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Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies
(PADs). Because they are also among the most common infections in healthy individuals,
PADs are usually overlooked in these patients. Careful evaluation of the history, including
frequency, chronicity, and presence of other infections, would help suspect PADs. This
review will focus on infections in relatively common PADs, discussing diagnostic
challenges, and some management strategies to prevent infections.

Keywords: primary immunodeficiencies, infections, common variable immunodeficiency, immunoglobulin therapy,
selective IgA deficiency, specific antibody deficiency, IgG subclass deficiency, selective IgM deficiency
INTRODUCTION

Primary immunodeficiencies (PIDs), also known as inborn errors of immunity (IEI), are genetic
disorders classically characterized by increased susceptibility to infections. According to the recent
International Union of Immunologic Societies (IUIS) report, primary antibody deficiencies coalesce
under the 3rd category: Predominantly antibody deficiencies (PADs) (Table 1) (1). These immune
deficiencies occur due to defects in B cell development or function. They are the most common
types of IEIs worldwide (2–4). Patients have low levels of one or more immunoglobulin isotypes
and/or inadequate production of pathogen-specific antibodies, and they develop infectious and
noninfectious manifestations (Table 2) (5, 6, 23, 37, 45).

Early diagnosis and timely initiation of immunoglobulin replacement therapy (IgRT) may
prevent infections, and therefore, alter the clinical course of PADs. Although sinopulmonary
infections with encapsulated bacteria are the most common infections, PADs may also present with
infections caused by other usual or unusual microorganisms affecting various organs. A thorough
understanding of the types of infections that these patients are susceptible will be invaluable to
suspect PADs and for early diagnosis. Here, we will summarize best known and relatively common
PADs while focusing on their infectious manifestations. We will use primary antibody deficiencies
and predominantly antibody deficiencies interchangeably.

Specific PADs are grouped into four subcategories based on their immunologic findings.

Severe Reduction in All Serum Immunoglobulin Isotypes With
Profoundly Decreased or Absent B Cells: Agammaglobulinemia
These conditions are associated with circulating B cells below 2% of total lymphocytes, and
undetectable or very low levels of all isotypes of serum immunoglobulins. About 85%–90% of
patients in this group have X-linked agammaglobulinemia (XLA) due to mutations in the Bruton
tyrosine kinase gene (BTK) (87), and 5% of patients have immunoglobulin m heavy chain deficiency.
org February 2021 | Volume 12 | Article 6341811
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X-Linked Agammaglobulinemia
Classically, affected boys begin to suffer from infections at 4 to 6
months of age. Late-onset and milder cases have also been
reported (88, 89). The estimated incidence ranges from
1:200,000 to 1:100,000 live births (90). Neutropenia is seen in
11% to 22% of patients, which resolves once the appropriate
IgRT is initiated (5). Normal IgA and IgM levels have been
reported in a few patients (5, 7).

Sinopulmonary infections are the most common infections in
XLA, but gastrointestinal infections, and more invasive
infections may also occur (Table 2). For exampleanalyses of
large cohorts revealed that up to 8% of patients may present with
meningitis caused by Streptococcus pneumoniae, Neisseria
meningitides, and Haemophilus influenzae, or encephalitis
caused by ECHO virus, Coxackie virus, and poliovirus (5–8).
Enteroviruses also cause dermatomyositis-like presentation (5,
91). Enteroviral infections have been particularly challenging for
patients with XLA because they are usually chronic, systemic,
resistant to therapy, and may be fatal.

In a US registry consisted of 201 patients with XLA, Giardia
lamblia was the most common etiology of gastrointestinal
infections, and Pseudomonas spp was the most common
etiology of sepsis, accounting for 12 of 46 and 6 of 29 patients,
respectively (5).

Recently, refractory cellulitis, pyoderma gangrenosum, and
bacteremia due to non-Helicobacter pylori Helicobacter
(NHPH) such as Helicobacter bilis (Flexispira) and
Helicobacter cinaedi have been reported in XLA (15, 92). In
addition, case reports describing septic arthritis due to
Mycoplasma or Ureoplasma (9), a disseminated infection
caused by Spiroplasma apis (a honey bee pathogen) (10),
sepsis due to Achromobacter xylosoxidans mimicking juvenile
idiopathic arthritis (11), Morganella morganii pericarditis (12),
and infective endocarditis due to Enterococcus faecalis (14) have
been published. Aichi virus, a common contaminant in ponds,
sewages, and shellfish, causing self-limiting gastroenteritis in
immunocompetent persons, may cause chronic and severe
infection including fever, bloody diarrhea, chronic hepatitis,
and splenomegaly in XLA (13).
Frontiers in Immunology | www.frontiersin.org 2
Autosomal Recessive and Autosomal Dominant
Agammaglobulinemia
Immunoglobulin m heavy chain (IGHM) deficiency is associated
with more severe clinical manifestation compared to XLA (16,
17, 19). Like in XLA, neutropenia may be seen in 30% of these
patients (16, 19). In addition to bacterial respiratory tract
infections, these patients are at increased risk for pseudomonas
sepsis, arthritis, skin abscesses, chronic diarrhea, and enteroviral
central nervous system (CNS) infections (16–19). In a study on
19 patients with IGHM, 7 patients had significant enteroviral
infections, and 4 had pseudomonas sepsis before the IgRT was
started (19).

