This
corresponds to viewing the system over long intervals oétohorderr? (wherer will
tend to infinity in the asymptotic limit) and regarding a dm@acket as only having a
small contribution to the overall congestion level, whéris is quantified to be of order
1/r. Formally, we consider a sequence of systems indexed Wierer tends to infinity
through a sequence of values(ih oc). These systems all have the same basic structure
as that described in the last section; however, the arrat@srmay vary with-. We
assume that the interarrival times for the system indexed d&me given for each € N,
k=1,2,...,by

(k) = %ai(k) (3.59)

7

where thei; (k) do not depend on, have mean one and squared coefficient of variation
a?. The packet length$v;(k)}2 ,, ¢ € A/, do not change with. [The above structure

is convenient for allowing the sequence of systems to agprbaavy traffic by simply
changing arrival rates and keeping the underlying souréesrability «;(k) andwv;(k)

fixed asr varies. This type of set-up has been used previously by théreating heavy-
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traffic limits (see, e.g., PetersoB1] and Bell and Williams 2]). For a first pass, the
reader may like to simply choos€ = )\, for all .] All processes and parameters that
depend onr will from now have a superscript ofappended. The nominal relative traffic
rate and the service ratds®, K C N} are assumed fixed throughout and do not vary

with . We define\; £ j;c? fori =1,2,..., N.

Assumption 3.4.2(Heavy Traffic Assumption)There exist® € R% such that for each
i €N,

r(Al — A\)m; — 6; asr — co. (3.60)
We may regard = (A1, A, ..., Ay) @s a nominal average packet arrival rate used
to set the service rates,
(C?, cg, o ,c?v),

for the scheduling policy. The-th system has a perturbed average packet arrivalVate

for which the average bit arrival raté (b, = \/m;,i € N) is close to(c), b, ..., %).

3.4.5 Scaling, Standard Limit Theorems, and Parameters
3.4.5.1 Scaling

Fluid (or functional law of large numbers) scaling is ind@a by placing a bar

over a process. For> 0, € NV, andt > 0, we define

Er(t) 2 r2El(r?t), (3.61)

VI(t) = r 2V (r?t), (3.62)

)

Tr(t) & r2T7 (r21), (3.63)

K3 K3
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W/ (t) 2 r2W/ (rt). (3.64)

7

Diffusion (or functional central limit theorem) scaling iisdicated by placing a

hat over a process. For> 0,7 € N, andt > 0, we define

. 2 W (r?t)

r

(3.65)

To apply diffusion-scaling to the primitive stochastic pessed:”(-) andV'(-) (note that
V() does not depend af), we must center them before scaling. Accordingly,/for 0,

1 € N, andt > 0, we define
1
Er(t) £ - (Ef (rt) — Xir°t) (3.66)

and
V() & % (Vi(r*t) — myr®t) . (3.67)

3.4.5.2 Functional Limit Theorems for Stochastic Primitives

We will use the following functional central limit theoreRCLT) for the stochas-

tic primitives in the sequel.

Proposition 3.4.3(FCLT). The diffusion-scaled process@s’(-), V' (-)) jointly converge

in distribution to(Bg(+), By (+)) asr — oo, i.e.,

A ~

(E"(-),V"()) = (Bg(:), Bv(:)) asr — oo, (3.68)

whereBg(-) and By (-) are independen¥ -dimensional driftless Brownian motions start-

ing from the origin with diagonal covariance matrices

I'p 2 diag(Ao2, A2, ... Avas) (3.69)
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and

Ly £ diag(miff, m306, ..., my6y), (3.70)
respectively.

Remark.As there is a single source of variability (not dependingr-dfior each ofE7,
Vi, i € N, only the finiteness of the second momentsugf) andv;(k) is required
for the FCLT. Furthermore, since a Brownian motion is a cargus process, the weak-

convergence of E”(-), V"(-)) to a Brownian motion implies C-tightness of the sequence

{(E(-), V().

Proof. By results of Iglehart and Whittlg], a functional central limit theorem for the re-
newal counting process’ (-) can be inferred from that for the partial sums{aef (k) }7° ;.
Functional central limit theorems for the partial sums{of (k) }7°, and{v;(k)}2, fol-
low from Theorem 3.1 of Prokhoro\B8p]. The joint convergence follows from the inde-

pendence of"(-) andV/(+). O

As a corollary, we have the following functional law of lamgembers (FLLN) for

the stochastic primitives. For each 0, let \(t) = A\t andm(t) = mt.

Corollary 3.4.4 (FLLN). The fluid-scaled processé&" (), V"(-)) jointly converge in

distribution to(A(+), m(-)) asr — oo, i.e.,
(ET(-), VT(-)) = (A(+),m(-)) asr — oo. (3.71)

Remark.Here again, the weak-convergence (&' (), V"(+)) to a continuous process

implies C-tightness of the sequendé2"(-), V" (-))}.

Proof. Proposition3.4.3implies that

GET(.), 1fﬂ(.)) = (0,0) asr — oo. (3.72)
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The desired result follows from this and the fact that— A asr — oo (see 8.60). [

3.4.5.3 Covariance and Reflection Matrices

We next define two matrices that are part of the data for theyheaffic limit of
the workload process. We first define tbevariance matrix" as theN x N diagonal

matrix whosei-th diagonal entry is

We define theeflection matrixk as theN x N matrix whose entries are

1 if i =
R;; = P (3.74)
— if i # 5.
J
For example, whev = 3, the reflection matrix? is
T
c5 c§
9_ {1} 0_ {3}
1 3
Cg—cgl} Cg—ch}
o ch

The matrix R defined by 8.74) has a special structure in that it satisfies the Harrison-
Reiman (HR) condition16]. We use this structure in proving the convergence of the

diffusion-scaled workload process.

Definition 3.4.1(Harrison-Reiman (HR) ConditionAn N x N matrix R satisfies the HR
condition if R = I — Q, wherel is the N x N identity matrix, and théV x N matrix )
has zeros along the diagonal, all of the entriesoére nonnegative, an@ has spectral

radius strictly less than one.

Remark.WhenR = I — (Q where( has zeros on the diagonal and the entrie§ afre
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nonnegative, the HR condition is equivalent to the requéetthatR is a non-singular M-

matrix. Such matrices are discussed for example in BermdiPlmmons3, Chapter 6].

Lemma 3.4.5. The reflection matrix? satisfies the HR condition.

Proof. It is easy to see that aii x N matrix R satisfies the HR condition R = I — P’
where! is the N x N identity matrix, P is an N x N matrix whose diagonal entries
are zero, and whose off-diagonal entries are nonnegatigdesach that each row-sum is
strictly less thanl. To show thatR has this form, note that the diagonal entriesiof
are all equal ta and from the condition3.57), the off-diagonal entries are all negative.
Therefore it suffices to show that the sum of each columr & strictly greater tha.

But the sum of thg-th column ofR is

0 {7}

Ty %_l@ oY P (3.76)

ieEN\{5} J 7o\ieN ieN\{i}

which is strictly greater thaf by (3.56) with £ = () andK = {j}. O

3.4.6 Diffusion Approximation - Main Theorem
3.4.6.1 Definition of an SRBM

Before defining an SRBM, we define &tF; }-adapted Brownian motion. Given
a filtered probability spacé, F, {F.}, P), a vectord € RY, an N x N symmetric,
strictly positive-definite matriX’, and a probability distribution on (RY, B(RY)), an
{F:}-Brownian motion with drift vectof, covariance matrix’, and initial distributiorv,
is an N-dimensional F; }-adapted processy, defined onQ2, 7, {F;}, P) such that the

following hold underpP:

() X is an N-dimensional Brownian motion whose sample paths are alsurgtly

continuous and that has initial distribution
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(i) {Xi(t) — Xi(0) — 6;t, F,t > 0} is a martingale foi € \V, and
(i) {(Xi(t) — X;(0) —0;t)(X;(t) — X;(0) — 6;t) — I';;t, Fr, t > 0} is a martingale for

1,7 €N.

