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Abstract

GENETIC INVESTIGATION OF THE PACIFIC TROUT COMPLEX: FROM

PEDIGREES TO PHYLOGENIES

by

Alicia Abadia-Cardoso

Perhaps one of the world’s most important groups of fish are the species within
the Pacific trout complex, due to their extensive harvest in fisheries and use in aqua-
culture. This dissertation consists of an in-depth evaluation of this group of trout at
different scales, from the assessment of biological traits throughout the reconstruction
of pedigrees in two trout populations to a phylogeographic examination of multiple
largely undescribed native species. Here, a combination of novel molecular techniques
allowed me to address critical ecological questions for the appropriate management and
conservation of this group.

In chapter one, I describe how I discovered, characterized and developed a
large number of single nucleotide polymorphisms (SNPs) for O. mykiss that allow study
of ecological interactions, phylogeography, and conservation status. These molecular
tools have great power for traditional population genetic analysis, and for individual
identification and pedigree reconstruction. The last allows the tracking of families, and
an unprecedented level of evaluation of natural and hatchery populations.

Chapter two expands the scope of these molecular tools to provide a power-

ful means of understanding of biological traits for steelhead hatchery programs in the



Russian River, California. Reconstruction of cohort age distributions revealed a strong
component of fish that spawn at age two, in contrast to program goals and distinct from
naturally spawning steelhead in the region. Correlations between family members in
the day of spawning revealed a strongly heritable component to this life history trait
and demonstrated the potential for selection to alter life history traits. These results
demonstrate the promise of SNP-based pedigree reconstruction for providing biological
inference in high-fecundity organisms.

Chapter three describes how the powerful molecular tools developed were ap-
plied to population genetics of trout inhabiting northwestern Mexico, to elucidate bio-
diversity, evaluate hypotheses regarding evolutionary history, and measure introgression
from exotic hatchery rainbow trout. Here, I confirmed the vast genetic diversity present
in northwestern Mexican trout and provided evidence that trout inhabiting the Sierra
Madre Occidental correspond to independent lineages separated from O. mykiss. Intro-
gression from non-native trout was detected, but the genetic integrity of native trout is
still maintained in many watersheds. All the information presented in this document
will help to guide effective conservation strategies for this globally important group of

fishes.

xi



A mis queridos abuelos

José, Trini,

Fernando y Martha.

xii



Acknowledgments

First of all, I want to express my sincere gratitude to my PhD advisor Carlos
Garza. None of this would have been possible without his immense support. The super-
vision and guidance he provided me as his student was essential in my path to become a
researcher. His insightful and broad knowledge enlightened me enormously. He gave me

the right pushes and was patient in the right moments, to just make me a better scientist.

I am especially thankful to Devon Pearse for his invaluable advise. I am grate-
ful for all those times I spent discussing science and for always taking the time to listen

to my questions and concerns about my work, or simply about life.

Over the years, I needed the assistance from many people in the various tasks
I have undertaken. I want to thank Libby Gilbert-Horvath for all her help in the lab,
making sure that everything worked properly and that I always had the necessary to
run my samples, and Eric Anderson for always taking the time to assist me on any

math/computer issues I encounter and for his invaluable collaboration on chapter 2.

I would also want to thank my past and present office and lab mates, with

whom I spent endless hours sharing four walls. Most importantly among them was An-

thony Clemento, for all the constructive discussions I had to make our research better.

xiii



This study would not have been possible without the sampling and associated
efforts of multiple people to whom I am grateful. Thanks to Francisco Garcia de Ledn,
Richard Mayden, and all the people from the binational group “Truchas Mexicanas”
for providing the Mexican trout samples. Thanks to past and present members of the
Molecular Ecology and Genetic Analysis Team: V. Apkenas, M. Arciniega, A. Clemento,
C. Columbus, E. Gilbert-Horvath, H. Starks, D. Pearse A. Martinez, and E. Martinez
for assistance with laboratory analyses and comments. I also thank the staff at WSH
and CVFF, including P. LaCivita, E. McKenna, R. Taylor, B. White and B. Wilson.
Additional thanks to A. Aguilar, N. Campbell, G. Charrier, C. Donohoe, G. Edwards,
H. Fish, S. Hayes, A. Matala, L.. Seeb and P. Moran for help with protocol development,

supplying samples or insightful discussions.

I also need to thank my committee members Jonathan Zher, Grant Pogson,
and Francisco Garcia de Ledn for their valuable comments to my proposal and especially

in the final stages of this dissertation.

In a personal note, I want to thank my mom, my dad, and my brother for their

endless encouragement from the distance.

Many thanks to my terrific friends that made this endeavor more bearable and
fun. The Mexicans: Martha, Horacio, Stella, Sergio, and Emilio...and Luis. The dinner

cluppers: Sally, Jimmy, Alice, Cyril, and lately Anne Marie and Bill. My (putative)

Xiv



cohort: Melinda, Justin C., Jimmy, Cyril and Justin Y. The soccermates: all of them...

Last but not least, I want to express my deep gratitude to my partner-for-life
Rodrigo. Once I heard that if you want to really meet someone you have to travel with
that person. A few years ago, Rodrigo and I decided to take this arduous but gratifying
trip that is the PhD and I have learn together not only about science but more impor-

tantly, about shared life and love.

Funding was provided by the CONACyT-UC Mexus Program, the National
Marine Fisheries Service, Southwest Fisheries Science Center, and the US Army Corps
of Engineers. The text of this dissertation includes reprints of the following previously
published material:
Abadia-Cardoso A, Clemento AJ, Garza JC (2011) Discovery and characterization
of single nucleotide polymorphisms in steelhead/rainbow trout, Oncorhynchus mykiss.
Molecular Ecology Resources 11, 31-49.
Abadia-Cardoso A, Anderson EC, Pearse DE and Garza JC (2013) Large-scale parent-
age analysis reveals reproductive patterns and heritability of spawn timing in a hatchery
population of steelhead (Oncorhynchus mykiss). Molecular Ecology 22, 4733-4746.

The co-author Garza JC in these publications directed and supervised the
research which forms the basis for the dissertation. The contribution of Abadia-Cardoso

A to these publications was intellectually major and included laboratory work, data

analysis, and manuscript writing.

XV



General Introduction



The genus Oncorhynchus is a monophyletic group of salmonid fishes (Stearley
& Smith 1993) that comprises approximately 11 species and about 28 named subspecies
(Behnke 2002). In North America, the genus Oncorhynchus is divided into two main
groups: the Pacific salmon that includes coho (O. kisutch), Chinook (O. tshawytscha),
sockeye (O. nerka), chum (O. keta), and pink (O. gorbuscha) salmon; and the Pacific
trout that includes steelhead/rainbow (O. mykiss ssp.), cutthroat (O. clarkii ssp.), gila
(0. gilae), apache (O. apache), and Mexican golden (O. chrysogaster) trout, as well as
a diverse complex of taxonomically unclassified trout from the Sierra Madre Occidental
(SMO) in Mexico (Behnke 2002; Utter & Allendorf 1994).

Pacific trout taxonomy and classification have been subject to constant de-
bate. Initially, the Pacific trout complex was classified within the genus Salmo based
on morphological characteristics and life history traits (e.g. iteroparity). More recently,
other morphological characteristics and molecular techniques were used to reclassify the
group into the genus Oncorhynchus with the Pacific salmon (Smith & Stearley 1989).

The genus Oncorhynchus diverged from the genus Salmo around 15-20 million
years ago (mya) in the early Miocene (Behnke 1992; Devlin 1993; Wilson & Turner
2009). During the Miocene-Pleistocene, strong geologic activity and climate variability
in northwestern North America allowed radiation of the salmonids (Montgomery 2000).
By the end of the Miocene the genus had diverged into two distinct lineages: the Pa-
cific salmon, and the Pacific trout, both found in North American drainages (Behnke
1992; Stearley & Smith 1993; Wilson & Turner 2009). The Pacific trout diverged into

the rainbow (O. mykiss) and cutthroat (O. clarkii) lineages during the late Pleistocene



(Behnke 1992; Crespi & Fulton 2004). The current native distribution of O. mykiss ex-
tends from the Kamchatka Peninsula in northeastern Asia to northern Mexico in North
America. However, it has been introduced worldwide and there are now naturalized
populations of the species in Europe (Fausch 2007), and in the southern hemisphere
in Argentina (Pascual et al. 2001), New Zealand (Scott 1978), and many other places.
Two phylogenetically distinct lineages within O. mykiss have been identified in North
America: the inland and the coastal groups, which are roughly separated by the Cas-
cades mountain range (Behnke 1992; Burgner et al. 1992; Busby et al. 1996). Within
these groups, several ecotypes of O. mykiss can be distinguished. The nonanadromous
freshwater resident form is called rainbow, golden or redband trout and the anadromous
form of the species is called steelhead. Steelhead spend several years (up to seven) in
freshwater, then migrate to the ocean where they spend up to three years, before coming
back to freshwater to spawn. Steelhead also show distinct temporal “runs” or “races”
that are defined by the season (spring, summer, fall or winter) of peak river entry and
associated reproductive maturity (Busby et al. 1996).

These extremely complex life history traits present great difficulty for the as-
sessment and monitoring of the species populations. Moreover, salmonid populations
on the West coast of the United States have declined dramatically during the past few
decades and many steelhead populations are now protected under the United States En-
dangered Species Act (NOAA 2006). The most important causes for this decline include
habitat loss, habitat degradation, recreational and commercial fishing, and hatchery

operations. Introgression by genetically depauperate hatchery rainbow trout that have



been stocked in great numbers in basins containing native steelhead has also been re-
ported as a potential threat to some steelhead populations (Araki et al. 2007a; Araki et
al. 2007b; Clemento et al. 2009; Garza & Pearse 2008). But the threats faced by these
salmonid species are not exclusive to the United States. Trout inhabiting Northwestern
Mexico are likely to go extinct due to these threats without urgent documentation and
conservation action. The Mexican trout complex has been recognized as one of the
most diverse and least known groups of trout, since there is scarce knowledge about
their taxonomic status (Behnke 2002).

The fossil record indicates that trout inhabited Mexico during the Pleistocene.
The southernmost record for a fish assigned to the family Salmonidae is in the Lake
Chapala, Jalisco, Mexico region near 20° North latitude (Cavender & Miller 1982).

Behnke (1992) suggests that the Gulf of California acted as a refugium for
anadromous O. mykiss during the Pleistocene glaciations. These trout migrated from
the Gulf into rivers of northwestern Mexico, Arizona and New Mexico. The subsequent
increase in both ocean and river water temperatures constrained these trout to the high
elevation headwaters of different river systems. Long isolation times gave rise to the Gila
(0. gilae), Apache (O. apache), Mexican golden (O. chrysogaster), and, presumably, the
other SMO trout.

Molecular population genetic analysis has proven to be one of the most effec-
tive methods for addressing phylogenetic, ecological and conservation questions and for
providing other types of biological inference on fishes. Considerable interest has been

shown for decades in the phylogeny and taxonomic status of the rainbow trout complex.



Through the years, multiple molecular methods have been used to understand the ge-
netic identity of subgroups within the complex throughout western North America. For
example, allozyme analysis showed the longitudinal separation of the inland and coastal
O. mykiss lineages (Allendorf 1975), and also, gave insights into the genetic structure
along the coast, indicating stronger genetic similarity within geographically proximate
populations (Okazaki 1984; Utter et al. 1973). Mitochondrial DNA (mtDNA) analysis
was the common method used during the 1980s and 1990s to identify genetic structure
among natural populations and differentiation from hatchery-raised fish (Nielsen et al.
1994a; 1994b; Bagley & Gall 1998; McCusker et al. 2000). Analysis using mtDNA fur-
ther revealed the phylogenetic proximity of the two O. mykiss ecotypes (rainbow trout
and steelhead), and its divergence from cutthroat trout (Wilson et al. 1985; Thomas
et al. 1986). More recently, microsatellite loci are widely used as a tool for investi-
gating population structure and interactions among different groups of 0. mykiss with
very high resolution (Beacham et al. 2000; Aguilar & Garza 2006; Pearse et al. 2007;
Clemento et al. 2009). Additionally, due to its economic importance, other genomic
resources have been developed for the species, including expressed sequence tag (EST)
databases (http://compbio.dfci.harvard.edu) and linkage maps (Rexroad et al. 2008).
In turn, these resources allow the development of valuable and powerful genetic tools,
such as single nucleotide polymorphism (SNP) markers, that improve our understanding
of the biology and evolutionary relationships within the rainbow trout complex, to be
able to enact appropriate management strategies for these fishes. A SNP represents a

mutation occurring on a DNA sequence when a single nucleotide base differs between



two alleles or individuals. Several characteristics make SNPs extremely powerful. For
example, SNPs are the most common type of genetic variation in vertebrates (Wang
et al. 1998; Smith et al. 2005), they can occur within any genomic region, and they
have a relative low mutation rate (Brumfield et al. 2003). In addition, SNPs offer the
potential for high-throughput genotyping at low cost, lower genotyping error rates and
ease of standardization between laboratories.

In spite of all that is known about the rainbow trout complex, there are still
many questions that remain and that can only be resolved by applying new genomic
and molecular resources. An extensive and in depth evaluation of genetic variability in
the rainbow trout complex was undertaken to address some of these evolutionary and
conservation questions.

In chapter one, I have described a large number of SNPs for O. mykiss in or-
der to study ecological interactions, phylogeography, and conservation status (Abadia-
Cardoso et al. 2011). These molecular genetic tools have proven to have great power,
not only for traditional population genetic analysis and phylogenetics, but also for in-
dividual identification and for the reconstruction of pedigrees. The last of these allows
the tracking of families, and an unprecedented level of monitoring and evaluation of
natural and hatchery /aquaculture populations (Anderson & Garza 2006). Chapter two
expands the scope of these new molecular genetic tools, by demonstrating the appli-
cation of a novel individual-based method for large-scale reconstruction of pedigrees
in a steelhead population. This work provides a powerful approach for understanding

many basic biological traits in a relatively high fecundity species with significant con-



servation concerns, including estimation of variance in reproductive success, migration
rates, effective population sizes, life-stage-specific mortality rates, and other population
parameters. In this chapter, I was able to elucidate these life history patterns for steel-
head populations from two hatchery programs in the Russian River to examine whether
assumptions made by resource managers are supported and whether supplementation
may be negatively influencing the associated natural populations (Abadia-Cardoso et
al. 2013). In chapter three, the powerful molecular tools developed were applied to pop-
ulation genetic analysis of the Mexican trout complex, to evaluate population structure
and differentiation, and to understand its phylogeographic distribution. In addition, an
evaluation of the extent of hybridization and genetic introgression from exotic hatchery
rainbow trout into the native trout populations of northwestern Mexico was performed,
all to better understand the evolutionary origins of this group and to contribute to the

conservation of its important biodiversity.
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Chapter 1

Discovery and characterization of single
nucleotide polymorphisms (SNPs) in
steelhead /rainbow trout Oncorhynchus

muykiss
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Abstract

Single nucleotide polymorphisms (SNPs) have several advantages over other
genetic markers, including lower mutation and genotyping error rates, ease of inter-
laboratory standardization, and the prospect of high-throughput, low-cost genotyping.
Nevertheless their development and use has only recently moved beyond model organ-
isms to groups such as salmonid fishes. Oncorhynchus mykiss is a salmonid native to
the North Pacific rim that has now been introduced throughout the world for fisheries
and aquaculture. The anadromous form of the species is known as steelhead. Native
steelhead populations on the west coast of the United States have declined and many
now have protected status. The non-anadromous, or resident, form of the species is
termed rainbow, redband or golden trout. Additional life history and morphological
variation, and interactions between the forms, make the species challenging to study,
monitor and evaluate.

Here I describe the discovery, characterization and assay development for 139
SNP loci in steelhead/rainbow trout. I used EST sequences from existing genomic
databases to design primers for 480 genes. Sanger-sequencing products from these
genes provided 130KB of consensus sequence in which variation was surveyed for 22
individuals from steelhead, rainbow and redband trout groups. The resulting TagMan
assays were surveyed in 11 natural-origin steelhead populations, four O. mykiss hatchery
strains, and two introduced O. mykiss populations in the southern hemisphere, where

they had a mean minor allele frequency of 0.112-0.258 and observed heterozygosity of
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0.0001-0.342. Mean Fgp was 0.206. All 139, along with 28 assays previously devel-
oped by other laboratories, where screened to select a panel of 96 highly informative
SNPs. The selection of assays was based on their utility for parentage inference in
four steelhead populations in California and their ability to distinguish individuals from
several California populations. The development of SNPs for O. mykiss will help to
provide highly valuable genetic tools for individual and stock identification, pedigree

reconstruction, phylogeography, and ecological investigation.

1.1 Introduction

The development of highly informative molecular markers is an important first
step in the investigation of population, ecological, evolutionary and conservation genetic
questions. Several types of molecular markers have been widely used since the develop-
ment of the polymerase chain reaction (PCR), including randomly amplified polymor-
phic DNA (RAPDs), amplified fragment length polymorphisms (AFLPs), mitochondrial
DNA sequences and variable number of tandem repeat markers, such as microsatellites
and minisatellites. More recently single nucleotide polymorphisms (SNPs) have begun
to see use in population genetics, although primarily for model organisms. SNPs are
nucleotide variants found at particular genomic locations and are normally bi-allelic
(Vignal et al. 2002). SNPs have several advantages over other markers, including that
they are the most abundant polymorphisms in vertebrate genomes, with an approxi-

mate density of 1073 SNPs per base pair (Smith et al. 2005; Wang et al. 1998), they
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are found in both coding and noncoding regions (Brumfield et al. 2003), and they have
a lower mutation rate (Brumfield et al. 2003), which is an important source of error
in many applications. The use of SNP markers with humans and other model organ-
isms is extensive and has focused on genetic mapping, disease diagnosis, toxicology and
pharmacogenomics (McCarthy & Hilfiker 2000; Sachidanandam et al. 2001; Wang et
al. 1998). Conversely, in non-model organisms, such as salmonid fishes, the use of SNP
markers is quite recent and has focused more on population identification and ecological
genetic questions (Narum et al. 2008).

