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Abstract

It is now possible to routinely determine atomic resolution structures by electron cryo-microscopy 

(cryoEM), facilitated in part by the method known as micro electron-diffraction (MicroED). Since 

its initial demonstration in 2013, MicroED has helped determine a variety of protein structures 

ranging in molecular weight from a few hundred Daltons to several hundred thousand Daltons. 

Some of these structures were novel while others were previously known. The resolutions of 

structures obtained thus far by MicroED range from 3.2 Å to 1.0 Å, with most better than 2.5 Å. 

Crystals of various sizes and shapes, with different space group symmetries, and with a range of 

solvent content have all been studied by MicroED. The wide range of crystals explored to date 

presents the community with a landscape of opportunity for structure determination from nano 

crystals. Here we summarize the lessons we have learned during the first few years of MicroED, 

and from our attempts at the first ab initio structure determined by the method. We re-evaluate 

theoretical considerations in choosing the appropriate crystals for MicroED and for extracting the 

most meaning out of measured data. With more laboratories worldwide adopting the technique, we 

speculate what the first decade might hold for MicroED.

MicroED a cryo-EM method

MicroED is a new method of electron cryo-microscopy (cryo-EM) for determining the 

atomic structures of proteins from sub-micron sized protein crystals using a conventional 

electron cryo microscope. The practical and theoretical aspects of MicroED have recently 

been reviewed elsewhere [1•,2•,3•]. Here we briefly summarize the emergence of MicroED 

and take measure of what this new technique has achieved since its first demonstration in 

2013.
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Electron diffraction of proteins has a storied past, being used throughout the last half a 

century to solve the structures of proteins from two-dimensional crystals [4,5•]. The 

introduction of cryogenic techniques in electron microscopy greatly benefitted the study of 

proteins by preserving their structure in the face of radiation damage [6]. While no physical 

limitation impeded the determination of protein structures from 3D crystals by electron 

diffraction, the approach was not demonstrated successfully until 2013 when the model 

protein lysozyme was determined anew using a transmission electron microscope operating 

at 200 keV [7••]. The crystals of lysozyme were kept at cryogenic temperatures and 

diffracted using an extremely low dose electron beam that imparted less than 0.01 electrons 

per Ångstrom squared per second on the crystal allowing 90° worth of rotation data to be 

collected per crystal (total accumulated dose was <9 electrons per Å2). Presently, data 

collection by MicroED is achieved by continuously rotating the sample unidirectionally as it 

is exposed to the electron beam and diffraction movies are acquired [8••,1•]. Diffraction 

movies are converted [2•,9•] to a format readable by modern crystallographic processing 

programs including XDS, DIALS, MOSFLM, and HKL [2•]. Structure determination and 

refinement proceeds as with X-ray structures using programs such as Phenix, Refmac, and 

SHELX, making explicit use of tabulated electron scattering factors [2•].

Properties of structures determined by MicroED

Structures of various macromolecules have now been determined by MicroED (Figure 1). 

While the array of structures determined is broad, most structures are of proteins with a 

monomeric mass of less than 50 kDa. The largest protein assemblies determined to date 

include catalase (a 240 kDa tetramer) and the calcium ATP-ase (~110 kDa) [10•,11•]. Some 

of the smallest structures determined include protein segments in the amyloid state, as short 

as six residues (~800 Da) [12••]. Structures as small as these remain a major challenge for 

other cryo-EM methods, which typically struggle to extract meaningful signal from tiny 

proteins. MicroED has also been used to determine the structure of a protein complex: TGF-

βm bound to its receptor, TβR II [36•]. With improvements to processing and data 

collection, the range of sizes of molecules whose structures are determined by MicroED is 

expected to grow. However, because larger molecules are likely to form larger unit cells, 

fewer can fit into a sub-micron sized crystal. A small crystal with few unit cells may produce 

diffraction that is difficult to measure, is of poor quality, or is low in resolution and may 

necessitate better detectors than the ones presently used. Moreover, as the unit cell grows, so 

might its solvent content, creating difficulties for cryogenic preparations without cryo 

protectants. The structure with the greatest solvent content, determined by MicroED 

contained approximately 60% solvent.

Screening of sub-micron crystals with conventional tools, including light microscopes, 

remains inefficient. Many conditions that contain what appears to be amorphous precipitate 

also contain nano-scale crystals [1•]. In addition, breaking of large, imperfect crystals can 

produce sub-micron crystallites (or crystal domains) suitable for structure determination by 

MicroED and free of the pathologies inherent to their larger parent crystal [36••]. This 

approach has now been demonstrated for various crystals formed by different proteins, 

specifically: lysozyme, proteinase K, xylanase, thaumatin, trypsin, thermolysin, the TGF-

βm:TβRII complex, and a segment of the protein Tau (Table 1). Further development of 
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approaches to crystal preparation and screening are important to help make MicroED more 

accessible.

