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ABSTRACT OF THE DISSERTATION 

 

Empirical Studies of Competition in Interrelated Markets  

 

by 

 

Joseph Steven Kuehn 

Doctor of Philosophy in Economics 

University of California, Los Angeles, 2015 

Professor Connan Andrew Snider, Chair 

 

Advances in technology have made interactions between previously isolated markets, 

increasingly prevalent.  Even so, much of the research on firm competition in economics has 

focused on independent markets and how firms compete within these distinct markets.  This 

dissertation extends the literature by studying competition in settings with interrelated markets.    

Chapter 1 studies how firm expansion into multiple geographic markets has affected local 

market competition.  As a case study I examine the banking industry, where deregulation in the 

early 1990s encouraged banks to expand their branch networks into multiple markets.  I estimate 

a model of branch entry that explicitly allows for spillovers across markets, which in banking 

include demand advantages in attracting more consumer deposits, cost advantages from 

economies of scale or density, or a diversification of risks.  To do this I use a revealed preference 

approach that also deals with unobserved firm and market heterogeneity.  I find that spillover 
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benefits explain 20% of the branches built in the observed equilibrium.  The additional observed 

branches increase consumer surplus, and in most markets lead to a larger share of deposits being 

collected by banks as opposed to non-bank alternatives.  The exception is in the largest markets, 

where multi-market banks overemphasize competing with additional branches, as opposed to 

offering better service or higher deposit rates.  Because of the lower deposit rates, this leads rich 

customers, whom are more price sensitive then the average consumer, to switch to outside 

options such as disintermediation or credit unions.  This effect costs banks $115 billion in lost 

deposits. 

In chapter 2, I study auction markets where bidders are competitors in some downstream 

market.  I do this by extending the auction estimation literature to an auction model with 

externalities.  In such a model, in addition to each bidder having a private value for the object, 

which they receive if they win the auction, some bidders, upon losing, will receive a negative 

externality that depends on which of their rivals has won the object in their stead.  I identify and 

estimate the externality values by using structural auction estimation techniques to estimate 

bidder valuations as functions of the negative externalities, and then using variation in the sets of 

competitors to infer the externality values.  I introduce three different estimators for the 

externalities and provide Monte Carlo results for each.    
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Chapter 1

Spillovers from Entry: The Impact of Bank Branch

Network Expansion

1.1 Introduction

In many industries, local market competition has become increasingly dominated by firms that

operate in multiple geographic markets. This implies that in these industries there are certain

benefits to expanding into multiple markets. In addition to the advantages of growing larger, such

as economies of scale and economies of density,1 these benefits also may include advantages to

operating in a broader geographic area, such as a firm increasing their brand exposure over a wider

area. In this chapter I look at how the presence of these important spillover benefits in an industry,

affects local market competition in that industry, and subsequently affects local outcomes and

consumer and firm welfare.

The banking industry is an interesting industry to study the effect of firms expanding into
1These have been studied extensively in the Wal-Mart literature including Jia (2008), Holmes (2011), and Ellickson,

Houghton, and Timmins (2013).
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multiple markets, because up until recent deregulation, government restrictions prevented banks

from expanding their branch networks beyond a local geographic area. Previous regulations often

limited banks to opening branches in only one state, and in some states banks were only allowed

to operate a single branch. Throughout the 1980s many of these restrictions were then lifted,

culminating in the Riegle-Neal Act of 1994, which eliminated all remaining restrictions on where

banks could open branches.

Since the time of deregulation the number of branches has steadily increased from around

50,000 branches in 1990 to over 80,000 branches in 2010. This is somewhat surprising given

how changes in technology, such as the growth of the internet and the increased use of mobile

devices, have led the consumer culture to evolve over this time period in a way that would suggest

that branches are less useful in attracting customers than before. Banks have also expanded their

branch networks through mergers and acquisitions, and the industry as a whole has been gradually

consolidating from around 12,000 banking institutions in 1990 to 6,500 institutions in 2010. As

the number of banks has shrunk, and the number of branches has grown, this implies that the firms

that remain in the industry are increasingly those firms with large networks of branches that often-

times extend across multiple geographic markets. Thus local competition in banking frequently

involves institutions that have branches in, and compete in, a number of other markets.

This expansion suggests that there are important spillover benefits for banks operating in mul-

tiple markets, and the main objective of this chapter is to study the impact on local market structure

of the interdependencies between markets due to these spillovers. There are a number of potential

sources of spillovers such as larger networks attracting more consumer deposits, a reduction in

costs through economies of scale, or a diversification of risks through geographic expansion. I am

interested in distinguishing between these different sources of spillovers, and identifying the im-
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pact that each of them have. This is an important step to understanding the advantages that banks

with larger branch networks have in the deregulated environment.

Taking the size and source of these spillovers into account, I can then study the effect banks

with national chains of branches have on local market competition. I look at how the branching

behavior of the multi-market firms has affected competitors’ entry and branching decisions, and

in turn the effect of spillovers on the total number of branches being built in a market, and the

composition of branches between multi-market and single-market firms. I also study what effect

branch expansion has had on consumer welfare and banks’ ability to collect deposits and profit off

of those deposits as they face growing concerns over disintermediation.

In answering these questions I also contribute to a more general economic question on the

importance of accounting for spillovers across markets in entry models. As firms in various indus-

tries, not just banking, have expanded their geographic reach, it is important to understand how

these firms make decisions over an entire network of markets, and to develop techniques to study

this problem. This chapter makes progress in both of these areas

To assess the impact of multi-market banks, I first study the benefits of operating a large branch

network in the market for deposits. I do this by estimating a demand model of the consumer’s

choice over what banking institution to place their deposits in. In the model consumers are en-

dowed with a number of deposits based on their income, which I observe the distribution of, and

then choose the banking institution or outside option that gives them the highest level of utility.

Consumer utility depends on, among other things, the deposit rate offered by the bank, the con-

sumer’s dollar value of deposits, which provides heterogeneity to deposit rate sensitivity similar to

a random coefficient, and the bank’s network of branches, including both the number of branches

and their locations. I also allow for the mean utility of the outside option to differ across mar-
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kets since the outside option represents all alternatives to traditional banking (e.g. credit unions,

money market mutual funds, securities, etc.), for which I would expect the availability to vary

geographically. Using data on the number of deposits at each bank branch, and bank and con-

sumer characteristics, I estimate the model using the estimating techniques of Berry, Levinsohn,

and Pakes (1995). The results indicate that while consumers would on average be willing to pay

$70 for an additional in-market branch, this preference does not extend to the bank’s number of

branches outside of the consumer’s home market.

This result explains why banks would want to build dense networks of branches, but does not

explain the advantage of multi-market banks with more expansive branch networks. Therefore I

look to supply side explanations for the spillover advantage, using a model of bank branch entry. I

model branch entry as a bank’s choice over the number of branches to open in each county in the

United States, to maximize their total profitability across all markets. Bank profits depend on the

variable profits they receive from collecting deposits at the branches, which are calculated using

the estimates from the demand model, and the costs of adding the branches. Costs are specified as

a parametrized function that explicitly allows for spillovers across markets by letting the costs of

entry and adding a branch depend on the number and locations of the bank’s existing branches.

The presence of cross-market spillovers makes it so that a bank’s actions in one market will

have ancillary effects on their profitability of opening branches in other markets. This significantly

complicates finding an equilibrium solution to the model, as each bank’s discrete entry decision

on the number of branches to open in each market is not only related to the branching decisions of

competing firms in that market, but also to those same decisions by that bank and its competitors,

in the over 3,000 other related markets. Therefore instead of using an estimation strategy that relies

on solving for an equilibrium solution to the model, I instead use a revealed preference approach
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that builds on the moment inequality technique of Pakes, Porter, Ho, and Ishii (2011). This strategy

uses data on the location of each branch in a bank’s network, to infer what parameter values are

pursuant with the observed branch choices being profit maximizing. My approach also controls

for both unobserved market-specific and firm-specific effects by using a differencing procedure,

and by selecting on certain observations. Accounting for these unobserved factors is important as

I don’t want to, for example, mistakenly attribute a particular bank’s president’s affinity for adding

branches as evidence of positive spillovers in building branches.

Using this method I get results indicating that there is a substantial advantage to operating

branches in multiple markets. Having ten additional branches in outside markets within the state,

increases the profitability of adding a branch by somewhere between 3.5% and 4.2% of median per

branch variable profits. With these results I then run a counterfactual meant to assess the impact

the presence of spillover benefits in banking, and the deregulation that allowed firms to expand into

multiple markets to take advantage of these benefits, had on local markets. This is done by setting

the spillover parameters in the model to zero. I can solve for the equilibrium in this case, because

in the absence of spillovers, markets are independent of one another. In the resulting counterfactual

there are 18,152 less branches, a 20% reduction from the observed equilibrium. Since consumers

value access to branches, the average consumer is then better off under the observed market struc-

ture with more branches, as in the average market consumer surplus per individual rises by $34.74

compared to the counterfactual. For most markets, branch expansion also leads to a larger share of

deposits being collected by banks as opposed to non-banking alternatives.

The exception to this is the largest markets, which are different for two main reasons. One the

outside option is a stronger competitor in these markets due to the larger availability of alternatives

to banking in bigger markets. Secondly the larger markets have a higher proportion of customers
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with large deposit endowments, whom are different then the average customer in that they have

a higher preference for the bank’s deposit rate, and care less about the size of a bank’s branch

network. Compared to the counterfactual, in the observed equilibrium multi-market banks then

overemphasize branching due to their spillover benefits, which then pushes out smaller firms that

in the counterfactual have a comparative advantage by offering better service and higher deposit

rates. This leads the rich customers in those markets to then switch not to the remaining multi-

market banks, but instead to the outside option consisting of alternatives to traditional banking

such as credit unions or newer financial products such as money market mutual funds. The result

of this effect is that it causes banks as a whole to lose $115 billion in deposits compared to the

counterfactual.

These results show that firm expansion into multiple markets to take advantage of interdepen-

dencies, can have an important impact on market outcomes and welfare. For the banking industry

in particular, the spillover benefits, and the deregulation that allowed firms to take advantage of

them, was beneficial to consumers, and in the majority of markets led to banks capturing a larger

share of the available deposits. Yet it did have the unintended consequence in the largest markets

of leading to less deposits being collected by banks as compared to non-traditional alternatives to

banking.

There is a substantial prior literature on deregulation in the banking industry that covers a

wide range of topics, but this paper is most related to two strands of that literature. One is the

portion of literature that looks at the effect of deregulation on consumer welfare in the market for

deposit services. Dick (2008) was the first paper to adapt the discrete choice model of demand

commonly found in the industrial organization literature, to the banking industry. She looks at

the consumer’s choice of which institution to place their deposits in, and estimates the model in
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an effort to understand how the changes in bank characteristics since the Riegle-Neal Act have

affected consumer welfare. Adams, Brevoort, and Kiser (2004), also estimate a structural model

of bank choice to test the substitutability of different types of institutions, in particular banks and

thrifts, and single-market and multi-market institutions. Theirs is the first paper to focus on the

differences in demand for single and multi-market banks. While both these papers include some

measure of how a bank’s branch network affects demand, these first papers do not focus on the role

of branches in attracting consumer deposits following deregulation.

A paper where the main emphasis is on consumer preferences for a bank’s branch network, is

Ho and Ishii (2010). In their paper, the authors introduce a spatial element to the discrete choice

model by including consumer preferences for traveling small distances to their bank’s branch. The

authors’ results indicate that consumers experience disutility from traveling longer distances to

bank branches, and that consumer welfare has increased over the last two decades as banks have

increased the size of their branch networks. Their explicit modeling of consumer distances to

branches is an improvement over the branch measure that I use, but it forces them to restrict their

geographic area of interest. Since the focus of my paper is on the advantages of banks with branch

networks that extend over a large geographic area, I tradeoff using their more direct measure to be

able to feasibly estimate demand across all U.S. counties.

The second group of related literature on banking deregulation, looks at the effect of deregu-

lation on market structure. Dick (2006) finds that local market concentrations, measured by the

Herfendahl index, were mostly unaffected by deregulation. Still, her evidence indicates that even

though there is not much change in market structure from a local perspective, there is a lot less

variation in the identifies of the firms that dominate each market. My paper focuses on the con-

sequences of this second fact, in terms of whether having the same firms leading many different
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markets has different implications for entry decisions and market competition. This has not been

done before in the prior literature because of the computational difficulty in accounting for related

entry decisions by firms across multiple markets.

By accounting for the cross-market effects, I can isolate the impact deregulation had through

creating interdependencies, separately from the effects of other consequences of deregulation such

as reduced barriers to entry. While the prior literature, including Jayaratne and Strahan (1998)

and Stiroh and Strahan (2003), has found that deregulation led to a transfer in market share to the

more efficient banks, I look at how much of that can be attributed to multi-market banking. More

recent papers have found that single-market banks may actually be more profitable, suggesting that

a change in the composition of firms towards more multi-market banks, was not the main source of

increased efficiency following deregulation. Elejalde (2011) finds that single-market banks have

lending advantages that allow them to still be profitable despite their higher entry costs compared

to multi-market banks. Dai and Yuan (2013) find that social surplus could be improved with more

single-market banks because they have a higher markup than multi-market banks and are thus more

profitable. Cohen and Mazzeo (2007) suggest that single-market banks are important providers of

a differentiated product, thus giving consumers more choices. The difference between my paper

and these are that I don’t rely on treating single-market banks and multi-market banks as two

separate types of banks, but allow for the natural interdependencies that arise from operating in

multiple markets to drive the differences between bank incentives. This allows me to isolate what

is different about operating branches in multiple markets, and how that endogenously changes

the product characteristics and drives market outcomes, separate from the impact of the different

exogenous characteristics of multi-market banks.

Allowing for spillovers also helps to explain branching patterns following the Riegle-Neal Act.
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Dick (2007) and Cohen and Mazzeo (2008), both explain the large increase in de novo branching

over the last two decades as banks increasing the quality of their institutions to vertically differen-

tiate themselves locally. Dunne, Kumar, and Roberts (2012) find that increases in operating costs

play a large role in the pattern of branch expansion. By allowing for spillovers I can additionally

explain how much of the observed branching is driven by market interdependencies in the deci-

sions of multi-market banks, and how those incentives are counterbalanced with the incentives

studied in the previous papers that treat markets as isolated.

One paper that does allow for spillovers across markets, is that of Aguirregabiria, Clark, and

Wang (2012). In their paper, the authors look at how branch expansion since Riegle-Neal has al-

lowed banks to geographically diversify their risk. The authors find that the benefits of diversifica-

tion are counteracted by economies of density, so that banks have not sufficiently taken advantage

of the diversification possibilities afforded to them by deregulation. My results allow for more gen-

eral spillover benefits, and find that while the estimated spillovers are characteristic of advantages

gained through risk diversification, the opposing desire to build dense branch networks is driven

by consumer preferences in demand rather than cost advantages.

My paper is also related methodologically to the literature on estimating entry models across

interdependent markets. This literature originated with the work of Jia (2008) and Holmes (2011),

and has mainly focused on Wal-Mart and the retail industry. Jia (2008) estimates a two-player

entry game between Wal-Mart and Kmart, where entry decisions in different markets are not in-

dependent. Her method transforms the game into a supermodular form, and then uses that to find

an equilibrium solution. Holmes (2011) uses a dynamic approach to infer from the geography and

timing of Wal-Mart’s entry decisions, the advantages the chain has due to economies of density.

Like my paper, he also uses a revealed preference approach to form moment inequalities that are
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then used to get bounds on the cost parameter values. His paper has the advantage of incorporating

dynamics, but is a single-agent model that abstracts from competition effects.

More recently Ellickson, Houghton, and Timmins (2013), study chain advantages in a 3-firm

model involving Wal-Mart, Target, and Kmart. Their approach is the most similar to mine in

that they also use profit inequalities based on the necessary condition, and also use a differencing

technique to control for unobserved market heterogeneity. The implementations of this approach

are markedly different in the two papers, as they use the maximum score estimator based on the

rank order property, while I use the moment inequality approach of Pakes, Porter, Ho, and Ishii

(2011), which allows for the more robust interpretation of the error term as measurement error from

the first-stage estimation of variable profits. They also separate the estimation of the parameters on

firm-market variables from the estimation of market-specific effects, while I combine these stages

together to estimate all the parameters at once. The additional moments I get from combining the

two stages, improves the identification of the bounds on spillovers for my particular application.

My implementation of the technique from Pakes, Porter, Ho, and Ishii (2011), is most similar

to that of Ishii (2008), whom estimates the bank’s decision over their network of ATMs using

moment inequalities. The main difference between my estimation strategy and that of Ishii (2008),

is that I introduce market-specific and firm-specific unobservable terms that affect estimation. This

forces me to worry about selection issues in forming the moment inequalities, and thus to use a

differencing approach to get bound estimates.

The rest of this chapter is organized as follows. Section 1.2 provides some background on

branching trends in the banking industry, as well as introducing the data set I use, and providing

some preliminary evidence that motivates this paper’s topic. Section 1.3 introduces the model I

use to estimate the demand for deposit services, and section 1.4 contains the estimation results. In
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section 1.5, I develop the model of a bank’s brach network choice and talk about my strategy for

estimating the model. Section 1.6 then contains the results of estimating this model, section 1.7

presents the results of the counterfactual experiment, and section 1.8 concludes.

1.2 Industry Background, Data, and Preliminary Evidence

Figure 1.1: Trend in Bank Institutions and Branches from 1990 to 2012
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Focusing on the two decade period from 1990 to 2010, figure 1.1 presents two important trends

in the banking industry. As seen in the figure on the right, this period was characterized by a

general trend of consolidation in the industry as the number of institutions was roughly cut in half

over the twenty year period. This is the continuation of a trend that began in the mid 1980s and

has continued up into the present, with a majority of the consolidation coming from mergers and

acquisitions.

While the number of banking institutions has been in decline over this twenty year period, the

total number of bank branches has steadily increased. There were a total of 50,855 bank branches

in 1990, and by 2010 that number had grown to 82,554 branches. This is roughly a 62% increase

in the number of branches over the 20-year period.2 Combined with the decline in institutions,
2As can be seen in figure 1.1, the upward trend certainly decelerated following the financial crisis in 2007, yet
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this rise in the number of branches indicates an even larger increase in the number of branches per

institution.

Part of the branch network growth can be explained by the lifting of prior restrictions on where

institutions can open branches. Prior to the 1970s, no bank could operate in more than one state,

and the large majority of states restricted banks from having more than one branch. Deregulation

occurred gradually throughout the 1970s and 1980s, and culminated in 1994 with the Riegle-Neal

Act, which eliminated any remaining restrictions on interstate banking and branching.

Figure 1.2: Percentage of Institutions with Branches in Multiple Counties/States
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Deregulation has led many banks to extend their branch networks across market lines. Figure

1.2 shows the change from 2000 to 2010 in the percent of institutions with branches in multiple

counties and in multiple states. The percentage of banks operating in multiple counties grew from

37.6% in 2000, to 51.2% in 2010. The percentage of banks with branches in multiple states grew

from 2.9% in 2000, to 7.3% in 2010. This 7.3% of banks operating in multiple states control 63.7%

of the branches open in 2010. The multi-market banks also control a majority of the deposits in

since that time there has still been a small increase in branches. The number of branches at the end of 2007 was 79,176

branches, while the number of branches at the end of 2012 was 83,709, indicating about a 4% increase in branches in

the five-year period since 2007.
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each local market. This can be seen in figure 1.3, which shows the growth in the percentage of

bank deposits held by banks operating branches in multiple states.

Figure 1.3: Percent of Bank Held Deposits By Institutions That Operate Branches in Multiple

States
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The ubiquitous presence of banks with large branch networks implies certain advantages to in-

stitutions that grow their networks. One source of the advantage is the role of branches in attracting

consumers to a bank. In each Survey of Consumer Finances conducted since 1992, the most pop-

ular response to, ”what is the most important reason for choosing your institution,” has been the

location of a bank’s branch. In the most recent survey from 2010, the percent of respondents who

choice location of their branch as the primary reason for choosing their bank, was 46%. Even with

the increased use of mobile and online banking, many consumers continue to rely on branches.

According to the 2013 Federal Reserve Board’s Survey of Consumers and Mobile Financial Ser-

vices, the most common way for consumers to interact with a financial institution was through its

branch, with 85% of respondents reporting that they had visited a branch in the past year. As noted

by Dick (2007), among others, branch networks also play a marketing role for banks, advertising

the bank like a flashy billboard, as well as providing services.
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On the cost side banks with larger branch networks may also enjoy economies of scale in

operation, management, and advertising expenditures. These come from having access to a large

set of financial resources, and also a large employee base, which improves the efficiency of labor.

Also the costs of screening for loans are reduced if a bank can spread these costs over a larger

potential customer base.

A potential spillover advantage more particular to banking is a bank’s ability to diversify their

risks geographically. A bank that expands its branch network over a larger geographic area will

spread its funding source over a more diverse area, and thus become less susceptible to idiosyn-

cratic shocks. This could increase the profitability of multi-market banks.

Another potential benefit of a large branch network is that it differentiates the bank from non-

banking alternatives, which generally don’t provide a large number of branch locations. Increas-

ingly banks are facing competition from non-traditional alternative such as credit unions, money

market mutual funds, securities, and newer financial products. Branch networks are a way for

traditional banks to differentiate themselves from these alternatives.3

The purpose of this thesis chapter is to first understand the role that each of these potential

spillover benefits play in bank profitability and branching decisions. This allows one to then assess

the size and source of the advantage that banks with larger branch networks have. With that I

can then answer the main question of this work, which is then what is the impact the presence of

these spillover benefits and multi-market expansion, has had on local market competition and local

market structure.
3For a more detailed discussion on banks using branches to compete with non-banking alternatives, refer to section

1.9.5 of the appendix to this chapter.
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1.2.1 Data

I use data from a variety of sources. Characteristics of each bank came from the Federal Reserve

Board’s Report on Condition and Income (or Call Reports). These are quarterly bank reports from

1990 to 2014, which contain the balance sheets and income statements of banks at the institution

level. From the call reports I gather data on each bank’s total employees, total deposits, total loans

and leases, total interest income and total interest expenses. Following the existing literature, I

impute the deposit interest rate and loan interest rate from interest expenses and interest income,

respectively, by dividing interest expenses (income) by total deposits (loans). I use the call report

from the end of the second quarter (June 30) to compute these rates, and so they are interpreted as

6-month interest rates. Because the rates are taken at the bank level they do not vary by market,

which may seem restrictive at first, but most of the prior literature including Biehl (2002), Hannan

and Prager (2004), Heitfield (1999), and Heitfield and Prager (2004), suggests that banks set rates

that are uniform across large geographic areas.4

Banks generally offer a variety of products and services, but in this paper I define the bank’s

product market as deposits, which includes checking, savings, and time deposits. To get branch

locations and total deposits at the branch level, I use the Federal Deposit Insurance Corporation

(FDIC) Summary of Deposits (SOD). This includes location and deposit data for all branches of
4Biehl(2002) finds that in New York the rate setting behavior of single-market banks often reflects local market

conditions, while the rate setting behavior of multi-market banks does not. Hannan and Prager (2004) and Heitfield

(1999) find that multi-market banks use uniform pricing throughout a state, but that the banking market is still ge-

ographically local since single-market institutions choose rates that vary a lot from county to county. Heitfield and

Prager (2004) look at the determinants of bank deposit rate choice and also find that multi-market institutions choose

uniform rates over multiple local markets.
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Table 1.1: Data Summary Statistics for 2010

Institution Variables 2010 Num of Obs = 7,152

Mean 2010 Median 2010 Std. Dev 2010

Employees 269 37 4471

Assets ($000) 1,723,685 148,479 3.3⇥107

Total Deposits ($000) 1,185,576 122,992 2.2⇥107

Total Loans ($000) 955,080 95,707 1.6⇥107

Interest Income ($000) 35,221 3,531 576,884

Interest Expenses ($000) 27,445 2,918 419,593

Deposit Rate* (%) 0.662 0.651 0.279

Loan Rate* (%) 3.092 3.041 0.651

Market Variables 2010 Num of Obs = 3,115

Mean 2010 Median 2010 Std. Dev 2010

Population 99,739 26,309 318,323

Land Area (sqr. miles) 1,057 612 2,478

Per Capita Income ($) 33,872 32,110 7,832

Per Capita GDP ($) 40,073 39,807 6,564

Employment 109,840 40,764 655,187

Total Banks 8.9 6 9.6

Total Branches 31.4 11 78.1

Total Bank Deposits ($000) 2,446,449 385,285 1.4⇥107

Market-Institution Variables 2010 Num of Obs = 25,419

Mean 2010 Median 2010 Std. Dev 2010

Branches 3.58 2 7.49

Deposits ($000) 274,048 61,238 2,254,227

To see the same data summary statistics from past years (1994 and 2003), look at table

2.22 in the appendix to this chapter. 16



bank institutions insured by the FDIC. It is collected annually on June 30 from 1994 to 2014. Using

the branch location data, I break down branches into their relevant geographic market, which I

choose to be at the county level. Most of the previous literature has defined the market at the MSA

or county level. According to Amel, Kennickell, and Moore (2008), the market for checking,

savings, money market accounts, and certificates of deposits, has remained local, with the median

distance between a consumer and their financial services provider being under four miles according

to data from the Survey of Consumer Finances (SCF).

Demographic data on each county is obtained from the US Census Bureau. I use data on esti-

mated median household income from the Small Area Income and Poverty Estimates (SAIPE) and

estimates of population demographics from the Population Estimates Program (PEP). I supplement

this with data from the Bureau of Economic Analysis on variables related to personal income, em-

ployment, and earnings. The data sets are combined to get observations for each institution-market

combination for the year 2010. The sample consists of 3,115 counties in the U.S and 7,152 FDIC-

insured banking institutions5 with deposits in at least one of those counties. Table 1.1 contains

summary statistics for the data.

1.2.2 Effect of Branch Network Growth on Local Markets

Using this data, I am interested in studying the effect of bank branch network expansion on local

markets. One observable pattern of multi-market banks is that they open multiple branches in the

markets they enter, leading to branches of the same bank being located near each other.6 Part of
5Institutions include both commercial banks and thrifts.
6As written in the 2007 New York Times article, ‘A Building Binge for Bank Branches’ by Amy Cortese, “It’s not

uncommon to see four or more branches on a single city block or intersection.”
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this can be attributed to some branch redundancy resulting from the many mergers and acquisitions

that the multi-market banks have engaged in, but the banks still do choose to keep these dense

networks. Additionally most of the de novo branches opened over the last decade, have been

built near the institutions’ existing branches. From 1999 to 2010, of the 25,294 de novo branch

openings, approximately 73% of those openings were by banks that already had existing branches

in the county in which the branch was being opened. Additionally around 97% of the de novo

openings were by banks that already had branches in the state in which the branch was being

opened.

One of the reasons that banks build on the intensive margin is that in a given market, banks

with larger branch networks capture a disproportionately larger share of the market’s deposits.

This is especially true of urban markets, as can be seen in figure 1.4, which shows the relationship

between a bank’s market share of branches and their market share of deposits, in markets where

the population is over 100,000. The convexity of the fitted line for low branch shares shows that

until a certain point, as banks add branches, each successive branch benefits the previously existing

branches in the network by lifting their deposits collected as well. This is referred to by industry

analysts as the “network effect.”7 This effect influences banks to build dense branch networks, and

discourages entry into new markets.

Because of this effect, the location of a bank’s branch with respect to their other branches is

important. A branch added to an incumbent market is not just a form of entry, but also serves

to increase the quality of the bank’s existing branches in that market. Adding branches is there-
7You can find numerous articles on the network effect in the Bancology journal produced by Bancography, founded

by Steven Reider. For example the March 2010 edition contains a good summary of what the effect is and how it was

still prevalent in 2010.
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Figure 1.4: Polynomial Fit Line Between Share of Branches and Share of Deposits in Markets with

Populations over 100,000 people
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fore a way to vertically differentiate oneself from their competitors. The data also indicates that

the correlation between a bank’s number of branches relative to the market mean and the bank’s

deposit rate relative to the market mean is -0.205. This is more evidence of vertical differenti-

ation through branching. The incentive to differentiate oneself can explain the dense buildup of

branches by multi-market banks, but it does not explain the advantage multi-market banks have

through expanding outward, which they did extensively according to figure 1.2.

The data also shows that the additional deposits these multi-market banks receive from adding

branches mainly come from stealing customers from their rival banks rather than from increases

in the size of the market relative to the outside options. The map in figure 1.5 shows the average

deposits per branch for multi-market banks in each county. The figure shows a significant amount

of market variation in branch deposit levels, implying that the markets where banks add branches

are not the markets where banks are collecting the most deposits.
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Figure 1.5: Map of Average Deposits Per Branch for Multi-Market Banking Institutions

Table 1.2: Regression of Market Level Deposits Per Branch on Branches

Dep : ln(Deposits/Branch) Estimate Std. Err. t

ln(Branches) -0.2903 (.0025) -116.5

ln(Institutions) 0.0454 (0.0024) 18.9

ln(Population) 0.3937 (0.0016) 247.3

ln(Per Capita Income) 0.6723 (0.0032) 207.4

ln(Per Capita GDP) 0.1961 (0.0049) 40.2

ln(Land Area) -0.0635 (0.0007) -88.2

Constant -1.644 (0.0514) -31.9

Further evidence of this can be seen in the market level regression I run of deposits per branch

on the number of branches in the market and some other market variables. The results are in

table 1.2 and they show that markets with more branches have lower deposits per branch. This
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is evidence that the effect on some local markets of the additional branches built by multi-market

banks, is to lead to a transfer of deposits from the banks that don’t add branches to the multi-

market banks, and instead of increasing the market size, they reduce it. In effect branching is

overemphasized in these markets, in that deposits per branch declines with the additional branches.

To further see what effects branching patterns of multi-market banks have on local markets

structures, and if there is an overemphasis on branching in some markets, I first take a more struc-

tural look at what motivates firms to add branches. I begin by estimating a model of deposit demand

to see what advantages banks with more branches have in attracting consumer deposits.

1.3 Demand for Deposit Services

Banks offer a variety of products and services, but the most studied bank product in the prior litera-

ture is deposits, and here I look at the demand for this product. The consumer choice of depository

institution is modeled following the discrete choice literature and is estimated using the methods

of Berry, Levinsohn, and Pakes (1995). As in Ishii (2008), I distinguish between a bank’s share

of deposits and a bank’s share of customers, by relating individual deposits to consumer income.