Other PADs in this group are extremely rare and include
defects in phosphatidylinositol 3–kinase d (PI3Kd) signaling
pathway, which include PIK3CD and PIK3R1 deficiencies,
encoding catalytic and regulatory subunits of PI3Kd,
respectively. Biallelic loss of function (LoF) mutations in these
genes cause early-onset bacterial sinopulmonary infections, viral
infections, oral thrush, esophageal candida infection,
Campylobacter bacteremia as well as transient neutropenia and
thrombocytopenia (Table 2) (21, 23, 24, 93).

Severe Reduction in at Least 2 Serum
Immunoglobulin Isotypes With Normal
or Low B Cells: CVID Phenotype
Common Variable Immunodeficiency (CVID)
As the most common symptomatic IEI, CVID affects 1:50,000 to
1:10,000 people (4, 37, 94, 95). Patients are usually diagnosed
between the 3rd and the 5th decades. According to the European
Society for Immunodeficiencies Database (ESID), 33.7% of
patients had the onset before 10 years, and, in a large US
cohort, 28% of patients had the diagnosis before 21 years (37,
94). The most common clinical manifestations include infections
and infection-related complications such as bronchiectasis (37,
38, 94). Otitis media, failure to thrive, and developmental delay
were reported more in pediatric-onset CVID compared to adult-
onset (96) . Non-infect ious manifestat ions, such as
autoimmunity, may precede infections and, they are associated
with increased mortality (38).

Because of the significant clinical and immunological
heterogeneity, the definition of CVID has undergone several
revisions. According to the most recent consensus, the diagnosis
should be based on laboratory findings, which include low IgG (<
2SD for age-adjusted levels), low IgA, and/or low IgM, and
suboptimal response to T-cell-independent or T-cell-dependent
vaccines. Some patients may also have low CD4+ T cells. Other
conditions such as medications, protein loss, and various
disorders that may cause low immunoglobulins should be
excluded (97).

The most common causes of pneumonia in CVID are S.
pneumonia and H. influenza, followed by Mycoplasma
pneumonia, Pseudomonas spp, Staphylococcus spp, and
Klebsiella pneumonia (37, 38) (Table 2). The frequency and
severity of respiratory infections decrease with IgRT. However,
despite IgRT, a prospective study showed that respiratory
infections may still occur more commonly in patients with
TABLE 1 | Classification of inborn errors of immunity according to the 2019
IUIS report.

IUIS Classification
Group

Primary Immunodeficiency Disease Category

I Immunodeficiencies affecting cellular and humoral
immunity

II Combined immunodeficiences with associated or
syndromic features

III Predominantly antibody deficiencies
IV Diseases of immune dysregulation
V Congenital defects of phagocyte number of function
VI Defects in intrinsic or innate immunity
VII Autoinflammatory disorders
VIII Complement deficiencies
IX Bone marrow failure
X Phenocopies of inborn errors of immunity
February 2021 | Volume 12 | Article 634181
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TABLE 2 | Common and rarely reported infections in predominantly antibody deficiencies.

Disease (inheritance) Gene Bacterial infections Viral infections Fungal/protozoal
infections

Other infections reported rarely*

Severe reduction in all serum immunoglobulin isotypes with profoundly decreased or absent B cells, agammaglobulinemia
X-linked agammaglobulinemia (XLA)
Bruton
agammaglobulinemia

BTK Respiratory tract infections with
H. influenza, S. pneumonia,
Pseudomonas spp,
Staphylococcus spp, H.
parahemolytica, H. parainfluenza,
Klebsiella spp (5–8).
Gastrointestinal infections with
Campylobacter, Salmonella spp,
C difficile, H.pylori, Shigella spp,
Flexispira (5–8).
Meningitis/sepsis with S.
pneumonia, H. influenza type b
(5, 6)
Skin infections by S. aureus (6)
Septic arthritis by Mycoplasma,
Ureaplasma (9)

Gastrointestinal
infections with
Rotavirus, Enterovirus
(5)
Vaccine-associated
polio, encephalitis with
ECHO 11, Coxsackie
(5, 7)
Hepatitis C (5, 6)
Skin infections caused
by Herpesvirus (6)

Gastrointestinal
infections with Giardia,
Blastocistis hominis
(5, 6)
Skin infections caused
by Candida sp (6)

Disseminated infection by Spiroplasma
apis (10),
Achromobacter xylosoxidans sepsis
(11),
Morganella morganii pericarditis (12),
Systemic infection by Aichi virus (13),
Infective endocarditis by Enterococcus
faecalis (14)
Sepsis by Pseudomonas (7)
Skin infections by non-H. pylori
helicobacter (NHPH) (15)