If v = §,, the unit mass at € R", we say thatX starts fromu.

Now, fix 8 € RY, I" an N x N symmetric strictly positive-definite covariance
matrix, R an N x N matrix satisfying the HR condition, anda probability measure on

(RY, B(RY)). Recall the definition of}, i € A/ from Section3.4.1

Definition 3.4.2(Semimartingale Reflecting Brownian Motion (SRBMA Semimartin-
gale Reflecting Brownian Motion (abbreviated as SRBM) withdtite (RY, 6, T, R, v) is
an { ¥, }-adapted,N-dimensional process$}, defined on some filtered probability space

(Q, F,{F:}, P) such that

(i) P-a.s.,W(t)=X(t)+ RY (t)forall t > 0,
(i) P-a.s.,IW has continuous paths arfdf (1) € RY forall ¢ > 0,

(iii) under P, X is an N-dimensional F; }-Brownian motion with drift vecto#, co-

variance matrix", and initial distributionv,
(iv) Y is an{F,}-adapted,N-dimensional process such th&ta.s. for each € N,
(a) Yi(0) =0,
(b) Y; is continuous and non-decreasing,

(c) Y; can only increase wheW is on the facer;, i.e., for allt > 0,
t
Vi) = [ 1m(V(©)x(s) (3.77)
0

Whenv = §, for z € RY, we may say thall’ is an SRBM with the datéR?, 6, T, R)

that starts frome.
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Remark.It is known from the work of Harrison and Reimah§] that whenR satisfies
the HR condition, there is strong existence and uniquersesbi{ence weak existence and

uniqueness) for an SRBM given the déi&), 0, ', R) and the initial distribution.

Remark.An N-dimensional procesd” defined on some filtered probability spaée F,
{F:}, P) is a continuous semimartingalelif is a continuous adapted process &hd.s.,
W(t) = W(0)+M(t)+ A(t) forall ¢ > 0 where)M is a continuousV-dimensional F; } -
adapted local martingale with/(0) = 0, and A is a continuoug F; }-adapted process
whose paths ar€-a.s of finite variation on each bounded time interval witf)) = 0. In

our definition of SRBMM (t) = X (t) — X (0) — 0t and A(t) = 0t + RY (¢) forall ¢ > 0.

3.4.6.2 Main Theorem

We are now ready to state the main theorem of this section aedg outline of

the proof. Recall the parametetsl’, and R defined in 8.60), (3.73, and 3.74).

Theorem 3.4.6.The diffusion-scaled workload proceBS'(-) converges in distribution

asr — oo to an SRBM with dat@R?, §, ", R) that starts from the origin.

To prove this theorem, we first show that the sequence of peasgiV”(-)} is
C-tight (Sectior3.4.7.3, i.e., any subsequence has a further subsequence thatrgesv
weakly to an almost surely continuous limit process. We thleow that any weak limit
point of such a subsequence is an SRBM with “extensive” datat{on3.4.7.6, a notion
that we make precise later (see Definitid.3. For an SRBM with extensive data,
there is a direction of reflection associated with each of2the- 1 boundary faces and
there might be pushing in these directions at those bourfdags. In fact, we show that
the pushing at boundary faces of dimensi@n- 2 or less is negligible (Sectiod.4.9
and consequently, the SRBM with extensive data reducesdmbthe simpler form as
described in Theorer.4.6 Finally, we show that such an SRBM is unique in law and
when combined with the C-tightness, we conclude that theesespiof diffusion-scaled

workload processes converges in distribution to an SRBMh wita(RY, 6, T, R) that
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starts from the origin.

3.4.7 Proof of the Main Theorem
3.4.7.1 Pre-limit Workload Process

Throughout this subsectiah I', and R are given by 8.60), (3.73, and 3.74) re-
spectively. From3.52), (3.53, (3.58, and 8.65), the diffusion-scaled workload process

can be written so that for > 0,7 € A/, andt > 0,

Wi = e () - Y

(]

(3.78)
.

where
T (t) 2 /0 AW (s))ds. (3.79)

We can rewrite .78 as

. 1 1
W(t) = - [Vi(EF(r*t)) — miE (r*t)] + . [m, E7 (r*t) — mAr?t]
1
+ Nimyrt — =17 (r*t)
r
= VI(E7(6) + mi BT (8) + (A] = As) mart

2 2

1 ret 1 ret
+ —)\imi/ ds — —/ A (W7 (s))ds (3.80)
r 0 0

where

XT(t) 2 VI(ET () + maEl (t) + (A — \;) myrt, (3.81)

. 1 r“t t
Ur(t) & —/0 Licwr(s))=k} ds = 7"/0 Lfieqive(s)=k}) 48 (3.82)
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and we have used the facts that for any RY,

> Lpew)=xy = 1, (3.83)
KN

andc? = \;m;, i € N. The second equation i8.80) follows from the following simpli-

fication:

L iEr ) — miEr ()] =

r r2

{VZ— (7’2 E;‘(ﬁt)) — myr? E{(TQt)}
’ (3.84)

1
LB 0) - mt B )] = V().

To verify the last equality in3.82), sets = r?u (ds = r?du). Then whers = r?t, u =t

and whens = 0, u = 0. Therefore,

1 7’2t 1 t
- / Licwr(s)=ky ds = — / Licwr (r2uy)=ky 2 du
T Jo T Jo

t
= 7’/0 1{IC(TWT(u)):IC} du (3.85)

t
= 7"/0 1{IC(WT(u)):IC} du

where we have used Lemr8at.1to arrive at the last equality. For notational convenience,

we will sometimes writd/"(-) in place of{U"* (), # K C N} in the sequel.

3.4.7.2 Convergence to Brownian Motion

Our next result shows that the sequence of proce§&és:)} converges in dis-
tribution to a Brownian motion. This result will be used iroping that the sequence of
processe$(1W"(-), X"(-),U"(-))} is C-tight (see SectioB.4.7.3 and that any weak limit
point of this sequence defines an SRBM with extensive datagsetior3.4.7.6.

Lemma 3.4.7. The sequence of processgk’(-)} converges in distribution to arV-

dimensional Brownian motion that starts from the origin aras ldrift @ and covariance
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matrix .

Proof. Forallt > 0, r > 0, define

0(t) = 6t, (3.86)
At) = At (3.87)

and
0r(t) 2 r(\ — \)m;t foralli e N (3.88)

By Assumptior.4.2 0"(-) — 6(-) u.0.c. ag- — co. Combining this result with the stan-
dard functional central limit theorem (PropositiB8.3, we conclude that the sequence
of processes (E"(-),V"(-), E"(-),07(-))} converges in distribution t¢Bx(-), By (-),
A(+),0(+)) where Bg(-) and By () are independentv-dimensional driftless Brownian
motions starting from the origin with covariance matridés andI'y, given by @.69
and B.70 respectively. Then from3(81), using the random time change lemma of
Billingsley [5, p. 151], we conclude thdtX"(-)} converges in distribution t&y (A(-)) +
diag(m)Bg(-) + 6(-), which is anN-dimensional Brownian motion that starts from the

origin, has driftd, and a diagonal covariance matrix whast diagonal entry is
Aim2BE 4+ miNial = \mZ(af + 37) =T, i € N. (3.89)
O

3.4.7.3 C-tightness

Theorem 3.4.8.The sequence of procesgdgsl’”(-), X (-),U"(-))} is C-tight.

