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ABSTRACT OF THEDISSERTATION

On Advantages of Cooperation in Cellular Systems:
Throughput and Heavy Traffic Performance

by

Sumit Bhardwaj

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2008

Professor Anthony S. Acampora, Chair

Professor Ruth J. Williams, Co-Chair

The object of interest in this dissertation is a cellular wireless system with coop-

eration among base stations. We study such systems from a cross-layer point of view.

In the first part of the dissertation, we investigate the maximum throughput of

such a system. Assuming that the relative traffic of each mobile is specified in advance

and some simplifying assumptions on the underlying channel, we show that the maxi-

mum stable throughput can be expressed in terms of the capacity of the channel. We then

formulate a queueing model for this system and propose a throughput-achieving service

policy. We then propose a fixed-point approximation as a toolfor the performance anal-

ysis of this policy. We then proceed, via simulations, to demonstrate the advantage of

xiii



cooperation over the traditional operation of such systems. Since the proposed policy is

computationally expensive, we propose a practical, albeitsuboptimal, scheme for large

systems. We quantify, again by means of simulations, the advantage of the proposed

scheme over the traditional operation.

We next study the performance of the queueing network in heavy traffic. Specif-

ically, we prove limit theorems justifying a diffusion approximation for a heavily loaded

system operating under the policy proposed earlier. We firstshow that for a two-user

system,the renormalized queuelength process converges indistribution to a Semimartin-

gale Reflecting Brownian Motion (SRBM) living in a two-dimensional quadrant. Using

different techniques, we next show that for an arbitrary sized system, the renormalized

workload process converges in distribution to an SRBM living in theN -dimensional pos-

itive orthant whereN is the number of users in the system.
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C H A P T E R 1

Introduction

Cellular wireless networks have been in operation for the better part of the last two

decades, with improvements all along the way. (An excellentintroduction to the subject

matter is the book by Schwartz [36]; also see the references therein.) These networks

have traditionally operated in accordance with a simple time-honored approach: divide

the overall region to be served into individual radio cells,each with its own base station

or access point, and serve all mobile stations within the footprint of each given cell from

that cell’s base station. With the possible exception of anytransient that may briefly occur

during an intercell hand-off, at which time a mobile stationmay be in simultaneous com-

munication with two base stations, communications within all currently deployed cellular

and wireless internet access systems are strictly between each individual mobile station

and its respective serving base station. In fact, in most of the systems, communications

between the base stations in other cells and their mobile station clients represent a source

of interference with regard to mobile-to-base station communications within any given

cell.

A different approach would be to let each of the mobile stations within the foot-

print of a set of base stations be served by all base stations in that set. Corresponding to

the fact that the base stations constitute the infrastructure of the cellular wireless systems,

this is known in the literature as “infrastructure cooperation” [40]. (In the sequel, we

may sometimes refer to infrastructure cooperation by “basestation cooperation” as well.)

Specifically, we consider a cellular wireless access network in which the base sta-

1
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tions can cooperate over noise-free, wireline links with infinite capacity. Such links do,

in fact, effectively exist within portions of today’s cellular infrastructure in the form of

the buried fiber optical cabling used to connect base stations with the Mobile Switching

Center (MSC). However, these fiber links are, today, used strictly to enable communi-

cations between the MSC and each base station, as opposed to enabling transmit/receive

cooperation among base stations.

Infrastructure cooperation seeks to better utilize theseslinks by allowing them to

carry complex analog waveforms (or the digital representation thereof) between a central

processing/control station and each base station in a smallassociated set. This central

processing and control node computes the signal that must besent by each base station

to optimize some mobile station delivery objective and collectively processes the signals

received from all base stations. In effect, each mobile is served by an array of macro-

diversity antennas. In the sequel, we may sometimes refer tothe cooperating base stations

as the “Composite Base Stations” (CBS).

In the forward direction, the signal radiated by each base station antenna is a com-

posite constructed from the individual data streams that are to be sent concurrently to the

mobile stations collectively served by the set of base stations. The central node constructs

an individual composite signal for each base station antenna such that each mobile then

optimally receives its own data in accordance with the chosen objective criterion. In the

reverse direction, each base station antenna receives somecomposite superposition of the

signals sent by the mobile stations, and the central processor performs a joint detection of

all signals. The focus of this dissertation will be on the downlink.

Physical layer aspects of infrastructure cooperation has been studied in earlier

works (see, for example, Shamai and Zaidel [38], Ng et al. [30], Choi and Andrews [8],

etc.). From the literature on physical layer aspects of infrastructure cooperation, we know

that the cooperative base station approach is superior. Thus, without requiring a great

deal of improvements in the infrastructure (the fiber links connecting each base station
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with the MSC are assumed to be already in place), the deliverable capacity of a cellular

network can be greatly improved.

However, the literature on infrastructure cooperation does not consider network

traffic issues such as delay performance, optimal throughput, etc. In this dissertation, we

study some of the topics related to the cross-layer analysisof cellular wireless systems

enabled with infrastructure cooperation. Here by cross-layer analysis we mean viewing

the physical and the network layers as one entity, unlike theOSI model [4, Chapter 1.3]

where the two layers are studied separately.

While the modern communications networks have packet-basedtraffic, one of the

key assumptions, and therefore a key limitation, in the studies of base station cooperation

has been the assumption that the traffic is stream-type. Therefore, towards the next step

in the study of cooperative cellular wireless systems, in this dissertation, we consider a

packet-oriented traffic model.1 To this end, in the sequel, we seek to establish bounds on

the performance of the downlink of the cellular wireless systems with packet-based traffic

and cooperation among base stations.

To establish the performance bounds, we use results from multiuser information

theory. (A good treatment of recent results on multiuser information theory can be found

in Goldsmith [15].) We start with the problem of finding the maximum absolute through-

put to the mobile stations when the relative needs of each arespecified in advance. The

next step would be finding a queueing discipline that minimizes the overall average delay,

where delay is defined by a suitable metric. However, the coupled nature of the resulting

queueing network precludes an answer to this problem. Nonetheless, we propose a sim-

ple queueing discipline that achieves the maximum throughput. Again, the coupled nature

of the resulting queueing network does not allow analysis ofthe throughput-maximizing

queueing discipline. Therefore, we take an empirical approach to study the performance

1 A packet model allows us to develop and study interesting interplays between queueing service disci-
pline (a higher layer issue in the OSI model) and physical level channel conditions (a lower layer issue in
the OSI model).
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of the queueing discipline. In lieu of exact analysis, we propose two different approxima-

tions to the performance analysis of the queueing discipline. We first propose a fixed-point

approximation, a useful approximation for heavily as well as lightly loaded systems. We

next, as a measure of performance of the queueing network operating under this discipline

in the heavy traffic, develop a diffusion approximation.

A limitation of multiuser information theory based approach is its computational

complexity for real-world systems. As a remedy to this impracticality, we propose a

scheduling policy that is suboptimal, but easy to implement, and gives a performance

improvement over the traditional operation.

Since we are interested in establishing performance bounds, we assume perfect

network synchronization with regard to bit timing and carrier phase at each base station.

Moreover, we assume that the channel transfer matrix, representing the attenuation and

relative phase shift occurring between the antenna at each base station and the antenna

at each mobile station, is known at the central node. We also ignore the effect of time

dispersion in the channel. In the sequel, we make some additional assumptions about the

channel to facilitate analysis.

Admittedly, these are indeed optimistic assumptions and approximations, but our

goal here is to explore the potential benefits of base stationcooperation, leaving both the

real-world innovations needed to achieve these benefits, and the assessment of perfor-

mance degradation arising by any real world deviations fromthese optimistic assump-

tions, for future.

1.1 Organization of the Thesis

The rest of the dissertation is organized as follows. Chapter2 investigates the

problem of providing a descriptor of maximum throughput of cellular wireless systems

with infrastructure cooperation. We begin with a quasi-static system with simplistic as-
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sumptions on the channel model. We first develop the queuing model that will be studied

throughout the dissertation. Then we show that there is a simple expression for the maxi-

mum throughput of this queuing model relating the throughput to the capacity of the un-

derlying channel. We then propose a service policy that achieves the throughput. In both

these cases, we are providing results linking the network layer (queueing) to the physical

layer (the channel). Since an exact analysis is not possible, we propose an approximation

to help in the analysis of the average delay under this policy.

We then propose a policy that is applicable and implementable for large real-

sized systems. Through simulations, we show that, under common channel models, this

policy doubles the throughput of a cellular system with infrastructure cooperation over

one without cooperation among base stations.

A multi-input multi-output (MIMO) downlink system can be seen as a generaliza-

tion of the downlink of the cellular wireless network with infrastructure cooperation, the

object of study in Chapter2. Moreover, the service policies that are throughput-optimal

for the latter are throughput-optimal for the former as well. In Chapter3, we analyze the

performance of such a policy for quasi-static MIMO downlinksystem in heavy traffic.

We begin with the simple case of a two-user system where the operation points are enu-

merable. In this case, using the results on the Skorokhod problem (Section3.3.1.1), we

show that the diffusion-scaled queuelength process converges in distribution to an SRBM

(Theorem3.3.12) in the two-dimensional positive orthant.

We next analyze the performance of such a policy for an arbitrarily-sized system.

As will be seen, in this case there are2N − 1 operation points whereN is the number

of users. Therefore, the techniques used for the two-user case can not be applied. By

using results from the applied probability theory, we are able to show a result analogous

to the two-user case. Specifically, Theorem3.4.6states that the diffusion-scaled workload

process converges in distribution to an SRBM in theN -dimensional positive orthant.



C H A P T E R 2

Maximizing Throughput

As mentioned in Chapter1, our objective in this Chapter is to quantify the maxi-

mum throughput of the downlink of a cellular system with cooperation among base sta-

tions and to devise schemes that achieve this throughput. Weproceed in multiple steps.

We first provide a methodology to quantify the maximum throughput of the down-

link of a cellular system with infrastructure cooperation.Under some simplifying as-

sumptions, we show that the maximum throughput of the downlink of a cellular network

with cooperating base stations is related to the capacity region of the underlying channel

(Section2.1.3.2).

The next question we answer is whether or not there is a policythat can achieve

this maximum throughput. Under the same assumptions as earlier, we propose a policy

that achieves this objective (Section2.1.4). Using an empirical approach, we quantify

the advantage, in maximum throughput, of a system with base station cooperation over a

traditional cellular system.

Unfortunately, we do not know of numerical or analytic techniques to compute the

maximum throughput for even moderately sized systems (say,more than five(5) users).

Therefore, we propose a practical, but suboptimal, scheme which gives a higher through-

put (Section2.2). We then quantify, again by means of simulations, the advantage of the

proposed scheme over the traditional operation of cellularsystems.

6
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Rx
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h1,1
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(Total Power = P)
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λ2
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...

µ1

µ2

µN
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Figure 2.1 System model:M base stations andN users; each have one antenna.

2.1 Upper Bound on the Throughput

2.1.1 System Model

The model that we adopt to describe our system of cooperatingbase stations ap-

pears in Figure2.1. Shown there areM antenna elements, each connected to a central

node via a two-way, zero noise, infinite capacity link. Also shown areN non-cooperating

mobile stations. The maximum power available to the centralnode isP . We assume that

the central node can distribute this power among the cooperating base station antennas in

any proportion it decides.

Arriving at the central node areN packet streams, each containing packets ad-

dressed to a single mobile station. Each packet contains a geometrically distributed num-

ber of bits with mean valueE [b]. The central node containsN queues, each holding the

bits awaiting delivery to a particular mobile station. Packet arrivals for thej-th mobile

station are characterized by a Poisson process with arrivalrateλj. If we define

kj ,
λj

λ1

, j = 1, 2, . . . , N, (2.1)
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then we can represent the arrival processes by the vector

λ = λ1k (2.2)

where

k , {1, k1, k2, . . . , kN}. (2.3)

Since each packet contains a geometrically distributed number of bits, the remaining ser-

vice time for a given packet in thej-th queue can be modeled as an exponentially dis-

tributed random variable with mean value

τj ,
E [b]

cj

(2.4)

where cj is the current rate at which thej-th queue is being emptied (expressed in

bits/sec). Then, the instantaneous departure rate from thej-th queue is

µj ,
1

τj

=
cj

E [b]
. (2.5)

We represent the current set ofN departure rates by a vector

µ , {µ1, µ2, . . . , µN}. (2.6)

The channel between the base station antennas and the mobilestation antennas

is described by a channel matrixH = [hj,k] wherehj,k represents the amplification or

attenuation of the waveform signalsj(t) originating at base stationj as observed at mobile

stationk, j = 1, 2, . . . ,M ; k = 1, 2, . . . , N . Added at mobile stationk is white Gaussian

noise,nk(t), independent from the noise added at every other mobile station. The spectral

height of the noise is assumed to beN0/2 and the system bandwidth is assumed to beW .

Let rk(t) be the composite waveform arriving at mobile stationk, k = 1, 2, . . . , N . Then,
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r(t) = Hs(t) + N (t) (2.7)

where the received signal vectorr(t) = {r1(t), r2(t), . . . , rN(t)}, the transmitted signal

vectors(t) = {s1(t), s2(t), . . . , sM(t)}, and the additive noisen(t) is given byn(t) =

{n1(t), n2(t), . . . , nN(t)}.

For this section, the elements ofH are assumed to be independent complex Gaus-

sian random variables, each with independent real and imaginary parts. Such a matrix

corresponds to that produced by a flat multipath Rayleigh fading model. Therefore, at

present, we are not considering path-loss and other long-term channel variations. We will

introduce long-term channel variations later in this Chapter.

We define the signal-to-noise Ratio (SNR) as follows. Suppose all powerP is

allocated to thej-th base station for the purpose of communicating only with the k-th

mobile station, and suppose further that

E
[

[Re (hj,k)]
2 + [Im (hj,k)]

2
]

= 1 (2.8)

whereRe (·) and Im (·) denote real and imaginary parts, respectively. Then, SNR is

defined to be the actual SNR observed at mobile stationk, that is,

SNR,
P

N0W
. (2.9)

2.1.2 Multiuser MIMO Downlink Capacity Region and its Properties

For a given SNR and channel matrixH, the system shown in Figure2.1 can be

characterized by anN -dimensional capacity surface. A representative capacitysurface,

drawn forN = 2, appears in Figure2.2. Each point on this surface corresponds to an

allowable rate pair, that is, an allowable combination of rates(c1, c2) at which information

can be reliably delivered from the central node to mobile stations1 and2, respectively.
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A1

A2

Figure 2.2 Outline of a representative capacity surface

For example, if all resources are allocated to the delivery of information to mobile station

1, then, for the channel matrix and SNR underlying the capacity surface of Figure2.2,

information can be delivered to mobile station1 at rateA1, with the rate of delivery to

mobile2 set at zero. Similarly, if all resources are allocated to thedelivery of information

to mobile2, then information can be delivered to mobile station2 at rateA2, with the

rate of delivery to mobile station1 set to zero. In fact, for the channel matrix and SNR

underlying the capacity surface of Figure2.2, resources can be allocated to mobile stations

1 and2 such that any point on the capacity surface can be achieved.

In fact, the downlink channel depicted in Figure2.1 has been well-studied in the

literature and is known as the multi-user MIMO broadcast channel. The problem of find-

ing the capacity region of such a channel has also been well-studied. Based on the notion

of Dirty Paper Coding (DPC) [10], an achievable rate region for this channel was pro-

posed [6], [46], and it has been shown that the DPC region is, in fact, the capacity region

of a multi-user MIMO broadcast channel [43]. Furthermore, it has been shown that the

capacity region of the MIMO broadcast channel can be writtenin terms of the capacity

region of the dual multiple access channel [20], [42]. Since the capacity region of the dual

multiple access channel is easily computable, the capacityregion of the primal broadcast

channel can be computed by using the duality. Thus, as shown in Figure2.3, the two-
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dimensional broadcast channel capacity region is obtainedas the convex hull of the dual

multiple access channel regions over the set of power allocations such that the sum of

allocated powers is the same as the broadcast power. Note that the number of receive

antennas per user can be more than one without changing the procedure of determining

the capacity region or affecting the properties of the capacity region.

The capacity region of a multi-user MIMO broadcast channel,C, corresponding

to aN -user MIMO downlink system with fixed channelH and total transmit powerP

has the following properties:

(i) C is a non-empty connected closed subset of theN -dimensional nonnegative or-

thant,

(ii) C is convex,

(iii) C has(N + 1) boundary pieces of whichN are the intersections ofC with planes

passing through the origin on which exactly one of theN components is zero.

We call the(N + 1)-th boundary ofC the capacity surface. All of the components of

an outward pointing unit normal at each point of the capacitysurface are nonnegative.

Note that there might not be a unique outward pointing normalbut the abovementioned

property holds for each normal. Moreover, the capacity surface has a functional form

f(c1, c2, . . . , cN) = k (2.10)

where, from property (ii),f(·) is a convex function ofN variables andk is a constant.

We do not make any other assumptions about the functionf .

Associated with a convex capacity region is the concept ofdifferentiated service

capacity (DSC). For every convex capacity region, there is a unique point where the

capacity surface is intersected by a ray from the origin of slopek = (1, k2, k3, . . . , kN).

We call this point the DSC for the givenk. In Figure2.4, rayL1 is the ray from the origin
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for k = (1, 2). The capacity surface for traditional operation is indicated by the dashed
lines.

with slopeR2 = 2R1. It intersects the capacity surface at the pointcx. Thus,cx is the

DSC for the vectork = (1, 2). Note that symmetric capacity [34] is a special case of the

differentiated service capacity withk = (1, 1, . . . , 1).

2.1.3 Queueing Network and Maximum Throughput

In this section, we develop and study the queueing model for the system described

in Sec.2.1.1. We establish a limit on the maximum throughput that can be supported while

keeping the system stable. We then propose a service policy that is throughput-optimal

where a service policy is throughput-optimal if the policy results in a stable queueing

system for all allowed loads.

In this section, we only consider quasi-static fading, thatis, we assume that the

channel matrixH is fixed for the period of interest. Note that this reduces thefading

MIMO broadcast channel to a Gaussian MIMO broadcast channel.
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2.1.3.1 Queueing System

As explained in Section2.1.1, by modeling the exogenous traffic as a packet-based

traffic, instead of stream-based traffic, we can consider theN flows, one for each user, at

the transmit end asN queues, one for each user. The arrival process for each queueis an

independent Poisson process where the average arrival ratevector is given by (2.2),

λ = λ1k. (2.11)

Packets for each user are stored in their order of arrival. Weassume that all the queues

have infinite buffer so that no packets are lost. When service is given to a queue, it

goes to the packet at the front, that is, we only consider first-in-first-out (FIFO) service

disciplines. Each queue is served by a single server with average service rate vector at

time t, µ(t), given by

µ(t) = (µ1(t), µ2(t), . . . , µN(t)). (2.12)

The service rate vector is related to the transmission rate (in bps) by (2.5), but at any

given time there are infinitely many possible combinations of transmission rates, and

thus, infinitely many possible ways of choosing the service rates. Thus, we restrict our

attention to work-conserving policies. A policy iswork-conservingif it serves at full

rate whenever data is present in any of the queues. For our queueing system, this would

correspond to choosingc on the capacity surface only. Then from (2.5) and (2.10), at all

times the components ofµ(t) must satisfy a functional relationship of the form

g(µ1, µ2, . . . , µN) = k (2.13)

whereg(·), again, is a convex function becauseg(·) is an affine transform off(·) and

convexity is affine-transformation invariant.

Since in this queueing system, the packet arrival and service rates are different for
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different users, each user can be seen as a separate class of amulti-class queueing system,

thereby making this queueing system a multi-class queueingsystem. Furthermore, the

instantaneous (and average) service rate of a queue dependson the state (service rate and

the number of packets in the buffer) of every other queue in the network. Thus, we are

considering a system of coupled queues.

Such queueing systems are not easy to study. Even the simple case of two coupled

queues has many open questions. One case which has been studied involves a coupled

two-queue system where the arrival processes to the two queues are two independent

Poisson streams of equal rate and the queues are served in theorder-of-arrival by a sin-

gle server [25]. For such a system, an explicit expression for joint probability generating

function was found in terms of an elliptic function but the probability density of the sta-

tionary distribution was not expressed in closed-form. Fora coupled two-queue system

where the two service rates are different and the processor resources are shared when a

queue is inactive, the diffusion approximation was considered to analyze the performance

in heavy traffic [24].

2.1.3.2 Maximum Stable Throughput

In this subsection we show that the maximum throughput that our queueing system

can support without becoming unstable is equal to the DSC of the corresponding capacity

region for vectork.

We say that a queue isstableif the time-average delay is bounded. This leads to

a natural definition for the stability of a queueing system. Aqueueing systemis stable

if each individual queue in the queueing system is stable. Consequently, we can define

themaximum stable throughput(MST) of a queueing system to be the supremum over all

arrival rate vectors for which the queueing system remains stable. (Note that one has to

work with the supremum, rather than maximum, in defining MST,because it isa priori

unknown whether the system is stable at the MST or not.) For our system, since the
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average arrival rates are proportional, as given by (2.2), MST can be equivalently defined

as the supremum of allα such that the system remains stable when the average arrival

rate is less than or equal toαk.

A service policy is a function that maps the current system state to a set of service

rate vectors{µl}NS

l=1 whereNS is the number of operating points in the policy. We say

that a service policy is aviable policyif it satisfies the following conditions:

(i) If a queue is empty, it is not served. That is, if the numberof packets in thei-th

queue is zero, then the associated service rate for thei-th queue is zero.

(ii) There existsβ > 0 such that for all loadsλ = αk < βk, the queueing system has

a steady state.

The first condition can be thought of as a “sanity-check condition” in the sense that a

queue is not served if there are no packets waiting. Consequently, the zero vector,0 =

(0, 0, . . . , 0), must be one of the operating points for a viable policy. The second condition

allows us to define a viable policy without being concerned with the system load. An

example of a non-viable policy for a two-user system would bea policy that always serves

one of the two users, and never serves the other user.

The following lemma states the relationship between the DSCfor the vectork and

the MST of our queueing system.

Lemma 2.1.1.For the queueing system of interest, if the average arrival rates are related

byλ = λ1k, the maximum stable throughput is the differentiated service capacity for the

corresponding capacity region.

Remark.This lemma only requires that the capacity region be convex,a property that all

capacity regions have due to the convex hull operation.

Proof. For our queueing system, the MST is the supremum over all viable policies of

the load supported by a viable policy. Consider a viable policy Π = {µl}NS

l=1; from the
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second condition, there is a load for which a steady-state can be defined. Let{f l}NS

l=0 be

the steady-state probability distribution, wheref l, l = 1, 2, . . . , NS, is the probability of

serving at rateµl in the steady-state andf 0 is the probability of serving at zero rate in

the steady-state. Since{f l}NS

l=0 is a probability distribution,f l ≥ 0, l = 0, 1, . . . , NS and
∑NS

l=0 f l = 1. In the steady-state, the average service rate must be equalto the average

arrival rate, that is,
∑NS

l=1 f lµl = λ where the vector equality is component-wise (the term

corresponding tof 0 is 0). It follows from the definition of the DSC that the MST for the

queueing system is the DSC for the givenk.

