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ABSTRACT: We show that for a class of quantum light spectroscopy (QLS) experiments
using n = 0, 1, 2, ··· classical light pulses and an entangled photon pair (a biphoton state)
where one photon acts as a reference without interacting with the matter sample, identical
signals can be obtained by replacing the biphotons with classical-like coherent states of light,
where these are defined explicitly in terms of the parameters of the biphoton states. An
input-output formulation of quantum nonlinear spectroscopy is used to prove this
equivalence. We demonstrate the equivalence numerically by comparing a classical pump−
quantum probe experiment with the corresponding classical pump−classical probe
experiment. This analysis shows that understanding the equivalence between entangled
biphoton probes and carefully designed classical-like coherent state probes leads to quantum-
inspired classical experiments that yield equivalent signals and provides insights for the future
design of QLS experiments that could provide a true quantum advantage.

Spectroscopy using quantum light, in particular, using
nonclassical pulses containing individual or entangled

pairs of photons, has attracted much interest in recent years,
both theoretically and experimentally, due to its potential to
exploit the nonclassical properties of light to outperform
classical spectroscopy.1−16 Quantum light spectroscopy (QLS)
has been proposed to enable simplification of congested
spectra,4 to target specific doubly excited states,16 to improve
the signal-to-noise ratio of linear spectroscopy,3 and to measure
dephasing rates with high temporal resolution.6 Understanding
the extent to which such QLS experiments provide a quantum
advantage requires careful comparison with experiments using
the classical states of light. For example, the relationship
between a quantum pump−quantum probe experiment and
classical two-dimensional (2D) spectroscopy experiments is
examined in ref 17.
In this paper, we show that for a certain class of QLS

experiments, the use of entangled photon pairs can be replaced
with coherent states of light, which behave classically when
normal-ordered field correlations are evaluated (Figure 1). This
is done in two steps. First, we show that for QLS experiments
using entangled photon pairs with one photon being measured
without interacting with the matter system,2−4,7,8,13−15 the
entangled photon pair can be replaced with a specially designed
single photon Fock state, since measuring one photon effectively
collapses the other photon into a single photon state. Thus, two-
photon entanglement offers no true quantum advantage in these
QLS experiments. This has been pointed out previously by18

using quantum information theory arguments, and an analysis of
the quantum information that one can extract from a two-level
system using an entangled photon pair versus that extracted
using a single photon Fock state has been provided in ref 19. In

the context of single molecule biphoton spectroscopy that
measures a photon in the longer time scale of fluorescence, ref 20
has recently shown that if all scattered photons can be measured,
then the entanglement in the photon pair offers no advantage
over a single photon. Nevertheless, there may still be practical
advantages when such entangled photon pairs are used with one
photon acting as a reference without interacting with matter. For
example, pure single photon Fock states are more difficult to
produce experimentally than entangled photon pairs,21 and a
visible idler photon may be easier to detect than an infrared
signal photon.5

Second, and this is the main theoretical result of the paper, we
show that for a class of experiments using n classical pulses (n =
0, 1, 2, ···) and a single photon Fock state probe pulse, identical
signals can also be obtained using a coherent state pulse having
the same temporal profile and containing one photon on
average. Furthermore, if one uses a coherent state probe with the
same temporal profile but containing many photons on average,
then the signal can be amplified by a factor equal to the average
number of photons. Taken together with the equivalence of
biphoton and single Fock state probes, this means that the
spectral features obtained from experiments with biphoton
probe pulses can be exactly reproduced and also amplified by
carefully designed coherent state probe pulses. Such quantum-
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inspired coherent state probes are much simpler to implement
and thus far more preferable than biphoton states for
experimental implementation.
We focus our analysis here on spectroscopy experiments for

which the signal is measured in the direction of the probe. For
the case of a single classical pump, n = 1, this allows direct
comparison with conventional classical pump−probe spectros-
copy and the entangled biphoton probe version of this that was
proposed in ref 4. Other spectroscopy experiments where the
signal is measured in directions other than the probe are not
considered here but can be analyzed similarly using the method
we present here. For the equivalence between a single photon
Fock state and a single photon coherent state to hold, we require
that the classical pulses are incident from different directions
than the probe pulse and that there is no phase matching of the
classical pulses into the direction of the probe pulse. In fact, the
latter requirement includes the former as a special case. Neither
of these are onerous requirements for experiments.
In this work, we restrict the signal detection to normal-

ordered two-point correlation measurements that contain one
creation operator and one annihilation operator in the
transmitted probe field, for example, photon flux ⟨a†(t) a(t)⟩,
frequency-resolved photon count ⟨a†(ω)a(ω)⟩, or the un-
normalized g(1) correlation function ⟨a†(t2)a(t1)⟩. We note that
g(1) is complex-valued and therefore not a quantum mechanical

observable in the strict sense, but the real and imaginary parts of
g(1) can be measured separately using, for example, a Mach−
Zehnder interferometer.22 The detection of higher-order
coherence functions such as g(2) (a four-point correlation
function) is not considered here. The key reason for the
equivalence between the Fock state probe and the coherent state
probe in this class of experiments lies in the fact that they have
the same two-point correlation function ⟨a†(t2)a(t1)⟩. While the
one-point correlation functions ⟨a(t)⟩, ⟨a†(t)⟩, and other two-
point correlation functions such as ⟨a(t2) a(t1)⟩ and ⟨a†(t2)
a†(t1)⟩ are different for the two probes, their corresponding
signals appear only under other phase matching conditions and
do not appear in the direction of the probe field. So measuring
the signal in this direction, as indicated in Figure 1, isolates
signals that are dependent only on ⟨a†(t2)a(t1)⟩ and thereby
ensures the desired equivalence. We note that this result is a
generalization of our previous result23 that the output photon
flux is the same under single photon Fock state and single
photon coherent state excitation of a matter system in the
ground state.
The matter system in this work consists of many molecules