Autosomal recessive agammaglobulinemia
µ heavy chain deficiency IGHM Bacterial respiratory infections

(16–18)
Pseudomonas sepsis (16–18)
Chronic diarrhea (18, 19)

Viral respiratory tract
infections (17, 18)
Enteroviral encephalitis
(16)
Vaccine-induced
paralytic polio (18, 19)

Haemophilus influenza arthritis (20)
Recurrent perirectal abscesses (16)

P110d deficiency PIK3CD Recurrent sinopulmonary
infections with encapsulated
bacteria (21)

Persistent rotavirus enteritis (22)
Catheter-associated Klebsiella
pneumonia sepsis (22)
S. pneumonia sepsis (22)

P85 deficiency PIK3R1 Recurrent sinopulmonary
infections with encapsulated
bacteria (H. influenza, S.
pneumonia) (23),

Influenza A, CMV (23)
Prolonged diarrhea
after Rotavirus vaccine

Campylobacter spp bacteremia,
interstitial pneumonia (24)

SLC39A7 (ZIP7)
deficiency

SLC39A7 Early onset infections (25)

l5 Deficiency IGLL1 Otitis media at 2 months, meningitis
caused by Haemophilus (26), bilateral
lobar pneumonia at 3 months of age
(27)

Iga deficiency CD79A Upper and lower respiratory tract
infections, recurrent diarrhea (28)

HHV8 and JC virus encephalitis (29)

Igb deficiency CD79B Upper and lower respiratory tract
infections (30, 31)

Salmonella enteritis (30)

BLNK deficiency BLNK Upper and lower respiratory tract
infections (32)

Enteroviral viremia, Pseudomonas
sepsis, septic arthritis by Proteus
mirabilis (32)

E47 transcription factor
deficiency (AR or AD)

TCF3 Recurrent pneumonia and
meningitis (33, 34)

Chronic diarrhea (34)

Autosomal dominant agammaglobulinemia
Hoffman syndrome/
TOP2B deficiency

TOP2B Recurrent respiratory infections
by encapsulated bacteria (35)

Haemophilus influenza meningitis (36)

Severe reduction in At least 2 serum immunoglobulin isotypes with normal or low B cells, CVID phenotype
Common variable
immune deficiency with
no gene defect specified
(CVID) (variable)

Unknown Respiratory tract infections with
H. influenza, S. pneumonia,
mycoplasma, Moraxella,
Pseudomonas spp,
Staphylococcus spp, and
Klebsiella pneumonia (37, 38)
Gastrointestinal infections
caused by Campylobacter sp,
Salmonella sp, Clostridium
difficile, Escherichia coli (37–39)

Respiratory infections
caused by human
rhinovirus (HRV),
Adenovirus, respiratory
syncytial virus (RSV),
seasonal Coronavirus
(40, 41)
Norovirus (42), CMV
(39)
Recurrent Herpes

Gastrointestinal
infections caused by
Giardia lamblia (37–39)
Blastocistis hominis,

Mycobacterial disease, listeriosis,
nocardia, Bacilli-Calmette-Guerin,
Molluscum contagiosum, Measles, HIV,
severe EBV, systemic adenovirus
infection, Kaposi sarcoma, Hepatitis C,
Hepatitis B, cerebral toxoplasmosis (37,
38)
Gastrointestinal infections caused by
Isospora belli (43), cryptosporidium,

(Continued)
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TABLE 2 | Continued

Disease (inheritance) Gene Bacterial infections Viral infections Fungal/protozoal
infections

Other infections reported rarely*

Meningitis caused by S.
pneumonia, N. meningitides, and
H. influenza (37, 38)
Staphylococcal aureus skin
abscesses (37, 38)

zoster, invasive
papillomavirus (37, 38)

Cryptococcus, Candida sp,
Histoplasmosis visceral mycosis (38)

Activated P110 d
syndrome (AD)

PIK3CD
(GoF)
PIK3R1
(LoF)

Recurrent respiratory infections
by encapsulated bacteria (21)
Staphylococcal skin and dental
abscess (21)
Clostridium difficile colitis
Recurrent conjunctivitis (44)

Recurrent
sinopulmonary
infections with viruses,
Influenza A (44)
Severe and persistent
infections with EBV,
CMV, HSV, VZV (44–
46)

Chronic
mucocutaneous
candidiasis (44)

Staphylococcus aureus-related
periorbital cellulitis, Pseudomonas
aeruginosa septicemia, chronic Giardia
intestinalis (44)

PTEN deficiency (AD) PTEN Recurrent upper respiratory
infections (47)

Neonatal group B Streptococcus
infection, Pneumocystis jiroveci
pneumonia (48)

TWEAK deficiency (AD) TNFSF12 Recurrent upper respiratory
infections (49)

Warts (49) Pneumococcal meningitis,
Osteomyelitis (49)