Here we have used the fact that for a given vectork, the DSC is unique for a con-

vex capacity region. Note that strict convexity is not required for the uniqueness of DSC

and the uniqueness holds even when some of the entries of the vectork are zero. An inter-

esting problem is that of efficiently computing the DSC for a multi-user MIMO broadcast

channel. To this end, Lee and Jindal [26] have proposed an algorithm to efficiently cal-

culate the DSC (and symmetric capacity) for a multi-user MIMO broadcast channel for a

fixed channel matrix,H, and total transmit powerP , but even their algorithm is not very

effective for more than five (5) users.

2.1.4 Throughput Maximizing Service Policy

Based on Lemma2.1.1, we consider the following service policy. If any queue

is empty, set the service rate for that queue at zero. If only queuej is non-empty,j =

1, 2, . . . , N , operate at the pointc = (0, 0, . . . , cj, 0, 0, . . . , 0) where cj is the rate at

which thej-th queue would be served if all resources were allocated to the delivery of

information to thej-th mobile station. If only two queuesj andl are non-empty, operate

atc = (0, 0, . . . , 0, cj, 0, . . . , cl, 0, . . . , 0) wherecj/cl = kj/kl and(cj, cl) is a point on the

two-dimensional capacity surface produced when all resources are allocated to delivering

information only to the usersj andl. This two dimensional capacity surface corresponds

to the intersection of theN -dimensional capacity surface with the plane{ci = 0, i =
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1, 2, . . . , N, i 6= j, i 6= l}. Similarly, if only d out of N queues are non-empty, choose

the service rate vector corresponding to the DSC for the capacity surface produced by

allocating resources to serve only thed users with non-empty queues (set theN − d

corresponding entries ofk to zero while computing the DSC). If none of the queues is

empty, choose the DSC for the vectork as the operating point.

It is easy to see that for all loads below the MST, the system remains stable under

this policy and therefore, this policy is throughput-optimal. The stability of the system can

be seen from the fact that at all times when there are packets in a queue, the instantaneous

average service rate for that queue is greater than the average arrival rate. In fact, it can

be shown that a quadratic Lyapunov function [28] of the form
∑N

i=1 Q2
i (t), whereQi(t)

is the number of packets in thei-th queue at timet, has a negative drift at all times.

This policy is an on-off policy where the instantaneous service rate depends only

on the empty/non-empty status of each of theN queues. For aN -user system, there are

2N − 1 service points, each corresponding to one of the2N possible empty/non-empty

combinations of theN queues. The case where all queues are empty is irrelevant insofar

as a service point is concerned.

As an example, consider a two-user system where the underlying capacity region

is given by Figure2.4. For a two-user system, there are(22 − 1) = 3 operating points.

The proposed policy will serve at(c∗1, 0) when the second queue is empty and at(0, c∗2)

when the first queue is empty. Ifλ2 = 2λ1, this policy will serve with ratecx = (c1, c2)

whenever both the queues are non-empty.

2.1.5 Fixed-point Approximation

As mentioned in Section2.1.3, the queueing system of interest is a coupled queue-

ing system with time-varying service rates which depend on the instantaneous state of the

queues. Such systems are not very amenable to analysis; in fact, we are not even aware

of any work on the exact analysis of such systems. (In Chapter3, we analyze the perfor-



19

mance of this policy in heavy traffic, an approximation that gives certain insights.)

Since we do not have an expression for the system average delay, we develop

a fixed-point model for this policy which gives an approximation to the average delay.

Fixed-point models for queueing systems are well known in the literature (see, e.g.,

Kelly [22] and the references therein). We first illustrate the methodology of FPA by

developing the fixed-point model for a two-user (and thus, two-queue) system in Sec-

tion 2.1.5.1. We then extend the method to an arbitrary number of users in Section2.1.5.2.

2.1.5.1 Two-User System

The fixed-point approximation for the coupled two-queue system replaces the

M/G/2 coupled queueing system by two M/M/1 queues where for the approximated sys-

tem, the arrival processes are the same as that of the coupledsystem but the coupled

servers are replaced by two independent servers. Note that,as in the original system, the

arrival processes are assumed to be independent. The service process of each server in

the approximated system is a Poisson process with constant average service rate which is

a function of the service rates of the original system and thecoupling between the servers

in the original system.

For i = 1, 2, let Qi denote the number of packets in thei-th queue. Then by

the M/M/1 assumption of the approximated system, the probability that there are(q1, q2)

packets in the approximated system is given by

Pr {Q1 = q1} =

(

1 − λ1

µe
1

)(

λ1

µe
1

)q1

,

Pr {Q2 = q2} =

(

1 − λ2

µe
2

)(

λ2

µe
2

)q2
(2.14)

whereµe , (µe
1, µ

e
2), the effective service rate vector for the approximated system, is
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defined as

µe
1 , µ∗

1 Pr {Q1 = 0} + µ1 Pr {Q1 6= 0} ,

µe
2 , µ∗

2 Pr {Q2 = 0} + µ2 Pr {Q2 6= 0}
(2.15)

where from (2.5),

µ∗
1 =

c∗1
E [b]

, µ1 =
c1

E [b]
,

µ∗
2 =

c∗2
E [b]

, µ2 =
c2

E [b]
.

(2.16)

Since we do not have an exact expression for the probability of either of the queues being

empty, we approximate the probability of a queue being emptyby using the expression

for M/M/1 queues. As a result, the average service rates of the approximated system

need not be the same as that of the coupled queueing system. Ifthe average service

rates are the same, then the FPA gives a lower bound on the average delay [29, Appendix

C]. Furthermore, in that case, the bound becomes tight when the speed of service rate

variation goes to zero or infinity corresponding, in our system, to high-load and low-load

operation, respectively. Although the theorem of [29] is not applicable to our system (the

average service rates of the actual and approximated systems need not be the same), our

simulation results show that, for the parameters considered, the FPA produces a lower

bound on the average delay.

For i = 1, 2, define

θi , Pr {qi = 0} . (2.17)

Then from (2.14),

θ1 = Pr {q1 = 0} = 1 − λ1

µe
1

,

θ2 = Pr {q2 = 0} = 1 − λ2

µe
2

.

(2.18)
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Substituting (2.18) in (2.15) and rearranging the terms, we obtain:

µe
1µ

e
2 = µ∗

1µ
e
2 + λ2(µ1 − µ∗

1),

µe
1µ

e
2 = µ∗

2µ
e
1 + λ1(µ2 − µ∗

2),
(2.19)

which can be solved forµe by iterative methods. Note thatµe is a function of the arrival

and service rates of the original system. Thus, the approximated service rate will change

when any of the system parameters is changed but will scale proportionally when all

parameters in the original system are scaled proportionally. We thus have two M/M/1

queues with average arrival ratesλi, i = 1, 2 and average service ratesµe
i , i = 1, 2. Then,

we can compute the average delay using the standard results from queueing theory.

2.1.5.2 FPA forN -User system

We next develop the fixed-point model for aN -user system operating under the

policy proposed in Sec.2.1.4. We represent the proposed service policy in matrix form as

Π , [µl]2
N−1

l=1 (2.20)

where the matrixΠ has2N − 1 columns, each corresponding to one of the the2N − 1

empty/non-empty states of theN queues. Furthermore, one can write a queue-state vector

sl , (sl
1, s

l
2, . . . , s

l
N) (2.21)

wheresl
i = 0 if the i-th queue is empty andsl

i = 1 if the i-th queue is non-empty. For

example,µ1 = (µ1
1, 0, 0, . . . , 0) corresponds to only the first queue being non-empty, that

is, s1 = (1, 0, 0, . . . , 0) while µ2 = (0, µ2
2, 0, 0, . . . , 0) corresponds to only the second

queue being non-empty, that is,s2 = (0, 1, 0, . . . , 0). As with the two-user case, for

i = 1, 2, . . . , N , define

θi , Pr {Qi = 0} (2.22)
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whereQi is the number of packets in thei-th queue. Then, by the M/M/1 assumption of

the approximated system,

θi = 1 − λi

µe
i

, i = 1, 2, . . . , N, (2.23)

where

µe , (µe
1, µ

e
2, . . . , µ

e
N) (2.24)

is the approximated service rate vector. Also, fori = 1, 2, . . . , N , define

θ̄i , Pr {Qi 6= 0} = (1 − θi). (2.25)

Then, generalizing (2.15), for i = 1, 2, . . . , N , we obtain:

µe
i =

2N−1
∑

l=1:µl
i 6=0

pl
iµ

l
i (2.26)

whereµl
i is the service rate of thei-th queue when the point of operation is the vectorµl,

andpl
i is the probability that the packets for useri are served at the rateµl

i. Note that for

a fixedl, pl
i need not be the same for alli. For the service policy of interest, due to the

M/M/1 assumption of each queue in the approximated system, if the queue-state vector is

sl, then

pl
i =

N
∏

k=1
k:sl

k
=0

k 6=i

θk

N
∏

k=1
k:sl

k
=1

k 6=i

(1 − θk) (2.27)

where the first product is over the set of queues that are emptywhile the second product

is over the set of queues that are non-empty. Note that,
∑2N−1

l=1 pl
i > 1 but

∑

l:µl
i 6=0 pl

i = 1

which corresponds to the fact that in computing the approximated service rate, the fraction

of time when a queue is not served should not be considered.

The nonlinear equations (2.23)–(2.27) can be numerically solved forµe using



23

non-linear optimization techniques such as Gauss-Newton method. Again, the approxi-

mated service rate is a function of each arrival and service rate in the original system and

scales proportionally when all rates in the original systemare scaled proportionally.

2.1.6 Simulation Results

We now present some numerical results demonstrating the advantage of base sta-

tion cooperation over the traditional operation. Before presenting our results, we first

explain what we mean by the traditional operation of a cellular network. For meaningful

comparisons, we assume that the total power with the traditional operation is the same as

that for the cooperative system. Moreover, we assume that inthe traditional operation the

total power is equally divided among all base stations.

Under traditional operation, each mobile is assigned to thebase station with the

strongest signal strength. When more than one mobiles are assigned to the same base

station, the base station is time-shared in a way that the traffic to the mobiles satisfies the

constraint on the arrival rates given by (2.2). Then, for a given configuration of active

users, the rates at which data can be transferred to different users are fixed.

We next illustrate the computation of MST for traditional operation. To keep the

exposition simple, we consider a system with two base stations and two users. For this

system, representative achievable rate region for traditional and cooperative operation are

illustrated in Figure2.4, where the dashed line is the achievable rate region for traditional

operation. A queueing model similar to that for cooperativeoperation can be developed

for traditional operation, with the only difference being that the service rates are fixed for

the traditional operation once a particular mobile assignment to base stations is chosen.

As shown in Figure2.4, the MST is given by the intersection of (1) the ray through origin

with slopek, and (2) the convex hull of the operation points. This can be computed by

exploiting the geometric properties of the achievable rateregion.

We next define the system parameters for the simulations for the general case ofN
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users. In the following, we normalize the system bandwidth to W = 1Hz. Furthermore,

we define the system load as

λs , λ1

N
∑

i=1

ki =
N

∑

i=1

λi (2.28)

and the average system delay as

D̄ ,

∑N
i=1 kiDi

∑N
i=1 ki

(2.29)

whereDi is the average delay for thei-th user,i = 1, 2, . . . , N . This corresponds to

weighing the user average delays proportional to the amountof data to be transmitted to

the users. In all our simulations, we have set the mean packetsize to 100 bits.

2.1.6.1 Quasi-static Systems

We now present the simulation results for traditional and cooperative operation

when the channel realization is frozen, that is, the elements of theH matrix are ran-

domly chosen but fixed. Figure2.5shows the gain in throughput achieved by base station

cooperation for systems with two base stations and two mobiles, plotted as a function of

SNR. It can be seen that for a fixed traffic vector, the throughput gain increases with SNR.

Though, not true in general, for this particular channel realization, the throughput gain is

higher when the relative traffic vector is symmetric. For reasonable SNRs (between 10

and 20dB), the gain is approximately40%.

We next plot the average system delay against the system load. In Figure2.6,

we have plotted the average system delay against the system load for a two base station,

two user cellular network for two different channel matrices H. Thought the plots in

Figure2.6 are for specific channel realizations, they are, qualitatively, representative of

the family of channel realizations. As shown in the plots, the average system delay is

drawn for each of several relative traffic vectors. It can be seen that cooperation leads
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Figure 2.5 Throughput gain achieved by cooperation for a two user system with two base
stations: Channel is fixed.
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to a higher throughput, as expected, but that the throughputgain is not the same for

different channel realizations. In the plots, the maximum throughput can be observed

from the graph of load against delay by looking at the limit ofloads as the system delay

asymptotically approaches infinity (corresponding to the system approaching instability).

We also see that the fixed-point approximation provides a very good approximation of the

system delay.

In Figures2.7 and2.8, we plot the average system delay against the system load

for both the three base station/three user case and the four base stations/four user case.

Again, this is shown for two different channel realizationsand several representative rel-

ative traffic vectors. Again, we conclude that cooperation leads to lower average delay

and substantially higher system throughput, and that the fixed-point approximation gives

a very good approximation to system delay. Thus, for large systems which may be diffi-

cult to simulate, we conclude that the fixed-point approximation may be safely applied,

especially for the important high load regime since the maximum throughput predicted

by FPA and the actual system are the same.

We note that the gain in maximum throughput shown in Figure2.7 is between

20% and70% depending on traffic vector and channel. For Figure2.8, the gain is approx-

imately a factor for3 for all cases. We attribute this “gain stabilization” to thegreater

diversity offered by the fours base station system of Figure2.8, and expect that a higher,

more predictable, gain would be offered as the number of basestation increases.

2.1.6.2 Outage Results

We next present results showing the outage probability for different system con-

figurations. For a fixed channel realization and a relative traffic vectork, we say that an

outagehas occurred if the MST of the system for that channel realization is less than the

load. In our simulations, for each system configuration, we considered10, 000 or more

channel realizations. For each channel realization, we first compute the MST for cooper-
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Figure 2.7 Simulation results for a 3-user system: Channel is fixed in each case.
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Figure 2.8 Simulation results for a 4-user system: Channel is fixed in each case.
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ative and traditional operation. Then the MST can be used to compute the maximum load

that can be supported at a given outage probability.

In Figure2.9, we plot the probability of outage against the offered load for dif-

ferent system configurations. We note that for both cooperative and traditional operation,

the increase in throughput as the probability of outage increases is not very significant.

For example, consider the system with three base stations and three users, wherein the

throughput for cooperative operation increases by about33% for a tenfold increase in out-

age probability (from1% to 10%), and the throughput for traditional operation increases

by about50%. Similar observations hold for other system configurations. Moreover, the

gain in throughput is more pronounced at low outage. To show this more clearly, for

different system configurations, we plot in Figure2.10the throughput gain achieved by

cooperation at the base station against the outage probability. As can be seen, the through-

put gain decreases as the outage probability increases except for the2 × 2 system where

it is almost constant.

Another quantity of interest for quasi-static systems is the maximum number of

users that can be supported for a given load and outage probability when the number of

base stations is fixed. To this end, in Figure2.11we plot the maximum load for a specific

user that can be supported by a two base station system with a fixed power (and thus, by

our definition, fixed SNR) for different outage probabilities. (Also shown by dashed lines

is the system load.) As expected, at low outage the maximum load that can be supported

per user is low but it does not decrease by much when the numberof users is increased;

on the other hand, at high outage the maximum load per user decreases rapidly with an

increase in the number of users.

2.2 A Throughput-Increasing Scheme for Large Systems

As mentioned in Section2.1.2, computing the DPC region is computationally

expensive and almost infeasible for even moderately-sizedsystems - in fact, the runtime to
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compute the capacity region for a system with five (5) users was in days - while real-world

systems have hundreds of users. Moreover, the number of operation points increases as

2N−1 whereN is the number of users in the system. In light of these reasons, applying the

policy proposed in Section2.1.2is not feasible for real-world systems. Therefore, in this

Section, we propose a practicable modification of that policy which, thought suboptimal,

has a higher throughput than the traditional operation. To arrive at the modified policy,

we build upon several observations on the properties of the MIMO broadcast channel

capacity region and the queueing network of the Section2.1.

The first observation is that the gain in throughput is due to the fact that the capac-

ity of MIMO channel is higher than that of the single-input single-ousput (SISO) channel.

But for a MIMO channel withNR transmit andNT receive antennas, the gain in capacity

is min(NR, NT ). In the downlink of cellular system with cooperation, base stations act

as the transmit end and, since, the base station are far fewerthan the mobiles, the gain
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in throughput that our policy can achieve is severely limited by the number of base sta-

tion antennas in a cooperating base station set. Therefore,even if there was a method to

compute the DPC region, the advantage of cooperation would be somewhat limited. (It

should be noted that the base stations can have multiple antennas and therefore, it is not

correct to say that the possible gain in throughput, were such a practical method available,

is insignificant.)

Our next observation is based upon the conclusion of Lee and Jindal [26]. They

observed that the symmetric capacity of a MIMO broadcast channel is higher when the

channel is symmetric. Since the gain in throughput is primarily due to higher symmetric

capacity, if possible, it is preferable for the corresponding MIMO broadcast channel to be

symmetric. Unfortunately, the conclusion of [26] does not have a logical equivalent for

the differentiated service capacity.

Our next observation is based upon a property of the DPC region. In a MIMO

broadcast channel, the sum of service rates is higher when more users are being served.

For example, consider a system with4 transmit antennas and4 users. In this system, the

capacity when all4 users are being served will be higher than when any3 (or fewer) users

are being served. A precise mathematical statement of this property can be seen in (3.56)

and (3.57). As a consequence of this property, any policy should strive to serve the users

that have data to transmit rather than serving an arbitrary subset of users who may or may

not have data to transmit.

We are now ready to describe the modified policy. The key idea is to group the

users in small subgroups and use the service policy from Section 2.1.4for each subgroup.

The important step in this procedure is dividing the users insubgroups. As an example

of import of grouping the users, consider a policy that randomly groups users into small

subgroups of, say, size four (4). This policy will be fairly easy to implement. But random

grouping of users often results in asymmetric channels - sometimes highly asymmetric.

As a consequence of the second observation, this will resultin a much lower than expected
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symmetric capacity. In fact, in our simulations, sometimesthe performance of a random

grouping policy was not much of an improvement over traditional operation. Moreover,

the variance in performance of random grouping was high enough to make the policy

unreliable for operation in practical systems.

Thus, our goal is to find a method to group the users so that the channel for each

subgroup is highly symmetric. Unfortunately, good metricsfor the symmetry of channel

are not available. As a substitute, we use the strength of thechannel from the base stations

to the users as a metric to form the subgroups. Formally, consider a received signal

model of the form (2.7) with no assumptions on the entries ofH. (While presenting the

simulation results, we will specify the model used for the entries ofH.) Then the channel

to thej-th user is given by thej-th column ofH, that is,

hj = [h1,j, h2,j, . . . hM,j] (2.30)

whereM is the number of base stations in the system. To form the groups, we sort the

users on the basis of their channel strength where channel strength is defined by the norm

of hj:

‖hj‖ ,

M
∑

i=1

h2
i,j. (2.31)

In Algorithm 2.1, we present the service policy for arbitrary, but constant,sized

cellular systems with possible cooperation among base stations. We are assuming that

all users need data at the same rate and that the channel is quasi-static. LetG be the

size of subgroup. (In our simulations, we will work withG = 3 andG = 4.) We first

sort the users on the basis of their channel strength as defined by (2.31). Here, we are

assuming that there is no entry to or exit from the system. (Asshown in Algorithm2.2,

a straightforward modification to allow for the possibilityof entry/exit from the system

will be to sort the users after each iteration of the algorithm.) We then select the first

G users to form the subgroup to be served. If there are less thanG users to serve, we
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G - the size of subgroup.
Sort the users by their channel strength (2.31).
repeat

Select the firstG users.{If there are less thanG users, select all users.}
Transmit their data as per the policy proposed in Section2.1.4.
Remove these users from the list of users to be served.

until All users are served.

Algorithm 2.1 Service policy for constant sized cooperating cellular systems

G - the size of subgroup.
repeat

Sort the users by their channel strength (2.31).
Select the firstG users.{If there are less thanG users, select all users.}
Transmit their data as per the policy proposed in Section2.1.4.
Remove these users from the list of users to be served.

until All users are served.

Algorithm 2.2 Service policy for variable sized cooperating cellular systems

group them all together. Since we have assumed that all usersneed data at the same rate,

all the selected users have same amount of data to transmit. Furthermore, when all users

have data to transmit, the policy given in Section2.1.4reduces to serving all users at a

constant non-zero rate. Moreover, when all users have same amount of data to transmit

(that is,k = (1, 1, . . . , 1), the service rates are equal (to the symmetric capacity of the

corresponding channel matrix) and therefore, all of the queues empty at the same time.

After the selected users have been served, remove them from the list of users to be served.

We repeat this procedure till all users have been served.

2.2.1 Simulation Results

We next present simulation results showing the efficacy of the policy proposed in

Algorithm 2.1. Before doing so, we describe what we mean by traditional operation and

the system model.

Under traditional operation, each mobile is assigned to a specific cell and there-

after all communications to/from that mobile is via the assigned base station. In our
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simulations, we assign the mobile to the base station from which it can get the best signal.

That is, if the channel from all base stations to a specific mobile is given by (2.30), we

assign that mobile to the cell given by

arg max
i

|hi,j| . (2.32)

We assume that at any given time, the only communication in the set of cells comprising

the composite base station, is between a mobile and its corresponding base station and

therefore, all transmissions are inter-cell interferencefree.

In our simulations, we consider a cellular system with four (4) base stations (each

having one antenna) and200 users. The placement of the base stations is shown in

Fig. 2.12. As shown in the Figure, the base stations are at the center ofthe squares

comprising the grid. The mobiles are placed randomly on the grid such that they are uni-

formly distributed in the two-dimensional space. The channel coefficienthi,j between the

i-th base station andj-th mobile has three components. The first component corresponds

to the path-loss. We assume that the path-loss exponent is4. The second component

corresponds to the shadow fading which is assumed to be a lognormal random variable

of variance 6dB. As in Section2.1, the short-term variations in the channel are assumed

to be captured by a complex Gaussian component of mean0 and variance1/2 in each

component (CN (0, 1)). We define the SNR as it was defined in Section2.1.1.

We first compare the effect of grouping size. As we increase the grouping size,

G, there are more antennas on the receive side and therefore, it is expected that a higher

grouping size should give a higher gain in throughput. On theother hand, with an increase

in G, computing the capacity region gets computationally expensive and the coordination

between the transmit and receive end gets more complex.