distributed over a volume of space, thus giving rise to the phase
matching conditions. A single photon Fock state can generate
entanglement between different uncoupled molecules, while a
coherent state cannot generate such entanglement. Regardless of
the difference in the collective matter state, we show here that
the two-point correlation signals of the output light are the same.
In a different context of a single molecule system, it has been
shown12,23 that a single photon Fock state and a coherent state
containing one photon on average give rise to the same excited
state dynamics in the molecule. However, it is important to
recognize that despite this similarity, there is also a difference in
the overall dynamics of the reduced matter system, since the
ground-excited state coherence is identically zero under a single
photon Fock state excitation and nonzero under a coherent state
excitation.23

Combining the equivalence between signals from biphotons
and single photon Fock states and the equivalence between
signals from single photon Fock states and single photon
coherent states, we can then establish a class of QLS experiments
that can be performed by using only classical light. We now
begin the formal analysis.

■ EQUIVALENCE 1: EQUIVALENCE BETWEEN
SIGNALS FROM BIPHOTON AND SINGLE PHOTON
FOCK STATE PROBES

Consider an experiment in which one probes a matter system
using an entangled photon pair, whose density matrix is denoted
as ρAB. Photon A (e.g., the green pulse in Figure 1a) interacts
with the system, and the resulting output optical field is
measured subsequently. Photon B (e.g., the blue pulse in Figure
1b) is measured directly without interacting with anything. Note
that in this section focused on the equivalence between signals
from biphoton and single photon Fock state probes, we shall
impose no restriction on the observables to be measured in each
of the two photon fields. For each realization of the experiment, a
joint measurement of both photon fields is recorded as (α, β)
where α represents the signal in photon field A in that
experimental realization, (e.g., whether or not a photon is
present or the measured frequency of the photon), and β
represents the measurement outcome of photon field B in the
same experimental realization. Averaging over the signal α for
fixed β with repeated measurements, one obtains the final

Figure 1. Spectroscopic schemes with n = 0, 1, 2, ··· classical pulses and
(a) a biphoton probe pulse with one of the photons acting as a reference
without interacting with matter, (b) a single photon Fock state probe
pulse, and (c) a classical probe pulse containing one photon on average.
The signal is measured in all cases in the direction of the probe field.
The equivalence between schemes (a) and (b) is referred to as
Equivalence 1 in the paper. The equivalence between schemes (b) and
(c) is referred to as Equivalence 2 in the paper. Equivalence 2 holds
under the conditions that (1) there is no phase matching of the n
classical pulses into the direction of the probe field, and (2) the signal
takes the form of a two-point correlation function (e.g., photon flux,
frequency-resolved photon count, or g(1) coherence function).
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reference-averaged signal as (S, β), where S is the averaged signal
of photon field A. Each β corresponds to a value of the averaged
signal S, so we shall henceforth abbreviate (S, β) as Sβ,
representing the averaged signal of photon field A that is
conditioned on themeasurement outcome β of photon field B. It
is sometimes suggested that the correlation between the pair of
photons A and B enhances the signal Sβ.

4,8 However, we show
below that the conditional signal Sβ can in fact be constructed
alternatively using just single photon states that are parametrized
by β. In other words, in the experimental scheme of Figure 1a,
quantum entanglement between the two probe photons offers
no fundamental advantage in learning about the matter system
since exactly the same results can be obtained using just single
photon states. This has also been pointed out by Stefanov in ref
18.
To derive the single photon state that produces the same

signal, Sβ, we first note that measuring photon B projects the
photon pair state toΠβρABΠβ, whereΠβ is the projector onto the
eigenspace of measurement outcome β. Since no further
measurement is performed on photon B, photon A is then
completely characterized by the reduced density matrix
obtained by tracing the projected state over photon B:

Tr ( )A ABB=| (1)

Here 1/Tr( )AB= is a normalization factor to ensure
unit trace. eq 1 tells us that measuring the reference photon field
B with outcome β effectively collapses the input field of photon
A into single photon state ρA|β. Therefore, the conditional signal
Sβ can also be obtained exactly by probing the system with the
single photon state ρA|β.
As an example, consider the frequency-entangled photon pair

d d a a( , ) ( ) ( ) vacA B A B A A B B| = |† †
(2)

where Φ(ωA,ωB) is the biphoton wave function,22 aA(ωA)
(aB(ωB)) is the bosonic annihilation operator of frequency
mode ωA (ωB) in photon field A (B), and |vac⟩ is the vacuum
state of both fields. The operators aj(ω) satisfy the bosonic
commutation relations: [aj(ω), aj′(ω′)] = [aj

†(ω), aj′
†(ω′)] = 0

and [aj(ω), aj′
†(ω′)] = δj, j′δ(ω − ω′). If we condition the

experiment on measuring photon B at some reference frequency
ωB = ωr, then the corresponding projection operator Πωr is
proportional to the outer product of the unnormalized state
aB