Oncorhynchus mykiss is a salmonid species native to the North Pacific rim. Its
current native distribution extends from the Kamchatka Peninsula in northeastern Asia
to northern Mexico in North America. However, it has been introduced throughout
the world for recreational fisheries and aquaculture, and there are now naturalized
populations of the species in the southern hemisphere (Pascual et al. 2001) and in
Europe (Fausch 2007). Two widespread and phylogenetically distinct lineages of O.
mykiss have been identified in North America and they correspond roughly to inland and
coastal groups separated by the Cascades mountain range (Burgner et al. 1992; Busby
et al. 1996), although the full phylogenetic picture is more complicated (McCusker et
al., 2000). In addition, many ecotypes and life history strategies are present in the
species. Generally, the anadromous form of the species is termed steelhead and the
nonanadromous, freshwater form rainbow, golden or redband trout. Steelhead spend
from one to seven years in fresh water, then migrate to the ocean where they spend

from one to three years before returning to fresh water to spawn. However, life history
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strategy in O. mykiss is governed by a complex mix of environmental and heritable
factors, such that a single interbreeding population can contain individuals expressing
nearly every possible combination of years in fresh and salt water (Shapovalov & Taft
1954). There are also several ecotypes of steelhead that can coexist as distinct temporal
“runs” or “races” that are defined by the season (spring, summer, fall or winter) of peak
river entry and associated reproductive maturity (Busby et al. 1996).

This life history complexity makes monitoring and evaluation of the species,
and its multitude of managed populations and stocks, difficult. Such assessment has
become increasingly important, since salmonid populations on the west coast of the
United States have declined dramatically during the past few decades and many steel-
head populations are now protected under the United States Endangered Species Act
(ESA; NOAA, 2006). The most important causes for this decline include habitat loss,
habitat degradation, recreational harvest and hatchery operations. In addition, geneti-
cally depauperate hatchery rainbow trout have been stocked in great numbers in basins
containing native steelhead. Introgression by these trout has been reported and may
pose a substantial threat to at least some steelhead populations (Clemento et al. 2009;
Garza & Pearse 2008).

One of the most important methods for monitoring the effects of such threats
on fish populations, and for providing other types of biological inference about them,
is the use of molecular population genetic analysis. Microsatellite loci have seen wide-
spread use with O. mykiss and have proven powerful in studying population structure

and interactions among different groups (Aguilar & Garza 2006; Beacham et al. 2000;
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Clemento et al. 2009; Narum et al. 2004; Pearse et al. 2007). Fortunately, due primarily
to the importance of 0. mykiss in aquaculture, many additional genomic resources have
been developed for the species, including expressed sequence tag (ESTs) databases and
linkage maps (Rexroad et al. 2008).

These resources are allowing more detailed analyses of ecological and conser-
vation genetic questions than previously possible (e.g. Martinez et al. 2011). They
also allow the identification and development of SNP markers for salmonid species that
can be surveyed on a large scale (Castano-Sanchez et al. 2009; Smith et al. 2005).
Such markers will allow large-scale monitoring and will further elucidate some of the
pressing questions regarding O. mykiss ecology and life history evolution, through both
traditional population genetic analyses and through large-scale parentage inference (An-
derson & Garza 2006), particularly with the advent of high-throughput genotyping
methods.

In this study I describe the discovery, characterization and development of
assays for a large number (139) of SNP loci for steelhead/rainbow trout. I exploited
EST databases to design nearly 500 primer sets for functional genome regions. PCR
products resulting from these genes, which include both exonic and intronic regions,
were then sequenced in an ascertainment panel of 22 fish designed to simultaneously
represent some of the phylogenetic diversity of the species and to provide polymorphic
markers for focal populations in California. Such “balanced” ascertainment is intended
to reduce the bias against polymorphism in other populations and lineages of a species

when only particular groups are used in marker discovery (Clark et al. 2005). I also in-
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cluded two individuals of a sister species, O. clarkii, in order to identify species diagnostic
markers. These SNP markers represent a valuable resource for studying ecological inter-
actions, phylogeography, and conservation status, as well as for pedigree reconstruction,

individual and genetic stock identification and, eventually, for linkage mapping.

1.2 Methods

1.2.1 Ascertainment panel

Individuals from multiple populations and lineages of O. mykiss were chosen
for the ascertainment panel. A total of 22 fish from five distinct steelhead populations or
rainbow trout strains were included: 10 anadromous adult steelhead from Scott Creek,
four anadromous adult steelhead from the Middle Fork Eel River summer run, two
redband trout (Oncorhynchus mykiss newberrii) from the Upper Klamath River basin,
and six hatchery rainbow trout raised at Fillmore Hatchery on the Santa Clara River
near Los Angeles, CA. Three of these trout were from either the Virginia or Wyoming
strains and three were from the Mt. Whitney Strain (Busack & Gall 1980). In addition,
two coastal cutthroat trout (O. clarkii clarkii) from Little River, Humbolt County,
CA were included in the ascertainment panel, in order to detect and avoid designing
assays for polymorphisms that might be due to past hybridization between steelhead
and cutthroat trout (Young et al. 2001), and to identify candidate markers for species

diagnostic.
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1.2.2 Genetic analysis

Tissue samples were digested with proteinase K, followed by DNA extraction
with a semi-automated membrane-based system (DNeasy 96 Tissue Kit, QIAGEN Inc.)
on a QIAGEN BioRobot 3000. All of these samples had been previously genotyped with
microsatellites, so that DNA quality was known to be high. Purified DNA was diluted
1:20 in ddH50 for PCR.

A total of 480 O. mykiss expressed sequence tags (ESTs) were selected us-
ing a random number generator from the rainbow trout “Gene Index” (RtGI) online
database hosted at the Dana-Farber Cancer Institute and Harvard School of Public
Health (http://compbio.dfci.harvard.edu; accessed on December 8, 2006). Primers were
designed using the program primer3 v.0.4.0 (Rozen & Skaletsky 2000) for each of these
loci. PCR amplifications were conducted using the following parameters: 0.041 U Am-
pliTaq DNA polymerase (Applied Biosystems Inc.), 1.5uL PCR buffer (Applied Biosys-
tems Inc.), 0.9mM MgCly, 0.5mM dNTPs, 5umol of each primer and 14uL of DNA
template. Thermal cycling conditions employed a “touchdown” protocol and were as
follows: an initial denaturation of 3 min at 94°C, then 2 min at 63°C, and 1 min at
72°C, followed by [94°C for 30s, 60°C for 30s, 72°C for 1 min| x 12 (—1°C/cycle), [94°C
for 30s, 48°C for 30s, 72°C for 1 min] x 11; [94°C for 30s, 48°C for 30s, 72°C for 1
min (+ 10s/cycle)] x 9, and finally 5 min at 72°C. PCR products were surveyed by
gel electrophoresis in 2% agarose. PCR products that exhibited a single robust band

were purified using an Exo-Sap protocol (USB Inc.): 5mL of PCR product, 0.15mL of
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Exonuclease I (20U/mL), 1mL of shrimp alkaline phosphatase (1U/mL), 0.5mL of 10x
buffer and 3.36mL of deionized water were incubated at 37°C for 60 min and then 80°C
for 20 min with a cool down to 4°C. Clean products were then Sanger-sequenced on
both the forward and reverse strands using the BigDye Terminator v3.1 Cycle Sequenc-
ing kit (Applied Biosystems Inc.). Sequencing reaction products were purified using 6%
Sephadex columns and visualized by capillary electrophoresis on a 3730 DNA Analyzer
(Applied Biosystems Inc.).

All sequences from each locus were aligned and assembled into contigs using
Sequencher 4.9 (Gene Codes Corporation). Where the alignments indicated a poly-
morphism, the chromatograms were visually examined for verification. To consider a
polymorphism for development as a SNP assay, I used the criterion that all three geno-
types (the homozygotes for both alleles and the heterozygote) for that site must have
been observed at least once in the ascertainment panel. No distinction was made with
respect to the population or strain in which the genotypes were found. This ascertain-
ment criterion was employed to reduce the identification of sequencing artifacts as SNPs
and to select the nucleotide sites that had the highest probability of being sufficiently
polymorphic for downstream applications. A BLAST search was also performed on each
consensus sequence to determine if the EST corresponded to an identified gene and to
ensure that each SNP marker would represent a novel assay in an independent gene. 1
chose one potential SNP for each EST analyzed in order to reduce the probability of
markers in linkage disequilibrium. The site with the highest minor allele frequency in

the ascertainment sample that also met the assay design criteria (e.g. more than 25bp

20



from the end of the sequence, no adjacent polymorphism) was chosen for assay design.
The original ESTs and the BLAST results were also used to identify the variability
patterns of the SNPs chosen, such as the region on the gene (intronic or exonic) and

the position on the triplet (synonymous or non-synonymous).

1.2.3 SNP assay development and validation

Consensus sequences, with the selected nucleotide sites indicated, were submit-
ted for design of 5" nuclease allelic discrimination, or TagMan, assays (Applied Biosys-
tems Inc.). When it was not possible to design an assay for a selected site and another
nucleotide in the consensus sequence met both the ascertainment and design criteria, a
second attempt was made to design an assay for that locus.

SNP assays were validated by genotyping a total of 376 fish from 11 natural-
origin steelhead populations, four O. mykiss hatchery strains, and two introduced O.
mykiss populations in the southern hemisphere.

SNP genotyping was carried out in 96.96 Dynamic Genotyping Arrays on an
EP1 Genotyping System (Fluidigm Corporation), which uses nanofluidic circuitry to

simultaneously interrogate up to 96 loci in 96 individuals.

1.2.4 Statistical analysis

Deviations from Hardy-Weinberg and gametic phase (linkage) equilibrium were
evaluated with GENEPOP 4.0 (Rousset 2008). Observed and expected heterozygosity

(Nei 1978), the fixation index Fgr (Weir & Cockerham 1984), and allele frequencies
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were estimated using GENETIX 4.05 (Belkhir et al. 1996-2004).

1.2.5 Steelhead SNP panel development

All 139 SNPs described in this study, along with 28 assays previously developed
by other laboratories (Aguilar & Garza 2008; Campbell et al. 2009, CRITFC - N.
Campbell unpubl.; WSU - J. DeKoning unpubl.), where screened to select a panel of 95
highly informative SNPs. The selection of assays was based on their utility for parentage
inference in four steelhead populations in California and their ability to distinguish
individuals from several California populations.

In order to identify the patterns of variability of the SNPs in the panel, as well
as the rest of the SNPs developed in this study, I performed an alignment exercise in
which the consensus sequences were aligned with the RtGI original ESTs -from which
the primers were designed in the sequencing effort. That alignment helped identifying if
the SNPs were in introninc or other regions of the gene (coding DNA sequences (CDS)
and un-translated regions (UTR)). Then, the results from the above BLAST search
were used to confirm these regions as well as to obtain the protein translation, so as to

identify if the SNP corresponded to a synonymous or a non-synonymous mutation.

1.3 Results

Of the 480 primer pairs designed from O. mykiss ESTs, 264 produced a single-
sized PCR product in most or all fish in the ascertainment panel. Of these 264 ESTs,
236 yielded sequence from one or more individuals. All PCR, products were sequenced,
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even if a band was not visible for every individual on an agarose gel. A mean of 18
(range 1-22) individuals produced sequence for each locus, and most of these resulted in
broadly or completely overlapping forward and reverse sequences. Since EST sequences
are derived from mRNA and therefore lack intronic regions, many of the PCR products
were larger than the predicted size, and several of them did not have overlapping forward
and reverse strand sequences. None of the ESTs were identified as coming from the same
gene in a BLAST search, nor did they match any published SNP assays for O. mykiss.

More than 2.3 MB of genomic sequence was produced and aligned (Table 1.1),
or 4.6 MB when both strands were considered separately, and a composite consensus
sequence of 130KB (mean 551bp/locus) was used for discovery and the determination
of density. To account for the lack of sequence for all individuals in all sequences, and
the consequent decrease in probability of finding variability, I calculated a consensus
length weighted by the number of individuals for which sequence was obtained. The
weighted consensus sequence was 120KB (mean 513bp/locus). In other words, 92.3%
(120KB/130KB) of the entire consensus sequence from these 236 loci was obtained for
all 22 individuals in the ascertainment panel. The density of all nucleotide sites with
apparent substitutions was 0.0111, or one every 111 bp. When weighted by the number
of fish for which sequenced was obtained, the density of substitutions was 0.0122 or one
every 122 bp.

A total of 175 sequences were submitted for assay design. In addition, one
sequence (GHPROM1) with a SNP identified in a previous effort (Aguilar & Garza

2008) was submitted for design. Of those, 167 yielded designs suitable for assay man-
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Table 1.1: Summary of EST sequencing effort.

Total Mean [Range]
per locus

Loci sequenced 236
Base-pairs sequenced 2,322,269
Length of Consensus sequence (base pairs) 130,025 550.95 [109-1417]
Weighted consensus (base pairs) 119,969 512.69
Number of Substitutions 1,366 5.84 [0-21]
Number of SNPs (all three genotypes) 506 2.16 [0-10]
Loci with no variable sites 10
Indels 182
Transitions (A-G or C-T) 676
Transversions (A-C or G-C or A-T or G-T) 681
Possible duplicated genes 14
Tri-nucleotides 9
Total number of SNPs + indels 1,548
Density of substitutions in consensus sequences 0.0111
Density of substitutions in weighted consensus sequences 0.0122

ufacture. From these 167, I then eliminated 28 because of problems with genotyping
calling or because the assay was not interrogating a single Mendelian locus (all apparent
homozygotes or heterozygotes).

This elimination process left 139 SNP assays for further validation and charac-
terization. A list of these assays, with primer/probe information and with the variable
base indicated, is found in Table 1.2. To evaluate the utility of these loci in different
parts of the species’ geographic range, and for both natural populations and hatch-
ery/aquaculture rainbow trout, I genotyped all 139 loci in 17 steelhead populations or
rainbow trout strains (Table 1.3). Several locl was not in Hardy-Weinberg equilibrium
for some populations or strains, but only four loci deviated from equilibrium in more
than one group and no locus deviated in more than three populations or strains. Very
little linkage disequilibrium between markers was found. Three markers (Omy_114448-
87, Omy_-121006-131 and Omy_127236-583) were in complete disequilibrium, in spite of
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the fact that they were designed from unique ESTs, but aside from those three, only
eight pairs of markers (out of a total of 9005 pairs), were in significant linkage disequi-
librium (p < 0.001; 53 more pairs if p < 0.01), which is similar to the number expected

by chance alone.
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Mean minor allele frequency (MAF) averaged 0.197 over all loci, with a high
of 0.258 in the Sacramento River-Battle Creek and the Russian River populations and
a low of 0.112 in the McCloud River-Butcherknife Creek population. The proportion
of polymorphic loci averaged 81.5% and varied from 97.1% in Battle Creek to 56.8% in
Butcherknife Creek (Table 1.3). Expected and observed heterozygosity were generally
very similar within each test sample, never differing more than 0.026 (i.e. 2.6%). Ob-
served heterozygosity varied between 0.342 in Battle Creek and 0.0001 in Butcherknife
Creek (Table 1.4). Thus, all measures of genetic variability were consistent in identifying
the Sacramento River-Battle Creek population as the most diverse and the McCloud
River-Butcherknife Creek population as the least diverse. Mean Fgr was 0.206 and

ranged from 0 to 0.629 at different loci (Table 1.4).

32



69°0
970
€9°0
0T°0
¥0°0
700
€T°0
€€°0
LT°0
61°0
c0'0
¥6°0
Sg1'0
000
raly
000
700
00°0
86°0
000
gzo
€20
g9°0
c0'0
9.0

o
o »
I < 3

RUIUSSIY
‘ZnIy) ejueg ory

89°0
¥0°0
¢c’0
200
870
cc’0
ST°0
LS80
0€°0
L8°0
000
L€°0
90°0
8T°0
9L°0
000
0€°0
11°0
L€°0
000
000
¥¢'0
Ggg'o
00°0
ge0

el
= =
& < o

puereaz, moN
‘odnef, oxe|

1€°0
€T°0
L6°0
€T°0
L7°0
9¢'0
000
90'0
.70
000
T€°0
170
000
90°0
cL'0
L2°0
61°0
T€°0
69°0
000
€00
raly
88°0
000
€9°0

<t
N o
g <4 3

HJ ‘ureng

Kouyyp Junop

€00
0L°0
LS80
€20
€10
L2°0
000
.00
0T1°0
L0°0
0¢°0
€10
00°0
0€°0
LE0
00°0
040
000
€70
000
L0°0
€10
€1°0
00°0
0zg'0
L0°0

&3
Lo«

HOH

‘urenyg sdooyures|

000
1€°0
gc'o
T€°0
000
19°0
90°0
90°0
90°0
8¢°0
000
9¢°0
7o
€€°0
8¢°0
000
90°0
LT°0
00
cc0
LT°0
8¢°0
€9°0
€1°0
9¢°0
1T°0

£
<

HO4d ‘ureng
OZUdIO URS o

LL0
170
16°0
8¢'0
90°0
69°0
000
8¢'0
ce’0
€9°0
91°0
talyl
Sty
61°0
91'0
8¢'0
60°0
000
€9°0
000
000
€0
60°0
€00
180
60°0

S
g <

H¥YV

‘urer)g oxer] o[Sey

90°0
€9°0
<o
€€°0
000
090
80°0
000
120
L2°0
S1°0
raly
T€0
¥vo
g9°0
c0'0
IT°0
6€°0
9¢'0
L0°0
8¢'0
L2°0
9¢'0
LE0
97°0
€¢'0

qdVv

<
[a\}

IOATY [PULIR))

1T°0
€9°0
LV°0
€20
000
L9°0
01°0
€00
L0°0
€v°0
€00
090
€V°0
12°0
€€°0
000
€00
€20
LG°0
020
LT°0
L2°0
€9°0
8T1°0
€V°0
0T°0

qdVv

10
—

IOATY OZUDIO UeS

€T°0
870
€7'0
120
000
87°0
¥Z'0
000
LT°0
raly)
LT°0
99°0
67°0
8¢'0
9€'0
90°0
90°0
frall)
19°0
TI1°0
92'0
97'0
99°0
LT°0
00
9¢'0

qav

el
<t

391D 17008

¢c1'o
G9°0
67°0
T€°0
60°0
cG'0
200
000
L2°0
97'0
8T°0
9¢'0
8¢'0
¢c’0
€49°0
€00
120
8T°0
090
€00
91°0
8¢'0
€9°0
6¢'0
19°0

[CTR
5 <4 3

JOATY UeIsSNY

€10
96°0
1.0
120
000
geo
L0
000
61°0
€8°0
000
cs0
€€°0
90°0
0S¢0
000
LC0
0g°0
€€°0
000
LT°0
c00
9¢°0
c00
¥6°0

[CT
I < 3

(rowrtuns) 104
SIPPIN ‘I0Ary [od

0€'0
o
cL'0
ce’0
0€°0
¢e’0
700
€€°0
6€°0
L8°0
cc’0
6€°0
T€°0
020
cL'0
60°0
LT°0
8¢°0
97°0
000
11°0
ge'o
6€°0
S1'0
g8°0