In the first set of results, we compare the gain in throughput with G = 3 and

G = 4 where SNR is10 dB (see Section2.1.1for the definition of the SNR). As shown in

Table2.1, the gain in throughput forG = 4 is about8% more than the gain in throughput
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Figure 2.12 Location of Base Stations and Mobiles in a cellular system with 4 cells.
Base stations are denoted by “x” while the mobiles are denoted by “o”.

Table 2.1 Gain in Throughput for different Grouping Sizes:4 base stations and200
mobiles. SNR in both cases is10 dB.

Average gain Standard Deviation Standard Deviation/Average (in %)
G = 3 1.991 0.0334 1.68
G = 4 2.151 0.0378 1.76

for G = 3, a not very significant gain. Moreover, from the last entry inboth rows, it is

evident that in both cases, the standard deviation, as a fraction of the average gain, is low

enough to give us confidence that the results are representative not outliers. Since there

is no significant loss of gain in throughput by changingG from 4 to 3 and the above-

mentioned computational issues are simpler forG = 3, in the next simulation we work

with G = 3.

We next compare the effect of SNR on the gain in throughput. InTable2.2, we

show the average gain in throughput and the standard deviation of the gain for different

SNRs withG = 3. Here again, the system has4 base stations and200 mobiles. As

expected, it can be observed that the gain increases with SNRand that the variance of the

gain decreases with SNR. Here again, in all cases the variance is low enough to give us
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Table 2.2 Gain in Throughput for different SNRs:4 base stations and200 mobiles.
Group size,G, is 3.

SNR Average gain Standard Deviation Standard Deviation/Average (in %)
5 dB 1.840 0.0428 2.33
10 dB 1.991 0.0334 1.68
20 dB 2.308 0.0259 1.12

confidence in our results.
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C H A P T E R 3

Heavy Traffic Performance

3.1 Introduction

As described in Chapter2, the cellular wireless network with infrastructure coop-

eration has a corresponding queueing system formulation where, even in the simple case

of Poisson arrivals, independently for each user, it is not known how to minimize the av-

erage delay for a given load. Furthermore, closed-form expressions for average delay are

unavailable for many simple policies; usually, this means that any meaningful comparison

has to be done via simulations. However, when the ratio of theaverage arrival rates (also

known as the relative traffic rate) is specified in advance, the maximum possible through-

put can be computed and a simple policy can be shown to be throughput-optimal1 under

Markovian assumptions (see Chapter2). But an exact expression for the performance

of this policy is not available. In this Chapter, as a measure of performance, we prove

limit theorems justifying a diffusion approximation for a heavily loaded system operating

under this policy.

We are not aware of analysis of other policies that have been shown to be through-

put-optimal for a general convex (rather than a convex polyhedral) capacity region. How-

ever, scheduling policies for certain heavily loaded wireless systems with convex poly-

hedral capacity regions have been studied in [37, 39] (also see references therein) under

1For a Markovian system, throughput-optimal means the long run average departure rate exists and
equals the long run average arrival rate whenever the nominal load lies inside the capacity region, cf. [14,
p. 26].

39
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restrictive assumptions. In [39], Stolyar considered a generalized switch. He showed that

under MaxWeight scheduling and certain restrictive conditions, including a resource pool-

ing condition, in heavy traffic there is state space collapse(SSC), the workload process

converges to a one-dimensional Reflecting Brownian Motion (RBM), and MaxWeight

asymptotically minimizes the workload. Shakkotai et al. [37] study a throughput-optimal

scheduling rule, which they call an exponential schedulingrule, and show that under re-

source pooling condition it is asymptotically pathwise optimal in the sense that there is

SSC, the workload process is asymptotically minimized and converges to a one-dimen-

sional RBM. In the following, we point out some of the differences between our assump-

tions and those in [37, 39]. The Maxweight policy [39] is designed for the case when the

capacity region is a convex polyhedron while the policy we consider is designed for more

general convex capacity regions. We elaborate upon this in Section3.3.4where we define

the heavy traffic conditions. Moreover, a complete resourcepooling (CRP) condition is

assumed in [39] which requires that there is a unique outward pointing normal to the sys-

tem stability region at the point corresponding to the mean arrival rate vector for a critical

load; by comparison, we do not assume a CRP condition. The arrival process in [39] is

assumed to be an ergodic Markov process while we assume that the arrival process is a

renewal process. In [37], the capacity region is a convex polyhedron and a CRP condition

similar to [39] is assumed; however, service is given to only one queue at a time while

here we can serve more than one queue at the same time.

3.2 Organization of the Chapter

We first consider the case where there are only two users in thefootprint of the

cooperating base stations. For such a system, the policy under consideration has only four

(4) operating points which makes it amenable to an exhaustive enumeration. We present

such an approach in Section3.3.

Unfortunately, for a system withN users, our policy has2N − 1 operation points
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and the approach taken in Section3.3 is not amenable to scaling. In Section3.4, we

use other results from applied probability to analyze the performance of an arbitrarily-

sized system. Though the main results in the two sections aresimilar, the reader will

notice that the result in Section3.3 is for the queuelength process, which is a counting

process associated with the workload process (defined in thesequel), while the result in

Section3.4 is for the workload process.

We would like to mention that to maintain the completeness ofthe individual sec-

tions, so that an interested reader can restrict her attention to a particular section, we have

some redundancy in the sequel. For example, we could combinethe notations and pre-

liminaries for the two sections, but this will, unfortunately, require a user interested in the

result for the two-user case to read through unnecessary notation required for Section3.4.

3.3 Two-User System: Queuelength

3.3.1 Notation and Preliminaries

We will use the following notation throughout this section.Let Z denote the set

of all integers,Z+ the set of all non-negative integers,R denote the set of real numbers,

andR+ denote the non-negative half-line, which is also denoted by[0,∞). For d ≥ 1,

Rd will denoted-dimensional Euclidean space and the positive orthant in this space will

be denoted byRd
+ = {x ∈ Rd : xi ≥ 0 for i = 1, 2, . . . , d}. All vectors and matrices are

assumed to have real valued entries. Let0 = (0, 0, . . . , 0) ∈ Rd
+. The usual Euclidean

norm onRd will be denoted by‖·‖ so that‖x‖ =
(

∑d
i=1 x2

i

)1/2

for x ∈ Rd. We denote

the inner product onRd by 〈·, ·〉, i.e.,〈x, y〉 =
∑d

i=1 xiyi, for x, y ∈ Rd. LetB(Rd) denote

theσ-algebra of Borel subsets ofRd. The symbol1A denotes the indicator function of a

setA, i.e.,1A(x) = 1 if x ∈ A and1A(x) = 0 if x /∈ A.

All stochastic processes used in this section will be assumed to have paths that are

right continuous with finite left limits (r.c.l.l.). We denote byDd the space of r.c.l.l. func-
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tions from[0,∞) into Rd and we endow this space with the usual SkorokhodJ1-topology

(see Ethier and Kurtz [12, Chapter 3, Section 5]). We denote byCd the space of continu-

ous functions from[0,∞) into Rd, also endowed with the SkorokhodJ1-topology under

which convergence of elements inCd is equivalent to uniform convergence on compact

time intervals. Theσ-algebra induced onDd (or Cd) by the SkorokhodJ1-topology will

be denoted byMd. The abbreviationu.o.c.will stand foruniformly on compactsand will

be used to indicate that a sequence of functions inDd (or Cd) is converging uniformly on

compact time intervals to a limit inDd (or Cd). A d-dimensional process is a measurable

function from a probability space intoDd. ConsiderQ1, Q2, . . . , Q, each of which is a

d-dimensional process (possibly defined on different probability spaces). The sequence

{Qn}∞n=1 is said to betight if the probability measures induced by the sequence{Qn}∞n=1

on (Dd,Md) form a tight sequence, i.e., they form a weakly relatively compact sequence

in the space of probability measures on(Dd,Md). The notation “Qn ⇒ Q” will mean

that “Qn converges in distribution toQ asn → ∞”. The sequence of processes{Qn}∞n=1

is calledC-tight if it is tight, and if each weak limit point (obtained as a weaklimit along

a subsequence) is inCd almost surely.

3.3.1.1 Skorokhod Problem

Skorokhod problems are used in the study of approximations to certain queueing

networks. LetDd
+ (resp.Cd

+) denote those functionsx ∈ Dd (x ∈ Cd) satisfyingx(0) ≥ 0.

Definition 3.3.1 (Skorokhod Problem (SP)). Fix x ∈ Dd
+ and ad × d matrix R. We say

that (z, y) solves the Skorokhod problem forx with respect toR, if z, y ∈ Dd
+ with

(i) z(t) = x(t) + Ry(t) for all t ∈ R+,

(ii) z(t) ∈ Rd
+ for all t ∈ R+,

(iii) for i = 1, 2, . . . , d,

(a) yi(0) = 0,
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(b) yi is non-decreasing,

(c)
∫

(0,∞)
zi(s)dyi(s) = 0.

The pathx is called the driving path.

Harrison and Reiman [16] specified some conditions on the matrixR under which

there is a unique solution of the Skorokhod problem for eachx ∈ Cd
+. In fact these

conditions also yield a unique solution for eachx ∈ Dd
+.

Definition 3.3.2 (Harrison-Reiman (HR) Condition). A d × d matrix R satisfies the HR

condition if R = I − P̃ , whereI is thed × d identity matrix,P̃ has zeros along the

diagonal, all of the entries of̃P are nonnegative and̃P has spectral radius strictly less

than one.

WhenR = I − P̃ whereP̃ has zeros on the diagonal and the entries ofP̃ are

nonnegative, the HR condition is equivalent to the requirement thatR is a non-singular

M-matrix. Such matrices are discussed for example in Bermanand Plemmons [3, Chapter

6].

Proposition 3.3.1.Letd be a positive integer andR be ad × d matrix satisfying the HR

condition. Then for eachx ∈ Dd
+, there arey, z ∈ Dd

+ such that(z, y) is the solution of

the Skorokhod problem forx with respect toR. Furthermore, the mappingΦ : Dd
+ → D2d

+

given byΦ(x) = (z, y) is continuous where(z, y) is the solution of the Skorokhod problem

for x.

Proof. The proof is given forx ∈ Cd
+ in [16] and alluded to forx ∈ Dd

+. A complete

proof can be found in [44] for example.

Fix a positive integerd, θ ∈ Rd, Γ a d × d symmetric strictly positive definite

matrix and ad×d matrixR satisfying the HR condition. We can use the solvability of the

Skorokhod problem to construct a Semimartingale ReflectingBrownian Motion (SRBM)

associated with the data(Rd
+, θ, Γ, R) as follows.
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Given a Brownian motionX starting from the origin with drift vectorθ and covari-

ance matrixΓ, consider the pair of processes(Q, Y ) that solve the Skorokhod problem for

X with respect toR. Then,Q is an SRBM associated with the data(Rd
+, θ, Γ, R) starting

from the origin. HereQ = X +RY where{X(t)−θt, t ≥ 0} is a continuous martingale

(with respect to the filtration generated byX) and{RY (t) + θt, t ≥ 0} is a continuous

locally bounded variation process adapted to the filtrationgenerated byX. Hence,Q is a

semimartingale.

3.3.2 System Model

In this subsection we specify the communication system under consideration. We

consider a cellular wireless network where base stations cooperate over noise-free infinite

capacity links. We do not make any distinction between a single-cell cellular system

having multiple base-station antennas and the traditionalcellular system with cooperating

single-antenna base stations. Here, by cooperation we meanthat the base stations can

perform joint beamforming and/or power control but there isa constraint on the total

power that the base stations can share. We do not make any assumptions about the number

of receive antennas per user.

In this section, we restrict our attention to the case where there are just two mobile

stations (also called users) in the footprint of the cooperating base stations. Then the

downlink channel can be modeled as a two-user MIMO broadcastchannel. We assume

that the channel is fixed for all transmissions over the period of interest (some authors

refer to this as a quasi-static channel). Moreover, we assume that the transmit end (the

cooperating base stations) has perfect channel state information (CSI).

Weingarten et al. [43] have shown that for such a system, Dirty Paper Coding

(DPC), introduced by Costa [10], achieves the capacity. Furthermore, the capacity region

can be computed by using the duality of the MIMO multiple access channel and the

MIMO broadcast channel [20]. Figure3.1 illustrates the capacity region for an example
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of a two-user MIMO broadcast channel with two transmit and two receive antennas. Here

the broadcast channel capacity region is obtained by takingthe convex hull of the union

over the set of capacity regions of the dual MIMO multiple access channels such that the

total multiple access channel power is the same as the power in the broadcast channel.

Let c∗1 (c∗2) be the maximum rate at which data can be transmitted (in bitsper

second (bps)) to user1 (2) when the rate of transmission to user2 (1) is set at zero. If

(c1, c2) > 0 is a point in the capacity region then the rate at which data can be transmitted

to user1 (2), c1 (c2), is strictly less thanc∗1 (c∗2). This corresponds to the fact that when

the wireless resources are dedicated to a single user, the rate at which that user can be

served is higher than the rate for that user when the resources are shared by the users but

this higher rate comes at a cost to the sum of the rates. Indeed, when both users are being

serviced, the sum of the rates is strictly greater than that for service dedicated to a single

user, that is,c1 + c2 > c∗1, c
∗
2.

For a two-user system the capacity region is a two-dimensional closed convex set

in R2
+ where the convexity follows because of the convex hull operation. The capacity

region contains the origin and it has three boundary pieces of which two are along the

coordinate axes while the third boundary piece is in the interior of R2
+. We call this third

boundary thecapacity surface. The following lemma states a key property of the capacity

surface of the two-user MIMO broadcast channel.

Lemma 3.3.2.For any point(x, y) on the capacity surface of a two-user MIMO broadcast

channel, the following holds,
x

c∗1
+

y

c∗2
> 1. (3.1)

Proof. As stated earlier, the capacity region is a convex set inR2
+, it contains the origin

and it has the line segments(0, 0) to (c∗1, 0) and(0, 0) to (0, c∗2) along the two coordinate

axes as two boundaries. Since the line segment{(x, y) ∈ R2
+ : x

c∗
1

+ y
c∗
2

= 1} lies in the

capacity region (by convexity), the capacity surface must lie “along or above” this line
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Figure 3.1 An example of a capacity region of a 2-user MIMO broadcast channel for a
fixed channel whereR1 andR2 are the rates of user1 and2, respectively.
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segment and so for any point on the capacity surface we have

x

c∗1
+

y

c∗2
≥ 1. (3.2)

From (3.2) and the convexity of the capacity region, if there is a pointon the capacity

surface where (3.1) holds, it holds for every point on the capacity surface. We next show

that there is at least one point on the capacity surface where(3.1) holds.

The sum-rate capacity of the MIMO broadcast channel is defined as the maximum

of the sum of a pair of rates that can be transmitted. (See Viswanath et al. [42] for details.)

If the sum-rate capacity of the MIMO broadcast channel is strictly greater than the single-

user capacities,c∗1 andc∗2, then (3.1) holds at the point(s) achieving sum-rate capacity. This

follows by noting that if only equality held in (3.2), at a point where sum-rate capacity

is achieved, the maximum sum rate would be achieved with one of x or y equal to zero

(i.e., at an end-point of the line segment{(x, y) ∈ R2
+ : x/c∗1 + y/c∗2 = 1}) but then the

sum-rate equalsc∗1 or c∗2, a contradiction. From [42, Theorem 3], the sum-rate capacity of

MIMO broadcast channel is the Sato upper bound [35] which is greater than the single-

user capacities. Thus, there is a point on the capacity surface where (3.1) holds, and the

lemma follows.

At the transmit end, packets arrive for each user and are buffered before trans-

mission. The ratio of anticipated average bit arrival rates, called relative traffic rate and

denoted byk2, is specified in advance, that is, it is expected that, on average, user 2 will

havek2 times as much data as user 1. The actual traffic rate will deviate from the aver-

age due to stochastic fluctuations. Naturally, when there isno data for one of the users

to transmit (the corresponding queue for that user is empty), the data for the other user

should be transmitted at the maximum possible rate. That is,the data should be trans-

mitted to user1 (2) at the rate ofc∗1 (c∗2) when only the first (second) user has data to

transmit. In Chapter2, we have shown that under Markovian assumptions on the system,

the policy that transmits at the rate(c1, c2) at all other times, where(c1, c2) is the point on
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the capacity surface such thatc2/c1 = k2, is throughput-optimal. Figure2.4 illustrates a

few such operation points for sample values ofk2 = 3, 1, 0.5.

3.3.3 Queueing Analogue

In this subsection we develop a queueing analogue for the system described in

Section3.3.2. To this end, we describe the physical structure, the packetarrivals and sizes.

Then we formalize the service discipline and specify the dynamic equations satisfied by

the queuelength process.

3.3.3.1 Physical Structure

A queueing system describing our setup has two queues in parallel where each

queue buffers packets intended for a given user. We assume that each of the queues has

infinite buffer capacity. The queues are served by a single server corresponding to the

cooperating base station.

3.3.3.2 Stochastic Primitives

We assume that the system starts empty and that there is a two-dimensional packet

arrival processE = {(E1(t), E2(t)), t ≥ 0} whereEi(t) is the number of packets that

have arrived to thei-th queue in(0, t]. (HereE is used to indicate that the arrivals are

exogenous.) Fori = 1, 2, Ei(·) is assumed to be a (non-delayed) renewal process defined

from a sequence of strictly positive i.i.d. random variables{ui(k), k = 1, 2, . . . }, where

for k = 1, 2, . . . , ui(k) denotes the time between the arrival of the(k − 1)st and thek-

th packet to thei-th queue. Eachui(k), k = 1, 2, . . . is assumed to have finite mean

1/λi ∈ (0,∞) and finite squared coefficient of variation (variance divided by the mean

squared)α2
i ∈ [0,∞). The packet lengths (in bits) for the successive arrivals toqueuei are

given by a sequence of strictly positive i.i.d. random variables{vi(k), k = 1, 2, . . . } with
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average packet length1/µi ∈ (0,∞) and squared coefficient of variationβ2
i ∈ [0,∞), i =

1, 2. We assume that all interarrival and service time processesare mutually independent.

Note that the average bit arrival rate for useri is bi = λi/µi, i = 1, 2 and we have let

k2 = b2/b1. For i = 1, 2, we associate a renewal counting processSi(·) with {vi(k)}∞k=1

such thatSi(t) = sup{n ≥ 0 :
∑n

k=1 vi(k) ≤ t} for t ≥ 0. We refer to the processesE(·)
andS(·) asstochastic primitivesfor the system model.

3.3.3.3 Service Discipline

When service is given to a queue, it goes to the packet at the head of the line,

where it is assumed that packets are queued in the order of their arrival to the queue. The

service rate is a simple function of the number of packets in each of the queues. A pair

(σ1, σ2) indicates the rates (in bps) of serving the two queues, i.e.,σ1 is the rate for queue

1 andσ2 is the rate for queue2. Here, given the queuelengthq = (q1, q2), the rates are

given by(σ1, σ2) = Λ(q) for the function2 Λ : R2
+ → R2

+ defined by

Λ(q) ,











































(c1, c2) if q1 > 0, q2 > 0,

(c∗1, 0) if q1 > 0, q2 = 0,

(0, c∗2) if q1 = 0, q2 > 0,

(0, 0) if q1 = 0, q2 = 0.

(3.3)

Herec1 andc2 are chosen such that(c1, c2) lies on the capacity surface andc2/c1 = k2.

Also, c1, c2, c∗1 andc∗2 satisfy the following conditions:0 < c1 < c∗1, 0 < c2 < c∗2, and

c∗1, c
∗
2 < c1 + c2.

Our model is a single server, two-class queueing system where the two classes

correspond to the two users. The following scaling propertyof Λ(·) is a mathematical

2We only needΛ(·) defined onZ2
+ for the moment, but we extend the domain ofΛ(·) to R2

+ so that later
when we rescale the queuelength processΛ(·) is well-defined for the rescaled process.
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statement of the property of the scheduling policy that the amount of service given to

the queues in any state does not change when all queuelengthsare increased/decreased

proportionally.

Lemma 3.3.3.For anyq ∈ R2
+ andx > 0, Λ(xq) = Λ(q).

Proof. The proof follows easily from the definition ofΛ(·).

3.3.3.4 Queuelength Process

For i = 1, 2, the length of thei-th queue at timet is

Qi(t) = Ei(t) − Di(t), (3.4)

whereDi(t) is the number of packet departures from thei-th queue in(0, t]. Here,Di(t)

is given by

Di(t) = Si(Ti(t)), (3.5)

whereTi(t), the cumulative amount of service given to queuei up to timet, is given by

Ti(t) ,

∫ t

0

Λi(Q(s)) ds

= ci

∫ t

0

1{Qj(s)>0 for all j} ds + c∗i

∫ t

0

1{Qi(s)>0; Qj=0 for all j 6=i} ds.

(3.6)

3.3.4 Heavy Traffic Assumptions

3.3.4.1 Assumptions

We consider the operation of our queueing system in the asymptotic regime where

it is heavily loaded. (Kelly and Laws [23] have argued that in this regime “important

features of good control policies are displayed in sharpestrelief”.) For this purpose one

may regard a given system as a member of a sequence of systems approaching the heavy
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traffic limit. To obtain a reasonable approximation, the queuelength process is rescaled

using diffusion scaling. This corresponds to viewing the system over long intervals of

time of orderr2 (wherer will tend to infinity in the asymptotic limit) and regarding a

single packet as only having a small contribution to the overall congestion level, where

this is quantified to be of order1/r. Formally, we consider a sequence of systems indexed

by r, wherer tends to infinity through a sequence of values in(0,∞). These systems

all have the same basic structure as that described in the last subsection; however, the

arrival rates may vary withr and for determiningc we assume that an estimate of the

ratio k2 ∈ (0,∞) of the bit arrival rates is known and is used to determine the capacityc

for the whole sequence. We assume that the interarrival times in the system indexed byr

are given for eachi = 1, 2, k = 1, 2, . . . , by

ur
i (k) =

1

λr
i

ǔi(k) (3.7)

where thěui(k) do not depend onr, have mean one and squared coefficient of variation

α2
i . The packet lengths{vi(k)}∞k=1, i = 1, 2, do not change withr. [The above structure

is convenient for allowing the sequence of systems to approach heavy traffic by simply

changing arrival rates and keeping the underlying sources of variability ǔi(k) andvi(k)

fixed asr varies. This type of set-up has been used previously by others in treating heavy-

traffic limits (see, e.g., Peterson [31] and Bell and Williams [2]). For a first pass, the

reader may like to simply chooseλr
i = λi for all r.] All processes and parameters that

depend onr will from now have a superscript ofr. Defineλi , µici, i = 1, 2.