To prove the C-tightness, we use a result from Kang and Willi§i]. In par-
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ticular, we show that the Assumptions (Al )—(A5 ) and the Asgtion 4.1 of R1] are
satisfied by the geometric data and the sequence of procd$8€s(-), X”(-), U"(-))},
from which the C-tightness follows by Theorem 4.2 @i]. This verification is carried

out below.

3.4.7.4 Domain

For each) # K C N, definen* as theN-dimensional vector whosieth element
is1/4/|K]if i € K and0 otherwise, that is, fof € \,

1
nl = ——=1gex)- (3.90)

- VI

Then for each) # K C WV, ||n*|| = 1. For eactd # K C N, defineG* as

GF 2 {z eRY: (0" z) >0} (3.91)

Then for eacl) # K C N, G* is an open half-space &" and, therefore, a non-empty

domain inRY. Define the domaid: as

G2 n G~ (3.92)
DAKCN

Infact,G = {x € RY : z; > 0 foralli € N'}. Hence,G = RY. (While the collection
{G1%)i = 1,2,..., N} is sufficient to defings, we include the other domains as well

since they will have directions of reflection associatedwliem.)

Lemma 3.4.9. The domainGG with the representationi3.92) satisfies Assumptions (Al
)—-(A3) of [21, Section 3].

Remark.Note that the inward unit normal vector f&f* is n*.

Proof. SinceG is a finite intersection of half-spaces,is a convex polyhedron. We also
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note that for all) # K C N, G NIGK # 0 since the origin is iGN IG*. Conse-
quently, by Lemma A.3 of71], we only need to show tha¥ satisfies Assumption (Al

) of [21]. Recall that eaclG* is a half-space. Therefore for eagh# K C N, GF

is a non-empty domairG* # R¥, and the boundargG* of G* is C*. Therefore the
non-empty domairtz satisfies Assumption (Al ) and hence, Assumptions (Al )—(A3)
of [21] hold. O

3.4.7.5 Reflection Vectors

For each) # K C N, define the reflection vector* such that

A& D K foreachi € NV, (3.93)

By this definition, ifi € K, ¢ = 0 and thereforey® = & > 0. On the other hand, if
i€ K¢yl =P — ¢ < 0by (3.57. With this definition of{7*, ) # K C N}, (3.80

can be rewritten in vector form as

Wr(t) =X"(t)+ > AU (3.94)

DAKCN
Moreover, it is easy to see that the matrix whose columnsigeadpy~{!}, ... N} is
Rdiag(?, &, ..., &%) (3.95)

whereR is the N x N reflection matrix defined in3.74). To facilitate the use of]1], we

define the normalized reflection vectdis®, ) # K C N} by

K A 'VIC
A (3.96)

so that||7*|| = 1 forall § # K C .
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Lemma 3.4.10.The reflection vector§y*, ) # K C N} satisfy Assumptions (A4 )—(A5

) of [21, Section 3].

Proof. Since the reflection vectors are constant, it is clear thatuthiform Lipschitz

continuity property of Assumption (A4 ) oPfl] is satisfied. Also, we have normalized

the vectors to be of unit length.

To verify (A5 ), we need to show that there is a constant (0, 1) such that for

eachz € G, there are nonnegative constafits(z) : ) # £ C K(z)) and(dz(z) : 0 #

L C K(x)) such that

0ALCK(x)
min b £AMY > aq,
s {5 o) 2
0£LCK ()

. d ~L M > a.
@;J?é%(w)< Z | (@)= n >_a

0ALCK (2

To this end, for any: € 9G and() # L C K(x), set

be(w) £ 1zok@y

and

de(z) £ 1e—k())-

Then
Z be(z)nf = n@

0£LCK(z)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)
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and

> de(x)yt =5, (3.104)
P£LCK(z)

Therefore to verify that Assumption (A5 ) o2]] is satisfied, we only need to verify that
for eachz € G and() # M C K(z), (n*®,3M) and(*) n) are bounded below
by a strictly positive constant not dependingonr M. We first verify that(7<(®*), n)
has such a lower bound. Fro®.93 and 3.96), for all i € KC(x),

0
~K(x) o
A S|} (3.105)
[y
Thus, using 8.90), for eachl) # M C K(z),
<~/C($) Z
Y an
\% zEM
min; e pg cw
\/ [ |7 (3.106)
Hlll’lle/\/‘ CQ)

\/_ N maxgccn |74

>0

where the second inequality follows because we are takimgnmoim over a larger set in
the third line and for alke € 9G, |K(z)| < N. Next, we show that for eadh # M C

K(z), (n*=), 5™} has a uniform strictly positive lower bound. To this end, veséfor
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0 £ M CK(x)
(0, 5M) = J— Z v Ml

1€eX(x

= O/ M|
zEIC

_ ! S oMy _ H_ M M

)/ HWH
’LGN
1 _ ;
§ mﬁ&iw@ ~ e/ e
>0

where the first inequality follows fron3(57) with £ = () and M in place ofK and the
last inequality follows from3.56) and the fact that~ = 0 if i € L. n

Proof of Theoren3.4.8 For each > 0, let

A

Zm & (W XU, (3.108)
To prove the C-tightness dfZ"}, we first verify that Assumption 4.1 oP[l, Section 4]
is satisfied.

For any() # KL C N andr > 0, lety"*(y,2) = X forall z,y € RV, a” 2 0 €
DN, 3" = {6"F : 0 £ K C N} whereg™® 20 eD, s =1/r, andy” = {Y"X
0 # K C N} whereY™® = ||5*|| U"*. with these definitions, the conditions (i)—(vi) of
Assumption 4.1 of21] are satisfied with{ (17", X", Y")} in place of{(W", X", Y™)}.
Here

t
O, K o O K
YUH(t) = /0 Ldisiir (s),00% noay<sr} 4V (s) (3.109)

becausd/"* can increase only whel’" is on G NG (see 8.82), and {X"} is
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C-tight by Lemma3.4.7. It then follows from Theorem 4.2 of2fl, Section 4], that
{(Wr, X", Y")}, and hencd 2"}, is C-tight and the theorem is proved. O

3.4.7.6 SRBM with Extensive Data

We next show that any weak limit point of the sequence of Eses{ (17" (-),
X"(),U"(-))} is an SRBM with extensive data. Before presenting the theaed its
proof, we need to define an SRBM with extensive data. TheJatlg definition is
adapted from the definition ir2[l, Section 2]. Recall the definition @ from (3.92,

6 andTI" from (3.60 and @.73, and{+*,0 # K C N’} from (3.93. Letv be a proba-
bility measure onG, B(G)), whereB(G) denotes the-algebra of Borel subsets of the

closure G, of G.

Definition 3.4.3(SRBM with Extensive Data)An SRBM with the extensive ddta, 0, T,
{¥*,0 # K € N}, v) is an {F; }-adapted,N-dimensional procesB’ defined on some
filtered probability spacé2, 7, {F;}, P) such that

(i) P-a.s.,forallt >0,

W) =X+ Y. / YW (5))dU™ (), (3.110)

pAiceN V0

(i) P-a.s.,W has continuous paths andf (¢) € G for all ¢ > 0,

(i) under P, X is an N-dimensionalF;}-Brownian motion with drift vecto#, co-

variance matrix’, and initial distributiony,

(iv) for eachd #£ K C N, U* is an{F,}-adapted, one-dimensional process such that

P-a.s.,

(@) U*(0) =0,

(b) U* is continuous and non-decreasing,
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(c) forallt >0,

t
US(t) = [ Lwiocoor noydU%(s) (3.111)
0

Wheny = §,, for x € G, we may say thall is an SRBM associated with the data
(G,0,T,{7*,0 # K C N'}) that starts fromz.