TRNT1 deficiency (AR) TRNT1 Upper and lower respiratory tract
infections (50)

NFKB1 deficiency (AD) NFKB1 Upper respiratory tract infections
with S. Pneumonia, H.
Influenzae, P. aeruginosa;
Clostridium difficile colitis (51, 52)
Bacterial meningitis (52)

Shingles; vaginal HPV;
invasive CMV; EBV (51,
52)

P. jiroveci pneumonia;
Mycobacterium avium
intracellulare; Giardia
(51, 52)

PML (51); Chronic Norovirus, rhinovirus
(52)

NFKB2 deficiency (AD) NFKB2 Upper respiratory tract infections
(53)

Recurrent HSV skin
infections, severe VZV,
molluscum, EBV, CMV
infections (53)

Pneumocystis jiroveci,
Giardia, oral
candidiasis (53)

Toxoplasmosis; onycomycosis;
Salmonella (53)

IKAROS deficiency (AD) IKZF1 Recurrent sinopulmonary
infections starting in infancy (54)
Sepsis, pneumonia, skin abscess
by P. aeruginosa (55)

Severe RSV
bronchiolitis, Adenoviral
pneumonia, recurrent
HSV, EBV+, HPV
genital infections (54,
55)

Pneumocystis jiroveci
pneumonia, recurrent
oral candidiasis (55)

Lung infection with Klebsiella sp,
Aspergillus sp, Mycobacterium avium
complex. Pneumococcal meningitis,
Cryptosporidial cholangitis, Candida
parapsilosis fungemia (55),
Enterococcus gallinarum sepsis (56)

ATP6AP1 deficiency (XL) ATP6AP1 Recurrent respiratory infections
starting in infancy (57)

Mannosyl-
oligosaccharide
glucosidase deficiency
(AR)

MOGS Bacterial respiratory infections
(58)

Urinary tract infection by Escherichia
coli, Pneumococcal pneumonia with
empyema; Staphylococcus aureus
osteomyelitis (58)

CD19 deficiency (AR) CD19 Recurrent upper and lower
respiratory tract infections (59)

Pneumococcal meningitis; Chronic
gastritis by Heliobacter pylori (59)

CD81 deficiency (AR) CD81 Recurrent respiratory tract
infections (60) (1 of 1 reported
patient)

CD20 deficiency (AR) CD20 Recurrent upper and lower
respiratory tract infections (61) (1
of 1 reported patient)

CD21 deficiency (AR) CD21 Recurrent respiratory tract
infections with encapsulated
bacteria (62)

TACI deficiency** (AR or
AD)

TNFRSF13B Recurrent respiratory tract
infections (63, 64)

Recurrent viral
respiratory infections
(64)

Rectal herpes simplex (64)

BAFF receptor deficiency
(AR)

TNFRSF13C Recurrent upper and lower
respiratory tract infections (65)

Severe Herpes zoster (65)

IRF2BP2 deficiency (AD) IRF2BP2 Recurrent upper and lower
respiratory tract infections (66)

ARHGEF1 deficiency
(AR)

ARHGEF1 Recurrent upper and lower
respiratory tract infections (67)

Recurrent VZV, severe oral HSV (67)

(Continued)
Frontiers in Immunology |
 www.frontiersin
.org
 4
 Febru
ary 2021 | Volume 12 | Article 634181

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Demirdag and Gupta Infections in PADs
PADs and, common circulating upper respiratory viruses may
be detected more often in patients with PADs, including CVID,
compared to healthy controls. The most common respiratory
virus isolated in this study was human rhinovirus (HRV),
followed by adenovirus, respiratory syncytial virus, and
seasonal coronavirus (non-pandemic). Using a multiplex
PCR approach, this study also showed that HRV and H.
influenzae might frequently co-occur in patients with PADs
(40). Furthermore, prolonged shedding of HRV after an acute
Frontiers in Immunology | www.frontiersin.org 5
infection has been shown by another group in patients with
CVID and XLA compared to healthy controls (40 days versus
10 days) (41). Pneumocystis jiroveci pneumonia was reported
in six patients with CVID, three were on systemic steroid
treatment and, one was on systemic steroids and 6-
mercaptopurine (37).