Assumption 3.3.4(Heavy Traffic Assumption). For i = 1, 2, there isθi ∈ R such that

r(λr
i − λi) → θi asr → ∞. (3.8)

Remark.This assumption does not restrict the direction in which theheavy traffic limit is

approached, unlike that in Gans and Van Ryzin [13]. Hereθi could be positive, negative
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or zero for eachi. Thus, each queue may have an arrival rate that is greater than, equal to

or less than the rate yielding exact balance.

Here we may regardλ as the nominal average packet arrival rate used to set the

service rates,(c1, c2) = (b1, b2), for the throughput-optimal policy. Ther-th system has

a perturbed average packet arrival rateλr for which the average bit arrival ratebr : br
i =

λr
i /µi, i = 1, 2, is close to(c1, c2).

3.3.4.2 Connection to Complete Resource Pooling (CRP)

To make a connection with the work of Stolyar [39] (and others), consider the

two-user queueing system where the server is able to time-share amongst finitely many

operation points chosen from the closure of the capacity surface and the origin. (To allow

for viable operation when one or both queues are empty, we assume that the points(0, 0),

(c∗1, 0), and(0, c∗2) are included amongst the finitely many operation points.) A represen-

tative capacity surface for a two-user MIMO broadcast channel is shown in Fig.3.2. For

this system, the system stability region is the closed convex hull of the set of operation

points. For example, if the operation points are(c∗1, 0), (0, c∗2), c
1 = (c1

1, c
1
2), c

2 = (c2
1, c

2
2),

c3 = (c3
1, c

3
2), and(0, 0) as indicated in Fig.3.2, then the upper surface of the system

stability region,C̃, is shown by the dashed curve.

Recall that the ray from the origin of slopek2 intersects the boundary ofC, the

capacity region, at the pointc = (c1, c2). Suppose thatC is strictly convex atc, i.e., the

capacity surface is not flat atc. The following lemma shows that then the pointc must

be one of the operation points, otherwise the system will be unstable in heavy traffic.

Furthermore, whenc is amongst the operation points, the CRP condition does not hold.

Lemma 3.3.5.Suppose that the pointc = (c1, c2), where the ray from the origin of slope

k2 intersects the capacity surface, is an extreme point ofC. Thenc must be one of the

operation points of any policy that is stable whenever the arrival rate is(1−1/r)λ for all

r ∈ (1,∞). Furthermore, there is then more than one normal toC̃ at c, and the complete
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resource pooling condition does not hold.

Proof. Consider a policy that time shares amongst finitely many operation points not

includingc. The average bit arrival rate vectorbr associated with the average arrival rate

of (1−1/r)λ for r ∈ (1,∞), approaches the pointc along the ray from the origin of slope

k2. Sincec is an extreme point ofC andc is not an operation point,c is outsideC̃. Thus,

there is an̂r such that forr > r̂, br is in the capacity regionC but not inC̃ (as illustrated

in Fig. 3.2). Thus, the time sharing policy is not stable for allbr such thatr > r̂.

Now, if c is one of the finitely many operation points of a time-sharingpolicy,

sincec cannot be written as a convex combination of the other operating points, there is

not a unique normal to the boundary ofC̃ at c. This is illustrated in Fig.3.2 wherec1 is

one of the extreme points but there is no unique normal toC̃ at c1.

The analysis performed in [39] depends critically on the (CRP) assumption that

there is a unique normal tõC at the point where the ray in the direction of the average

bit arrival rate vector intersects̃C. Except in the special situation wherec is a convex

combination of two other operation points, this assumptionwill not be satisfied atc and

hence the analysis based on the assumption that the CRP condition holds does not apply.

3.3.5 Scaling and Standard Limit Theorems

3.3.5.1 Scaling

We first consider a fluid scaled version of the system where fluid scaling corre-

sponds to viewing the system over long intervals of time of orderr2 and simultaneously

reducing the contribution of a single packet to the congestion level by a factor of1/r2.

The behavior of solutions of a limiting fluid model will play an important role in establish-

ing a limit for the diffusion scaled system where diffusion scaling corresponds to looking

over time intervals of orderr2 but only diminishing packet contributions to the congestion

measures by a factor of1/r. We define the following fluid and diffusion scaled processes.



54

Fluid Scaling Fluid (or functional law of large numbers) scaling is indicated by placing

a bar over a process. Fori = 1, 2, t ≥ 0, andr > 0, define

T̄ r
i (t) , r−2T r

i (r2t), (3.9)

Q̄r
i (t) , r−2Qr

i (r
2t), (3.10)

Ēr
i (t) , r−2Er

i (r
2t), (3.11)

S̄r
i (t) , r−2Sr

i (r
2t). (3.12)

There are in fact two kinds of fluid scaling. In addition to that indicated above,

one could simply accelerate time byr and scale the process by1
r

(in place ofr2 and 1
r2 ,

respectively). Here we shall only need the first form of fluid scaling described above.

Diffusion Scaling Diffusion (or functional central limit theorem) scaling isindicated

by placing a hat over a process. Fori = 1, 2, andr > 0, define

Q̂r
i (t) ,

Qr
i (r

2t)

r
, t ≥ 0, (3.13)

as the diffusion scaled version ofQr
i (·). To apply diffusion scaling to the primitive

stochastic processesEr, S, we must center them before scaling. Accordingly, fori = 1, 2,

t ≥ 0 andr > 0, we define

Êr
i (t) ,

Er
i (r

2t) − λr
i r

2t

r
(3.14)

and

Ŝr
i (t) ,

Si(r
2t) − µir

2t

r
. (3.15)
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3.3.5.2 Functional Limit Theorems for Stochastic Primitives

We will use the following functional central limit theorem (FCLT) for the stochas-

tic primitives in the sequel.

Proposition 3.3.6(FCLT). The diffusion scaled processes(Êr(·), Ŝr(·)) jointly converge

in distribution to(BE(·), BS(·)) asr → ∞, i.e.,

(Êr(·), Ŝr(·)) ⇒ (BE(·), BS(·)) asr → ∞, (3.16)

whereBE(·) and BS(·) are independent two-dimensional driftless Brownian motions

starting from the origin with diagonal covariance matricesΓE , diag(λ1α
2
1, λ2α

2
2) and

ΓS , diag(µ1β
2
1 , µ2β

2
2), respectively.

Remark.As there is a single source of variability (not depending onr) for each ofEr
i ,

Si, i = 1, 2, only the finiteness of the second moments ofǔi(k) andvi(k) is required

for the FCLT. Furthermore, since a Brownian motion is a continuous process, the weak-

convergence of(Êr(·), Ŝr(·)) to a Brownian motion implies C-tightness of the sequence

{(Êr(·), Ŝr(·))}.

Proof. By results of Iglehart and Whitt [18], functional central limit theorems for the

renewal counting processeŝEr(·) and Ŝr(·) can be inferred from those for the partial

sums of{ur
i (k)}∞k=1 and{vi(k)}∞k=1, respectively. Functional central limit theorems for

the latter follow from Theorem 3.1 of Prokhorov [32].

As a corollary, we have the following functional law of largenumbers (FLLN) for

the stochastic primitives. For this section, from now on, for eacht ≥ 0, let λ(t) , λt and

µ(t) , µt.

Corollary 3.3.7 (FLLN). The fluid-scaled processes(Ēr(·), S̄r(·)) jointly converge in
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distribution to(λ(·), µ(·)) asr → ∞, i.e.,

(

Ēr(·), S̄r(·)
)

⇒ (λ(·), µ(·)) asr → ∞. (3.17)

Remark.The weak-convergence of(Ēr(·), S̄r(·)) to a continuous process implies C-

tightness of the sequence{(Ēr(·), S̄r(·))}.

Proof. Proposition3.3.6implies that

(

1

r
Êr(·), 1

r
Ŝr(·)

)

⇒ (0, 0) asr → ∞. (3.18)

The desired result follows from this and the fact thatλr
i → λi asr → ∞ by (3.8) for

i = 1, 2.

3.3.6 Fluid Model

Applying fluid scaling to the dynamic equation (3.4) satisfied by the queuelength

process for the system indexed byr, we obtain forr > 0, i = 1, 2, t ≥ 0,

Q̄r
i (t) = Ēr

i (t) − S̄r
i (T̄

r
i (t)). (3.19)

We next consider the behavior of̄T r(·), the fluid-scaled version ofT r(·):

T̄ r(t) =
1

r2

∫ r2t

0

Λ (Qr(s)) ds, t ≥ 0. (3.20)

By the change of variables̃s = s
r2 , for t ≥ 0, (3.20) becomes

T̄ r(t) =

∫ t

0

Λ

(

r2Qr(r2s̃)

r2

)

ds̃ =

∫ t

0

Λ
(

Q̄r(s̃)
)

ds̃. (3.21)

where the second equality follows from the definition ofQ̄r(·) and the scaling property of
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Λ(·) (see Lemma3.3.3). The following lemma follows from (3.21) and the fact thatΛi(·)
is bounded byc∗i which is less thanc1 + c2, for i = 1, 2.

Lemma 3.3.8.For eachr > 0, almost surelȳT r(·) is uniformly Lipschitz continuous with

Lipschitz constant less thanc1 + c2.

Remark.This lemma is used to prove the C-tightness of the fluid-scaledstochastic pro-

cesses.

For a continuous functionx : [0,∞) → R, we say thatt ∈ (0,∞) is a regular

point for x if x is differentiable att. If x is absolutely continuous, almost everyt ∈
(0,∞) is a regular point andx can be recovered from its almost everywhere (a.e.) defined

derivativeẋ:

x(t) = x(0) +

∫ t

0

ẋ(s)ds, t ≥ 0. (3.22)

A (uniformly) Lipschitz continuous functionx : [0,∞) → R is absolutely continuous.

Lemma 3.3.9.The sequence of processes
{

(Ēr(·), S̄r(·), T̄ r(·), Q̄r(·))
}

converges in dis-

tribution to
(

Ē(·), S̄(·), T̄ (·), Q̄(·)
)

asr → ∞ where

Ē(·) = λ(·), S̄(·) = µ(·), Q̄(·) = 0, T̄ (·) = c(·), (3.23)

andc(t) , (c1t, c2t), t ≥ 0.

Proof. From the uniform Lipschitz continuity of{T̄ r(·)} established in Lemma3.3.8,

it follows that {T̄ r(·)} is C-tight. Since,{Ēr(·)} and{S̄r(·)} are also C-tight (see the

remarks following Corollary3.3.7), using (3.19) together with the random time change

theorem of Billingsley [5, p. 151], we conclude that the sequence
{

(Ēr(·), S̄r(·), T̄ r(·),
Q̄r(·))

}

is C-tight as well. Suppose
(

Ē(·), S̄(·), T̄ (·), Q̄(·)
)

is a weak limit point of this

sequence. By invoking the Skorokhod representation theorem (see, e.g., [12, Theorem

3.1.8, p. 102]), we may assume without loss of generality that for a subsequence{rk} of

{r},
{(

Ērk(·), S̄rk(·), T̄ rk(·), Q̄rk(·)
)}∞

k=1
andT̄ (·) are defined on a common probability
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space such that

Q̄rk

i (t) = Ērk

i (t) − S̄rk

i (T̄ rk

i (t)) for t ≥ 0, i = 1, 2 (3.24)

and almost surely ask → ∞,

(

Ērk(·), S̄rk(·), T̄ rk(·), Q̄rk(·)
)

→
(

λ(·), µ(·), T̄ (·), Q̄(·)
)

u.o.c. (3.25)

where almost surelȳQi(t) = λit − µiT̄i(t), t ≥ 0, i = 1, 2. The limit T̄ (·) inherits

the Lipschitz property of
{

T̄ r(·)
}

almost surely. Fixω such thatT̄ (·, ω) is uniformly

Lipschitz continuous. In the following, we suppress explicit indication of the dependence

on ω, but ω is fixed throughout. Lett > 0 be a regular point for̄Ti, i = 1, 2, thenQ̄ is

differentiable att and

dQ̄i(t)

dt
= λi − µi

dT̄i(t)

dt
, i = 1, 2. (3.26)

We consider the following cases for̄Qi(t):

Case I: Q̄i(t) = 0 for i = 1, 2. Fix i. SinceQ̄i(·) ≥ 0, Q̄i(t) = 0 andt > 0 is a regular

point for T̄ andQ̄, it follows from a simple analysis argument thatdQ̄i(t)/dt = 0. Then,

0 = λi − µi
dT̄i(t)

dt
, (3.27)

which implies that
dT̄i(t)

dt
=

λi

µi

= ci. (3.28)

Case II: Q̄i(t) > 0 for i = 1, 2. Let 0 ≤ u < v < ∞ be such thatt ∈ (u, v) and for

i = 1, 2, Q̄i(s) > 0 for all s ∈ [u, v]. Then, by the uniform convergence ofQ̄r(·) to Q̄(·)
on [u, v], we have for all sufficiently larger, for i = 1, 2, Q̄r

i (s) > 0 for all s ∈ [u, v]. So
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for all s > t in [u, v] we have

T̄i(s) − T̄i(t) = lim
r→∞

[

T̄ r
i (s) − T̄ r

i (t)
]

= lim
r→∞

[∫ s

t

Λi

(

Q̄r
i (z)

)

dz

]

= lim
r→∞

[∫ s

t

ci dz

]

= ci(s − t),

(3.29)

where we have used the fact thatΛi(q) = ci, i = 1, 2 whenq > 0. Dividing by (s− t) and

taking the limit ass → t, we obtaindT̄i(t)/dt = ci for i = 1, 2. Note that this implies

thatdQ̄i(t)/dt = 0 for i = 1, 2, by (3.26) and sinceλi = µici.

Case III: There is i ∈ {1, 2} such that Q̄i(t) > 0 and Q̄j(t) = 0 for j 6= i. Since for

j 6= i, Q̄j(·) ≥ 0, Q̄j(t) = 0 andt > 0 is a regular point, it follows thatdQ̄j(t)/dt = 0

which implies thatdT̄j(t)/dt = cj. Let 0 ≤ u < v < ∞ be such thatt ∈ (u, v) and

Q̄i(s) > 0 for all s ∈ [u, v]. Then, for all sufficiently larger, Q̄r
i (s) > 0 for all s ∈ [u, v],

which implies by the definition ofΛi(Q̄
r(·)) that

ci(s − t) ≤ T̄ r
i (s) − T̄ r

i (t) ≤ c∗i (s − t) for all s > t in [u, v]. (3.30)

Letting r → ∞ yields

ci(s − t) ≤ T̄i(s) − T̄i(t) ≤ c∗i (s − t), for all s > t in [u, v]. (3.31)

Dividing by (s − t) and lettings → t, we conclude thatci ≤ dT̄i(t)/dt ≤ c∗i . Thus

from (3.26), sinceλi = µici,

dQ̄i(t)/dt ≤ 0. (3.32)

Combining cases (I)–(III) we see that at each regular pointt > 0 for T̄ (·),

d

dt

(

Q̄2
1(t) + Q̄2

2(t)
)

= 2

[

Q̄1(t)
dQ̄1(t)

dt
+ Q̄2(t)

dQ̄2(t)

dt

]

≤ 0. (3.33)

SinceQ̄2
1(0) + Q̄2

2(0) = 0 andQ̄2
1(·) + Q̄2

2(·) ≥ 0, it follows thatQ̄2
1(t) + Q̄2

2(t) = 0 for
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all t ≥ 0. Hence,Q̄1(t) = Q̄2(t) = 0 for all t ≥ 0 and case (I) implies that̄̇Ti(t) = ci

at each regular pointt > 0 for i = 1, 2. Such regular points,t, occur almost everywhere

andT̄i can be recovered from its a.e. defined derivative to giveT̄i(t) = cit for all t ≥ 0,

i = 1, 2.

Finally, since
(

Ē(·), S̄(·), T̄ (·), Q̄(·)
)

was an arbitrary weak limit point and is

unique (as shown above), it follows that
{(

Ēr
i (t), S̄

r
i (t), T̄

r
i (t), Q̄r

i (t)
)}

converges in dis-

tribution to(Ē(·), S̄(·), T̄ (·), Q̄(·)) as described by (3.23).

3.3.7 Diffusion Approximation

3.3.7.1 Pre-limit process

From (3.4), (3.5), (3.9), (3.14), and (3.15), the diffusion scaled queuelength pro-

cess can be written fori = 1, 2, t ≥ 0, as

Q̂r
i (t) = (Êr

i (t) + λr
i rt) − (Ŝr

i (T̄
r
i (t)) + µirT̄

r
i (t))

= Êr
i (t) − Ŝr

i (T̄
r
i (t)) + r(λr

i t − µiT̄
r
i (t)).

(3.34)

Expanding the last term in (3.34), we have

r(λr
i t − µiT̄

r
i (t)) =

r2λr
i t − µir

2T̄ r
i (t)

r

=
(λr

i − λi) r2t + λi

∫ r2t

0
ds − µi

∫ r2t

0
Λi(Q

r(s))ds

r
.

(3.35)

Considering four different types of states for the queuelength vectorQr and sub-



61

stituting the corresponding values forΛi(Q
r(·)) from (3.3), we can rewrite (3.35) as

r(λr
i t − µiT̄

r
i (t)) = (λr

i − λi) rt

+
1

r

[

(λi − µici)

∫ r2t

0

1{Qr(s)>0}ds

+ (λi − µic
∗
i )

∫ r2t

0

1{Qr
i (s)>0;Qr

j (s)=0,j 6=i}ds

+λi

∫ r2t

0

1{Qr
i (s)=0;Qr

j (s)>0,j 6=i}ds

+ λi

∫ r2t

0

1{Qr
j (s)=0 for all j}ds

]

.

(3.36)

Define fort ≥ 0,

Û r
i (t) ,

1

r

∫ r2t

0

1{Qr
i (s)=0;Qr

j (s)>0,j 6=i}ds

= r

∫ t

0

1{Q̂r
i (s)=0;Q̂r

j (s)>0,j 6=i}ds, i = 1, 2,

(3.37)

Ẑr(t) ,
1

r

∫ r2t

0

1{Qr
j (s)=0 for all j}ds = r

∫ t

0

1{Q̂r
j (s)=0 for all j}ds. (3.38)

Then, using the fact thatλi = µici and combining (3.34)–(3.38), we obtain for

i = 1, 2, t ≥ 0,

Q̂r
i (t) = X̂r

i (t) + λiÛ
r
i (t) + (λi − µic

∗
i )Û

r
j (t) + λiẐ

r(t), (3.39)

wherej = i + 1 (mod 2) and

X̂r
i (t) = Êr

i (t) − Ŝr
i (T̄

r
i (t)) + (λr

i − λi)rt. (3.40)
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This can be expressed in vector form fort ≥ 0 as

Q̂r(t) = X̂r(t) +





λ1 λ1 − µ1c
∗
1

λ2 − µ2c
∗
2 λ2



 Û r(t) +





λ1

λ2



 Ẑr(t). (3.41)

Define thereflection matrixR as

R ,





1
λ1−µ1c∗

1

λ2

λ2−µ2c∗
2

λ1
1



 (3.42)

and fori ∈ {1, 2}, j 6= i andt ≥ 0, define

Ŷ r
i (t) , λi

(

Û r
i (t) +

c∗i cj

c∗1c2 + c1c∗2 − c∗1c
∗
2

Ẑr(t)

)

. (3.43)

Then, (3.41) can be written as

Q̂r(t) = X̂r(t) + RŶ r(t), t ≥ 0. (3.44)

Note thatc∗1c2 + c1c
∗
2 − c∗1c

∗
2 > 0 (from Lemma3.3.2) andŶ r

i , i = 1, 2, can increase only

when the correspondinĝQr
i = 0.

We next state and prove the C-tightness of the sequence of processes{X̂r(·)}
which will be used in proving the C-tightness of the sequence of diffusion-scaled queue-

length processes{Q̂r(·)}.

Lemma 3.3.10.The sequence{X̂r(·)} converges in distribution to a Brownian motion

with diagonal covariance matrixΓ , diag(λ1(α
2
1 + β2

1), λ2(α
2
2 + β2

2)) and drift vector

θ , (θ1, θ2), that starts from the origin.

Proof. Let θ̂r(t) , r(λr − λ)t, t ≥ 0. By combining Proposition3.3.6, Lemma3.3.9and

Assumption3.3.4, we have that the sequence of processes
{(

Êr(·), Ŝr(·), T̄ r(·), θ̂r(·)
)}

converges in distribution to(BE(·), BS(·), c(·), θ(·)) whereBE(·) andBS(·) are indepen-
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dent two-dimensional driftless Brownian motions startingfrom the origin with covariance

matricesΓE andΓS respectively,c(t) = ct, θ(t) = θt for all t ≥ 0.

Then from (3.40), using the random time change theorem,{X̂r(·)} converges

in distribution to a two-dimensional Brownian motion with diagonal covariance matrix

diag(λ1α
2
1 + µ1c1β

2
1 , λ2α

2
2 + µ2c2β

2
2) = diag(λ1(α

2
1 + β2

1), λ2(α
2
2 + β2

2)) (sinceλi = µici

for i = 1, 2), drift vector(θ1, θ2) and starting point(0, 0).

3.3.7.2 Limit Theorem

We next discuss the properties of the reflection matrixR and use these properties

to state and prove the limit theorem, which is the main resultof this section.

Define

P̃ , I − R =





0
µ1c∗

1
−λ1

λ2

µ2c∗
2
−λ2

λ1
0



 (3.45)

whereI is the2 × 2 identity matrix. Fori = 1, 2, µic
∗
i − λi > 0, sinceµici = λi and

ci < c∗i . Thus all of the entries of̃P are nonnegative. We next show that the matrixR

satisfies the HR condition described in Section3.3.1.1.

Lemma 3.3.11.The reflection matrixR satisfies the HR condition.

Proof. SinceP̃ has zeros on the diagonal and all of its entries are nonnegative, it suffices

to show thatP̃ has spectral radius strictly less than1. The eigenvalues of̃P are the

solutions of the equation

x2 − (µ1c
∗
1 − λ1)(µ2c

∗
2 − λ2)

λ1λ2

= 0. (3.46)

Usingλi = ciµi, i = 1, 2, and the fact thatc∗1 > c1, c∗2 > c2, we have

x = ±
√

(

c∗1
c1

− 1

)(

c∗2
c2

− 1

)

. (3.47)
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Thus the spectral radius of̃P is strictly less than1 iff (c∗1 − c1)(c
∗
2 − c2) < c1c2. By

assumption,c1 + c2 > c∗1, c
∗
2. Thus0 < (c∗1 − c1) < c2 and0 < (c∗2 − c2) < c1. So

(c∗1 − c1)(c
∗
2 − c2) < c1c2 and the spectral radius of̃P is strictly less than one. ThusR

satisfies the HR condition.

We next state and prove the main result of this section.