(e
= o
3 <2 3

91D °1req

(IOATY OjUsUIRIORS

€1'0
8¢'0
L6°0
91'0
000
000
000
69°0
91°0
€00
000
000
€00
€00
0g'0
000
000
000
00°0
000
cz'0
cL'0
18°0
000
00'T
90°0

&
g <

991 oJIudIaydINg
‘10ATY PNOIDOPIN

880
00T
¢L0
000
000
€T°0
000
€00
€9°0
000
000
60°0
000
90°0
8L°0
90°0
¢c0
€00
GL0
000
91°0
90°0
90°0
60°0
¥v0

[\l
=~
S <4 s

yoo1)) sreneg
‘oxer] 9s00x)

L6°0
86°0
L8°0
8T°0
000
G0'0
000
200
61°0
000
c0'0
00°0
9¢'0
G0°0
c0'0
000
000
00
60°0
000
09°0
8T°0
c0'0
00
16°0
0¢'0

=
P

o1 Aos[ody]
‘10ATY [yeUIery]

02’0
00'T
080
€6°0
000
€10
000
€1'0
090
€1'0
000
070
06'0
€0°0
¥6°0
000
000
000
00°0
000
01°0
€¢'0
L2°0
0.0
00'T
G8'0

&
s <

o1y preogdng
‘IOATY Yrewrersy

c0'0
c00
00
€T°0
000
c00
000
000
c00
1T°0
LT°0
700
60°0
ce0
000
000
9€°0
€T°0
g1'0

EEERORICIINN

‘I0ATY 9330UIR[[IA\

702-€15501 AW
68T-£66T0T AW
G61-GE8T0T AW
0TP-0LLTOT AW
62E-70L10T AwQ
90£-FSSTOT AW
8]T-TFETOT AW
7SS-6TTTOT AW
98¢-72.6001"AwQ
€9-TLLO0T Aw(Q
202-00£66™ AW
G9T1-£8986 AW
675-60786™ AW
S0F-88186™ AW
819-756.L6™ AW
961-G98.L6™ AW
0£3-099L6™AwQ
€L-L20L6™ AW
871-66896 AW
1€2-65896 AW
SZ1-23096™ AW
12285196 4w
£TH-68786™ AW
80T-CF7S6™AwQ
LPT-81€56 AW

TANS-TINOYdTHDINO

awreN Aessy

"A1otyel oIow([l] :H ‘AToypel XooI1) 10H :HOH ‘AIeypjel yoo1) 3ig :HOd ‘A1oyorey
1oAY ueorwy (HY¥Y (IVIN) 001D AO[IM-IOATY o3jowe[[Ipy Ul (g0 > d) o[e[re tourwt ayj) st sdnois [[e 10y
poraoder (V) Aouenbeiy ofo[y -ereydstwey uieyinos ayj ut suoipendod ssiyfiws *() pedNpoOIIUT OM) pUR ‘SUTRIIS
Areypyey sswyfiwn ") 1noj ‘suoryendod pesy[e9)s UISLIO-[RINGRU TT Ul sSASse NS 6€T Jo Aousnbaiy s[a[[y :¢'T 9[qe],

33



00T
80°0
L€°0
96°0
870
19°0
LT°0
[0
€10
80°0
€90
40
g1'0
000
620
LT°0
8€°0
G9°0
€¢°0
L2°0
[4)0
GL0
0T°0
0T1°0
40
880
000
c0'0
LL0

RUIIUSSIY
‘Znay) ejues ory

¥6°0
6€°0
¥4°0
¥¢'0
LT°0
970
g0
fralt)
60°0
LT°0
L0
€€°0
1¢°0
60°0
€00
raly)
ST°0
00T
000
€10
70
290
o
g0
0¢°0
820
8¢'0
11°0
¥7'0

—
B ©
8 < o

pueeay, moN
‘odnef, oxer|

¥8°0
000
€9°0
99°0
8¢'0
9¢'0
¢c’0
6G°0
€1°0
60°0
GL'0
0g'0
000
000
GL'0
000

e}
i

HJ ‘ureng

ADUYTY AN JUNOIN

€8°0
L2°0
€20
000
180
LL0
€0°0
€10
€00
0T1°0
€8°0
00°0
00°0
00°0
040
00°0
€10
€70
€0°0
¥0°0
Lv'0
8T°0
0z¢'0
00°0
LT°0
€0°0
00°0
L0°0
€20

~
o<
2 < o

HOH

‘urexng sdoojuresy

8L°0
000
€€°0
68°0
000
¥v0
000
6€°0
000
000
0¢°0
9¢°0
00
11°0
gco
90°0
90°0
00T
6€°0
8¢'0
19°0
19°0
7o
6€°0
70
cL0
1T°0
[ealyl
9¢°0

=
< 3

HO4d ‘ureng
OZUdIOT UeS o

L6°0
8¢'0
€T°0
90°0
€T°0
¥vo
6S°0
€00
000
60°0
61°0
€9°0
000
99°0
8¢'0
000
91°0
76°0
000
000
8¢'0
91°0
60°0
€00
LL°0
000
90°0
000
9¢'0

©
= o
g <4 3

HYYV

‘ureryg axer a[der

60
000
€€°0
6.0
000
8¢'0
0¢'0
6.0
000
c0'0
LL0
€L°0
8¢°0
8¢'0
Vi)
€10
80°0
6.0
o
8¢'0
LL°0
€20
¥vo
€€°0
87'0
8¢°0
raly
S1°0
8¢°0

qJv

<
[a\]

IDATY [ouLIR))

€80
000
€€°0
06°0
000
970
€00
0g°0
€00
000
€9°0
0.0
00
LT°0
LC°0
0T°0
01°0
00T
€€°0
LT°0
€L°0
LV°0
L2°0
0¥'0
LV°0
0.0
€10
€T°0
00

AV

0
—

IDATY OZUDIOT Ueg

18°0
000
L2°0
68°0
00
ce'0
¢e’0
19°0
000
100
0.0
¥9°0
¥vo
€€°0
12°0
¥¢'0
62°0
¢6°0
ce0
¢1'o
€L°0
97°0
€0
62°0
8¢'0
€L°0
200
€20
6L°0

Jv

©
<

391D 13008

98°0
10°0
8¢'0
040
€00
6¢°0
0¢'0
0g0
LT°0
10°0
780
€L°0
6€°0
¢c’0
ce0
g1'0
92’0
780
0T1°0
6¢°0
€49°0
¥vo
8¢'0
970
(4t
97°0
1€°0
¥1°0
160

D
N 0
5 < 3

JOATY URISSNY

€9°0
000
12°0
740
80°0
40
61°0
LT°0
80°0
000
GL0
o
geo
000
0€°0
120
€20
090
0T°0
6¢°0
61°0
€20
Al
80°0
€9°0
62°0
€10
€20
9€°0
9¢°0

qdv

<t
[a\]

(rourms) 10
S[PPIN ‘I0ATY [oH

180
¥Z0
L8670
G1'o
8¢'0
6€°0
ge'o
€9°0
€T°0
12°0
19°0
6€°0
LT°0
000
8¢°0
200
€T°0
9L'0
ST°0
8¢'0
€€°0
750
€T°0
L0°0
¢9'0
cg’0
¢c’0
c0'0
8¢'0

}eaI1)) a11req

{IOATY OjUSIIRIORS

8L°0
00°0
000
000
T€°0
9¢'0
Lv'0
€9°0
8¢'0
000
170
€00
8L°0
000
€0
00°0
€00
780
Lv'0
00°0
€00
60°0
8L°0
000
00°0
000
00°0
€00
00'T

(2]
H O
g <4 3

399I)) SJTUNIAYDING
‘I0ATY PROTDOIN

00T
0S¢0
180
000
cL0
780
880
000
000
99°0
o
170
000
000
6S9°0
000
000
18°0
88°0
000
90°0
000
8¢°0
000
90°0
90°0
000
000
780

o
H o
S < S

@81 sieneq
‘oyer] 9s00xr)

86°0
I1°0
60°0
0’0
TI1°0
[asy}
c0'0
ge0
Gge'o
c0'0
S1'o
€7°0
0’0
000
19°0
000
12°0
0€'0
170
g0
92'0
c0'0
ST'0
G0'0
8T1°0
000
€10
€T°0
8¢°0
0€'0

e
] <«

oI Aas[od]
“I0ATY YyewIery]

€6°0
L0°0
€L°0
00°0
€L°0
€L°0
L0°0
000
€€'0
LT°0
€1'0
02’0
00°0
000
€70
000
180
01°0
000
02’0
06'0
L€°0
€00
020
290
L0°0
€8°0
€00
080

[2el
ST
2 <4 35

}ea1) preogspng
‘IOATY Yjreuwre[sy

870
g0'0
geo
000
170
870
000
000
000
000
G0°0
000
000
.00
6€°0
000
c0'0
geo
9¢°0
0€°0
8¢°0
000
¥¢'0
8T1°0
60°0
000
700
raly
60°0

991D Ad[IM
“IOATY 9330UWR[[IA\

LET-2L09L01- AW
0LT-9€€L0T AW

69-G87.L0T™ AW
L15-72L0L0T AwQ
70L-TE0LOT AW
L0L-L%2901 AwQ

86-095901" AW
SPH-€TE90T AW
TEE-CLI90T AW
T0T-L68S0T AW
G9Z-F1LC0T AW

¥L-L07S01 AW
£€9¢-T07S01 AwQ
L7€-98¢50T AW
90%-¢8¢G0T AW
€TL-GETS0T AW
L9€-CTTSOT AwQ
8¥7-G0TS0T AW
Z9T-GL0OCOT AW
PI1-69S701-AwQ
$29-6TSH0T AW

£5-¢12,801 AwQ
8GG-G0LE0T AW
6L£-LL5€01" AW
G6£-086£0T 4w
€FP-L98201 AW
789-018¢0T 4w
Z0T-G0GZ0T 4w
€TV-LS7501 AwQ
7£9-0¢7501 AW

owreN Aessy

penuuoy) ¢'1 o[qe],

34



120
170
40
6.0
L9°0
geo
84¢°0
g9°0
120
[0
€€0
90°0
8¢°0
o
€L°0
€9°0
90°0
1.0
000
40
€T°0
€10
€T°0
[0
80°0
8¢°0
1€°0
GL'0
LE0

RUIIUSSIY
‘Znay) ejues ory

8L°0
9¢°0
0g°0
a8'0
870
L€°0
L9°0
19°0
000
ST°0
970
000
S1'0
¥¢0
89°0
8¢°0
92°0
06°0
11°0
110
60°0
080
ST'0
170
cce’0
€€°0
170
9.0
60°0

N~
| T
] « <

pueeay, moN
‘odnef, oxer|

9¢'0
taly
GL'0
€9°0
raly)
€00
o
cL'0
000
cL'0
9¢'0
60°0
000
€0
0.0
8¢'0
91°0
60°0
60°0
7o
o
9¢'0
A

e}
i

HJ ‘ureng

ADUYTY AN JUNOIN

01°0
oo
L0°0
€10
0’0
€0°0
€20
LE0
0T°0
00°0
LT°0
040
0’0
0T°0
0zg'0
€20
00°0
€70
00°0
000
000
0g°0
€20
2070
0T°0
LT°0
€20
0¢°0
0¢0

o
| S —
2 < s

HOH

‘urexng sdoojuresy

0
00
8L°0
00T
o
00°0
8¢°0
£€8°0
1T°0
000
¢L0
000
9¢°0
8€°0
£€8°0
00
000
000
70
6L°0
fealt}
820
90°0
LT°0
000
9¢°0
90°0
cc0
90°0

= 3
< 3

HO4d ‘ureng
OZUdIOT UeS o

rall)
¢a’0
£€8°0
1€°0
180
Gc'0
0g'0
€8°0
8¢'0
170
1€°0
000
€10
61°0
76°0
60°0
780
99°0
000
8¢'0
000
16°0
61°0
18°0
€€°0
rall)
GL'0
88°0
1€°0

o
ST
S < o

HYYV

‘ureryg axer a[der

L2°0
(]
00T
00T
¥vo
000
cs'0
760
61°0
LT°0
780
000
740
€9°0
g8'0
6¢°0
c0'0
120
raly
L9°0
6¢°0
Srall)
120
80°0
000
€8°0
700
c0'0
¢1'o

qJv

<
[a\]

IDATY [ouLIR))

0¥°0
€V°0
€8°0
00T
00
000
00
L8°0
0T°0
L0°0
LS80
000
LV°0
ov'o
£€8°0
€9°0
€00
€00
ov'o
GL0
LT°0
12°0
¢c1o
€20
000
290
L0°0
020
1T°0
€8°0

AV

0
—

IDATY OZUDIOT Ueg

0€'0
0¢'0
¢80
G6°0
€0
000
97'0
g8'0
I1°0
100
67°0
000
€€'0
00
69°0
0€'0
€00
¥1°0
¥2'0
090
ve'0
8¢°0
02’0
cr'o
000
080
10°0
80°0
60°0

Jv

©
<

391D 13008

87°0
87'0
¥9°0
86°0
8¢'0
000
80
g8'0
700
¥1°0
19°0
000
g0
97°0
GL'0
I1°0
110
0¢'0
¥1°0
160
8T°0
il
€10
€T°0
10°0
cL0
110
G0'0
120

JOATY URISSNY

¥0°0
9¢°0
g8°0
GL0
L2°0
00°0
8¢°0
1.0
c00
€20
970
000
¥v0
40
06°0
60°0
LT°0
€10
80°0
cs0
c00
LC°0
8¢°0
€T°0
000
€9°0
870
c00
1T°0
06°0

qdv

<t
[a\]

(rourms) 10
S[PPIN ‘I0ATY [oH

€€°0
9¢'0
64°0
vL0
0.0
S1'o
4’0
L8°0
g1'0
70
6€°0
c0'0
6€°0
020
740
0€'0
170
97°0
c0'0
60°0
c0'0
vL0
92’0
8%°0
S1'0
cq'0
Gge'o
6€°0
cl'o

}eaI1)) a11req

{IOATY OjUSIIRIORS

000
8¢'0
8L°0
18°0
91°0
00°0
88'0
GL'0
00°0
00'T
€00
90°0
90°0
€10
000
780
000
60°0
000
00°0
000
90°0
000
€0°0
€0
T€°0
¥vo
180
00°0

]
= S
S < 5

399I)) SJTUNIAYDING
‘I0ATY PROTDOIN

000
69°0
16°0
8¢°0
8L°0
880
000
gco
000
8¢°0
o
000
61°0
000
6S9°0
¥vo
90°0
16°0
000
91°0
€00
¥6°0
000
¥8°0
€00
€00
1€°0
L6°0
880

o
= -
g <

@81 sieneq
‘oyer] 9s00xr)

000
8L°0
T.°0
¥9°0
40
00
8¢'0
6S°0
00
88°0
87°0
8¢°0
¥0°0
g0
cc0
02¢'0
L0°0
8¢'0
000
60°0
000
geo0
000
0¥°'0
€T°0
19°0
110
L8°0
cl'o
68°0

e
] <«

oI Aas[od]
“I0ATY YyewIery]

000
€7'0
000
0s'0
€€°0
€00
01°0
L6°0
000
L0°0
02’0
000
00°0
LT°0
€8°0
L2°0
000
c9'0
000
€49°0
000
€6°0
01'0
€20
01°0
01°0
€6°0
0.0
00°0

~
H o
2 <4 3

}ea1) preogspng
‘IOATY Yjreuwre[sy

000
870
¥0°0
60°0
1€°0
000
c00
820
€10
6€°0
00
60°0
1T°0
0€°0
1T°0
000
000
¥¢'0
.00
c00
000
870
000
60°0
c0'0
170
¥¢'0
00
€00

991D Ad[IM
“IOATY 9330UWR[[IA\

G0Z-60TETT AW
GP-9L8G 11 AW
78-0T8Z 11 AW

20g-10£¢ 11 4w

87£-805C 11 AW

CEV-TIR9TTT AwQ

10€-999T 1T 4w
1G-€8€TTT AWwQ

92S-F80TTT AW
6GT-CO0TTT AwQ

871-689011 AW

98¢-TLGOTT AW

G8G-g9£0T T AW

6S£-TOTOTT AW

$6¢-8L001 1 AwQ
6T7-7900T1 AW
YLFP6601"AWQO

G8T-768601 AW

8YT-FL8601 AW

19%-€69601 4w

SPP-1G960T AW

€0%-828601" AwQ

T7€-06£601 AW

TTT-EVT60T AW
G8-028801 Aw(Q

TT€-GELS0T AW

€6T1-L00801 4w
$£-908L01" AW

78G-98LL0T AW

PTE-98LL0T AW

owreN Aessy

penuuoy) ¢'1 o[qe],

35



880
6¢°0
61°0
90°0
80°0
€20
.0
¥6°0
c0'0
000
80°0
40
06°0
000
9¢°0
8€°0
LT°0
0S¢0
¥0°0
650
120
90°0
90°0
90°0
0T°0
9¢°0
€10
o
¢c00

RUIIUSSIY
‘Znay) ejues ory

0.0
geo
0g¢°0
170
020
c0'0
9¢°0
820
e1'o
L0°0
9¢°0
0.0
8T1°0
000
L9°0
200
60°0
L0
020
€10
€T°0
000
ce’0
820
000
0
000
c0'0
110

©
N X
8 < o

pueeay, moN
‘odnef, oxer|

€9°0
7o
91°0
170
0g'0
00°0
0g'0
€0
000
8¢'0

€8°0
91'0
000
LV°0
€00
90°0
8¢'0
69°0
8¢'0
69°0
000
60°0

e}
i

HJ ‘ureng

ADUYTY AN JUNOIN

000
€10
00°0
000
00°0
L0°0
€10
01°0
00°0
0T1°0

€10
0€°0
€20
L9°0
LT°0
00°0
00T
0T°0
0T°0
€0°0
000
L0°0
€€°0
€0°0
00°0
€10
L€°0
€0°0

(2]
B o
S < 3

HOH

‘urexng sdoojuresy

£€8°0
90°0
000
8¢°0
1€°0
90°0
00
1€°0
€€°0
90°0
000
€€°0
L9°0
000
¥v0
LT°0
1€°0
€€°0
000
9¢°0
000
LT°0
00
0
61°0
€8°0
¢c0
000
00°0

- 3
< o

HO4d ‘ureng
OZUdIOT UeS o

90°0
18°0
1€°0
€10
ce’0
00°0
9¢'0
99°0
60°0
90°0

69°0
60°0
0g'0
GL'0
90°0
000
170
[4aly}
60°0
8¢'0
000
€00
€00
90°0
90°0
90°0
€0
170