†(ωr)|vac⟩ and its adjoint, i.e.,

a a( ) vac vac ( )B r B B rr
| |†

(3)

where |vac⟩A or |vac⟩B denotes the vacuum state for the photon
field A or B. The projected photon pair state becomes

d a a( , ) ( ) ( ) vacA A r A A B rr
| |† †

(4)

which turns out to be a product state between the two photon
fields A and B in this case. Therefore, the reduced state of photon
field A, TrB(Πωdr

|Ψ⟩⟨Ψ|Πωdr
), is a pure state, i.e.,

A r r
= | || (5)

with

d a( , ) ( ) vacA A r A A Ar r
= †

(6)

where d1/ ( , )r
2

r
= | | is the normalization factor.

Now the conditional signal can be alternatively obtained by
using the single photon state of eq 6. Note that the frequency
profile of this single photon state is explicitly given by evaluating
the biphoton wave function Φ(ωA, ωB) at ωB = ωr.
The equivalence between signals from biphoton and single

photon Fock state probes can be understood in a slightly
different way by considering the photon correlation functions.
For example, if one is interested in some property of the photon
field A, represented by the quantum operator OA, given that a
photon with a frequency of ωr is observed in the photon field B,
one would typically need to evaluate the correlation function4,8

a O a( ) ( )B r A B r| |† (7)

S i n c e
a d a( ) ( , ) ( ) vac vacB r A A r A A B

1
r r

| = | = | |† ,
eq 7 is equal to the expectation value

OA
2
r r r

| | (8)

with respect to the reduced single photon state |ψ⟩ωdr
, up to a

normalization constant
r
that can be determined from the

biphoton wave function Φ(ωA, ωB).

■ EQUIVALENCE 2: EQUIVALENCE BETWEEN
SIGNALS FROM SINGLE PHOTON FOCK STATE
AND SINGLE PHOTON COHERENT STATE PROBES

We now consider the class of experiments where n classical
pump pulses (with wavevectors k1, ···, kn) and a single photon
Fock state or a single photon coherent state probe pulse (with
wavevector kpr), treated quantum mechanically, interact with a
matter system. These are illustrated in Figure 1b and Figure 1c,
for a single photon Fock state probe and a single photon
coherent state probe, respectively. The classical pulses are
incident in different directions from the quantum probe pulse,
with the directions selected so that there is no phase matching of
the classical pulses into the direction of the single photon probe.
These conditions can be summarized as

b bk k knot proportional to n npr 1 1 ± ··· ± (9)

where bi = 0, 1, 2, ··· can be any non-negative integer, up to a
reasonable number of orders of interaction. The case of n = 0
corresponds to the linear absorption of the single photon probe
pulse; the case of n = 1 corresponds to a classical pump−single
photon probe experiment. We place no restriction on the
relative time ordering of the pulses. The signal is restricted to be
normal-ordered two-point correlations that contain one creation
operator and one annihilation operator in the probe field, e.g.,
photon flux ⟨apr,out† (t) apr,out(t)⟩, frequency-resolved photon
count ⟨apr,out† (ω) apr,out(ω)⟩, or the g(1) coherence function
⟨apr,out† (t2) apr,out(t1)⟩. We claim that the final signal coming from
the single photon Fock state probe

F dt t a t( ) ( ) vac1 pr| = |†
(10)

is equal to the signal from a coherent state probe

( )C dt t a t t a texp ( ) ( ) ( ) ( ) vac1 pr pr| = * |†
(11)

having the same temporal profile ξ(t) and containing on average
a single photon. The temporal profile ξ(t) is normalized
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according to ∫ dt |ξ(t)|2 = 1. If the coherent state has m photons
on average, i.e., the state

( )C m dt t a t t a texp ( ) ( ) ( ) ( ) vacm pr pr| = * |†

(12)

then the probe field absorption and stimulated emission signal
will be amplified by a factor of m.
The key to this equivalence between experiments carried out

with Fock state probes and coherent state probes is that pulses
from these two probes have the same two-point correlation
function, ⟨apr† (t2)apr(t1)⟩. As already noted in the introduction,
even though they have different two-point correlation functions
⟨apr† (t2)apr† (t1)⟩ and ⟨apr(t2)apr(t1)⟩ and different one-point
correlation functions ⟨apr

† (t)⟩ and ⟨apr(t)⟩, these other
correlation functions do not contribute to the observed signal
due to phase matching. Together with the explicit para-
metrization of the coherent state pulse in terms of the single
photon frequency profile ξ(ω) = Φ(ω, ωr) obtained from the
biphoton state in eq 6, this will allow replacement of a
spectroscopic experiment using an entangled probe by experi-
ments using a coherent state probe.
We now prove the equivalence explicitly by analyzing the

signals using an input-output formulation of quantum nonlinear
spectroscopy. This approach is based on a perturbative
expansion of the signal observables in the Heisenberg picture,
distinct from the more common approach of perturbing the
combined system plus field density matrix in the interaction
picture.1,9 The input-output formulation simplifies the theoreti-
cal analysis by focusing on the signal observables and using
standard results from the input-output formalism of quantum
optics.23−25