Large cohorts and observational studies reported gastrointestinal
manifestations in 47% to 67% of patients with CVID.
Gastrointestinal infections were seen up to 24% of patients with
TABLE 2 | Continued

Disease (inheritance) Gene Bacterial infections Viral infections Fungal/protozoal
infections

Other infections reported rarely*

SH3KBP1 deficiency (XL) SH3KBP1 Recurrent upper and lower
respiratory tract infections (68)

SEC61A1 deficiency (AD) SEC61A1 Early-onset, severe, bacterial
sinopulmonary infections;
gastroenteritis (69)

RAC2 deficiency (AR) RAC2 Recurrent sinopulmonary
infections (70)

Severe reduction in serum IgG and IgA with normal/elevated IgM and normal numbers of B cells, hyperIgM phenotype
AID deficiency (AR or AD) AID Upper and lower respiratory tract

infections, skin infections,
meningitis (71)

Giardia infections (71) HSV encephalitis, Hepatitis B (71)

UNG deficiency (AR) UNG Upper and lower respiratory tract
infections (72)

MSH6 deficiency (AR) MSH6 No recurrent or severe infections
reported to date (73)

INO80 deficiency (AR) INO80 Severe and recurrent bacterial
respiratory infections (74)

Isotype, light chain, or functional deficiencies with generally normal numbers of B cells
Ig heavy chain mutations
and deletions (AR)**

Mutation or
deletions at
14q32

Upper and lower respiratory tract
infections

Enteroviral infections

Kappa chain deficiency
(AR)**

IGKC Upper and lower respiratory tract
infections (75)

Isolated IgG subclass
deficiency and IgG
subclass deficiency with
IgA deficiency **
(IgGSCD)

Unknown Upper and lower respiratory tract
infections with S. pneumoniae,
H. influenzae type b, N.
meningitides

Upper and lower
respiratory tract
infections with viruses

Selective IgA deficiency**
(SIAD)

Unknown Upper and lower respiratory tract
infections with S. pneumoniae,
H. influenzae; Pharyngitis; urinary
tract infections (76, 77)

Upper and lower
respiratory tract
infections with viruses
Stomatitis, herpes
labialis (76, 77)

G. lamblia
gastroenteritis (78)

Specific antibody
deficiency ** (SPAD)

Unknown Bacterial upper and lower
respiratory tract infections (79)
Chronnic otorrhea in children (79,
80)

Recurrent HSV, S. pneumonia sepsis,
recurrent folliculitis (79)

Transient
hypogammaglobulinemia
of infancy ** (THI)

Unknown Upper and lower respiratory tract
infections, abscesses, urinary
tract infections, meningitis,
sepsis (81)

Hepatitis, osteomyelitis, VZV infection
(81)

CARD11 GoF (AD) ** CARD11 Recurrent upper and lower
respiratory tract infections,
cellulitis (82)

M. contagiosum,
Chronic EBV, BK virus
(82)

S. pneumoniae bacteremia (82)

Selective IgM deficiency
** (SIGMD)

Unknown Upper and lower respiratory tract
infections with S. pneumoniae,
H. influenza and viruses (83–85)

Varicella zoster, CMV,
aseptic meningitis (85)

G. lamblia,
Mycobacterial infection
(85)

Sepsis (S. pneumonia, N. Meningitides)
aseptic meningitis, Invasive Aspergillus
(85, 86)
Febru
AR, autosomal recessive; AD, autosomal dominant; CDG-IIb, congenital glycosylation disorder type IIb; CMV, Cytomegalovirus; EBV, Ebstein-Barr virus; GoF, gain-of-function; LoF, loss-
of-function; XL, X-linked.
*Infections reported < 10 cases in relatively common PADs, such as CVID, SIAD, IgGSCD, SPAD, and XLA, and <2 patients in all other PADs.
**These conditions may be asymptomatic.
ary 2021 | Volume 12 | Article 634181
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gastrointestinal symptoms (38, 39, 98). In a study on 50 patients
with CVID and gastrointestinal symptoms, 14, six, and five patients
developed infections by G. lamblia, Clostridium jejuni, and
Salmonella, respectively (98). G. lamblia was also the most
common gastrointestinal infection in other cohorts (38, 38).
Undetectable serum IgA levels increase the risk of gastrointestinal
infections (38). Although Helicobacter pylori is not a typical
infection in CVID, perhaps due to recurrent antibiotics treatment,
a recent study reportedH. pylori infection in at least 26% of patients
with gastrointestinal symptoms. Some of these patients had
intestinal metaplasia, which persisted for at least 3 years after the
treatment ofH. pylori (98). Chronic diarrhea due toGiardia lamblia
and Isospora belli triggered the CVID diagnosis in a 62-year-old
woman (43).

Studies on large cohorts also revealed that Norovirus and
Cytomegalovirus (CMV) were among the most common viral
causes of gastrointestinal infections in CVID (38, 39, 98). Others
reported that Norovirus can be very severe, causing
malabsorption and enteropathy requiring parenteral nutrition
(42, 99). Although most patients with PADs, efficiently clear oral
polio vaccine (OPV)-related virus (100), viral shedding up to 28
years after OPV was reported in one patient (101).

Adenovirus, CMV, and EBV infections were the cause of
death in eight of 13 patients in a cohort of 25 patients with CVID
who received hematopoietic stem cell transplantation (HSCT)
because of lymphoma or treatment-refractory immune
dysregulation (102).

Recurrent shingles is the most common viral skin infections
in CVID, and the risk factors include steroid therapy,
chemotherapy, and older age (38, 103).