D
= S
g <4 3

HYYV

‘ureryg axer a[der

96°0
90°0
L€°0
g1'0
€9°0
€¢'0
8¢'0
87°0
97°'0
110
700
L€°0
ov'o
000
69°0
raly
€€°0
¥vo
000
18°0
000
ST°0
9¢'0
870
€10
96°0
€¢°0
000
000

qJv

<
[a\]

IDATY [ouLIR))

06°0
L0°0
200
LT°0
L€°0
€00
LG°0
Vo
0€0
€T°0
000
0€°0
L9°0
000
0€°0
020
€0
LS80
000
€9°0
000
00
€V°0
L€°0
0T1°0
06°0
0€°0
000
000

AV

0
—

IOATY OZUDIO UeS

8L°0
cr'o
L2°0
[Nt
ce0
60°0
€L°0
16°0
02’0
ST°0
000
92'0
64°0
80°0
LV°0
9¢'0
1€°0
07'0
000
64°0
000
S0'0
8¢'0
ge'0
€¢'0
¢80
170
000
70°0

Jv

©
<

391D 13008

€7°0
91'0
92’0
81°0
o
120
160
67°0
g1'0
60°0
00°0
8¢'0
0¢'0
¥0°0
g0
120
L€°0
L8°0
000
98°0
000
90°0
ge'o
[44]
61°0
o
€€'0
T0°0
10°0

JOATY URISSNY

€9°0
870
61°0
€€°0
0T°0
0T°0
6¢°0
19°0
geo
61°0
000
61°0
¥v0
€T°0
€€°0
c00
€20
170
000
880
000
000
L2°0
LT1°0
000
69°0
€10
LT°0
000
€€°0

qdv

<t
[a\]

(rourms) 10
S[PPIN ‘I0ATY [oH

6€°0
9€'0
€T°0
0¢'0
¥¢'0
170
ce'0
0€'0
€T°0
9€°0
€10
99°0
8¢'0
00
7o
60°0
L0°0
L8°0
92°0
7o
¥e'0
000
8¢'0
L0°0
c0'0
170
Gge'o
LT°0
60°0

}eaI1)) a11req

{IOATY OjUSIIRIORS

000
60°0
61°0
1€°0
000
91°0
000
60°0
8¢'0
8¢'0

99°0
€00
000
60°0
8¢'0
000
780
000
€00
000
000
90'0
000
00°0
000
8¢'0
L6°0
00°0

(2]
M o
g <4 3

399I)) SJTUNIAYDING
‘I0ATY PROTDOIN

000
8¢°0
90°0
€00
€00
000
780
€T°0
€10
€T°0

90°0
8¢°0
18°0
GL0
000
cc0
61°0
60°0
LV°0
000
000
000
60°0
€10
000
91°0
18°0
18°0

[oe)
M o
S < S

@81 sieneq
‘oyer] 9s00xr)

820
91°0
80°0
€€°0
200
¢9'0
€T°0
L€°0
€T°0
970
000
c0'0
1¢°0
I1°0
ge0
c0'0
60°0
97°0
L0°0
1¢°0
c0'0
000
120
¥0°0
200
ce0
S1'o
00
200
ST'0

e
] <«

oI Aas[od]
“I0ATY YyewIery]

000
€9°0
0g'0
00°0
200
LT°0
L6°0
0¢'0
090
000

180
00°0
€49°0
¥6°0
000
180
€8°0
06°0
00°0
0g'0
000
000
€00
01°0
000
L0°0
0.0
02’0

o
= S
2 <4 3

}ea1) preogspng
‘IOATY Yjreuwre[sy

000
8¢°0
00
€10
000
000
970
¥0°0
000
€€°0
000
000
c00
000
LE0
¥0°0
9¢°0
€0
c00
6€°0
000
000
L0°0
¥0°0
LT°0
000
700
9€°0
000

991D Ad[IM
“IOATY 9330UWR[[IA\

1€T-90012 T AwQ
695-05605 1AW
T£€-88T0T T A
G9€-G68611 AW
28€-80T6TT AwQ
T7E-8¢681 1 AW

16-7G9811 4w
9TT-G0Z8TT AWwQ
96€£-GLTSTT AW

18-GI8LTIT AW
LTT-€VLLTT AwQ
9TE-6FSLIT AW
65¢-0VGLIT AwQ
06T-CEVLIT AW
007-0LELTT AwQ
7LE-98CL11 AW

96-65TLT 1AW
61V-ChoLIT AW
$92-8€6911 AW
67E-€ELITT AW
L9%-29€9TT AW
62¢-701911T AwQ
T18-L86CTT 4w
€TC-9L6F 1T AwQ
087-L8ST 11 AwQ

28-8FFFIT AW
8EV-STEVIT AW
6ST-067ETT AW
€91-¢vee1 1 AwQ

€L-8TTETT AW

owreN Aessy

penuuoy) ¢'1 o[qe],

36



9'06
€C°0
¢a0
090
000
9¢°0
G9°0
000
LE0
LE0
000
8¢'0
000
c0'0
geo
90°0
8L°0
c0'0
¥6°0
69°0
c0'0
0’0
180

RUIIUSSIY
‘Znay) ejues ory

a'88
170
8¢°0
6S9°0
000
290
9L°0
020
€€°0
ce’0
000
¥¢'0
000
L0°0
020
00
L€°0
000
87°0
09°0
970
8€°0
9L°0

o
TS|
8 < o

pueeay, moN
‘odnef, oxer|

G'e8
9¢'0
€00
€9°0
GL'0
780
GL'0
000
€T°0
61°0

e}
i

HJ ‘ureng

ADUYTY AN JUNOIN

G'alL
LT°0
€10
0T1°0
LE0
L€°0
LT°0
00°0
000
0¢0
000
000
00°0
000
€0°0
0g°0
00°0

€20
00
€e0
€10
000

~
o~
2 < s

HOH

‘ureryg sdoojuresy

€18
¥v0
00
69°0
9¢°0
00T
€8°0
€€°0
LT°0
000
0g°0
LT°0
000
90°0
000
820
€8°0
6€°0
¢cL0
6€°0
¢c0
000
8¢°0

5 8
< 3

HO4d ‘ureng
OZUdIOT UeS o

€98
170
61°0
8L°0
cL'0
60°0
¥vo
¢e’0
820
LT°0
000
¥vo
000
90°0
cL'0
16°0
€00

¢a’0
cL'0
€00
91°0
91'0

(=)
B o~
R

HYYV

‘ureryg axer a[der

68
61°0
€€°0
69°0
1€°0
00'T
9¢'0
L2°0
LT°0

90°0
0€0
000
LT°0
0’0
80°0
cL'0
ge’0
g8'0
87°0
LT°0
000
97'0

qJv

<
[a\]

IDATY [ouLIR))

g'88
€€°0
090
0.0
LS80
L6°0
0.0
9€°0
¥1°0
€00
L0
€20
€00
LT°0
000
€20
L8°0
L0
€L°0
LG°0
0€°0
000
00

AV

0
—

IOATY OZUDIO UeS

v'16
6€°0
8¢'0
00
L7°0
88°0
9L'0
8¢'0
61°0
€T°0
ce'0
L2°0
000
81°0
T0°0
ce'0
9L'0
9€'0
0.0
Ggg'o
61°0
00
750

Jv

©
<

391D 13008

L'G6
67°0
87'0
64°0
LE0
¥6°0
€9°0
97°0
110

0€0
0€0
c0'0
90°0
90°0
6¢°0
89°0
8T1°0
99°0
¥€0
L2°0
T0°0
97'0

JOATY URISSNY

€98
oo
¥4°0
8¢°0
cs0
GL0
8¢°0
0T°0
€T°0
L0°0
gc’o
<o
0T°0
€¢'0
000
8€°0
090
€T°0
9¢°0
090
LC0
000
6¢°0
Sg1'0

qdv

<t
[a\]

(rourms) 10
S[PPIN ‘I0ATY [oH

T°L6
L8°0
60°0
€9°0
€€°0
L9°0
9L'0
I1°0
00
c0'0
11°0
0€'0
000
01°0
0€'0
[4<N1}
€20
c0'0
9¢'0
L0
g1'o
L€°0
8¢'0

}eaI1)) a11req

{IOATY OjUSIIRIORS

709
000
00°0
16°0
16°0
8¢'0
raly
90'0
GL'0
00°0
000
170
000
90°0
000
€1°0
000
000
90'0
€49°0
00°0
000
€00

o
= S
g <4 3

399I)) SJTUNIAYDING
‘I0ATY PROTDOIN

g0
€T°0
000
€00
1€°0
60°0
61°0
000
1€°0
000
000
000
000
€00
18°0
9¢°0
000

€00
gc’o
61°0
90°0
€0

N~
H o
g < 3

@81 sieneq
‘oyer] 9s00xr)

cv8
ge0
c0'0
¥1°0
6S°0
¥9°0
6€°0
c0'0
00
G0'0
000
040
000
000
000
¥e¢'0
0€'0
000
00
11°0
ce'0
000
LT°0
LT°0

e
] <«

oI Aas[od]
“I0ATY YyewIery]

V€L
080
€00
€€°0
68°0
07’0
€00
€00
€46°0
000
01°0
090
000
€1'0
L0°0
0€'0
000

€1'0
L0°0
00°0
LE°0
01°0

(2]
M o
2 <4 3

}ea1) preogspng
‘IOATY Yjreuwre[sy

¢'99
110
c00
000
6€°0
geo
geo
000
870
60°0
000
ce0
¥0°0
000
000
q1°0
000
000
000
90°0
170
000
000

991D Ad[IM
“IOATY 9330UWR[[IA\

(%) 07 orydiowAjoq

0TT-G96TET AWwQ
979-0971€1-AwQ
00T-0TL0ET AW
091-72S0eT AwQ

86-G670LT AW
96L-0L86G1 AW
76L-0L1651 AW
187-9668¢ 1AW
€EV-€T6801 AW
€LT-1G88C 1 AwQ
GGL-£698¢T AW
0£7-20€80 1~ AW
G8E-09LLTT AW
80£-SF9LTT AW
026-01GLeT AwQ
£€86-9€7Lo1 AW
The-09T9Z1 - AwQ

19-866C¢ T 4w
0€GVLLPTT AWQ
PPI-Te6801 AwQ
6TT-870£C1 AW
8TI-FF0eg1 AwQ
SIT-CILICT AwQ

owreN Aessy

penuuoy) ¢'1 o[qe],

37



Out of the 139 SNPs, 43 were identified in introns and 95 in other regions
(CDSs or UTRs) based on the alignment of the consensus with the RtGI EST sequences.
One consensus sequence did not align with the corresponding RtGI EST sequence.
A total of 71 consensus sequences matched a known gene from GeneBank. Only 22
SNPs were identified in UTRs and 14 in CDSs based on those “blasted” genes that
presented a translation. Finally, five SNPs corresponded to non-synonymous and nine
to synonymous mutations (Table 1.5).

Based on the screen for the most informative, I selected 82 SNPs from this
study, six from Campbell et al. (2009), three from Aguilar & Garza (2008), one from

Campbell (unpubl.), and three from DeKoning (unpubl.; Table 1.5).
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1.4 Discussion

I report the discovery and development of assays for 139 novel single nucleotide
polymorphisms in the species O. mykiss, steelhead/rainbow trout, through sequence
analysis of 236 ESTs with a total consensus length of 120KB. I demonstrate how ESTs
from existing public databases and directed Sanger-sequencing of PCR products can be
used to identify large numbers of SNPs in non-model organisms. In species and pop-
ulations with large effective sizes, such sequencing from existing genomic information
uncovers sufficient polymorphism that a preliminary screen of loci for potential poly-
morphism, using methods such as single strand conformation polymorphism or high
resolution melt analyses, can be avoided, since nearly every locus will contain some
variants.

The 139 SNP loci described here are broadly polymorphic in the species and
should prove useful for a variety of applications, including phylogeography, genetic stock
identification, individual identification, behavioral ecology and pedigree reconstruction.
The availability of large numbers of SNPs known to be polymorphic in populations
of steelhead and rainbow trout will allow the implementation of intergenerational ge-
netic tagging through large-scale parentage inference, since this requires only about 100
SNP loci for sufficiently low tag recovery error rates (Garza & Anderson 2007). Such
parentage-based tagging (PBT) will allow an unprecedented level of monitoring and
evaluation of natural and hatchery/aquaculture populations, including estimation of

variance in reproductive success, migration rates, effective population sizes, life-stage
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specific mortality rates, and other population parameters. PBT is based on the prin-
ciple that genotyping fish from the parental generation, either in a hatchery, an aqua-
culture operation or a natural population, provides intergenerational genetic tags for
their progeny that can be retrieved through large-scale parentage inference (Anderson
& Garza 2006; Garza & Anderson 2007). Such pedigree reconstruction is greatly facili-
tated by the low genotyping error/mutation rates of SNP loci. In addition, as more SNP
loci are described and more assays become available for the species, it will be possible
to construct second-generation genetic linkage maps and high-density SNP genotyping
microarrays become available the pedigrees resulting from PBT will enable detailed un-
derstanding of the genetic architecture of phenotypic traits in the species. Because of its
importance in recreational fisheries and in aquaculture, as well as the ESA protection
of many populations, the species O. mykiss is among the most economically significant
fishes in the world, and an increased understanding of its phenotypic variation is of
great value.

During the past decade, microsatellite markers have dominated population
genetic work in salmonids, due to their high variability and conservation among related
species (Aguilar & Garza 2006; Clemento et al. 2009; Pearse et al. 2007; Pearse et al.
2009). However, microsatellites have significant drawbacks, among them relatively high
genotyping error/mutation rates, significant staff time necessary for data generation
and allele calling, and homoplasy. Moreover, the results obtained with microsatellites
in one laboratory are not directly combinable with data generated in other laboratories,

even when using the same instrumentation, due to subtle differences in electrophoretic
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conditions and consequent data output (Seeb et al. 2007). The requirement for a
standardization process to be able to combine microsatellite data between laboratories
adds significant time and expense to collaborative projects.

Conversely, data obtained from SNP loci are easily portable and combinable
between labs, as long as the same primer/probe sequences and/or reporting conventions
are used. This will allow large multilateral databases to be developed for applications
in fishery management, ecological investigation, and aquaculture/hatchery broodstock
management using both standard (e.g. Seeb et al. 2007) and pedigree-based approaches
(Anderson & Garza 2006). Moreover, the advent of new technologies, such as nanoflu-
idic circuitry and spotted arrays, for thermal cycling and genotyping now allows the
examination of a large number of SNPs in a large number of individuals in a short time
period and at relatively low cost. This provides the prospect of SNP genotyping as a
routine, and very valuable, tool for monitoring and evaluation of steelhead and rainbow
trout populations throughout the world.

As SNP loci are typically bi-allelic, the amount of information per locus is
more limited than for most multiallelic loci, such as microsatellites or AFLPs. In the
future, however, analysis of haplotypes of tightly linked SNPs may provide additional
information for many questions, including in phylogeography and pedigree resolution.
Since I discovered many additional polymorphic sites in these genes, it would be possible
to design additional assays for many of these sites and perform haplotype analyses. More
complete analyses of this sequence variability will be reported elsewhere.

The number and density of substitutions and SNPs discovered here was con-
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sistent with what has been reported for other salmonids (Smith et al. 2005), but it is
difficult to draw direct comparisons between different SNP discovery efforts, since the
density of polymorphic sites uncovered depends critically on the number and phyloge-
netic diversity of the individuals in the ascertainment panel, the set of genes or genomic
sequences interrogated for SNP discovery, and accuracy of the sequencing method em-
ployed. My ascertainment approach and stringent design criterion for SNP discovery
were intended to fulfill several objectives. Included in the ascertainment panel were both
representatives from populations in California where I are actively working and intend
to apply the resulting markers, as well as from rainbow trout strains commonly used
throughout the world for fishery stocking and/or aquaculture. By designing assays for
variable sites only when all three genotypes were observed, and without regard to which
individuals carried them, I selected both for markers with a higher mean MAF and
markers that were more likely to be broadly useful in the species. This was intended to
provide markers useful both for study and management of native steelhead populations,
as well as with the millions of rainbow trout cultured for food and fisheries. However, it
will also underrepresent rare variants, which could result in biases in phylogenetic and
evolutionary applications of these markers. Still, it is important to point out that sets of
microsatellite and other population genetic markers developed for salmonids and other
non-model organisms suffer from the same biases. Therefore, applications of these SNP
markers that depend upon a representative sampling of the site frequency spectrum in
focal populations or lineages should ideally employ markers ascertained using diverse

ascertainment populations and strategies.
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My ascertainment panel included fish from three coastal steelhead populations
from several closely-related lineages, a highly divergent population of redband trout
and several rainbow trout strains domesticated from distinct lineages. This diverse
ascertainment panel was intended to reduce ascertainment bias in populations in the

southern part of the North American range.
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Chapter 2

Large-scale parentage analysis reveals
reproductive patterns and heritability of
spawn timing in a hatchery population

of steelhead (Oncorhynchus mykiss)
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Abstract

Understanding life history traits is an important first step in formulating ef-
fective conservation and management strategies. The use of artificial propagation and
supplementation as such a strategy can have numerous effects on the supplemented nat-
ural populations and minimizing life history divergence is crucial in minimizing these
effects. Here, I use SNP genotypes for large-scale parentage analysis and pedigree recon-
struction in a hatchery population of steelhead, the anadromous form of rainbow trout.
Nearly complete sampling of the broodstock for several consecutive years in two hatch-
ery programs allowed inference about multiple aspects of life history. Reconstruction of
cohort age distribution revealed a strong component of fish that spawn at two years of
age, in contrast to program goals and distinct from naturally spawning steelhead in the
region, which raises a significant conservation concern. The first estimates of variance
in family size for steelhead in this region can be used to calculate effective population
size and probabilities of inbreeding and estimation of iteroparity rate, indicates that it
is reduced by hatchery production. Finally, correlations between family members in the
day of spawning revealed for the first time a strongly heritable component to this impor-
tant life history trait in steelhead and demonstrated the potential for selection to alter
life history traits rapidly in response to changes in environmental conditions. Taken
together, these results demonstrate the extraordinary promise of SNP-based pedigree
reconstruction for providing biological inference in high-fecundity organisms that is not

easily achievable with traditional physical tags.
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2.1 Introduction

Understanding a population’s life history patterns, and the environmental and
biological factors that affect them, is a first step in the formulation of effective conser-
vation and management actions. For example, lack of knowledge regarding when and
where an animal disperses could lead to incorrect habitat conservation priorities. In
addition, life history traits such as reproductive strategy and migratory behavior shape
the direction of evolution and responses to environmental change (Hansen et al. 2012).
Such responses are due to selection on the heritable variation in life history traits, yet
the components of observed trait values that are due to genetic variation and pheno-
typic plasticity are even less frequently known. However, even observable components
of life history traits can be hard to measure in species with complex life cycles, high
fecundity and/or a high degree of dispersal or migration (e.g. anadromous fish, many
birds, etc.). As many populations of animal and plant species decline in numbers and
in geographic distribution, a clear understanding of their life histories and reproductive
biology is critical to prevent further extirpations and extinction.