Theorem 3.3.12(Main Theorem). The diffusion-scaled queuelength processQ̂r(·) con-

verges in distribution to an SRBM, i.e.,̂Qr ⇒ Q̂ as r → ∞, whereQ̂ is an SRBM

associated with the data(R2
+, θ, Γ, R) that starts from the origin.

Proof. Recall the results on the Skorokhod problem stated in Section 3.3.1.1. For each

r > 0, X̂r(·) has paths inD2
+ andQ̂r, X̂r, Ŷ r satisfy (3.44). By definition,Q̂r(·) has paths

in R2
+. Furthermore, a.s.,̂Y r(0) = 0, Ŷ r(·) is nonnegative, non-decreasing, continuous

and for i = 1, 2, Ŷ r
i (·) increases only when̂Qr

i (·) = 0, i.e.,
∫

(0,∞)
Q̂r

i (s)dŶ r
i (s) = 0.

Thus, a.s.,(Q̂r(·), Ŷ r(·)) is a solution of the Skorokhod problem for̂Xr(·) with respect to

R. SinceR satisfies the HR condition, by Proposition3.3.1, (Q̂r(·), Ŷ r(·)) = Φ(X̂r(·))
a.s. where the mappingΦ : D2

+ → D4
+ is continuous. By Lemma3.3.10, the sequence

{X̂r(·)} converges in distribution asr → ∞ to a Brownian motion with driftθ and

covariance matrixΓ that starts from the origin. Then by the continuous mapping theo-

rem,
{(

Q̂r(·), X̂r(·), Ŷ r(·)
)}

converges in distribution asr → ∞ to
(

Q̂(·), X̂(·), Ŷ (·)
)

where(Q̂(·), Ŷ (·)) = Φ(X̂) is a.s. the unique solution of the Skorokhod problem for

X̂(·) with respect toR. HereQ̂ is a representation of the SRBM associated with the data

(R2
+, θ, Γ, R) that starts from the origin.

3.3.7.3 Properties of the Limit Process

The SRBM structure of̂Q enables us to use results from the theory of SRBMs to

state some properties of the limit of the diffusion-scaled queuelength processes.
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Time Spent at the Origin An important quantity for a queueing system is the time that

the system is idle. It can be shown that almost surelyQ̂ spends zero Lebesgue time at the

origin. Stated formally,

Proposition 3.3.13.Almost surely, the Lebesgue measure of the time spent byQ̂ at (0, 0)

is zero.

Proof. Varadhan and Williams [41] have shown that whenθ = 0 and the covariance

matrix is the identity matrix, the associated SRBM spends zero Lebesgue time at the

origin almost surely. By a scaling of the coordinates, we mayconclude that the SRBM

with drift θ = 0 and a diagonal covariance matrix, spends zero Lebesgue timeat the origin

almost surely. Note that with the scaling, we end up applyinga similarity transformation

to theR matrix which does not alter the fact that the HR condition is satisfied. Then,

by a Girsanov transformation (see [9, §9.4]) to change the drift of the driving Brownian

motion, it follows that the Lebesgue measure of the time spent by Q̂ at the origin is zero

almost surely.

Stationary Distribution Harrison and Williams [17] have shown that there is a station-

ary distribution for the SRBM if and only ifR−1θ < 0 where the inequality is understood

to hold component by component. As an illustration, a situation in which this condition

is satisfied is depicted in Figure3.3 with θ = (−1, 0) andR =





1 −γ1

−γ2 1



 where

γ1 =
µ1c∗

1
−λ1

λ2
andγ2 =

µ2c∗
2
−λ2

λ1
. For two-dimensional SRBMs, Avram et al. [1] studied a

variational problem (VP) arising from the study of SRBMs. The optimal value of the VP

describes the tail behavior of the stationary distributionand the corresponding optimal

paths characterize how certain rare events are most likely to occur. Dai and Harrison [11]

have identified a numerical procedure for computing quantities associated with the sta-

tionary distribution for a class of SRBMs. This can be used tonumerically approximate

the mean of the stationary distribution of the SRBM that is a diffusion approximation of

our system.
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c
∗
1

c
∗
2 c1

c3

c2

c

Figure 3.2 The solid curve indicates the capacity surface while the surface of the system
stability region is shown by the dashed line.

γ1

1

Q̂1

γ2

Q̂2

θ
1

Figure 3.3 Directions of reflection and drift for an example of an SRBM with γ1 =
µ1c∗

1
−λ1

λ2
, γ2 =

µ2c∗
2
−λ2

λ1
, andθ = (−1, 0).
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3.4 Systems with Arbitrary Number of Users: Workload

3.4.1 Notation and Preliminaries

We will use the following notation throughout this section.We will useN to

denote the set{1, 2, . . . , N} whereN is a finite positive integer,K to denote an arbitrary

subset ofN , andKc to denote the complement ofK in N . We will useP(A) to indicate

the power set of an arbitrary setA. We will use|A| to denote the cardinality of the setA.

The symbol1A denotes the indicator function of a setA, i.e., 1A(x) = 1 if x ∈ A and

1A(x) = 0 if x /∈ A.

Let Z denote the set of all integers,Z+ the set of all non-negative integers,R

denote the set of real numbers, andR+ denote the set of non-negative real numbers,

which is also denoted by[0,∞). The symbolRN will denoteN -dimensional Euclidean

space and the positive orthant in this space will be denoted by RN
+ = {x ∈ RN : xi ≥

0 for all i ∈ N}. All vectors and matrices in this section are assumed to havereal valued

entries. Let0 = (0, 0, . . . , 0) ∈ RN
+ . We denote the inner product onRN by 〈·, ·〉, i.e.,

〈x, y〉 =
∑N

i=1 xiyi, for x, y ∈ RN . The usual Euclidean norm onRN will be denoted

by ‖·‖ so that‖x‖ =
√

〈x, x〉 =
(

∑N
i=1 x2

i

)1/2

for x ∈ RN . Let B(RN) denote the

σ-algebra of Borel subsets ofRN . For any non-empty setK ⊆ N and anyx ∈ RN , xK

will denote the vector whose components are those ofx with indices inK. Let eN ∈ RN

denote the vector whose entries are all1. For x, y ∈ RN , we shall usex ∧ y to denote

the vector whosei-th component is the minimum ofxi andyi for eachi ∈ N . All vector

inequalities are understood to hold componentwise. Fora ∈ RN , we shall usediag(a) to

denote theN × N diagonal matrix whose diagonal entries are given by the entries ina.

We will let (·)′ denote transpose. For any set∅ 6= K ⊆ N , we define the faceFK by

FK , {x ∈ RN
+ : xi = 0 for all i ∈ K}. (3.48)

For exampleFN = {0}, the set consisting of the origin inRN . WhenK = {i} for i ∈ N ,
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we writeFi in place ofF{i} sometimes. We define the index set of any pointx ∈ RN
+ by

K(x) , {i ∈ N : xi = 0} (3.49)

with the convention thatK(w) = ∅ if w > 0. A domain inRN is an open connected

subset ofRN . For each continuously differentiable real-valued function f defined on

some non-empty domainS ⊆ RN , ∇f(x) is the gradient off atx ∈ S:

(∇f(x))i =
∂f

∂xi

(x), i = 1, 2, . . . , N. (3.50)

For any setS ⊆ RN , we write S for the closure ofS, So for the interior ofS, and

∂S = S \ So.

All stochastic processes used in this section will be assumed to have paths that

are right continuous with finite left limits (r.c.l.l.). We denote byDN the space of r.c.l.l.

functions from[0,∞) into RN and we endow this space with the usual SkorokhodJ1-

topology (see Ethier and Kurtz [12, Chapter 3, Section 5]) which makes it a Polish space.

We denote byCN the space of continuous functions from[0,∞) into RN , also endowed

with the SkorokhodJ1-topology under which convergence of elements inCN is equivalent

to uniform convergence on compact time intervals. We endowDN (or CN ) with the Borel

σ-algebra induced by the SkorokhodJ1-topology and denote thisσ-algebra byMN . The

abbreviationu.o.c. will stand for uniformly on compactsand will be used to indicate

that a sequence of functions inDN (or CN ) is converging uniformly on compact time

intervals to a limit inDN (or CN ). An N -dimensional process is a measurable function

from a probability space into(DN ,MN). ConsiderW 1,W 2, . . . ,W , each of which is an

N -dimensional process (possibly defined on different probability spaces). The sequence

{W n}∞n=1 is said to betight if the probability measures induced by the sequence{W n}∞n=1

on(DN ,MN) form a tight sequence, i.e., they form a weakly relatively compact sequence

in the space of probability measures on(DN ,MN). The notation “W n ⇒ W ” will
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mean that “W n converges in distribution toW asn → ∞”. The sequence of processes

{W n}∞n=1 is calledC-tight if it is tight and if each weak limit point (obtained as a weak

limit along a subsequence) is inCN almost surely.

A triple (Ω,F , {Ft, t ≥ 0}) will be called a filtered space ifΩ is a set,F is a

σ-algebra of subsets ofΩ, and{Ft, t ≥ 0} is an increasing family of sub-σ-algebras of

F , i.e., a filtration. From now on, we will write a filtration{Ft, t ≥ 0} as simply{Ft}. If

P is a probability measure on(Ω,F), then(Ω,F , {Ft}, P ) is called a filtered probability

space. AnN -dimensional processX = {X(t), t ≥ 0} defined on(Ω,F , P ) is called

{Ft}-adapted if for eacht ≥ 0, X(t) : Ω → RN is measurable whenΩ is endowed with

the σ-algebraFt andRN has the usual Borelσ-algebraB(RN), andX is said to be a

continuous process if its sample paths are continuousP -a.s.

3.4.2 Communication System Model

In this subsection we specify the communication system under consideration. We

consider a cellular wireless network where base stations cooperate over noise-free infinite

capacity links. We do not make any distinction between a single-cell cellular system

having multiple base-station antennas and the traditionalcellular system with cooperating

single-antenna base stations. Here by cooperation we mean that the base stations can

perform joint beamforming and/or power control but there isa constraint on the total

power that the base stations can share. We do not make any assumptions about the number

of receive antennas per user.

The downlink channel for such a system withN users can be modeled as anN -

user MIMO Broadcast Channel (BC). We assume that the channel isfixed for all trans-

missions over the period of interest (some authors refer to this as a quasi-static channel).

Moreover, we assume that the transmit end (with the cooperating base stations) has per-

fect channel state information (CSI).

Weingarten et al. [43] have shown that for such a system, Dirty Paper Coding
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(DPC), introduced by Costa [10], achieves the capacity. Furthermore, the capacity region

can be computed by using the duality of the MIMO Multiple Access Channel (MAC) and

the MIMO BC [20] where the BC capacity region is obtained by taking the convex hull

of the union over the set of capacity regions of the dual MIMO MACs such that the total

MAC power is the same as the power in the BC.

For anN -user system, the capacity region is anN -dimensional closed convex

set inRN
+ containing the origin where the convexity follows because of the convex hull

operation. For an example of such a capacity region in the two-user case, see Figure3.1.

At the transmit end, packets arrive for each user and are buffered before transmis-

sion. We assume that there is given a nominal average packet arrival rate (e.g. an estimate

of the true average arrival rate). The ratio of the nominal average bit arrival rate for user

i relative to that for user1 is called the relative traffic rate and is denoted byκi (this is

assumed to be strictly positive). This nominal relative traffic rate is specified in advance

with the assumption thatκ1 = 1; thus, it is expected that, on average, thei-th user will

haveκi times as much data as user1. The actual traffic rate may deviate from this nominal

average rate due to estimation error and stochastic fluctuations. Naturally, when there is

no data for one (or many) of the users to transmit (the corresponding queue for that(those)

user(s) is empty), the data for the other users should be transmitted at the maximum pos-

sible rate for those users. We formally state these conditions in Section3.4.3.

3.4.3 Queueing Analogue

In this subsection, we develop a queueing analogue for the system described in

Section3.4.2. To this end, we describe the physical structure, and the stochastic primitives

specifying the packet arrivals and sizes. We formulate dynamic equations satisfied by the

workload process in terms of the stochastic primitives and the policy or service discipline

to be used with this system.
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3.4.3.1 Physical Structure

A queueing model describing our communication system hasN queues in parallel

where each queue buffers packets intended for a given user. We assume that each of the

queues has infinite buffer capacity. The queues are served bya single server correspond-

ing to a base station with multiple cooperating antennas.

3.4.3.2 Stochastic Primitives

We assume that the system starts empty and that there is anN -dimensional packet

arrival processE = {(E1(t), E2(t), . . . , EN(t)), t ≥ 0} whereEi(t) is the number of

packets that have arrived to thei-th queue in(0, t]. (HereE is used to indicate that the

arrivals areexogenous.) For i ∈ N , Ei(·) is assumed to be a (non-delayed) renewal pro-

cess defined from a sequence of strictly positive independent and identically distributed

(i.i.d.) random variables{ui(k), k = 1, 2, . . . }, where fork = 1, 2, . . . , the random vari-

ableui(k) denotes the time between the arrival of the(k− 1)-st and thek-th packet to the

i-th queue (where the0-th arrival occurs at time0). Eachui(k), k = 1, 2, . . . , is assumed

to have finite mean1/λi ∈ (0,∞) and finite squared coefficient of variation (variance

divided by the mean squared)α2
i ∈ (0,∞). Then

Ei(t) = max
{

n ≥ 0 :
n

∑

j=1

ui(j) ≤ t
}

, i ∈ N , t ≥ 0, (3.51)

where a sum up ton = 0 is defined to be zero. The packet lengths (in bits) for the

successive arrivals to thei-th queue are given by a sequence of strictly positive i.i.d.

random variables{vi(k), k = 1, 2, . . . } with average packet lengthmi = 1/µi ∈ (0,∞)

and squared coefficient of variationβ2
i ∈ (0,∞). We assume that all interarrival and

service time processes are mutually independent. Fori ∈ N andn ∈ Z+, we define

Vi(n) ,

n
∑

j=1

vi(j). (3.52)
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We refer to the processesE(·) andV (·) asstochastic primitivesfor our system model.

For convenience, to avoid the need to consider exceptional null sets, we assume without

loss of generality thatEi(t) < ∞ for all t ≥ 0 andEi(t) → ∞ ast → ∞ for eachi ∈ N ,

surely.

3.4.3.3 Workload Process

For i ∈ N , the workloadWi(t) of thei-th queue at timet ≥ 0 is given by

Wi(t) ,

Ei(t)
∑

j=1

vi(j) − Ti(t)

= Vi(Ei(t)) − Ti(t),

(3.53)

whereTi(t) is the cumulative amount of service (measured in bits) givento thei-th queue

up to timet. We next describe the service discipline which, in turn, specifies the functional

form of Ti(·).

3.4.3.4 Service Discipline

When service is given to a queue, it goes to the packet at the head of the line,

where it is assumed that packets are queued in the order of their arrival with the packet that

arrived the longest time ago being at the head of the line. A vector σ = (σ1, σ2, . . . , σN)

indicates the rates (in bits per second) of serving theN queues, i.e.,σ1 is the rate for

queue1, σ2 is the rate for queue2, and so on. The service rate for each queue is a very

simple function of the vector of workloads. Given a workloadof w = (w1, w2, . . . , wN),

the set of indices for the empty queues is the index setK(w), as defined by (3.49). The
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ratesσ = Λ(w) are given by the function3 Λ : RN
+ → RN

+ defined by

Λ(w) , cK(w) (3.54)

wherecK is a fixed vector for eachK ⊆ N with cKi = 0 if i ∈ K (corresponding to the

fact that an empty queue should not be served) andcKi > 0 if i /∈ K. The vector of service

ratescK is chosen such that it lies on the boundary of the capacity region and the service

rate for each of the users with positive workload is related by the relative traffic rate as

described below. Recall, from Section3.4.2, (κi, i ∈ N ) is the given vector of nominal

relative traffic rates. For allK $ N , the non-zero entries of the service rate vectorcK are

chosen such that
cKi
κi

=
cKj
κj

(3.55)

wheneveri, j ∈ Kc, and
∑

i c
K
i is as large as possible while still keepingcK in the capacity

region. (We make the non-degeneracy assumption that the capacity region is such that we

can choosecKi > 0 for all i ∈ Kc.) When all of the queues are non-empty (K = ∅),

the service rate vector,c∅, lies on the boundary of the capacity region and for alli ∈ N ,

c∅i = κic
∅
1, i.e., c∅ is in the direction of the vectorκ and is the furthest point along that

direction which lies in the capacity region (see Figure3.4 for an example of the capacity

region and the service rates for a two-user system).

The following condition, which corresponds to the fact thatcooperation results in

an increase in the sum of the service rates, is assumed to be satisfied by thecK’s:

∑

i∈N\L

cLi >
∑

j∈N\K

cKj for all L $ K ⊆ N . (3.56)

Moreover, the service rate for a fixed queue is assumed to be reduced as more queues are

3We only needΛ(·) defined onZN

+ for the moment, but we extend the domain ofΛ(·) to RN

+ so that
later when we rescale the workload process,Λ(·) is well-defined for the rescaled process.
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c{1,2}

c{1} c∅

Direction (κ1, κ2)

σ2

c{2}
σ1

Figure 3.4 An example of the capacity region for a two-user system. Service ratec{1,2} =
(0, 0), c{2} is along the direction(κ1, 0) andc{1} is along the direction(0, κ2).

served concurrently. Therefore

for all L $ K ⊆ N , cLi < cKi for all i ∈ N \ K. (3.57)

For example,c∅i < c
{j}
i for all i 6= j, i, j ∈ N .

Our model is a single server,N -class queueing system where theN classes corre-

spond to theN queues (users). The following scaling property ofΛ(·) is a mathematical

statement of the property of the scheduling policy that the amount of service given to the

queues in any state does not change when all workloads are multiplied by the same factor.

Lemma 3.4.1.For anyw ∈ RN
+ anda > 0, Λ(aw) = Λ(w).

Proof. The proof follows easily from the fact thatΛ(·) depends only on which queues are

empty and these are unchanged by the positive scalar factora.
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For t ≥ 0, i ∈ N , we can now give an explicit expression forTi(t) as

Ti(t) ,

∫ t

0

Λi(W (s)) ds

=
∑

K⊆N

cKi

∫ t

0

1{K(W (s))=K} ds.
(3.58)

In fact,cN = 0 and so the sum could be reduced to that overK $ N , includingK = ∅.

3.4.4 Heavy Traffic Assumptions

We wish to consider the behavior of the queueing system when it is heavily loaded.

(Kelly and Laws [23] have argued that in this regime “important features of goodcontrol

policies are displayed in sharpest relief”.) For this purpose one may regard a given system

as a member of a sequence of systems approaching the heavy traffic limit. To obtain a

reasonable approximation, the workload process is rescaled using diffusion scaling. This

corresponds to viewing the system over long intervals of time of orderr2 (wherer will

tend to infinity in the asymptotic limit) and regarding a single packet as only having a

small contribution to the overall congestion level, where this is quantified to be of order

1/r. Formally, we consider a sequence of systems indexed byr, wherer tends to infinity

through a sequence of values in(0,∞). These systems all have the same basic structure

as that described in the last section; however, the arrival rates may vary withr. We

assume that the interarrival times for the system indexed byr are given for eachi ∈ N ,

k = 1, 2, . . . , by

ur
i (k) =

1

λr
i

ǔi(k) (3.59)

where thěui(k) do not depend onr, have mean one and squared coefficient of variation

α2
i . The packet lengths{vi(k)}∞k=1, i ∈ N , do not change withr. [The above structure

is convenient for allowing the sequence of systems to approach heavy traffic by simply

changing arrival rates and keeping the underlying sources of variability ǔi(k) andvi(k)

fixed asr varies. This type of set-up has been used previously by others in treating heavy-
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traffic limits (see, e.g., Peterson [31] and Bell and Williams [2]). For a first pass, the

reader may like to simply chooseλr
i = λi for all r.] All processes and parameters that

depend onr will from now have a superscript ofr appended. The nominal relative traffic

rate and the service rates{cK,K ⊆ N} are assumed fixed throughout and do not vary

with r. We defineλi , µic
∅
i for i = 1, 2, . . . , N .

Assumption 3.4.2(Heavy Traffic Assumption). There existsθ ∈ RN
+ such that for each

i ∈ N ,

r(λr
i − λi)mi → θi asr → ∞. (3.60)

We may regardλ = (λ1, λ2, . . . , λN) as a nominal average packet arrival rate used

to set the service rates,

(c∅1, c
∅
2, . . . , c

∅
N),

for the scheduling policy. Ther-th system has a perturbed average packet arrival rateλr

for which the average bit arrival ratebr (br
i = λr

i mi, i ∈ N ) is close to(c∅1, c
∅
2, . . . , c

∅
N).

3.4.5 Scaling, Standard Limit Theorems, and Parameters

3.4.5.1 Scaling

Fluid (or functional law of large numbers) scaling is indicated by placing a bar

over a process. Forr > 0, i ∈ N , andt ≥ 0, we define

Ēr
i (t) , r−2Er

i (r
2t), (3.61)

V̄ r
i (t) , r−2V r

i (r2t), (3.62)

T̄ r
i (t) , r−2T r

i (r2t), (3.63)
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W̄ r
i (t) , r−2W r

i (r2t). (3.64)

Diffusion (or functional central limit theorem) scaling isindicated by placing a

hat over a process. Forr > 0, i ∈ N , andt ≥ 0, we define

Ŵ r
i (t) ,

W r
i (r2t)

r
. (3.65)

To apply diffusion-scaling to the primitive stochastic processesEr(·) andV (·) (note that

V (·) does not depend onr), we must center them before scaling. Accordingly, forr > 0,

i ∈ N , andt ≥ 0, we define

Êr
i (t) ,

1

r

(

Er
i (r

2t) − λr
i r

2t
)

(3.66)

and

V̂ r
i (t) ,

1

r

(

Vi(r
2t) − mir

2t
)

. (3.67)

3.4.5.2 Functional Limit Theorems for Stochastic Primitives

We will use the following functional central limit theorem (FCLT) for the stochas-

tic primitives in the sequel.

Proposition 3.4.3(FCLT). The diffusion-scaled processes(Êr(·), V̂ r(·)) jointly converge

in distribution to(BE(·), BV (·)) asr → ∞, i.e.,

(Êr(·), V̂ r(·)) ⇒ (BE(·), BV (·)) asr → ∞, (3.68)

whereBE(·) andBV (·) are independentN -dimensional driftless Brownian motions start-

ing from the origin with diagonal covariance matrices

ΓE , diag(λ1α
2
1, λ2α

2
2, . . . , λNα2

N) (3.69)



78

and

ΓV , diag(m2
1β

2
1 ,m

2
2β

2
2 , . . . ,m

2
Nβ2

N), (3.70)

respectively.

Remark.As there is a single source of variability (not depending onr) for each ofEr
i ,

Vi, i ∈ N , only the finiteness of the second moments ofǔi(k) and vi(k) is required

for the FCLT. Furthermore, since a Brownian motion is a continuous process, the weak-

convergence of(Êr(·), V̂ r(·)) to a Brownian motion implies C-tightness of the sequence

{(Êr(·), V̂ r(·))}.