Activated Phosphoinositide 3-Kinase Delta
Syndrome (APDS)
Activated phosphoinositide 3-kinase delta syndrome (APDS) is
caused by autosomal dominant (AD) gain-of-function (GoF)
mutations in PIK3CD (APDS1), AD loss-of-function (LoF)
mutations in PIK3R1 (APDS2) or PTEN (phosphatase and tensin
homolog deleted on chromosome 10). More than 200 patients have
been reported with APDS (21). Patients develop recurrent
respiratory infections, usually caused by S. pneumoniae
and H . influenza dur ing ch i ldhood , fo l lowed by
lymphoproliferation, progressive lymphopenia, autoinflammatory
disease, early onset bronchiectasis, and lymphoma. Short stature
and neurodevelopmental delay were reported in some cohorts (45,
104). According to these reports, about 20% of patients developed
conjunctivitis, which progressed to preorbital cellulitis in some.
Persistent Epstein-Barr virus (EBV) or CMV viremia, EBV
lymphoproliferative disease, and CMV lymphadenitis are
characteristics of APDS. Chronic EBV viremia was seen in all
patients in a series of 9 with APDS (105). Other infections are
summarized in Table 2 (45, 104, 106, 107).

Disseminated CMV infection and chronic diarrhea due to
vaccine-induced rotavirus were reported in one patient with
APDS2 who had tolerated oral polio and Bacillus Calmette–
Guérin (BCG) vaccines (23).
Frontiers in Immunology | www.frontiersin.org 6
Other Monogenic Defects Associated With
CVID Phenotype
Genetic defects may be responsible in up to 30% of patients with
CVID who had at least one of the following criteria: younger age
of onset, autoimmune/inflammatory conditions, low B cells, and/
or family history of hypogammaglobulinemia (51). For example,
mutations in the gene encoding TACI (transmembrane activator
and calcium-modulator and cyclophilin ligand interactor) are
among the most common genetic defects attributed to CVID
phenotype. The inheritance pattern may be autosomal dominant
or autosomal recessive with the characteristics including, like in
many other primary immunodeficiencies, incomplete penetrance
and variable expressivity. Mutations in TACI were found in 4 of
19 unrelated patients with CVID phenotype and one of 16
patients with selective IgA deficiency (SIAD) in one study (63).
Another group reported TACI mutations in 26 of 176 patients
with CVID phenotype (64). Interestingly, none of those patients
had a family history of immune deficiency, and none of their 10
familial cases of CVID had TACI mutations. Clinically, patients
with TACI mutations present with recurrent sinopulmonary
infections as well as autoimmunity, and to date, studies suggest
that clinical phenotypes of TACI mutations are influenced by
additional genetic and environmental changes (108).

According to a recent large US CVID cohort, the second
most common monogenic mutations following TACI
mutations were autosomal dominant variants in nuclear
factor k B subunit 1 (NFKB1), accounting 14 of 235 patients
(109). In addition to infections, the majority of these patients
also had one or more of the following manifestations:
lymphocytic/granulomatous infiltrate, enteropathy, and
autoimmunity. In another cohort, infections in five patients
with NFKB1 deficiency were summarized (51). In addition to
sinopulmonary infections, these patients suffered from
shingles, P. jiroveci pneumonia, Clostridium difficile colitis,
Mycobacterium avium intracellulare (MAI), and progressive
multifocal leukoencephalopathy (PML). The latter was the
cause of death in 1 of 2 patients.

Heterozygous AD mutations in IKZF1, encoding the zinc-
finger transcription factor IKAROS were recently reported in
patients with CVID phenotype (54, 55, 110). These patients have
progressive loss of serum immunoglobulins and B cells. While S.
pneumoniae was a common pathogen, increased susceptibility to
viral or fungal infections was not observed in these patients.

Other monogenic conditions associated with CVID
phenotype have been reported in a limited number of patients.
Although their clinical presentations are similar and consist of
recurrent infections starting early in life, there are some
deviations. For example, infections in BAFF receptor deficiency
may start as late as 70 years of age (65). In addition, some defects
are associated with specific clinical manifestations, such as
hamartoma and macrocephaly in PTEN deficiency,
sideroblastic anemia and progressive developmental delay in
TRNT1 deficiency, and severe neurologic disease and
dysmorphic facial features in mannosyl-oligosaccharide
glucosidase deficiency (58, 111, 112).
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Severe Reduction in Serum IgG and IgA
With Normal/Elevated IgM and Normal
Numbers of B Cells: HyperIgM Phenotype
These conditions result from defects in class-switch recombination
(CSR). Activation-induced deaminase (AID) plays a significant role
in CSR and somatic hypermutation (SHM). Together, SHM and
CSR are crucial for a pathogen-specific, high-affinity antibody
response. Uracil-DNA glycosylase (UNG) also plays a significant
role in CSR and SHM (113, 114). Consequently, defects in AID or
UNG genes result in recurrent and severe infections, autoimmunity
(AID deficiency), and lymphoma (UNG deficiency) (Table 2) (19,
71, 115).