Artificial propagation, followed by supplementation of natural populations,
is a widely employed method for addressing population declines (Champagnon et al.
2012). Artificially propagated populations may face a range of problems, including those
resulting from what is generally termed domestication selection, as well as inbreeding
depression, increased disease susceptibility, etc. (Bryant & Reed 1999; Swinnerton et al.

2004). This gives rise to significant concerns about genetic effects, as natural populations
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often experience maladaptation and reduction in fitness due to introgression by stocked
individuals (Utter 1998; Araki et al. 2007; Frankham 2008; Williams & Hoffman 2009).
A potential strategy to minimize negative fitness effects is to avoid artificial selection as
much as possible in the captive population (Frankham et al. 2002; Baskett & Waples
2013). This requires explicit knowledge about both life history traits in the species and
the extent to which the propagated population differs from the natural one.

Fishes in the family Salmonidae are perhaps the world’s most commonly prop-
agated organisms for which the goal of captive production is supplementation of natural
populations. The scope of captive production of salmonids is vast, with at least 800
hatcheries releasing fish into tributaries of the North Pacific Ocean alone (Augerot 2005).
While salmonids are among the more intensively studied animal species, there are still
substantial gaps in our knowledge of basic life history, particularly on the periphery
of the native geographic distribution of Pacific salmonids (Quinn 2004). Because of
the extraordinary amount of phylogeographic structure and local adaptation in this
group, values of life history traits often differ even between geographically proximate
populations and inference drawn in one population can not necessarily be extrapolated
to another. For example, the timing of reproduction of Coho salmon (Oncorhynchus
kisutch) is clinal at the southern end of their range, with the mean date of spawning
varying by more than two months over less than 500 Km (Weitkamp et al. 1995).

Populations of salmon and steelhead on the west coast of North America have
declined dramatically over the past century and many populations are now protected

under the United States Endangered Species Act (ESA; NOAA 2006). Supplementa-
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tion with billions of hatchery-produced juvenile fish has not only failed to stabilize or
increase many salmonid populations, but may have actually contributed to their decline
(Augerot 2005). Mismatches between mean values of traits in supplemented populations
and environmental conditions to which the natural population was initially adapted can
cause dramatic decreases in fitness (Utter 1998; Frankham 2008; Palkovacs et al. 2012).
For example, the selection of spawners at a hatchery may not replicate patterns of
relative reproductive success in nature (Hoffnagle et al. 2008), where intraspecific com-
petition and other behavioral traits play an important role (Fleming 1998), and fish
that would have low fitness in natural spawning may produce many progeny. Such
hatchery management practices may contribute to a reduction in genetic variability and
fitness of the population (Araki et al. 2008) in as little as a single generation of captive
breeding (Christie et al. 2012). Without a detailed understanding of their life history
and reproductive biology guiding hatchery practices, such supplementation will almost
inevitably have negative fitness consequences on the associated natural populations.
Amongst salmonids, O. mykiss has perhaps the most variability in life history
(Shapovalov & Taft 1954; Busby et al. 1996). Two major ecotypes of O. mykiss can be
distinguished: the anadromous type called “steelhead” and the nonanadromous resident
type called rainbow or redband trout. After hatching, steelhead spend one to seven years
in freshwater and one or more years in the ocean before returning, usually to their natal
stream, to spawn. In addition to substantial variation in timing of freshwater entry and
associated reproductive maturity and spawn timing, steelhead may also be iteroparous,

spawning in more than one year (Busby et al. 1996). This complex life history makes
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both understanding their biology and effectively managing their populations a significant
challenge.

Numerous studies on life history variation, survival, and migration of O. mykiss
have been undertaken (Busby et al. 1996), including work on the inheritance of life
history traits (Thrower et al. 2004; Nichols et al. 2008; Martinez et al. 2011; Hecht et
al. 2012; Miller et al. 2012). Spawn timing has been shown to be heritable in several
salmonid species (Hendry & Day 2005; Carlson & Seamons 2008). However, due to
the difficulties noted above, most estimates of heritability of spawn timing have been in
entirely captive families (Siitonen & Gall 1989; Su et al. 1997; Wilson et al. 2003; Haidle
et al. 2008; Colihueque et al. 2010) and very few have been in free-living salmonids
(Smoker et al. 1998; Quinn et al. 2000; Dickerson et al. 2005). Studying inheritance
in anadromous populations is challenging because of the difficulty of tracking families
through their ocean migrations from one generation to the next and heritability of spawn
timing has not been studied in steelhead.

Early studies on anadromous salmonids employed a variety of external marks
(e.g. fin clips, maxillary clips, etc.) and later coded wire tags (CWTs; Hankin et al.
2005) to distinguish families, but these methods require considerable labor and typically
allow identification of only a small number of families. They also often require sacrificing
the fish for individual identification (Cooke et al. 2004; Hankin et al. 2005), which is
poor practice in iteroparous species. Improvements in molecular markers and statistical
analyses have provided a cost-effective alternative to traditional tagging methods, by

using genotype data to identify previously sampled individuals and to identify their
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kin by reconstructing pedigrees (e.g. Palsbgll 1999; Pearse et al. 2001; Blouin 2003;
Garrigue et al. 2004). The application of parentage analysis as a tagging method
is particularly powerful, as it allows direct identification of a genotyped individual’s
progeny (and parents), without having to “tag” any fish that will not be resampled. Such
approaches have been very useful in understanding biological patterns at the population
and individual levels (Avise et al. 2002; Planes et al. 2009; Hudy et al. 2010).

Recently, single nucleotide polymorphisms (SNPs) have emerged as reliable,
cost-effective genetic markers that are easily developed by leveraging recent advances
in sequencing technology and genomic resources (e.g. Abadia-Cardoso et al. 2011;
Clemento et al. 2011). Although SNPs were initially granted dim prospects for rela-
tionship inference in molecular ecology (Glaubitz et al. 2003), Anderson and Garza
(2006) demonstrated that a relatively small number of SNPs (< 100) would allow ac-
curate parentage studies larger than any that had been previously attempted. The
coincidence of that work with the advent of novel genotyping platforms that permit
the rapid genotyping of thousands of individuals at many loci has now set the stage
for SNPs to be the marker of choice for large-scale parentage studies and for genetic
tagging of migratory species.

Here I examine whether a pedigree-based intergenerational genetic tagging pro-
tocol can provide information comparable to that provided by physical tagging methods
and use it to elucidate reproductive patterns in ESA-listed steelhead from a supplemen-
tation program in the Russian River, CA, USA. Specifically, I determine if I can assign

most individuals that return from the ocean to pairs of parents that were spawned on
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the same day, but without cross information recorded. I then use the resulting parent-
offspring trios to estimate the age distribution and variation in family size (i.e. number
of siblings) amongst reproducing fish. I ask whether fish of different ages spawn on
significantly different dates and use the pedigrees to provide the first estimates of the
heritability of date of spawning in steelhead. A matching samples analysis allows us
to estimate the number of fish that are spawned multiple times within a single sea-
son and the number that return and reproduce in multiple seasons, and ask whether
these estimates are consistent with program goals and what has been observed in other
populations of the species.

These hatchery populations use local fish as broodstock, provide substantial
numbers of spawners in natural areas and are not genetically differentiated from the nat-
ural populations in the Russian River (Deiner et al. 2007). As such, elucidation of life
history patterns in these hatchery steelhead populations allows us to examine whether
they may be negatively influencing the associated natural populations. I demonstrate
how the use of pedigree-based genetic tagging provides a powerful means of under-
standing many basic biological traits in relatively high fecundity species with significant

conservation concerns.
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2.2 Methods

2.2.1 Study system

The Russian River drains into the Pacific Ocean approximately 100 km north
of San Francisco Bay, USA (Figure 2.1). It supports populations of Chinook salmon
(0. tshawytscha), coho salmon and steelhead. Construction of two large dams in 1959
and 1982 blocked access to spawning and rearing habitat in the basin and two hatch-
ery programs were established to mitigate these losses: Warm Springs (Don Clausen)
Hatchery (WSH) at the base of Warm Springs Dam, on the mid-basin Dry Creek trib-
utary, and Coyote Valley Fish Facility (CVFF) located below Coyote Valley Dam, near
the headwaters (Figure 2.1).

Adult steelhead enter the Russian River to spawn from December to April.
Broodstock were chosen from amongst all returning adults without regard to pheno-
typic characteristics, except that fish below ~50 cm in length, presumably resident and
age-two fish, were excluded. Broodstock at CVFF and WSH were mated with an ap-
proximate male to female ratio of two to one, and three to one, respectively. Each male
is supposed to be crossed with only one female, but when there are not enough males
to accomplish this, a previously spawned male may be reused with a different mate.
All fish were released back into the river after spawning and could potentially enter the
hatchery again. Fish trapped at the two facilities were spawned separately at WSH,
and all juveniles were initially incubated there. Juveniles produced from CVFF adults

were then moved to CVFF for imprinting, since olfactory cues experienced in early life
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are critical to proper homing in salmonids (Cooper & Scholz 1976). All fish were then
released at age-one. All juvenile fish produced at WSH and CVFF were marked prior
to release by adipose fin removal, allowing easy visual determination of hatchery origin.
There are no other steelhead hatchery programs in the vicinity of the Russian River, so

nearly all fish lacking an adipose fin should have originated in one of these two programs.

2.2.2 Tissue collection and DNA extraction

Small (~1cm?) caudal fin clips were collected from 3,546 adult steelhead at
WSH from 2007 to 2011 and from 1,450 adult steelhead at CVFF from 2009 to 2011.
These samples are believed to represent all the individuals that were spawned during
those years, except for one spawning day in 2008 at WSH when 18 males and six females
were spawned but not sampled.

Tissue samples were digested with proteinase K, followed by DNA extraction
with DNeasy 96 Tissue Kits (QIAGEN Inc.). Purified DNA was diluted 1:2 in ddH>O
prior to a pre-amplification PCR with primers derived from 96 real time assays to
enrich the DNA fragments containing the loci of interest. PCR reagent concentrations

and thermal cycling conditions are available from the authors upon request.

2.2.3 SNP loct and genotyping

A panel of 95 SNPs was selected from a set of 192 loci (Aguilar & Garza 2008;
Campbell et al. 2009; Abadia-Cardoso et al. 2011), based on their utility for parentage

inference in four steelhead populations in California (including WSH) and their ability
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Figure 2.1: Location of the Warm Springs (Don Clausen) Hatchery (WSH) at the base
of Warm Springs Dam, on the mid-basin Dry Creek tributary, and Coyote Valley Fish
Facility (CVFF) located below Coyote Valley Dam.
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to distinguish individuals from several California populations (unpublished data). In the
Russian River, 18 of these SNPs have a minor allele frequency < 0.15, 34 between 0.15
and 0.3, and 43 > 0.3 (Table 2.1). In addition, a sex identification assay consisting of a
Y chromosome-linked gene probe developed by Brunelli et al. (2008) and an invariant
autosomal gene was included in the panel to determine genetic sex of all fish.

All SNP genotyping used TagMan assays (Applied Biosystems) on 96.96 Dy-
namic Genotyping Arrays with the EP1 Genotyping System (Fluidigm Corporation).
Two negative (no template) controls were included in each array, and genotypes were

scored using SNP Genotyping Analysis Software v3.1.1 (Fluidigm).

Table 2.1: Genotyping assays used in this study. Expected (Hg) and observed (Hp) heterozygosity, and minor
allele frequency (MAF) expressed as percentage. WSU: Washington State University; CRITFC: Columbia River
Inter-Tribal Fish Commission.

Assay ID Reference Hgp Ho MAF
OMGHIPROMI1-SNP1  Abadia-Cardoso et al. 2011 0.478  0.462 39.49
SH100771-63 “n 0.462 0.465 36.16
SH100974-386 “n 0.306 0.312 18.87
SH101554-306 “n 0.458 0.462 35.53
SH101770-410 “n 0.384 0.378 25.89
SH101832-195 “n 0.499 0.507 47.82
SH101993-189 “n 0.438 0.437 3241
SH102420-634 “r 0.485 0.504 41.33
SH102505-102 «“r 0.361 0.342  23.67
SH102510-682 “n 0.300 0.305 18.38
SH102867-443 “n 0.464 0.448 36.58
SH103350-395 “n 0.478 0.480 39.42
SH103577-379 “n 0.357 0.354 23.23
SH103705-558 “n 0.348 0.343  22.40
SH104519-624 “n 0.478  0.471  39.50
SH105075-162 «“r 0.261 0.266 15.45
SH105105-448 “n 0.415 0.417 29.39
SH105115-367 “n 0.289 0.282 17.53
SH105385-406 “n 0.490 0.494 42.83
SH105386-347 “n 0.155 0.149 8.44

SH105714-265 “n 0.364 0.347 23.89
SH106172-332 “n 0.065 0.063 3.36

SH106313-445 «“r 0.476 0.482 39.11
SH107074-217 “n 0.460 0.458 35.84
SH107285-69 “n 0.329 0.316 20.73
SH108735-311 “n 0.395 0.386 27.06
SH109243-222 “n 0.252  0.237 14.78
SH109525-403 “n 0.472 0.475 38.12
SH109651-445 “n 0.178 0.176  9.89

SH109693-461 “n 0.490 0.489 43.00
SH109874-148 “r 0.203 0.188 11.44
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Table 2.1 Continued

Assay 1D Reference Hg Ho MAF
SH110064-419 “n 0.230 0.198 13.26
SH110078-294 “r 0.321  0.327  20.10
SH110201-359 “n 0.486 0.474 41.66
SH110362-585 “n 0.482 0.485 40.55
SH110689-148 “n 0.472 0.480 38.13
SH111666-301 “n 0.500 0.497 48.50
SH112208-328 “n 0.480 0.483 40.03
SH112301-202 «“r 0.036 0.036 1.82

SH112820-82 “n 0.480 0.488 39.96
SH113109-205 “n 0.346  0.351  22.29
SH113128-73 “n 0.482 0.482 40.39
SH114315-438 “n 0.307 0.310 18.93
SH114448-87 “n 0.368 0.384 24.34
SH114587-480 “n 0.071  0.070 3.66

SH114976-223 «“r 0.402 0.375 27.82
SH115987-812 “r 0.479 0.470 39.74
SH116733-349 “n 0.245 0.247 14.32
SH117259-96 “n 0.424 0.427 30.47
SH117286-374 “n 0.102 0.099 5.37

SH117370-400 “n 0.469 0.455 37.61
SH117540-259 “n 0.317 0.310 19.76
SH117815-81 «r 0.375 0.382 25.04
SH118175-396 “n 0.301 0.303 18.46
SH118654-91 “n 0.489 0.498  42.47
SH118938-341 “r 0.337 0.314 21.45
SH119108-357 “n 0.425 0.400 30.62
SH119892-365 “n 0.495 0.490 45.13
SH120255-332 “n 0.374 0.374 24.92
SH120950-569 “n 0.336  0.260 21.39
SH121006-131 “n 0.370  0.381 24.45
SH123044-128 «“r 0.499 0.486 48.06
SH125998-61 “n 0.493 0.488 44.03
SH127236-583 “n 0.443  0.443  33.09
SH127510-920 “r 0.324 0.314 20.32
SH127645-308 “n 0.001 0.001 0.06

SH128851-273 “n 0.244 0.211 14.25
SH128996-481 “n 0.324 0.325 20.34
SH129870-756 «“r 0.492 0.493 43.68
SH130524-160 “n 0.498 0.484 46.63
SH130720-100 “n 0.481 0.470 40.36
SH131460-646 “r 0.427 0.424 30.83
SH131965-120 “n 0.393  0.349 26.89
SH95318-147 “n 0.402 0.384 27.83
SH95489-423 “n 0.439 0.426  32.58
SH96222-125 «“r 0.413 0412 29.15
SH97077-73 “n 0.312 0.313 19.35
SH97954-618 «“r 0.498 0.478  46.77
SH98188-405 “n 0.240 0.239 13.97
SH98409-549 “n 0.499 0.510 48.01
SH98683-165 “n 0.441 0.430 32.85
SH99300-202 “n 0.084 0.084 4.40

Omy_AldA Aguilar & Garza 2008 0.293 0.289 17.86
OMY_PEPA-INT6 “n 0.444 0.385 33.27
ONMYCRBF_1-SNP1 «“r 0.460 0.462 35.91
*SEX_ID Brunelli et al. 2008 0.451  0.687 34.37
Omy _arp-630 Campbell et al. 2009 0.326  0.329  20.50
Omy_aspAT-123 “n 0.156  0.143 8.55

Omy_COX1-221 “n 0.496 0.500 45.25
Omy_gh-475 “n 0.294 0.292 17.88
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Table 2.1 Continued

Assay 1D Reference Hg Ho MAF
Omy_nramp-146 «“r 0.153 0.153 8.34

Omy_Ogo4-304 “n 0.331 0.318 20.96
Omy_mapK3-103 CRITFC - N. Campbell unpubl.  0.500 0.513 49.54
Omy_g12-82 WSU - J. DeKoning unpubl. 0.444 0445 33.21
Omy_gsdf-291 «n 0.210 0210 11.94
Omy_mcsf-371 “r 0.226  0.224 13.00

*SEX_ID Assay details (primers and probes):

Autosomal Marker F (OmyA F)

Sequence: 5’- GCC TGC TTG CAG AAG TTT TT -3
Autosomal Marker R (OmyA R)

Sequence: 5’- CTT GAC TGT GTC CAG CTT GC -3
Sex-linked Marker 1.4 F (OmyY1.4 F)

Sequence: 5- CAC AAC ATG AGC TCA TGG G -3’

Sex-linked Marker 1 R (OmyY1 R)

Sequence: 5- CGA TTA GAA AGG CCT GCT TG -3’
Autosomal Probe (OmyA probe ¢500)

Sequence: VIC-GAG GGG TAG TCG TTT GTT CG-MGBNFQ
Sex-linked Probe V2 (OmyY1 probe e2)

Sequence: 6FAM-CCT ACC AAG TAC AGC CCC AA-MGBNFQ

2.2.4 Matching samples and iteroparity rate

Samples with identical genotypes were identified to enumerate a) iteroparous
individuals -those that spawned in more than one year, and b) individuals spawned
multiple times within the same year. All samples with matching genotypes were re-
genotyped with a second DNA extraction from the original tissue to eliminate the pos-
sibility of lab/handling errors. To assess the chance that matching pairs of samples
were not the same individual, I implemented the recursive calculations of Chakraborty
& Schull (1976) to compute the probability of identity, P;p(r,n), defined as the proba-
bility that two randomly selected individuals sharing pairwise relationship r would have
only n or fewer loci with non-matching genotypes. Potential differences in iteroparity

rate between hatchery programs and between sexes were explored using a ztest.
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2.2.5 Pedigree reconstruction

Following release, juvenile steelhead from the Russian River migrate to the
ocean and may then return to spawn at age two, three, or four. Therefore, I treated adult
fish spawned in 2007, 2008 and 2009 as the potential parents of fish returning to spawn
in 2009, 2010 and 2011 (Figure 2.2). I assigned parentage using the program SNPPIT
(Anderson 2012), which identifies the most likely pair of parents for each offspring, then
assesses the statistical confidence in the assignments using a novel, efficient simulation
method, which is reported as a False Discovery Rate (FDR) score for that trio. For each
offspring, the estimated FDR is what would be achieved if the parentage assignments of
that offspring and of all offspring with more certain parentage were accepted. I assumed
a genotyping error rate of 0.005 per gene copy, which corresponds to roughly 1% per
locus, for most loci; however, based on Mendelian incompatibilities in reconstructed
trios, I were able to estimate the genotyping error rate directly for 12 loci and I set
rates accordingly (between 0.007 and 0.05 depending on the locus). I excluded fish with
10 or more missing loci (85 loci minimum) from the analysis.