Each market m = 1, . . . ,M, contains a continuum of consumers, each with income yim, whom are

distributed according to the function, gm(·). Deposits are then related to income through the sim-

ple relation dim = l ⇤ yim, where l is the percentage of income that consumers choose to place in

financial assets including banks and outside alternatives such as credit unions and money market

mutual funds. The purpose of this relationship is to get heterogeneity in consumers’ sensitivity to

interest rates due to heterogeneity in deposits.

Each consumer i in market m, may then choose to place all of their deposits in either one of
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the j = 1, . . . ,Jm, banking institutions in market m, or in the outside option j = 0, which includes

the aforementioned alternatives to banking. Consumers will choose the option that gives them the

highest level of utility, where the utility consumer i receives from bank j in market m is given by:

Ui jm = b1R jdim+b2B jm+b3B2
jm+b4

 

Â
m0 6=m

amm0B jm0

!

+b5

 

Â
m0 6=m

amm0B2
jm0

!

+b6Xj+d jm+ei jm

(1.1)

where dim is the level of deposits endowed upon consumer im, and R j is the deposit rate of bank j,

which does not vary across branches or markets. Taken together R jdim is the interest revenue that

consumer i receives at bank j.

Consumer utility also depends on the number of branches of bank j, and on the locations of

the bank’s branches. The number of branches bank j has in market m is denoted by B jm, while the

number of branches outside of the market is given by Âm0 6=m amm0B jm0 , where amm0 measures the

effect of the distance between markets m and m0. This inclusion of the amm0 parameters allows me

to measure how the utility for branches depends on the distance of those branches to the consumer’s

home market. While I can’t separately identify them from the b4 parameter, the total effect is what

is of interest.

Utility also depends on a 6 x 1 vector of observable institution characteristics, Xj, unobserv-

able bank characteristics, d jm, and an individual-bank unobservable term, ei jm, that is assumed to

be distributed independently across consumers and banks according to the type 1 extreme value

distribution. The variables included in Xj are the institution’s number of employees per branch,

their age, their size proxied by the log of their total assets, their charter type, and two dummy

variables, one if they are a single-market bank and the other if they are additionally a single-branch

bank. The unobservable bank characteristics, d jm, are other unobserved components of bank qual-
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ity such as their customer service reputation, the variety of services they offer, or advertising.

I also allow for heterogeneity in the value of the outside option. As discussed more in section

1.9.5 of the appendix to this chapter, banks face threats from disintermediation, as well as from

traditional alternatives such as credit unions. This outside option is meant to capture all other

places consumers may place their disposable income including mutual funds, securities, and more

unconventional options such as prepaid cards and crowdfunding. There is a significant amount of

geographic variation in the availability of these alternatives. Thus I specify the utility of the outside

option to be:

Ui0m = km + ei0m

km = b

MWm +d0m

where km is the mean value of the outside option in market m. This value depends on a set of market

characteristics, Wm, and an unobserved mean value, d0m, that varies across markets. Wm includes

county population, per capita income, and land area. As usual I am only able to identify differences

in mean utilities and so I need a location normalization on one of the d0m. The assumption I make

is that d0m = 0.

1.3.1 Market Shares Definition

Market shares are constructed as the total dollar value of deposits of a bank over the total number

of available deposits in a particular market. I define the total number of market deposits as equal
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to total income in the market, according to the US census data.8 The estimation procedure is then

to match these market shares from the data with those predicted by the model of consumer choice.

Consumer utility can be decomposed into two parts, a mean level of utility (Ujm) and an id-

iosyncratic component (Vi jm).

Ui jm =Ujm +Vi jm + ei jm (1.2)

Ujm = b2B jm +b3B2
jm +b4

 

Â
m0 6=m

amm0B jm0

!

+b5

 

Â
m0 6=m

amm0B2
jm0

!

+b6Xj +d jm (1.3)

Vi jm = b1R jdim (1.4)

Assuming iid type 1 extreme value error terms allows me to then express the probability that a

consumer i chooses banking institution j as:

Pi jm =
exp

�

Ujm +Vi jm
 

ÂJm
k=0 exp{Ukm +Vikm}

(1.5)

The market share is then computed by integrating over consumers:

s jm =

R

yim
Pi jm(yim)⇤lyim ⇤gm(yim)dyim

ÂJm
k=0

h

R

yim
Pikm(yim)⇤lyim ⇤gm(yim)dyim

i (1.6)

1.3.2 Firm Deposit Rate Choice

In addition to modeling the consumer’s choice of depository institution, I also model the bank’s

choice of deposit interest rate and branch network. The bank’s choice problem is broken down into

two stages. In the first stage a bank chooses its branch network, taking into account the maximum

amount of revenue they can generate from such a network, and the cost of implementing the branch
8I discuss the use of an alternative measure for market size that uses SNL Financial Nielsen Clout data, in section

1.9.1 of the appendix to this chapter.
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network. Estimation of the first stage will be discussed in section 1.5. In the second stage the bank

takes the branch network as given and chooses the deposit interest rate that maximizes profits.

A bank’s variable profits from choosing a particular interest rate, R j, given their existing branch

network, B j (a M x 1 column vector with the number of branches of bank j in each market m), is

given by:

V Pjm = (L j �R j �mc j)Dm ⇤ s jm
�

B j,B� j,R j,R� j,Xj,X� j,km
�

(1.7)

mc j = tXmc
j +n j (1.8)

This equation is similar to that used in prior literature,9 and assumes that banks profit off of deposits

by issuing loans of the same dollar amount, at rate L j, which is assumed to be exogenous. In reality,

for 2010, the ratio of total interest income across all commercial banks to total non-interest income

across the same banks was 2.22. The ratio of total interest expenses to total non-interest expenses

for all commercial banks in 2010 was 0.25. Nearly half of non-interest expenses went to salaries

and employee benefits. Some of these employee costs, as well as other non-interest expenses such

as those on premises and equipment, are considered in the first stage as costs to implementing a

branch network, while some of the non-interest expenses, such as data processing expenses, can

be considered as part of the marginal costs of deposit collection. In total the ratio of net interest

income for all 2010 commercial banks to total pre-tax net operating income was 3.77. Thus a large

portion of a bank’s variable profits are determined by interest income and interest expenses.

The term mc j is the marginal cost of collecting deposits for bank j. Because the deposit rate is

chosen at the bank level, I assume that the marginal cost is the same for a bank across all markets.
9Past literature that has used a similar function for bank variable profits include Ishii (2008), Zhou (2007), and Dai

and Yuan (2013).
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This is most likely true since a bank generally uses the same method of gathering deposits for all of

its branches. This marginal cost depends on characteristics of the bank, which include employees

per branch, total number of branches, and a constant, and a firm specific unobserved cost.

Variable Dm is the dollar value of deposits available in county m, and s jm(·) is the market share

for bank j in market m, which is determined by the consumer demand model. I assume that there

is no uncertainty for banks in determining their variable profits from a given choice of interest rate

and branch network.10 Optimal deposit rates are determined assuming Bertrand competition, and

must satisfy the following first order condition:

(l j �R j �mc j) =
ÂM

m=1 Dms jm(·)

ÂM
m=1 Dm

∂ s jm
∂R j

(1.9)

n j = (l j �R j)� tXmc
j � ÂM

m=1 Dms jm(·)

ÂM
m=1 Dm

∂ s jm
∂R j

(1.10)

1.3.3 Instruments

To estimate the demand and marginal cost parameters I need a set of instruments Z jm, such that

E[d jm|Z jm] = 0, and a set of instruments Zmc
j , such that E[n j|Zmc

j ] = 0. All bank characteristics

except for the deposit rate and number of branches are used as instruments for themselves, but I

am worried about the endogeneity of the rate and of branches. For instruments correlated with the

rate, I use a series of cost shifters similar to those used by Dick(2008). One cost to running a bank

branch is the price of labor. To proxy for labor costs I use mean market wages from the Bureau of
10See section 1.9.4 for a discussion on why allowing for uncertainty regarding deposits, would not have much effect

on the results.
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Economic Analysis.11 To include other costs of operation, I use two measures from the bank call

reports, both normalized by the firm’s assets. The first is expenses on premises and fixed assets,

which includes costs for maintenance, utilities, lease payments, etc. The second is the entry for

“other” expenses, which is another measure of operating costs that includes expenses such as fees

and taxes. In addition I use the value of non-performing loans as a proxy for the costs of credit

risk, and an indicator for whether the bank belonged to a bank holding company (which should

reduce the costs of collecting deposits). I also use the standard instruments from Berry, Levinsohn,

and Pakes (1995), which are the exogenous characteristics of competing banks.

Bank branches could also be endogenous in that unobserved demand shocks may entice a bank

to build more branches. So instead of using branches in 2010 as an instrument, I use the number of

branches the bank had in the same market in 1994, before the Riegle-Neal Act went into effect. The

idea behind this instrument is that banks weren’t as capable of expanding their branch networks

prior to deregulation, and so branching to take advantage of demand shocks would not be observed

until later on. I also use distance from bank market headquarters as an instrument, assuming that

banks have less branches the further they are from their headquarters. Another instrument I use is a

proxy for the costs of land, which is obtained using the housing price estimates from the American

Consumer Survey. I would expect banks to have less branches in markets with higher costs of land.

The other market instruments I use are population, per capita income, and population growth from

1994 to 2010. I average these variables across all markets that the firm is an incumbent in.

I also use several instruments based on the difference between 2010 and the states’ year of

deregulation. I use both the year that the state allowed for intrastate branching, and the year that
11The call reports do contain employee salary data, but salaries contain quality components that would be related to

unobserved bank quality.
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the state allowed for interstate branching. From each of these I create three separate instruments.

One is the number of years since deregulation in the bank’s headquarters state, one is the average

number of years since deregulation in the markets where the bank was active in 2010, and the final

one is the average number of years since deregulation in each of the states in which the bank had

branches in 1994. Drawing from results attained in related work, I also use competitors’ number

of branches in 1994, in markets bank j wasn’t present in, as another instrument correlated with j’s

number of branches.12

1.3.4 Estimation Procedure

Estimation of the demand and marginal cost parameters relies on assumptions on the instruments,

that E
⇥

d jm|Z jm
⇤

= E
h

n j|Zmc
j

i

= 0. Calculations of both d jm and n j depend on the parameters of

the model q = [b ,t]. I calculate n j from equation (10). The difficulty in calculating d jm is that the

equation for market share (equation (6)) is not easily invertible. To invert out the error term I use

the contraction mapping of Berry, Levinsohn, and Pakes (1995), on simulated approximations to

the market shares, which are computed using equation (6).

I simulate the market shares by taking S income draws, ysm, from the distribution cgm(·), and

then calculating out the probability that a consumer with that income chooses banking institution

j, Ps jm.

Ps jm(ysm) =
exp

�

Ujm +Vi jm(ysm)
 

ÂJm
k=0 exp{Ukm +Vikm(ysm)}

(1.11)

This is done for all Jm banking institutions in market m. The simulated market share of each bank
12This instrument comes from related work where I show that there are strategic complementarities in competing

banks’ decisions over their number of branches. This instrument is similar to a common instrument found in the peer

effects literature and used by Ellickson (2013).
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j is then calculated out as:

bs jm =
1
S ÂS

s=1 Ps jm(ysm)⇤ ysm
1
S ÂJm

k=0
⇥

ÂS
s=1 Pskm(ysm)⇤ ysm

⇤

(1.12)

I then use these simulated market shares and perform the BLP contraction mapping to recover

d jm(q) for a given guess at the parameter values q .

Given the assumptions on the error terms, d jm and n j, I then use the following moment condi-

tions for estimation:

G(q) = E

2

6

6

4

0

B

B

@

d jm(q)Z jm

n j(q)Zmc
j

1

C

C

A

3

7

7

5

(1.13)

where under the true parameters G(q0) = 0. A sample analog using the d jm(q) recovered from the

inversion of simulated market shares, is constructed as:

GJM(q) =
1
M

M

Â
m=1

1
Jm

Jm

Â
j=1

0

B

B

@

d jm(q)Z jm

n j(q)Zc
j

1

C

C

A

(1.14)

I then search for the q parameters that minimize the function:

GJM(q)
0
AGJM(q) (1.15)

where A is a weighting matrix.

1.4 Results from the Demand Model for Deposit Services

1.4.1 Conditional Logit

Table 1.3 present the results of a simple conditional logit specification.13 Looking at these results

helps in understanding the intuition driving the results in the more complicated full model estima-
13The conditional logit model is the same as the model described above except that there is no heterogeneity in

consumer preferences. Thus utility depends only on R j rather than on R jd jm.
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tion. The first column of table 1.3 shows the results of an OLS regression, while the second and

third columns are IV regressions. In the second column deposit rate is instrumented for, but not

branches, and the third column contains the results of a regression where both rate and branches

are instrumented for.

The results of the first stage regressions are given in table 1.4. The R2 for the regression on

the deposit rate is 0.3273, while for the branches regression the R2 is 0.3970. These both indicate

a reasonable fit. The proxies for bank quality such as employees per branch and age, all have

negative coefficients in the regression on deposit rate. This is expected in that deposit rates should

be negatively correlated with bank quality. Also market branches in 2010 have a significant positive

correlation with the number of branches in 1994.

Comparing the columns in table 1.3, you can see that instrumenting for deposit rate increases

the magnitude of the rate parameter estimate, indicating that unobserved bank quality is negatively

correlated with deposit rates. This is what we would expect if banks with higher unobserved quality

also offered lower interest rates on deposits. On the other hand instrumenting for branches does

not have much of an effect on the results. This is most likely a consequence of the time and costs

necessary to build a bank branch, making them relatively invariant to demand shocks.

The estimates imply that the demand effect of branches is positive and significant, but declining

slightly in the number of branches. The estimated coefficient on branches from the regression using

instruments for both rate and branches, indicates that a customer at a bank with two branches in a

market would be willing to accept a 0.051 pp lower deposit interest rate in exchange for the bank

adding one branch to the market. Because the average deposit rate is 0.55%, this would be about

an 9% decrease in rate in exchange for adding one branch. If the bank was only operating one

branch in the market (and no branches in any other markets), the average consumer would then be
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Table 1.3: Logit Demand Model Results

Variable

OLS IV

Only Rate Rate and Branches

Estimate Std. Err. t Estimate Std. Err. t Estimate Std. Err. t

Deposit Rate 53.1249 (4.1268) 12.9 323.4291 (19.1081) 16.9 348.5470 (21.2231) 16.4

Branches 0.1664 (0.0019) 86.4 0.1718 (0.0021) 80.4 0.1829 (0.0037) 49.7

Branchesˆ2 -0.0007 (1.3E-05) -57.7 -0.0008 (1.4E-05) -54.6 -0.0008 (2.6E-05) -31.7

Branches Within 20 Miles 0.0039 ( 0.0004) 9.5 0.0053 (0.0005) 11.5 0.0159 (0.0005) 33.1

Net Branches Inside State 0.0008 ( 0.0002) 4.5 0.0022 (0.0002) 10.6 0.0031 (0.0002) 13.6

Branches Out of State 0.0001 (7.3E-05) 1.4 0.0002 (3.2E-05) 4.8 0.0003 (3.6E-05) 7.4

(Branches Within 20 Miles)ˆ2 -1.0E-05 ( 7.7E-07) -13.1 -1.1E-05 (8.5E-07) -13.4 -1.9E-05 (9.4E-07) -21.2

(Net Branches Inside State)ˆ2 -3.2E-07 ( 2.2E-07) -1.5 -2.5E-06 (2.9E-07) -8.9 -4.0E-06 (3.2E-07) -12.7

(Branches Out of State)ˆ2 3.2E-08 ( 9.7E-08) 0.3 9.1E-09 (4.4E-09) 2.1 8.2E-10 (4.8E-09) 0.2

Single Branch -0.3886 (0.0414) -9.4 -0.4244 (0.0457) -9.3 -0.5209 (0.0501) -10.4

Single Market 0.7413 (0.0299) 24.8 0.7241 (0.0327) 22.2 0.7497 (0.0359) 20.9

Age 0.0028 (0.0002) 14.8 0.0042 (0.0002) 18.5 0.0043 (0.0003) 17.1

Size 0.2423 (0.0060) 40.2 0.3226 (0.0080) 40.2 0.3270 (0.0087) 37.6

Employees 0.0011 (0.0001) 9.8 0.0013 (0.0001) 10.3 0.0011 (0.0001) 8.2

Included:
Bank Class Indicators Bank Class Indicators Bank Class Indicators

Market FE Market FE Market FE

Obs 24,486 24,460 24,339

Markets 3,013 3,013 3,013

R2 0.3908 0.2695 0.1215

willing to accept a 0.20 pp lower interest rate (or an over 35% drop in the average deposit rate) to

have access to an additional branch.
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Table 1.4: First Stage Results

Variable
Dep Var: Deposit Rate

Variable
Dep Var: Market Branches

Estimate Std. Err. t Estimate Std. Err. t

Wage 0.0004 (1.8E-05) 23.9 Wage -0.1983 (0.0204) -9.7

Expenses on P&FA -0.1598 (0.0096) -16.7 Past Market Branches 0.9121 (0.0089) 101.8

Other Expenses -0.1487 (0.0043) -34.6 Distance to HQ 0.0534 (0.0207) 2.6

Loan Risk 0.0240 (0.0016) 14.9 Competitor Branches IV 0.3238 (0.0281) 11.5

Competitor Age 1.2E-06 (1.3E-06) 0.9 Land Costs -4.3E-05 (2.8E-06) -15.1

Competitor Employees -3.1E-06 (1.2E-06) -.2.6

BHC Indicator -2.6E-05 (2.1E-05) -.1.3 BHC Indicator 3.8E-05 (4.8E-05) 0.8

Age -5.9E-06 (1.5E-07) -40.1 Age 0.0230 (0.0008) 30.6

Size -0.0004 (1.2E-05) -32.9 Size 0.0038 (0.0005) 7.6

Employees -1.9E-07 (4.2E-08) -4.5 Employees -0.0004 (0.0001) -3.1

Population -1.1E-06 (1.3E-07) -7.9

PCI 4.3E-05 (4.2E-06) 10.3

Pop Growth 9.2489 (3.2677) 2.8

Intra Dereg (2010 Ave.) 0.0055 (0.0092) 0.6

Inter Dereg (2010 Ave.) 0.0982 (0.0378) 2.6

Intra Dereg (1994 Ave.) 0.0131 (0.0113) 1.2

Inter Dereg (1994 Ave.) 0.0816 (0.0436) 1.9

Intra Dereg (HQ) 0.0261 (0.0276) 0.9

Inter Dereg (HQ) -0.0316 (0.0492) -0.6

Included:
Bank Class Indicators

Included:
Bank Class Indicators

Market FE Market FE

Obs 25,362 Obs 25,262

Markets 3,114 Markets 3,114

R2 0.3273 R2 0.3970

F-stat 976.20 F-stat 1278.51
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The effect of additional branches outside the market is not as substantial. The coefficients on

branches outside the market are in general positive and statistically significant, yet they are small

in value. The estimated coefficients in the third column imply that the average consumer would

only be willing to accept a 0.8% decrease in the deposit rate in exchange for one additional branch

in a market within 20 miles. This is a pretty small effect and it gets smaller for branches even

farther away, because the coefficients get smaller in magnitude for branches farther away from the

consumer’s home market.

Table 1.5: Deposit Rate Elasticity Percentiles from Logit Model

Mean 10% 25% 50% 75% 90%

Overall 1.81 0.67 1.23 1.73 2.35 2.91

Single Branch 2.17 0.95 1.51 2.15 2.76 3.39

Single Market, 2 Branches 2.21 1.21 1.64 2.11 2.62 3.18

Single Market, 3-5 Branches 2.05 1.15 1.54 2.01 2.49 2.96

Single Market, 6+ Branches 1.92 1.16 1.54 1.83 2.24 2.68

Multiple Markets, 1 Branch 1.90 0.72 1.34 1.89 2.48 3.01

Multiple Markets, 2 Branches 1.80 0.69 1.27 1.73 2.32 2.84

Multiple Markets, 3-5 Branches 1.68 0.67 1.15 1.59 2.13 2.63

Multiple Markets, 6+ Branches 1.33 0.60 0.68 1.28 1.69 2.19

Using the estimates from the third column of table 1.3, I get the distribution of price elasticities

shown in table 1.5. The overall mean deposit rate elasticity is 1.81. This is on the lower end of

what has been found in previous literature. The previous literature I am referring to (Dick (2008),
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Adams, Brevoort, and Kiser (2005), Ishii (2008), Ho and Ishii (2010)), estimates demand using

data from the 1990s and early 2000s, when deposit rates were considerably higher than they were

in 2010. Therefore I am not surprised that my estimated elasticities are on the low end of that

found in studies done in prior years.

Banks with more branches have a lower deposit rate elasticity than banks with fewer branches.

Single branch banks face a mean deposit rate elasticity of 2.17, while a single-market bank with

6 or more branches has a mean deposit rate elasticity of 1.92. This supports the notion that banks

with more branches are catering to less price sensitive consumers. You can also see that banks that

operate branches in multiple markets also have lower deposit rate elasticities, but this is more of a

result of the markets that multi-market banks are more prevalent in, being more competitive then

those markets where we often find single-market banks.

The parameter estimates for how the utility of the outside option depends on market character-

istics, are given in table 1.6. Both population and per capita income have a positive and significant

effect on U0m. This indicates that in more populated and wealthier markets, consumers are more

likely to choose the outside option. This makes sense given that there are generally more non-

banking alternatives available in urban markets.

I perform a series of robustness checks on these estimates that can be found in the appendix to

this chapter. In these checks I estimate the logit model using data from past years ,and also using

an alternative measure of market size. The results are in sections 1.9.1 and 1.9.2 of the appendix

to this chapter.
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Table 1.6: U0m Regression Estimates

Variable Estimate Std. Err. t

Land Area 5.5E-05 9.5E-06 5.8

Population 2.1E-06 7.7E-08 26.7

Per Capita Income 2.7E-05 3.2E-06 8.4

Constant 4.94 0.11 45.5

1.4.2 Full Estimation Results with Consumer Heterogeneity

The results of estimating the full demand model with heterogenous consumer income are in table

1.7. The first column contains the results from just estimating demand on its own while the second

column has the results of estimating demand and supply together. In general the precision of the

estimates increases slightly when the supply moments are added, but the estimated values do not

differ by much between the two columns.

Overall the estimates from the full model are similar to those found from estimating the con-

ditional logit model. In both columns the estimated coefficient on deposit rate times income is

positive and significant. The coefficient on branches is also positive and significant in both cases.

Most of the other parameter values also have the expected signs, and all of them are significant

with the exception of the coefficient on branches out of state.

The estimate for the coefficient on market branches from the full model also indicate that

the average consumer does have a strong preference for branches. If I interpret the coefficient

on deposit rate times income as the marginal utility of income, and ignore the branches squared
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Figure 1.6: Model Predicted Change in Market Share from Adding In-Market Branches for Bank

with Median Characteristics in Los Angeles County
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component, then the parameter estimates imply that the average consumer would be willing to pay

$70, or equivalently give up $70 in interest income, for a bank with an additional branch in their

market. This is notable if you consider that per capita income in 2010 was around $40,000 and

the average deposit rate was 1.32% per year. Consumers do not care as much about additional

branches in other markets. For an additional branch in a market within 20 miles, the average

consumer would only be willing to give up about $3, and for an additional in-state branch in a

farther away market, they would be willing to give up about 36 cents.

This preference for in-market branches encourages banks to build dense networks of branches.

Two graphs in figure 1.6 show how the estimated model’s predicted market share of deposits

changes with additional in-market branches, for a bank with median characteristics in Los An-

geles County. The graph on the left shows the additional market share this bank receives from the

marginal branch. This amount is increasing in branches up until about 65 branches, so that the

returns to adding branches are increasing in the number of branches. This leads to the shape in
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the figure on the right, which shows how overall market share changes with additional branches.

Market share increases convexly in branches before 65. These graphs illustrate that the estimated

parameters lead to the “network effect” discussed in section 1.2, and encourage banks to build near

existing branches rather then enter new locations.

The other parameter estimates in table 1.7 indicate that consumers prefer older banks and banks

with more employees per branch. Consumers also prefer single-market banks that have more than

one branch, but dislike banks with only one branch. The only cost parameter that is statistically

significant is the constant. The estimate implies that the marginal cost of each deposit dollar is

constant at 1.36 cents per 6-month period.

Deposit rate elasticities using the interest income coefficient from column 2 of table 1.7, are

given in tables 1.8 and 1.9. The mean overall deposit rate elasticity is 2.316, while the median

is lower at 1.596. This mean is slightly higher than what I got using the conditional logit esti-

mates. The higher rate elasticities in the full model are most likely being driven by high income

consumers. Consumers with larger incomes are more sensitive to deposit rates, because they have

a larger number of deposits. In the full model, these consumers also contribute more to market

share, and so it is not unexpected that elasticities are higher in the full model.

Comparing elasticities across banks with different sized branch networks, banks with smaller

branch networks face a more elastic demand for deposit services than do banks with larger branch

networks. The mean elasticity for a single branch bank is 2.849, while the average elasticity for a

bank that operates in multiple markets and has more than 5 branches in the market of interest, is

1.933. This indicates that banks use branches as a form of vertical differentiation.
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Table 1.7: Full Model Results

Variable
No Supply With Supply

Estimate Std. Err. t Estimate Std. Err. t

Deposit Rate*Income 2.4525 (0.2954) 8.3 2.4413 (0.1748) 14.2

Branches 0.1753 (0.0070) 24.9 0.1706 (0.0067) 25.4

Branchesˆ2 -0.0008 (8.6E-05) -8.8 -0.0007 (8.3E-05) -8.9

Branches Within 20 Miles 0.0066 (0.0007) 9.3 0.0073 (0.0007) 11.1

Net Branches Inside State 0.0008 (0.0002) 4.2 0.0009 (0.0002) 4.6

Branches Out of State -4.1E-05 (3.1E-05) -1.3 -5.9E-05 (2.8E-05) -1.9

(Branches Within 20 Miles)ˆ2 -1.3E-04 (1.5E-05) -9.2 -1.4E-04 (1.4E-05) -9.9

(Net Branches Inside State)ˆ2 -7.0E-06 (2.4E-06) -2.9 -7.6E-06 (2.4E-06) -3.2

(Branches Out of State)ˆ2 2.0E-07 (3.5E-08) 5.7 3.3E-07 (4.7E-08) 7.0

Single Branch -0.5063 (0.0407) -12.4 -0.5247 (0.0377) -13.9

Single Market 0.7047 (0.0271) 26.0 0.7305 (0.0287) 25.4

Age 0.0035 (0.0003) 13.6 0.0037 (0.0002) 15.3

Size 0.2293 (0.0083) 27.6 0.2318 (0.0079) 29.3

Employees 0.0012 (0.0005) 2.2 0.0011 (0.0005) 2.2

Included:
Bank Class Indicators Bank Class Indicators

Market FE Market FE

Cost Variables:

Constant 0.0136 (0.0036) 3.8

Employees -3.6E-08 (2.5E-05) -0.0

Branches 2.06E-06 (0.0001) 0.0

Obs 24,488 24,488

Markets 3,013 3,013
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Table 1.8: Own Deposit Rate Elasticity Percentiles

Mean 10% 25% 50% 75% 90%

Overall 2.316 0.539 0.931 1.596 2.558 6.306

Single Branch 2.849 0.696 1.115 1.864 2.900 8.053

Single Market, 2 Branches 2.886 0.709 1.189 1.874 3.107 8.318

Single Market, 3-5 Branches 2.749 0.756 1.101 1.815 3.186 7.590

Single Market, 6+ Branches 2.707 0.650 1.040 1.578 4.103 6.505

Multiple Markets, 1 Branch 2.344 0.520 0.930 1.594 2.482 6.465

Multiple Markets, 2 Branches 2.132 0.533 0.895 1.497 2.166 5.876

Multiple Markets, 3-5 Branches 2.221 0.532 0.917 1.550 2.556 6.163

Multiple Markets, 6+ Branches 1.933 0.469 0.790 1.453 2.605 4.915

Table 1.9: Mean Cross Deposit Rate Elasticity Percentiles

All Single Branch
Single Market Single Market Single Market Multiple Markets Multiple Markets Multiple Markets Multiple Markets

2 Branches 3-5 Branches 6+ Branches 1 Branch 2 Branches 3-5 Branches 6+ Branches

All -0.031 -0.023 -0.032 -0.036 -0.026 -0.027 -0.038 -0.042 -0.025

Single Branch -0.020 -0.023 -0.028 -0.017 -0.005 -0.025 -0.026 -0.021 -0.005

Single Market, 2 Branches -0.026 -0.021 -0.045 -0.029 -0.013 -0.034 -0.036 -0.026 -0.010

Single Market, 3-5 Branches -0.031 -0.019 -0.032 -0.036 -0.017 -0.030 -0.045 -0.048 -0.018

Single Market, 6+ Branches -0.022 -0.006 -0.016 -0.020 -0.017 -0.010 -0.026 -0.044 -0.025

Multiple Markets, 1 Branch -0.027 -0.027 -0.038 -0.035 -0.011 -0.030 -0.035 -0.027 -0.008

Multiple Markets, 2 Branches -0.038 -0.030 -0.047 -0.051 -0.029 -0.037 -0.049 -0.050 -0.018

Multiple Markets, 3-5 Branches -0.042 -0.029 -0.034 -0.057 -0.050 -0.029 -0.050 -0.066 -0.034

Multiple Markets, 6+ Branches -0.029 -0.011 -0.016 -0.028 -0.038 -0.011 -0.023 -0.040 -0.050

Table gives the mean elasticity for a bank-market of the row type from a change in the deposit rate of a bank-market of the column type.

Table 1.9 shows the average cross deposit rate elasticities for pairs of competitors with different

branch networks. The average cross deposit rate elasticity across all pairs of competing banks is
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-0.031. The firm types whose deposit rate changes cause the least substitution to or from competi-

tors, are the firms with either a single branch in the market, or those with a lot of branches in the

market. This again indicates that the consumers at banks with large branch networks are not as

price-sensitive, allowing these banks to provide lower deposit rates. It also shows that consumers

at single branch banks, (which were shown in table 1.8 to have high own elasticity rates), generally

substitute out to one of the outside options rather than another bank, when that bank lowers its

deposit rate.

The cross price elasticities in table 1.9 also indicate that competition is higher among banks

with similar branch networks than between banks with different numbers of branches in the market.

Banks in multiple markets with more than 5 branches have the largest effect on other multi-market

banks with more than 5 branches. On the other hand banks with smaller branch networks, such

as those with 2 branches or 3-5 branches, have the largest effect on other banks with similar sized

branch networks, according to their average cross-rate elasticities. This is evidence that consumers

segment the market by the size of the banks’ branch networks. It also appears that this market

segmentation does not extend to whether the bank is operating in a single market or multiple

markets. For example the average cross deposit rate elasticity between a single-market bank with 2

branches and a multi-market bank with 2 branches is -0.047, while the average cross-rate elasticity

between a multi-market bank with 2 branches and another multi-market bank with 2 branches is

similar at -0.049.