In this group, MSH6 deficiency may not be associated with
susceptibility to recurrent infections (73).

Isotype, Light Chain, or Functional
Deficiencies With Generally Normal
Numbers of B Cells
Selective IgA Deficiency
Selective IgA deficiency (SIAD) is defined as undetectable serum
IgA levels, and normal IgG and IgM levels after age 4 (116). The
prevalence ranges from 1:18.500 in Eastern Asian population to
1:500 in Caucasians (116–118). Some chromosomal disorders,
including chromosome 18 abnormalities, trisomy 21, and
22q11.2 microdeletion are associated with SIAD (119–123). In
addition, familial clustering may occur (76, 124–126). SIAD may
be transient in children, or sometimes, it may evolve to CVID
(76, 127, 128).

Although, the majority of patients are asymptomatic,
recurrent bacterial, and viral respiratory infections,
autoimmunity (e.g., celiac disease), and allergies are seen more
commonly in SIAD than in general population. In addition,
individuals with SIAD more often undergo tonsillectomy and
adenoidectomy, and they develop pharyngitis, stomatitis, herpes
labialis, and urinary tract infections more often than the general
population (76, 77, 129–131).

While the recommendation is to avoid a definite diagnosis of
SIAD before age 4, one study showed that children with
undetectable IgA levels suffered from infections more often
than children with detectable but low IgA levels, and atopy
was more common in both groups than in children with normal
IgA levels (121).

In some patients, SIAD and specific antibody deficiency, or
SIAD and IgG subclass deficiency may co-occur. Bronchiectasis
and recurrent infections are more commonly reported in these
patients than in patients with isolated SIAD (123).

Like in many other PADs, G. lamblia has been an increasingly
reported gastrointestinal pathogen in SIAD (78, 131).

In patients older than 12 years, one study reported that,
although the prevalence of H. pylori-associated dyspepsia was
not higher in SIAD, those patients who had H. pylori infection
experienced more esophagogastroduodenoscopy (EGD)-
proven gastritis, duodenal ulcers, and nodular lymphoid
hyperplasia (132). Other studies showed that H. pylori
infection was one of the most common gastrointestinal
infections in children (< 17 years) with SIAD (133, 134).
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In addition, H. pylori infection may be associated with more
severe periodontitis in SIAD (129).

Interestingly, patients with SIAD are not susceptible to
rotavirus disease, and in fact, they may develop higher levels of
rotavirus-specific IgG1 than healthy individuals (135).

Specific Antibody Deficiency
Specific antibody deficiency (SPAD or SAD) is defined as an
inadequate antibody response to polysaccharide antigens in
patients who have normal serum immunoglobulin levels and
IgG subclasses. It may be the most common PIDs in children (3),
and it may be transient (79, 136). In addition to bacterial
respiratory tract infections, very rarely, invasive infections and
even bronchiectasis may develop in undiagnosed patients
(Table 2) (136, 137).

IgG Subclass Deficiency
IgG subclass deficiency (IgGSCD) is diagnosed when one or
more IgG subclass levels are 2SDs below the age-adjusted range
in patients with normal total IgG levels. Patients present with
recurrent bacterial and viral respiratory infections and atopy (3,
138–141). IgGSCD has also been reported more commonly in
patients with chronic obstructive pulmonary disease (COPD)
exacerbation (141).

In children, the most common IgGSCD is IgG2 deficiency
followed by IgG3 deficiency, and maybe transient (142, 143). In
adults, IgG3 deficiency may be the most common IgGSCD (144).
IgG3 deficiency was also the most common immune deficiency
in children and adults with refractory rhinosinusitis (145).

IgGSCD and SPAD may co-occur (140). In children, this
combination may be more common in boys, may be associated
with bronchiectasis, and may progress to CVID or other
immunodeficiencies (143).

Selective IgM Deficiency
Selective IgM deficiency (SIGMD), defined as low serum IgM
levels (< 2SD), and normal IgA and IgG levels, can be seen in
children and adults (83, 146–148). Its prevalence was reported as
0.37% in healthy blood donors (147). About 45% of symptomatic
patients may also have SPAD or IgGSCD (83, 84). Respiratory
infections, and rarely, bronchiectasis, sepsis, and meningitis may
be seen in up to 80% of symptomatic patients (Table 2) (84–
86, 149).

In addition, atopic diseases and autoimmunity are common,
especially in adults with SIGMD (85, 148).
COVID-19 AND PADS

Coronavirus disease -19 (COVID-19) caused by severe acute
respiratory distress syndrome coronavirus 2 (SARS-CoV-2), has
been one of the major pandemics in human history. Like other
immunocompromised states, PADs are presumed to be a risk
factor for severe SARS-CoV-2 infection. Though data are limited,
a large study including PADs (N:53) who developed COVID-19
reported that 13 of 40 patients with PAD who also had associated
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co-morbidities died whereas all 13 patients who had no COVID-
19 associated co-morbidities survived (150).