Our analysis will focus on the frequency-resolved photon
count signal ⟨apr† (ω)apr(ω)⟩. The analysis for other two-point
correlation signals, such as photon flux and g(1) coherence
function, follows almost identically. In the Heisenberg picture,
the photon count of the transmitted probe at frequency ω is
proportional to

dt dt e a t a tTr( ( ) ( ) ( ))i t t
2 1

( )
pr,out 2 pr,out 1

1 2 †

(13)

Here ρ(−∞) is the initial combined system plus probe field
state, assumed to be a product state between the matter system
ρM and the field ρF, and the trace operator is evaluated over both
the matter and the field degrees of freedom. apr,out(t) is the
output field operator of the probe field. This output field
operator is the result of time-evolving the input field operator in
the Heisenberg picture with the combined matter and field
Hamiltonian, and thus it mixes the field and matter degrees of
freedom.23 The time domain field operator a(t) is related to the
frequency domain field operator a(ω) by the Fourier relation

a t d a( )
1
2

e ( )i t=
(14)

Therefore, a(t) also satisfies the bosonic commutation
relations.22

Although not necessary for the remaining derivation in this
paper, we note that eq 13 is expressed in ref 4 in a different form
in the interaction picture as

dt dt e a t a tTr( ( ) ( ) ( ))i t t
2 1

( )
pr 2 pr 1

1 2 †
(15)

where apr(t) is now the input field operator of the probe field.
ρ(∞) is the combined system plus field state in the interaction
picture, evolved to a time longer than those of t1 and t2. The term
ρ(∞) is somewhat nonintuitive. To show the equality between
eqs 13 and 15, one considers how the input and output operators
are related by unitary time-evolution operators. This is described
in detail in Section A of the Supporting Information.
Under the dipole-electric field interaction and taking the

zeroth-order Hamiltonian as the pure system plus pure field
Hamiltonian, we can write the interaction picture Hamiltonian
as

H t ia t L t ia t L t i t L t

i t L t

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

i

n

i i

i i

pr pr pr pr
1

= + +

+ *

† †

=

†

(16)

eq 16 consists of the system interaction with the quantum probe
field, represented by the field operator apr(t), and with n other
classical pulses, represented by their complex-valued coherent
amplitudes αi(t). The operators Lpr and Li are the matter
deexcitation components of the dipole operator corresponding
to the probe field and the field of the i-th classical pulse,
respectively. In the interaction picture, L(t) = eiHsyst Le−iHsyst is a
purely system operator (setting ℏ = 1).
Under the Hamiltonian of eq 16, the input−output relation

for the probe field is23−25

a t a t L t( ) ( ) ( )pr,out pr pr,H= + (17)

with apr,out(t) the output probe field operator and apr(t) the input
probe field operator. Here Lpr,H(t) is the Heisenberg evolved
operator, defined as U†(t) Lpr(t) U(t), where U(t) is the time-
evolution operator that solves the Schrodinger equation in the
interaction picture, i.e., dU(t)/dt = −iH(t) U(t). The physical
interpretation of eq 17 is that the output electric field is equal to
the input electric field plus the electric field generated by the
matter dipole moment. Lpr(t), without the subscript “H”, will
denote the operator in the interaction picture, which, as noted
above, is a purely system operator. In contrast, Lpr,H(t) now
mixes the system and field degrees of freedom. Performing a
perturbative expansion on the backward Heisenberg equation of
motion for Lpr,H(t),26 we have

L t L t i dt L t H t

i dt dt L t H t H t

i dt dt dt L t H t H t H t

( ) ( ) ( ), ( )

( ) ( ), ( ) , ( )

( ) ( ), ( ) , ( ) , ( )

.

t

t t

t t t

pr,H pr 1 pr 1

2
2 1 pr 2 1

3
3 2 1 pr 3 2 1

2

3 2

= [ ]

+ [[ ] ]

+ [[[ ] ] ]

+ ···
(18)

The first term on right-hand side of eq 18 can be interpreted as
the matter dipole moment without interacting with the light, the
second term as the matter dipole moment due to interacting
with the field once, the third term as the matter dipole moment
due to two interactions with the field, and so on. After the
commutators are expanded, each term becomes a product of a
pure system operator and a pure field operator. Therefore, the
expectation values of Lpr,H(t) with respect to an initial product
state can be readily evaluated.
Substituting eqs 17 and 18 into the Tr operator in eq 13, we

obtain the following expansion for the two-point correlation
function of the output signal:
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i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

µ

µ

a t a t a t a t

a t L t i d L t H

a t L t i d L t H

Tr( ( ) ( ) ( )) ( ) ( )

( ) ( ) ( ), ( )

( ) ( ) ( ), ( ) .

t

t

pr,out 2 pr,out 1 pr,out 2 pr,out 1

pr 2 pr 2 pr 2

pr 1 pr 1 pr 1

2

1

=

= + [ ] +

+ [ ] +

† †

† † †

(19)

Here we have adopted the conventional notation of using an
angled bracket ⟨Ô⟩= Tr(ρ(−∞) Ô) to denote the expectation
value of operator Ô with respect to the initial system plus field
state ρ(−∞).
We now expand the right-hand side of eq 19 on the order of

Lpr. To show that Lpr is indeed proportional to a small parameter,
first notice that Lpr, apr, and the Li and αi from the semiclassical
terms of theHamiltonian (eq 16) all have the same dimension of
1/ time (settingℏ = 1). Since ⟨Lpr