Proof. By results of Iglehart and Whitt [18], a functional central limit theorem for the re-

newal counting processEr(·) can be inferred from that for the partial sums of{ur
i (k)}∞k=1.

Functional central limit theorems for the partial sums of{ur
i (k)}∞k=1 and{vi(k)}∞k=1 fol-

low from Theorem 3.1 of Prokhorov [32]. The joint convergence follows from the inde-

pendence ofEr(·) andV (·).

As a corollary, we have the following functional law of largenumbers (FLLN) for

the stochastic primitives. For eacht ≥ 0, let λ(t) , λt andm(t) , mt.

Corollary 3.4.4 (FLLN). The fluid-scaled processes(Ēr(·), V̄ r(·)) jointly converge in

distribution to(λ(·),m(·)) asr → ∞, i.e.,

(

Ēr(·), V̄ r(·)
)

⇒ (λ(·),m(·)) asr → ∞. (3.71)

Remark.Here again, the weak-convergence of(Ēr(·), V̄ r(·)) to a continuous process

implies C-tightness of the sequence{(Ēr(·), V̄ r(·))}.

Proof. Proposition3.4.3implies that

(

1

r
Êr(·), 1

r
V̂ r(·)

)

⇒ (0, 0) asr → ∞. (3.72)
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The desired result follows from this and the fact thatλr → λ asr → ∞ (see (3.60)).

3.4.5.3 Covariance and Reflection Matrices

We next define two matrices that are part of the data for the heavy traffic limit of

the workload process. We first define thecovariance matrixΓ as theN × N diagonal

matrix whosei-th diagonal entry is

Γii , λim
2
i (α

2
i + β2

i ), i ∈ N . (3.73)

We define thereflection matrixR as theN × N matrix whose entries are

Rij =











1 if i = j

c∅i −c
{j}
i

c∅j
if i 6= j.

(3.74)

For example, whenN = 3, the reflection matrixR is

R =













1
c∅
1
−c

{2}
1

c∅
2

c∅
1
−c

{3}
1

c∅
3

c∅
2
−c

{1}
2

c∅
1

1
c∅
2
−c

{3}
2

c∅
3

c∅
3
−c

{1}
3

c∅
1

c∅
3
−c

{2}
3

c∅
2

1













. (3.75)

The matrixR defined by (3.74) has a special structure in that it satisfies the Harrison-

Reiman (HR) condition [16]. We use this structure in proving the convergence of the

diffusion-scaled workload process.

Definition 3.4.1(Harrison-Reiman (HR) Condition). AnN×N matrixR satisfies the HR

condition ifR = I − Q, whereI is theN × N identity matrix, and theN × N matrixQ

has zeros along the diagonal, all of the entries ofQ are nonnegative, andQ has spectral

radius strictly less than one.

Remark.WhenR = I − Q whereQ has zeros on the diagonal and the entries ofQ are
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nonnegative, the HR condition is equivalent to the requirement thatR is a non-singular M-

matrix. Such matrices are discussed for example in Berman and Plemmons [3, Chapter 6].

Lemma 3.4.5.The reflection matrixR satisfies the HR condition.

Proof. It is easy to see that anN × N matrixR satisfies the HR condition ifR = I − P ′

whereI is theN × N identity matrix,P is anN × N matrix whose diagonal entries

are zero, and whose off-diagonal entries are nonnegative and such that each row-sum is

strictly less than1. To show thatR has this form, note that the diagonal entries ofR

are all equal to1 and from the condition (3.57), the off-diagonal entries are all negative.

Therefore it suffices to show that the sum of each column ofR is strictly greater than0.

But the sum of thej-th column ofR is

1 +
∑

i∈N\{j}

c∅i − c
{j}
i

c∅j
=

1

c∅j





∑

i∈N

c∅i −
∑

i∈N\{j}

c
{j}
i



 (3.76)

which is strictly greater than0 by (3.56) with L = ∅ andK = {j}.

3.4.6 Diffusion Approximation - Main Theorem

3.4.6.1 Definition of an SRBM

Before defining an SRBM, we define an{Ft}-adapted Brownian motion. Given

a filtered probability space(Ω,F , {Ft}, P ), a vectorθ ∈ RN , an N × N symmetric,

strictly positive-definite matrixΓ, and a probability distributionν on (RN ,B(RN)), an

{Ft}-Brownian motion with drift vectorθ, covariance matrixΓ, and initial distributionν,

is anN -dimensional{Ft}-adapted process,X, defined on(Ω,F , {Ft}, P ) such that the

following hold underP :

(i) X is anN -dimensional Brownian motion whose sample paths are almostsurely

continuous and that has initial distributionν,
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(ii) {Xi(t) − Xi(0) − θit,Ft, t ≥ 0} is a martingale fori ∈ N , and

(iii) {(Xi(t)−Xi(0)− θit)(Xj(t)−Xj(0)− θjt)− Γijt,Ft, t ≥ 0} is a martingale for

i, j ∈ N .

If ν = δx, the unit mass atx ∈ RN , we say thatX starts fromx.

Now, fix θ ∈ RN , Γ an N × N symmetric strictly positive-definite covariance

matrix,R anN × N matrix satisfying the HR condition, andν a probability measure on

(RN
+ ,B(RN

+ )). Recall the definition ofFi, i ∈ N from Section3.4.1.

Definition 3.4.2(Semimartingale Reflecting Brownian Motion (SRBM)). A Semimartin-

gale Reflecting Brownian Motion (abbreviated as SRBM) with thedata(RN
+ , θ, Γ, R, ν) is

an{Ft}-adapted,N -dimensional process,W , defined on some filtered probability space

(Ω,F , {Ft}, P ) such that

(i) P -a.s.,W (t) = X(t) + RY (t) for all t ≥ 0,

(ii) P -a.s.,W has continuous paths andW (t) ∈ RN
+ for all t ≥ 0,

(iii) under P , X is an N -dimensional{Ft}-Brownian motion with drift vectorθ, co-

variance matrixΓ, and initial distributionν,

(iv) Y is an{Ft}-adapted,N -dimensional process such thatP -a.s. for eachi ∈ N ,

(a) Yi(0) = 0,

(b) Yi is continuous and non-decreasing,

(c) Yi can only increase whenW is on the faceFi, i.e., for all t ≥ 0,

Yi(t) =

∫ t

0

1Fi
(W (s))dYi(s). (3.77)

Whenν = δx for x ∈ RN
+ , we may say thatW is an SRBM with the data(RN

+ , θ, Γ, R)

that starts fromx.
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Remark.It is known from the work of Harrison and Reiman [16] that whenR satisfies

the HR condition, there is strong existence and uniqueness (and hence weak existence and

uniqueness) for an SRBM given the data(RN
+ , θ, Γ, R) and the initial distributionν.

Remark.An N -dimensional processW defined on some filtered probability space(Ω,F ,

{Ft}, P ) is a continuous semimartingale ifW is a continuous adapted process andP -a.s.,

W (t) = W (0)+M(t)+A(t) for all t ≥ 0 whereM is a continuousN -dimensional{Ft}-

adapted local martingale withM(0) = 0, andA is a continuous{Ft}-adapted process

whose paths areP -a.s of finite variation on each bounded time interval withA(0) = 0. In

our definition of SRBM,M(t) = X(t)−X(0)− θt andA(t) = θt+RY (t) for all t ≥ 0.

3.4.6.2 Main Theorem

We are now ready to state the main theorem of this section and give an outline of

the proof. Recall the parametersθ, Γ, andR defined in (3.60), (3.73), and (3.74).

Theorem 3.4.6.The diffusion-scaled workload procesŝW r(·) converges in distribution

asr → ∞ to an SRBM with data(RN
+ , θ, Γ, R) that starts from the origin.

To prove this theorem, we first show that the sequence of processes{Ŵ r(·)} is

C-tight (Section3.4.7.3), i.e., any subsequence has a further subsequence that converges

weakly to an almost surely continuous limit process. We thenshow that any weak limit

point of such a subsequence is an SRBM with “extensive” data (Section3.4.7.6), a notion

that we make precise later (see Definition3.4.3). For an SRBM with extensive data,

there is a direction of reflection associated with each of the2N − 1 boundary faces and

there might be pushing in these directions at those boundaryfaces. In fact, we show that

the pushing at boundary faces of dimensionN − 2 or less is negligible (Section3.4.8)

and consequently, the SRBM with extensive data reduces to one of the simpler form as

described in Theorem3.4.6. Finally, we show that such an SRBM is unique in law and

when combined with the C-tightness, we conclude that the sequence of diffusion-scaled

workload processes converges in distribution to an SRBM with data(RN
+ , θ, Γ, R) that
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starts from the origin.

3.4.7 Proof of the Main Theorem

3.4.7.1 Pre-limit Workload Process

Throughout this subsectionθ, Γ, andR are given by (3.60), (3.73), and (3.74) re-

spectively. From (3.52), (3.53), (3.58), and (3.65), the diffusion-scaled workload process

can be written so that forr > 0, i ∈ N , andt ≥ 0,

Ŵ r
i (t) =

1

r
Vi(E

r
i (r

2t)) − T r
i (r2t)

r
(3.78)

where

T r
i (t) ,

∫ t

0

Λi(W
r(s))ds. (3.79)

We can rewrite (3.78) as

Ŵ r
i (t) =

1

r

[

Vi(E
r
i (r

2t)) − miE
r
i (r

2t)
]

+
1

r

[

miE
r
i (r

2t) − miλ
r
i r

2t
]

+ λr
i mirt −

1

r
T r

i (r2t)

= V̂ r
i (Ēr

i (t)) + miÊ
r
i (t) + (λr

i − λi) mirt

+
1

r
λimi

∫ r2t

0

ds − 1

r

∫ r2t

0

Λi(W
r(s))ds

= X̂r
i (t) +

∑

K⊆N

(

λimi − cKi
)

Û r,K(t),

= X̂r
i (t) +

∑

∅6=K⊆N

(c∅i − cKi )Û r,K(t),

(3.80)

where

X̂r
i (t) , V̂ r

i (Ēr
i (t)) + miÊ

r
i (t) + (λr

i − λi) mirt, (3.81)

Û r,K(t) ,
1

r

∫ r2t

0

1{K(W r(s))=K} ds = r

∫ t

0

1{K(Ŵ r(s))=K} ds (3.82)
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and we have used the facts that for anyw ∈ RN
+ ,

∑

K⊆N

1{K(w)=K} = 1, (3.83)

andc∅i = λimi, i ∈ N . The second equation in (3.80) follows from the following simpli-

fication:

1

r

[

Vi(E
r
i (r

2t)) − miE
r
i (r

2t)
]

=
1

r

[

Vi

(

r2Er
i (r

2t)

r2

)

− mir
2Er

i (r
2t)

r2

]

=
1

r

[

Vi(r
2Ēr

i (t)) − mir
2Ēr

i (t)
]

= V̂ r
i (Ēr

i (t)).

(3.84)

To verify the last equality in (3.82), sets = r2u (ds = r2du). Then whens = r2t, u = t

and whens = 0, u = 0. Therefore,

1

r

∫ r2t

0

1{K(W r(s))=K} ds =
1

r

∫ t

0

1{K(W r(r2u))=K} r2du

= r

∫ t

0

1{K(rŴ r(u))=K} du

= r

∫ t

0

1{K(Ŵ r(u))=K} du

(3.85)

where we have used Lemma3.4.1to arrive at the last equality. For notational convenience,

we will sometimes writêU r(·) in place of{Û r,K(·), ∅ 6= K ⊆ N} in the sequel.

3.4.7.2 Convergence to Brownian Motion

Our next result shows that the sequence of processes{X̂r(·)} converges in dis-

tribution to a Brownian motion. This result will be used in proving that the sequence of

processes{(Ŵ r(·), X̂r(·), Û r(·))} is C-tight (see Section3.4.7.3) and that any weak limit

point of this sequence defines an SRBM with extensive data (see Section3.4.7.6).

Lemma 3.4.7. The sequence of processes{X̂r(·)} converges in distribution to anN -

dimensional Brownian motion that starts from the origin and has drift θ and covariance
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matrixΓ.

Proof. For all t ≥ 0, r > 0, define

θ(t) , θt, (3.86)

λ(t) , λt, (3.87)

and

θ̂r
i (t) , r(λr

i − λi)mit for all i ∈ N . (3.88)

By Assumption3.4.2, θ̂r(·) → θ(·) u.o.c. asr → ∞. Combining this result with the stan-

dard functional central limit theorem (Proposition3.4.3), we conclude that the sequence

of processes{(Êr(·), V̂ r(·), Ēr(·), θ̂r(·))} converges in distribution to(BE(·), BV (·),
λ(·), θ(·)) whereBE(·) and BV (·) are independentN -dimensional driftless Brownian

motions starting from the origin with covariance matricesΓE andΓV given by (3.69)

and (3.70) respectively. Then from (3.81), using the random time change lemma of

Billingsley [5, p. 151], we conclude that{X̂r(·)} converges in distribution toBV (λ(·))+

diag(m)BE(·) + θ(·), which is anN -dimensional Brownian motion that starts from the

origin, has driftθ, and a diagonal covariance matrix whosei-th diagonal entry is

λim
2
i β

2
i + m2

i λiα
2
i = λim

2
i (α

2
i + β2

i ) = Γii, i ∈ N . (3.89)

3.4.7.3 C-tightness

Theorem 3.4.8.The sequence of processes{(Ŵ r(·), X̂r(·), Û r(·))} is C-tight.

To prove the C-tightness, we use a result from Kang and Williams [21]. In par-
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ticular, we show that the Assumptions (A1 )–(A5 ) and the Assumption 4.1 of [21] are

satisfied by the geometric data and the sequence of processes, {(Ŵ r(·), X̂r(·), Û r(·))},

from which the C-tightness follows by Theorem 4.2 of [21]. This verification is carried

out below.

3.4.7.4 Domain

For each∅ 6= K ⊆ N , definenK as theN -dimensional vector whosei-th element

is 1/
√

|K| if i ∈ K and0 otherwise, that is, fori ∈ N ,

nK
i =

1
√

|K|
1{i∈K}. (3.90)

Then for each∅ 6= K ⊆ N ,
∥

∥nK
∥

∥ = 1. For each∅ 6= K ⊆ N , defineGK as

GK , {x ∈ RN :
〈

nK, x
〉

> 0}. (3.91)

Then for each∅ 6= K ⊆ N , GK is an open half-space ofRN and, therefore, a non-empty

domain inRN . Define the domainG as

G , ∩
∅6=K⊆N

GK. (3.92)

In fact,G = {x ∈ RN : xi > 0 for all i ∈ N}. Hence,G = RN
+ . (While the collection

{G{i}, i = 1, 2, . . . , N} is sufficient to defineG, we include the other domains as well

since they will have directions of reflection associated with them.)

Lemma 3.4.9. The domainG with the representation(3.92) satisfies Assumptions (A1

)–(A3 ) of [21, Section 3].

Remark.Note that the inward unit normal vector forGK is nK.

Proof. SinceG is a finite intersection of half-spaces,G is a convex polyhedron. We also
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note that for all∅ 6= K ⊆ N , ∂G∩ ∂GK 6= ∅ since the origin is in∂G∩ ∂GK. Conse-

quently, by Lemma A.3 of [21], we only need to show thatG satisfies Assumption (A1

) of [21]. Recall that eachGK is a half-space. Therefore for each∅ 6= K ⊆ N , GK

is a non-empty domain,GK 6= RN , and the boundary∂GK of GK is C1. Therefore the

non-empty domainG satisfies Assumption (A1 ) and hence, Assumptions (A1 )–(A3 )

of [21] hold.

3.4.7.5 Reflection Vectors

For each∅ 6= K ⊆ N , define the reflection vectorγK such that

γK
i , c∅i − cKi for eachi ∈ N . (3.93)

By this definition, ifi ∈ K, cKi = 0 and therefore,γK
i = c∅i > 0. On the other hand, if

i ∈ Kc, γK
i = c∅i − cKi < 0 by (3.57). With this definition of{γK, ∅ 6= K ⊆ N}, (3.80)

can be rewritten in vector form as

Ŵ r(t) = X̂r(t) +
∑

∅6=K⊆N

γKÛ r,K(t). (3.94)

Moreover, it is easy to see that the matrix whose columns are given byγ{1}, · · · , γ{N}, is

R diag(c∅1, c
∅
2, . . . , c

∅
N) (3.95)

whereR is theN ×N reflection matrix defined in (3.74). To facilitate the use of [21], we

define the normalized reflection vectors{γ̃K, ∅ 6= K ⊆ N} by

γ̃K ,
γK

‖γK‖ , (3.96)

so that
∥

∥γ̃K
∥

∥ = 1 for all ∅ 6= K ⊆ N .
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Lemma 3.4.10.The reflection vectors{γ̃K, ∅ 6= K ⊆ N} satisfy Assumptions (A4 )–(A5

) of [21, Section 3].

Proof. Since the reflection vectors are constant, it is clear that the uniform Lipschitz

continuity property of Assumption (A4 ) of [21] is satisfied. Also, we have normalized

the vectors to be of unit length.

To verify (A5 ), we need to show that there is a constanta ∈ (0, 1) such that for

eachx ∈ ∂G, there are nonnegative constants(bL(x) : ∅ 6= L ⊆ K(x)) and(dL(x) : ∅ 6=
L ⊆ K(x)) such that

∑

∅6=L⊆K(x)

bL(x) = 1, (3.97)

min
∅6=M⊆K(x)

〈

∑

∅6=L⊆K(x)

bL(x)nL, γ̃M

〉

≥ a, (3.98)

∑

∅6=L⊆K(x)

dL(x) = 1, (3.99)

min
∅6=M⊆K(x)

〈

∑

∅6=L⊆K(x)

dL(x)γ̃L, nM

〉

≥ a. (3.100)

To this end, for anyx ∈ ∂G and∅ 6= L ⊆ K(x), set

bL(x) , 1{L=K(x)} (3.101)

and

dL(x) , 1{L=K(x)}. (3.102)

Then
∑

∅6=L⊆K(x)

bL(x)nL = nK(x) (3.103)
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and
∑

∅6=L⊆K(x)

dL(x)γ̃L = γ̃K(x). (3.104)

Therefore to verify that Assumption (A5 ) of [21] is satisfied, we only need to verify that

for eachx ∈ ∂G and∅ 6= M ⊆ K(x),
〈

nK(x), γ̃M
〉

and
〈

γ̃K(x), nM
〉

are bounded below

by a strictly positive constant not depending onx or M. We first verify that
〈

γ̃K(x), nM
〉

has such a lower bound. From (3.93) and (3.96), for all i ∈ K(x),

γ̃
K(x)
i =

c∅i
‖γK(x)‖ > 0. (3.105)

Thus, using (3.90), for each∅ 6= M ⊆ K(x),

〈

γ̃K(x), nM
〉

=
1

√

|M|
∑

i∈M

γ̃
K(x)
i

≥ mini∈M c∅i
√

|M| ‖γK(x)‖

≥ mini∈N c∅i√
N max∅6=L⊆N ‖γL‖

> 0

(3.106)

where the second inequality follows because we are taking minimum over a larger set in

the third line and for allx ∈ ∂G, |K(x)| ≤ N . Next, we show that for each∅ 6= M ⊆
K(x),

〈

nK(x), γ̃M
〉

has a uniform strictly positive lower bound. To this end, we have for
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∅ 6= M ⊆ K(x),

〈

nK(x), γ̃M
〉

=
1

√

|K(x)|
∑

i∈K(x)

γM
i /

∥

∥γM
∥

∥

=
1

√

|K(x)|
∑

i∈K(x)

(c∅i − cMi )/
∥

∥γM
∥

∥

=
1

√

|K(x)|





∑

i∈N

(c∅i − cMi ) −
∑

i∈(K(x))c

(c∅i − cMi )



 /
∥

∥γM
∥

∥

≥ 1
√

|K(x)|
∑

i∈N

(c∅i − cMi )/
∥

∥γM
∥

∥

≥ 1√
N

min
∅6=L⊆N

∑

i∈N

(c∅i − cLi )/ max
∅6=L⊆N

∥

∥γL
∥

∥

> 0

(3.107)

where the first inequality follows from (3.57) with L = ∅ andM in place ofK and the

last inequality follows from (3.56) and the fact thatcLi = 0 if i ∈ L.

Proof of Theorem3.4.8. For eachr > 0, let

Ẑr , (Ŵ r, X̂r, Û r). (3.108)

To prove the C-tightness of{Ẑr}, we first verify that Assumption 4.1 of [21, Section 4]

is satisfied.

For any∅ 6= K ⊆ N andr ≥ 0, let γr,K(y, x) , γ̃K for all x, y ∈ RN , αr , 0 ∈
DN , βr = {βr,K : ∅ 6= K ⊆ N} whereβr,K , 0 ∈ D, δr = 1/r, andŶ r = {Ŷ r,K :

∅ 6= K ⊆ N} whereŶ r,K =
∥

∥γK
∥

∥ Û r,K. With these definitions, the conditions (i)–(vi) of

Assumption 4.1 of [21] are satisfied with{(Ŵ r, X̂r, Ŷ r)} in place of{(W n, Xn, Y n)}.

Here

Ŷ r,K(t) =

∫ t

0

1{dist(Ŵ r(s),∂GK ∩ ∂G)≤δr}dŶ r,K(s) (3.109)

becauseÛ r,K can increase only when̂W r is on ∂GK ∩ ∂G (see (3.82)), and{X̂r} is
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C-tight by Lemma3.4.7. It then follows from Theorem 4.2 of [21, Section 4], that

{(Ŵ r, X̂r, Ŷ r)}, and hence{Ẑr}, is C-tight and the theorem is proved.

3.4.7.6 SRBM with Extensive Data

We next show that any weak limit point of the sequence of processes{(Ŵ r(·),
X̂r(·), Û r(·))} is an SRBM with extensive data. Before presenting the theorem and its

proof, we need to define an SRBM with extensive data. The following definition is

adapted from the definition in [21, Section 2]. Recall the definition ofG from (3.92),

θ andΓ from (3.60) and (3.73), and{γK, ∅ 6= K ⊆ N} from (3.93). Let ν be a proba-

bility measure on(G,B(G)), whereB(G) denotes theσ-algebra of Borel subsets of the

closure,G, of G.