Remark.We have introduced the terminology “extensive” data in sk to differentiate
between the above SRBM which has reflection on the lower4dsnmoaal faces and the

simpler SRBM introduced in Definitio8.4.2

Remark.Recall the definition of a continuous semimartingale fromrmarks following
Definition 3.4.2 In the above definition of an SRBM, the decomposition of temis

martingaleM () = X (¢) — X(0) — 0t and
A(t) =0t + Z /t AW (5)dU™(s). (3.112)

With this definition in hand, we can now state and prove thenmesult of this

subsection.

Theorem 3.4.11.Any weak limit point W (-), X(-), U(+)) of the sequence of processes
{(W7(-),X"(-), U"(-))} defines an SRBMY, with the extensive dat@, 0, T, {7, 0 +#
K C N'}) that starts from the origin.

We need the following lemma for our proof of Theoré8.11 So as to not

disrupt the flow of this section, we defer the proof of this feento Appendix3.A.

Lemma 3.4.12. Suppose thaZ = (W, X,U) is a weak limit point of the sequence
(W7, X7, U}, LetF, = 0{Z(s) : 0 < s < t},t > 0. Then{X (t) — X (0) — 0t, Fy, t >

0} is a martingale.

Proof. See Appendix3.A. ]
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Proof of Theoren3.4.11 The result follows from Theorem 4.3 d2{] provided Assump-
tion 4.1 and Assumptioni)’ and (vii ) of Theorem 4.3 in41] hold for {(W", X", Y")}
whereY” = {Y"* : ) #£ K C N'} andY"™ = ||5*| U"X. Our proof of Theoren3.4.8
shows that Assumption 4.1 o2]] holds. Assumptior{vi)’ of Theorem 4.3 in21] fol-
lows immediately from Lemma&.4.7. Assumption (vii ) of Theorem 4.3 ir2fl] follows

from Lemma3.4.12and the simple relationship betwe&r* andy "~ O

3.4.8 Pushing on the Lower-dimensional Faces

In this subsection, we show a result, which when combinet Witeoren3.4.11
implies that for any weak limit point,/W/ (), X(-)), U(+)), of the sequence of processes
{(W7(-),X"(-),U"(-))}, the amount of pushing done ky at any of the faces adG of

dimensionN — 2 or less is negligible. Formally, we prove the following.

Theorem 3.4.13.Let (W (-), X(:),U(-)) define an SRBMI¥(-), with extensive data
(G,0,T,{+*,0 # K C N'}) that starts from the origin. Then for eadh C N, |K| > 2,
for each) # L C K,

/ 15 (W (s))dU*(s) = 0 almost surely. (3.113)
0
Consequently, almost surely,

W(t)=X(t)+ > AU, t>o0. (3.114)
ieN
Our proof of Theoren8.4.13is a generalization of the proof of the main theorem
in Reiman and Williams33]. However, there are some differences; since3g,[there
were only N directions of reflection — one for ea¢lV — 1)-dimensional boundary face,
whereas here there a2’ — 1, one for each boundary face. We prove the theorem in
three steps. We assume thét> 2, otherwise the result is vacuous and hence trivially

true. We first prove that for the case of zero drift £ 0) the amount of pushing done
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when W is at the origin is negligible (see Lemn®4.14. We then use a backwards
induction argument ofiC| to show that for the case of zero drift the amount of pushing
done onFy is negligible providedk’| > 2 (see Lemm&.4.15. Finally, using a Girsanov
transformation, the result is extended to all constantsii{see Lemm&.4.16§. We then

complete the proof.

Lemma 3.4.14.SupposélV, X, U) is as in the hypothesis of Theor@.13and¢ = 0.
Then forN > 2 andK = N, (3.113 holds for all() # £ C V.

Proof. From the semimartingale representati@il(0Q of 1 and I©’s formula, for any
function f that is twice continuously differentiable in some domaimtaining &, we

have almost surely for ail > 0:

Fovo) - favo) = [ (T FW(s)), dX (s)

s / (45, Y F(W(s))) dUZ(s) (3.115)

p£LeN V0

+ /0 Lf(W(s))ds

where

Lf= EZF,&W—JC. (3.116)
1

We shall substitute functions int@.0L15 that allow us to estimate the left hand side
of (3.113. Each such function will bé-harmonic in some domain containidgand for
each() # £ C N, its directional derivative in the direction of* will be bounded below
on G and be very large and positive near the origin. These funstawe chosen such that

they are uniformly bounded on compact subsets' of



95

Define

@
(>

e RY. (3.117)

1

Then from 8.56) with £ = (), K replaced byZ, the fact that* = 0if i € £ and 8.93,
we have for all) # £ C N,

<7‘:,B> > 0. (3.118)

Therefore, there exists a vectdre RY having all components strictly positive such that
forall§) # L C N,
(7%, 8) £ 6% € [1,00). (3.119)

Define

a2 T8. (3.120)

For eachr € G = RY ands € (0, 1), define a squared distance function:

d*(z,8) 2 (x + sa) Tz + sa)

=2 T2 + 25T 'z + 2T e

(3.121)
=T 2w + 250z + s*°a'Tta
> 526
where
a2 aoT 'a=pTH>0. (3.122)

We have used the facts thatand hencé ') is symmetric and strictly positive definite,
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andg > 0. Then for each fixed € (0,1),

1 L .N—2/2 22N
). s (d(x,8) 2 ds, N >3,
¢e(z) 2 ¢ gl (3.123)

%f; In(d?(x, s))ds, N =2,

is twice continuously differentiable in some domain comitag G, and on each compact
subset ofG, it is bounded, uniformly ire. Moreover, since the integrand i8.023, for
a fixeds, is L-harmonic as a function of € RY \ {—sa}, it is readily verified that for
eache € (0,1),

Lo, =0 (3.124)

in some domain containing.

For the verification of the directional derivative propestiofe., for each) # L C
N, let

uf 2T (3.125)
Then
(u,a) = (I'y*,a) = (VT ra = (5B =65 > 1. (3.126)
Combining @.126 with
1
Vo (x) = / V20 (@ + sa)(dP(x, 5)) N ds, (3.127)
we get
1
(v*,Vo.(z)) = / sN((uE ) + 80 (dP (w, 5)) N 2ds. (3.128)
Let
ca O (3.129)
) '

Then fore € (0,1) andz € G satisfying||z|| < e¢*, we have|(u”,z)| < £6* and for
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S > e,

d*(z,5) < ||F_1H |z + sal?
< 07 Al + sall)? (3.130)

< [P7HI(EE + Nlall)?s®

where||T'~!|| denotes the norm df~! as an operator fro®" to R" with the Euclidean
norm. Setting
¢E £ (|0 (€F + flal)®) =2 (3.131)

and substituting the above iB8.028 yields:

(15, V6.(2)) > - / N-2(s — 2)5~Nds

> — (Fllne + 1]

(3.132)

for all z € G satisfying||z|| < e££. Note that for smalk, the term in the last line above

is large and positive.

Now foranyz € G, 0 # L C N,

(2 V6 (0) = 6% [ SN Aot (o) - ), 5) s (3.133)

where

ph(a) = - <u;;x>- (3.134)

If p*(z) < ¢, then the right hand side 08(133 is non-negative. Thus, to obtain a lower

bound for(+v*, V¢.(z)) on G, it suffices to considet € G such that*(z) > . For
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suchz,

/ N2 () — ) (. 5))N2ds

o) N=2/ L/ \ 2 —N/2 (3.135)
< s (p" (@) — s)(d*(w,5)) " ds

c N-2
p=(z) — s s
< (pf(x) —e) max — " max .
B (p ( ) )SE[E,,D[’(Z‘)] d2($, S) s€le,pL ()] (dQ(l', S))(N_Q)/2

Since d?(z, s) is quadratic ins with positive coefficients, the first maximum above is
achieved at = ¢, and by 8.121), the second maximum is crudely dominatediy¥)/2,
Thus, the last term 0f3(139 is bounded from above by

(p“(x) — 2)?