† (t)Lpr(t)⟩ (⟨Li
†(t)Li(t)⟩) is at

most equal to the spontaneous emission rate into the probe field
(ith classical field), where the maximum rate is obtained when
the matter state is in the bright state of the corresponding field
mode, we assign an order of magnitude value

L / emission (20)

to each L, where τemission is the time scale of spontaneous
emission into the polarization of that field mode, and η is the
geometric factor of the field mode.23,27 η is less than 1 because a
paraxial mode in an experiment usually covers only a small
fraction of all light with the polarization of that paraxial mode.
For a light pulse containing an average of m photons, we have
∫ dt ⟨a†(t)a(t)⟩ = m (for classical pulses, we replace operator

a(t) with coherent amplitude α(t)). Therefore, we assign an
order of magnitude value

a t t m( ), ( ) / pulse (21)

to each a(t) or α(t), where τpulse characterizes the pulse duration.
In typical visible spectroscopy experiments with atomic and
molecular samples, τemission ≫ τpulse, the matter system dynamics
is observable before spontaneous emission removes the
excitation. Furthermore, since m ≫ 1 for typical classical pulses
and m = 1 for the single photon probe pulse, we conclude that
the magnitude of L is much smaller than the magnitudes of apr
and αi, justifying an expansion in powers of the L operators. We
then choose to expand eq 19 only in orders of Lpr, since the
orders of Li do not affect the main result, i.e., the equivalence of
signals originating from a single photon Fock state probe and a
single photon coherent state probe. Furthermore, since Li always
appears together with the classical pulse amplitude αi, the effect
of Li is amplified by a factor of m , so Lpr becomes indeed the
smallest parameter in the expansion of eq 19. We now analyze
the three lowest-order contributions to the expansion.
Zeroth-Order Term (∼ Lpr0).The only zeroth-order term in

eq 19 is ⟨apr† (t2)apr(t1)⟩, the transmitted probe without any
interaction with matter. This expectation value is the same for
both the single photon Fock state (eq 10) and the single photon
coherent state (eq 11), namely

a t a t t t( ) ( ) ( ) ( )pr 2 pr 1 2 1= *†
(22)

where ξ(t) is the pulse shape. For the m-photon coherent state
(eq 12), eq 22 is amplified by a factor of m.
First-Order Terms (∼Lpr1). Any first-order term in eq 19

must be the expectation value of a product between apr(†) and

another term containing a single factor of Lpr, or its complex
conjugate. In other words, only the semiclassical part of the
Hamiltonian can contribute in the commutators of eq 19;
otherwise, there will be more than one factor of Lpr. Specifically,
the first-order terms take the form

and its complex conjugates. Here l = 0, 1, 2,···, and each i index
can denote any one of the n classical field interactions. The
probe field operators (i.e., apr or apr† ) are highlighted in blue,
while the matter operators associated with the probe field (i.e.,
Lpr or Lpr

† ) are highlighted in yellow.When l = 0, eq 23 reduces to
⟨apr† (t2)Lpr(t1)⟩. The notation αi

(±)(τ) Li
(∓)(τ) means either

αi*(τ) Li(τ) or αi(τ) Li
†(τ).

We note that the optical signal expression of eq 23 applies not
just to the case of a single molecule but also to the case of many
molecules. This is because the matter operators L of different
molecules commute with each other, so that eq 23 is nonzero
only if all of the L operators in the commutator originate from
the same molecule. This argument applies to all signal
expressions in the remainder of the paper. The fact that there
are many molecules in our matter system gives rise to phase
matching conditions, which we describe in the following
paragraph.
Physically, eq 23 represents the heterodyne measurement

between the probe field (i.e., the apr† in the first line) and the field
generated by the matter polarization that is induced by the
interactions with the classical fields (the second line). In all of
the first-order terms, the probe field expectation value factored
out as ⟨apr† (t)⟩ or ⟨apr(t)⟩. These one-point correlation functions
are zero for Fock state inputs and nonzero for coherent state
inputs; therefore, eq 23 is different for the Fock state and
coherent state inputs. However, the optical signal generated by
the matter polarization has the phase matching condition26,28,29

k k ki isig l1
= ± ··· ± (24)

where the ki on the right-hand side are the wavevectors of the
classical pulses. This means that ksig must be in a different
direction than the probe field direction kpr, due to our
assumption of the beam geometry in eq 9, i.e., the probe pulse
is not phase matched with any of the classical pulses. Therefore,
the probe field signal of eq 23 will vanish, because it is not phase-
matched to the matter polarization. At the molecular level, this
means that in our beam geometry, the polarization from
different molecules will generate destructively interfering signals
and result in a zero overall signal. Hence the first-order (∼Lpr

1)
signal does not contribute to the probe field output.
Second-Order Terms (∼Lpr2). There are two types of

second-order terms. The first type is related to spontaneous
emission and takes the form

The integrand is a product of two nested commutators. Here l
and p can take values of 0, 1, 2, ···. Each of the i and j indices can
be any one of the n semiclassical interactions of theHamiltonian.
We take only the semiclassical part of the Hamiltonian in the
commutators, since there is already one Lpr in each of the two
nested commutators. Otherwise eq 25 will contain more than
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two Lpr, becoming a higher-order term. In the case of l = p = 0, eq
25 becomes ⟨Lpr