Additional exercises on the demand for deposits are in the appendix to this chapter found in

section 1.9.3. These include splitting the sample up based on rural or urban markets and estimating

the model separately for both, a test for whether consumers segment the market based on branch

network size, and a look at how consumer welfare has changed from 1994 to 2010 due to the
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change in branch networks and deposit rates over that time.

Overall the results in this section show that the advantage that banks with more branches enjoy

in terms of deposits is mainly an inside the market effect. Consumers do not appear to have much

value for a bank with many branches outside their local market (which is expected given that

consumers spend the vast majority of their time in their local market). Still a large portion of the

branch network growth over the past two decades has involved an expansion into new markets, and

the most dominant firms in the banking industry are multi-market firms. Therefore there is some

advantage enjoyed by these multi-market banks that is driving the outward expansion and is not

explained by the deposit market.

The purpose of the next portion of the paper is to then, controlling for the deposit generating

invectives for branch network expansion, get a better understanding of what else has driven branch

growth. I do this by estimating a model of the bank’s branch network choice. With a better

understanding of the motivation behind branch network growth, I can then see how that growth has

affected local market competition.

1.5 Bank Branch Network Choice

The bank choice problem is broken down into two stages, where the second stage choice of de-

posit rate is modeled in section 1.3.2. In the first stage banks simultaneously choose their branch

network, B j (a M x 1 column vector with the number of branches of bank j in each market m), to

maximize their profits, which are given by:

(1.16)P j = Â
m

⇥

V Pjm
�

B j,B� j,R j,R� j,Xj,X� j, l j,Dm,n j
�

�Cjm(B j,Xc
j ,W

c
m)
⇤
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V Pjm(·) is the bank’s variable profits generated from deposits and Cjm(·) is the cost of choosing a

particular branch network. I further break down variable profits into:

V Pjm(·) = cV P jm(·)+ e(B jm) (1.17)

The term cV P jm(·) is derived from estimates of the consumer demand model and the firm’s choice

problem over deposit rate. Variable e j(B jm) is an error term that is mean independent of the

observables. The interpretation for e j(B jm) is that it is the measurement error from estimating

variable profits rather than directly observing them.14

In this section I am interested in estimating the branch network cost function, Cjm(·). I specify

the following form for this function :

Cjm = 1{B jm > 0}
 

g1 + g2 Â
m0

amm0B jm0 +x

E
m +d

E
j

!

(1.18)

+B jm

 

g3 + g4B jm + g5B2
jm + g6 Â

m0
amm0B jm0 + g7Xc

j + g8W c
m +x

A
m +d

A
j

!

The cost function is split up into the costs of first entering a market and the costs of adding branches

to a market where a bank is already an incumbent. This is done to separate costs of entry that are

incurred by all banks, no matter their number of branches, from the costs of adding branches. This

also makes it so that branch network costs fluctuate consistently with variable profits.
14The e term could also be thought of as errors in the observations of the observable variables or errors in the

specification of the model. Another interpretation for this error term is that it measures uncertainty on the bank’s part

about their profit from a particular branching strategy. For one, they may not be able to perfectly predict the revenue

stream from a given network choice. It is also plausible that banks are unable to perfectly predict their competitors’

strategic responses to a particular branch network choice. No matter the interpretation, the requirement for the e term

is that it must be median and mean independent of the observable variables.
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The fixed costs of entry to a new market are given by the parameter g1, and the g3 parameter

measures the fixed cost of opening an additional branch. Parameters g4 and g5 measure the within

market economies of scale in opening branches. Spillovers are then measured by g2 for entry

costs and g6 for additional branch costs. As with the demand specification, the branches in outside

markets are weighted by the distance between markets, amm0 . Weighting by distance is important

for interpreting the source of the spillovers. Estimates of these parameters that imply that spillovers

are relatively local would suggest they are driven by economies of density, while spillovers that

increase at farther away distances, indicate that benefits to risk diversification are an important

source of the spillover advantage. Again I can’t separately identify the amm0 from the g2 or g6,

but can only get the total effect on costs. These spillover parameters are what link branching

decisions across markets, and estimating their values will tell us how important allowing for market

dependence is for understanding the development of branch networks following deregulation.

The parameter g7, measures the effect of institution specific variables, Xc
j , on the costs of adding

branches. The vector Xc
j includes employees per branch, the age of the bank, and a measure of its

size, which I proxy for with the level of the bank’s assets across all markets. The number of

employees per branch affects the costs of operating the branch, while the age and size of the bank

could affect its ability to find the lowest cost means of building a branch.

The final parameter, g8, measures the effect market variables, W c
m, have on the costs of adding

branches. The vector W c
m includes market per capita income, land area, population, and population

growth. I would expect per capita income to affect the costs of labor and land needed to build a

branch. Land costs may also be affected by the available land area. I would also expect population

and population growth to affect branding costs. Banks may try to anticipate increases in population

that will increase market size, and could add branches in markets that may be unprofitable in the
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current period, but have a large potential for future growth. Since there is evidence of some positive

switching costs in banking, it may be important for banks to try and anticipate future demand and

attract new customers before competitors enter the market. Such an incentive may reduce the

opportunity cost of adding a branch in a market that has a significantly growing population.

In addition to the observable portion of the cost function there is also an unobservable compo-

nent. The term x

E
m represents market characteristics affecting the costs of entering a new market

m that are unobservable to the econometrician but enter into the bank’s branching decision. This

term is meant to capture unobserved differences across markets that make it less costly or more

profitable to enter one market then another. This could for instance include laws that make it dif-

ficult for new firms to enter particular counties. Excluding this term would impact estimation in

that markets that have large unobservable components of cost (high x

E
m ) will have less entering

banks then markets with low unobservable costs, and I do not want to mistakenly attribute this

to certain market observables. The second term, d

E
j , represents unobserved heterogeneity in firm

characteristics that affect the branching decision, such as different bank presidents favoring dis-

parate branching strategies. I don’t want to mistakenly identify banks entering many markets as

evidence of economies of scale, when in reality certain bank presidents branch more than others.

The unobservable terms x

A
m and d

A
j have similar interpretations, but are instead the heterogeneity

in unobservable costs associated with adding additional branches to a market. To begin with, the

distributions’ of these error terms are left unspecified, and in describing the estimation strategy I

will talk about how adding assumptions to restrict the possible distributions of these terms, can

improve identification.
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1.5.1 Estimation Strategy

The goal is to estimate the cost function. This is complicated by the difficulty in solving for the

bank’s equilibrium strategy. The bank’s decision is a discrete decision over the number of branches

to open in each market. With over 3,000 markets in the United States, this becomes a large discrete

choice problem over all possible configurations of a branch network. Even if I exclude the intensive

decision over how many branches to open in each market, and just looked at the binary decision

of which markets to enter, the problem would be difficult to solve. Adding on top of this the

competitive aspect of different banks competing against each other, makes solving for the Nash

equilibrium even more difficult. Thus estimation strategies that rely on solving for the game’s

equilibria will not work well.

Instead I use a revealed preference approach. The benefit of this approach is that I can make

inference on the determinants of cost and profit without having to evaluate the profitability of

each possible decision vector of the firm. The approach also allow for the possibility of multiple

equilibria (which I can not rule out in this case).

This estimation strategy uses the bank’s necessary condition for maximizing profit. This con-

dition states that a bank’s profit from choosing observed branch network B⇤
j , must be greater then

the profit they receive from any alternative branch network, given the branch network choices of

their competitors. Thus an optimal branch network choice, B⇤
j , must satisfy:

P j(B⇤
j ,B

⇤
� j, ·)� P j(Bd

j ,B
⇤
� j, ·) 8Bd

j 2 NM (1.19)

Estimation of the cost parameters will then depend on looking at simple deviations from the ob-

served optimal branch network, and finding the parameters that satisfy this necessary condition.
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For each deviating branch network choice, Bd
j , I observe a change in variable profits for bank

j, relative to the observed choice B⇤
j , denoted DcV P j(B⇤

j ,B
d
j , ·). This change holds all other firms’

branch networks constant, but does allow firms to reoptimize their deposit rates. It is calculated

using the estimates from section 1.4. I also observe an 8x1 vector of the changes in the observable

cost variables, DCO
j (B

⇤
j ,B

d
j , ·), between the observed and the deviating branch network configura-

tion. Each element of the vector corresponds to the change in one component of the observable

portion of the cost function. Additionally there is a change in the unobservable cost variables,

DCU
j (B

⇤
j ,B

d
j , ·), and an unobserved change in the first stage estimation error, De(B⇤

j ,B
d
j ).

15

This last term is:

De(B⇤
j ,B

d
j ) = e(Bd

j )� e(B⇤
j) (1.20)

where e(B⇤
j) is the estimation error from using the parameter estimates from section 1.4 to cal-

culate variable profits at the observed branch network, and e(Bd
j ) is the same error in calculating

variable profits at the deviating branch network. I assume that this estimation error is mean zero

and independent of the other variables in the analysis so that E


De(B⇤
j ,B

d
j )|
n

B⇤
j

oJ

j=1

�

= 0, where

the expectation is taken over all deviations d, and is conditional on the observed branch networks

of all firms.16 Adding this error from the first stage estimation helps to rationalize why even in
15For example if the deviation was adding one branch to firm j in market m where bank j was already an incumbent

(i.e. Bd
jm = B⇤

jm +1), then these terms would be:

DCO
j (B

⇤
j ,B

d
j , ·) =

"

0 , Â
m0 6=m

am0m1
n

B⇤
jm0 > 0

o

, 1 , (2B⇤
jm +1) , (2B⇤2

jm +3B⇤
jm +1) , Â

m0 6=m
am0mB⇤

jm0 , Xc
j , W c

m

#

DCU
j (B

⇤
j ,B

d
j , ·) = (x A

m +d

A
m)

16Under the alternative interpretation of the error term e , as a measure of bank uncertainty about the profitability

of a particular strategy, possibly due to uncertainty over the rival response function, the expectation is then taken over
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the absence of the market-specific and bank-specific error terms, for the correct set of parame-

ters, not all of the inequalities will hold with certainty. This mean-independent term says that the

inequalities will instead hold on average.

The change in total profit from the deviation d is then given by:

DP j(B⇤
j ,B

d
j , ·) = DcV P j(B⇤

j ,B
d
j , ·)�DCO

j (B
⇤
j ,B

d
j , ·)g �DCU

j (B
⇤
j ,B

d
j , ·)+De(B⇤

j ,B
d
j ) (1.21)

The right hand side is linear in g , the vector of parameters to be estimated. At the true parameter

values, g

0, the bank’s necessary condition for branch optimization says that for all deviations:

DP j(B⇤
j ,B

d
j , ·;g

0) 0 (1.22)

This is the basis for the inequalities used to estimate g .

1.5.1.1 Moment Inequality Technique without Unobserved Firm and Market Heterogeneity

The estimation technique I use is based on the moment inequality approach of Pakes, Porter, Ho,

and Ishii (2011). I use their moment inequalities approach over other revealed preference tech-

niques, because of how easily I can incorporate my method for dealing with potential endogeneity,

into their moment inequalities framework. The moment inequality approach also allows for a

broader interpretation of the e error term that includes my interpretation for the term as measure-

ment error from estimating variable profits in the first stage rather than observing them.

I assume that given the observed branch network, there is a set, D, of D deviations. For each

deviation d in the set, let jd denote the firm that is employing the deviating strategy in d, and let

uncertainty in profits in both the observed and deviating network choices. If this includes uncertainty over the strategy

choices of competing banks, then the expectation would be over possible changes in branch networks for rivals in

response to the bank of interest’s deviating strategy.
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md be the market where the branch deviation in d is occurring. Then for each deviation d, there

is some DcV P jd(B
⇤
jd ,B

d
jd , ·), DCO

jd(B
⇤
jd ,B

d
jd , ·), DCU

jd(B
⇤
jd ,B

d
jd , ·), and De(B⇤

jd ,B
d
jd). For now I will

assume that DCU
jd(B

⇤
jd ,B

d
jd , ·) = 0. Taking conditional expectations over the D deviations, with the

conditioning on the observed branch network, leads to the inequality:

Ed

h
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⇤
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d
jd , ·)|

�

B⇤
j
 J

j=1

i

�Ed
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 J
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g+Ed
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j
 J

j=1

i

 0

(1.23)

which must hold at the true parameter value g = g

0. By the assumptions made on the measurement

error, the third term is equal to zero, and what is left is a moment inequality that is a linear function

of g .

m(g) = Ed

h

DcV P jd(B
⇤
jd ,B

d
jd , ·)|

�

B⇤
j
 J

j=1

i

�Ed

h

DCO
jd(B

⇤
jd ,B

d
jd , ·)|

�

B⇤
j
 J

j=1

i

g  0 (1.24)

The identified set, GI is then the subset of values in G21 that satisfy the above linear constraint.

The identified set will be large (and will not be very informative) if I only have one moment

inequality, but the number of moments can be extended in a couple of ways. One way is to observe

more than one set of deviations. I look at four simple one branch deviations. One is the deviation

where each firm increases by one the number of branches they have in each market. Another is the

deviation where each firm decreases by one the number of branches they have in each market. The

third is where firms deviate by entering a new market and the fourth is the set of deviations where

firms deviate by exiting a market. The deviations that make up each set involve different firms and

markets.

The number of moments can also be increased by adding instruments. Suppose there is some

instrument Zc, that is observed for each deviation d, and is such that Zc
d � 0 for all deviations d,
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and Ed
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Thus observing a set of K instruments will provide K additional moments that can be used to

reduce the size of the identified set.

Given a set of L moments (l = 1, . . . ,L), I then construct an estimator for the identified subset.

For each of the moments the sample analog is:

eml(g) =
1

Dl

Dl

Â
d=1

⇣

Zc
dDT R jd(B

⇤
jd ,B

d
jd , ·)

⌘

� 1
Dl

Dl

Â
d=1

⇣

Zc
dDCO

jd(B
⇤
jd ,B

d
jd , ·)

⌘

g (1.25)

The set of parameters that satisfy eml(g)  0, for each of the L moments, is the estimate for the

identified set. If no parameters satisfy all the moments, then I choose the parameter values that

are closest to satisfying all of them, where closest is defined in the least squares sense. This can

expressed in an objective function as:

Q(g) =
L

Â
l=1

(max{0, eml(g)})2 (1.26)

Then the estimate for GI is given by:

bGI = arg min
g2G21

Q(g) (1.27)

If the sample moments are consistent estimates of the actual moments, then bGI will be a consistent

estimate of GI .

1.5.1.2 Identification in Presence of Unobserved Firm and Market Specific Heterogeneity

In the prior section, GI is identified assuming that E


DCU
jd(B

⇤
jd ,B

d
jd , ·)|

n

B⇤
j

oJ

j=1

�

= 0. Making this

assumption in the presence of unobserved firm and market heterogeneity leads to biased estimates.
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Less restrictive assumptions improve the validity of the estimates, but reduce the identifiability of

the parameters, thus leading to a clear tradeoff between the assumptions I am willing to make on

the unobserved heterogeneity, and the constraints imposed on the parameter values. In this section I

show what can be identified starting with fairly innocuous assumptions on the unobservable terms,

and then how identification can be improved with stronger assumptions.

The first assumption I impose on the unobservable costs, {x

E
m ,d E

j ,x
A
m ,d

A
j }, is that they are

either firm-specific or market-specific. The second assumption I make is that they enter the cost

function in an additively separable way. These two assumptions are both relatively common in

the discrete choice literature. Without imposing any more assumptions, I can get bounds on the

parameters associated with branches and spillovers.

The technique I use combines four simple deviations to difference out the unobservable cost

terms. The deviations involve two firms, j and j0, and two markets, m and m0. In the first deviation

firm j adds one branch to market m. In the second, firm j takes one branch away from market m0.

The third deviating strategy is then for firm j0 to add a branch in market m0, and the fourth is for j0

to take a branch away from market m. Each of these deviating strategies will result in a change in

profits that must be less than zero according to the necessary condition.

I denote D+1
jm as the difference in profit for firm j between their observed branch network and a

branch network same as their observed one, but where they add a branch in market m, where they

are already observed to have branches. Similarly I denote D+E
jm as the difference in profit for firm

j between their observed branch network and a branch network same as their observed one, but

where they add a branch in market m, where in their observed branch network they do not have any

existing branches. The reason I distinguish between the two is because entering a new market will

lead to the inclusion of the entry cost unobservables, x

E
m and d

E
j . Similarly for decreasing branches
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I let D�1
jm denote the difference in profit for firm j between their observed branch network and the

same branch network, but where firm j has one less branch in market m, but still has branches

in market m. Then D�E
jm represents the same simple deviation, but when in the deviating network

firm j is left with no more branches in market m. To then get bounds on the parameters associated

with the effect of branches on per-branch costs (I will use a different, but similar, inequality to get

bounds on the effect of branches on entry costs), I combine the four deviations described earlier,

and impose a selection mechanism, to get an inequality without any unobservable cost terms.

The selection mechanism I impose is to choose j, j0,m, and m0, such that B⇤
jm � 1, B⇤

jm0 � 2,

B⇤
j0m � 2, and B⇤

j0m0 � 1. Each choice of different j, j0,m, and m0, is a different deviation in the set

of Dl deviations for the lth inequality. Because the necessary condition imposes that the change in

profit from each deviation must be less than zero, then combined the change in profit must also be

less than zero:

⇣

D+1
jdmd

+D�1
jdm0

d
+D+1

j0dm0
d
+D�1

j0dmd

⌘

1
n
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d
� 2,B⇤

j0dm0
d
> 0,B⇤

j0dmd
� 2

o

 0 (1.28)

A simple calculation will show that the unobservable cost terms will drop out of this equation,

and thus I will be left with an equation in terms of the known changes in total variable profits,

the observed cost variables, the cost parameters, and the mean zero measurement error terms.

Therefore the expectation over the Dl deviations, of the observed portion of inequality (28), is less

than or equal to zero, and the sample analog is also expected to be less than or equal to zero. I can

then use this inequality, along with instruments, to get bounds on the parameters associated with

variables that have firm-market variation (such as the branches and spillovers variables).

The intuition behind this approach is that I am trying to infer from the number of branches a

bank has in each location, the value of the spillovers (as well as other parameters). Observing B jm
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branches for bank j in market m rather than B jm � 1 branches, implies that branch number B jm

must have been profitable. The identification strategy infers from observed changes in variable

profits and changes in the cost variables, as j goes from B jm � 1 to B jm branches, the parameters

that are consistent with this being profit maximizing. The issue is that it could be profitable for

unobserved reasons. For one it could be that firm j has lower unobserved costs to branching and

that is why they added the extra branch in market m. I control for this by comparing firm j’s choice

in m, with their choice in another market m0. The combination D�1
jm +D+1

jm0 , infers parameter values

from a comparison of changes to observed variables from adding a branch in m or m0, based on the

condition that firm j adding an extra branch to m rather than m0, must have been profitable. Firm j

having lower unobserved branching costs would have the same effect in both markets and so does

not enter this comparison.

The market unobservable term does still present a problem. Bank j may have added the extra

branch to market m rather than market m0 due to unobserved costs being lower in market m than

in m0. To control for this I compare firm j with another firm j0. The condition I then try to

explain is why did j add an extra branch in m rather than m0, and why did j0 add an extra branch

in m0 rather than m. Neither market-specific unobservables nor firm-specific unobservables will

enter this comparison, and so differences in observed changes can fully explain the constraint, thus

bounding the set of permissible parameter values.

To improve identification I use a set of instruments, which are inclusion indicators that select

certain firms and markets based on the differences between their branch networks. To get a lower

bound on the effect of branches, both inside and outside the market, I use instruments that select

observations so that the firm-markets that deviate by adding a branch, have more branches then the

firm-markets deviating by closing a branch. This identifies a lower bound because if the branches
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parameter were too low then this deviating strategy would significantly reduce costs. Because

the deviating strategy must not be profitable for the firms, there is a bound on the possible cost

reduction, and thus a lower bound on the branch parameter.

To get an upper bound on the effect, I use instruments that select observations so that the firm-

markets that deviate by adding a branch, have less branches than the firm-markets that deviate

by closing a branch. The change in costs from deviating must be large enough so that the firm’s

optimal strategy is the observed branch network, and a high cost parameter on branches would

reduce costs significantly for the deviating firms. This identifies an upper bound on the parameter.

Overall I use four different instruments for each branches variable, all based on the differences

between the number of observed branches of the adding firm-markets and the closing firm-markets.

One selects observations if the difference is greater than a constant C, the second if it is between 0

and C, the third if it is between 0 and �C, and the final one selects observations if the difference is

less than �C.

1.5.1.3 Imposing Additional Restrictions to Bound Other Parameter Values

To get bounds on the other parameter values for which the corresponding variables do not vary

across both firms and markets, I first consider the combination of two simple deviations involving

the same firm j in two different markets m and m0. In the first simple deviation, firm j adds a

branch to market m, while in the second simple deviation they lose a branch in market m0. To

ignore unobservable entry costs, I select on firms and markets such that B jm > 0 and B jm0 � 2.

Then the deviation inequality for a particular j,m, and m0, will be:

⇣

D+1
jm +D�1

jm0

⌘

1
n

B⇤
jm > 0,B⇤

jm0 � 2
o

 0 (1.29)
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Different choices of j or m and m0 will result in a different deviation d in the set of deviations Dl

that will form this new inequality l.

This combination of profit changes will difference out the firm specific unobservable term, but

the unobserved market heterogeneity remains. In particular I am left with the difference in the

market unobservable terms for market m and market m0, x

A
m0 � x

A
m . For the observed portion of

inequality (29) to necessarily be less than zero, it must be the case that the unobserved portion is

greater than or equal to zero. If instead the unobserved portion is less than zero, than the necessary

condition for firm optimization does not necessarily imply that the observed portion of the change

in profits is less than zero. Therefore to use the above inequality I need to assume that:

Ed2Dl

h⇣

x

A
m0

d
�x

A
md

⌘

1
n

B⇤
jdmd

> 0,B⇤
jdm0

d
� 2

oi

� 0 (1.30)

If I assume that x

A
m is a mean zero disturbance, then (30) implies that on average, markets where

banks have less branches have lower unobserved costs than markets where banks have more

branches. This is not a reasonable assumption, and I would actually expect the opposite.

Intuitively, this combination of simple deviations is trying to infer parameter values from the

observation that bank j added a marginal branch to market m0 rather than market m. Unobservable

differences between the two markets make this difficult. Given that I select on pairs of markets

where j has more branches in m0 than in m, then conditional on observing the branch networks I

would expect unobservable costs in m0 to be lower than in m. This precludes making any inference

from differences in observed changes. In essence this is a selection problem due to how I distinctly

choose each market in the pair, and so I solve it by using the same condition to select both markets.

I specifically select combinations of j,m,m0, such that B jm � 2 and B jm0 � 2. This differs from

above in that now I am also only selecting markets where bank j has more than two branches, as
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markets where the firm can deviate by adding an extra branch. Now the unobservable market cost

term must satisfy the assumption that:

Ed2Dl

h⇣

x

A
m0

d
�x

A
md

⌘

1
n

B⇤
jdmd

� 2,B⇤
jdm0

d
> 2

oi

� 0 (1.31)

Particularly this would hold under the assumption that:

Ed2Dl

h⇣

x

A
m0

d
�x

A
md

⌘

1
n

B⇤
jdmd

� 2,B⇤
jdm0

d
> 2

oi

= 0 (1.32)

Because I am selecting on the same set markets to choose both m and m0, then the unobservable cost

terms should be equal in expectation and the expectation over deviations that form the inequality

will be less than zero.

The vector of instruments then consists of indicators on what criterion I am using to select

markets m and m
0
. These criterion will depend on the market specific variables for which I’m

trying to bound the associated parameters. For example to create inequalities to bound the effect of

population on costs, I use four instruments similar to those used to bound the branch parameters.

One selects markets such that the population in m is larger than in m
0
by a lot, one if it is larger by

a little, one if it is smaller by a little, and one if it is smaller by a lot. The inequalities selecting

on markets where the population in market m is larger than the population in market m0, provide a

lower bound on the effect that population has on branch costs, while the inequalities selecting on

markets where the opposite is true, will provide an upper bound on this effect. I also create similar

inequalities with the other market specific cost variables. With four market-specific cost variables,

I get an additional 16 inequalities. The assumption on these instruments is that they must satisfy

the condition:

Em,m0

h

(x A
m �x

A
m0)⇤ |J�2,�2

m,m0 ||Zm,m0

i

= 0 (1.33)
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where |J�2,�2
m,m0 | denotes the cardinality of the set of firms with more than one branch in both markets

m and m0. This assumption states that the difference in unobserved costs between a pair of markets

is independent of the number of firms with multiple branches in both markets, given the instrument.

This is similar to assuming independence between the unobserved market heterogeneity and the

instrument.

To bound the firm specific cost parameters, I create inequalities using one other similar combi-

nation of two simple deviations. The two deviations are a firm j opening a branch in market m, and

a different firm j0 decreasing by one the number of branches they have in the same market m. As

before, an unobservable cost term will appear in this combination of deviations, but again I impose

a selection criteria on the set of deviation combinations, and make the following assumption on the

unobserved firm heterogeneity and instruments:

E j, j0
h

(x A
j �x

A
j0 )⇤ |M

�2,�2
j, j0

||Z j, j0
i

= 0 (1.34)

where |M�2,�2
j, j0

| denotes the cardinality of the set of markets in which both firm j and firm j0 have

more than one branch. The instruments are similar to those used before, but are based on the

firm-specific cost variables.

The above sets of inequalities are enough to get relatively tight bounds on all of the parameters

except for the fixed cost parameters, g1 and g3. To get bounds on these two parameters requires

looking at the simple deviations on their own. This will involve making even more stringent

assumptions on the unobservable terms.

To get a lower bound on g3, I use the simple deviation of a firm j adding a branch to a market

m. Without combining this simple deviation with any other deviations, neither x

A nor d

A, are

differenced out. Thus if I select only on banks and markets where the chosen bank is already
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an incumbent (so as to eliminate the need to worry about the entry cost unobservables), then the

unobserved portion of the differences in profit is given by:

Ed

h

�(x A
md

+d

A
jd)1{B⇤

jdmd
> 0}

i

(1.35)

where the expectation is taken over all d in this set of deviations.

To be able to use this inequality I must assume that this expectation is greater than zero. In-

tuitively this assumes that unobservable costs are lower for the bank-markets where there are ob-

served to be branches. I find this assumption to be reasonable and so I include the subsequent

inequality in the first set of inequalities, which include all the inequalities described above. This

inequality provides a lower bound on g3, and the total costs of adding a branch in an incumbent

market.

Ideally I would like to extend the same logic to use the take one branch away simple deviation

on its own, as well as the enter a new market and exit a market simple deviations. The issue is

that the assumptions needed to use these simple deviations are not as reasonable as the assumption

necessary to use the add one branch simple deviation on its own. For example if I want to look at

the decrease one branch in incumbent markets deviation on its own, then the unobserved portion

of the differences in profits would be:

Ed

h⇣

x

A
md

+d

A
jd

⌘

1{B⇤
jdmd

� 2}
i

(1.36)

An assumption stating that this expectation was greater than zero, would assume that unobservable

costs are higher in markets where firms have more than one branch and for firms that have more

than one branch in a market. I don’t find this to be a reasonable assumption.

The same is true if I want to add the moments created by looking at the enter a new market

simple deviation or exit a market simple deviation, without combining them. To look at the enter a
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new market simple deviation I would have to select on firms and markets such that in the observed

branch network there are no branches for that firm in that markets. Thus I would expect the

unobserved costs in those selected markets, for the selected firms, to be relatively higher (positive),

making it difficult to discern whether the bank’s decision to not enter that market was because

observed costs were high or because unobserved costs were high. To look at the exit one market

simple deviation I would have to select on firms and markets where it is observed that the firm

has a branch in that market. Thus I would expect the unobserved costs for the selected firms and

markets to be relatively lower (negative). Again it would then be difficult to infer how the observed

variables affect the cost of entering a market, because it could just be low unobserved costs that

led those firms to enter those markets in the observed network.

Hence adding inequalities based on these simple deviations on their own, requires me to es-

sentially ignore unobserved heterogeneity. Therefore in providing my results in the next section, I

will first present the results using only the inequalities generated from the first set of inequalities,

which are those formed by combining simple deviations, and the inequalities using the deviation

of adding one branch to an incumbent market on its own. This is all the inequalities under the first

three inequality groups in table 1.10. I then separately present the results that add the inequalities

generated by ignoring unobserved heterogeneity. These are given by the fourth inequality group in

table 1.10. To see the values of all the variables for the full set of inequalities generated from this

procedure, refer to table 1.28 in the appendix to this chapter.
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1.5.2 Confidence Intervals

To make inference on the estimates I create confidence intervals using the approach found in

Holmes (2011), which itself was adapted from Pakes, Porter, Ho, and Ishii (2011). I suppose

that the observed branch network is given and that the data generating process for each inequality

is a draw of D deviations given the observed branch network. For each deviation d, there is a vector

of [DcV P jd(B
⇤
jd ,B

d
jd , ·), DCO

jd(B
⇤
jd ,B

d
jd , ·), DCU

jd(B
⇤
jd ,B

d
jd , ·), De(B⇤

jd ,B
d
jd)]. For each set of deviations

that make up one of the L moment inequalities, I then calculate the sample mean of this vector

over the D deviations and a sample variance-covariance matrix for the vector.

I then use the techniques of Pakes, Porter, Ho, and Ishii (2011) to simulate inner and outer 95%

confidence intervals. This involves taking simulation draws for each of the L inequalities, of the

deviation vectors, from a normal distribution with mean and variance equal to the sample mean

and sample variance-covariance, respectively, calculated for the set of deviations associated with

inequality l. Then for each simulation draw I can create a simulated set of the L moments inequal-

ities, which I then search over for the simulated parameter bounds. The 95% confidence intervals

for the lower bound and upper bound of each parameter were then found from the distribution of

the respective simulated parameter bounds.