I performed two runs of SNPPIT, with the first censoring all information about
a fish’s reported sex or day of spawning. Thus, for example, any pair of fish spawned
in 2008 were potential mates, even if they were reported as the same sex or as spawned
on different days. The second run included information about reported sex and spawn
date of every fish. Comparison of these runs allowed some minor metadata errors to

be rectified. In both runs, I selected a significance threshold so that the FDR was
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near 0.005, such that I expect fewer than one of every 200 parentage assignments to be
incorrect.

Finally, I assessed the accuracy of the reported FDR by performing an analysis
in which the 2011WSH adult fish were treated as potential parents of the 2007WSH
adults using the same parameters as in the other parentage runs. I expected to have

zero parent/offspring trio assignments in this analysis.

2.2.6 Age structure, reproductive success, spawning time

Age of returning adults was determined for the 2007, 2008, and 2009 cohorts.
Fish from the 2007 cohort could be identified when they returned at age two, three, and
four in 2009, 2010 and 2011, respectively; fish from the 2008 cohort identified returning
at age two and three, in 2010 and 2011, respectively; and fish from the 2009 cohort
identified only at age two in 2011 (Figure 2.2). I compared the proportion of fish from
the 2007 and 2008 cohorts returning at age two and three using a ztest, and assessed
the age distribution of females and males throughout the spawn season.

The distribution of family sizes and number of mates per parent were calculated
from the inferred parent-offspring trios for fish returning in years 2007, 2008, and 2009.
This analysis included only those parents with at least one offspring found in the pedigree
reconstruction. The number of mates per parent was not normally distributed, and could
not be appropriately transformed, so a non-parametric Kruskal-Wallis test was used to
evaluate differences both within years and between years (2007 and 2008) for female

and male parents separately and Levene’s test for homogeneity to compare variances.
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Figure 2.2: Graphical representation of the experimental design. Note that fish return-
ing in 2009 (dashed circles) can be offspring of fish returning in 2007 as well as parents
of fish returning in 2011. Numbers correspond to the total number of fish spawned that
year at the two programs.

Reproductive success was estimated by counting the number of offspring per parent
that returned to one of the two hatcheries. The number of offspring per parent was also
not normally distributed, so a Kruskal-Wallis test was used to detect differences both
between 2007 and 2008 and between female and male parents within years, separately.
The variance in reproductive success between sexes was compared using Levene’s test
for homogeneity of variance across groups.

T-tests were used to compare a) the mean spawning day for age-two and age-
three fish returning in 2010 and 2011, and for females and males separately, and b) the

birth dates (parents’ mean spawning day) for age-two and age-three fish. Age-four fish
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were not included, because they were conclusively identified only in 2011. Since the
pedigree analysis identified family relationships, heritability of the spawning day could
be estimated. Returning fish enter the hatchery volitionally and are spawned on the
date of their biological readiness, as determined by the hatchery staff. Heritability (h2)
was estimated as the slope of the parent-offspring regression line. Spawning days of all
full-siblings within each family were averaged. The relationship between spawning day
of the parents and the average spawning day of: a) all their offspring, b) their female
offspring, and ¢) their male offspring were assessed separately, as were the relationships
between the spawning day of the parents and the average spawning days of their age-two
and age-three and older (3+) offspring. An analysis of covariance (ANCOVA) was used
to test for differences in heritability between these groups. Heritability of spawning
time was also evaluated using a linear regression between full siblings. Pairs of siblings
from each family and pairs of presumably unrelated individuals were randomly selected
10,000 times with replacement. The slope of the regression line (i.e. heritability) for
both groups was then compared using an ANCOVA. Heritability of spawning time was
also estimated using a one-way analysis of variance on full-siblings.

All statistical analyses were performed using the R software (R Development

Core Team 2011).
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Table 2.2: Sample numbers for broodstock from the two programs. WSH, Warm Springs
Hatchery; CVFF, Coyote Valley Fish Facility. Some individuals were spawned multiple
times the same year. The total number of individuals indicates unique fish with > 10
loci missing in their genotypes (see text).

Spawn year Number Spawned Total
and of Missing Spawned three no. of
program samples loci twice times Females Males individuals
2007WSH 601 2 5 0 196 398 594
2008WSH 632 18 7 0 175 432 607
2009WSH 672 7 24 3 213 422 635
2010WSH 662 17 33 2 191 417 608
2011WSH 979 17 62 1 224 674 898
Total 3546 61 131 6 999 2343 3342
2009CVFF 283 0 8 0 107 168 275
2010CVFF 457 30 3 0 149 275 424
2011CVFF 710 10 8 0 210 482 692
Total 1450 40 19 0 466 925 1391

2.3 Results

Genotypes were collected from a total of 4,996 tissue samples (Table 2.2),
including 3,546 from WSH and 1,450 from CVFF. Genotypes from 101 samples were
excluded due to missing data (> 10 missing loci), leaving 4,895 samples for further

analyses. Some of these samples were duplicates from the same individual (see below).

2.3.1 Matching samples and iteroparity rate

The probability that two different, unrelated individuals would have identical
genotypes at nearly all 96 loci was very small. In identifying matching genotypes, 1
allowed up to four mismatches to account for genotyping errors, but there were no pairs
of genotypes that differed at more than two but less than five alleles. Given the allele

frequencies in the populations, the probability of identity P;p(r,n), with n = 4, where n
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is the number of loci with mismatches, was less than 10723 for r = “unrelated” and less
than 10719 for r = “full sibling”. Accordingly, samples with identical or nearly identical
genotypes were considered to be from the same individual.

There were 150 individuals identified that were sampled and presumably spawned
twice in the same year (Table 2.2). Of those, 54 were sampled more than once the same
day and 96 were sampled on different days. In addition, six males were spawned three
times in the same year. The proportion of fish sampled multiple times was strongly male
biased (88.9%). I also identified 29 (0.89%) individuals that spawned in two different,
always consecutive, years: two in 2007/2008, 12 in 2009/2010 and 15 in 2010/2011. Two
iteroparous individuals returned to different facilities in the two years (one to WSH in
2009 and CVFF in 2010, and another to CVFF in 2010 and WSH in 2011). The total
proportion of iteroparous individuals was 0.86% at WSH and 1.14% at CVFF (z =-0.7,
p = 0.48) and was similar for females and males over all years (females: 0.87%, males:

0.95%; z=-0.24, p = 0.84).

2.3.2 Sex determination

Comparison of the phenotypic and genotypic sex determinations showed a
proportion of 1.45% mismatches. These mismatches were resolved in two ways: 1) com-
paring the sex determinations for matching samples, and 2) by running the parentage
analysis without including information about sex and identifying apparent same-sex
pairs. Using the matching samples test I found six cases in which two samples identified

as the same fish were assigned to different phenotypic but same genotypic sexes, and
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one case in which the genotypic sexes were different but not the phenotypic. Parent-
age analysis without restricting mates to be of opposite sex identified four parent pairs
with the same phenotypic but different genotypic sexes, suggesting that the phenotypic
sex recorded was incorrect. On the other hand, one individual identified as phenotypic
male and genotypic female was assigned to parent pairs with 4 different individuals, all
identified phenotypically and genotypically as females. This suggests that the individ-
ual failed for the Y chromosome-linked gene and that the phenotypic identification is
correct. In all cases, the phenotypic or genotypic sex assignments were corrected prior

to the final parentage analysis.

2.3.3 Pedigree reconstruction

Two pedigree reconstruction analyses were performed: one in which mates
were not constrained to be of opposite sex nor to have spawned on the same date, and
the other in which they were. A total of 1,807 putative mother-father-offspring trios
were identified in the analysis in which mates were not constrained to be of opposite
sex nor to have spawned on the same date. Nineteen of the trios identified in this
unconstrained analysis were not present in the constrained one. These 19 trios had
a high FDR score (greater than 1%) and low maximum posterior probabilities. Two
offspring were assigned a parent pair in both analyses but, in both cases, one parent
was the same and the other was different. Both parent pairs were male-male in the
unconstrained run and female-male in the constrained run. This ambiguity indicates

that the assignment in the constrained run is likely to be correct and that a close relative
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of the true mother is present in the dataset.

After reconciling the results from the constrained and unconstrained parentage
analyses, the final number of offspring assigned a parent pair was 1,787. Among these,
the mean posterior probability of the parent /offspring trio relationship was 0.9929 (range
0.497 - 0.999) and the mean FDR was 1.25x107° (range 0 - 0.00198). In this analysis, a
FDR of 0.00198 indicates that no more than three to four parentage assignments out of
the 1,787 are expected to be incorrect. This high confidence is supported by the analysis
that treated the 2011WSH adult fish as potential parents of the 2007TWSH adult fish,
in which no false positive assignments were found.

The 1,787 reconstructed trios correspond to 50.59% of the adult offspring as-
signed to a parent pair, which was similar to expectations, since most of the fish from
CVFF were born before sampling there began, as were some of the fish from WSH in 2009
(and likely also a few age-four fish in 2010) and because a small number of 2008 WSH
spawners were not sampled. This corresponds to 70.76% of the fish from WSH and
19.55% of the fish from CVFF with parental trios identified (Table 2.3). There were
15 fish born to CVFF parents that returned to spawn at WSH, while another 15 were
from WSH parents but returned to CVFF, which yields estimates of migration rate of
0.99% for WSH fish and 5.51% for CVFF. This higher rate of migration from CVFF to
WSH could be due to incubation at WSH of juvenile fish from CVFF parents, but also
to the location of WSH lower in the basin.

I was able to identify four three-generation families from the pedigrees in which

the offspring (one or two per family), the two parents, and all four grandparents are
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Table 2.3: Parent pair assignments for progeny returning as adults in 2009, 2010 and
2011. Note that fish returning in 2009 can be progeny of fish spawned in 2007 and
parents of fish returning in 2011. WSH, Warm Springs Hatchery; CVFF, Coyote Valley
Fish Facility.

Returning adults assigned to parents from:

Spawn year Total Total
and program offspring 2007WSH 2008WSH 2009WSH 2009CVFF assigned
2009WSH 635 231 - - - 231
2010WSH 608 376 152 - - 528
2011WSH 898 11 277 453 15 756
Total 2141 618 430 453 15 1515
2009CVFF 275 1 - - - 1
2010CVFF 424 1 3 - - 4
2011CVFF 692 0 10 0 257 267
Total 1391 2 13 0 257 272

known. I also found 100 three-generation families in which the offspring (mean = 1.72,
range = 1 - 12 offspring per family), the two parents, and just one grandparent pair are
known. Of these, there were 97 in which the paternal grandparents were identified, and
three with just the maternal grandparents found, which is due to the younger mean age

at reproduction for males (see below).

2.3.4 Age structure of returning adults

I assessed the age at first spawning for fish born in 2007, 2008, and 2009.
From 620 fish assigned to parents spawned in 2007 (cohort 2007), a total of 232 (37.4%)
returned at age two (8.2% females and 91.8% males), 377 (60.8%) returned at age three
(43.2% females and 56.8% males), and only 11 (1.8%) at age four (63.6% females and
36.4% males). A total of 443 fish were assigned to 2008 parents (cohort 2008), with 155

(35.0%) age-two (3.2% females and 96.8% males) and 287 (64.8%) age-three offspring
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Figure 2.3: Age distribution of the returning adults by cohort (2007 and 2008) and by
gender within each cohort. Numbers in parenthesis indicate the total number of fish.
White bars represent age two, grey bars age three and black age four fish.

(48.8% females and 51.2% males; Figure 2.3). Note that age-four fish from cohort 2008
would not return during the study period. Finally, 725 age-two fish from cohort 2009
returned in 2011 (6.3% females and 93.7% males) to either WSH or CVFF. There was
no difference in the proportion of fish that returned at age two (z = 0.945, p = 0.344)
and age three (z =-1.083, p = 0.279) in either cohort. The age distribution of all adults
spawned from 2009 to 2011 revealed that 31.5% of the returning adults assigned to
parents were spawned at age two, of which 6.3% were females and 93.7% were males.
Spawning time differed by age, with age-two fish spawning later in the season
(mean spawn week = 9.55) than age-three fish (mean = 7.18) across all years (¢ = 13.34,
p < 0.001). The same pattern was observed for females (¢ = 15.55, p < 0.001) and males

(t =11.86, p < 0.001) separately (Figure 2.4). In contrast, I observed that age-two fish
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Figure 2.4: Age distribution throughout the spawn season of cohorts 2007 and 2008.
Age four offspring are represented just in cohort 2007. Numbers in parenthesis indicate
the total number of fish. White bars represent age two, grey bars age three and black
age four fish.

tend to come from parents spawned earlier in the season than age-three fish, whose

parents spawn later (¢t =-3.53, p < 0.001).

2.3.5 Daistribution of family sizes and reproductive success

The 1,787 parent-offspring trios identified contained a total of 948 parent pairs,
distributed in 295 pedigrees, and included 670 male parents and 504 female parents. The
smallest pedigrees consisted of one offspring and its parents and accounted for 38.6% of
all pedigrees, while the largest pedigree contained a total of 32 male parents, 20 female
parents, and 76 offspring. The mean full-sibling family size amongst the returning adults
was 2.0 offspring per parent pair (range 1-27; Figure 2.5).

Significant differences were found in the distribution and variance in number
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Figure 2.5: Relative frequency of offspring produced by a parent pair (full-sibling family
size) per year and program. Numbers in parenthesis indicate number of parent pairs.
Black bars represent pairs from 2007WSH, dark grey bars from 2008WSH, light grey
bars from 2009WSH, and white from 2009CVFF.
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of mates per parent between females and males over all years, in which females had
on average 1.88 mates (range 1-6) while males had 1.42 (range 1-4) (x? = 81.42, p <
0.001; and malescy = 0.42, femalescy = 0.5, F = 71.91, p < 0.001). This trend was
maintained when females and males were compared within years except for 2009CVFF
parents when corrected for multiple tests (2007WSH: x? = 27.24, p < 0.001; 2008 WSH:
x? = 30.68, p < 0.001; 2009WSH: x? = 22.34, p < 0.001; 2009CVFF: x? = 4.53, p =
0.033; Figure 2.6). I found no differences in the number of mates per female parent
between 2007 and 2008 (x? = 1.02, p = 0.31), but differences were observed between
male parents (x? = 6.67, p = 0.009).

The mean number of returning offspring per male parent was 2.8 (range 1-51)
and per female parent 3.6 (range 1-32). The male parent with the highest reproductive
success (51 offspring) was from CVFF in 2009 and was spawned with two females,
one of which had the highest reproductive success for a female (32 returning offspring)
and produced the largest full-sibling family found (27 offspring). Females had higher
mean reproductive success (x? = 41.41, p < 0.001), but a lower coefficient of variation
(malescy = 1.17, femalescy = 0.99; Fi 1172 = 8.54, p < 0.05) than males over all three
years (Figure 2.7), which is related to the fact that female’s egg lots are always exposed
to milt from more than one male in these programs. Significant differences were found
between sexes within years except for 2009CVFF parents (x? = 1.08, p = 0.298). No
significant differences in reproductive success between 2007 and 2008 were observed for

either females or males.
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Figure 2.7: Relative frequency of offspring produced by a parent across all years. Black
bars represent male parents and grey bars female parents.

2.3.6 Heritability of spawning time

I observed a strong positive correlation between the parent and offspring spawn-
ing day across all years (F1 1089 = 510, R? =0.319, p < 0.001) and when female (F1,281
= 132.6, R? = 0.32, p < 0.001) and male (F;g0s = 381.6, R? = 0.321, p < 0.001)
offspring were considered separately. Heritability (h2) of spawning time was high for
both female and male offspring combined (h* = 0.512), and for female (h* = 0.563)
and male (h? = 0.497) offspring separately (Table 2.4 and Figure 2.8a), as well as when
age-two (h? = 0.545) and age-3+ (h? = 0.548) offspring were considered separately. The
ANCOVA indicated no statistically significant difference in heritability between any of

these groups (Table 2.4).
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Table 2.4: Heritability (h?) of spawning time estimated by parent-offspring and full-
sibling pair regression. Regression goodness of fit (R?) and standard error (SE) are
indicated. (*) Significance at p < 0.05 level.

Parent-offspring Full-sibs
Random
All Male Female Age 2 Age 3+ pairs
2 0.512* 0.497* 0.563* 0.545* 0.548* 0.505*
R? 0.319 0.321 0.32 0.387 0.434 0.253
SE  20.18 19.71 21.39 17.77 17.42 22.53
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Figure 2.8: Heritability estimate of spawn date using two different methods. (a) Parent-
offspring linear regression for females (closed circles, dashed line) and males (open cir-
cles, continuous line) offspring. (b) Full-siblings linear regression with 10,000 bootstraps.
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Figure 2.9: Correlation between the first and the second spawning week in iteroparus
fish.

Heritability was also estimated from full-siblings using a similar linear regres-
sion analysis (Figure 2.8b) and pairs of randomly chosen individuals as a null distribution
(F19908 = 3381, R? = 0.253, p < 0.001; Table 2.4). A strongly significant difference
was found (F = 1558.6, p < 0.001) in the comparison between the regression line slopes
(ANCOVA) of the random pairs and the full siblings. The ANOVA also found greater
variation between than within families (Fq 2406 = 3016.2, p < 0.001).