Improvements in MicroED have already been demonstrated using model proteins, including 

lysozyme and proteinase K [9•,13]. The resulting atomic models have gained in resolution 

because of advancements in data collection and processing. The most recent structure of 

lysozyme determined by MicroED (PDB ID 5K70) is in the same space group (P43212) as 

that determined in 2013 and is obtained from seven sub-micron crystals, but now features 

1.5 Å resolution compared to the initial 2.9 Å model (Table 1). This was facilitated in part 

by the introduction of a scheme for continuous rotation of crystals within the electron beam. 

The method of continuous rotation minimizes artifacts that arise from processing of still 

diffraction images, particularly for electron diffraction where the short DeBroglie 

wavelength of the electron produces a large Ewald sphere. Rapid and sensitive CMOS 

detectors allow for continuous data collection, producing diffraction movies that facilitate 

fine sampling of reciprocal space. Pipelines for data processing have been streamlined [2•] to 

convert proprietary data formats produced by electron detectors into those amenable for 

processing by conventional X-ray crystallography software. To facilitate their dissemination, 

annual workshops take place at the Janelia Research Campus, where students from around 

the world gather to collect diffraction from tiny crystals of proteinase K and determine its 

structure [1•]. The workshops have been heavily oversubscribed and allow participants to 

experience all aspects of MicroED: crystal harvesting, grid preparation, cryo transfer into the 

microscope, setup of the microscope, data collection in continuous rotation data analysis and 

structure determination.

MicroED as a tool for studying amyloid structures

Many proteins enter the amyloid state, converting to elongated unbranched fibrils, usually 

between 5 and 20 nm in width, and up to several microns long. These include proteins found 

associated with Alzheimer’s, Parkinson’s, ALS and other diseases as well as many 

denatured proteins, and functional protein assemblies in both prokaryotic and eukaryotic 

cells. As far as is known, each amyloid fibril contains only one type of protein molecule. 

The molecules stack on one another to form β-sheets that run the entire length of the fibrils, 

with each molecule forming amide hydrogen bonds to the molecules immediately above and 

below it in the stack.

Where they have been crystallized, amyloid fibrils form crystals much smaller than 

conventional protein crystals. As has long been known, β-sheets generally show a gentle 

left-handed twist. The result is that amyloid fibrils are twisted. Hence, like DNA, they do not 

readily crystallize, where translational symmetry is required. However, it was learned in 

2001 that short protein segments that form amyloid fibrils can be crystallized [37]. In these 

crystals the β-sheets are held untwisted by the lattice. Apparently as the crystals grow, the 

propensity of the β-sheets to twist builds up a strain, which eventually limits the crystal size. 

The first amyloid crystals were of amyloid-forming peptides 4–7 residues in length and were 

micron sized. They could be mounted on narrow glass pins, and the development of 

synchrotron microbeams permitted collection of X-ray diffraction data and determination of 

structures [38].
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As longer amyloid-forming peptide segments of interest were crystallized, crystal sizes 

diminished. For example, the 11-residue core of the Parkinson’s disease-related protein, α-

synucein formed crystals with dimensions of only a few hundred nanometers. These crystals 

of what was termed NACore could be visualized only by electron microscopy, and their 

miniscule size precluded mounting for X-ray data collection. Fortunately, MicroED revealed 

atomic structure of NACore [14••]. The crystal of NACore used to yield a structure by 

MicroED was ~10 000 000 000 times smaller in volume than the crystals of hemoglobin that 

yielded one of the first protein structures by X-ray diffraction.

Since then, informative structures of segments of other amyloid proteins have been 

determined by microED. These include segments from IAPP [35•] and Tau [36••], as well as 

FUS, TDP-43, and PrP [all in preparation for publication]. It seems unlikely that these 

structures could have been determined by technologies other than MicroED.

Lessons from ab initio structure determination in MicroED

While most proteins determined by MicroED have been phased by the method of molecular 

replacement, not all have been model proteins. The first unknown structure determined by 

MicroED was that of a segment of the amyloid forming protein alpha synuclein [14••]. The 

structures of two segments of amyloid forming segments from alpha synuclein were 

determined by MicroED and used to create a model of the toxic core of synuclein 

aggregates, the cause of Parkinson’s disease. These structures served as a first demonstration 

that entirely new protein structures could be accessible from sub-micron crystals by 

MicroED. They followed demonstrations of the accuracy of intensities measured by 

MicroED, based on refinement of starting models from standard proteins where ligands of 

the known model had been omitted [10•].