I did this to create both inner and outer 95% confidence interval thresholds, where the difference

was that for the inequalities created for the outer thresholds there was an additional slack term. The

slack term is the amount by which the inequality using the actual deviation vectors is satisfied at

the estimated parameter bounds. If the inequality is binding then this term will be zero. Thus the

outer confidence interval thresholds are the more conservative of the two. Pakes, Porter, Ho, and

Ishii (2011) shows that these two confidence interval thresholds then asymptotically bracket the
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true confidence interval thresholds. In the results table I provide both the inner and outer 95%

confidence intervals, where the reported lower threshold is the lower threshold of the lower bound

on the parameter and the reported upper threshold is the upper threshold of the upper bound on the

parameter.
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1.6 Estimation Results for Branching Cost Parameters

All the inequalities are broken down into groups, as seen in table 1.10, based on the assumptions

needed to generate them. Under minimal assumptions I can generate the inequalities in group

1. These inequalities identify lower bounds on the spillover parameters, but many of the other

parameters, including in-market branches, remain unbounded. Adding the inequalities in group 2

leads to bounds on all of the parameters except for those on the constants (which are needed to get

a bound an the absolute costs of building branches and entry). Adding the inequalities in group 3,

identifies a lower bound on the per branch constant parameter.

The results using these first three groups of inequalities are in table 1.11. Columns 2 and

3 provide the point estimates for the lower and upper bound, respectively. The four rightmost

columns contain the inner and outer 95% confidence bounds. The reported confidence interval

lower bound is the 2.5 percentile threshold for the lower bound and the reported confidence interval

upper bound is the 97.5 percentile threshold for the upper bound.

To get an idea of the relative magnitudes of these cost parameters, the lower bound and upper

bound for the cost of building a branch were calculated for each observed firm-market in the sample

using the estimated parameter intervals.17 The average lower bound on costs is roughly $159,000,
17Unfortunately with the set of inequalities in groups 1-3, I can only get a meaningful lower bound on the per branch

constant variable, and thus can only get a lower bound on the total costs of adding a branch. To get an upper bound

on this parameter I thus added the inequality from group 4 that looked at the decrease a branch deviation on its own,

with only the indicator as an instrument. Adding this one inequality had no effect on the parameter bounds in table

1.13, but provided an upper bound for the per branch constant parameter, and thus an upper bound on the total costs

of branching.
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while the average upper bound on costs is roughly $271,000. These are the 6-month costs of an

additional branch.

I compare these costs with those found in the ”Branch Construction Survey” performed by

Bancography in May 2013. The survey found that the costs of branch construction ranged from

$700,000 to $2 million, and on average were around $1.3 million. Land costs ranged from

$250,000 to $1.1 million and on average were $675,000. Together the average costs of adding

a branch were thus around $2 million. Assuming a 39-year depreciation period this amounts

to roughly $50,000 per year or $25,000 over a 6-month period. The survey also found that an-

nual operating costs, which include employee salaries and taxes, to be between $350,000 and

$400,000, annually. Thus in total, the costs of adding a branch are on average between $200,000

and $225,000, over a 6-month period. This range is squarely in the middle of my estimated average

bounds on branching costs.

The estimated bounds on per branch cost variables in table 1.11 indicate that the supply side

advantage for multi-market firms is through expanding outward rather than building up dense net-

works of branches. The two bounds on the market branches variable are both positive at 73.7 and

76.8, implying diseconomies of scale from adding branches near previously established branches.

This contrasts with the demand effect that encourages banks to build more branches near their exist-

ing ones. The possible parameter values on branches in adjacent markets and branches in markets

within 10 miles, are also bounded by positive values, again indicating that the benefits of building

a dense network are solely through increased deposits, and beyond that there are disadvantages to

building branches near one another.

In contrast, both parameter bounds for the three outside market branches variables that are at

distance bands farther away than 10 miles, are negative, implying that the profitability of adding

63



branches increases for banks with more branches in outside markets. The parameter bounds for

within state branches (in outside counties that are farther than 20 miles away) are -0.779 and -0.653,

and the bounds for out of state branches are -0.907 and -0.786. This pattern for the spillovers,

which are profit reducing at small distances, but profit increasing at larger distances, suggests that

the multi-market advantage is due to an expansive benefit such as geographic risk diversification

and not from a local advantage such as economies of density.

The magnitudes of the parameters are informative on the size of the spillover effect. For all

multi-market firms, the average number of in-state branches is a little over 10 branches. The

estimated parameter bounds suggest that a bank that owns 10 more branches in outside counties

within the state, would be willing to receive between $6,530 and $7,790, less in variable profits

from deposits, from an additional branch, because of the cross market benefit this branch will have

with the outside market branches. The sample average of variable profits per branch is roughly

$185,000, and so the bank with 10 outside branches would be willing to receive about 3.5%-

4.2% less than average variable profits per branch. For all banks operating in multiple states, the

average number of out of state branches is a little less than 100 branches. The estimated parameter

bounds suggest that that a bank that owns 100 more branches in out of state markets would be

willing to take in between $78,600 and $90,700, less in deposit variable profits from an additional

branch. This is between 42%-49% less than the average branch deposit variable profits. The

magnitude of these numbers indicates that interdependencies between markets have a substantial

effect on banks’ branching decisions. The higher profitability of branches for these multi-market,

and especially multi-state, banks with large existing branch networks rationalizes the increasing

industry dominance of banks with large chains of branches.
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Table 1.11: Estimates of Bounds on Cost Parameters

Per Branch Cost Parameters

Point Estimates Inner 95% CI Outer 95% CI

Lower Upper Lower Upper Lower Upper

Constant 510.37 UB 501.83 UB 499.23 UB

Branches 73.72 76.83 71.64 82.00 71.62 82.08

Branches Sqr -0.55 -0.53 -0.59 -0.52 -0.59 -0.52

Branches in Adjacent Markets 0.85 0.98 0.56 1.03 0.55 1.06

Branches Within 10 Miles 11.10 11.95 10.10 12.77 10.10 12.80

Branches Within 20 Miles -14.48 -13.78 -15.46 -13.15 -15.49 -13.15

Net Branches Inside State -0.78 -0.65 -1.03 -0.57 -1.04 -0.57

Branches Out of State -0.91 -0.79 -1.15 -0.73 -1.17 -0.72

Employees 13.39 19.71 12.84 21.34 9.28 21.34

Age 0.01 1.48 -0.24 3.86 -0.25 3.95

Size 5.5E-07 5.5E-07 -8.9E-07 3.8E-06 -8.4E-07 3.9E-06

Land Area 0.06 0.16 0.05 0.17 0.00 0.24

PCI -8.0E-03 8.6E-04 -9.0E-03 1.4E-03 -1.2E-02 8.2E-03

Population -7.1E-04 -2.7E-04 -7.9E-04 -2.6E-04 -1.1E-03 -2.0E-04

Pop Growth -1015.84 -98.11 -1088.81 -87.61 -1527.01 -19.31

Entry Cost Parameters

Point Estimates Inner 95% CI Outer 95% CI

Lower Upper Lower Upper Lower Upper

Branches in Adjacent Markets -2.94 -0.73 -3.55 -0.73 -4.30 -0.71

Branches Within 10 Miles -10.15 4.52 -39.27 54.47 -58.92 57.49

Branches Within 20 Miles -28.41 3.75 -33.87 11.93 -36.73 11.96

Net Branches Inside State 0.31 1.59 0.30 1.91 0.30 2.36

Branches Out of State -4.49 0.07 -4.72 0.15 -4.80 0.29
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For the other per branch cost variables, the bounds narrow down the direction of most of their

effects, and they appear to make intuitive sense. Banks which hire more employees per branch find

it significantly more costly to add branches. The parameters indicate that it is somewhere between

$13,388 and $19,713, more costly per 6-months to add a branch for each additional employee. This

makes sense given that operational costs would be higher for banks with more employees, and an

increase in costs of around $30,000 per year make sense given the salaries of bank employees. The

estimated parameters on age and size both fall in ranges of positive values. This is most likely a

result of the generally bigger branches built by older banks and also by larger sized banks, which

are more costly to build and operate.

The identified range of values for the parameters on population and population growth both

fall in a span of negative values meaning that markets with larger populations and more population

growth, are less costly to branch in. This most likely reflects the benefits, beyond those that mani-

fest in more deposit dollars, of opening branches in highly populated markets with many potential

customers, and also of anticipating future demand. The lower bound on the parameter associated

with population growth is -1,015.84, meaning that if the 10-year population growth in market A

was 1pp higher than the 10-year population growth in market B, then a firm would be willing to

accept up to a $10,158 drop in current variable profits to add a branch in market A as opposed

to market B. This is roughly 5.7% of the average deposit variable profits brought in by a branch,

according to the demand estimates. This is substantial and implies that banks are willing to accept

significant losses in current period variable profits, in order to add branches in growing markets,

with the potential for large future gains in profits.

The parameters on the entry cost variables are not as informative. The sign of the effect can

be inferred from the bounds for only two of the variables. One of those is the effect of branches
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in adjacent markets. The parameter bounds suggest that a bank with an additional branch in an

adjacent market would be willing to accept somewhere between $730 and $2,940, less in variable

profits from deposits by entering. This encourages entry in adjacent markets, even if the per-branch

parameters discourage banks from adding additional branches once they are incumbents.

Missing from these results, are bound estimates for the entry cost parameter g0, which measures

the fixed cost of entering a new market that is separate from the branch opening cost. To get bounds

on this parameter I have to use inequalities based on the enter and exit one market deviations on

their own. As stated in the previous section, to use these inequalities I have to make assumptions

that amount to essentially ignoring the role of the unobserved cost variables in banks’ branching

decisions. Still I provide results in table 1.12 from adding inequalities based on these deviations,

as well as adding inequalities based on the decrease one branch deviation on its own, which will

provide an upper bound on the fixed cost of adding a branch.

Adding these additional inequalities leads to over restrictions on the parameter values. Results

are then obtained by optimizing over the objective function in equation (26) to get point estimates

of the cost parameters. The results are presented in table 1.12. Again the four rightmost columns

contain the inner and outer 95% confidence bounds.

The estimated parameter values here are not interpreted much differently then for the bounds

found above. The only major difference is that the parameter values for the branch coefficients

mostly fall below their bounds from before. This is due to the inequalities that provide an upper

bound on the branch parameters being more restrictive once I add the inequalities based on the

decrease one branch deviation on its own. In the post estimation exercises I perform below I use

this vector of estimated parameters as the values of the true cost parameters.
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Table 1.12: Estimates of Cost Parameters Using Additional Inequalities

Per Branch Cost Parameters

Point Estimates Inner 95% CI Outer 95% CI

Estimate Lower Upper Lower Upper

Per Branch Constant 540.93 460.23 610.79 457.85 2,725.41

Branches 57.03 47.28 64.22 44.38 67.02

Branches Sqr -0.28 -0.31 -0.22 -0.37 -0.21

Branches in Adjacent Markets 0.43 0.35 1.30 0.32 1.31

Branches Within 10 Miles 15.51 10.10 15.77 6.04 15.80

Branches Within 20 Miles -19.14 -19.14 -13.16 -19.14 -10.17

Net Branches Inside State -1.79 -2.00 -1.60 -2.03 -1.60

Branches Out of State -0.99 -1.13 -0.87 -1.18 -0.85

Employees 18.73 6.53 21.31 0.43 24.13

Age 0.78 0.52 1.18 0.00 1.98

Size -7.7E-07 -9.8E-07 3.3E-06 -10.8E-07 3.3E-06

Land Area 0.07 0.05 0.11 0.00 0.14

PCI -6.5E-03 -3.0E-02 3.4E-03 -4.2E-02 9.6E-03

Population -4.2E-04 -9.4E-04 -2.9E-04 -1.0E-03 -1.8E-04

Pop Growth -458.04 -815.30 -89.13 -1042.15 -21.80

Entry Cost Parameters

Point Estimates Inner 95% CI Outer 95% CI

Estimate Lower Upper Lower Upper

Entry Fixed Cost 70.61 90.63 160.55 34.84 176.05

Branches in Adjacent Markets -0.41 -0.47 -0.33 -0.52 -0.31

Branches Within 10 Miles -5.53 -6.46 -3.57 -8,48 -2.59

Branches Within 20 Miles 2.97 1.90 4.12 1.78 4.15

Net Branches Inside State 0.58 0.26 0.61 0.22 0.74

Branches Out of State 0.05 0.02 0.08 0.01 0.08
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1.7 Counterfactual Exercise of Eliminating Market Spillovers

To quantify the impact of interdependencies on local market structure, I run a counterfactual akin to

reinstating bank regulations that restrict banks from taking advantage of across market spillovers.

This is done by setting the spillover parameters in consumer utility and in the branch cost function,

to zero. This makes it so that each bank makes branching decisions as if they were a single

market bank, ignoring the rest of their out of market network. The purpose of this counterfactual

is to understand how deregulation affected banking by looking at whether market structures where

the dominant firms operate national chains of branches, have different implications then market

structures where all firms are single-market firms.

With this counterfactual setup, bank actions in each market are independent of each other, and

so I can solve for the equilibrium. The equilibrium consists of the choices of each of the 6,816

banks on how many branches to build, and what deposit rates to set, in each of the 3,013 markets,

and then the consumers’ choices over how many deposits to place in each of the branches. Variable

profits are calculated using the the parameter estimates from section 1.4, with the utility parameters

on outside branches set to zero. Unlike in the observed equilibrium, in the counterfactual the

deposit rates set by each bank are allowed to vary from market to market (and the marginal costs

of deposit collection are firm-market specific rather than firm specific). Optimal deposit rates

are solved for by again assuming Bertrand-Nash pricing. The bank’s branching decision is then

determined using the model of section 1.5 and the parameter estimates of section 1.6. For this

exercise I use the point estimates for the cost parameters found in table 1.12, and set the parameters

on outside branches to zero. I expect there to be multiple equilibria for each market and so I use
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an algorithm that finds the equilibrium that is closest to the observed one.18

1.7.1 Effect of Market Spillovers on Local Market Structure

Table 1.13: Net Change in Number of Branches by Institution from Eliminating Across Market

Spillovers

Net Change in Number of Branches by Institution

Total Average Min Max
Average

% Change

Total -18,152 -2.663 -2,819 76 12.37%

JPMorgan Chase -1,964 -51.27%

Bank of America -2,429 -49.10%

Wells Fargo -2,819 -51.78%

Other -10,940 -1.606 -1,247 76 12.39%

Single Branch Banks 835 0.565 -1 47 56.50%

Multi Branch Banks -18,987 -3.557 -2,819 76 0.15%

Total Branches <= 3 988 0.274 -2 47 25.65%

Total Branches > 3 -19,140 -5.968 -2,819 76 -2.58%

Table 1.13 shows the net change in branches from the observed equilibrium to the counterfac-
18The counterfactual equilibrium I compute is closest to the observed one in the sense that my algorithm starts at

the observed equilibrium and iteratively allows firms to add or close branches, and enter or exit the market. Refer to

section 1.9.7 for a description of this algorithm.
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tual equilibrium without spillovers. In total 18,152 less branches are built in the counterfactual

than in the observed equilibrium. This is an over 21% reduction in the number of branches from

the observed network. From the establishment of the Riegle-Neal Act in 1994 to 2010, there was

an increase of 27,452 branches. According to the counterfactual, if regulations preventing banks

from taking advantage of across market spillovers were not removed, roughly 66% less branches

would have been added over this time period.

Most of the branches closed in the counterfactual are owned by banks with large branch net-

works since they have the largest chain advantage. This is shown in figure 1.7, which presents

a scatterplot of each bank’s number of observed branches against their change in branches in the

counterfactual. Also as table 1.13 shows, the banks with the largest branch networks, Chase,

Bank of America, and Wells Fargo, decrease their number of branches by the largest amount when

market spillovers are taken away. Chase closes 1,964 branches, Bank of America closes 2,429

branches, and Wells Fargo closes 2,819 branches. In terms of percentage this represents a 51.3%,

49.1%, and 51.8%, drop in the number of branches of Chase, Bank of America, and Wells Fargo

respectively. For comparison, less than 1% of all observed banks drop more than 50% of their

branches in the counterfactual.

Banks with smaller branch networks respond to this reduction by their larger competitors by

increasing the size of their own branch networks. In total, banks that initially have three or less

branches, add a net of 988 branches under the counterfactual. In particular banks that are single

branch firms at the outset have a net increase of 835 branches.

The total effect of these changes is a reduction in the share of branches held by the largest

banks. This can be seen in figure 1.8, which shows the percent of branches owned by banks with

different sized branch networks. In the observed equilibrium the 3 largest banks own 17% of the
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Figure 1.7: Scatter Plot of Counterfactual Change in Branches vs. Original Branch Network Size
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Figure on left is full sample while figure on right is close up on banks with less than

500 branches

open branches and the 100 largest banks own 55% of open branches. In the counterfactual where

spillovers are removed, the 3 largest banks own less than 11% of open branches, and the 100 largest

banks own just over 40%.

This dispersion in the ownership of branches leads to an even larger dispersion in the owner-

ship of deposits. Figure 1.9 shows the percent of all bank deposits held by banks with different

sized branch networks. The 3 largest banks hold nearly 30% of bank deposits in the observed

equilibrium, but in the counterfactual they only hold roughly 16%. Similarly in the observed equi-

librium the 100 largest banks hold well over 60% of all bank deposits, while in the counterfactual

the 100 largest banks hold less than 40% of all bank deposits. Thus in the counterfactual without

spillovers, deposit ownership is much less concentrated.
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Figure 1.8: Percent of Bank Deposits Owned by Bank Type
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1.7.2 Welfare Effects of Eliminating Market Spillovers

The effect this change in market structure has on consumer surplus is then shown in table 1.14.

This table shows the distribution across markets of the average change in consumer surplus due to

the change in market structure resulting from the counterfactual elimination of market spillovers.

To see how these changes in consumer surplus were calculated, refer to section 1.9.3.3 in the

appendix to this chapter.

The table shows that the decrease in branches from the elimination of spillovers hurt consumers

overall. Consumer surplus in the average market decreases by $34.74 per consumer. This is due
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Figure 1.9: Percent of Branches Owned by Bank Type
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Table 1.14: Effect of Counterfactual on Local Market Average Consumer Surplus

Mean 10% 25% 50% 75% 90%

CS Change -$34.74 -$94.56 -$46.49 -$18.38 -$3.02 $2.53

to the average customer’s high preference for branches, which see a decrease in number in the

counterfactual without spillovers. This indicates that on average consumers are better off after

deregulation allowed for the proliferation of multi-market banks with larger branch networks.

74



This is a statement about the average effect for consumers, but it does not fully capture con-

sumers’ heterogeneous preferences, allowed for by the demand model in section 1.3. In particular

the demand estimation results of section 1.4 indicate that consumers with higher incomes are going

to be relatively more sensitive to deposit rate and subsequently will care less about the number of

branches their bank has. Thus these rich customers will care more about how deposit rates change

in the counterfactual then how branch networks change.

The counterfactual effect on the deposit rate consists of two parts. One is the competition effect

where competition is lowered in the counterfactual because of the closing down of branches, thus

leading to a decrease in deposit rate. The second effect is the composition effect, where in the

counterfactual there are more single-market firms and less multi-market firms. Empirically single-

market banks generally set higher deposit rates then multi-market banks (which in the model is

interpreted as these firms offering higher loan rates exogenously or having a lower marginal cost

of deposit collection), and so if the composition effect is large enough in some markets, then we

will actually see an increase in deposit rates in the counterfactual. I find that the two effects largely

cancel each other out, but that average deposit rates do increase slightly in the counterfactual.19

Since rich customers place a comparatively higher preference on deposit rates over branch network,

this increase in rates could lead to a increase in consumer surplus for the richest customers.
19Most prior studies have instead found that since Riegle-Neal, deposit rates have gone up as a result of increased

competition in local markets. The difference between my counterfactual study and most prior work, is that I am

considering a counterfactual where market size remains the same, and thus in the absence of spillovers, incentives

would be high for smaller firms with low marginal costs (and high deposit rates) to add branches. If market sizes were

smaller (as they were in 1994) then I would not expect the same incentives for these firms to add branches without

spillovers, and so I would expect the competitive effect on deposit rates to outweigh any upward pressure on rates

from the entry of these smaller firms.
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Table 1.15: Effect of Counterfactual on Bank Deposits and Variable Profits From Deposits

Observed Counterfactual
Change

Equilibrium Equilibrium

Total Deposits ($) 4.44⇥1012 4.55⇥1012 1.15⇥1011

Deposits Per Branch ($) 5.30⇥107 6.95⇥107 1.64⇥107

Total Variable Profits ($) 1.61⇥1010 4.58⇥1010 2.97⇥1010

Variable Profits Per Branch ($) 1.93⇥105 6.99⇥105 5.06⇥105

These rich customers control a large portion of the deposits in the largest markets and so this

leads to the result shown in table 1.15 that overall deposits collected by banks goes up despite

average consumer surplus going down. Table 1.15 presents the effect the counterfactual has on

bank deposits and variable profits. The table shows that in the counterfactual equilibrium without

spillovers, overall deposits collected by banks go up by $115 billion, and variable profits from

those deposits go up by nearly $30 billion. These are deposits and profits that in the observed

equilibrium go to credit unions or are disintermediated. This indicates that in terms of profit from

deposits, the banking industry is better off when spillovers between markets are eliminated, and

that the market structure resulting from deregulation’s encouragement of interdependencies, left

the banking industry worse off.

While the overall result is an increase of $115 billion in deposits collected by banks in the

counterfactual, there is a lot of variation across both firms and markets. This can be seen in tables

1.16, 1.17, and 1.18. Table 1.16 displays the counterfactual effect on variable profits, deposit

rate, and market share, at the firm-market level. The table presents the distribution across all
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bank-markets, of the change in these variables from the observed equilibrium to the counterfactual

equilibrium. Table 1.17 shows the same effects at the bank level, laying out the distribution of

banks’ total changes in variable profits, and their average changes in both deposit rate and market

share, across all markets they are active in. Table 1.18 is then at the market level. This table

presents the distribution of markets’ total changes in bank variable profits and overall bank market

share, and the average change in deposit rate, across all banks in the market.

Table 1.16: Firm-Market Distribution of Counterfactual Change in Variable Profits From Deposits

Mean 10% 25% 50% 75% 90%

Variable Profits Change $557,429 -$338,383 -$44,723 -$63 $9,871 $130,910

Deposit Rate Change -1.7E-04 -4.6E-03 -2.6E-04 -7.6E-07 4.5E-04 2.6E-03

Market Share Change -0.4% -2.1% -0.4% -0.0% -0.1% 0.4%

Table 1.17: Firm Distribution of Counterfactual Change in Variable Profits From Deposits

Mean 10% 25% 50% 75% 90%

Total Variable Profits Change $2,000,703 -$223,569 -$1,451 $6,848 $45,157 $167,683

Average Deposit Rate Change -2.4E-04 -3.0E-03 -5.8E-04 -4.0E-05 3.1E-04 1.9E-03

Average Market Share Change 0.3% -0.2% -0.0% 0.1% 0.2% 0.5%
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Table 1.18: Market Distribution of Counterfactual Change in Total Variable Profits From Deposits

Mean 10% 25% 50% 75% 90%

Total Variable Profits Change $9,840,805 -$1,437,103 -$290,620 -$43,475 -$3,104 $1,368

Average Deposit Rate Change 9.8E-05 -2.3E-03 -1.9E-04 2.4E-04 1.5E-03 4.1E-03

Total Market Share Change -3.1% -9.2% -5.1% -1.9% -0.3% 0.0%

According to table 1.17, the average firm gains a total of $2 million from the switch in market

structure to the counterfactual, but firms in the 10th percentile lose over $220,000, and firms in the

90th percentile gain nearly $170,00, in the counterfactual scenario. This is quite a large amount of

variation, and shows that while overall the industry gains variable profits in the counterfactual, a

little less than a third of the firms lose variable profits. This is also seen graphically in figure 1.10,

which plots the change in variable profits against the bank’s total number of branches and their

total change in branches from the observed to the counterfactual equilibriums. These graphs show

that in the counterfactual a majority of banks see an increase in deposits, and that these banks are

generally those with initially smaller branch networks. These additional deposits are held in the

observed equilibrium by both the non-banking alternatives and by the larger multi-market banks,

which are also shown graphically to lose a large portion of their deposits in the counterfactual.

This counterfactual transfer of deposits from the multi-market banks to the smaller banks is a

result of the multi-market firms losing their comparative advantage in branches, and thus ceding

deposits and profits to banks with comparative advantages in other areas such as offering a better

deposit rate or better customer service. This can be seen in table 1.19, which shows the average

characteristics of the firms that gain or lose in the counterfactual. The table shows that the firms
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Figure 1.10: Scatter Plot of Counterfactual Change in Total Bank Variable Profits vs. Total

Branches and Total Change in Branches
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that gain profit are not only smaller, but on average they have more employees per branch, are

older, and also have a higher spread of loan rate minus marginal cost of deposit collection, which

translates into offering a higher deposit rate. These are all characteristics that consumers have

a preference for, and so when the multi-market banks decrease the size of their networks, they

lose the advantage they had in attracting customers through their large branch networks, and these

customers then instead go to banks that have a comparative advantage in other areas such as deposit

rates.

There is also a lot of variation across markets in the the effect of eliminating spillovers on

variable profits. According to table 1.18, total bank variable profits increase in the average market

by nearly $10 million, but for over 75% of markets, total despot market share and total variable

profits actually decrease in the counterfactual. This implies that in most markets, the elimination

of spillovers actually hurt bank deposits, and in turn variable profits generated from deposits, and

that it is only in a few markets that total bank variable profits actually increase, albeit by a much
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Table 1.19: Average Characteristics of Firms with Positive/Negative Changes in Total Variable

Profits

Positive Negative No VP All

VP Change VP Change Change Firms

Number of Firms 4,871 1,928 17 6,816

Average Total Branches 6.14 31.51 1.59 13.3

Average Change in Branches -0.33 -8.57 0.00 -2.66

Average Employees Per Branch 16.88 12.21 11.02 15.55

Average Age 72.56 68.03 81.82 71.29

Average (Loan Rate - MC of Deposits) 0.0105 0.0088 0.0155 0.0100

larger amount. This can also be seen in figure 1.11, a scatter plot of the change in variable profits

against bank branches and change in bank branches for each market. As you can see in this figure

the gain in deposits collected by banks only occurred in a few markets where there was the largest

counterfactual decrease in branches.

These markets where branches decreased dramatically and deposits collected increased, are

the largest markets in terms of population, market size, and initial number of branches. This can

be seen in table 1.20 which shows the average characteristics of the markets with both a positive

and negative change in variable profits collected by banks. The positive change in variable profits

is concentrated in a few of the largest markets, while in the majority of markets variables profits

decrease in the counterfactual where interdependencies are eliminated. This is because the entry
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Figure 1.11: Scatter Plot of Counterfactual Change in Total Market Variable Profits vs. Total

Market Branches and Total Change in Market Branches
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of smaller firms, with the good characteristics that steal market share from the outside option, does

not occur in the smaller markets, because these are not profitable markets to enter. These markets

are usually only profitable to firms taking advantage of the spillover benefits that can be achieved

by branching in them. Also the majority of customers with large deposit endowments are found in

the largest markets, and since these are the customers that switch from the outside option to banks

in the counterfactual, it is not surprising that the largest markets are where the increase in profits

for banks is seen.

The overall picture one than gets from this counterfactual exercise is that branch network ex-

pansion driven by spillovers across markets, and permitted under the current regulatory environ-

ment achieved under the Riegle-Neal Act of 1994, has in the majority of markets been beneficial

to the industry as a whole. Consumers value the additional branches, and are willing to accept

lower deposit rates and less preferred characteristics at banks with more branches, thus improving

overall bank profitability. The exception to this is the largest markets, which are different for a
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Table 1.20: Average Characteristics of Markets with Positive/Negative Changes in Total Variable

Profits

Positive Negative No VP All

VP Change VP Change Change Markets

Number of Markets 370 2,633 10 3,013

Average Total Branches 50.59 24.66 2.70 27.77

Average Market Size ($ bil) 9.68 3.09 2.34 3.89

Average Population 216,870 82,585 8,519 98,830

Average Change in Branches -12.72 -5.11 0.00 -6.02

couple reasons. For one outside options are more available in larger markets which in the model

translates to larger markets having a higher outside option utility. Secondly larger markets have a

higher proportion of customers with large deposit endowments. These customers are different than

the average customer in that they place a high preference on interest rates and care little about the

bank’s branch network size.

In the largest markets competition between the multi-market banks leads to a proliferation of

branching as these banks increase their comparative advantage in attracting the average customers.

This raises the cost of participation in these markets thus pushing out smaller competitors that

may be able to offer better rates or customer service, but because they can’t take advantage of

across market interdependencies, they can’t compete with the large branch networks of the multi-

market firms. This leaves the rich customers, whom favor banks with higher deposit rates, without
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their preferred banking option, and rather than switch to the multi-market banks, these customers

instead place their deposits in the outside option of non-traditional alternatives to banking such as

credit unions, money market mutual funds, securities, or disintermediation. This results in banks

as a whole losing deposits to the outside option in the largest markets. This can be seen as an

unintended consequence of the deregulation that encouraged banks to take advantage of across

market spillover benefits by growing their branch networks.

1.8 Conclusion

This thesis chapter assesses the effect that deregulation in the banking industry had, by allow-

ing and encouraging interdependencies between markets, and whether the subsequent increased

presence of multi-market banks had an effect on local market structure, and firm and consumer

welfare. I do this by estimating a structural model of banking firms’ choices over the number and

locations of their branches, allowing for spillovers across markets. Because of the difficulty in

estimating a model with spillovers due to the high dimensionality of the choice set, I use a revealed

preference method adapted from the moment inequalities technique of Pakes, Porter, Ho, and Ishii

(2011). Implementing this approach is complicated by the presence of unobservable firm-specific

and market-specific components of profit, but I am able to control for them somewhat through a

differencing procedure and a selection mechanism.

In the model, a bank’s branch network choice balances the variable profits generated from

deposits collected at each branch, which are estimated using a discrete choice demand model

of consumer preference for banks, with the costs of entry and adding additional branches to the

market. Estimates of the model indicate that there are significant advantages to operating a large
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network of branches that spans multiple markets. It follows that allowing banks to take advantage

of cross-market spillovers by minimizing branching restrictions, has a large impact on banking

market structures. This deregulation is beneficial to the average consumer, whom values better

access to branches. For banks, the change in market structure is favorable in a majority of markets,

attracting a larger share of deposits and increasing variable profits. However in a few of the largest

US counties, the benefits from spillovers encourage large banks to compete by adding branches

rather than offering better rates, thus causing decreases in overall industry profitability.

While the model does incorporate some spatial elements, it could be improved by refining the

grid of possible branch locations to account for branch placement within a market. This would

extend the results of the paper by incorporating differences in preferences and cost economies

between different branch locations inside a market, rather than just amongst different markets.