Definition 3.4.3(SRBM with Extensive Data). An SRBM with the extensive data(G, θ, Γ,

{γK, ∅ 6= K ⊆ N}, ν) is an{Ft}-adapted,N -dimensional processW defined on some

filtered probability space(Ω,F , {Ft}, P ) such that

(i) P -a.s., for allt ≥ 0,

W (t) = X(t) +
∑

∅6=K⊆N

∫ t

0

γK(W (s))dUK(s), (3.110)

(ii) P -a.s.,W has continuous paths andW (t) ∈ G for all t ≥ 0,

(iii) under P , X is an N -dimensional{Ft}-Brownian motion with drift vectorθ, co-

variance matrixΓ, and initial distributionν,

(iv) for each∅ 6= K ⊆ N , UK is an{Ft}-adapted, one-dimensional process such that

P -a.s.,

(a) UK(0) = 0,

(b) UK is continuous and non-decreasing,
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(c) for all t ≥ 0,

UK(t) =

∫ t

0

1{W (s)∈∂GK ∩ ∂G}dUK(s). (3.111)

Whenν = δx, for x ∈ G, we may say thatW is an SRBM associated with the data

(G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts fromx.

Remark.We have introduced the terminology “extensive” data in thiswork to differentiate

between the above SRBM which has reflection on the lower-dimensional faces and the

simpler SRBM introduced in Definition3.4.2.

Remark.Recall the definition of a continuous semimartingale from the remarks following

Definition 3.4.2. In the above definition of an SRBM, the decomposition of the semi-

martingaleM(t) = X(t) − X(0) − θt and

A(t) = θt +
∑

∅6=K⊆N

∫ t

0

γK(W (s))dUK(s). (3.112)

With this definition in hand, we can now state and prove the main result of this

subsection.

Theorem 3.4.11.Any weak limit point(W (·), X(·), U(·)) of the sequence of processes

{(Ŵ r(·), X̂r(·), Û r(·))} defines an SRBM,W , with the extensive data(G, θ, Γ, {γK, ∅ 6=
K ⊆ N}) that starts from the origin.

We need the following lemma for our proof of Theorem3.4.11. So as to not

disrupt the flow of this section, we defer the proof of this lemma to Appendix3.A.

Lemma 3.4.12.Suppose thatZ = (W,X,U) is a weak limit point of the sequence

{(Ŵ r, X̂r, Û r)}. LetFt = σ{Z(s) : 0 ≤ s ≤ t}, t ≥ 0. Then{X(t)−X(0)−θt,Ft, t ≥
0} is a martingale.

Proof. See Appendix3.A.
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Proof of Theorem3.4.11. The result follows from Theorem 4.3 of [21] provided Assump-

tion 4.1 and Assumptions(vi)
′
and (vii ) of Theorem 4.3 in [21] hold for {(Ŵ r, X̂r, Ŷ r)}

whereŶ r = {Ŷ r,K : ∅ 6= K ⊆ N} andŶ r,K =
∥

∥γK
∥

∥ Û r,K. Our proof of Theorem3.4.8

shows that Assumption 4.1 of [21] holds. Assumption(vi)′ of Theorem 4.3 in [21] fol-

lows immediately from Lemma3.4.7. Assumption (vii ) of Theorem 4.3 in [21] follows

from Lemma3.4.12and the simple relationship betweenÛ r,K andŶ r,K.

3.4.8 Pushing on the Lower-dimensional Faces

In this subsection, we show a result, which when combined with Theorem3.4.11

implies that for any weak limit point,(W (·), X(·)), U(·)), of the sequence of processes

{(Ŵ r(·), X̂r(·), Û r(·))}, the amount of pushing done byU at any of the faces of∂G of

dimensionN − 2 or less is negligible. Formally, we prove the following.

Theorem 3.4.13.Let (W (·), X(·), U(·)) define an SRBM,W (·), with extensive data

(G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts from the origin. Then for eachK ⊆ N , |K| ≥ 2,

for each∅ 6= L ⊆ K,

∫ ∞

0

1FK
(W (s))dUL(s) = 0 almost surely. (3.113)

Consequently, almost surely,

W (t) = X(t) +
∑

i∈N

γ{i}U{i}(t), t ≥ 0. (3.114)

Our proof of Theorem3.4.13is a generalization of the proof of the main theorem

in Reiman and Williams [33]. However, there are some differences; since in [33], there

were onlyN directions of reflection – one for each(N − 1)-dimensional boundary face,

whereas here there are2N − 1, one for each boundary face. We prove the theorem in

three steps. We assume thatN ≥ 2, otherwise the result is vacuous and hence trivially

true. We first prove that for the case of zero drift (θ = 0) the amount of pushing done
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whenW is at the origin is negligible (see Lemma3.4.14). We then use a backwards

induction argument on|K| to show that for the case of zero drift the amount of pushing

done onFK is negligible provided|K| ≥ 2 (see Lemma3.4.15). Finally, using a Girsanov

transformation, the result is extended to all constant driftsθ (see Lemma3.4.16). We then

complete the proof.

Lemma 3.4.14.Suppose(W,X,U) is as in the hypothesis of Theorem3.4.13andθ = 0.

Then forN ≥ 2 andK = N , (3.113) holds for all∅ 6= L ⊆ N .

Proof. From the semimartingale representation (3.110) of W and It̂o’s formula, for any

function f that is twice continuously differentiable in some domain containingG, we

have almost surely for allt ≥ 0:

f(W (t)) − f(W (0)) =

∫ t

0

〈∇f(W (s)), dX(s)〉

+
∑

∅6=L⊆N

∫ t

0

〈

γL,∇f(W (s))
〉

dUL(s)

+

∫ t

0

Lf(W (s))ds

(3.115)

where

Lf =
1

2

N
∑

i=1

Γii
∂2f

∂x2
i

. (3.116)

We shall substitute functions into (3.115) that allow us to estimate the left hand side

of (3.113). Each such function will beL-harmonic in some domain containingG and for

each∅ 6= L ⊆ N , its directional derivative in the direction ofγL will be bounded below

onG and be very large and positive near the origin. These functions are chosen such that

they are uniformly bounded on compact subsets ofG.
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Define

β̃ ,

















1

1
...

1

















∈ RN
+ . (3.117)

Then from (3.56) with L = ∅, K replaced byL, the fact thatcLi = 0 if i ∈ L and (3.93),

we have for all∅ 6= L ⊆ N ,
〈

γL, β̃
〉

> 0. (3.118)

Therefore, there exists a vectorβ ∈ RN
+ having all components strictly positive such that

for all ∅ 6= L ⊆ N ,
〈

γL, β
〉

, δL ∈ [1,∞). (3.119)

Define

α , Γβ. (3.120)

For eachx ∈ G = RN
+ ands ∈ (0, 1), define a squared distance function:

d2(x, s) , (x + sα)′Γ−1(x + sα)

= x′Γ−1x + 2sα′Γ−1x + s2α′Γ−1α

= x′Γ−1x + 2sβ′x + s2α′Γ−1α

≥ s2α̂

(3.121)

where

α̂ , α′Γ−1α = β′Γβ > 0. (3.122)

We have used the facts thatΓ (and henceΓ−1) is symmetric and strictly positive definite,
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andβ > 0. Then for each fixedε ∈ (0, 1),

φε(x) ,











1
2−N

∫ 1

ε
sN−2(d2(x, s))

2−N
2 ds, N ≥ 3,

1
2

∫ 1

ε
ln(d2(x, s))ds, N = 2,

(3.123)

is twice continuously differentiable in some domain containing G, and on each compact

subset ofG, it is bounded, uniformly inε. Moreover, since the integrand in (3.123), for

a fixeds, is L-harmonic as a function ofx ∈ RN \ {−sα}, it is readily verified that for

eachε ∈ (0, 1),

Lφε = 0 (3.124)

in some domain containingG.

For the verification of the directional derivative properties ofφε, for each∅ 6= L ⊆
N , let

uL , Γ−1γL. (3.125)

Then
〈

uL, α
〉

=
〈

Γ−1γL, α
〉

= (γL)
′
Γ−1α = (γL)

′
β = δL ≥ 1. (3.126)

Combining (3.126) with

∇φε(x) =

∫ 1

ε

sN−2Γ−1(x + sα)(d2(x, s))−N/2ds, (3.127)

we get

〈

γL,∇φε(x)
〉

=

∫ 1

ε

sN−2(
〈

uL, x
〉

+ sδL)(d2(x, s))−N/2ds. (3.128)

Let

ξL ,
δL

‖uL‖ . (3.129)

Then forε ∈ (0, 1) andx ∈ G satisfying‖x‖ < εξL, we have
∣

∣

〈

uL, x
〉∣

∣ < εδL and for
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s > ε,

d2(x, s) ≤
∥

∥Γ−1
∥

∥ ‖x + sα‖2

≤
∥

∥Γ−1
∥

∥ (‖x‖ + ‖sα‖)2

≤
∥

∥Γ−1
∥

∥ (ξL + ‖α‖)2s2

(3.130)

where‖Γ−1‖ denotes the norm ofΓ−1 as an operator fromRN to RN with the Euclidean

norm. Setting

ζL , δL(
∥

∥Γ−1
∥

∥ (ξL + ‖α‖)2)−N/2 (3.131)

and substituting the above in (3.128) yields:

〈

γL,∇φε(x)
〉

≥ ζL

∫ 1

ε

sN−2(s − ε)s−Nds

≥ − ζL[ln ε + 1]

(3.132)

for all x ∈ G satisfying‖x‖ < εξL. Note that for smallε, the term in the last line above

is large and positive.

Now for anyx ∈ G, ∅ 6= L ⊆ N ,

〈

γL,∇φε(x)
〉

= −δL
∫ 1

ε

sN−2(ρL(x) − s)(d2(x, s))−N/2ds (3.133)

where

ρL(x) , −
〈

uL, x
〉

δL
. (3.134)

If ρL(x) ≤ ε, then the right hand side of (3.133) is non-negative. Thus, to obtain a lower

bound for
〈

γL,∇φε(x)
〉

on G, it suffices to considerx ∈ G such thatρL(x) > ε. For
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suchx,

∫ 1

ε

sN−2(ρL(x) − s)(d2(x, s))−N/2ds

≤
∫ ρL(x)

ε

sN−2(ρL(x) − s)(d2(x, s))−N/2ds

≤ (ρL(x) − ε) max
s∈[ε,ρL(x)]

ρL(x) − s

d2(x, s)
max

s∈[ε,ρL(x)]

sN−2

(d2(x, s))(N−2)/2
.

(3.135)

Sinced2(x, s) is quadratic ins with positive coefficients, the first maximum above is

achieved ats = ε, and by (3.121), the second maximum is crudely dominated byα̂(2−N)/2.

Thus, the last term of (3.135) is bounded from above by

(ρL(x) − ε)2

d2(x, ε)
α̂(2−N)/2. (3.136)

SinceΓ−1 is strictly positive definite, there is aη > 0 such thatx′Γ−1x ≥ η ‖x‖2 and so

(see (3.121)),

d2(x, ε) ≥ η ‖x‖2 + ε2α̂

≥ (η ∧ α̂)(‖x‖2 + ε2).
(3.137)

On the other hand, by the definition ofρL(x),

(ρL(x) − ε)2 ≤ 2((ρL(x))2 + ε2)

≤ 2(
∥

∥uL
∥

∥

2 ‖x‖2 (δL)−2 + ε2)

≤ 2 max(
∥

∥uL
∥

∥

2
(δL)−2, 1)(‖x‖2 + ε2).

(3.138)

It follows from (3.137) and (3.138) that (3.135) is bounded from above by a constant not

depending onx or ε. Hence, there is ãζL ≥ 0 such that for allx ∈ G andε ∈ (0, 1),

〈

γL,∇φε(x)
〉

≥ −ζ̃L. (3.139)
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We are now ready to prove that whenK = N , (3.113) holds almost surely for

each∅ 6= L ⊆ N . For each positive integerm, define

Tm , inf{t ≥ 0 : ‖W (t)‖ ≥ m or UL(t) ≥ m for some∅ 6= L ⊆ N} ∧ m. (3.140)

Replacingf by φε andt by Tm in (3.115), we see from (3.124) that almost surely:

φε(W (Tm)) − φε(W (0)) =

∫ Tm

0

〈∇φε(W (s)), dX(s)〉

+
∑

∅6=L⊆N

∫ Tm

0

〈

γL,∇φε(W (s))
〉

dUL(s).
(3.141)

Sinceφε and its first derivatives are bounded on each compact subset of G, by the defini-

tion of the stopping timeTm and sinceθ = 0, the stochastic integral with respect todX

in (3.141) has zero expectation. Thus, taking expectations in (3.141) yields:

E [φε(W (Tm)) − φε(W (0))] =
∑

∅6=L⊆N

E

[∫ Tm

0

〈

γL,∇φε(W (s))
〉

dUL(s)

]

≥ − (ln ε + 1)
∑

∅6=L⊆N

ζL
E

[∫ Tm

0

1{‖W (s)‖<εξL}dUL(s)

]

−
∑

∅6=L⊆N

ζ̃L
E

[

UL(Tm)
]

,

(3.142)

where the lower bounds (3.132) and (3.139) have been used to obtain the last inequality.

Now, the left-hand side of (3.142) is bounded asε ↓ 0, since forε ∈ (0, 1), φε is uni-

formly bounded on compact subsets ofG. Also, the last sum in (3.142) is positive and

independent ofε. Thus, dividing (3.142) by−(ln ε + 1) and lettingε ↓ 0 yields:

lim
ε↓0

∑

∅6=L⊆N

ζL
E

[∫ Tm

0

1{‖W (s)‖<εξL}dUL(s)

]

≤ 0. (3.143)

Since each term in the above sum is non-negative andζL > 0, it follows by Fatou’s lemma
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that for each∅ 6= L ⊆ N ,

∫ Tm

0

1FN
(W (s))dUL(s) = 0 almost surely. (3.144)

Lettingm → ∞ yields the desired result.

Lemma 3.4.15.Suppose(W,X,U) is as in the hypothesis of Theorem3.4.13andθ = 0.

Then(3.113) holds for all∅ 6= L ⊆ K ⊆ N where|K| ≥ 2.

Proof. Our proof is by backwards induction on|K|. Without loss of generality, we assume

N ≥ 2 (otherwise there is noK ⊆ N with |K| ≥ 2). By Lemma3.4.14, the result holds

for |K| = N in which case the only possibleK is K = N . Fix 2 ≤ k < N and suppose

that (3.113) holds for allK ⊆ N and∅ 6= L ⊆ K, such thatk < |K| ≤ N . Fix some

K ⊆ N such that|K| = k. We need to show that for all∅ 6= L ⊆ K,

∫ ∞

0

1FK
(W (s))dUL(s) = 0 almost surely. (3.145)

To this end, fix∅ 6= L ⊆ K. Then

∫ ∞

0

1FK
(W (s))dUL(s) =

∫ ∞

0

1{K(W (s))=K}dUL(s)

+

∫ ∞

0

1n

W (s)∈∪K$M FM

odUL(s)

a.s.
=

∫ ∞

0

1{WK(s)=0,WKc (s)>0}dUL(s)

(3.146)

where by the induction assumption the second integral on theright-hand side of the first

equation is almost surely0. Thus, by monotone convergence, it suffices to prove that for

eachη ∈ RN−k
+ , satisfyingη > 0, we have

∫ ∞

0

1{WK(s)=0,WKc (s)>η}dUL(s) = 0 almost surely. (3.147)

For this, fix anη ∈ RN−k
+ with η > 0, and define a sequence of stopping times{Tm}∞m=1
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as follows. (Here, for notational convenience, we regard the entries inη as being indexed

by i ∈ Kc.)

T0 , 0,

T1 , inf{s ≥ 0 : Wi(s) < ηi/2 for somei ∈ Kc},

T2 , inf{s ≥ T1 : WKc(s) > η},

(3.148)

and form ≥ 1,

T2m+1 , inf{t ≥ T2m : Wi(s) < ηi/2 for somei ∈ Kc},

T2m+2 , inf{t ≥ T2m+1 : WKc > η}.
(3.149)

By the continuity of the paths ofW , Tm → ∞ asm → ∞, and we have almost surely:

∫ ∞

0

1{WK(s)=0,WKc (s)>η}dUL(s) ≤
∞

∑

m=0

∫ T2m+1

T2m

1{WK(s)=0}dUL(s). (3.150)

Considerm ≥ 0. Then on{T2m < ∞}, for ∅ 6= M ⊆ N , M * K, UM can

increase only whenWM = 0 and so, almost surely, for all suchM,

UM(t + T2m) − UM(T2m) = 0 for all t ∈ [0, T2m+1 − T2m]. (3.151)

Thus, on{T2m < ∞}, we have almost surely for allt ∈ [0, T2m+1 − T2m]

WK(t + T2m) − WK(T2m) = XK(t + T2m) − XK(T2m)

+
∑

∅6=M⊆K

γM
K (UM(t + T2m) − UM(T2m)).

(3.152)

Then It̂o’s formula, (3.115), holds on{T2m < ∞} for f ∈ C2(Rk
+) with (X, {UL :

∅ 6= L ⊆ N},W ) and {γL : ∅ 6= L ⊆ N} replaced by(XK, {UM : ∅ 6= M ⊆
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K},WK)((· + T2m) ∧ T2m+1) and{γM
K : ∅ 6= M ⊆ N} and with

Lf =
1

2

∑

i∈K

Γii
∂2f

∂x2
i

. (3.153)

The same proof as in Lemma3.4.14, but with the dimension reduced fromN to k = |K|,
shows that

∑

∅6=M⊆K

1{T2m<∞}

∫ T2m+1

T2m

1{WK(s)=0}dUM(s) = 0 almost surely, (3.154)

and hence for all∅ 6= M ⊆ K,

∫ T2m+1

T2m

1{WK(s)=0}dUM(s) = 0 almost surely on{T2m < ∞}. (3.155)

For this, one uses the martingale property of the Brownian motion X and the fact that

there is aβk ∈ Rk
+ andδM,k ∈ [1,∞) such that

〈

γM
K , βk

〉

= δM,k for any∅ 6= M ⊆ K
(this follows from the fact that (3.107) holds withK(x) = K wheren

K(x)
i = 0 if i /∈ K(x)

andn
K(x)
i = 1/

√

|K(x)| if i ∈ K(x)). Substituting (3.155) in (3.150) then yields the

desired result.

Lemma 3.4.16.Suppose(W,X,U) is as in the hypothesis of Theorem3.4.13and θ ∈
RN . Then(3.113) holds for all∅ 6= L ⊆ K ⊆ N where|K| ≥ 2.

Proof. Let K ⊆ N satisfy|K| ≥ 2, L ⊆ K andθ ∈ RN . Without loss of generality (by

considering a canonical representation on path space for example), we may assume that

(Ω,F) is a standard measurable space and fort ≥ 0, Ft , σ{(W (s), X(s), U(s)) : 0 ≤
s ≤ t}. Let the associated probability measure beP θ. ThenX is a(θ, Γ)-Brownian mo-

tion on (Ω,F , {Ft}, P θ). By the Girsanov transformation (see Ikeda and Watanabe [19,

p. 176]), there is a probability measureP 0 on (Ω,F) such that underP 0, X is a (0, Γ)-

Brownian motion starting from0 and for each positive integerm, P θ andP 0 are mutually

absolutely continuous onFm. It follows that W with the probability measureP 0 on
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(Ω,F , {Ft}) is an SRBM with extensive data(RN
+ , 0, Γ, {γK, ∅ 6= K ⊆ N}) that starts

from the origin. Then by Lemma3.4.15, for each∅ 6= L ⊆ K ⊆ N , (3.113) holds al-

most surely underP 0. But sinceP θ andP 0 are mutually absolutely continuous onFm, it

follows that (3.113) holds almost surely underP θ with m in place of the upper limit∞
there. Lettingm → ∞ yields the desired result.

Proof of Theorem3.4.13. Combining Lemmas3.4.14, 3.4.15, and3.4.16, we have proved

the first part of the theorem.

To prove the second part of the theorem, we use (3.113). From the definition of

an SRBM with extensive data (Definition3.4.3) and the remark following it,W has the

form:

W (t) = X(t) +
∑

∅6=K⊆N

γKUK(t), t ≥ 0, (3.156)

where for∅ 6= K ⊆ N ,

UK(t) =

∫ t

0

1FK
(W (s))dUK(s), t ≥ 0. (3.157)

From (3.113), for K ⊆ N with |K| ≥ 2,

UK(t) =

∫ t

0

1FK
(W (s))dUK(s) = 0 almost surely. (3.158)

Thus the only non-trivial terms in the sum in (3.156) are those indexed by∅ 6= K ⊆ N
where|K| = 1. Equation (3.114) immediately follows.

3.4.9 Proof of Theorem3.4.6

Proof. By Theorems3.4.8and3.4.11, it suffices to prove that whenever(W,X,U) de-

fines an SRBM with extensive data(G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts from the

origin, thenW is an SRBM with data(RN
+ , θ, Γ, R) that starts from the origin and the law

of the latter is unique.



104

By Theorem3.4.13, W (·) has the representation given by (3.114). For i ∈ N ,

define

Y i , c∅i U
{i}. (3.159)

Note that from (3.111), a.s.,

Y i(t) =

∫ t

0

1Fi
(W (s))dY i(s) for all t ≥ 0. (3.160)

ThereforeY satisfies condition (iv) of Definition3.4.2. From (3.114), (3.159), and the

representation for[γ{1}, γ{2}, . . . , γ{N}] given by (3.95), we have that fort ≥ 0,

W (t) = X(t) + RY (t) (3.161)

where by Lemma3.4.5, R satisfies the HR condition, andW andX satisfy the other

conditions of Definition3.4.2with ν = δ0. Therefore,(W,X, Y ) defines an SRBM with

data(RN
+ , θ, Γ, R) that starts from the origin. SinceR satisfies the HR condition, by

Harrison and Reiman [16], the law ofW is unique. It follows that

Ŵ r ⇒ W asr → ∞ (3.162)

whereW is an SRBM with data(RN
+ , θ, Γ, R) that starts from the origin.

3.A Proof of Lemma 3.4.12

To prove Lemma3.4.12, we use Proposition 4.4 of [21]. Specifically, we prove the

following lemma, a restatement of condition (II ) of Proposition 4.4 in [21], from which

Lemma3.4.12follows. Our proof of Lemma3.A.1 is similar to the proof of Lemma 8.4

in Williams [45].

Lemma 3.A.1. For eachr > 0, X̂r = X̌r + εr, whereεr is a process that converges to0
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in probability asr → ∞, and

(i) {X̌r(t) − X̌(0) : r > 0} is uniformly integrable for eacht ≥ 0,

(ii) there is a sequence of constants{θr} in RN such thatlimr→∞ θr = θ,

(iii) for eachr, {X̌r(t)−X̌r(0)−θrt, t ≥ 0} is a martingale with respect to the filtration

generated by(Ŵ r, X̌r, Û r).

We need to develop some preliminaries before proving Lemma3.A.1.

For r > 0, i ∈ N , andn ∈ N, define

Ar
i (n) ,

n
∑

k=1

ur
i (k), (3.163)

where an empty sum is defined to be zero. Then forr > 0, the exogenous arrival process

is defined fori ∈ N , andt ≥ 0, by

Er
i (t) , max{n ≥ 0 : Ar

i (n) ≤ t}. (3.164)

Recall the definition ofV (·) from (3.52).