2 (2-N)/2 1
P C . (3.136)

SinceI'"! is strictly positive definite, there is@> 0 such that’'T 'z > 5 ||z||* and so

(see 8.12D),

d*(w,e) = n|z|* + %

(3.137)
> (n A @) (e|* + €.
On the other hand, by the definition of(z),
(p°(x) = €)* < 2((p"(2))* + €*)
< 2| || ||2]* (65)72 + £2) (3.138)

< 2max(|[u?||* (65) 72, 1)(||=]|* + £2).

It follows from (3.137) and (3.139 that 3.139 is bounded from above by a constant not

depending on: or e. Hence, there is & > 0 such that for all: € G ande € (0,1),

(75, Ve (x)) > —C*. (3.139)
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We are now ready to prove that whéh = A/, (3.113 holds almost surely for

eachl) # £ C N. For each positive integen, define
T 2 inf{t > 0: [|[W(t)|]| > morU*(t) > mforsomed # L C N} Am. (3.140)
Replacingf by ¢. andt by 7,, in (3.115, we see from3.124 that almost surely:

6. (W(T,)) — 6. (W(0)) = / " (VoW (s)), dX(s))
" Z/ (v, V(W (s))) dUS ().

DALCN

(3.141)

Since¢. and its first derivatives are bounded on each compact subggtly the defini-
tion of the stopping timd,, and since) = 0, the stochastic integral with respectd&

in (3.141) has zero expectation. Thus, taking expectation8.ib4)) yields:

E [6.(W () — o -y E[/ (7, V6. (W <>>>dU’~‘<s>}
DALCN
—(Ine+1) C°R " wioleceerdUE(s)
Q);A;N {/ {l[W(s)|| <&~} }
- > CE[UAT.),
0ALCN

(3.142)

where the lower bound$(132 and @.139 have been used to obtain the last inequality.
Now, the left-hand side 0f3(142 is bounded as | 0, since fore € (0, 1), ¢. is uni-
formly bounded on compact subsets@f Also, the last sum in3.142 is positive and

independent of. Thus, dividing 8.142 by —(Ine + 1) and lettings | 0 yields:

161m > gEU 1w () <eccydU(s)| < 0. (3.143)

PLLCN

Since each term in the above sum is non-negative;ansl 0, it follows by Fatou’s lemma
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that for each) # £ C N,
Tm
/ 1p (W (s))dU*(s) = 0 almost surely. (3.144)
0

Lettingm — oo yields the desired result. n

Lemma 3.4.15.SupposélV, X, U) is as in the hypothesis of Theor@.13and¢ = 0.
Then(3.113 holds for all) £ C K C N where|K| > 2.

Proof. Our proof is by backwards induction 0k|. Without loss of generality, we assume
N > 2 (otherwise there is n&& C N with || > 2). By Lemma3.4.14 the result holds
for || = N in which case the only possiblé is £ = N. Fix2 < k < N and suppose
that 3.113 holds for allX C N and) # £ C K, such thatt < || < N. Fix some
K C N such that| = k. We need to show that for @il # £ C K,

/ g (W (s))dU*(s) = 0 almost surely. (3.145)
0
To this end, fix) # £ C K. Then

/0 e (W(s))dU~(s) = /0 Lk dUE(s)

= L
+ /0 L et a0 6) (3.146)

= / LW (s)=0.Wiee ()03 AU ()
0

where by the induction assumption the second integral onighé-hand side of the first
equation is almost surely. Thus, by monotone convergence, it suffices to prove that for

eachn € RY ", satisfyingn > 0, we have
/ LW (s)=0.Wiee (5)>n} AU~ (8) = 0 almost surely (3.147)
0

For this, fix anp € RY " with > 0, and define a sequence of stopping tini&s }>_,
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as follows. (Here, for notational convenience, we regaedehtries inj as being indexed
byi € K¢.)

T, =0,
T, £ inf{s > 0: Wi(s) < n;/2 for somei € K}, (3.148)
Ty = inf{s > T\ : Wie(s) > n},

and form > 1,

Toms1 = inf{t > Ty, : Wi(s) < n;/2 for somei € K¢},
' (3.149)
T2m+2 =S mf{t > T2m+1 : WICC > 7]}

By the continuity of the paths d¥/, T,,, — oo asm — oo, and we have almost surely:

Tom

oo e Tom+1
/0 Liwic(5)=0,Wie (95 AU 5 (5) < / Liwic(s)=0y U (s). (3.150)
m=0

Considerm > 0. Then on{T,, < oo}, for ) # M C N, M ¢ K, UM can

increase only whefl’,, = 0 and so, almost surely, for all sught,
UM(t + Top) — UM(Th) = 0forall t € [0, Topmss — Tom). (3.151)
Thus, on{Ts,, < oo}, we have almost surely for ale [0, 75,11 — Tom)
Wic(t + Top) — Wic(Tom) = Xic(t + Tom) — Xic(Tom)

+ Y RN UM+ Tom) — UM(Tom).-
0£MCK

(3.152)

Then 16's formula, @.119, holds on{T,,, < oo} for f € C*(R%) with (X, {U* :
0 # L C NLW)and{~+* : 0 # L C N} replaced by(Xx, {UM : 0 # M C
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K}, Wi)((- + Tom) A Tomir) and {2t : 0 # M C N} and with

1 O*f
Lf= 52@-8—%2. (3.153)

i€

The same proof as in Lemn&4.14 but with the dimension reduced fromi to k = ||,

shows that
Tom+1
Z 1{T2m<oo}/ 1{W,C(S):0}dUM(s) = 0 almost surely (3.154)
P£MCK Tom

and hence for al) # M C K,

Tom+1
/ Lw, (s=0ydU™(s) = 0 almost surely or{ T3, < co}. (3.155)

Tom

For this, one uses the martingale property of the BrowniatianaX and the fact that
there is a3* € R: andé™* € [1, 00) such that(y;¥!, g*) = ¢* forany® # M C K
(this follows from the fact that3.107 holds withk(z) = K wheren"™ = 0if i ¢ K(x)
andn® = 1/,/[K(z)] if i € K(x)). Substituting 8.159 in (3.15Q then yields the

desired result. ]

Lemma 3.4.16.SupposéV, X, U) is as in the hypothesis of Theoré.13and 6 <
RY. Then(3.113 holds for all§ # £ C K C N where|K| > 2.

Proof. Let K C N satisfy|K| > 2, £ C K andd € RY. Without loss of generality (by
considering a canonical representation on path space &mnpgbe), we may assume that
(Q, F) is a standard measurable space and for0, 7, £ o{(W (s), X(s),U(s)) : 0 <

s < t}. Let the associated probability measure/tfe ThenX is a (6, I')-Brownian mo-
tion on(Q, F, {F}, P?%). By the Girsanov transformation (see Ikeda and Watana@e [
p. 176]), there is a probability measuR¥ on (2, F) such that undef®, X is a(0,T)-
Brownian motion starting from and for each positive integet, P’ and P° are mutually

absolutely continuous off,,. It follows that W with the probability measuré”® on
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(Q, F,{F:}) is an SRBM with extensive dat®R?,0,T", {+*,0 # K C N}) that starts
from the origin. Then by Lemma.4.15 for each) # £ C K C N, (3.113 holds al-
most surely undeP?. But sinceP? and P° are mutually absolutely continuous @, , it
follows that 8.113 holds almost surely undd?r? with m in place of the upper limito

there. Lettingn — oc yields the desired result. n

Proof of Theoren3.4.13 Combining Lemmas8.4.14 3.4.15 and3.4.16 we have proved

the first part of the theorem.