However to make such an analysis tractable one would most likely need to restrict attention to

a much smaller geographic area than the entire United States. One of the main objectives of

this chapter is to measure dependencies in entry decisions across potentially far away markets, so

restricting the geographic area of study would limit the relevance of the results.

Another limitation of the model is that the branch network choice game is static. Incorporat-

ing dynamics would increase the richness of the model by allowing for more nuanced strategies

like entry deterrence. Yet it would come at the cost of a significant amount of tractability and

transparency in the approach.

The model used to determine a bank’s choice of deposit rate also offers an overly simplistic

view of the determinants of bank profitability. In actuality banks offer a complex array of products

and services through a degree of different channels. A more appropriate model would incorporate

many of the features of banks as an intermediary financial institution, and more explicitly model
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the relationship between deposits and loans, even allowing for alternative funding soures to retail

deposits. However the main focus of my paper is not on the intricacies of bank profitability sources,

but rather on the more general advantages ascribed to banks with larger branch networks. In

choosing a more flexible form for the branch cost function, which captures all effects on bank

profitability from adding a branch beyond those attributed to retail deposit collection and rate

choice, I relax some of the limitations imposed by the first stage model’s over simplification of

how variable profits are generated from bank branches.

A related model limitation is that spillover benefits are mainly channeled through branches.

While I do make an effort to distinguish spillovers in deposit demand from alternative sources, and

also control for the effect the size of a bank has on branch costs and profitability, I attribute the

remaining advantages of larger networked banks to lower costs to adding more branches. Therefore

this parameter estimate may be picking up other benefits related to a bank’s branch network size.

However the observation that the growth of these multi-market banks has coincided directly with a

removal of restrictions on the branching choices of banking institutions, signifies the importance of

focusing on branch network expansion as a contributing factor in the ascendancy of multi-market

banks.

85



1.9 Appendix

1.9.1 Alternative Definition of Outside Option Market Share Using Data

from SNL Financial

In the paper I define the size of the market as the total income in that market so that the outside

option is all alternatives to banks in which consumers might place their disposable income. As

a robustness check for this definition of market size, I run the same estimation procedure on the

conditional logit version of the model, defining the size of the market according to SNL Financial’s

Nielsen Clout data’s total dollar value of demand for deposit products at the county-level. Accord-

ing to SNL FInancial the deposit products measured include, “money market savings accounts,

regular savings accounts, CDs, and transaction/DDA products.”

This alternative measure of market size is actually highly correlated with total market income,

as the correlation coefficient between the two variables is 0.853. Therefore the estimation results

are not expected to differ much between the two different measures. The results are in table 1.21

and they confirm this. The left-hand column contains the results of an OLS regression, while the

right-hand column contains results where the deposit rate is instrumented for using the instruments

discussed in section 1.3.3. Comparing the results in table 1.21 with those in table 1.3, shows that

both definitions of the market size and outside option give similar results.
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Table 1.21: Logit Demand Model Results with Alternative Definition for Outside Option

Variable
OLS IV(only rate)

Estimate Std. Err. t Estimate Std. Err. t

Deposit Rate 38.9872 (3.7913) 10.3 318.9904 (18.4919) 17.3

Branches 0.1630 (0.0019) 86.1 0.1681 (0.0021) 80.7

Branchesˆ2 -0.0007 (1.3E-05) -56.7 -0.0007 (1.4E-05) -54.1

Branches Within 20 Miles 0.0037 ( 0.0004) 8.9 0.0050 (0.0005) 11.0

Net Branches Inside State 0.0008 ( 0.0002) 5.1 0.0024 (0.0002) 11.5

Branches Out of State 0.0001 ( 2.2E-07) 1.6 0.0001 (3.2E-05) 4.3

(Branches Within 20 Miles)ˆ2 -9.4E-06 (7.8E-07) -12.2 -1.1E-05 (8.4E-07) -12.7

(Net Branches Inside State)ˆ2 -3.6E-07 ( 2.2E-07) -1.6 -2.7E-06 (2.9E-07) -9.4

(Branches Out of State)ˆ2 3.6E-08 (2.6E-08) 1.4 1.2E-08 (4.4E-09) 2.7

Single Branch -0.3791 (0.0411) -9.2 -0.4187 (0.0450) -9.3

Single Market 0.7336 (0.0302) 24.3 0.7213 (0.0326) 22.1

Age 0.0027 (0.0002) 14.6 0.0043 (0.0002) 18.8

Employees 0.0004 (2.7E-05) 13.8 0.0004 (2.9E-05) 13.9

Included:
Bank Class Indicators Bank Class Indicators

Market FE Market FE

Obs 25,326 25,289

Markets 3,110 3,110

R2 0.3870 0.2726
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1.9.2 Demand Estimation Using Data From Past Years

As a robustness check on only using data from 2010, I also estimate the model using data from

prior years. A sample of the summary statistics from the data in past years is given in table 1.22.

Using this data I run the conditional logit estimation on data from 2000 on its own and then on data

from all the years between 2000 and 2010. The results are in table 1.23. The two left-most columns

contain the results using data from 2000 and the two right-most columns contain the results using

data from 2000-2010.

The mean elasticity for 2000 is 2.06 and the mean elasticity for the entire period between

2000 and 2010 is 2.16. These elasticities are both higher than the elasticity measured for 2010

alone, which most likely has to do with the average deposit rate in 2010 being smaller than it was

throughout most of the rest of the 2000s. The estimates for the other variables are all very similar

across the different regressions.
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Table 1.22: Data Summary Statistics from Years 1994, 2003, and 2010

Institution Variables 1994 Num of Obs = 11,324 2003 Num of Obs =8,322 2010 Num of Obs = 7,152

Mean 1994 Std. Dev. 1994 Mean 2003 Std. Dev 2003 Mean 2010 Std. Dev 2010

Employees 138 1118 226 2665 269 4471

Assets ($000) 363,288 3.6⇥106 943,392 1.4⇥107 1,723,685 3.3⇥107

Total Deposits ($000) 260,548 2.2⇥106 622,821 8.4⇥106 1,185,576 2.2⇥107

Total Loans ($000) 208,710 1.9⇥106 541,448 6.9⇥106 955,080 1.6⇥107

Interest Income ($000) 11,692 135,679 21,516 275,859 35,221 576,884

Interest Expenses ($000) 8,478 102,358 16,149 202,043 27,445 419,593

Deposit Rate* (%) 1.53 12.17 0.93 2.10 0.66 0.28

Loan Rate* (%) 4.23 1.35 3.49 0.92 3.09 0.65

Market Variables 1994 Num of Obs = 3,114 2003 Num of Obs = 3,115 2010 Num of Obs = 3,115

Mean 1994 Std. Dev. 1994 Mean 2003 Std. Dev 2003 Mean 2010 Std. Dev 2010

Population 86,482 283,542 93,176 302,187 99,739 318,323

Land Area (sqr. miles) 1,060 2,481 1,059 2,481 1,057 2,478

Per Capita Income ($) 18,099 3,928 26,176 6,037 33,872 7,832

Per Capita GDP ($) 34,481 5,185 38,454 5,465 40,073 6,564

Employment 91,234 540,620 105,009 626,702 109,840 655,187

Total Banks 7.8 10.6 8.3 9.2 8.9 9.6

Total Branches 25.3 63.2 27.9 65.5 31.4 78.1

Total Bank Deposits ($000) 983,283 4.7⇥106 1,633,350 8.6⇥106 2,446,449 1.4⇥106

DP Total Market Potential ($000) 1,696,485 6.7⇥106

Market-Institution Variables 1994 Num of Obs = 25,151 2003 Num of Obs = 23,012 2010 Num of Obs = 25,419

Mean 1994 Std. Dev. 1994 Mean 2003 Std. Dev 2003 Mean 2010 Std. Dev 2010

Branches 3.23 5.93 3.39 6.22 3.58 7.49

Deposits ($000) 125,495 503,561 194,258 1.4⇥106 274,048 2.2⇥106
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1.9.3 Additional Exercises Using Demand Estimation Results

1.9.3.1 Differences Between Urban and Rural Markets

As a test for heterogeneity in demand between rural and urban markets, I estimate the full model

separately on urban markets and rural markets. I define an urban market as a county that belongs

to a CBSA, and a rural market as one that does not. The results for both estimations are in table

1.24. The left-hand column contains the results using only urban markets and right-hand column

contains the results using only rural markets. The results in both columns use the supply moments.

There are a few significant differences between the parameter estimates from the urban markets

and those from the rural markets. Consumers in urban counties are more sensitive to deposits rates

than their counterparts in rural counties. The implied average elasticity in urban markets is 2.6,

while the implied average elasticity in rural markets is 0.4. This most likely has to do with the

availability of more options in the urban markets as opposed to the rural markets.

It also appears that part of this result may come from consumers in rural markets being less

price sensitive than consumers in urban markets, and having a higher preference for measures of

quality than their urban counterparts. For example rural customers have a much stronger preference

for branches (even though this preferences decreases quicker in branches squared). The estimates

imply that the average rural consumer would be willing to pay a little over 10 times the amount their

urban counterpart would, for a multi-market bank with one branch, to add an additional branch.

Rural consumers also have a stronger preference for banks with more employees per branch, and

their utility actually increases from choosing a single branch institution. This is most likely a result

of the continued popularity of community oriented banks in certain rural areas, which have resisted
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Table 1.24: Results from Splitting Sample Based on Urban and Rural Markets

Variable
Urban Rural

Estimate Std. Err. t Estimate Std. Err. t

Deposit Rate*Income 2.1938 (0.3757) 5.8 0.7350 (0.3615) 2.0

Branches 0.1655 (0.0069) 23.82 0.7167 (0.0270) 26.5

Branchesˆ2 -0.0007 (8.1E-05) -8.6 -0.0396 (0.0031) -12.7

Branches Within 20 Miles 0.0063 (0.0006) 10.6 0.0081 (0.0016) 4.9

Net Branches Inside State 0.0011 (0.0002) 4.8 0.0005 (0.0004) 1.2

Branches Out of State -4.4E-05 (3.9E-05) -1.1 -0.0002 (8.3E-05) -2.5

(Branches Within 20 Miles)ˆ2 -0.1291 (0.0138) -9.3 -0.4441 (0.0863) -5.1

(Net Branches Inside State)ˆ2 -0.0087 (0.0028) -3.2 -0.0006 (0.0055) -0.1

(Branches Out of State)ˆ2 0.0003 (5.9E-05) 5.2 0.0002 (8.2E-05) 2.5

Single Branch -0.6043 (0.0490) -12.3 0.2355 (0.0498) 4.7

Single Market 0.7654 (0.0288) 26.6 0.2133 (0.0367) 5.8

Age 0.0036 (0.0004) 10.1 0.0003 (0.0005) 0.7

Employees 0.0011 (0.0005) 2.1 0.0171 (0.0038) 4.4

Included:
Bank Class Indicators Bank Class Indicators

Market FE Market FE

Cost Variables:

Constant 0.0131 (0.0059) 2.2 0.0022 (0.0038) 0.6

Employees -3.6E-08 (4.4E-05) -0.0 -2.5E-09 (5.9E-06) -0.0

Branches 2.2E-06 (4.9E-05) 0.0 4.4E-06 (0.0001) 0.0

Obs 19,272 5,216

Markets 1,773 1,240
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large-scale branch expansion and emphasized more personal connections with customers through

increased employee-customer interaction.

The mean deposit rate elasticities and cross-rate elasticities are given in table 1.25. They are

also consistent with the idea of increased competition in urban markets compared to rural markets.

The own rate elasticities are much higher in urban markets, but the cross-rate elasticities are much

lower. This indicates that an urban bank that lowers its deposit rate will lose a lot of customers,

but those customers will then spread themselves out over the remaining alternatives, so that no

alternative sees too large an increase in their own deposit market share.

1.9.3.2 Test for Market Segmentation Based on Branch Network

As another exercise to see how important branch networks are to a consumer’s bank choice, I

perform an exercise similar to that found in Adams, Brevoort, and Kiser (2004), which tries to

determine whether the banking market is segmented based on bank type. Based on the banks’

branch networks I segment them into groups, and then perform a counterfactual for each market

where all banks in the market of a particular group lower their deposit rate by 5%. I then calculate

the change in variable profits20 for all banks in the segment.21 If this change is jointly profitable

then this is evidence that consumers think of that market segment as independent from the other

banking segments.

20This is the variable profits the bank receives from collecting deposits. It is calculated out as:

(loan rate - deposit rate) * deposits collected
21In this exercise, for banks operating in multiple markets, I assume that the deposit rate does not change in the

other markets.
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Table 1.25: Mean Deposit Rate Elasticities for Urban and Rural Markets

Mean Own Elasticities

Elasticity Urban Rural

Overall 2.559 0.397

Single Branch 3.623 0.602

Single Market, Multiple Branches 3.131 0.554

Multiple Markets, Single Branch 2.719 0.412

Multiple Markets, Multiple Branches 2.289 0.369

Mean Cross-Rate Elasticities

Overall Single Branch
Single Market Multiple Markets Multiple Markets

Multiple Branches Single Branch Multiple Branches

Overall
Urban: -0.023 Urban: -0.011 Urban: -0.021 Urban: -0.017 Urban: -0.026

Rural: -0.039 Rural: -0.037 Rural: -0.054 Rural: -0.033 Rural: -0.051

Single Branch
Urban: -0.009 Urban: -0.006 Urban: -0.007 Urban: -0.009 Urban: -0.010

Rural: -0.034 Rural: -0.029 Rural: -0.066 Rural: -0.029 Rural: -0.029

Single Market Urban: -0.017 Urban: -0.007 Urban: -0.013 Urban: -0.011 Urban: -0.021

Multiple Branches Rural: -0.051 Rural: -0.087 Rural: -0.113 Rural: -0.042 Rural: -0.039

Multiple Markets Urban: -0.016 Urban: -0.010 Urban: -0.014 Urban: -0.019 Urban: -0.019

Single Branch Rural: -0.033 Rural: -0.031 Rural: -0.044 Rural: -0.030 Rural: -0.034

Multiple Markets Urban: -0.028 Urban: -0.012 Urban: -0.031 Urban: -0.021 Urban: -0.036

Multiple Branches Rural: -0.045 Rural: -0.033 Rural: -0.053 Rural: -0.034 Rural: -0.057

Table gives the mean elasticity for a bank-market of the row type from a change in the deposit rate of a bank-market of the

column type.

The segments I choose to look at are banks with a single branch in the market, banks with

multiple branches in the market, single market banks, and multi-market banks. The results are in
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Table 1.26: Percent of Counties where Jointly Profitable for Row Segment to All Decrease Deposit

Rate by 5%

Overall Urban Rural

Single Branch 0.83 0.87 0.78

Multiple Branches 0.68 0.58 0.85

Single Market 0.93 0.93 0.94

Multiple Markets 0.44 0.39 0.52

table 1.26. The segment where in the highest percentage of markets a joint decrease in deposit

rate is profitable, is single market institutions with 93% of markets overall. This indicates that

consumers at single market banks have a strong preference for the single market aspect of that

bank and the particular features inherent in single market institutions. On the other hand, in only

44% of markets overall would a joint decrease in the deposit rates of all multi-market institutions

be jointly profitable. This implies that consumers who choose multi-market institutions are not

as fixated on having to choose a banking institution that operates in multiple markets. In terms

of branches, single branch banks that jointly drop their deposit rates by 5% will find this action

to be jointly profitable in 83% of markets, and for banks with multiple branches in the market

this drop will be profitable in 68% of markets. Overall I think this exercise indicates that there

is a significant amount of segmentation along the size of banks’ branch networks, especially with

regards to single market or single branch banks. The results also show that for banks that operate

in multiple markets, consumers segment more based on the number of branches the firm has in

their local market rather than how many markets the bank is in.
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1.9.3.3 Change in Consumer Welfare from 1994 to 2010

A final exercise I perform using the demand estimation results is to look at the consumer welfare

implications of the changes in local bank market structures since the Riegle Neal Act. As multi-

market banks expanded their networks following the Act, this affected the choice set faced by

consumers. Multi-market banks generally offer larger branch networks, which is a positive for

consumers, but they also offer lower deposit rates, which adversely affects consumers.

I look at the change over two separate time periods, one from 1994 to 2003, and the other from

2003 to 2010. Summary statistics on bank and market characteristics in 1994, 2003, and 2010 can

be found in table 1.22 in section 1.9.2. Over time the average number of branches per institution

in each market steadily increases. The deposit rate fluctuates but in total it decreases from 1994 to

2003 and again it decreases overall from 2003 to 2010.

To look at the effect on consumers I use the method found in Ho and Ishii (2010), which is

based on Nevo(2001) and McFadden(1981). I measure the consumer welfare change between the

choice sets offered in each period as the expected equivalent variation, or the change in consumer

wealth that would make consumers indifferent between the two choice sets. As in Ho and Ishii

(2010), this is defined as:

EVsm =
1
at

ln
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(1.37)

where sm is consumer s from market m, Ut
jm is the mean utility of firm j in market m in time

period t and Vt
s jm is the idiosyncratic component of s’s utility for bank j in market m in time period

t, and at is the marginal utility of income. Here the marginal utility of income is the coefficient on

deposit interest rate. I use the estimates from the full demand model with the supply moments.

I look at the change in consumer surplus for each of the sampled consumers from 1994 to 2003
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and then from 2003 to 2010. I break down this change into that resulting from changes in branches

within the market, changes in all branches, changes in branches and the deposit rate, and then

changes in all bank characteristics (or the total welfare change). The results are in table 1.27.

Going from 1994 to 2010 the effect of changes in market branches is largely positive for con-

sumers. The average mean market change in consumer welfare when only considering changes

to a bank’s in-market branches is a gain of $25.53 from 1994 to 2010. As expected consumers

benefited from firms adding more branches in each of their markets. Taking into account the

multi-market effect of branches (this includes the out-of-market branches and the single-market

and single-branch dummies), there is still a positive effect on consumer welfare over time, but

it goes down by a small amount. The reason it goes down is that consumers place a fairly high

value on single market institutions. Over time their ability to access single market institutions goes

down substantially as many single-market institutions leave the industry. This leads to some loss

in consumer welfare. Overall though the effect of branch expansion is positive for consumers.

Including the effect of changes in deposit rate, leads to a substantial drop in consumer wel-

fare. Ignoring all changes except those to branches and the deposit rate, market average consumer

welfare drops by an average of $108.18. This is to be expected as the average 6-month deposit

rate drops from 1.53% in 1994 to 0.66% in 2010. Once I allow the rest of the variables to change

(employees per branch, age), some of that lost consumer welfare is gained back, but not much.

Thus overall it looks like consumers have been hurt from the changes since 1994, mainly due to a

large drop in the average deposit rate.22

22The large drop in interest rate from 1994 to 2010, is mostly due to changes in the interest rate environment over the

time period. While the emerging superiority of multi-market banks (that generally offer lower deposit rates) played

a small role in the drop of the average deposit rate, as I show in section 1.7, the drop in rates due to the increased
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Table 1.27: Estimated Changes in Local Market Average Consumer Welfare 1994 to 2003 and

2003 to 2010

Change in CS from 1994 to 2003

Mean 10% 25% Median 75% 90%

Market Branches $19.12 -$3.73 $0.00 $0.00 $27.22 $66.13

All Branches $17.50 -$66.00 -$2.53 $4.28 $38.60 $99.23

Branches and Rate -$66.42 -$296.06 -$138.22 -$31.17 $6.80 $98.55

All Changes -$57.77 -$285.72 -$129.41 -$24.50 $12.59 $110.54

Change in CS from 2003 to 2010

Mean 10% 25% Median 75% 90%

Market Branches $16.63 -$13.97 $0.00 $0.00 $10.32 $35.79

All Branches $15.57 -$35.73 -$1.27 $2.36 $22.27 $58.14

Branches and Rate -$36.32 -$131.49 -$69.16 -$26.54 -$3.54 $16.85

All Changes -$31.31 -$121.68 -$58.84 -$20.61 $0.00 $22.63

Total Change in CS from 1994 to 2010

Mean 10% 25% Median 75% 90%

Market Branches $25.53 -$0.52 $0.00 $0.00 $31.75 $74.91

All Branches $12.40 -$82.36 -$5.23 $1.23 $33.10 $96.60

Branches and Rate -$108.18 -$311.07 -$173.90 -$57.88 $0.00 $0.10

All Changes -$98.13 -$296.62 -$158.82 -$48.87 $0.00 $4.01

presence of multi-market banks, is relatively small.
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1.9.4 Allowing for Uncertainty with Deposits

The demand model in the paper assumes that there is no uncertainty regarding deposits, which is

a strong assumption given the stochastic nature of deposits. If I were to add randomness to the

model, say by making aggregate market deposits, Dm, a random variable, this would not change

much since aggregate deposits enters linearly into firm profits, and firms are assumed to be risk

neutral. Thus I don’t think assuming that banks can evaluate their variable profits deterministically,

is a restrictive assumption for this model, and interpreting the model as one with stochastic variable

profits would not change the results. This is discussed in Ishii (2008).

1.9.5 Bank Branching as Response to Threat From Non-Banking Alterna-

tives

There is an ongoing debate in the banking industry over whether banks have used their branch

networks (and can continue to do so in the future) as a response to the growing competition from

alternatives to traditional banking. Financial innovations have made it so that many of the services

that were previously provided only through banking offices (such as pension funds, mutual funds,

hedge funds, securities, and even loans and credit), are being offered by non-banking firms. Even

unconventional services such as prepaid cards and crowdfunding have challenged bank deposit

gathering. This process of disintermediation, as well as competition from traditional alternatives

to banking such as credit unions, has put pressure on banks to find more innovative and efficient

techniques to deliver banking services to their customers. The one advantage that banks do have

over these alternatives is that they have set up large networks of branches, which if used properly,
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could be a sizable advantage.

The graph in figure 1.12 shows the market share of deposit products (including money market

savings, regular savings, etc.) held by non-banking institutions. This is according to data from SNL

Financial. As you can see, for a large portion of markets the non-bank market share is somewhere

between 1/3 and 2/3 of the market. The graph also shows that there is some significant variation in

this outside share from market to market, indicating that the level of competition banks face from

outside alternatives has significant geographic variation.

Figure 1.12: Deposit Product Market Share of Non-Banking Institutions

The variation in the competition banks face from alternatives can have implications on their

branch network decision. Many of these banking alternatives have been able to steal customers

away from banks by offering better rates. They have been able to do so by keeping costs low,

largely because they have stayed away from building the large networks of physical branches. A

natural response by banks may then be to also minimize the role of their branch networks and

focus on lowering costs and offering better rates. On the other hand as long as customers value
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access to branches, the large networks can be used to the advantage of banks. As the alternatives

steal price-sensitive customers away from banks by offering better rates, banks may find it more

profitable to focus on the customers who value convenience to branches over good rates, and thus

will actually expand their branch networks as a response to the growing competition.

As an initial test to see which of these two effects was larger, I look at figure 1.13 containing

a scatterplot between the market share held by non-bank alternatives and the number of bank

branches per deposit in the market. The graph indicates there is a positive correlation between

the two. Thus the markets where non-bank alternatives have the highest presence, are also the

most branched markets relative to the available deposits. This provides some initial evidence

that as banks face increased competition from low-priced, low-cost alternatives, they shift their

focus away from price-sensitive consumers, and towards customers that value the personal service

offered by a branch.

1.9.6 Moment Inequalities for Estimation of Branch Cost Parameters

Table 1.28 displays the inequalities for each of the first three inequality groups (excluding the entry

and exit inequalities), based on the assumptions given in table 1.10 of the main portion of this

chapter. Each inequality is based on a proposed deviation and a particular instrument. The table

lists the number of observations for each inequality, as well as the mean change in variable profits

in going from the observed strategy to the deviation, and the mean change in the cost variables

going from the observed strategy to the deviation.
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Figure 1.13: Scatterplot of Non-Banking Firm Market Shares vs. Branches Per Deposits at the

Market Level

The change in variable profits reported in the table is the combined change in variable profits

for the firms involved in the deviation, from the observed strategy as compared to the deviating

strategy. So for example in the first inequality the average change in variable profits is -$49,794.

This means that for the average pair of firms involved in the deviation, the average combined

variable profits they lost by choosing their observed strategy compared to the proposed deviating

strategy, is $49,794. In the tenth row the average change in variable profits is $88,529, meaning

that the average pair of firms gained $88,529, in revenue from choosing their observed strategy as

opposed to the deviating strategy.

The reported changes in the cost variables are interpreted similarly as the change in the value

for that particular component of cost from the observed strategy to the deviating strategy. For

the first inequality, the average change in the branches component is -3.1. This means that the
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combined costs associated with branches for the two firms, are on average 3.1g1 lower if the pair

choose their observed strategy compared to the deviating strategy. This does not necessarily mean

that the average combined difference in branches between the two firms is 3.1. When adding a

branch, the increase in costs due to g1 is equal to B jm+(B jm+1) = 2B jm+1, times the parameter.

This is because in addition to the direct cost of adding that branch (which depends on B jm), there

is also the cost increase on all other branches from the additional branch (a one unit increase on all

B jm +1 branches).

To then evaluate the inequality, I find the set of parameters so that the expected increase(decrease)

in revenue from choosing the observed strategy compared to the deviating strategy is greater(less)

in absolute value, than the expected increase(decrease) in costs form choosing the observed strat-

egy as opposed to the deviating strategy. So for example, in the first inequality the two firms on

average lose a combined -$49,794 in revenue from their observed strategy while costs increase by

�3.1g1�163g2+1.3g

Ad j
3 +0.32g

W10m
3 +0.58g

W20m
3 +3.40g

WS
3 �6.09g

OS
3 . For the average firm to

behave rationally it must be that the increase in costs from the observed strategy is less than the

increase in revenue. This leads to the inequality:

�3.1g1 �163g2 +1.3g

Ad j
3 +0.32g

W10m
3 +0.58g

W20m
3 +3.40g

WS
3 �6.09g

OS
3 �49.794 (1.38)

I search for the parameters that satisfy this inequality. There are many combinations of parameter

values that satisfy this inequality, and so I use additional inequalities to narrow down the possible

parameter values.
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1.9.7 Counterfactual Equilibrium Computation Algorithm

It is likely that there are multiple equilibria in the counterfactual given the heterogeneity in the

bank institution characteristics. The approach I take to calculating the counterfactual equilibria is

to find the equilibrium in each market that is closest to the observed one. I do this by starting at

the observed equilibrium and iterating between an exit stage and an entry stage. In the exit stage,

incumbent banks sequentially close branches in the market by whichever firm has the largest losses.

Once no incumbent can profitably deviate by closing a branch, I turn to the entry stage. First I allow

each incumbent institution to add branches to the market. This is again done sequentially based

on which firm will gain the most from adding a branch. This is then followed by a stage where

new entrants are allowed to enter sequentially if it is profitable for them to enter with one branch.23

Once it is not profitable for any firm to enter the new market, I then start again with the exit stage,

and iterate until no changes are made in either stage. The steps of the algorithm are presented

below.

1. Exit stage

(a) For each incumbent, calculate the change in profits from decreasing one branch, hold-

ing all competitors’ branches constant, at the optimal choice of deposit rate for the bank

at their new choice of branches.

(b) Alter the market structure so that the firm with the biggest gains in profit from closing
23I do not check if it is profitable for each firm to enter with more than one branch. This is interpreted as banks not

being able to enter a new market with more than one branch at a time. In subsequent iterations they can increase their

number of branches, but if it is not profitable for them to enter with one branch, then they will never enter the market

in the first place.
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a branch, does so. If no bank has a positive change in profit from closing a branch, then

move on to stage 2.

(c) Return to step 1(a) if closing a branch was profitable for some bank in the previous

step.

2. Entry stage - incumbents

(a) For each incumbent, calculate the change in profits form adding one branch, holding

all competitors’ branches constant, at the optimal choice of deposit rate for the bank at

their new choice of branches.

(b) Alter the market structure so that the firm with the biggest gains in profit from adding

a branch, does so. If no bank has a positive profit change from adding a branch, then

move on to stage 3.

(c) Return to step 2(a) if adding a branch was profitable for some incumbent in the previous

step.

3. Entry stage - new entrants

(a) For each non-incumbent institution, calculate the profit from entering the market with

one branch.

(b) Alter the market structure so that the firm with the largest positive profit from entry,

enters with one branch. If no entrant gets a positive profit from entry, then move on.

(c) Return to step 3(a) if a firm entered in the previous step.

4. If there were any alterations to the market structure in steps 1-3, then repeat the steps starting

with the new market structure. If there were no changes made, then stop.
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Chapter 2

Estimating Auctions with Externalities

2.1 Introduction

In many auction settings, a bidder is not only concerned with whether they win the auction or

not, but also who wins the auction if they don’t. If the auction contains two bidders who are

rival competitors in some industry, each bidder may care not only about the value they will get

from obtaining the object but also the potential losses they may see if their rival gets the object.

Consider for example a group of cell phone service providers bidding over an exclusivity deal with

some mobile phone provider, such as Apple’s iPhone. All the service providers will get some

potential benefit from this exclusive deal through a possible increase in subscribers who want to

use that phone. In addition to this benefit, rival service providers (such as Verizon and AT&T) may

find that if the other gets the exclusivity deal, they may lose some of their customers to this rival,

providing additional incentives to outbid each other. This is an example of an identity dependent

negative externality in an auction setting. In this framework, in addition to each bidder having a

private value for the object, which they receive if they win the auction, some bidders upon losing
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will receive a negative externality that depends on which of their rivals has won the object in their

stead. These auctions with externalities were first explored in Jehiel, Moldovanu, and Stacchetti

(1996) and Jehiel, Moldovanu, and Stacchetti (1999).

In addition to the above example, this type of model can help explain many other possible auc-

tion settings. One can think of instances in mergers and acquisitions, where the potential buyers

care not only about the benefits from acquiring or merging with the target firm, but also the poten-

tial losses through decreased market share or increased relative costs, if their rival instead acquires

the target. This is common in industries with vertical integration where competitors who do not

vertically integrate first may be pushed out of the market. As Jehiel, Moldovanu, and Stacchetti

(1996) noted this setting also encompasses the exclusive sale of inputs to downstream competitors

(such as a patent, or the iPhone example above) and the awarding of important projects that have

large effects on the industry (such as awarding of government contracts in the aerospace industry).

In addition this idea can be used to explore the contracting of athletes in professional sports. In

such a setting teams are known to pay too high a price for certain athletes in an attempt to prevent

their rival from getting the player. This overbidding can be thought of as a result of teams consid-

ering the negative externality of being beat by their rival if the player goes to the opposing team,

in addition to the benefits of having that player on their own team.