The spawning days of iteroparous fish in their first and second years of observed
reproduction were strongly correlated (R? = 0.447, p < 0.01), further indicating the

heritability of spawning time (Figure 2.9).
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2.4 Discussion

Here, I use genetic pedigree analysis of steelhead, a fish that undertakes an
ocean migration, to elucidate reproductive patterns and the basis for life history varia-
tion in one of the world’s most widespread fish species. By sampling almost all repro-
ducing adults over several years in two medium-sized hatchery programs in California,
USA, I were able to employ large-scale parentage analysis with a modest number of SNP
markers to identify the parents of most returning adults and infer several important and
previously unknown aspects of the life history and biology of these important fish.

Pedigree reconstruction and parentage analysis using SNP markers have pre-
viously been conducted in humans (Delahunty et al. 1996) and livestock (Heaton et al.
2002; Rohrer et al. 2007), but only recently has their promise for the study of natural
populations become evident (Pemberton 2008; Hauser et al. 2011). While statistical
methodology for pedigree reconstruction and inference of relationships with genetic data
has also long been in use (e.g. Marshall et al. 1998), the development of statistical algo-
rithms (Anderson & Garza 2006) and software (Anderson 2012) that can handle large
datasets and analyses effectively and efficiently have only recently become available.
In conjunction with the increasing ease of development and genotyping of SNP assays
for non-model organisms (Seeb et al. 2011), these advances portend a transition to
pedigree-based methods employing SNP markers for many applications in ecological,
evolutionary and conservation research.

The use of such parentage-based analyses as a surrogate for traditional tagging
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methods also provided us with a large number of pedigrees, allowed us to evaluate
patterns on a family level. This is exactly what is necessary for a classical estimation of
trait heritability using parent/offspring and sibling/sibling regression (Fisher 1918). The
finding that spawning time in steelhead is highly heritable is both a novel and important
outcome of this approach, with implications for management and conservation of the
species. The estimates of other life history parameters, including age distribution and
family structure in the reproducing adults, provide an important baseline with which
to evaluate the effects of hatchery production on natural populations of a species of
conservation concern. Artificial propagation and subsequent supplementation can have
numerous negative effects on natural populations (Utter 1998; Bryant & Reed 1999;
Frankham 2008; Williams & Hoffman 2009; Christie et al. 2012) and detailed estimates
of reproductive and behavioral trait values of the propagated population is a critical

first step in understanding and minimizing these consequences.

2.4.1 Sex determination

While the sex determination of a fish in the field at the time of spawning seems
trivial, there are many sources of error in recording and managing of the data, especially
when handling data sets of thousands of individuals. I compared both phenotypic and
genotypic sex determination to identify many of these errors and accurately assign the
right sex to the fish. The results show the high accuracy of the SNP marker to determine
sex. I found that the error rate is low (1.45%) based on the comparison with the visual

identification. Also, I found that the combination of both methods for sex determination
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is necessary to eliminate ambiguities and to assign fish accurately.

2.4.2 Heritability of spawning time

Timing of reproduction is crucially important for most organisms because, in
a seasonally varying environment, it influences the conditions that the progeny will
encounter (Brannon 1987; Reed et al. 2010). I demonstrate a strong genetic component
to the time of spawning by steelhead. This high heritability was found for both males
and females and using several methods. Numerous studies have examined the genetic
architecture of life history traits of salmonids (e.g. Thrower et al. 2004; Leder et
al. 2006; Nichols et al. 2008; Hecht et al. 2012), including spawning time (Siitonen
& Gall 1989; Su et al. 1997; Quinn et al. 2000; Bentzen et al. 2001; Dickerson et
al. 2005), but this is the first such examination in steelhead and the first using the
classical pedigree-based approach in a population that is free-living for at least part of
its life. Traits related to timing of reproduction (i.e. date of entry, maturation, and
spawning) have shown the highest heritability values in Oncorhynchus species (Carlson
& Seamons 2008). This suggests that there is strong selection pressure on these traits,
which influences the performance and success of breeders. In addition, salmonids have
strong natal homing behavior, which increases population genetic structure and local
adaptation, such that differences in environmental conditions can affect life history traits
in a modest number of generations. For example, recently introduced Chinook salmon
populations in two New Zealand streams with very different environmental conditions

rapidly evolved differences in the timing of migration, maturation, and breeding (Quinn
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et al. 2000). Artificial selection due to environmental conditions in the hatchery can
also play an important role in divergence of reproductive timing between hatchery fish
and their natural progenitor population (Millenbach 1973; Quinn et al. 2002). This
indicates that migration and reproductive timing may respond rapidly to selection and
provide some ability to adapt in the face of changing environmental conditions.

Since age-two fish spawn later than older fish on average (Figure 2.4), and
spawning time was found to be highly heritable in both ages (Table 2.4), I would expect
age-two fish to be born later in the season, which is the opposite of the observed pattern;
fish that spawn at age-two tend to come from early spawning parents and return to
spawn as adults late in the season. One explanation could be that they require more
time to mature, while age-three spawners are able to mature earlier in the season. This
suggests either that age at maturity is not highly heritable in this population, that it is
constrained by developmental requirements, or that it is overwhelmed by environmental

conditions related to hatchery rearing.

2.4.3 Iteroparity rate

My observations of Russian River hatchery steelhead iteroparity are consistent
with those previously reported by Hallock (1989) and Keefer et al. (2008) for the
Sacramento and Columbia rivers, respectively, where just a few fish (less than 1%)
returned a second time and none returned a third time. These studies also reported
much lower iteroparity rates in hatchery- than in natural-origin fish, but I evaluated

only hatchery-origin fish here. However, iteroparity in a naturally spawning steelhead

94



population in a proximate basin (the upper Eel River, ~20km from CVFF), found a
much higher rate (~5%) of iteroparity (unpublished data), suggesting that hatchery
production generally reduces repeat spawning in steelhead.

I found no difference between female and male iteroparity rates. This contrasts
with reports for other salmonid species (Shearer 1992; Fleming 1998) and for natural
steelhead populations (Ward & Slaney 1988; Keefer et al. 2008; Seamons & Quinn
2010) where female repeat spawners are more common than males. Male-male compe-
tition for mates in anadromous salmonids is more intense than that of female-female
competition for nesting areas, which could reduce the post-spawning survival of males
compared to females (Fleming & Gross 1994; Fleming 1996). Artificial spawning elimi-
nates competition among males for mating opportunities, and could therefore increase

male post-spawning survival and iteroparity rates.

2.4.4 Pedigree reconstruction

I reconstructed parent/offspring trios with high confidence, as reflected by
high maximum posterior probabilities and low FDR scores. The proportion of fish with
parent pairs identified was high at WSH (70.76% adult offspring assigned to parents)
but low at CVFF (19.55%, Table 2.3). The unidentified parents can be explained by
several factors, including the lack of sampling of parents from years prior to the study
period, the removal from the analysis of some samples due to missing data, the lack of
sampling on one spawn day in 2008, as well as the likely, but unreported, incorporation

of some natural-origin fish into the broodstock in these programs. Migration of fish
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from CVFF to WSH and their subsequent use as broodstock could also explain some of
the unidentified parents in all years except 2011.

However, some fish are likely not assigned parents because of lack of statistical
confidence, even though their parents’ genotypes are available. I refer to this as a “false
negative error.” There is a direct negative relationship between the FDR and the false
negative rate (Anderson & Garza 2006). Unfortunately, it is difficult to estimate the
false negative rate from the genetic data alone, but I were able to use the 2011WSH
spawners (most of whose parents should be represented in the genotyped samples) and
associated information to estimate the false negative rate for this program (for details
of this estimation see E. C. Anderson’s supporting information in Abadia-Cardoso et
al. 2013). My estimate of the false negative rate for this study was 10.3%. That is,
if T have accounted for all sources of missing parental genotypes, then about 10% of
the juveniles were not assigned a parent pair even though their parents were amongst
the genotyped samples. However, if T have failed to account for only about 3% of the
fish used as broodstock, which could result from incomplete sampling at the hatchery,
loss of samples between spawning and dataset completion, an unusually high rate of
migration from distant hatchery programs, or misidentified natural-origin fish, then the

false negative rate would be close to zero.

2.4.5 Age structure of returning adults

The proportion of fish returning at age two and age three was similar for the

2007 and 2008 cohorts. However, significantly more males than females returned at age
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two, whereas females more commonly returned at age three, which is consistent with
results of a previous study of hatchery steelhead (Tipping 1991). It has been suggested
that age at maturity is determined genetically for one sex and environmentally for the
other (Ward & Slaney 1988; Tipping 1991). However, it is unclear to what extent this is
true, and it is probable that a combination of genetic and environmental factors affect
age of maturity in both sexes.

I observed a high proportion (about 30% on average) of age-two spawners
at both WSH and CVFF. The proportion of age-two male spawners is even higher,
exceeding 50% of male parents in 2009. This is in contrast to the management plan for
these hatchery programs (FISHPRO 2004) that recommends less than 1% of spawners
be age-two fish. While no age structure information is available for naturally spawning
fish in the Russian River, the proportion of age-two spawning adults is much higher
than what is generally seen in steelhead (Busby et al. 1996) and for natural-origin
steelhead in proximate basins to both the north (Eel River; unpublished data) and
the south (Waddell Creek; Shapovalov & Taft 1954), where the proportions of age-two
returning adults were less than 5%. If age at maturity has a heritable component in
this population, as has been shown in other salmonids (Carlson & Seamons 2008), then
overrepresentation of age-two fish in the spawners, relative to the reproductive success
that they would garner in natural spawning situations, will induce selection favoring
earlier maturation. Substantial introgression by hatchery fish in the Russian River
(Deiner et al. 2007) could then shift the age structure of naturally spawning populations.

This would have consequences for reproductive success and fitness, especially in females,
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since younger females are smaller than older females and size is strongly correlated with

female fecundity in steelhead (Shapovalov & Taft 1954).

2.4.6 Distribution of family sizes and reproductive success

In both programs, management goals specify that female spawners are to be
crossed with two or three males, whereas males are to be crossed with only one female,
except when there are not a sufficient number of males to cross every female with unique
males, which should be a relatively rare occurrence. The results indicate that reuse of
males is common. This is in evidence both in the matching sample analysis as well as
with the finding that 36.6% of males from the two programs that produced returning
offspring did so with more than one female. Much of this reuse is on the same spawn
day, but the identification of some fish spawned more than once in different spawning
weeks indicates that they were spawned, released downstream of the hatchery and then
reentered and were spawned again. The reuse of males will reduce effective population
size relative to a crossing scheme where every male contributes only once, regardless if
single-pair, promiscuous, or factorial mating is used. A promiscuous crossing scheme,
in which multiple males are mated with each female and most are used only once, as
in these programs, is expected to increase genetic diversity and the number of families
and reduce the chance of inbreeding relative to single-pair or factorial mating (Pearse
& Anderson 2009). A promiscuous breeding strategy, in which both females and males
breed with multiple partners, has been observed in natural populations of steelhead

(Shapovalov & Taft 1954; Seamons et al. 2004). The use of a genetic pedigree-based
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monitoring method will allow routine evaluation of the effective population size and the
distribution of mating partners in species with multiple bouts of reproduction.

Similar reproductive success for males between years and for females between
years was observed, but females had a higher average number of offspring and smaller
coefficient of variation than males over all years. This is not surprising, because fe-
males are always crossed with more than one male in these programs and, assuming
that females and males have the same probability of surviving to complete an ocean
migration and return to spawn, females were expected to have more offspring on aver-
age than males. However, if no offspring were allocated to a particular parent, it does
not necessarily mean that the parent did not produce returning offspring, since not all
returning adults are used as broodstock. In addition, offspring do not always return to
the hatchery and instead spawn in natural areas, and some offspring genotypes were
discarded due to missing data.

I demonstrate here that large-scale parentage inference with SNP markers is
an effective tagging method for a species that spends most of its life in the ocean
before returning to reproduce in freshwater. This innovative intergenerational genetic
tagging method holds great promise for the study of high-fecundity organisms, because
juveniles are not handled until and unless they survive the high-mortality portions of
their life history. The associated pedigrees are an additional valuable resource with
many potential uses. For example, in species subject to artificial propagation, they
can be used to understand the effects of breeding programs on quantitative genetic

traits. Such information will allow formulation of better strategies for supplementation
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programs and ultimately lead to more effective conservation and management plans.
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from exotic hatchery trout
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Abstract

Salmonid fishes are cold water piscivores with a native distribution spanning
nearly the entire northern hemisphere. Trout in the genus Oncorhynchus are the most
widespread of the salmonid fishes and also among the most important fish species in the
world, due to their extensive use in aquaculture and extremely valuable fisheries. The
trout that inhabit northwestern Mexico are the southernmost native salmonid popula-
tions in the world, and the least known in North America. They are unfortunately also
facing serious threats to their continued existence. Previous work has described one new
species, the Mexican golden trout (O. chrysogaster), and one new subspecies, Nelson’s
trout (O. mykiss nelsoni) in Mexico, but preliminary genetic analyses indicate that there
is vastly more biodiversity in this group than formally described. Here I conducted a
comprehensive genetic analysis of this important group of fishes by using novel genetic
markers and techniques to elucidate the biodiversity of trout inhabiting northwestern
Mexico, compared it to that of other species of Pacific trout, evaluate hypotheses re-
garding their evolutionary history, and measure introgression from non-native hatchery
rainbow trout. This study revealed significant divergence between Mexican trout and
the other species. I confirmed the vast genetic diversity present in the Mexican trout
complex and the extremely strong genetic differentiation, not only between basins, but
also at a smaller scale. I also found that introgression from non-native rainbow trout is
present, but the genetic integrity of native trout is still maintained in many watersheds.

This information will help to guide effective conservation strategies for this globally
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important group of fishes.

3.1 Introduction

The first step in construction of an effective conservation strategy for any taxon
is to document the diversity of biological units in that taxon and gain understanding
of the evolutionary processes that result in the generation of those biological units
(Mayden & Wood 1995). The taxonomic status of native trout inhabiting northwest-
ern Mexico has been the subject of speculation and controversy for decades. Behnke
(2002) considered this group as “the most diverse and the least known trout of western
North America”. Only two taxa from the Mexican trout complex have been formally
described: Nelson’s trout, Oncorhynchus mykiss nelsoni (Evermann 1908), distributed
in the Rio Santo Domingo in northern Baja California; and the Mexican golden trout,
O. chrysogaster (Needham & Gard 1964) from rios Fuerte, Sinaloa and Culiacédn in
the central highlands of the Sierra Madre Occidental (SMO). Both taxa are currently
protected by Mexican law (SEMARNAT 2000) and the Mexican golden trout has been
listed as Vulnerable by the IUCN since 1990 (IUCN 2010). Other formally undescribed
groups of trout are found throughout the Sierra Madre Occidental and trout have been
documented in four basins north of the range of the Mexican golden trout (NSMO here
after): rios Mayo, Yaqui, Guzmén, and Conchos, and in five other basins to the south
(SSMO here after): rios San Lorenzo, Piaxtla, Presidio, Baluarte, Acaponeta (Behnke

2002; Hendrickson et al. 2002, 2006; Ruiz-Campos et al. 2003), and potentially as far
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south as Rio San Pedro Mezquital (Espinoza-Pérez, pers. comm.). These groups have
been considered as undescribed subspecies of O. mykiss, but, no conclusive evidence has
been provided (Nielsen & Sage 2001; Behnke 2002).

The fossil record indicates that trout inhabited Mexico during the Pleistocene.
The southernmost record for a fish assigned to the family Salmonidae is from the Lake
Chapala, Jalisco, Mexico region near 20° North latitude (Cavender & Miller 1982). Tt
has been suggested that the Gulf of California acted as a refugium for anadromous O.
mykiss during the Pleistocene glaciations (Behnke 1992). These trout migrated from the
Gulf into northwestern Mexico, Arizona and New Mexico. The subsequent increase in
both ocean and river water temperatures constrained these trout to the high elevation
headwaters of different river systems. Long isolation times gave rise to the Gila (O.
gilae), Apache (O. apache), Mexican golden (O. chrysogaster) and, presumably, the
other SMO trout.

For years, researchers have tried to investigate the evolutionary relationships
among the Mexican trout complex using a variety of methods including karyology
(Phillips & Rab 2001), morphology (Behnke 1992; Ruiz-Campos & Pister 1995; Ruiz-
Campos et al. 2003), and genetic analyses with mitochondrial DNA (mtDNA; Nielsen
et al. 1998; Camarena-Rosales et al. 2007) and microsatellites (Nielsen & Sage 2001;
De los Santos-Camarillo 2008), but most of them focused on just one species (i.e. O.
chrysogaster) or a few populations in specific regions (i.e. Rio Yaqui or Rio Mayo trout).

In a morphological variation analysis using Mahalanobis’ distances that in-

cludes several populations of the Mexican trout complex, Ruiz-Campos et al. (2003)

111



found two main groups. The first group included O. mykiss nelsoni and the second
group comprised trout inhabiting the SMO (O. chrysogaster and the other SMO trout).
This last group was divided into four subgroups: O. chrysogaster was separated into
two subgroups: 1) O. chrysogaster from Rio Sinaloa, and 2) O. chrysogaster from rios
Fuerte and Culiacén along with trout from Rio Piaxtla; 3) trout from rios San Lorenzo,
Baluarte, and Acaponeta; and 4) trout from rios Yaqui and Mayo.

The first molecular study to include a population of Mexican trout in a phylo-
genetic analysis was that of Loudenslager et al. (1986), who used data from 36 allozyme
loci to elucidate relationships between O. gilae, O. apache, O. mykiss, O. clarkii and
trout from the Rio Mayo only. They found that O. gilae, O. apache and Rio Mayo trout
showed a greater genetic identity to O. mykiss than to O. clarkii. They also reported
that O. gilae and O. apache were sister taxa, and that Rio Mayo trout were more closely
related to O. mykiss than to any other species analyzed.

Nielsen et al. (1997) examined nominal O. mykiss from 15 California and two
Mexican populations (O. m. nelsoni and Rio Yaqui trout) with the control region of
mtDNA and three nuclear microsatellite loci (Omy77, Omy207 and Ssa289). They con-
cluded that O. m. nelsoni was closely related to Little Kern golden trout (0. m. whitei)
and that Rio Yaqui trout were considerably different than the rest of the populations
analyzed. Additionally, Nielsen et al. (1998) analyzed the phylogenetic relationships
between two species of Pacific salmon (O. tshawytscha and O. kisutch), four subspecies
of cutthroat trout, O. gilae, O. apache, nine subspecies of O. mykiss (including O. m.

nelsoni), and one population of Rio Yaqui trout. The phylogenetic analysis showed well-
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supported differentiation between species and was consistent with previous work, but
the single mtDNA control region marker employed was not sufficiently informative for
resolution at the subspecies level. Interestingly, Nielsen et al. (1998) also found a large
deletion in the right-domain of the mtDNA control region in the Rio Yaqui trout. This
deletion had only been reported previously in humans and is related to mitochondrial
disorders (Moraes et al. 1991), although no signs of such disorders have been reported
in trout.