† (t2) Lpr(t1)⟩: this represents spontaneous
emission into the probe field without any interaction with the
classical pulses. Since eq 25 contains no probe field operator
(i.e., no apr or apr† terms), the expectation value is the same for all
input field states, regardless of the phase matching conditions.
For completeness, we note that the phase matching condition
for these terms is26

k k k k0 i i j jl p1 1
= ± ··· ± ± ± ··· ± (26)

The second type of second-order terms is related to absorption
and stimulated emission, and has the form of

and its complex conjugate. In the nested commutator
expression, there is exactly one interaction with the quantum
probe field. Physically, eq 27 represents the heterodyne
measurement between the probe field (i.e., the apr† in the first
line) and the field generated by the matter polarization that is
induced by one interaction with the quantum probe field and a
number of interactions with the classical fields (the second line).
The notation of the probe interaction term apr(±)(τj) Lpr

(∓)(τj)
stands for either product apr† (τj) Lpr(τj) or apr(τj) Lpr

† (τj).
When the probe field interaction is apr† (τj)Lpr(τj), the probe

field correlation in eq 27 factorizes out as ⟨apr† (t2) apr† (τj)⟩, which
is zero for Fock state inputs and nonzero for coherent state
inputs. Now the optical signal generated by the matter
polarization has the phase matching condition of

k k k ki isig pr l1
= ± ··· ··· ± (28)

where the right-hand side contains only one probe field
wavevector kpr, and all other ki are the classical pulse
wavevectors. But as discussed above, ksig cannot be in the
same direction as kpr due to our assumption of the beam
geometry in eq 9. Therefore, the final signal is not phase

matched in the probe field direction kpr and will vanish. So
neither a Fock state input nor a coherent state input will produce
any signal from the apr† (τj)Lpr(τj) interaction in this direction.
On the other hand, when the probe field interaction in eq 27 is

apr(τj) Lpr
† (τj), the field correlation now factorizes as ⟨apr† (t2)

apr(τj)⟩, which is the same for both the single-photon Fock state
and single-photon coherent state inputs, regardless of the phase-
matching condition. These terms represent the transient
absorption and/or stimulated emission of the probe field due
to the interaction with the classical pulses. In this case the phase
matching condition of the optical signal generated by the matter
polarization is now

k k k ki isig pr l1
= ± ··· + ··· ± (29)

where the right-hand side consists of only one probe field
wavevector kpr, and all other ki are the classical pulse
wavevectors. We see that now if the classical pulse wavevectors
cancel each other out pairwise, then we will have the correct
phase matching condition of ksig = kpr that results in a nonzero
final signal in the probe field.
Due to the weak nature of the interaction between a single

photon and a molecule (for example the probability for a
chlorophyll molecule to absorb a single photon is at most on the
order of∼10−6 due to phonon dephasing23,30), it is reasonable to
truncate eq 19 up to second order in Lpr. This second-order
truncation corresponds to one interaction with the probe field in
the language of classical nonlinear spectroscopy.28

We may then combine the analysis for all of the terms up to
second order in Lpr (i.e., eqs 22, 23, and 25), and the two cases in
eq 27). Doing this, we see first that while the first-order
contribution eq 23 and the first case of the second type of
second-order contribution eq 27 yield different values for Fock
state and coherent state inputs, neither of these terms appears in
the final signal due to the phase matching constraint; therefore,
they cannot contribute to a difference between Fock and
coherent state inputs. In contrast, the zeroth-order contribution
eqs 22, the first type of the second-order contribution (25), and

Figure 2. (a) Energy level scheme with four levels from ref 4, which we use for our numerical example. The pump pulse is resonant to only the |g⟩ → |e⟩
transition. The probe pulse is resonant to only the |e⟩ → |f⟩ and |e′⟩ → |f⟩ transitions. (b) Double-sided Feynman diagram representing the excited state
absorption of the pump−probe signal. The order of the first two pump interactions can be switched. (c) Transient absorption spectrum due to a
conventional classical probe. The spectrum plots the change in the probe field frequency-resolved photon count ⟨apr† (ω)apr(ω)⟩ at frequencyω, i.e., the
signal photon number spectral density. This conventional classical probe has a Gaussian frequency profile E(ω) ∝ e−(ω−ω0)d

2/2σ d

2

(ω0 = 11000 cm−1, σ =
600 cm−1) and contains on average 106 photons. The frequency distribution |E(ω)|2 of the input probe pulse is plotted to the left of the spectrum.
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the second case of the second type of second-order contribution
eq 27 yield the same value for both Fock state and coherent state
inputs, and these terms do have the correct phase matching
condition to contribute to the final signal. Therefore, provided
that the coherent state has the same temporal profile as the Fock
state, a single photon Fock state probe and a single photon
coherent state probe will produce exactly the same signal in the
experimental setups of Figure 1b and 1c. Furthermore, a many
photon coherent state probe with the same temporal profile will
amplify the signals of eq 22 and the second case of eq 27 by a
factor of m, where m is the average number of photons.