The goal of this chapter of the thesis is to show how the auction estimation literature can be

extended to auction models where bidders care about the winner’s identity. I aim to take the first

step in identifying and estimating the size of the negative externalities in an auction setting that

allows for them. I believe this is a useful extension of the structural auction estimation literature

in that it places the auction in a broader context, allowing competition outside the auction to affect

auction outcomes.
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The model considered here is very similar to that of Jehiel, Moldovanu, and Stacchetti (1996).

In addition to the private values that bidders receive upon winning the auction object, losing bidders

will suffer negative externalities that depend on both the type of the winner and the sufferer. The

valuations will be draws from value distributions, while the externalities will be parameters of the

model. This model differs from other auction models estimated in the literature, in that here the

intensity of competition between bidders outside the auction can affect their payoffs in the auction.

This is captured by the type-dependent values of the negative externalities. Losing bidders will

be affected differently depending on the particular externality value between themselves and the

winner of the auction, where the externality can be interpreted as a measure of the degree of rivalry

between those two bidders outside the auction. As a result bidders care who wins the auction if

they do not.

I will show that both the externality parameters, as well as the value distributions, can be

identified and estimated in this model from observations on auctions that include the bids and the

identifies of the auction participants. The strategy used here will depend heavily on observing

enough variation in the set of participating bidders. As bidders of a given type face varying sets

of competitors who confer differing levels of externalities upon the bidder, this will shift their

observed bid strategies. By making the important assumption that observed bidder participation

is exogenously determined, I can then identify the negative externality parameters from how bids

fluctuate with the types of competitors a bidder faces.

I implement this strategy by first estimating bidder valuations as a function of the externality

parameters. I then search for the parameter values that lead to bidder valuation distributions that

are the same for bidders of the same type, across auctions with different sets of competing bidders.

I introduce three different estimators that each employ this strategy by finding parameters that

109



match different features of the value distribution across auctions with varying bidder sets. In the

final section I then show that this identification and estimation strategy can also be extended to the

case where the externality depends on the acquirer’s valuation in a parameterized way, and the case

when there are only observations on the winning bid and the participating bidders’ types.

As stated above, the model used in this paper is based on the auctions with externalities models

first considered in Jehiel, Moldovanu, and Stacchetti (1996) and Jehiel, Molodovanu, and Stac-

chetti (1999). Both papers were interested in characterizing revenue maximizing mechanisms in a

setting where a N ⇥ (N �1) matrix A contained the externalities, ai j, that player j received when

player i won the object. I simplify their model for estimation purposes, by making the externalities

parameters of the model and by separating bidders into types, who have the same value distribu-

tions and dispense and receive the same externality values. I also only consider a first-price sealed

bid auction for estimation, but estimates of the model primitives from the first-price auctions can

then help to answer many of the mechanism design questions posed in these original papers on

auctions with externalities. Estimates of the externality parameters and the distributions of valua-

tions can be used to predict and compare seller revenues under different mechanisms and to find

the revenue-maximizing mechanism.

Several other papers have also considered similar models of auctions with externalities. Jehiel

and Moldovanu (1996) use a related model to look at externalities’ effects on bidder participation.

In my model bidders cannot commit to non-participation (specifically, bidder participation is ex-

ogenous here) so I am not considering the strategic non-participation effects of that paper. This

makes sense for the settings I consider where commitment to non-partcipation would be difficult.

Jehiel and Moldovanu (2000) also use this model to consider externalities in a standard second

price-auction and look at the effects of reserve prices and entry fees on revenue. In das Varma
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(2002), the author restricts externalities to only come from one other bidder, and to have a fixed

value. He uses this setup to analyze bidding behavior in an open ascending bid auction.

My estimation techniques also draw heavily on the structural auction estimation literature orig-

inating with Guerre, Perrigne, and Vuong (2000), and extended by many others including Li, Per-

rigne, and Vuong (2002). Of the extensions, the techniques in my paper are closest to those of

Haile, Hong, and Shum (2003). There the authors use variation in bidder sets to test whether

valuations are private or common value in first-price sealed bid auctions. I will use similar tech-

niques that take advantage of variation in auction competition to infer the values of of the negative

externalities from how observed bid strategies fluctuate with competitor bidder sets. My paper’s

strategies are also related to the techniques used in estimating asymmetric auctions such as those

in Campo, Perrigne, and Vuong (2003) and Flambard and Perrigne (2006). Both papers use tech-

niques similar to that of Guerre, Perrigne, and Vuong (2000) to estimate an asymmetric first price

auction, with the former considering affiliated private values, while in the later valuations are inde-

pendent. For my paper, in addition to potential asymmetries in bidders’ value distributions, there is

asymmetry in bidding strategies caused by the type-dependent negative externalities. Thus even in

a setting where valuations are distributed symmetrically, bid strategies will be asymmetric due to

the differing influence of the negative externalities. Finally in extending the estimation procedure

to the case when only winning bids are available, the techniques I used are most similar to those

found in Brendstrup and Paarsch (2003), where they estimate an asymmetric dutch auction.

The rest of this second chapter is organized as follows. Sections 2.2 and 2.3 present the model

and the equilibrium bidding strategies. Section 2.4 discusses identification of the distribution of

bidder valuations and the externality parameters when all bids are observed and Section 2.5 gives

the strategy for estimation. Section 2.6 provides results from some Monte Carlo experiments,
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Section 2.7 presents some extensions, including the case when only the winning bid is observed,

and Section 2.8 concludes.

2.2 Model

The model I consider here is intended to be a simple model of an auction with externalities, which

can easily be extended upon as applications dictate. The purpose is to show that identification and

estimation in the spirit of Guerre, Perrigne, and Vuong (2000) is possible in a model where bidders

care about the winner’s identity. The model can be elaborated in a number of ways (some of which

are discussed in section 2.7.2) that should be dictated by the application.

The model is an auction consisting of n � 2 risk-neutral bidders competing for one indivisible

object. The set of bidders is denoted by B. Bidders are partitioned into K groups based on the

bidders’ type k. Bidder types are meant to reflect the level of competition between the bidders in

the market outside of the auction, which determines the size of the potential auction externalities.

There is no restriction on the number of types K, but in the Monte Carlo analysis I will consider

2 types of bidders, incumbents and entrants. The set of bidders of type k is denoted by Bk (where

SK
k=1Bk = B and

TK
k=1Bk = /0) , and the number of bidders of type k is denoted by nk (where

n1 + · · ·+nK = n).

Each bidder, ik 2 Bk, has a valuation for the object, vik , drawn from the distribution, Fk(·).

Valuation vik is assumed to be private information to bidder ik. Each Fk(·) has support [vk,vk]

and is common knowledge to all bidders. The distributions Fk(·) may be the same for all k in

which case we say that bidders have symmetric valuations, or they may be different for bidders

of different types k in which case we say that bidder valuations are asymmetric. The auction
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mechanism considered here will be a first price auction where each bidder ik submits a bid bik , and

the bidder with the largest bid gets the object and pays a price equal to the bid they submitted.

In addition to each bidder having a valuation for the object, bidders will also suffer a negative

externality if they do not win the auction. The value of this negative externality is dependent on

both the type of the suffering bidder and the type of the bidder who does win the auction. Thus the

gross payoff for each bidder ik 2 Bk is as follows:
8

>

>

>

<

>

>

>

:

vik if ik wins

�akk0 if jk0 2 Bk0 wins

Parameter akk0 is a type-dependent negative externality that bidders of type k0 inflict on bidders

of type k, by winning the auction. This externality is what causes the potential recipients in the

model to care about keeping the object away from their rivals. For most of the paper I will assume

that akk0 is common knowledge to all bidders, but is unknown to the econometrician. The tech-

niques of this paper can be extended to the case where akk0 is private information and to where it

is identity-dependent and is a function of vik . I will discuss these extensions in section 2.7.2.

I will also assume bidders cannot just avoid the negative externality by not participating in the

auction and that participation in the auction is exogenous to the model. The exogeneity of bidder

participation is an important assumption for estimation since I will be using variation in the bidder

set for identification. I think that exogenous bidder participation is a reasonable assumption in this

model given the nature of externalities in general. Most of the externalities I am thinking about

can’t be avoided by not participating in the auction, and thus every ”potential” bidder is implicitly

a participant in the auction if they can suffer an externality from its result. Thus whether or not

a ”potential” bidder submits an explicit bid, they can still be thought of as participating in the
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auction, where their bid is unobserved. This raises the important point that the bidder set B may

not be just observed bidders, but all ”potential” bidders that are affected by the auction outcome.

In this case the econometrician would not have data on all the”bids” since some bidders did not

submit explicit bids, but the model can still be identified and estimated as will be shown in section

2.7.1. In addition to allowing for identification, the assumption of exogenous bidder participation

also allows me to avoid complications from strategic non-participation, which are discussed with

respect to auctions with externalities in Jehiel and Moldovanu (1996).

What separates this from other models of auctions, is that the degree of competition between

the bidders outside of the auction, affects their payoffs in the auction. Consider firms bidding

over some acquisition that will allow them to expand their operations and thus increase profits.

Examples include auctions for spectrum licenses, government contracts, and landing slots at an

airport, as well as bidding in firm mergers and acquisitions. Firms will bid more competitively

against certain rivals in the auction, if they compete heavily against those rivals in the downstream

market. Thus the structure of competition in the out of auction market will affect the auction

results, in that firms will bid more aggressively when facing rival bidders that have a larger effect

on their downstream profits.

2.2.1 Three Motivating Examples

I will now lay out three motivating examples of different models of market competition that could

lead to the above auction model with externalities.
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2.2.1.1 Mergers and Acquisitions

In a merger acquisition, firms bid on the target firm, with the bidder with the largest bid acquiring

the target. Bidders for these acquisitions are generally firms that compete against each other in the

market for some product. Market competition between the firms may depend on how similar or

differentiated their products are, how large or small they are relative to each other, or whether they

are an entrant or already an incumbent in the target’s market, and based on these we can delineate

firms into types. This will further affect competition in the auction for the target, in that losing

bidders of these different types will have downstream profits affected differently depending on the

type of the auction winner. Thus bidders will bid differently depending on the types of their rival

bidders.

The model I have in mind is an entry model similar to Seim (2006), where firms own multiple

stores in a market and by making an acquisition of store l in market m, firm i gains profit:

piml = bXm +dBim +Â
b

gbNbm + eiml

where Xm are market characteristics, Bim is the number of stores firm i already has in market m, Nbm

is the number of competing firms with b stores in market m, and eiml is the idiosyncratic profit of

target store l. The idiosyncratic value of the target to firm i, eiml , is private information to firm i. As

described in Seim (2006), this private error term captures all the differences between the firm and

its rivals. Thus with such a model it is reasonable to think of eiml as private information while the

rest of the model components are common knowledge due to the symmetry of these components

across different firms. This type of model would make sense in a market such as banking, where

firms acquire multiple branches in a single market to boost profits.

The competition effect from rival firms is based on the rivals’ size, which here is captured by the
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number of stores they have in the market, b. A firm’s valuation from making the acquisition is then

given by vi = piml , which is private information because eiml is private information. If a firm that

initially had b stores in the market, wins the auction, then the profit for all other stores will fall by

gb+1� gb. Thus the externality for a firm that initially had b0 stores, would be ab0b = b0(gb+1� gb).

This externality depends on both the type (size) of the winning bidder and the type of the bidder

suffering the externality, but is the same for all bidders of the same type.

The externality ab0b captures the idea that firm profits may be affected differently depending on

the market presence of the rival firm making the acquisition. Large firms with many current stores

may care more about another large firm making the acquisition then if a smaller firm with only one

current store, acquires the target.

2.2.1.2 License Auctions

In the bidding for licenses (or contracts or landing slots), the value of the acquisition depends on

the number of licenses (or contracts or landing slots) held by competitors, and also the degree of

rivalry between those firms in the downstream market. In bidding for government contracts or

licenses, the degree of rivalry could be based on geographic regions. Thus firm types k would be

based on what geographic market they compete in. I would expect in this case for |akk| > |akk0 |

(meaning externality effects are larger from bidders of the same type than from bidders of different

types) since firms generally are more competitive with their counterparts from the same geographic

market. In the competition for airline slots, bidders could be partitioned into groups based on flying

to similar locations, and again I would expect stronger externality effects from bidders of the same

type.

Thus firms are broken into types based on their competition in the downstream market, and
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then a firm’s profit depends on the number of licenses they own, and the number of licenses their

competitors own, pk(lik ; l1, . . . , lK). If firm ik wins the auction for the license, their profit will

change by pk(lik +1; l1, . . . , lK)�pk(lik ; l1, . . . , lK) = vik . If a firm of type k0 wins the auction, then

firm ik’s profit will change by pk(lik ; l1, . . . , lk0 +1, . . . , lK)�pk(lik ; l1, . . . , lk0 , . . . , lK) = �akk0 . The

profit function could even have a parametric form such as pk(lik ; l1, . . . , lK) = bOlik +Âk0 bkk0lk0 +

ek(lik), where ek(lik) is private information to firm ik. Then the value of winning the auction for a

bidder of type k would be vik = bO + ek(lik +1)� ek(lik) and the externality suffered if a bidder of

type k0 won the auction would be akk0 =�bkk0 .

Here again it is reasonable to think of vik as private information since a license provides an

idiosyncratic increase to firm profit that is specific to firm ik. On the other hand akk0 is more likely

to be common knowledge, because multiple firms of type k suffer similarly from a rival of type k0

acquiring the license. This is characteristic of most models of market competition, where profits

have an idiosyncratic component to them, but the effect on profit of competition from rival firms is

usually modeled symmetrically.

Again the externality akk0 captures the type-dependent nature of the acquirer’s effect on com-

petitor profits. A firm’s profits may be affected more by an increase in licenses by a rival of the

same type, then a rival of a different type that they do not compete as heavily with.

2.2.1.3 Cournot Competition in Downstream Market

Finally an extension to this model (which is discussed in section 2.7.2) can apply to an auction

where the bidders compete in a downstream market of Cournot competition. Assume bidders
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compete in the outside market for some good whose price is determined by the equation:

p = d0 �
K

Â
k=1

 

dk ⇤
 

Â
i2Bk

Qi

!!

where Qi is the quantity of the good produced by firm i and {d0,d1, . . . ,dK} are parameters. Each

firm then chooses quantity to maximize their profit, pi = (p� ci)Qi, where ci is the firm-i specific

marginal cost of production, which is assumed to be common knowledge.

The auction is then for some innovation to production that will lower the marginal costs of

production for the winning bidder by some amount, which is private information to the bidder.

By solving the Cournot model, one can then get the value of winning the auction in terms of

the Cournot model parameters, the original firm marginal costs, and the value of the innovation

for the winning firm (how much it reduces the winning firm’s marginal cost). This is the bidder

valuation, vik , in the above auction model. Additionally, one can get the the change in profits for

each losing bidder in the auction, also as a function of the Cournot model parameters, the original

firm marginal costs, and the value of the innovation for the winning firm. This value would then

be the externality aik jk0 . In the appendix to this chapter I show the derivation of these values for

the case of 2 bidders.

Note this case differs from the model described above in that here the externality depends

on the winning bidder’s private value, and is thus also private information as well. In particular

the externality would depend on bidder valuations through aik jk0 = akk0 ⇤ v jk0 , where akk0 is the

externality parameter I am looking to estimate that is a function of the parameters and marginal

costs of the Cournot model. This correlation between the externality and the winning bidder’s

private value makes sense in many other situations where the larger the value of the object for

firm j, the larger will be the negative impact on rival firm i’s profits in the downstream market.
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By estimating such a parameter in the auction model, one can then make inference about the level

of competition between firms in the Cournot market, using the connection between the Cournout

model parameters and the auction model parameters.

For the majority of the paper, I will be excluding this example by focusing on the case where

akk0 is common knowledge to all bidders and is not identity-dependent, but instead type-dependent.

In section 2.7.2, I will briefly discuss how the model and estimation strategy can be extended to the

private-value aik jk0 case of this example. The techniques of this paper actually translate to this case

in a relatively straightforward manner in that the method of estimation does not change much, but

only the form of the estimating equation changes. For more discussion on this case look at section

7.2.

2.3 Equilibrium

The expected utility of bidder ik 2 Bk with valuation vik , given that they submit bid b, is given by:

uk(vik ,b) = (vik �b)Pr(b � bl,8l 2 B�ik)�Â
k0

akk0

"

Â
jk0 6=ik2Bk0

Pr(b jk0 � bl,8l 2 B� jk0 |b)
#

(2.1)

where in the last probability I condition on ik submitting bid b. At the Bayesian Nash equilibrium,

each bidder chooses their bid in order to maximize expected utility given their valuation for the

object. I restrict attention to symmetric equilibria by assuming each bidder of type k follows the

same strategy.

Furthermore I will be looking at equilibrium strategies that are differentiable and strictly in-

creasing over a range of valuations. This range of valuations will be any valuation over a certain

threshold that depends on both the bidder’s type and the competition they are facing in the auction.

The reason I only have monotone bidding strategies above this threshold is that with asymmetric
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bidders and externalities, bidders with valuations below this threshold will be indifferent between a

continuum of lower bids, which all give them the same expected utility. Thus equilibrium bidding

below this threshold is not necessarily increasing. Assuming monotone bidding strategies for all

valuations above this threshold is not unreasonable given that the marginal utility of increasing the

bid of a type-specific bidder, is increasing in their valuation and increasing in the externality, so

that type-specific bidding functions follow the single-crossing property.

For the same reason that I can only get monotonicity of the bidding function above some

threshold, I also can only get uniqueness of the bidding function above this threshold. Once again

because of the asymmetry, below a certain threshold bidders are indifferent between a continuum

of bids and thus there is no unique equilibrium strategy. In the absence of uniqueness here, I must

make the additional assumption in the estimation below that all the observations on bids come from

auctions where bidders use the same equilibrium strategy for valuations below their threshold.

Hence I am interested in defining the monotone bidding function for all valuations above this

indifference threshold. Let bk(·) be the strictly increasing equilibrium bid strategy for a type-k

bidder, with an inverse denoted by b

�1
k (·). Thus a bidder ik 2 Bk solves:

(2.2)max
b

(

(vik � b)

 

’
k0

Fk0(b
�1
k0 (b))(nk0�1{k0=k})

!

� Â
k0

"

akk0
�

nk0 � 1{k0 = k}
�

Z vk0

b

�1
k0 (b)

’
k00

Fk00(b
�1
k00 (bk0(x)))(nk00�1{k00=k0}�1{k00=k}) fk0(x)dx

#)

where 1{·} is the indicator function. Differentiating (2) with respect to b for all k will give a system

of K first order differential equations:

Â
k0

"

(vik �b+akk0)

 

(nk0 �1{k0 = k}) fk0(b
�1
k0 (b))b�10

k0 (b)
Fk0(b

�1
k0 (b))

!#

= 1 (2.3)

This system of equations along with the boundary conditions at the indifference thresholds dis-

cussed above, define the equilibrium strategies bk(·). Under certain assumptions on the model
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primitives, it may be possible to solve the system of differential equations for the equilibrium

strategies bk(·). More generally the system of equations is quite complicated and will often be dif-

ficult to solve even using numerical methods. Thus I suggest a technique along the lines of Guerre,

Perrigne, and Vuong (2000) that does not require solving directly for these equilibrium bidding

strategies.

Let Hk(b|B) be the probability that a particular bidder ik of type k wins the auction with a bid

of b given that the set of bidders is B (i.e. Hk(b|B) = Pr

 

max
j2B�ik

b j  b|B
!

). Then using the strict

monotonicity of the bidding functions, I can write the expected utility of a type k bidder as:

uk(vik ,b;B) = (vik �b)Hk(b|B)�Â
k0

"

akk0
�

nk0 �1{k0 = k}
�

Z bk0(B)

bk0(B)
Hk0(x|bik = b,B)gk0(x|B)dx

#

(2.4)

where Hk0(x|bik = b,B) is the probability that a specific bidder of type k0 wins the auction with a

bid of x given that ik submits a bid of b, gk0(x|B) is the bid density for a bidder of type k0 given set

of bidders B (i.e. gk0(x|B) = Pr(b jk0 = x|B)), and bk0(B) and bk0(B) are the upper and lower bound

respectively, of the bid distribution for a bidder of type k0 given set of bidders B. The first order

condition of this expected utility with respect to b is:

(vik �b)H 0
k(b|B)=Hk(b|B)+Â

k0

"

akk0
�

nk0 �1{k0 = k}
�

∂

∂b

 

Z bk0(B)

bk0(B)
Hk0(x|bik = b,B)gk0(x|B)dx

!#

(2.5)

The key to getting a tractable expression for the last term of equation (5) is to look at how ik’s

bid b, enters the integral. The integral gives the probability that a specific bidder of type k0, jk0 ,

wins the auction given that ik bids b. This probability is only affected by b in that for any jk0 bid

of x < b, that probability of winning is 0. For all rival bids of x > b, the probability of jk0 winning

is the probability that all other bidders, excluding jk0 and ik (since it is already known that ik bids
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b), bid below x. This later probability is independent of ik’s bid of b. Thus we can simplify the

above expression to an integral where b only enters in the limit of integration. The derivation of

this equality can be found in the appendix to this chapter.

Z bk0(B)

bk0(B)
Hk0(x|bik = b,B)gk0(x|B)dx =

Z bk0(B)

b
Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

gk0(x|B)dx (2.6)

Now when I take the derivative with respect to bid b I will get a tractable expression:

∂

∂b

 

Z bk0(B)

bk0(B)
Hk0(x|bik = b,B)gk0(x|B)dx

!

=�Pr
✓

max
l 6=ik, jk02B

bl  b|B
◆

gk0(b|B) (2.7)

Substituting this into equation (4) results in:

(vik �b)H 0
k(b|B) = Hk0(b|B)�Â

k0



akk0
�

nk0 �1{k0 = k}
�

Pr
✓

max
l 6=ik, jk02B

bl  b|B
◆

gk0(b|B)
�

(2.8)

Rearrange and I get:

vik = b+
Hk(b|B)
H 0

k(b|B)
�Â

k0

2

6

6

6

4

akk0
�

nk0 �1{k0 = k}
�

Pr
✓

max
l 6=ik, jk02B

bl  b|B
◆

gk0(b|B)

H 0
k(b|B)

3

7

7

7

5

(2.9)

Equation (9) is a necessary condition for b to be an optimal bid for a bidder of type k with

valuation vik . This equation is very similar to the usual equation found in the structural auction

estimation literature, but with a term added to the end. The extra term on the end of equation (9)

is the increase in the bid over the standard equilibrium bid due to presence of rivals that can exert

externalities on the bidder. The term
Pr

 

max
l 6=ik , jk0 2B

blb|B
!

gk0(b|B)

H 0
k(b|B)

can be interpreted as the probability

that for the interested bidder, one of their rivals, jk0 , bids b and all other players in the auction have

bid below b, so that the only way the interested bidder can prevent rival jk0 from obtaining the

good, is to bid b or marginally better. The parameter akk0 is the cost to ik of jk0 getting the object
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and so together the last term in equation (9) is the increase in expected utility the interested bidder

receives from preventing rival jk0 from getting the object by making a bid of b.

Equation (9) will form the basis for the estimation strategy used in this paper. I will use it to

get bidder valuations as a function of observed bids and externality parameters, {akk0}k,k0 . Then in

a similar fashion to that of Haile, Hong, and Shum (2003), I will use observed variation in bidder

set B, which leads to variation in the components of equation (9), to then identify and estimate the

externality parameters.

2.4 Identification

I want to be able to identify the set of externality parameters, {akk0}k,k0 , and the distributions of

valuations, {Fk}k, from observations on bids and bidder identities from a sample of auctions, using

the equilibrium equation (9). I will assume that I observe a series of T independent auctions for the

same object, and for each auction I observe the set of bidders Bt and the joint distribution of bids

denoted by G(bt
1, . . . ,b

t
n|Bt). I assume that there are L externality parameters, akk0 , to estimate and

that a is a L⇥ 1 vector of these parameters that belongs to the set A ⇢ RL. With no restrictions

on symmetry between externalities, then L = K2, but by imposing some form of symmetry on

the parameters, L can be lowered, thus easing the requirements for identification. I say that a is

identified if for any a

⇤, ã 2 A and any Fv⇤(·), Fṽ(·) 2 ¡, where ¡ is the set of strictly increasing

and continuous distributions, then if G(·;a

⇤,Fv⇤(·)|B) = G(·; ã,Fṽ(·)|B), for all observed bidder

sets B, it must be that a

⇤ = ã and Fv⇤(·) = Fṽ(·).

The strategy behind identification will be similar to the strategy of Haile, Hong, and Shum

(2003), where I will use observed variation in the sets of bidders to identify the externality param-
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eters. The idea is that bidders of a given type will bid differently depending on the number and

identities of their opposing bidders. Say a bidder is in an auction with two rival bidders. If that

bidder’s opponents are both of, for instance, type k, they will bid differently then if instead one of

the opponents are of type k and the other is of type k0, because of the difference in the externality

they receive if a bidder of type k wins or a bidder of type k0 wins. Thus if the econometrician can

observe a bidder of a particular type’s bidding strategy in auctions with the two different sets of

opponents, then he or she can make inference on what the potential value of the externality param-

eter must have been given the observed difference in bidding strategies. Thus for identification I

will need enough variation in the sets of bidders, to be able to attribute the variation in bidding

strategies to a particular externality value between two bidder types.

For identification there is a tradeoff between assumptions made on the distributions of bidder

valuations, and the variation in the set of bidders needed for identification. I will start off with the

least restrictive assumption that bidders are allowed to have asymmetric distributions of valuations,

in that distributions Fk(·) are not required to be the same for bidders of different types k. Later on

I will show that certain restrictions on bidder distributions can ease identification in that less varia-

tion in B is needed for identification of the externality parameters.. This will include requiring that

the distributions for bidders of different types k must have the same means or have the same me-

dians, or by further restricting bidder distributions to be symmetric (i.e. that Fk(·) = Fk0(·),8k,k0).

The more restrictions I put on the bidder distributions, the easier it is to attain identification.

The first step involves identifying bidder valuations as a function of observed bids and the
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bidder set, and the unknown externality parameters. Equilibrium bidding equation (9) does this:

vik(B)= xk(b,G;a,B)= b+
Hk(b|B)
H 0

k(b|B)
�Â

k0
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6

6

4

akk0
�

nk0 �1{k0 = k}
�

Pr
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max
l 6=ik, jk02B

bl  b|B
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k(b|B)

3

7

7

7

5

(2.10)

where Hk(·|B), H 0
k(·|B), Pr

✓

max
l 6=ik, jk02B

bl  ·|B
◆

, and gk0(·|B) are all known from the observed

joint distribution of bids, G(·|B). Thus bidder valuations are identified as a linear function of

the externality parameters. The idea behind identification of these parameters is then that the

distribution of valuations should not depend on the bidder sets B given the assumption that bidder

participation is exogenous. Thus the distributions of valuations for a given bidder type should be

equal across all auctions with different sets of bidders.

Observed variation in these sets will result in a series of equalities between distributions of

valuations that are functions of the externality parameters. Let G be the observed distribution of

bids when the bidder set is B and Ga be the observed distribution of bids when the bidder set is

some alternative Ba. Then these identifying equalities can be written out as:

F
xk
(xk(b,G;a,B)|B) = F

xk
(xk(b,Ga;a,Ba)|Ba) 8B,Ba (2.11)

As more variation in bidder sets is observed, the number of identifying equations increases. Iden-

tification will be achieved if there are more equations then unknown parameters.

To formally prove identification I need to show that the above equality holds for all bidder types

k, and all observed bidder sets, B,Ba, only at the true value of the parameters a

⇤. The first step is to

show that these equalities do actually hold at a

⇤. This relies on the above equilibrium argument that

when evaluated at the true externality parameters, the inverse bid function xk is a true description of

bidding behavior. Thus for bidder ik, at a

⇤, xk(bik ,G;a

⇤,B) = vik , the random valuation for bidder

125



ik. This is true for all bidders and so F
xk
(xk(b,G;a

⇤,B)|B) = Fk(xk(b,G;a

⇤,B)|B), where Fk(·|B)

is the distribution of valuations for bidders of type k in auctions with bidder set B. Likewise for

any alternative bidder set Ba, I can get F
xk
(xk(b,Ga;a

⇤,Ba)|Ba) = Fk(xk(b,Ga;a

⇤,Ba)|Ba), where

Fk(·|Ba) is the type-k valuation distribution for auctions with bidder set Ba. Given the assumption

that bidder participation is exogenous, the distribution of valuations does not depend on the bidder

set. Thus Fk(v|B) = Fk(v|Ba) for any v in the distribution’s support, and so it follows that equation

(11) does hold for the true parameter values a

⇤. This is true for any pair of observed bidder sets,

B and Ba, and for all bidder types k.

Now I need to show that these equalities do not hold for at least one pair of observed bidder

sets, B,Ba, for any alternative parameter values, ea 6= a

⇤. Under the alternative parameter values,

the inverse bid function xk, no longer describes equilibrium bidding behavior. Thus its value differs

from that of the true valuation. Under ea ,

xk(bik ,G; ea,B) = vik +Â
k0

2

6

6

6

4

(a⇤
kk0 �g

akk0)
�

nk0 �1{k0 = k}
�
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max
l 6=ik, jk02B

bl  bik |B
◆

gk0(bik |B)
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7
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Thus the equality of distributions above does not necessarily hold under different parameter values.

I want to show that indeed the only way for those equalities to all hold is if ea = a

⇤.

The easiest way to show that all the equalities hold only at the true parameter values is to look

at some percentile of the distribution of valuations, in particular the median. For the distribution

of xk under B to be the same as the distribution of xk under the alternative Ba, they must have the

same median values (i.e. xk(bmed
k,B ,G; ea,B) = xk(bmed

k,Ba ,Ga; ea,Ba)). Thus if I can show that only at

the true parameter values do the median equalities hold for all pairs of bidder sets, then this shows

that the distributions are not equal for other parameter values, and thus those equalities identify the

externality parameters.
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Expanding out the median equality for two observed bidder sets, B and Ba, I get:

xk(bmed
k,B ,G; ea},B) = xk(bmed

k,Ba ,Ga; ea},Ba) (2.12)

,
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(2.13)
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A

= 0

The more variation in bidder sets that I observe the more equalities like equation (13), I will get.

Let Sk be the number of observed bidder sets that contain a bidder of type k. Observing variation

in B is important because it restricts the possible parameter values that satisfy the above equalities.

With only one equality (i.e. Sk = 1), but multiple externality parameters (i.e. L > 1), different

combinations of parameter values will satisfy the equation. By observing more variation in the

bidder sets, I increase the number of equations, and thus restrict the set of parameter values that

will satisfy those equalities. For identification I need to observe enough variation in bidder sets,

that I restrict the possible parameter values to a singleton.