Historically, the potential to determine structures of complex molecules by electron 

diffraction had been tempered by concerns over dynamical scattering, which can reduce the 

accuracy of measured diffraction intensities from thick 3D crystals [15–17]. However, the 

accuracy of measured intensities in MicroED has been further demonstrated by the ab initio 
determination of four structures of prion forming segments of the yeast protein Sup35 from 

sub-micron sized crystals [12••]. In these four experimental examples, a complex structure 

was obtained in the absence of any preconceived notion of the atomic arrangement, relying 

only on the measured diffraction intensities. A recent study demonstrating the structure of 8 

different proteins from crystals that vary in thickness [36••] indicate that if continuous 

rotation is employed for data collection and the crystals are a few hundred nanometers thick, 

accurate data can be faithfully collected. A key limitation to the achievement of high-

resolution diffraction from small protein crystals is the dose required to produce sufficient 

signal. MicroED measurements must be performed at doses below those that may 

significantly damage a crystal lattice and reduce its diffraction quality [12••]. All MicroED 

structures published to date have been obtained from crystals that were dosed less than 10 

e−/Å2. Global intensity decay has been observed in cases where a 5 e−/Å2 was dose 

imparted on a crystal [8••]. All structures determined ab initio were obtained from crystals 

that received a dose of less than 5 e−/Å2, suggesting that this dose may act as a threshold for 

loss of atomic resolution detail [12•]. We note that other cryo-EM techniques often deposit 
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doses larger than 5 electrons per Ångstrom squared on their samples [18]. While dose 

fractionation is often implemented, the dose required to achieve atomic resolution detail for 

many cryo-EM methods remains under investigation. Here, MicroED measurements could 

serve as a guide, indicating with acute precision when molecular changes manifest in 

response to dose induced damage.

The achievement of ab initio structure determination necessitated accurate intensities to a 

resolution of at least 1.2 Å. This requirement is placed by the approach used for the ab initio 
search during phasing [19,20]. While the prion structures determined by MicroED dispel 

any concern over non-kinematical diffraction phenomena inhibiting phasing by direct 

methods, the extension of this approach to larger proteins has yet to be realized. There is no 

fundamental limitation to this extension, but experimental hurdles include the need for very 

well ordered crystals capable of producing near 1 Å diffraction. Recent efforts in ab initio 
structure determination have succeeded in phasing lower resolution structures, and may be 

applicable to MicroED [21,22].

Theoretical considerations

Some of the structures determined recently by MicroED are the highest resolution cryo-EM 

structures to date and can be used to inform or refine aspects of structure determination 

previously estimated from experiments with inorganic or non-protein materials [23–25]. 

Model peptides have been used to facilitate these efforts. Structures with resolutions near 1 

Å are now publicly available to benchmark improvements in theory [12••]. The quality of 

these models is exceptional, revealing the arrangement of hydrogen atoms with 

unprecedented detail. Two theoretical assumptions already being reconsidered given recent 

experimental demonstrations by MicroED are the scattering factor tables presently used 

during refinement, and the guidelines for crystal thickness required achieving high quality 

kinematic scattering.

The scattering of electrons by charged atoms differs from that of uncharged atoms, 

particularly at low resolution [26]. Several efforts have attempted to account for these effects 

but without guidance from atomic resolution protein structures [11•,26]. An improvement in 

the present scattering tables for electrons could facilitate the identification and refinement of 

complex chemistry for atomic resolution models, perhaps revealing the locations of ions in 

maps produced by MicroED.

Deviations from kinematic scattering are a greater concern for electron diffraction than they 

are for experiments with X-rays with similarly sized crystals [16,27]. This is due to the 

shorter mean free path of electrons traveling through a protein crystal. At the electron 

energies typically used in MicroED (200–300 keV), the interactions between electrons and 

matter are strong enough to produce substantial inelastic scattering from samples over a 

micron thick [28]. The multiple scattering of electrons by crystals is also a concern [27]. 

However, the effect of these phenomena has not precluded the determination of protein 

structures from crystals almost half a micron thick, even for ab initio solutions. Nearly two 

dozen structures have been determined by MicroED in high and low symmetry space 

groups, and from crystals with varying thickness (Table 1). Most of the datasets collected 
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from these crystals show minimal evidence of dynamical diffraction, particularly for the 

amyloid segments whose shortest unit cell (4.9 Å) is smaller than those of some small 

molecules [12••,29,30]. We attribute this incongruence to limitations in the models presently 

used to estimate the effects of dynamical diffraction. Future models could be refined to 

include deviations from perfect crystals such as crystal bending, nano-scale mosaicity, 

inelastic scattering, and the effects of bulk solvent.