■ EXAMPLE: PUMP QUANTUM-INSPIRED PROBE
(PQIP) SPECTROSCOPY

To demonstrate this equivalence between an entangled photon
probe and a coherent state probe, we consider here the specific
example of the classical pump - quantum probe experiment
described theoretically in,4 which corresponds to the case of a
single classical pump pulse, i.e., n = 1 in Figure 1. We then
compare this experiment to the corresponding classical pump -
quantum-inspired classical probe experiment, which we shall
refer to as “pump quantum-inspired probe” (PQIP). In this
experiment, a delta-function classical pump first excites a four-
level matter system from the ground state |g⟩ to the singly
excited state |e⟩, which transfers the excitation to another lower-
energy singly excited state |e′⟩ irreversibly with a rate k (Figure
2a). These energy transfer dynamics are monitored by the
transient absorption of a probe pulse (delayed by time t0 from
the pump pulse) that excites |e⟩ or |e′⟩ into the doubly excited
state |f⟩. In,4 the probe pulse was taken to be either a classical
pulse or an entangled photon pair. Figure 2c shows the
calculated transient absorption spectrum using a conventional
classical probe pulse consisting of a single Gaussian with
frequency width σ = 600 cm−1, covering both transition
frequencies from |e⟩ and |e′⟩ to |f⟩. The structure of the two
peaks centered at different delay times reveal the energy transfer
dynamics from |e⟩ to |e′⟩.
In the case of a biphoton probe, the photon pair state |Ψ⟩ is

given by eq 2, with the biphoton wave function Φ(ωpr, ωr). One
photon (the reference photon) of the probe photon pair does
not interact with the matter system, and its frequency ωr is
measured. The other photon (the probe signal photon) interacts
with the matter system and is frequency-resolved. For each ωr,
there is a transient absorption spectrum as a function of the
signal frequency,ω and delay time t0. As discussed in ref 4, due to
the frequency correlation in the entangled photon pair, by
selecting different values of ωr, one can target specific frequency
windows of the transient absorption spectrum, thereby
simplifying the spectrum.
The theoretical analysis of these spectra obtained from

biphoton pulses proceeds as follows. The pump−probe signal
for a fixed reference photon frequency ωr is the difference
between the output and the input signals

a a a a

a a a a

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r r r r

r r r r

pr,out pr,out

pr pr

† †

† †
(30)

If no reference photon is used, the pump−probe signal becomes

a a a a( ) ( ) ( ) ( )pr,out pr,out pr pr
† †

(31)

Applying eqs 17 and 18, the lowest order term of eq 30,
represented by the double-sided Feynman diagram of Figure 2b,
is

dt dt
e d d d

a a a t a L L t L L

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) c.c.

i t t
t

r r r r

2 1 ( )
3 2 1

pr 2 pr 3 pu 1 pr 1 pr 3 pu 2

pu 1 pu 2

1 2
1 3 3

* +

† † † †

(32)

Note that eq 32 originates from the second-order (∼Lpr
2 )

expansion term of the form of eq 27. Substituting in the delta-
function classical pump αpu(t) ∝ δ(t), eq 32 is now proportional
to

d a a a a

dt d e L L t L L

( ) ( ) ( ) ( )

e (0) ( ) ( ) (0) c.c.

r r r r

t
i t i

pr pr

0
1

0
3 pu pr 1 pr 3 pu

1
1 3 +

† †

† †

(33)

Since the field correlation function in eq 33 with a time delay of
t0 evaluates to

a a a a

e

( ) ( ) ( ) ( )

( , ) ( , )

r r r r

r r
i t

pr pr

( ) 0= *

† †

(34)

The signal eq 33 can be expressed compactly as4

dRe ( , ) ( , )F( , ; t )r r 0*
(35)

where

t dt d e L

L t L L

F( , ; ) e (0)

( ) ( ) (0)

t
i t t i t

0
0

1
0

3
( ) ( )

pu

pr 1 pr 3 pu

1
1 0 3 0=

† †
(36)

is the frequency-domain matter correlation function defined in
ref 4.
The detailed model of the matter system, the corresponding

analytical form of F̃(ω′, ω; t0), and the analytical form of Φ(ωpr,
ωr) are discussed in ref 4 and summarized in Section B of the
Supporting Information. Similarly, if a single photon Fock state
or a coherent state is used as the probe, then the pump−probe
signal eq 31 becomes

d F tRe ( ) ( ) ( , ; )0*
(37)

where ξ(ω) is the frequency profile of the probe pulse (see eqs
10−12).
Comparing eq 35 and eq 37, we observe that if we choose a

quantum-inspired coherent state probe with coherent amplitude
ξpr(ω) = Φ(ω, ωr), the final signal is exactly proportional to eq
35 at a fixed reference photon frequency ωr. Therefore, the
classical pump−quantum probe experiment can be exactly
reproduced using a standard classical pump−classical probe
setup, with the only additional feature of requiring a pulse shaper
for the quantum-inspired classical probe pulse. The shape of the
quantum-inspired classical probe is parametrized byωr, together
with the other parameters of the biphoton pulse (see Supporting
Information, Section B).
The classical pump−quantum probe spectra with biphoton

pulses, characterized by two choices of ωr, are shown in the left-
hand panels (a) and (b) of Figure 3. The signal is detected in the
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probe beam direction, in accordance with the phase matching
requirement discussed in Equivalence 2. The simplification of
the spectra relative to the conventional pump−probe spectrum
in Figure 2 is immediately evident, with the two peaks now
clearly resolved, permitting a more detailed analysis of the
coupled dynamics underlying the two spectra.
The corresponding PQIP spectra are shown in the right-hand

panels (c) and (d) of Figure 3. In the numerical simulation, we
use a classical probe containing an average of m = 106 photons to
amplify the final signal by a factor of 106. As noted above, this has
the additional benefit of making signal detection much easier
experimentally than when using an entangled biphoton probe.
When the amplified signals are normalized to the same reference
value as that for panels (a) and (b), the left- and right-hand
panels of Figure 3 are identical to within numerical precision,
validating the PQIP analysis. The specific quantum-inspired
pulses that produce the same spectra as the biphoton probe with
ωr values in panels (a) and (b) of Figure 2 are given explicitly in
Section B of the Supporting Information.