To prove the second part of the theorem, we &&X3. From the definition of

an SRBM with extensive data (Definitid4.3 and the remark following it}/” has the

form:
W) =X+ > AU, >0, (3.156)
DAKCN
where forf) # K C N,
Ur(t) = /t Lr (W (s)dU"(s), t > 0. (3.157)
0

From 3.113, for K C N with || > 2,
t
UR(t) = / 1 (W(s))dU"(s) = 0 almost surely (3.158)
0

Thus the only non-trivial terms in the sum i8.156 are those indexed by # K C N

where|K| = 1. Equation 8.114 immediately follows. O

3.4.9 Proof of Theorem3.4.6

Proof. By Theorems3.4.8and3.4.1] it suffices to prove that whenevél/, X, U) de-
fines an SRBM with extensive daté:, 0, T, {y*,0 # K C A'}) that starts from the
origin, theniV is an SRBM with datdR”, 0, ', R) that starts from the origin and the law

of the latter is unique.
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By Theorem3.4.13 W (-) has the representation given 8.1149. Fori € N,
define

yia Syt (3.159)

Note that from 8.11J), a.s.,
Yi(t) = / 1g (W(s))dY"(s) forall t > 0. (3.160)
0

ThereforeY satisfies condition (iv) of Definitior3.4.2 From @.1149, (3.159, and the
representation fopyt'}, 42 . ~{¥}] given by 8.95, we have that fot > 0,

W (t) = X (t) + RY (1) (3.161)

where by Lemma3.4.5 R satisfies the HR condition, and” and X satisfy the other
conditions of DefinitiorB.4.2with v = §,. Therefore,(IV, X,Y') defines an SRBM with
data(RY,6.T, R) that starts from the origin. Sincg satisfies the HR condition, by

Harrison and Reimarip), the law of W is unique. It follows that
W" = W asr — oo (3.162)

wherelV is an SRBM with datdRY, , T', R) that starts from the origin. H

3.A Proof of Lemma3.4.12

To prove Lemm&.4.12 we use Proposition 4.4 o2]l]. Specifically, we prove the
following lemma, a restatement of condition (I1') of Progam 4.4 in [21], from which
Lemma3.4.12follows. Our proof of Lemm&B.A.1is similar to the proof of Lemma 8.4
in Williams [45].

Lemma 3.A.1. For eachr > 0, X" = X" + <", wheres" is a process that converges(o
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in probability asr — oo, and

(i) {X"(t) — X(0) : r > 0} is uniformly integrable for each > 0,
(ii) there is a sequence of constaft® } in R such thatim, .., 0" = 6,

(i) foreachr, {X"(t)—X"(0)—0"t,t > 0} is a martingale with respect to the filtration
generated by, X" U").

We need to develop some preliminaries before proving Ler8rAal.

Forr > 0,i € N, andn € N, define
Af(n) £ ui(k), (3.163)

where an empty sum is defined to be zero. Then for0, the exogenous arrival process

is defined fori € N, andt > 0, by
El(t) & max{n > 0: Al(n) < t}. (3.164)

Recall the definition of/(-) from (3.52).

For eachp ¢ NV, let

T L G{AT(-A(p+en). V(- Ap)} (3.165)
where
AT(CA(p+en) 2 (ATCA(pi+1) i €N) (3.166)
and
Vi(-Ap) & (VI(-Ap):ieN). (3.167)

Then{G) : p € NV} is multi-parameter filtration (sed 2, Section 2.8]).
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Definition 3.A.1. A multi-parameter stopping time relative{g; : p € NV} is arandom

variabler taking values ilN"¥ such that
{r=pteg (3.168)

for all p € NV.

Lemma 3.A.2. For eacht > 0,
T'(t) £ E"(t) (3.169)

is a stopping time relative t§G; : p € NV},

Remark.The reader will note that in defining;, e, is added to the argument &f'(-).
This has to be done because we need to know thefirstl interarrival times for thé-th

user before we can determine whett#i(¢) = p; or not.

Proof. Fori ¢ N andp € NV,
{E/t) =p} ={Al(p) <t <Al(p: +1)} € G, (3.170)

Thereforer”(t) = E"(t) is a stopping time relative tpG7 : p € NV}, O

We next show that the diffusion-scaled workload processiapted to the multi-
parameter filtration stopped at the stopping timi¢r?t). The proof of the following
lemma is based on the proof of Lemma 8.348][that proves the stopping-time property
of certain renewal processes for the system of interest. félh@ving Lemma, on the
other hand, proves the adaptedness of the workload, a thatiltn [45], unlike here,

follows from the structure of the system.

Lemma 3.A.3. The process$V’(-) is adapted to the filtratioq G 2., ¢ = 0}, where
7" (r*t) = E"(rt).
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Remark.As a consequence of the adaptednesd/6f the processef@U"”C(-),Q) # K C
N} are adapted to the filtratiofG.. ..t > 0} as well.

Proof. From the definition of /" (-), it suffices to show that’” is adapted tdgr .t =
0}. Our proof is for fixedr and so the superscriptwill be suppressed in the following
proof.

SinceW (0) = 0 (and for allp # K C N, U*(0) = 0), it follows that W (0)
andU(0) areGy-measurable. Furthermore, the procé&d(p + ex), V(p)) : p € NV} is
adapted to the multi-parameter filtrati¢g, : p € NV}. Then by [L2, Proposition 2.8.5]
and the stopping time property oft) (Lemma3.A.2), we have that for each> 0:

(A(E() + en), V(E(L))) € Grp- (3.171)

Therefore, from 8.53, we only need to show th&i(¢) (as defined by3.79) is adapted
to the filtration{G, ), > 0}.

Next, we define a strictly increasing sequence of real-vhtaadom timeg#, };°,
for the (discrete event) queueing system such th& 0 and forl = 1,2,..., n; is the
time of thel-th change in the status of the arrival-departure processifga, 7, is thel-th
time of occurrence of an arrival to, or a departure from, saser. We have;, < oo for
eachl, andry, — oo asl — oo. (This follows by the assumption concerning the exclusion

of exceptional null sets made at the end of SecB8ch3.2)
For eacht > 0, p € N¥,
(B =p} = 0 A{EEAm) =p}. (3.172)

For each > 0, p € NV, define

B £ {E(t Am) = p}. (3.173)
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Fix t > 0. It will be shown by induction that for eacdh> 0, the following two properties

hold for allp € N¥:
(i) Bl e G,
(i) for
M2 (A, BCAEAm), T(AEAD), W (- At Am)), (3.174)

we havelp 7' € G,.

We now proceed with the induction proof. Hoe 0, one hag), = 0 and E£(0) =
0. Moreover, for allp € NV, W(0) = 0 € G, andT(0) = 0 € G,. Then, (i) and (ii) are

easily verified to hold fot = 0.

For the induction step, assume that for sdme0, (i) and (i) hold for allp € NV,
Now,

Bt =u(BSf' N B (3.175)

where the union is over ath € NV such thatn < p. By the induction assumption, for

fixedp € NV and anym € NV such thatn < p, we have
Bl €Gn, 1pT €q,. (3.176)

Hence, from 8.174, B!, n{m >t} € G,, and B! n{m, < t} € G,,..