For eachp ∈ NN , let

Gr
p , σ{Ar(· ∧ (p + eN )), V r(· ∧ p)} (3.165)

where

Ar(· ∧ (p + eN )) , (Ar
i (· ∧ (pi + 1)) : i ∈ N ) (3.166)

and

V r(· ∧ p) , (V r
i (· ∧ pi) : i ∈ N ). (3.167)

Then{Gr
p : p ∈ NN} is multi-parameter filtration (see [12, Section 2.8]).
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Definition 3.A.1. A multi-parameter stopping time relative to{Gr
p : p ∈ NN} is a random

variableτ taking values inNN such that

{τ = p} ∈ Gr
p (3.168)

for all p ∈ NN .

Lemma 3.A.2. For eacht ≥ 0,

τ r(t) , Er(t) (3.169)

is a stopping time relative to{Gr
p : p ∈ NN}.

Remark.The reader will note that in definingGr
p , eN is added to the argument ofAr(·).

This has to be done because we need to know the firstpi + 1 interarrival times for thei-th

user before we can determine whetherEr
i (t) = pi or not.

Proof. For i ∈ N andp ∈ NN ,

{Er
i (t) = pi} = {Ar

i (pi) ≤ t < Ar
i (pi + 1)} ∈ Gr

p . (3.170)

Thereforeτ r(t) = Er(t) is a stopping time relative to{Gr
p : p ∈ NN}.

We next show that the diffusion-scaled workload process is adapted to the multi-

parameter filtration stopped at the stopping timeτ r(r2t). The proof of the following

lemma is based on the proof of Lemma 8.3 in [45] that proves the stopping-time property

of certain renewal processes for the system of interest. Thefollowing Lemma, on the

other hand, proves the adaptedness of the workload, a resultthat in [45], unlike here,

follows from the structure of the system.

Lemma 3.A.3. The processŴ r(·) is adapted to the filtration{Gr
τr(r2t), t ≥ 0}, where

τ r(r2t) = Er(r2t).
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Remark.As a consequence of the adaptedness ofŴ r, the processes{Û r,K(·), ∅ 6= K ⊆
N} are adapted to the filtration{Gr

τr(r2t), t ≥ 0} as well.

Proof. From the definition ofŴ r(·), it suffices to show thatW r is adapted to{Gr
τr(t), t ≥

0}. Our proof is for fixedr and so the superscriptr will be suppressed in the following

proof.

SinceW (0) = 0 (and for all∅ 6= K ⊆ N , UK(0) = 0), it follows thatW (0)

andU(0) areG0-measurable. Furthermore, the process{(A(p + eN ), V (p)) : p ∈ NN} is

adapted to the multi-parameter filtration{Gp : p ∈ NN}. Then by [12, Proposition 2.8.5]

and the stopping time property ofτ(t) (Lemma3.A.2), we have that for eacht ≥ 0:

(A(E(t) + eN ), V (E(t))) ∈ Gτ(t). (3.171)

Therefore, from (3.53), we only need to show thatT (t) (as defined by (3.79)) is adapted

to the filtration{Gτ(t), t ≥ 0}.

Next, we define a strictly increasing sequence of real-valued random times{ηl}∞l=0

for the (discrete event) queueing system such thatηl , 0 and forl = 1, 2, . . . , ηl is the

time of thel-th change in the status of the arrival-departure process pair, i.e.,ηl is thel-th

time of occurrence of an arrival to, or a departure from, someuser. We haveηl < ∞ for

eachl, andηl → ∞ asl → ∞. (This follows by the assumption concerning the exclusion

of exceptional null sets made at the end of Section3.4.3.2.)

For eacht ≥ 0, p ∈ NN ,

{E(t) = p} =
∞∪

j=0

∞∩
l=j

{E(t ∧ ηl) = p}. (3.172)

For eachl ≥ 0, p ∈ NN , define

Bl
p , {E(t ∧ ηl) = p}. (3.173)
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Fix t ≥ 0. It will be shown by induction that for eachl ≥ 0, the following two properties

hold for allp ∈ NN :

(i) Bl
p ∈ Gp,

(ii) for

I l , (t ∧ ηl, E(· ∧ t ∧ ηl), T (· ∧ t ∧ ηl),W (· ∧ t ∧ ηl)), (3.174)

we have1Bl
p
I l ∈ Gp.

We now proceed with the induction proof. Forl = 0, one hasη0 = 0 andE(0) =

0. Moreover, for allp ∈ NN , W (0) = 0 ∈ Gp andT (0) = 0 ∈ Gp. Then, (i) and (ii) are

easily verified to hold forl = 0.

For the induction step, assume that for somel ≥ 0, (i) and (ii) hold for allp ∈ NN .

Now,

Bl+1
p = ∪

m
(Bl+1

p ∩Bl
m) (3.175)

where the union is over allm ∈ NN such thatm ≤ p. By the induction assumption, for

fixedp ∈ NN and anym ∈ NN such thatm ≤ p, we have

Bl
m ∈ Gm, 1Bl

m
I l ∈ Gm. (3.176)

Hence, from (3.174), Bl
m ∩{ηl ≥ t} ∈ Gm andBl

m ∩{ηl < t} ∈ Gm.

Now, onBl
m ∩{ηl ≥ t}, ηl+1 ∧ t = ηl ∧ t, E(t ∧ ηl+1) = E(t ∧ ηl) = m, and

I l+1 = I l. Thus, ifm = p we have

Bl+1
p ∩Bl

m ∩{ηl ≥ t} = Bl
m ∩{ηl ≥ t} ∈ Gm, (3.177)

or if m 6= p, then the left member of (3.177) is the empty set which is still inGm. Thus,



109

combining the above with the induction assumption (3.176), we obtain

1Bl+1
p ∩Bl

m ∩{ηl≥t}I l+1 = 1{m=p}1Bl
m ∩{ηl≥t}I l ∈ Gm. (3.178)

On the other hand, onBl
m ∩{ηl < t}, E(ηl) = E(t ∧ ηl) = m and the first time

afterηl that a new external arrival occurs isη = mini∈N Ai(mi + 1). Furthermore, on the

setBl
m ∩{ηl < t}, we have

I l = (ηl, E(· ∧ ηl), T (· ∧ ηl),W (· ∧ ηl)). (3.179)

Recall that the rate of service given to each of the users overthe period[ηl, ηl+1) is given

by σl , Λ(W (ηl)) where, from (3.54), Λ(·) is a measurable function onRN
+ . It follows

that if we define

ζ , ηl + inf{s ≥ 0 : Wi(ηl) − σl
is = 0 for somei such thatσl

i > 0, i ∈ N}, (3.180)

then onBl
m ∩{ηl < t}, ηl+1 = η ∧ ζ whereηl+1 is a measurable function of(A(· ∧

(m + eN )), ηl,W (ηl)), and hence by the induction assumption (3.176), (3.179), and the

definition ofGm, we have

1Bl
m ∩{ηl<t}ηl+1 ∈ Gm. (3.181)

Moreover, onBl
m ∩{ηl < t}, we can expressE(ηl+1), T (ηl+1), andW (η1+1) as mea-

surable functions ofηl, ηl+1, E(ηl), A(m + eN ), andW (ηl) as follows. Fori ∈ N ,

Ei(ηl+1) = Ei(ηl) + 1{Ai(mi+1)=ηl+1},

Ti(ηl+1) = Ti(ηl) + σl
i(ηl+1 − ηl),

Wi(ηl+1) = Vi(Ei(ηl+1)) − Ti(ηl+1).

(3.182)

Since on[ηl, ηl+1), E is constant andT andW are linearly increasing/decreasing at a
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fixed rate, given byσl, on [ηl, ηl+1), on combining the above with the induction assump-

tion (3.176), (3.179), and (3.181), we have that

1Bl
m ∩{ηl<t}(ηl+1, E(· ∧ ηl+1), T (· ∧ ηl+1),W (· ∧ ηl+1)) ∈ Gm. (3.183)

In particular,

1Bl
m ∩{ηl<t}(E(t ∧ ηl+1)) ∈ Gm (3.184)

and hence

Bl+1
p ∩Bl

m ∩{ηl < t} ∈ Gm. (3.185)

On combining this with (3.177), we see thatBl+1
p ∩Bl

m ∈ Gm ⊂ Gp and hence by (3.175),

Bl+1
p ∈ Gp. (3.186)

Thus, (i) holds withl + 1 in place ofl. Similarly,

Bl+1
p ∩{ηl+1 ≤ t} = ∪

m
(Bl+1

p ∩Bl
m ∩{ηl < t}∩{ηl+1 ≤ t}) ∈ Gp, (3.187)

where the union is over allm ∈ NN such thatm ≤ p.

It remains to verify (ii) with l + 1 in place of l. But it follows immediately

from (3.183) and (3.185) that

1Bl+1
p ∩Bl

m ∩{ηl<t}(t∧ ηl+1, E(· ∧ t∧ ηl+1), T (· ∧ t∧ ηl+1),W (· ∧ t∧ ηl+1)) ∈ Gp. (3.188)

Combining this with (3.175) and (3.178) yields that

1Bl+1
p

I l+1 ∈ Gp. (3.189)
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Proof of Lemma3.A.1. An outline of our proof is as follows. The idea of the proof of

part (iii) is that apart from small error terms associated with residual interarrival times, by

suitably centering and scaling the primitive processes(Ar, V r), we can reexpresŝXr, as

given by (3.81), in terms of a martingale evaluated at a stopping time. Indeed, we use the

i.i.d. and independence assumptions on the primitive sequences{ur
i (k), k = 1, 2, . . . , },

{vi(k), k = 1, 2, . . . }, i ∈ N , to establish the martingale property. In order to conclude

that the stopped process is also a martingale, we establishL2-bounds on the martingale

and on the mean of the stopping timeτ r(t) = Er(t). The martingale property in part

(iii) of the lemma follows from this stopped martingale property and the fact thatU r and

W r are adapted toGr
τr(t). The asymptotic negligibility of error terms associated with

the martingale property of the renewal processEr(t) is used to show that the residual

process converges in probability to0. Part (ii) of the Lemma follows from the heavy

traffic assumption (Assumption3.4.2). Finally, the uniform integrability property in part

(i) follows from L2 bounds used in obtaining the stopped martingale property mentioned

above. Now we provide the details of the proof.

For the moment, letr be fixed. Now,

{Gr
p} , {Gr

p : p ∈ NN} (3.190)

defined by (3.165) is a (multi-parameter) filtration and for eacht ≥ 0, by Lemma3.A.2,

τ r(t) = Er(t) (3.191)

is a (multi-parameter) stopping time relative to this filtration. If (Ωr,F r) is the measurable

space on which all of the processes indexed byr are defined, then for eacht ≥ 0 we can

define aσ-algebra associated with the multi-parameter stopping time τ r(t) as follows:

Gr
τr(t) , {B ∈ F r : B ∩{τ r(t) ≤ p} ∈ Gr

p for all p ∈ NN}. (3.192)
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Then{Gr
τr(t), t ≥ 0} is a filtration in the usual single-parameter sense. From Lemma3.A.3,

we have that the processW r (and henceU r) is adapted to this filtration.

We now introduce the fundamental multi-parameter martingalesMr andOr, and

martingales associated with squares of their components. For eachp ∈ NN andi ∈ N ,

let

Mr
i (pi) , λr

i A
r
i (pi + 1) − (pi + 1), (3.193)

N r
i (pi) , (Mr

i (pi))
2 − (pi + 1)α2

i , (3.194)

Or
i (pi) , V r

i (pi) − pimi, (3.195)

Pr
i (pi) , (Or

i (pi))
2 − pim

2
i β

2
i . (3.196)

Let Mr(p) , (Mr
i (pi) : i ∈ N ), N r(p) , (N r

i (pi) : i ∈ N ), Or(p) , (Or
i (pi) : i ∈

N ), Pr(p) , (Pr
i (pi) : i ∈ N ). Because of the independence and i.i.d. assumptions of

Section3.4.3, we have that the4N -dimensional process:

{Qr(p) , (Mr(p),N r(p),Or(p),Pr(p)) : p ∈ NN}, (3.197)

is a multi-parameter martingale relative to{Gr
p}.

For eachp ∈ NN , let

Rr(p) , (Mr(p),Or(p)). (3.198)

We aim to show that{Rr(τ r(t)),Gr
τr(t), t ≥ 0} is a martingale. However, we cannot

immediately deduce this from the martingale property ofQr, sinceτ r(t) is a possibly

unbounded stopping time. So we first truncate time, apply themulti-parameter stopping

theorem and then pass to the limit in the truncation using uniform integrability to deduce

the desired result. The bounds obtained for the uniform integrability will also prove useful

in verifying part (i) of the lemma. Forn ∈ N, let nN denote theN -dimensional vector
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whose components all have valuen. Then, we can verify (in a similar manner to that for

Qr) that

{Qr,n(p) , Qr(p ∧ nN) : p ∈ NN} (3.199)

is a multi-parameter martingale relative to{Gr
p}. Then by the multi-parameter optional

stopping theorem (see [12, Theorem 2.8.7]) we have that

{Qr,n(τ r(t)),Gr
τr(t), t ≥ 0} (3.200)

is a martingale for eachn ∈ N. Now, forp ∈ NN andn ∈ N, let

Rr,n(p) , (Mr(p ∧ nN),Or(p ∧ nN)). (3.201)

For eachn ∈ N, it follows from the martingale property of{Qr,n(τ r(t)),Gr
τr(t), t ≥ 0}

that

{Rr,n(τ r(t)),Gr
τr(t), t ≥ 0} (3.202)

is a martingale. We aim to prove that the same is true withRr in place ofRr,n. For

t ≥ 0 fixed,Rr,n(τ r(t)) → Rr(τ r(t)) pointwise asn → ∞, and so it suffices to show

that{Rr,n(τ r(t))}∞n=1 is L2-bounded for eacht ≥ 0, since this implies that it is uniformly

integrable. By the martingale properties of theN r andPr elements ofQr,n(τ r(·)) we

have for alli ∈ N , n ≥ 1:

E
[

(Mr
i (E

r
i (t) ∧ n))2 − ((Er

i (t) + 1) ∧ n)α2
i

]

= 0, (3.203)

E
[

(Or
i (E

r
i (t) ∧ n))2 − (Er

i (t) ∧ n)m2
i β

2
i

]

= 0. (3.204)

From Lorden’s inequality for renewal processes (see Lindvall [ 27, pp. 77–78]; Carlsson

and Nerman [7]), we obtain the following upper bound fori ∈ N ,

E [Er
i (t) + 1] ≤ λr

i t + α2
i + 2 , hr

i (t), (3.205)
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wherehr
i (t) is finite. It then follows from (3.203)–(3.205) that for alln ≥ 1, i ∈ N ,

E
[

(Mr
i (E

r
i (t) ∧ n))2

]

≤ α2
i h

r
i (t), (3.206)

E
[

(Or
i (E

r
i (t) ∧ n))2

]

≤ m2
i β

2
i h

r
i (t). (3.207)

This establishes the desiredL2-boundedness and hence

{Rr(τ r(t)),Gr
τr(t), t ≥ 0} (3.208)

is a martingale for eachr.

We now apply the above martingale properties to establish part (iii) of the Lemma.

For i ∈ N , define

X̌r
i (t) , r−1

(

Or
i (E

r
i (r

2t)) − miMr
i (E

r
i (r

2t)) + (λr
i − λi)mir

2t
)

, (3.209)

εr
i (t) , r−1mi

(

λr
i A

r
i (E

r
i (r

2t) + 1) − (λr
i r

2t + 1)
)

, (3.210)

θr
i , r(λr

i − λi)mi. (3.211)

Then from (3.61), (3.66), (3.67), and (3.81), for i ∈ N , t ≥ 0,

X̂r
i (t) = X̌r

i (t) + εr
i (t). (3.212)

Since

Rr(τ r(r2t)) = (Mr(Er(r2t)),Or(Er(r2t))), (3.213)

it follows, from the martingale property of (3.208), that

{X̌r(t) − X̌r(0) − θrt,Gr
τr(r2t), t ≥ 0} (3.214)

is a martingale. Note that by Lemma3.A.3, Û r and Ŵ r are adapted to the filtration

{Gr
τr(r2t), t ≥ 0}. Hence,{X̌r(t) − X̌r(0) − θrt, t ≥ 0} is a martingale relative to the
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filtration generated by(Ŵ r, X̌r, Û r).

We next show thatεr converges in probability to the zero process asr → ∞. By

the definition ofEr
i from Ar

i for i ∈ N , for eachT ≥ 0,

‖εr(·)‖T ≤ 2 max
i∈N

|miλ
r
i |

∥

∥r−1ur
i (E

r
i (r

2·) + 1)
∥

∥

T
+ max

i∈N
|mi| /r (3.215)

where, as a consequence of the functional central limit theorem (Proposition3.4.3), the

right-hand side above goes to zero in probability asr → ∞ (see the proof of Lemma 6 in

Iglehart and Whitt [18]).

Part (ii) of the lemma follows from the heavy traffic assumption (Assumption3.4.2).

It remains to show part (i) of the lemma. For this it suffices toshow thatX̌r(t) as

r varies is uniformly integrable for each fixedt ≥ 0. Now by Fatou’s lemma, (3.206)–

(3.207) hold with then’s removed. Fixt ≥ 0. By (3.205), we have

sup
r

max
i∈N

hr
i (r

2t)

r2
< ∞. (3.216)

Replacingt by r2t in (3.206)–(3.207), and combining with the above, we see that

{r−1(Mr(Er(r2t)),Or(Er(r2t)))} (3.217)

as a collection indexed byr is L2-bounded, and hence uniformly integrable. The uniform

integrability of{X̌r(t)} follows.
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C H A P T E R 4

Conclusions

The problem of increasing the throughput of cellular wireless systems is as old

as those systems and the commercial potential of any solution has made the problem

well-studied. In this dissertation, we studied this problem from a different perspective.

Specifically, we undertook a study of certain topics relatedto a cross-layer analysis of the

downlink of cellular wireless systems with cooperation among base stations where our

approach, unlike most of the literature, was based on queueing theory.

In Chapter2, we investigated the maximum throughput of such a system. Starting

with the assumption that the relative traffic of each of the mobiles is specified in advance

- an assumption justifiable in light of the fact that higher layers often provide such a

specification - we set out to find a descriptor of the maximum amount of data that can be

sent to each of the mobiles. Because of the assumed knowledgeof the ratio of deliverable

traffic, there is a single-parameter descriptor. We first showed that if the capacity region

of the underlying channel was convex and constant, the maximum stable throughput of

the system can be described in terms of the differentiated service capacity of the channel.

A queueing model for the cellular wireless system with infrastructure coopera-

tion was formulated in Section2.1.3. The queueing network was a multi-class coupled

queueing system with variable instantaneous service rate.With the same assumptions as

before - quasi-static system with number of users constan - we proposed a policy that

was throughput optimal, that is, the long run average departure rate exists and equals the

long run average arrival rate whenever the nominal load is less than the maximum stable

117
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throughput. Unfortunately, because of the coupled nature of the queueing network, it was

not possible to perform an exact analysis of the operation ofthe queueing system under

this policy. Therefore, we proposed a fixed-point approximation in Section2.1.5where

the original coupled queueing system is replaced by a queueing network comprising of

independentM/M/1 queues with the variable service rate of the queues in the original

network replaced by constant service rates.

Through simulations, we were able to demonstrate the efficacy of cooperation in

cellular wireless systems. In our first set of results, we presented the gain in throughput

achieved by base station cooperation for a fixed channel for acellular system with two

base stations and two users. It was noticed that the throughput gain increased with SNR.

We next studied the average system delay for different system loads for different system

configurations. For a system with three base stations and three users, we noted that the

throughput gain was between20% and70% depending on the relative traffic vector and

the channel while it was approximately three for all of the cases for a system with four

base stations and four users. It was observed that the fixed-point approximation gave a

very good approximation of the system delay in the high and the low-load region. Thus,

for large systems which are difficult to simulate, the fixed-point approximation can be

used, especially for the important high-load region since the maximum throughput pre-

dicted by fixed-point approximation is the same as the maximum stable throughput of the

system. We next studied the outage probability for different system configurations. It was

noted that as the probability of outage increased, the increased in throughput was not very

significant. In fact, for most of the systems the throughput gain decreased as the outage

probability increased.

We next turned our attention to finding methods to increase throughput in large

systems. Because of the computational complexity, a straightforward application of the

service policy applicable for small systems is not possiblefor large systems. Therefore,

we proposed a suboptimal policy that could be applied for large systems. Specifically, we

proposed grouping the mobiles in the footprint of a group of cooperating base stations in
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small subgroups and then applying the service policy proposed earlier on the subgroups.

Clearly, this is practicable subject to an effective and inexpensive grouping mechanism.

Building upon some observations from the study of small-sized systems, we were able to

devise one such grouping scheme.

We next presented simulation results showing the effectiveness of our proposed

scheme. For a cellular system with four base stations and twohundred (200) mobiles,

with groups sizes of three (3) and four (4), we were able to gettwofold gain in throughput.

Moreover, the variance of the results was low enough to give confidence in our results. We

next compared the effect of SNR on the gain in throughput for the same configuration. As

expected the gain in throughput - not just the absolute throughput - increased with SNR.

Moreover, higher SNR lead to a reduced variance in the gain inthroughput. Based on

these observations, we believe our scheme can be used in practical systems.

In Chapter3, we studied the performance of the queueing policy proposedin

Chapter2. Since an exact analysis of the performance of the policy wasnot possible, we

proved limit theorems justifying a diffusion approximation for a heavily loaded system

operating under this policy. We started with the simple caseof a two-user system where

there were only four (4) operation points. We first proved a fluid limit result for our

queueing system. This result played a role in establishing the heavy traffic limit theorem

through determining the fluid scale service allocations. Then we proved the main theo-

rem for the two-user system which said that in the heavy traffic limit, the renormalized

queuelength process converged in distribution to an SRBM living in a two-dimensional

quadrant. Then we discussed the properties of the limiting process.

We next analyzed the performance of the policy proposed in Section 2.1.4for an

arbitrary sized system. We proved that the renormalized workload process converged in

distribution to an SRBM living in anN -dimensional positive quadrant whereN was the

number of users (queues) in the system. To prove this theorem, we first showed that

the sequence of diffusion-scaled processes was C-tight. We then showed that any weak
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limit point of such a subsequence is an SRBM with extensive data. For an SRBM with

extensive data, there might be pushing at the intersection of two or more faces. We showed

that such pushing is negligible and the SRBM with extensive data reduces to one of the

simpler form as described in our main result. Finally, we showed that such an SRBM is

unique in law and when combined with the C-tightness, we concluded that the sequence

converged in distribution to an SRBM of desired form.
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