Equation (13) is linear in the externality parameters, {gakk0}, and thus the system of equations

that results from observing multiple pairs of bidder sets for multiple bidder types k, will be linear

in the parameters as well. This system can be represented in matrix form as Cã =CLC, where C is
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a ÂK
k=1(Sk �1)⇥L matrix and CLC is a ÂK

k=1(Sk �1)⇥1 vector. A sample element of matrix C is:

(2.14)

�

nk0 � 1{k0 = k}
�

Pr
✓

max
l 6=ik, jk02B
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H 0
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and a sample element of vector CLC looks like:

(2.15)bmed
k,B � bmed

k,Ba +

 

Hk(bmed
k,B |B)

H 0
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med
k,B |B)

�
Hk(bmed

k,Ba |Ba)

H 0
k(b

med
k,Ba |Ba)

!

Arranging the equalities into matrix form, I can repose the problem of identification as that of

finding a unique solution to the above system. The uniqueness of the solution to the above system

of equalities depends on the rank of the matrix C, which in turn depends on the observed variation

in bidder sets. Like was stated above, identification amounts to observing enough variation in the

bidder sets to pin down the value of the externality parameters. If the rank(C) � L, then there is

at most one solution to this system of linear equations. Above I showed that at the true parameter

values, a

⇤, these equalities necessarily hold. Thus if the rank(C) is large enough, the only way

alternative parameter values, ã , will satisfy all of the observed equalities, is if ã = a

⇤. So the

externality parameters are identified, leading to the following proposition.

Proposition 1. Assume bidder participation is exogenous (i.e. Fk(·;B) = Fk(·;Ba),8B,Ba) and

that inverse bid function xk(b,G;a,B) is strictly increasing in b for b 2
⇥

bk(vk),bk(vk)
⇤

. Let C be

the matrix described above, constructed by stacking equalities of the form of equation (12), for all

bidder types k and all pairs of observed bidder sets, B and Ba. Then if enough variation in bidder

sets is observed so that rank(C)� L, the externality parameters a are identified.
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Proof. Assume that a is not identified in that there is some ea 6=a

⇤ such that G(·|ea,B)=G(·|a⇤,B),

for all observed bidder sets B, where a

⇤ is the true value of the parameter and G is the observed

distribution of bids. The distribution of bids can be written as:

G(. . . ,b, . . . |a,B) = Pr(. . . ,bik  b, . . . |a,B) (2.16)

= Pr(. . . ,xk(bik ,G;a,B) xk(b,G;a,B), . . . |a,B) (2.17)

= F
x

(. . . ,xk(b,G;a,B), . . . |a,B) (2.18)

where the second equality follows from the strict monotonicity of the inverse bid function. Func-

tion F
x

(·|a,B) is the joint distribution of the inverse bid function, conditional on externality value

a and bidder set B.

Since the distribution of bids is the same under both a

⇤ and e

a , this implies that:

F
x

(. . . ,xk(b,G;a

⇤,B), . . . |a⇤,B) = F
x

(. . . ,xk(b,G; ea,B), . . . |ea,B) (2.19)

) F
xk
(xk(b,G;a

⇤,B)|a⇤,B) = F
xk
(xk(b,G; ea,B)|ea,B) (2.20)

Then because of the equilibrium argument from section 2.3 that xk is the true inverse bidding

function for a bidder of type k given the true value of the externality parameter, I can say that

xk(bik ,G;a

⇤,B)= vik . Thus F
x

(. . . ,xk(b,G;a

⇤,B), . . . |a⇤,B)=Fv(. . . ,xk(b,G;a

⇤,B), . . . |B), where

Fv(·|B) is the joint distribution of valuations given bidder set B. This also implies that the marginal

distributions are equal, or that F
xk
(xk(b,G;a

⇤,B)|a⇤,B) = Fk(xk(b,G;a

⇤,B)|B).

Since by assumption bidder participation is exogenous, then for any alternative bidder set, Ba:

Fk(·|B) = Fk(·|Ba) (2.21)

, F
xk
(xk(b,G;a

⇤,B)|a⇤,B) = F
xk
(xk(b,Ga;a

⇤,Ba)|a⇤,Ba) (2.22)

, F
xk
(xk(b,G; ea,B)|ea,B) = F

xk
(xk(b,Ga; ea,Ba)|ea,Ba) (2.23)
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Yet the rank condition on the matrix C implies there is at most one solution to all the equalities of

the same type as equation (23), for all bidder types k and all the observed bidder sets. And since the

equalities necessarily hold at a

⇤, then this implies that ea = a

⇤, or that the externality parameter is

identified.

Once I have identification of the externality parameters a , identification of the distributions of

valuations follows from the existing literature on the identification of distributions of valuations in

structural auction models. This is because identification of the externality parameters allows me to

identify the pseudo-valuations, which were previously functions of the potential parameter values.

Knowledge of the pseudo-values then allows me to identify the distributions of valuations as in

Guerrge, Perrigne, and Vuong (2000) and the subsequent literature.

2.4.1 Restrictions For Better Identified Parameters

As stated earlier, making additional assumptions on bidder distributions can increase the set of

equations, and thus ease identification. For example if I assume that the median values of all bid-

der distributions are equal, including those from bidders of different types k, then xk(bmed
k,B ,G;a,B)

are now equal for bidders of different types (i.e. xk(bmed
k,B ,G;a,B) = xk0(bmed

k0,B0 ,G;a), 8k,k0,B,B0).

This increases the number of identifying equations, thus increasing the rank(C) and improving

identification. A similar assumption on the means of the asymmetric distributions would also im-

prove identification. To show the value of this additional assumption I would employ a different,

but similar identification strategy that would instead look at the equality of the means across vari-

ations in bidder sets. A similar proposition to Proposition 1 could be constructed for these mean

equalities rather than median equalities.
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I could further restrict bidder distributions to be symmetric (i.e. Fk(·) = Fk0(·),8k,k0). Like

the above restrictions, this too would also increase the number of identifying equations as long

as bidders of different types still suffered different valued externalities. The more equations the

econometrician can get from these restrictions, the less equations they need from variation in bidder

sets to identify the externality paratmeters. Thus there is a clear tradeoff between the assumptions

one is willing to make on the distributions of valuations and the variation in bidder sets needed for

identification.

Another way to help identification would be to impose symmetry on the externality parameters.

If the parameters are not required to be symmetric then there are L=K2 parameters to estimate. By

imposing symmetry on externalities the researcher lowers the number of unknown parameters to

L = K(K+1)
2 , and thus reduces the number of equations needed to identify those parameters. Once

again this reduces the necessary variation in bidder sets required for identification. The assumption

that externalities are symmetric makes sense for a lot of the settings considered in the introduction,

and thus in most cases is a mild restriction that greatly improves identification.

2.5 Estimation

Estimation will follow along the same lines as identification in the previous section. Observations

will come from T independent auctions labeled t = 1, . . . ,T . In each auction I observe the bids

of each bidder as well as each participating bidder’s type. Each auction t will have nt
k bidders

of type k for k = 1, . . . ,K, and I will denote this set of bidders for each auction as Bt . I let B[

be the non-repeating set of bidder sets that are observed and B[
k ⇢ B[ be those sets for which

nk � 1. Additionally I will denote the cardinality of these sets as S = |B[| and Sk = |B[
k |. Thus S is
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the number of different bidder sets observed by the econometrician and Sk is the number of those

observed bidder sets that contain a bidder of type k. A bidder of type k in an auction t with bidder

set B, will have valuation denoted by vit
k,B and bid denoted by bit

k,B. Finally I let p(i) be a function

that returns the type of bidder i.

The idea behind estimation is once again very similar to that of Haile, Hong, and Shum (2003),

where I will use variation in bidder sets to estimate the externality parameters. The strategy is to

first use the observed bids to compute the distributions and densities in equation (9). Then I will

use these estimates and the observed bids to compute either an externality-depenent estimate for

the distribution of valuations for each bidder type and bidder set, or to compute an externality-

dependent median or mean pseudo-value for each bidder type and bidder set. Then I will use

that for a given bidder type, the distribution of pseudo-values , or median or mean pseudo-value,

should be the same for each bidder set that bidder type is a part of. This equality across varying

bidder sets will allow me to form a system of equations that can be used to pinpoint an estimate

for the externality parameters. In the case of equating the pseudo-value distributions, I will look

for the parameter values that minimize the distance between the two estimated distributions. For

the estimator that equates the median or mean pseudo-values, the formed system of equalities will

be linear in the externality parameters, and so the estimate will just be a solution to this system.

2.5.1 Distribution Estimates

The first step in estimation is to get estimates for the distributions and densities in equation (9).

This will be done in a way that is very similar to what is found in the rest of the auction estimation

literature, particularly Li, Perrigne, and Vuong (2002) and Campo, Perrigne, and Vuong (2003).
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The first distribution to estimate is Hk(b|B), which is the probability that all bidders other than

a particular bidder of type k, bid below b. To construct an estimate of Hk(b|B), only observed

auctions which have the same number of bidders of each type as B can be used. This is necessary

since bidder strategies do not only depend on how many opponents a bidder faces, but also the

opponents’ types.

Letting TB denote the number of observed auctions with the same set of bidders as that for

which I am trying to estimate the distribution for, the estimator for the distribution is given by:

cHk(b|B) =
1

TB

T

Â
t=1

1
nt

k

nt

Â
i=1

1
⇢

max
l 6=i2Bt

blt  b
�

1
�

Bt = B, p(i) = k
 

(2.24)

The estimate for the derivative of this distribution is then given by:
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1
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1
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�
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(2.25)

where K(·) is a kernel estimator and hHP is the appropriately chosen bandwidth. Choice of kernel

and bandwidth are discussed below in section 2.6. Note that for consistency of these estimates, I

need TB ! • for all B for which these estimates are calculated. Then under standard conditions

cHk(b|B) and cH 0
k(b|B) can be shown to be consistent estimators of Hk(b|B) and H 0

k(b|B), respec-

tively.

Next I need consistent estimates for Pr
✓

max
l 6=ik, jk02B

bl  b|B
◆

and gk(b|B). I propose the follow-

ing respective estimates:

cPr
✓

max
l 6=ik, jk02B

bl  b|B
◆

=

1
TB

T
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1
nt

k ⇤ (nt
k0 �1{k = k0})

nt
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nt
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j=1, j 6=i

1
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l 6=i, j2Bt

blt  b
�

1{Bt = B, p(i) = k, p( j) = k0} (2.26)

bgk(b|B) =
1
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where K(·) is a kernel estimator and hg is the appropriately chosen bandwidth. Under standard con-

ditions cPr
✓

max
l 6=ik, jk02B

bl  b|B
◆

and bgk(b|B) are consistent estimates for Pr
✓

max
l 6=ik, jk02B

bl  b|B
◆

and gk(b|B), respectively. I must get consistent estimates of all these distributions and densities

for each observed bidder set B, and each type of bidder k observed in that bidder set.

With estimates for all of the distribution and density functions in equation (9), I can now calcu-

late the pseudo-values for bidders given particular guesses of the externality parameters. To then

pin down estimates for the unknown parameters I will search for externalities that lead to distri-

butions of pseudo-values that fit the previously discussed identifying equations. I will show three

different ways of doing this. The estimation approach may differ depending on the assumptions

made on the distributions of valuations, and so again I will start off by assuming that bid distri-

butions are asymmetric between types. This estimation strategy assumes that the econometrician

observes enough variation in the bidder sets to identify the externality parameters (the condition

for identification in the previous section).

2.5.2 K-S Estimator for a

The first of the three estimators I will present, makes inference on the externalities by equating

the estimated pseudo-value distributions. This estimator is based on the Kolmogorov-Smirnov

test statistic. The test statistic is intended to test the equality of two distributions. Here the two

distributions that should be equal, are the distributions of pseudo-values for a bidder of a specific

type for any two different bidder sets. Since the pseudo-values I construct contain the unknown

parameters, then the parameter values that equate the two distributions could be a good estimate of

the true parameters.
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To construct this estimator, I will use the above estimates for the distributions, and compute

the pseudo-values corresponding to each observed bid, using equation (9) for a given guess at the

value of the externality parameters, a

0.

dvit
k,B(a

0) = bit
k,B+

cHk(bit
k,B|B)

cH 0
k(b

it
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(2.28)

Then for each B, and for each type k in B, I estimate the distribution of valuations given guess a

0:

dFk,B(v;a

0) =
1
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T

Â
t=1

1
nt

k

nt

Â
i=1

1{dvit
k,B(a

0) v}1{Bt = B, p(i) = k} (2.29)

I then create an objective function that is a sum of the maximum distances between successive

estimates of the distributions, and search for the a

0 that minimizes this objective function. Thus if

I order the bidder sets in B[
k ({B1

k , . . . ,B
Sk
k }), then my estimate for the externality parameters is:

b

a

KS = argmin
a

02A

8

<
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s=1

max
v2[\xk(a 0),\xk(a 0)]
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k
(v;a

0)� dFk,Bs
k
(v;a

0)|

9

=

;

(2.30)

2.5.2.1 Consistency of baKS

Proposition 2. Assume A is a compact subset of RL. Assume that xk(b,G;a,B) is the equilibrium

inverse bid function for a bidder of type k, that is strictly increasing in b and continuous in a . Also

assume that the identification conditions from the previous section hold. Then the estimator baKS

defined above is a consistent estimate for the true parameter value a

⇤.

Consistency of this estimator requires showing that the conditions for the consistency of an

extremum estimator hold here. To do so I need to show that the above sample objective function

converges to an objective function that is continuous in a and is uniquely minimized at the true
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parameter value a

⇤. Assume for now that there is only one bidder type and only two observed

bidder sets, B,Ba, that differ in the number of bidders. Allowing for more than one bidder type

and more observed bidder sets is just a straightforward extension of this case. The sample objective

function is then:

max
v2[[x (a),[x (a)]

|cFB(v;a)� cFBa(v;a)| (2.31)

Taking one distribution at a time:

cFB(v;a) =
1

TB

T

Â
t=1

1
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1{ bvit
B(a) v}1{Bt = B} (2.32)

=
1

TB

T

Â
t=1

1
nt

nt

Â
i=1

1{x (bit ,G;a,B) v}1{Bt = B} (2.33)

p! Pr
�

x (bi,G;a,B) v|B
�

(2.34)

= F
x

(v|B) (2.35)

where the probability in equation (34) is with respect to the randomness of bids, bi. The distribution

F
x

(·) depends on a in that x is a continuous function of a .

Similarly cFBa(v;a)
p! F

x

a(v|Ba), where F
x

a is the distribution of inverse bids for auctions

with bidder set Ba. Thus the sample objective function converges in probability to the objective

function:

max
v2[x (a),x (a)]

|F
x

(v|B)�F
x

a(v|,Ba)| (2.36)

Again the distributions depend on a through x and x

a, which are continuous functions of a .

As was demonstrated in the identification section, this objective function is uniquely minimized

at the true parameter value a

⇤. Additionally, due to the continuity of x (·) with respect to a , it can

be shown that the above objective function is also continuous in a . Thus the conditions for the

consistency of an extremum estimator are met and b

a

KS is a consistent estimate for the externality
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parameter:

b

a

KS p! a

⇤ (2.37)

As stated above, showing consistency with more than one bidder type and multiple observed bidder

sets, is just a straightforward extension of this case with one bidder type and two observed bidder

sets.

2.5.3 Median Estimator for a

An alternative estimator for a would be to equate the median pseudo-values for bidders of the

same type facing auctions with different bidder sets (I could potentially do this for any percentile,

not just the median). The advantage of this estimator is that it is just the solution to a set of linear

equations, and thus involves no minimization procedure. The disadvantage of this estimator is that

it is very dependent on the median bid, and thus is more susceptible to small sample biases.

For each bidder type k and each bidder set B that k is in, I want to calculate the pseudo-value

for the median bidder of type k in an auction with bidder set B. I do this by first finding the

empirical median bid of a type k bidder in an auction with bidder set B, and denote it b̂med
k,B . Then

for each median bid, I use equation (9) to calculate the corresponding pseudo-value for that bid, as

a function of the externality parameters.

v̂med
k,B ({akk0}) = b̂med

k,B +
cHk(b̂med

k,B |B)
cH 0

k(b̂
med
k,B |B)

�Â
k0

2

6

6

4

akk0
�

nk0 �1{k0 = k}
�

cPr
✓

max
l 6=ik, jk02B

bl  b̂med
k,B |B

◆

cgk0(b̂med
k,B |B)

cH 0
k(b̂

med
k,B |B)

3

7

7

5

(2.38)

This is a result of the monotonicity of x .

Then for each bidder type I can set the pseudo-values for median bidders from auctions with
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different bidder sets, equal to each other.

v̂med
k,B ({akk0}) = v̂med

k,Ba ({akk0}) (2.39)

For each bidder type k, this will give me Sk�1 equations, where again Sk is the number of observed

bidder sets that include bidder type k. All of these equalities are linear functions of the externality

parameters and so they form a system of equations in the desired parameters.

For each bidder type k, I want to define the matrix bCk of size (Sk �1)⇥L and the vector dCLC
k of

size (Sk �1)⇥1, which will define the system of equalities between the median pseudo-values of

bidders of type k in different bidder sets B. Each row of the matrix and vector corresponds to one

of the Sk �1 equations defined above. Thus a given row of matrix bCk will look like:

(2.40)

0

B

B

@

0

B

B

@

⇣

nB
0
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⌘

cPr
✓
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◆
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cH 0
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⌘

cPr
✓

max
l 6=ik, j12B
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◆

bg1(b̂med
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cHk(b̂med
k,B |B)

1

C
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A

. . .

0

B

B

@
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nB
0
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⌘

cPr
✓
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◆

cgK(b̂med
k,B0 |B0)

cH 0
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k,B0 |B0)

�
⇣

nBK � 1{k = K}
⌘

cPr
✓

max
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bl  b̂med
k,B |B

◆

cgK(b̂med
k,B |B)

cHk(b̂med
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1

C

C

A

1

C
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and a given element of vector dCLC
k will look like:

(b̂med
k,B0 � b̂med

k,B )+

0

@

cHk(b̂med
k,B0 |B0)

cH 0
k(b̂

med
k,B0 |B0)

�
cHk(b̂med

k,B |B)
cH 0

k(b̂
med
k,B |B)

1

A (2.41)
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Then combining the equations for bidders of different types, I construct the matrix bC as:

(2.42)bC =

0

B

B

B

B

B

B

B

B

B

B

@

cC1 0 . . . 0

0 cC2 . . . 0

...
... . . . ...

0 0 . . . cCK

1

C

C

C

C

C

C

C

C

C

C

A

and the vector dCLC as:

(2.43)dCLC =

0

B

B

B

B

B

B

B

B

B

B

@

dCLC
1

dCLC
2

...

dCLC
K

1

C

C

C

C

C

C

C

C

C

C

A

Then the system of equations I wish to solve for a is given by:

bCa = [CLLC (2.44)

If a is exactly identified (i.e. the number of linearly independent equations exactly equals the

number of externality parameters to estimate), then my estimate for ba will be the solution to this

system of equations. If on the other hand a is over-identified (i.e. the system of equations is

overdetermined), then my estimate for the externality parameters uses the Moore-Penrose inverse,

and is bamed =
⇣

bC0
bC
⌘�1

bC0dCLC. Of course when there is not enough variation in the bidder sets and

the system of equations is underdetermined, then the externality parameters are not identified, and

I cannot get an estimate for the externality parameters without imposing more constraints are the

bidder valuation distributions.
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2.5.3.1 Consistency of bamed

Consistency of the estimator bamed =
⇣

bC0
bC
⌘�1

bC0dCLC, follows pretty straightforwardly from the

consistency of the estimated distributions and densities used to construct the pseudo-values in

equation (28). As shown in section 2.5.1, I can get estimates of these distributions that are con-

sistent as TB ! • for every bidder set B, used in estimation. Since the matrices C and CLC are

combinations of these distributions and densities, the consistency of these components means that

with a consistent estimate of the median bid, bC and dCLC are consistent estimates for C and CLC,

respectively.

The additional requirements for consistency include the assumptions made for identification,

such as monotonicity of the equilibrium bid function, exogenous bidder participation, and that

equation (9) holds in equilibrium. These assumptions insure that Ca = CLC, for the actual value

of the externality parameter a . Finally I need a consistent estimate of the median bid. It can be

shown that the sample median bid of a bidder of type k in an auction with bidder set B, b̂med
k,B , is a

consistent estimate for this median bid.

Combining the consistency of the estimated distributions and densities from section 2.5.1 with

the identification assumptions and a consistent estimate for the median bids, I get:

b

a

med =
⇣

bC0
bC
⌘�1

bC0
dCLC p!

�

C0C
��1C0CLC = a (2.45)

Thus bamed is a consistent estimate for the externality parameters.

2.5.4 Mean Estimate for a

In addition to equating the median pseudo values (or any other percentile) I could also get an esti-

mate for a by finding the parameter values that equate the mean pseudo-valuations. This estimator
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is very similar to the above median estimator, but instead of getting an estimate for the median

pseudo-valuation as a function of the externality parameters, I aim to get an estimate of the mean

pseudo-valuation as a function of the externality parameters.

To construct such an estimate, instead of evaluating the estimated distributions at the empirical

median bid, I will take the average of each component over the observed sample bids. This amounts

to estimating:

b̂µ

k,B =
1

TB

T

Â
t=1

1
nt

k

nt

Â
i=1

bit1{Bt = B, p(i) = k} (2.46)
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cPr
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l 6=ik, jk02B

bl  bit |B
◆

cgk0(bit |B)

cH 0
k(bit |B)

1{Bt = B, p(i) = k}

(2.48)

This estimator then uses the restriction that mean valuations for certain bidder types should be

the same across auctions with different bidder sets (i.e. vµ

k,B = vµ

k,Ba , 8B,Ba). Thus I can construct

similar matrices as before, cCµ and [CLC,µ , which have the same form as the previous matrices

but with the mean estimates in equations (46)-(48) replacing the median estimates. Once again

consistency can be shown for the estimator baµ =
⇣

cCµ

0
cCµ

⌘�1
cCµ

0 [CLC,µ .

2.5.5 Estimate for Distribution of Valuations

Once I have estimates of the externality parameters, I can follow the existing literature to construct

estimates of the distributions of valuations. Given any estimator of the parameters, ba , I can then

compute according to equation (28), the corresponding pseudo-values bvit(ba) for each observed bid

bit . Then a bidder-type specific distribution of valuations that doesn’t depend on bidder sets can be
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constructed similarly to equation (29):

bFk(v) =
1
Tk

T

Â
t=1

1
nt

k

nt

Â
i=1

1{ bvit(ba) v}1{p(i) = k} (2.49)

where Tk is the number of observed auctions that contain bidders of type k. Thus in addition to

having an estimate of the externality parameters, I also have an estimate for the distributions of

valuations.

2.5.6 Restrictions For Better Identified Parameters

As discussed at the end of section 2.4, one can improve the estimates for a by imposing restrictions

on the value distributions that increase the number of equations in matrix C without increasing the

number of parameters to be estimated. By imposing that the median valuations for all bidder

types are equal, I could then use the original median estimator, with the additional restrictions

that median pseudo-valuations were equal for bidders of different types (i.e. v̂med
k,B (a) = v̂med

k0,Ba(a),

8k,k0,B,Ba). This would add equations to the matrix C, and thus improve the estimate ba .

This could also be done for the estimator based on means, by imposing that the mean valuations

for all bidder types are equal, and then adding equations to cCµ . Like with the median estimator, this

provides more identifying restrictions on the desired parameters. Additionally, if you are willing

to impose that bidders of different types only differ in their externalities, but not in their value

distributions (i.e. symmetric value distributions), then you can get more equations for all three

estimators. Adding equations improves the identification of the parameters, and thus increases the

accuracy of the estimator.

One could also make an assumption on the parameters a that reduces the number of parameters

that need to be estimated. A common assumption that would seem to make sense in most settings,
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would be that externalities are symmetric in that akk0 = ak0k. This assumption reduces the number

of parameters to be estimated, and thus reduces the number of equations necessary for identification

and estimation.

2.6 Monte Carlo Runs

2.6.1 Setup

To asses the performance of the different externality parameter estimators I ran several Monte

Carlo experiments. In the experiments, bidders are one of K = 2 types denoted by I and E. The

kind of auctions I was thinking of for these Monte Carlo experiments were auctions for a merger

acquisition or for a license. Thus type I bidders were intended to represent bidders that were

incumbents in the observed industry, while type E bidders were potential entrants that could gain

access to the market by winning the auction.

I ran the experiments under 3 different assumptions about the distributions of bidder valua-

tions. The first assumption was that bidder distributions were asymmetric. In this case I chose

the distribution of valuations for incumbents, FI(·), to be uniform on [0,1], and the distribution of

valuations for entrants, FE(·), to be uniform on [0,2]. I chose uniform distributions so that it was

possible to calculate the corresponding bids for a variety of possible bidder sets. For the externality

parameters, I chose values of aII = 0.3, aEE = 0.2, and aIE = aEI = 0.1.

The second assumption I simulated auctions under, was that bidder distributions were asym-

metric, but had the same median and mean. Here I chose the distribution of valuations for incum-

bents, FI(·), to be uniform on [0.25,1.25], and the distribution of valuations for entrants, FE(·), to
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be uniform on [0,1.5]. Again for the externality parameters, I chose values of aII = 0.3, aEE = 0.2,

and aIE = aEI = 0.1.

The third and final assumption I made on bidder distributions, was symmetry between the two

distributions. Here I chose both distributions to be uniform on [0,1] and for all the parameters to

have the same values as before.

Under each assumption, I created auctions with 4 different bidder sets. These included auc-

tions with two incumbents, auctions with three incumbents, auctions with two entrants, and auc-

tions with one incumbent and one entrant. The bidder sets that I could simulate auctions for was

restricted by the difficulty in calculating bid functions for bidders in these auctions. Even with

uniform valuations and the smallest possible number of participants, I could not get an analytic

solution to equilibrium equation (3) for auctions with bidders of different types. Thus to get bid

functions in the case of auctions with one incumbent and one entrant, I had to solve (3) numerically,

which could have added error to this procedure.

For each Monte Carlo run I simulated a sample of 100 auctions, 25 for each of the 4 different

bidder sets. With each sample, I then calculated the K-S, median, and mean estimates for the

parameters. I ran the experiments 100 different times for each of the three assumptions on bidder

value distributions.

2.6.2 Implementation

Practical considerations included the choices of both the kernel and the bandwidths, and how to

trim in order to mitigate the bias at the boundaries caused by the kernel estimator. For choice of

kernel I followed both Li, Perrigne, and Vuong (2002) and Campo, Perrigne, and Vuong (2003),
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and used a triweight kernel. This kernel satisfies the assumptions of Guerre, Perrigne, and Vuong

(2000) and it has the form K(u) = (35/32)(1�u2)31(|u| 1). As noted in Li, Perrigne, and Vuong

(2002) the choice of kernel does not have much of an impact in practice, and I chose this form for

the kernel to follow the existing literature.

In choosing the appropriate bandwidths I again followed both Guerre, Perrigne, and Vuong

(2000) and Li, Perrigne, and Vuong (2002). For example in calculating a density for incumbent

bidders in auctions with bidder sets with nI incumbent bidders, the bandwidths take the form of

hHP = hg = c⇤T�1/(1+2nI). The constant is c= 2.978⇥1.06ŝbI where ŝbI is the standard deviation

of all incumbent bids in auctions with the particular bidder set I am calculating the density for. The

bandwidths for entrant bidders are the same except that they depend on the number of entrant

bidders in the bidder set.

It is well known that kernel density estimators suffer from biases near the boundaries of their

support. This will affect my K-S and mean estimates for the externality parameters (but not my

median estimator since it does not depend on bids near the boundaries). To reduce the effect of

this bias on the estimated pseudo-values, Guerre, Perrigne, and Vuong (2000) suggest a trimming

procedure that is followed by most of the literature. While I also trimmed in order to mitigate the

boundary effects, I chose a different procedure than that of Guerre, Perrigne, and Vuong (2000).

Instead of trimming based on the bandwidths, I chose to trim all bid observations that were below

the 10th percentile or above the 90th percentile of all bids from bidders of that given type in

auctions with a given bidder set.

The reason I chose to trim based on the 10th and 90th percentile of bids rather than follow

Guerre, Perrigne, and Vuong (2000) and trim based on the bandwidths, was that trimming based

on the bandwidths makes it difficult to compare two distributions of pseudo-values. Trimming
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incumbent bids for a particular bidder set within one bandwidth of the incumbent bid support for

that bidder set gives an interval of incumbent pseudo-valuations that is comparatively different

than the interval of incumbent pseudo-valuations in auctions with another bidder set that results

from trimming those bids within one bandwidth of the incumbent bid support in that different

bidder set. Since my K-S estimation strategy relies heavily on comparing the two distributions

of pseudo-valuations, a trimming procedure which trims the pseudo-values for a particular bidder

type facing different bidder sets in a more equitable fashion is desirable. I believe trimming based

on the 10th and 90th percentile of bids results in comparable ranges of pseudo-values for bidders

facing different bidder sets.

2.6.3 Results

Before looking at the results it is helpful to see graphically how well each of the estimation proce-

dures may perform. One area of interest is to see how well the estimated bid functions approximate

the true bid functions. In figure 2.1, I show the true and estimated bid functions for incumbent bid-

ders in the first auction type with only two incumbent bidders. In the figure the estimated bid

functions are evaluated at different values of a . As expected, pseudo-valuations are pretty close

to the true valuations when evaluated at the true externality, except near the boundaries where the

estimated valuations are a lot larger then they should be. Yet pseudo-values constructed using in-

correct values for the externality parameter, are not good approximations to the true valuations for

any interval of bids.
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Figure 2.1: True incumbent bid function when facing 1 other incumbent bidder, compared to

estimated incumbent bid function when facing 1 other incumbent bidder evaluated at 3 different

choices of a

The above figure implies that the distribution of pseudo-values using the correct externality

parameter should match up well across different auctions, while the distribution of pseudo-values

using incorrect externality parameters should not. In figure 2.2, I show how the distributions for

incumbent bidders from auctions with different bidder sets match up against each other, when

again all pseudo-values are evaluated at the true parameter values. As can be seen from the figure,

the distributions match up reasonably well, supporting the notion that at the true value for the

externality parameters, the distributions of valuations from different bidder sets should be close to

each other.
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Figure 2.2: Distribution of incumbent pseudo-values in auctions with different bidder sets

Now I want to look at the case where the pseudo-valuations are not evaluated at the true ex-

ternality parameter, and see if in that case, the estimated pseudo-valuations from different bidder

sets are still close to each other. If they are still close to each other, then my estimation strategy

of finding parameter values that match the distributions, will most likely not work very well, since

the distributions will be close to each other even at incorrect parameter values. Figure 2.3 presents

the estimated distributions of pseudo-values assuming that there is no externality parameters (i.e.

a is the 0-vector).
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Figure 2.3: Distribution of incumbent pseudo-values in auctions with different bidder sets when

pseudo-values are constructed assuming that the externality parameter is the 0-vector

In figure 2.3 we see that for low bid values, two of the distributions are still close to each other,

while one does not match up well with the others. The two that match up well are the distributions

from bidder sets with only incumbent bidders. These two are still close because the only externality

that affects bidders in these auctions is the externality between incumbent bidders. Thus a deviation

in this parameter value, will affect pseudo-values across the two bidder sets in the exact same way,

and thus will shift their distributions by the same amount, so that they will continue to match up.