Now, on B! n{m > t}, ma At =mAt, Ed Am) = E(t An) = m, and

I+ = 7', Thus, ifm = p we have
B,"' N By, N{m >t} = By, \{m >t} € G, (3.177)

or if m # p, then the left member of3(177) is the empty set which is still ig,,. Thus,
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combining the above with the induction assumpti8ri{ 6, we obtain
st omy, omenT T = Lom=p 1, nmznT' € Gm: (3.178)

On the other hand, oB’, N{n; < t}, E(m) = E(t A p;) = m and the first time
aftern, that a new external arrival occursrijs= min;cxr A;(m; + 1). Furthermore, on the

setB! N{m < t}, we have

I' = (m, ECAm), T(- Am), W (- Am)). (3.179)

Recall that the rate of service given to each of the userstbegperiodn;, 7,,1) is given

by o/ = A(W (n;)) where, from 8.54, A(-) is a measurable function d&?’. It follows
that if we define

¢ & m +inf{s > 0: W;(n) — ols = 0 for somei such that! > 0,7 ¢ N}, (3.180)

then onB! N{n, < t}, m1 = n A ¢ wheren,,, is a measurable function gfA(- A
(m+en)),m, W(n)), and hence by the induction assumpti@nl{y9, (3.179, and the

definition ofgG,,,, we have

It nfm<tyis1 € Gm. (3.181)

Moreover, onB!, N{n < t}, we can expres&(n.1), T(m1), andW(n,,1) as mea-

surable functions ofy, .41, E(n;), A(m + ex), andW(n,) as follows. Fori € N,

Ei(erl) - Ei(ﬁl) + 1{Ai(mi+1)=771+1}7
Ti(iyr) = To(m) + o (s — ), (3.182)

Wi(mi1) = Vi(Ei(mig)) — Ti(nl—i-l)-

Since on[n;, n41), E is constant and” and W are linearly increasing/decreasing at a
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fixed rate, given bys!, on [, 7,,1), on combining the above with the induction assump-

tion (3.176, (3.179, and 3.18J), we have that

Lt agmety (Mt EC A1), TCA D), WA i) € G, (3.183)
In particular,
gy, <ty (E(EA41)) € G (3.184)
and hence
B OB, O < t} € G (3.185)

On combining this with8.177, we see thaB*' N B), € G,, C G, and hence by3.175,

B € g, (3.186)

Thus, (i) holds with + 1 in place ofi. Similarly,
By n{m <t} = U(BM N By, N < t} N{ma < 1)) € Gy, (3.187)

where the union is over ath € N" such thatn < p.

It remains to verify (ii) with! 4+ 1 in place ofl/. But it follows immediately

from (3.183 and @.185 that
Lpirin gt A<ty (EA1, ECAEA), T(-ANEA4), W(AEADL)) € G, (3.188)
Combining this with 8.175 and (3.178 yields that
13511”1 € G, (3.189)

[
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Proof of Lemma&.A.1 An outline of our proof is as follows. The idea of the proof of
part (iii) is that apart from small error terms associatethwesidual interarrival times, by
suitably centering and scaling the primitive procegs&s "), we can reexpres&”, as
given by @.81), in terms of a martingale evaluated at a stopping time. édgdeve use the
i.i.d. and independence assumptions on the primitive semsdu] (k),k = 1,2,...,},
{vi(k),k =1,2,...},i € N, to establish the martingale property. In order to conclude
that the stopped process is also a martingale, we establiffounds on the martingale
and on the mean of the stopping tim&t) = E"(¢). The martingale property in part
(iii) of the lemma follows from this stopped martingale pesty and the fact tha/” and
W' are adapted t@jT(t). The asymptotic negligibility of error terms associatedhwi
the martingale property of the renewal procdsst) is used to show that the residual
process converges in probability o Part (ii) of the Lemma follows from the heavy
traffic assumption (Assumptio®4.2. Finally, the uniform integrability property in part
(i) follows from L? bounds used in obtaining the stopped martingale propertytioreed

above. Now we provide the details of the proof.

For the moment, let be fixed. Now,
{G;} £1{G, : pe NV} (3.190)
defined by 8.169 is a (multi-parameter) filtration and for eact> 0, by Lemma3.A.2,
7 (t) = E"(t) (3.191)

is a (multi-parameter) stopping time relative to this filioa. If (2", 7") is the measurable
space on which all of the processes indexed laye defined, then for each> 0 we can

define ar-algebra associated with the multi-parameter stoppineg tif(t) as follows:

Ty ={B e F : Bn{r'(t) < p} € G, forall p e NV} (3.192)
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Then{g’. .t > 0} is afiltration in the usual single-parameter sense. Fromrhaf1A.3,

t)
we have that the proce$EB” (and hencé/") is adapted to this filtration.

We now introduce the fundamental multi-parameter marteg&1” and©”, and
martingales associated with squares of their componemtsed&chp € NV andi € A/,

let

M (pi) & N AL (ps +1) — (pi + 1), (3.193)
N (pi) & (M (p)? = (ps + D, (3.194)
Oi (pi) & V' (i) — pimn, (3.195)
Pl (pi) = (O] (pi))? — pim? ;. (3.196)

Let M7(p) £ (Mi(p;) - i € N), N"(p) = (N] (i) i € N), O"(p) 2 (Of (i) =7 €
N), Pr(p) = (P (p:) : i € N). Because of the independence and i.i.d. assumptions of

Section3.4.3 we have that theé N-dimensional process:
{Q"(p) & (M"(p),N"(p),O"(p),P"(p)) : p € NV}, (3.197)

is a multi-parameter martingale relative g, }.

For eachp € NV, let
R'(p) £ (M"(p), 0" (p)). (3.198)

We aim to show tha{R"(7"()),G;.,t = 0} is a martingale. However, we cannot
immediately deduce this from the martingale propertydf sincer”(¢) is a possibly
unbounded stopping time. So we first truncate time, applyrib#i-parameter stopping
theorem and then pass to the limit in the truncation usingpumi integrability to deduce
the desired result. The bounds obtained for the uniforngnatiility will also prove useful

in verifying part (i) of the lemma. Fon € N, letn” denote theV-dimensional vector
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whose components all have valueThen, we can verify (in a similar manner to that for
Q") that
{Q""(p) = Q" (pAn"):pe NV} (3.199)

is a multi-parameter martingale relative {g, }. Then by the multi-parameter optional

stopping theorem (seé&2, Theorem 2.8.7]) we have that
{Q@™ (7" (1), Grr ), t > 0} (3.200)
is a martingale for each € N. Now, forp € N¥ andn € N, let
R (p) & (M"(p An™),0"(p An™)). (3.201)

For eachn € N, it follows from the martingale property ofQ"" (7" (t)), ...t > 0}
that
{R™™(7"(t)), Gro(e)s t > 0} (3.202)

is a martingale. We aim to prove that the same is true Within place of R"". For
t > 0 fixed, R™™(7"(t)) — R"(7"(t)) pointwise as» — oo, and so it suffices to show
that{R""(7"(t))}>2, is L*-bounded for each > 0, since this implies that it is uniformly
integrable. By the martingale properties of th& andP” elements ofQ"" (7" (-)) we

have foralli € N/, n > 1:

E [(M}(E;(t) An))* — ((E[(t) + 1) An)oi] =0, (3.203)

E [(OF(E](t) An))* = (B () An)mi 7] = 0. (3.204)

From Lorden’s inequality for renewal processes (see Lifidx, pp. 77-78]; Carlsson

and NermanT]), we obtain the following upper bound forc

E[EI(t)+1] < Nt +a? 422 hi(t), (3.205)
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whereh] (t) is finite. It then follows from 8.203—(3.209 that for alln > 1,7 € NV,

E [(M](E](t) An))?] < afhi(2), (3.206)
E [(O] (B[ (t) An))*] <miB7hi(t). (3.207)

This establishes the desiréd-boundedness and hence
{R"(7"(1)), G7rpy, t = 0} (3.208)

is a martingale for each

We now apply the above martingale properties to establigh(ijpaof the Lemma.