An effective and timely production of pathogen-specific
neutralizing antibodies should prevent viral replication and
progression to severe disease. Therefore, one would expect
worse clinical outcome in patients with PADs. In addition,
SARS-CoV-2-specific T cells were recently demonstrated to be
important in controlling and resolution of COVID-19 (151).
Recently, two young adults with XLA (one had underlying
bronchiectasis) developed COVID-19 pneumonia, but did not
require intensive care. Another three patients with XLA had
prolonged COVID-19 with increased proinflammatory
responses recovered after treatment with convalescent serum
(152, 153). Another group reported that two patients with
agammaglobulinemia due to absent B cells had milder
infection than five patients with CVID who had detectable B
cells (154). These observations may be explained by presence of
normal T cells in the cases of XLA, and defective T cells in some
patients with CVID, and emphasize the importance of T cells in
COVID-19. Detailed examination of clinical and immunologic
response to SARS-CoV-2 in patients with PADs will provide
indispensable knowledge on the pathogenesis of COVID-19.
CHALLENGES IN DIAGNOSING
INFECTIONS IN PADS

Although infections are the most common manifestations of PADs,
identifying the pathogen is not always easy because of high chance
of false-negative serologic testing due to defects in pathogen-specific
antibody production. In addition, false-positive serology may be
seen in patients who are on IgRT. Therefore, direct identification of
the microorganism by blood or tissue cultures, immunofluorescense
staining, pcr testing, or amplicon sequencing are necessary for
accurate diagnosis. Recently, next-generation sequencing (NGS)
and matrix-assisted laser desorption/ionization time-of-flight
mass-spectrometry (MALDI-TOF MS) successfully identified the
pathogens in patients with PADs (13, 15, 155).
RELATIONSHIP BETWEEN IGG LEVELS
AND INFECTIONS

Life-long IgRT, administered either intravenously (IVIG) or
subcutaneously (SCIG), is the standard treatment of the
majority of PADs (7, 139, 140). In general, IgRT does not
prevent or treat non-infectious manifestations.

Serum IgG trough levels, defined as IgG levels just before the
next dose, strongly correlate with the dose and interval (8, 156).
However, some patients with bronchiectasis or chronic lung disease
require twice as much IgRT dose to achieve the same IgG trough
levels (103, 157). Bacterial infections and bronchiectasis are more
commonly seen in patients with low IgG levels (64, 103, 158, 159).
IgRT may not significantly reduce viral respiratory infections (40).

A meta-analysis showed a progressively reduced number of
infections with increasing IgG trough levels from 660 to 960 mg/
Frontiers in Immunology | www.frontiersin.org 8
dL. Beyond this level, the reduction in infection rate was not
statistically significant (156). In another study, a positive
correlation between total IgG trough levels and specific anti-
pneumococcus and anti- H. influenza IgG levels were observed,
and no serious lung infections developed in patients with IgG
trough levels ≥700 mg/dL (160). In XLA, IgG trough levels > 800
mg/dl may prevent the onset of bronchiectasis, chronic sinusitis,
and enteroviral infections (8).

On the other hand, IgG trough levels that prevent bacterial
infections varied from 5 g/L to 17 gr/L in different patients,
suggesting that the dose should be individualized based on
clinical symptoms (103, 161). However, adjusting the IgRT
dose based on frequency of infections alone may not be
sufficient to prevent chronic lung damage (8, 157, 162). In
addition, very low serum IgA and IgM levels have been
associated with more severe radiographic lung disease and
higher chance of bacterial colonization (159, 163). These
findings suggest that higher trough IgG levels should be aimed
in selected patients, such as, patients with chronic lung damage,
history of viral CNS infections, and very low IgA or IgM levels.
For example, two of three patients with enteroviral
meningoencephalitis recovered from infections with higher
dose of IVIG achieving trough levels between 3,100 and 6,300
mg/dL (8). High dose IgRT, however, had no beneficial effect in
severe Norovirus infection in patients with CVID (99).

A recent systematic review and meta-analysis showed that
weekly SCIG therapy resulted in higher IgG trough levels, and a
linear decrease in incidence of infections with every 100 mg/dl
increase in IgG trough levels. This was not observed in patients
who received IVIG (164). Another recent study found that IVIG
rather than SCIG therapy was associated with higher risk of
bronchiectasis (165). This observation require confirmation by
larger, controlled studies.
OTHER THERAPIES TO PREVENT
INFECTIONS

Prophylactic antibiotics have been used to prevent infections in
PADs (166). However, their negative effect on airway and
gastrointestinal microbiota continues to be a major concern (159).

Administration of conjugated pneumococcal vaccine may
achieve protective antibody levels and prevent pneumococcal
infections in SIAD and IgSCD.

Although hematopoietic stem cell transplantation is not
recommended in PADs, mostly due to the risks of GVHD,
associated mortality, or no benefit, reduced intensity
conditioning showed promising results in XLA (167, 168).
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