Forecast: the first decade of MicroED

Much has been learned from the first handful of structures determined by MicroED (Figure 

1; Table 1; Figure 2). Advances to the method during its first three years include the 

approach of data collection by continuous rotation, the use of molecular replacement and ab 
initio methods for structure determination, and the preparation of suitably small crystallites 

from large imperfect crystals (Figure 3). We speculate on how benefits brought by future 

advancements to MicroED could impact structural biology:

1. The field of intrinsically disordered proteins is rich with potential targets for 

MicroED due to their inability to form large, well-ordered crystals. Two amyloid 

forming proteins, alpha synuclein and amylin, have already benefitted from 

structure determination by MicroED [14••]. The first, alpha synuclein, remains a 

challenge to structurally characterize. Several new NMR models have suggested 

structures for synuclein fibrils, while MicroED has provided an atomic view of a 

potential structure for the toxic core of synuclein aggregates with structures for 

two segments from its NAC region, preNAC and NACore (Figure 1). The second, 

amylin or human islet amyloid polypeptide (hIAPP), is associated with type 2 

diabetes and pancreatic beta cell toxicity, and remains out of reach of 

conventional crystallographic methods. Two structures of amylin segments have 

now been determined by MicroED (Figure 1) from overlapping regions of the 

protein [35•]. One of the segments contains a familial mutation (S20G) that 

forms rapid aggregates and leads to early onset type 2 diabetes. These and other 

structures can now be used to inform the rational design of therapeutic agents 

against presently incurable diseases.

2. MicroED could facilitate the direct localization of charged ions within protein 

structures in a way that broadly impacts membrane protein biophysics. However, 

the only membrane protein structure determined by MicroED to date is that of 

calcium ATPase. Obtaining structures of membrane proteins is in part limited by 

challenges in extracting crystallites from the sometimes thick or extremely 

viscous environments in which they grow, such as lipidic cubic phase (LCP), and 

the fact that membrane protein crystals in detergents can be more fragile than 

crystals of soluble proteins. Screening for sub-micron crystals within such 

heterogeneous environments is also difficult.

3. The use of extremely low electron doses by MicroED opens the possibility for 

determination of nearly damage-free protein structures. Intact disulfide bonds 

have been observed in structures determined by MicroED [36••]. Future efforts 

could produce intact structures of more radiation sensitive features, possibly 
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including the acutely radiation-sensitive active sites in metalloenzymes [31]. If 

crystals of these were to diffract at high enough resolution, the assignment of 

hydrogens within their active site environment could also be possible, as is now 

with amyloid segments. This may necessitate the development of fully automated 

pipelines for efficient ultra-low dose data collection and the adaptation of better 

hardware. More sensitive detectors, perhaps single electron counting, and energy 

filters could introduce greater clarity and sensitivity to patterns, allowing new 

algorithms to extract even the weakest of reflections at finer resolutions. 

Structural dynamics has been developed and demonstrated in electron 

crystallography of 2D crystals [32–34]; similar time resolution can be applied to 

MicroED samples.
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Figure 1. 
Atomic models are shown for each protein structure determined by MicroED. Also listed are 

the date the model was published and their reported resolution. Where a protein was 

determined multiple times, each copy is shown. Structures determined ab initio are shown in 

blue. Further details for each of the structures are listed in Table 1. Scale bars, 10 and 100 Å.
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Figure 2. 
MicroED structures determined by year from 2013 to 2017. (a) Bar graph indicating the 

number of protein structures determined by MicroED on an annual basis. (b) A table 

summarizes the data presented (a), counting both the number of structures per year and the 

total structures to date per year. An asterisk marks 2017 indicating the count for the year is 

incomplete and includes only structures published at the start of the year.
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Figure 3. 
Breaking down large imperfect crystals for structural analysis by MicroED. (a) Diagram 

illustrating disruption of large imperfect crystals by three approaches: high-frequency sound, 

or crushing by use of a pestle, pipette tip, or a small rigid bead. A second diagram illustrates 

a small crystalline fragment, typical of those obtained when breaking large crystals. The 

dimensions of the fragment are listed as ranges. (b) Examples of the results obtained from 

the procedures outlined in (a). Two examples are shown, one of the protein Tau (top), and at 

right are crystals of Trypsin (bottom). For each, light micrographs of a large polycrystalline 
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clusters are shown along with their X-ray diffraction patterns, below these are examples 

where single crystallites were obtained from each cluster by fragmentation, their 

corresponding MicroED pattern, and a magnified view of that pattern.
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