On the other hand the incumbent pseudo-value distribution from the auctions where they face one

entrant opponent, is going to be affected by a different externality value (the one between entrants
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and incumbents). Thus the deviation in this parameter value will differently affect this distribution

of pseudo-values and thus lead to a different shift of the distribution then for the other two. Thus it

will not match up as well with the other two distributions when evaluated at the incorrect externality

parameters, which is exactly what is needed to identify the difference between the value of the

incumbent-to-incumbent externality and the entrant-to-incumbent externality.

This brings up an important issue about the estimation strategy employed here, pertaining to

the need for sufficient variation in the bidder set. To get properly scaled estimates, not only is

variation needed in the number of bidders in the observed auctions, but also in the types of bidders.

The econometrician needs to observe bidders facing not just a different number of competitors, but

also facing competitors that will cause them to suffer different externalities. Without observations

on bidders of the same type facing different externalities, it is difficult to separate the effects of the

externalities from those of changing competition.

This issue arises in this Monte Carlo setup because of the limited bidder set configurations

for which it is possible to simulate bids for. I was only able to simulate bids for one bidder set

that included bidders of different types, an auction with one entrant and one incumbent (and even

then this was done numerically). This lack of variation in bidder sets makes it difficult to identify

the scale of the externality parameters. Ideally I would have also liked to include auctions with

two incumbents and one entrant, which when compared to the auctions with one incumbent and

one entrant, could have identified the incumbent-to-incumbent externality. Instead in this Monte

Carlo setup, identification of the scale of the externality parameters comes from the difference in

incumbent bidding behavior from when they are facing one other incumbent rival as opposed to

two other incumbent rivals.

The difficulty in using variation between auctions with two incumbent bidders and those with
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three incumbent bidders, to identify the scale of the externality parameters, is that between the two

auctions there is no variation in the externality effect separate from the competition effect. For

both auction bidder sets, the expected value given that a bidder loses the auction is the same in

that they will always suffer the incumbent-to-incumbent externality. Facing an extra incumbent

bidder in an auction with only incumbent bidders, does not change a bidder’s expected utility

given that they lose the auction. Thus it doesn’t change their bidding behavior except through the

competition effect of adding one bidder. This limited variation in the externality effect separate

from the impact of increased competition, is what makes it difficult to identify the scale of the

externality parameters from differences in bidding when facing these two bidder sets.

If instead I could simulate an auction with two incumbent bidders and one entrant, then I could

compare incumbent bidding behavior when facing this bidder set, with incumbent bidding when

facing just one entrant, to identify the level of the incumbent-to-incumbent externality parameter.

This would work better because in facing the two different bidder sets, there is a change in the

externality effect separate from the change in competition. As an incumbent goes from an auction

facing one entrant to one where they face an entrant and another incumbent, there is the competition

effect of facing one more bidder, but also the expected utility upon losing the auction changes as

well. This change in the impact of losing the auction affects bidding behavior separately from the

effect of just adding an additional bidder, thus allowing the econometrician to separately identify

the scale of that effect.

Adding auctions with bidder sets with more incumbents but still no entrants is possible, but

does not help to alleviate this problem. As I said above, adding incumbent bidders to auctions

with only incumbent bidders (or adding entrant bidders to auctions with only entrant bidders) does

not change the expected value of losing the auction, and so it is difficult to identity the scale
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of the externality parameter from variation in bidding behavior between these auctions. Thus

because of the difficulty in finding the equilibrium bid strategy with asymmetric bidders and in

turn the difficulty in simulating auctions with differing bidder types, I was not able to generate a

Monte Carlo experiment with enough variation in bidder sets to accurately identify the scale of

the externality parameters. Instead the variation I could generate was only enough to identify the

differences in externality parameter values, and so I had to normalize the parameters’ scale for this

exercise.

The results for each of the Monte Carlo experiments are given in tables 2.1, 2.2, and 2.3. Each

table corresponds to a different assumption on the distributions of valuations. Table 2.1 shows

the results for all three estimators, assuming asymmetric bidder distributions. Table 2.2 assumes

that distributions are asymmetric but have the same median and mean, and table 2.3 assumes

symmetric distributions. For each of the three parameter values I report the mean and median

parameter estimates along with the 10th and 90th percentiles.

152



Table 2.1: Monte Carlo Results when FI(·)⇠U(0,1) and FE(·)⇠U(0,2)

aII = 0.3 Mean 50% 10% 90%

b

a

KS 0.310402 0.315684 0.231812 0.392263

b

a

med 0.323138 0.304055 0.245993 0.465312

b

a

µ 0.396946 0.341067 0.280055 0.567736

aEE = 0.2 Mean 50% 10% 90%

b

a

KS 0.207934 0.207037 0.161094 0.24293

b

a

med 0.200447 0.200639 0.060975 0.281679

b

a

µ 0.069564 0.140684 -0.12821 0.254566

aIE = 0.1 Mean 50% 10% 90%

b

a

KS 0.089134 0.091762 0.073335 0.104138

b

a

med 0.086416 0.07517 0.044095 0.108153

b

a

µ 0.133491 0.101957 0.068387 0.196818

Table 2.2: Monte Carlo Results when FI(·)⇠U(.25,1.25) and FE(·)⇠U(0,1.5)

aII = 0.3 Mean 50% 10% 90%

b

a

KS 0.275692 0.290208 0.215411 0.316278

b

a

med 0.308971 0.320055 0.275379 0.332045

b

a

µ 0.288794 0.29161 0.280649 0.301967

aEE = 0.2 Mean 50% 10% 90%

b

a

KS 0.216209 0.204757 0.199 0.256109

b

a

med 0.193526 0.184952 0.14061 0.249794

b

a

µ 0.208355 0.209329 0.186527 0.227011

aIE = 0.1 Mean 50% 10% 90%

b

a

KS 0.101512 0.103079 0.091136 0.109159

b

a

med 0.097503 0.106825 0.052478 0.135752

b

a

µ 0.102851 0.102708 0.085792 0.116836
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Table 2.3: Monte Carlo Results when FI(·)⇠U(0,1) and FE(·)⇠U(0,1)

aII = 0.3 Mean 50% 10% 90%

b

a

KS 0.323712 0.327882 0.27884 0.3598

b

a

med 0.31968 0.315192 0.290128 0.364061

b

a

µ 0.296792 0.29757 0.288866 0.308224

aEE = 0.2 Mean 50% 10% 90%

b

a

KS 0.204596 0.198164 0.184214 0.234025

b

a

med 0.185348 0.189237 0.13773 0.224511

b

a

µ 0.203725 0.203062 0.196838 0.210059

aIE = 0.1 Mean 50% 10% 90%

b

a

KS 0.094012 0.101607 0.089822 0.104018

b

a

med 0.094973 0.099049 0.063918 0.127218

b

a

µ 0.099484 0.103214 0.082929 0.107724

These results seem to indicate that all three approaches perform well in estimating the exter-

nality parameters. In all cases the 10th percentile and 90th percentile estimates bound the true

value of the parameter. In most cases the mean and median estimates are also very close to the

true a value. As would be expected the estimates perform a little better, the more restrictions that

are put on the distribution functions. This seems to affect the mean estimator the most. For the

case of no restrictions (completely asymmetric value distributions) the mean estimator seems to

have a difficult time pinpointing the parameter values, and there is a lot of variance in the resulting

estimates. In this case there are only four restrictions on the parameters, and three parameters to

estimate, and so it is not surprising that the estimator does not perform too well in this setup. As

more restrictions are put on the distributions, the mean estimator’s performance improves, and it is

able to get pretty accurate estimates for the case of symmetric value distributions.
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2.7 Extensions

2.7.1 Only Winning Bids Observed

There are many applications where data on all the bids is not available and instead one can only

observe the winning bid in each auction. This is the case in many of the examples considered in

Section 2.2.1. For instance when thinking of professional sports and auctions for players, while

many different teams may bid on a player, only the winning bid, the actual salary the player re-

ceives, is observable. This is also true of many other potential applications, where usually all that

is observed is the transaction price and the identities of the participants in the market. In such a

setting, I will show below that obtaining estimates for a and the distributions Fk(·), is still possible.

Everything is the same as before except now for each auction t I only observe the winning bid,

bwt , the identify of the winning bidder, wt , and the number of bidders of each type participating in

the auction, nt
k for k = 1, . . . ,K. I still want to use equation (9) to identify and estimate the exter-

nality parameters, but now I no longer directly observe Hk(·|B), as well as the other densities and

distributions, in the data. These densities and distributions depend on all participants’ distribution

of bids, while I only observe the distribution of the winning bid. What is necessary is some kind

of relation between the distribution of the winning bid and the distribution of bids in general.

Following Brendstrup and Paarsch (2003) and Prakasa Rao (1992), I get the following equation

relating a bidder of type k’s bid distribution, Gk(b|B), to the observed distributions of winning bids

for bidders of different types, Gw
k (b|B):

Gk(b|B) = exp

(

Z b

�•

1
ÂK

k0=1
�

Gw
k0(s|B)

�nk0
dGw

k (s|B)
)

(2.50)
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where Gw
k (b|B) = Pr(bik  b,bik � b j8 j 2 B|B) and Gk(b|B) = Pr(bik  b|B). Note that Gw

k (b|B)

is the joint probability that a bidder of type k wins the auction and that their bid is less then b.

An intuitive proof of this result from Prakasa Rao (1992) can be found in Brendstrup and Paarsch

(2003), and is repeated here in the appendix to this chapter. Equation (50) will allow me to use the

observations on the winning bid and the winner’s type, to get a distribution of bids that can then be

used to calculate the other distributions from equation (9). For example for Hk(b|B):

Hk(b|B) = Gk(b|B)nk�1 ⇤
 

’
l 6=k

Gl(b|B)nl

!

(2.51)

The other distributions from equation (9) can also be calculated similarly from Gk(b|B), and thus

I can once again evaluate the equation to get pseudo-values that depend linearly on a . From there

identification and estimation then follow straightforwardly from the case when all the bids are

observed.

2.7.2 Model Extensions

The model can be extended in a variety of ways including making the externality private informa-

tion to the imposer of the negative externality, rather than common knowledge to all bidders. Thus

each bidder jk0 knows its valuation v jk0 and the bidder-specific externality aik jk0 that they impose

upon bidder ik 6= jk0 , when they win the auction. This is the case in the original auctions with

externalities model of Jehiel, Moldovanu, and Stacchetti (1996). In that paper, aik jk0 and v jk0 are

correlated, and I will assume so here as well. In particular, I will assume a specific form of the

correlation in that aik jk0 = akk0v jk0 for some types specific parameter akk0 . As far as I know the

estimation strategy only extends to this particular form of correlation.

Jehiel, Moldovanu, and Stacchetti (1996) provide some arguments on why it makes sense in a
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variety of examples for aik jk0 to be private information and to be correlated with v jk0 . The particular

form of correlation that I impose is a result of applying Cournot competition to the downstream

market, where the auction is for some good that lowers the winning firm’s marginal cost. The

parameter akk0 is then a combination of the parameters from the Cornout model. This is shown for

the case of 2 bidders in the appendix to this chapter.

Estimation of the parameters in this case follows the same strategy as before, except that the

equation relating bidder valuations to bids is different. Instead of equation (9), I get its counterpart:

vik =
Hk(b|B)+bH 0

k(b|B)

H 0
k(b|B)+Âk0 Â j2Bk0



akk0Pr
✓

max
l 6=i, j2B

bl  b|B
◆

g j(b|B)
� (2.52)

I can then use this equation in the same way as I used equation (9) to identify and estimate akk0 .

Another extension to the model would be to have the externality depend on a set of covariates

rather than being fixed as a parameter. In this case one would let akk0 = b

0
1Xk +b

0
2Xk0 , where Xk

and Xk0 are vectors of variables measuring characteristics of the type k and k0 firms respectively,

and {b1,b2} are the parameters to be estimated. This would allow one to measure the effect certain

characteristics have on the size of the externality.

The model can also be extended as in Haile, Hong, and Shum (2003), to allow for unobserved

item heterogeneity. Like in that paper, additional structure can be imposed so that the number of

bidders depends on an observable instrument and is strictly increasing in the unobserved hetero-

geneity. Exogenous variation in the instrument can then be used to identify the parameters by then

comparing distributions of pseudo-values for bidders of the same type across auctions with the

same value for the instrument. It is important when applying this method to the model here, to

maintain the assumption that bidders can’t make strategic non-participation decisions, since this

would greatly complicate the problem and the techniques of this paper would not apply to such a
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situation.

2.8 Conclusion

This chapter of the thesis uses the techniques of Haile, Hong, and Shum (2003) to estimate a sim-

ple model of an auction with externalities. It is a first attempt to link the literature on auctions

with externalities that began with Jehiel, Moldovanu, and Stacchetti (1996), with the structural

auction estimation literature of Guerre, Perrigne, and Vuong (2000), and others. In this setting

the negative externalities are inferred from variation in the competitor bidder set, which shifts the

bidding strategies. Since value distributions do not change as bidders face different sets of com-

petitors, the econometrician can use the auction structure to attribute changing bid strategies to the

different externality effects a bidder faces as their set of competitors varies. This is accomplished

here by finding externality parameter values that, given the observed bids, match bidder valuation

distributions across auctions with different sets of competing bidders. Three different estimators

are introduced, which each attempt to match a different feature of the value distributions across

auctions with varying bidder sets. Monte Carlo results show that the estimators perform relatively

well in a simple setting with two bidder types.

This is an important extension to the auction estimation literature in that it allows researchers

to place auctions in a broader context, where bidders not only compete in the auction, but also

compete against each other in markets outside the auction. This could help to explain some curious

bidding outcomes, such as the overbidding for targets in merger acquisitions and the overbidding

for athletes by sports teams. Externalities could also be used to tie together the results of related

auctions. With added structure to the model, estimation of the negative externality could provide
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inference on how one auction outcome is affected by another. This would be interesting in the

setting of procurement or other repeated auctions.

Overall the strategy employed here can be used as a starting point for studying a variety of

auction environment where rivalries outside the auction have important effects on auction behavior.

Empirical analysis of auctions in these settings with externalities will help augment the current

auction framework by broadening the setting in which the studied auctions exist to include the

bidders’ relevant market. This provides a useful bridge between observed bidding behavior and

observed market outcomes and structures. I believe extending the current estimation techniques

to auction models with externalities is an important step to understanding the impact of market

competition on auction behavior, and in the other direction, the impact auction results have on the

related markets.

2.9 Appendix

2.9.1 Cournot Competition in Downstream Market Leads to Auction with

Externalities

Assume there are two firms of different types in a market characterized by Cournot competition.

The equilibrium price of the good is affected by the quantities produced by each firm, and is given

by:

p = d0 �d1Q1 �d2Q2 (2.53)

where {d0,d1,d2} are parameters. Each firm i has an idiosyncratic marginal cost, ci of producing

the good, and they each choose quantity to maximize their profit, pi = (p� ci)Qi. Solving the
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model gives:

pi =
1

9di

�

d0 �2ci + c j
�2 (2.54)

Now assume the two firms participate in an auction for a cost-reducing mechanism that reduces

their marginal cost by amount ei, which is private information to firm i. Then the value of winning

the auction for firm i is:

vi =
1

9di

�

4ei(d0 �2ci + c j + ei)
�

(2.55)

and the externality suffered by i if j wins the auction is:

ai j =
1

9di

�

4e j(d0 �2ci + c j � e j)
�

(2.56)

This fits into the auctions with externalities framework above for the case discussed in Section

2.7.2 when the externality is private information to the winning bidder and depends on the winning

bidder’s valuation.

2.9.2 Derivations/Proofs

2.9.2.1 Derivation of Equation (6)

I want to get:

Z bk0(B)

bk0(B)
Hk0(x|bik = b,B)gk0(x|B)dx =

Z bk0(B)

b
Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

gk0(x|B)dx

I will first write out Hk0(x|bik = b,B) as:

Hk0(x|bik = b,B) =
Pr

 

max
l2B� jk0

bl  x , bik = b|B
!

Pr (bik = b|B) (2.57)
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Then simplifying the numerator I get:

Pr

 

max
l2B� jk0

bl  x,bik = b|B
!

= Pr
✓

max
l 6=ik, jk02B

bl  x , bik  x , bik = b|B
◆

(2.58)

= Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

Pr (bik  x , bik = b|B) (2.59)

= Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

Pr (bik  x|bik = b,B)Pr (bik = b|B)

(2.60)

= Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

1{b  x}Pr (bik = b|B) (2.61)

where 1{·} is the indicator function. Equality (59) follows from the independence of valuations

and thus bids, and (60) from Bayes’ rule. Thus I can write out Hk0(x|bik = b,B) as:

Hk0(x|bik = b,B) = Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

1{b  x} (2.62)

=

8

>

>

>

>

<

>

>

>

>

:

Pr
✓

max
l 6=ik, jk02B

bl  x|B
◆

if b  x

0 if b > x

(2.63)

From here it is easy to see how equation (6) follows.

2.9.2.2 Proof of Equation (50)

A proof of equation (50) similar to that of Brendstrup and Paarsch (2003) is given below to show

where this equation comes from.
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Proof. Following the proof in Brendstrup and Paarsch (2003) we get:

Gw
k (b|B) = Pr(bik  b,bik � b j8 j 2 B|B)

=
Z b

�•
’
j 6=ik

G j(s|B) ∂Gk(s|B)

=
Z b

�•

’ j G j(s|B)
Gk(s|B)

∂Gk(s|B)

=
Z b

�•

Â j Gw
j (s|B)

Gk(s|B)
∂Gk(s|B)

=
Z b

�•
Â

j
Gw

j (s|B) ∂ logGk(s|B)

=) ∂Gw
k (b|B) = Â

j
Gw

j (b|B) ∂ logGk(b|B)

=) ∂ logGk(b|B) =
∂Gk

w(b|B)
Â j Gw

j (b|B)

=) Gk(b|B) = exp

(

Z b

�•

1
Â j Gw

j (s|B)
dGw

k (s|B)
)

162



Bibliography

Adams, Robert M., Brevoort, Kenneth P., and Kiser, Elizabeth K. 2004. Who Competes with

Whom? The Case of Depository Institutions. Working Paper.

Aguirregabiria, Victor, Clark, Robert, and Wang, Hui. 2012. Diversification of Geographic Risk in

Retail Bank Networks: Evidence from Bank Expansion after the Riegle-Neal Act. Working Paper.

Amel, Dean F., Kennickell, Arthur B., and Moore, Kevin B. Banking Market Definition: Evidence

from the Survey of Consumer Finances. Working Paper, Federal Reserve Board, Washington,

D.C.

Amel, Dean F., and Lang, Nellie. 1992. The Relationship Between Entry Into Banking Markets and

Changes in Legal Restrictions on Entry. Antitrust Bulletin 37: 631-49

Aspan, Maria. 2013, December 17. It’s Long Past Time To Kill the Bank Branch. American Banker.

Retrieved from http://www.americanbanker.com.

Athey S, Haile PA. 2002. Identification of Standard Auction Models. Econometrica 70: 2107-2140.

Athey S, Haile, PA. 2007. Nonparametric Approaches to Auctions. In Handbook of Econometrics,

Vol. VI, Heckman J, Leamer E (eds). North-Holland: Amsterdam; 3849-3965.

163



Berger, Allen N., Demirguc-Kunt, Asli, Levine, Ross, and Haubrich, Joseph G. 2004. Bank Con-

centration and Competition: An Evolution in the Making. Journal of Money, Credit and Banking,

433-451.

Berger, Allen N., and Mester, Loretta J. 2003. Explaining the Dramatic Changes in Performance of

U.S. Banks: Technological Change, Deregulation, and Dynamic Changes in Competition. Journal

of Financial Intermediation 12: 57-95.

Berry, Steven, Levinsohn, James, and Pakes, Ariel. 1995. Automobile Prices in Market Equilibrium.

Econometrica, 63(4): 841-890.

Biehl, Andrew. 2002. The Extent of the Market for Retail Banking Deposits. Antitrust Bulletin, 47:

91-106.

Blume, Lawrence E., Brock, William A., Durlauf, Steven N., and Ioannides, Yannis M. 2010. Iden-

tification of Social Interactions. Handbook of Social Economics, edited by J. Benhabib, A. Bisin,

and M. Jackson. Amsterdam: Elsevier.

Boyd, John H., and De Nicolo, Gianni. 2005. The Theory of Bank Risk Taking and Competition

Revisited. The Journal of Finance, 60(3): 1329-1343.

Brendstrup B, Paarsch, H. 2003. Nonparametric Estimation of Dutch and First-Price, Sealed-bid

Auction Models with Asymmetric Bidders. Working Paper, University of Iowa.

Calem, Paul S. 1994. The Impact of Geographic Deregulation on Small Banks. Federal Reserve

Bank of Philadelphia Business Review, Nov: 17-31.

164



Calem, Paul S., and Nakamura, Leonard I. 1998. Branch Banking and the Geography of Bank

Pricing. The Review of Economics and Statistics, 80(4): 600-610.

Campo S, Perrigne I, Vuong Q. 2003. Asymmetry in First-Price Auctions with Affiliated Private

Values. Journal of Applied Econometrics 18: 179-207.

Chang, Angela, Chaudhuri, Shubham, and Jayaratne, Jith. 1997. Rational Herding and the Spatial

Clustering of Branches: An Empirical Analysis. Working Paper, Federal Reserve Bank of New

York.

Coccorese, Paolo. 2012. Banks as ’Fat Cats’: Branching and Price Decisions in a Two-Stage Model

of Competition, 64(5): 338-363.

Cohen, Andrew, and Mazzeo, Michael J. 2007. Market Structure and Competition among Retail

Depository Institutions. Review of Economics and Statistics, 89(1): 60-74.

Cohen, Andrew, and Mazzeo, Michael J. 2010. Investment Strategies and Market Structure: An

Empirical Analysis of Bank Branching Decisions. Journal of Financial Resources, 38: 1-21.

Cortese, Amy. 2007, April 22. A Building Binge for Bank Branches. New York Times. Retrieved

from http://www.newyorktimes.com.

Dai, Mian, and Yuan, Yuan. 2013. Product Differentiation and Efficiencies in the Retail Banking

Industry. Journal of Banking & Finance, 37: 4907-4919.

Das Varma G. 2002. Standard Auctions with Identity-Dependent Externalities. The RAND Journal

of Economics 33: 689-708.

De Elejalde, Ramiro. 2011. Local Entry Decisions in the US Banking Industry. Working Paper.

165



Dick, Astrid A. 2006. Nationwide Branching and Its Impact on Market Structure, Quality, and Bank

Performance. Journal of Business, 79: 567-592.

Dick, Astrid A. 2007. Market Size, Service Quality, and Competition in Banking. Journal of Money,

Credit and Banking, 39(1): 49-81.

Dick, Astrid A. 2008. Demand Estimation and Consumer Welfare in the Banking Industry. Journal

of Banking & Finance, 32: 1661-1676.

Dunne, Timothy, Kumar, Pradeep, and Roberts, Mark. 2012. Market Structure and Growth of Bank-

ing in Rural Markets. Working Paper.

Ellickson, Paul B. 2013. Supermarkets as a Natural Oligopoly. Economic Inquiry, 51(2): 1142-1154.

Ellickson, Paul B., Houghton, Stephanie, and Timmins, Christopher. 2013. Estimating Network

Economies in Retail Chains: A Revealed Preference Approach. RAND Journal of Economics,

44(2): 169-193.

Flambard V, Perrigne I. 2006. Asymmetry in Procurement Auctions: Evidence from Snow Removal

Contracts. The Economic Journal 116: 1014-1036.

Fox, Jeremy. 2007. Semiparametric Estimation of Multinomial Discrete ChoiceModels Using a Sub-

set of Choices. RAND Journal of Economics, 38(4): 1002-1019.

Gavazza, Alessandro. 2011. Demand Spillovers and Market Outcomes in the Mutual Fund Industry.

RAND Journal of Economics, 42(4): 776-804.

Grzelonska, Patrycja. 2005. Benefits from Branch Networks: Theory and Evidence from the Sum-

mary of Deposits Data. Working Paper, University of Minnesota.

166



Guerre E, Perrigne I, Vuong Q. 2000. Optimal Nonparametric Estimation of First-Price Auctions.

Econometrica 68: 525-574.

Haile, P, Hong H, Shum M. 2003. Nonparametric Tests for Common Values at First-Price Sealed

Bid Auctions. NBER Working Paper.

Hannan, Timothy H., and Prager, Robin A. 2004. The Competitive Implications of Multimarket

Bank Branching. Working Paper, Federal Reserve Board.

Hartmann, W.R., Manchanada, P., Nair, H., Bothner, M., Dodds, P., Godes, D., Hosanagar, K.,

Tucker, C. 2008. Modeling Social Interactions: Identification, Empirical Methods, and Policy

Implications. Marketing Letters, 19(3): 287-304.

Heitfield, Erik. What Do Interest Rate Data Say About the Geography of Retail Banking Markets.

Antitrust Bulletin, 44: 333-347.

Heitfield, Erik, and Prager, Robin A. 2004. The Geographic Scope of Retail Deposit Markets. Work-

ing Paper, Federal Reserve Board.

Ho, Katherine and Ishii, Joy. 2010. Location and Competition in Retail Banking. Working Paper,

Stanford Graduate School of Business.

Holmes, Thomas J. 2011. The Diffusion of Wal-Mart and Economies of Density. Econometrica,

79(1): 253-302.

Ishii, Joy. 2008. Compatibility, Competition, and Investment in Network Industries: ATM Networks

in the Banking Industry. Working Paper, Stanford Graduate School of Business.

167



Jayaratne, Jith, and Strahan, Philip E. 1998. Entry Restrictions, Industry Evolution, and Dynamic

Efficiency: Evidence from Commercial Banking. Journal of Law and Economics, 41(1): 239-

274.

Jehiel P, Moldovanu B. 1996. Strategic Nonparticipation. The RAND Journal of Economics 27: 84-

98.

Jehiel P, Moldovanu B. 2000. Auctions with Downstream Interaction Among Buyers. The RAND

Journal of Economics, 31: 768-791.

Jehiel P, Moldovanu B, Stacchetti E. 1996. How (Not) to Sell Nuclear Weapons. The American

Economic Review, 86: 814-829.

Jehiel P, Moldovanu B, Stacchetti E. 1999. Multidimensional Mechanism Design for Auctions with

Externalities. Journal of Economic Theory 85: 258-293.

Jia, Panle. 2008. What Happens When Wal-Mart Comes to Town: An Empirical Analysis of the

Discount Retailing Industry. Econometrica, 76(6): 1263-1316.

Kim, Moshe, and Vale, Bent. 2001. Non-price Strategic Behavior: The Case of Bank Branches.

International Journal of Industrial Organization, 19: 1583-1602.

Krishnamurthy, Prasad. 2011. Spatial Competition, Network Externalities, and Market Structure:

An Application to Commercial Banking. Working Paper.

Li T., Perrigne I, Vuong Q. 2002. Structural Estimation of the Affiliated Private Value Auction

Model. The RAND Journal of Economics 33: 171-193.

168



Manski, Charles F. 1993. Identification of Endogenous Social Effects: The Reflection Problem.

Review of Economics Studies, 60: 531-542.

Marshall RC, Meurer MJ. 1994. Numerical Analysis of Asymmetric First Price Auctions. Games

and Economic Behavior 7: 193-220.

McFadden, Daniel. 1981. Econometric Models of Probabilistic Choice.

Structural Analysis of Discrete Data, Manski, Charles, and McFadden, Daniel. (eds.). MIT

Press: Cambridge, MA; 198-272.

Miller, Nathan H. 2008. Competition when Consumers Value Firm Scope. EAG Working Paper

08-7.

Nevo, Aviv. 2001. New Products, Quality Changes, and Welfare Measures Computed from Esti-

mated Demand Systems. Working Paper, NBER.

Pakes, A., Porter, J., Ho, Kate, and Ishii, Joy. 2011. Moment Inequalities and Their Application.

Working Paper, Harvard University.

Park, Kwangwoo, and Pennacchi, George. 2009. Harming Depositors and Helping Borrowers: The

Disparate Impact of Bank Consolidation. Review of Financial Studies, 22(1): 1-40.

Pinho, Paulo Soares. 2000. The Impact of Deregulation on Price and Non-Price Competition in the

Portuguese Deposits Market. Journal of Banking & Finance, 24: 1515-1533.

Prakasa Rao BLS. 1992. Identifiability in Stochastic Models: Characterization of Probability Dis-

tributions. Boston Academic Press: Boston, MA.

169



Reider, Steven. 2010. Network Effect Remains Strong as Ever: Implications for Branching Strategy.

Bancology, 34.

Reider, Steven. 2012. Branch Briefing: The Branch in the Age of Automated Banking. Bancogra-

phy.

Reider, Steven. 2014. The Myth of Branch Decline. Bancography, 49.

Reider, Steven. 2013. New Branches Are Rarer, Smaller, and More Expensive Than Ever. Bancog-

raphy.

Seim, K. 2006. An Empirical Model of Firm Entry with Endogenous Product-Type Choice. The

RAND Journal of Economics, 37(3): 619-640.

Stiroh, Kevin J., and Strahan, Philip E. 2003. Competitive Dynamics of Deregulation: Evidence

from U.S. Banking. Journal of Money, Credit, and Banking, 35(5): 801-828.

Sutton, John. 1991. Sunk Costs and Market Structure: Price Competition, Advertising, and the Evolution

of Concentration. MIT Press, Cambridge MA.

Vermaas, Julian. 2013, November 27. Consumers’ Addiction to Branch Banking Hard to Shake.

MSR Group. Retrieved from http://www.themsrgroup.com.

Wang, Hui. 2010. Consumer Valuation of Retail Networks: Evidence from the Banking Industry.

Working Paper, Peking University.

Zhou, Xiaolan. 2007. Estimation of the Impact of Mergers in the Banking Industry. Working Paper,

Yale University.

170