■ CONCLUSION
We have shown that for a class of QLS experiments consisting of
n = 0, 1, 2··· classical pulses and an entangled photon pair probe
in the scheme of Figure 1a), the use of the entangled photon pair
can be replaced with a specially designed coherent state pulse,
which behaves as classical light when normal-ordered field
correlations are evaluated. The two main requirements for this
equivalence to hold are the following: (1) there is no phase
matching of the classical pulses into the direction of the probe
field and (2) signal measurement takes the form of (time-
integrated) photon flux, frequency-resolved photon count, or
g(1)(t) correlation function.
The class of experiments described in this paper is a subset of

QLS experiments, where the use of entangled photon pairs can
be replaced with classical pulses. Whenever a biphoton input is
used and a noninteracting reference photon r is measured at
frequency ωr, so that the signal consists of field correlation
functions of the form ⟨ar

†(ωr) ar(ωr)a†(t2)a(t1)⟩, we showed
that the signal can be reproduced with coherent state pulses that
are specifically designed for a given biphoton state and reference
frequency. In this work, we also demonstrated the validity of the

Figure 3. Transient absorption spectra obtained using (a,b) an entangled biphoton probe or (c,d) quantum-inspired classical probes. The signal is the
change of the probe field frequency-resolved photon count ⟨a†(ω)a(ω)⟩ at frequency ω, i.e., the signal photon number spectral density. In panels (a)
and (b), the signal is conditioned on the reference photon frequencies of (a)ωr = 11400 cm−1 and (b)ωr = 10400 cm−1. On the left of each spectrum is
the frequency distribution |Φ(ω, ωr)|2 of the probe single photon for fixed ωr. In panels (c) and (d), classical probes with frequency profiles ξ(ω) =
Φ(ω, ωr) are used, where ωr = 11400 cm−1 in (c) and ωr = 10400 cm−1 in (d), corresponding to panels (a) and (b), respectively. The classical probe
pulses contain 106 photons on average, resulting in 106 times signal amplification. Note that the scales of the color bars in parts c and (d) are 106 larger
than those in parts a and (b).
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analysis by explicit calculations of the signal for a classical
pump−entangled photon probe experiment, showing numerical
equivalence with the signal obtained from a classical pump with
a coherent state pulse that is constructed according to the two
equivalences.
Going beyond the scope of analysis in this paper, onemay also

consider the effect of the environmental background photon
noise (i.e., dark counts) on spectroscopy with entangled
photons.3 Here the signal-to-dark-count improvement offered
by entangled photon pairs described in ref 3 can be achieved by
using pulsed classical light in only the signal arm and detecting
the output photon only in the time window Δt that is set to be
equal to the pulse duration. This is because the number of dark
count photons during the detection time window is linearly
proportional to Δt, so by using a classical pulse with a short
duration (i.e., small Δt), one can reduce the number of dark
count photons and increase the signal-to-dark-count ratio.
We can also consider the effect of noise due to the uncertainty

of the photon number or the noise due to detector inefficiency.
For simplicity, we shall refer here to both of these uncertainties
as measurement shot noise. Using a 100% efficient photon
detector, the detection of a single photon has zero shot noise.
Therefore, the signal-to-noise ratio of a single photon from one-
half of an entangled photon pair cannot be achieved using
classical pulses. However, if the photon detector is not perfectly
efficient, the detection of a single photon will contain a nonzero
shot noise. Then the signal-to-noise ratio for the detection of a
single photon can be achieved or surpassed using a coherent
state pulse with large enough amplitude. This is because the
signal-to-noise ratio of a coherent state under both perfectly
efficient or inefficient photon detectors is equal to

average number of photons detected .22 Therefore, by increas-
ing the coherent state amplitude, one can systematically improve
the signal-to-noise ratio.
If we go beyond the dipole-electric field interaction and

allowing for Raman scattering interactions, one can also show
that the intensity correlated Raman signal in8 and the (1,0)
component of the interferometric stimulated Raman signal in ref
2 can also be reproduced by classical pulses parametrized by the
biphoton wave function and the reference photon frequency,
since these signals depend on the same field correlation function
as in eq 32.
Finally, we note that while some QLS experiments can be

reproduced using carefully designed classical light sources as
shown here, at the same time, the technologies for generation
and detection of quantum light are maturing, raising the
possibility of a new generation of QLS experiments. The
equivalence between entangled biphoton probes and classical-
like coherent state probes shown in this work leads to a new
category of quantum-inspired classical spectroscopy experi-
ments, such as the pump quantum-inspired probe experiment.
An understanding of the range of applicability of the equivalence
demonstrated here will provide insights for the future design of
more powerful QLS experiments that cannot be replicated by
suitably designed quantum-inspired classical pulses and that
could provide a true quantum advantage for the study of
electronic dynamics in complex systems.
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