For: € N, define

XI(t) &7t (O;(E;(TQt)) — m M (EF (1)) + (A — /\i)miTQt) , (3.209)
ert) = rtmy (NAN(E!(r*t) +1) — (AIr*t + 1)) , (3.210)
07 £ r(\ — \)m. (3.211)

Then from @8.61), (3.66), (3.67), and @.81), fori € N/, ¢t > 0,

XT(t) = X7 (t) + €5 (t). (3.212)

Since

R (7" (r*t)) = (M"(E"(r’t)), O™ (E"(r?t))), (3.213)

it follows, from the martingale property 08(208, that
{X7(t) = X7(0) = 0"t, GLo oy, t > 0} (3.214)

is a martingale. Note that by Lemn®A.3, U" and W" are adapted to the filtration
{GL 2yt > 0}. Hence {X"(t) — X"(0) — 6"¢,t > 0} is a martingale relative to the
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filtration generated byiv'", X", U").

We next show that” converges in probability to the zero process-as co. By

the definition of ! from A” for i € N, for eachT’ > 0,
r r -1, r (.2
IOl < 2max [ma A7 [|r ™o (B7 (%) + )| + ma[m] /r (3.215)

where, as a consequence of the functional central limitrdraqPropositior8.4.3, the
right-hand side above goes to zero in probability-as oo (see the proof of Lemma 6 in
Iglehart and Whitt 1.8]).

Part (ii) of the lemma follows from the heavy traffic assuropt{Assumptior8.4.2.

It remains to show part (i) of the lemma. For this it sufficeshow thatX” (¢) as
r varies is uniformly integrable for each fixed> 0. Now by Fatou’s lemma,3.206—

(3.207 hold with then’s removed. Fix > 0. By (3.209, we have

hE(r?t)

7

sup max
r o ieN 2

< 0. (3.216)
Replacingt by 7%t in (3.206—(3.207, and combining with the above, we see that
{r " (M"(E"(r*t), O"(E"(r*t)))} (3.217)

as a collection indexed hyis L?-bounded, and hence uniformly integrable. The uniform

integrability of { X" (¢)} follows. O
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CHAPTER 4

Conclusions

The problem of increasing the throughput of cellular wisslesystems is as old
as those systems and the commercial potential of any solb@&s made the problem
well-studied. In this dissertation, we studied this problEom a different perspective.
Specifically, we undertook a study of certain topics relatea cross-layer analysis of the
downlink of cellular wireless systems with cooperation agdase stations where our

approach, unlike most of the literature, was based on qugubeory.

In Chapter2, we investigated the maximum throughput of such a systearti&g
with the assumption that the relative traffic of each of théies is specified in advance
- an assumption justifiable in light of the fact that higheydes often provide such a
specification - we set out to find a descriptor of the maximunoamb of data that can be
sent to each of the mobiles. Because of the assumed knowdétiyeratio of deliverable
traffic, there is a single-parameter descriptor. We firsigbthat if the capacity region
of the underlying channel was convex and constant, the maxistable throughput of

the system can be described in terms of the differentiatedcgecapacity of the channel.

A queueing model for the cellular wireless system with isfracture coopera-
tion was formulated in SectioR.1.3 The queueing network was a multi-class coupled
gueueing system with variable instantaneous service Ydii the same assumptions as
before - quasi-static system with number of users constaa pmposed a policy that
was throughput optimal, that is, the long run average daparate exists and equals the

long run average arrival rate whenever the nominal loadss tean the maximum stable

117
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throughput. Unfortunately, because of the coupled nattiiesoqueueing network, it was
not possible to perform an exact analysis of the operatiadh@fjueueing system under
this policy. Therefore, we proposed a fixed-point approxiorain Section2.1.5where
the original coupled queueing system is replaced by a qogusetwork comprising of
independeni\/ /M /1 queues with the variable service rate of the queues in thggnatli

network replaced by constant service rates.

Through simulations, we were able to demonstrate the effioacooperation in
cellular wireless systems. In our first set of results, wesentéed the gain in throughput
achieved by base station cooperation for a fixed channel tailalar system with two
base stations and two users. It was noticed that the thraugj#in increased with SNR.
We next studied the average system delay for different sy&tads for different system
configurations. For a system with three base stations awee tisers, we noted that the
throughput gain was betwe@% and70% depending on the relative traffic vector and
the channel while it was approximately three for all of theesfor a system with four
base stations and four users. It was observed that the fisied-gpproximation gave a
very good approximation of the system delay in the high aedatv-load region. Thus,
for large systems which are difficult to simulate, the fixemAp approximation can be
used, especially for the important high-load region sireermaximum throughput pre-
dicted by fixed-point approximation is the same as the mawiratable throughput of the
system. We next studied the outage probability for diffeststem configurations. It was
noted that as the probability of outage increased, the asae in throughput was not very
significant. In fact, for most of the systems the throughmihglecreased as the outage

probability increased.

We next turned our attention to finding methods to increassutfhput in large
systems. Because of the computational complexity, a $ifaigvard application of the
service policy applicable for small systems is not possibidarge systems. Therefore,
we proposed a suboptimal policy that could be applied fgdaystems. Specifically, we

proposed grouping the mobiles in the footprint of a groupadperating base stations in
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small subgroups and then applying the service policy preg@zarlier on the subgroups.
Clearly, this is practicable subject to an effective and pemsive grouping mechanism.
Building upon some observations from the study of smakaigystems, we were able to

devise one such grouping scheme.

We next presented simulation results showing the effecéigse of our proposed
scheme. For a cellular system with four base stations anchtvmared (200) mobiles,
with groups sizes of three (3) and four (4), we were able tdwgetold gain in throughput.
Moreover, the variance of the results was low enough to givdidence in our results. We
next compared the effect of SNR on the gain in throughputfersame configuration. As
expected the gain in throughput - not just the absolute tifiput - increased with SNR.
Moreover, higher SNR lead to a reduced variance in the gathrioughput. Based on

these observations, we believe our scheme can be used ticpragstems.

In Chapter3, we studied the performance of the queueing policy propased
Chapter2. Since an exact analysis of the performance of the policyneapossible, we
proved limit theorems justifying a diffusion approximatidor a heavily loaded system
operating under this policy. We started with the simple azfs@ two-user system where
there were only four (4) operation points. We first proved adflimit result for our
gueueing system. This result played a role in establistiedeavy traffic limit theorem
through determining the fluid scale service allocationsewve proved the main theo-
rem for the two-user system which said that in the heavy tréiffiit, the renormalized
gueuelength process converged in distribution to an SRBMdiin a two-dimensional

guadrant. Then we discussed the properties of the limitioggss.

We next analyzed the performance of the policy proposed ati&e2.1.4for an
arbitrary sized system. We proved that the renormalizeklwad process converged in
distribution to an SRBM living in anV-dimensional positive quadrant wheiewas the
number of users (queues) in the system. To prove this theonenfirst showed that

the sequence of diffusion-scaled processes was C-tight.heéfeshowed that any weak
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limit point of such a subsequence is an SRBM with extensiva.dgor an SRBM with

extensive data, there might be pushing at the intersectitvwooor more faces. We showed
that such pushing is negligible and the SRBM with extensaa deduces to one of the
simpler form as described in our main result. Finally, wevsdd that such an SRBM is
unique in law and when combined with the C-tightness, we cmied that the sequence

converged in distribution to an SRBM of desired form.
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