Camarena-Rosales (2007) evaluated restriction fragment length polymorphisms
in one mtDNA region, including samples from most of the basins in northwestern Mex-
ico where trout have been reported. The analysis divided the Mexican trout into four
groups: 1) O. m. nelsoni; 2) O. chrysogaster subdivided into two groups; 3) trout from
Rio Piaxtla; and 4) rios Mayo and Yaqui trout.

Microsatellite loci have seen widespread use in the study of O. mykiss popu-
lation structure and interactions among different groups. There are two studies that
have evaluated the genetic diversity in more than one population from northwestern
Mexico using these markers. Nielsen and Sage (2001) evaluated 11 microsatellites in
trout from rios Yaqui, Mayo, and Guzman, as well as O. chrysogaster. They showed a
strong differentiation of Rio Yaqui trout from the Mexican golden trout and population
structure within the Yaqui basin.

The most comprehensive study to date using microsatellites included data from
Nielsen and Sage (2001), as well as populations farther south (rios San Lorenzo, Piaxtla,

Presidio, Baluarte and Acaponeta). In this study, the presence of seven taxonomic
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units inhabiting the SMO (in addition to O. chrysogaster) was proposed (De los Santos-
Camarillo 2008).

The studies described above provide valuable insight into the high diversity
of trout inhabiting northwestern Mexico, but it is evident that the incomplete sam-
pling effort, small sample sizes, and the low resolution of these analyses have left many
unresolved questions. There is a dire need for more information on the biodiversity
and taxonomic status of trout in Mexico, as they are the southernmost populations of
salmonid fish in their native range (the northern hemisphere), and are the only fish in
this group that inhabit subtropical waters. Given the importance of trout in global
aquaculture and fisheries, adaptation to such conditions is a critical trait to understand
in these primarily cold-water fishes.

Conservation of the trout inhabiting northwestern Mexico first requires com-
plete documentation of the genetic diversity of this species complex, as well as a complete
understanding of the evolutionary history of these trout, which requires analysis of fish
from all the Mexican basins in which native trout have been reported and a comparison
with other trout species (0. mykiss and O. clarkii), specifically those with a presumably
similar evolutionary history (O. gilae and O. apache).

The unique gene pool that is represented by these taxa is likely to go extinct
due to threats by anthropogenic factors (e.g. habitat loss, logging, pollution and global
climate change) without urgent documentation and conservation action. Moreover, the
practice of introducing exotic hatchery rainbow trout (O. mykiss irideus) has caused

them to be established in several drainages where native trout also occur (De los Santos-
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Camarillo 2008). Several studies of California trout have reported introgression from
genetically depauperate hatchery rainbow trout into wild populations, and this has be-
come a substantial threat to native trout (Garza & Pearse 2008; Clemento et al. 2009).
Hybridization of introduced rainbow trout with other native trout species has also been
documented in the United States. One of the most-studied cases is that of the westslope
cutthroat (O. clarkii lewisi) and exotic rainbow trout (Leary et al. 1985; Rubidge et al.
2001; Weigel et al. 2003; Allendorf et al. 2004). Several populations of westslope cut-
throat trout have shown high degrees of introgression, and despite conservation efforts
they could still be at risk (Shepard et al. 2005).

The native O. apache and O. gilae trout are similarly affected. O. apache are
ESA listed as threatened and O. gilae trout as endangered due to habitat reductions and
also hybridization and genetic introgression with introduced rainbow trout (Dowling &
Childs 1992). It has been reported that about 65% of O. apache populations have some
degree of introgression and one population is 100% introgressed (Rhymer & Simberloff
1996), and at least two populations of O. gilae (Iron Creek and McKenna Creek) have
been lost due to hybridization (USFWS 2003). Therefore, it is of great concern to
understand the extent of the introgression of hatchery fish into Mexican native trout in
order to mitigate this effect.

Here, I focus on three main goals: 1) document the genetic biodiversity of
native trout in northwestern Mexico, 2) infer the phylogeographic history of the Mexican
trout complex, and 3) evaluate the extent of hybridization and genetic introgression from

hatchery-raised fish into native trout; all these including samples from all the basins in
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which native trout are known to occur.

3.2 Methods

3.2.1 Tissue collection and DNA extraction

Between 1994 and 2010 an exhaustive effort was made by the binational group
“Truchas Mexicanas” to collect a total of 914 tissue samples (~1cm?) from 42 locali-
ties (13 basins represented) in northwestern Mexico (Table 3.1; Figure 3.1). Also, 147
tissue samples from hatchery rainbow trout were obtained from four hatcheries located
in different basins where native trout have been reported, and one hatchery located in
Guachochi, Chihuahua that is presumably rearing O. chrysogatser (Table 3.1). Addi-
tionally, tissue samples from five West Fork Black River O. apache and five Gila River
0. gilae were obtained.

Genomic DNA from 300 samples was extracted at the Centro de Investigaciones
Bioldgicas del Noreste, S.C. (CIBNOR) in La Paz, Baja California, Mexico (for details
see De los Santos-Camarillo 2008). DNA extraction of the remaining samples took
place at the Southwest Fisheries Science Center in Santa Cruz, CA, USA. The samples
were digested with proteinase K, followed by DNA extraction with a semi-automated

membrane-based system (DNeasy 96 Tissue Kit) on a BioRobot 3000 (QIAGEN Inc.).
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Figure 3.1: Geographic location of sampling sites from 13 major drainages in north-
western Mexico.
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3.2.2 M:crosatellites and single nucleotide polymorphisms genotyp-
ing

All individuals were genotyped at 18 microsatellite loci developed for salmonid
species (Omy27 (McConnell et al. 1995a), Ssa289 (McConnell et al. 1995b); Omy77
(Morris et al. 1996); Ssa85 (O’Reilly et al. 1996); Onellb, Onel3b (Scribner et al.
1996); Omy1011 (Condrey & Bentzen 1998); Ots103 (Small et al. 1998); Oki23 (Smith
et al. 1998); Otslb (Banks et al. 1999); OtsG3, OtsG43, OtsG85, OtsG243, OtsG249b,
OtsG253, OtsG401, OtsG409 (Williamson et al. 2002)). This set of loci has proven to
be highly informative in the study of O. mykiss population structure and interactions
among different groups in California, including all major groups of hatchery rainbow
trout (Aguilar & Garza 2006; Pearse et al. 2007; Clemento et al. 2009; Garza et al.
2014). Also, some of these markers have been tested in O. clarkii populations (Wenburg
et al. 1998; Nielsen & Sage 2002) .

PCR was conducted using 4ul. template DNA, 6.9uL. HyO, 1.5uL 10X PCR
buffer (Applied Biosystems Inc.), 0.9uM MgCly, 0.6uM dNTPs, 1uM fluorescently la-
beled oligonucleotide primers, and 0.04U Amplitaq DNA polymerase (Applied Biosys-
tems Inc.). PCR conditions consisted of 94°C for 3 min; then 9 cycles at 94°C for 30 s,
52 - 60°C for 2 min, and 72°C for 30 s; followed by 15 cycles at 92°C for 30 s, 52 - 60°C
for 2 min, and 72°C for 30 s, with a final step at 72°C for 10 min. The PCR products
were electrophoresed on an ABI377 genetic analyzer. Allele sizes were determined with

Genotyper software (Applied Biosystems) and confirmed by two people independently.
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A total of 93 single nucleotide polymorphism (SNP) locl was genotyped on all
samples. These SNP markers include three loci from Aguilar and Garza (2008), six from
Campbell et al. (2009), 82 from Abadia-Cardoso et al. (2011), and four unpublished.
They have been validated in many populations from California, Oregon and Washing-
ton, as well as introduced populations in other parts of the world (A. A-C. & J.C.G.,
unpublished data). A PCR pre-amplification was carried out in 5.4uL aliquots contain-
ing 2.5uL of 2X Master Mix (QIAGEN Inc.), 1.3uM pooled oligonucleotide primers,
and 1.6ul. template DNA. Pre-amplification thermal cycling conditions included an
initial denaturation of 15 min at 95°C, and 13 cycles of 15s at 95°C, 4 min at 60°C
(+1°C/cycle). Pre-amplification PCR products were diluted 1:3 in 2 mM Tris. The
genotyping method was the 5’ nuclease allelic discrimination or TagMan assay (Applied
Biosystems) for high-throughput genotyping. The genotyping was carried out in 96.96
Dynamic SNP Genotyping Arrays on an EP1 System (Fluidigm Corporation) under the
manufacturer’s specifications.

Additionally, genotypes from the 18 microsatellite and 93 SNP loci from 18
natural-origin O. mykiss populations (N = 675) from California, USA that represent
six Distinct Population Segments (DPSs) (Busby et al. 1996), and four O. mykiss
hatchery strains (N = 187) were included in the analyses. Data from five cutthroat
trout subspecies (coastal (O. clarkii clarkii; (N = 47)), Yellowstone (O. clarkii bouvieri
(N = 20)), Bonneville (O. clarkii utah (N = 16)), Rio Grande (O. clarkii virginalis (N =
10)), and Colorado (O. clarkii pleuriticus (N = 8))) were also incorporated (Table 3.1).

All these populations were carefully selected as the most representative lineages based
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on previous studies (Bjorkstedt et al. 2005; Aguilar & Garza 2006; Clemento et al.

2009; Wilson & Turner 2009; Garza et al. 2014).

3.2.3 Data analysis

The two different classes of markers used have basic differences, such as a
higher level of polymorphism in microsatellites, lower mutation rate in SNPs, different
mutation process, among others. I believe that these differences could provide distinct
and complementary information on the evolutionary history of these groups of trout.
Therefore, some data analyses were performed for both SNPs and microsatellites sepa-
rately.

Within population genetic variation was examined using different approaches.
Expected (Hg) and observed (Hp) heterozygosities (Nei 1978) were estimated using
GENEPOP (Rousset 2008) for microsatellites and SNPs separately. Percentage of poly-
morphic SNPs (P) at 0.95 and 0.99 was calculated using GENETIX 4.05 (Belkhir et
al.). I used the package hierfstat for R (Goudet 2005; R Development Core Team 2011)
to estimate microsatellite allelic richness by rarefaction (Ag) to correct for sample size
differences. A Bayesian analysis of group determination implemented in the program
STRUCTURE 2.2 (Pritchard et al. 2000) was performed. This analysis, based on
individual multilocus genotypes with no prior geographic information of the popula-
tions, indicates the level of mixing within and between groups. Values of K =2 - 7
were used, and 20 iterations were executed for each value of K with a burn-in period

of 50,000 steps and 150,000 Monte Carlo Markov Chain replicates. The results from
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these STRUCTURE runs were reordered and visualized using the software CLUMPP
(Jakobsson & Rosenberg 2007) and Distruct (Rosenberg 2004).

Relationships among populations were explored using three methods: a) Pair-
wise Figr tests and their significance levels through 10,000 permutations were estimated
using Arlequin 3.5 (Excoffier & Lischer 2010); b) Principal Components Analysis (PCA)
was performed using the R based package adegenet 1.3-4 (Jombart 2008); and ¢) Un-
rooted phylogeographic neighbor-joining trees were created using PHYLIP (Felsenstein
2005) for the microsatellite data only and with the combined dataset. Markers that
failed for an entire population were excluded from the PHYLIP analysis, leaving 12
microsatellite and 85 SNP loci. I used the Cavalli-Sforza and Edwards (1967) method
to estimate pairwise genetic distances and 1,000 bootstrapped distance matrices to eval-
uate node support. I excluded from neighbor-joining trees those populations with less

than eight individuals.
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3.2.4 Genetic introgression

Due to evident establishment of non-native hatchery rainbow trout in many, if
not all, of the main drainages of northwestern Mexico (Garcia de Ledn, pers. comm.),
I explored the potential genetic introgression from these hatchery trout into the native
trout populations using two different approaches: a Bayesian analysis with STRUC-
TURE (K = 2 - 5, five iterations each) and PCA. These analyses were performed using
all the natural-origin populations from a basin (e.g. Rio San Lorenzo) and fish from
hatcheries established in that basin (e.g. “Piscicultura Vencedores” hatchery), along
with fish from California hatchery strains. Even though I do not have samples from
hatcheries located in the southernmost basins, I explored the genetic introgression from
California hatchery rainbow trout in rios Presidio, Baluarte, and Acaponeta, based on

the results from previous analysis.

3.3 Results

I successfully genotyped 1,055 trout from northwestern Mexico, O. apache, O.
gilae, and Mexican hatcheries with the microsatellite panel, and 1,027 with the SNP
panel. I excluded from the analysis those individuals that had excessive missing data
(> 10 missing SNP loci and > 9 missing microsatellite loci). A total of 1,999 fish from
Mexican and California populations were included in the final microsatellite analyses
and 1,985 in the SNP analyses (Table 3.2).

Observed heterozygosity per population with microsatellites ranged from 0.033
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in Rio Conchos-Arroyo Ureyna to 0.736 in Klamath River-Blue Creek; and ranged from
zero in several populations from NSMO and O. clarkii ssp. to 0.413 in Gualala River-
Fuller Creek with SNPs (Table 3.2; Figure 3.2). Overall, heterozygosity was higher
for both marker types in O. mykiss populations (microsatellites: mean (Hp) = 0.636,
range = 0.334 - 0.736; SNPs: mean (Hp) = 0.336, range = 0.129 - 0.413), than in
any of the SMO groups (microsatellites: NSMO mean (Hp) = 0.288, range = 0.033 -
0.516; O. chrysogaster mean (Hp) = 0.354, range = 0.190 - 0.606; SSMO mean (Hp)
= 0.382, range = 0.191 - 0.624; SNPs: NSMO mean (Hp) = 0.008, range = 0 - 0.040;
O. chrysogaster mean (Hp) = 0.074, range = 0.003 - 0.113; SSMO mean (Hp) = 0.144,
range = 0.016 - 0.324; Figure 3.2), and than the other species (microsatellites: O. apache
(Ho) = 0.44; O. gilae: (Hp) = 0.192; O. clarkii ssp. mean (Hp) = 0.379, range = 0.281
- 0.537; SNPs: O. apache (Hp) = 0.006; O. gilae: (Hp) = 0.002; O. clarkii ssp. mean
(Ho) = 0.008, range = 0 - 0.031; Table 3.2; Figure 3.2).

Mean number of alleles per microsatellite and A were highest in O. mykiss
populations (mean alleles/locus = 7.74; mean Ar = 1.65). Rio Conchos-Rio Rituchi
showed the lowest number of alleles per microsatellite and Ag (alleles/locus = 1.06; Ar
= 1.03; Table 3.2; Figure 3.3). Within Mexican trout, the highest number of alleles per
microsatellite and highest Ap were observed in Rio Fuerte-Rio Verde (alleles/locus =
8.0; Ap = 1.65; Table 3.2).

Percentage of polymorphic SNP loci at P(0.95) ranged from 0 to 0.99 and
at P(0.99) from 0 to 1, with the highest values observed again in O. mykiss (mean

P(0.95) = 0.88; mean P(0.99) = 0.95). The lowest values of P were observed in NSMO
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(mean P(0.95) = 0.02; mean P(0.99) = 0.05), where all locl was monomorphic in several
populations (Table 3.2; Figure 3.3).

I observed higher mean Fgr values with SNPs than microsatellites (Table 3.2).
Significant negative correlations were found when Fgr values were compared to both
microsatellite allelic richness (Ag: F1 74 = 517.8, R? = 0.875, p < 0.001) and percentage
of polymorphic SNPs (P(0.95): Fy 74 = 859.5, R? = 0.921, p < 0.001; P(0.99): Fy 74 =
591.6, R? = 0.889, p < 0.001; Figure 3.3) as expected, since it has been demonstrated
that the level of heterozygosity directly affects the level of differentiation among groups
(Hedrick 1999).

The STRUCTURE analysis clustered the individuals according to geographic
location for O. mykiss and Mexican populations. However, contrary to my expectations,
I did not see a pattern of clustering for the different species. O. clarkii ssp. shared
ancestry with O. chrysogaster, while O. gilae, and O. apache present shared ancestry

with O. mykiss, O. chrysogaster, and also with NSMO (Figure 3.4).

127



[0)70] 880 Gg8'0 ze0 €0 €6 LT €€°0 69T 8L'¥ 09°0 69°0 ST LT [[ej193eM MO[9q ©IPIG ] 0A011y-0ZUdIOT URS OFY
Sv0 €L°0 99°0 ¥2'0 tale} €6 1 v€0 8% T €8¢ 0s°0 8%°0 81 jat [[ej199eMm dA0qeR ©IPIG e 0£011y-0ZUdI0] URg OFYy ONNSS
09°0 ve0 0€'0 010 I1°0 €6 1T 0€°0 6T 8C'€ €70 160 ST 1T BSOY BIURG OAOLIY-URIRI[ND) OIY
09°0 620 jeralt} 60°0 60°0 6 1T 9€°0 7T 19°¢ 9¢°0 170 ST 1T Opuoy oAoiry-eoreuls ory
09°0 LE°0 920 010 [ 0] 16 8¢ 9€°0 ge'T 00'¥% 9¢€°0 geo 8T o opeplog oforry-eoreurs oryg
€9°0 920 920 60°0 [0 0] €6 6 L¥°0 LE°T vv'e €€°0 LE0 8T (028 [[BJI93eM 9A0qe-OIPOIN [H OAo1ry-eOo[RUlg OfY
19°0 0€°0 0€°0 T1°0 I1°0 €6 ot cv0 it 8L°C 6€°0 7¥0 8T (028 [[BJ199eM MO[9q-OIPOIN [H OA01Iy-eOo[eUlg OfY
LL70 200 200 00°0 T0°0 16 92 740 Gc'T TLT ¥c'0 GT'0 8T 8¢ 0121304 oLorry-eo[eUlg OfY
89°0 0z'0 9T°0 90°0 90°0 16 62 ¥¥°0 ge'T 00°€¢ 9¢€°0 Geo0 8T 62 seyonay, ser] oLoiry-a31eng oryg
7.0 010 90°0 200 200 €6 0€ 9€°0 79°1 00°'8 190 79°0 8T 0€ OPISA Ory-oyen, ory
79°0 L¥°0 L¥°0 010 I1°0 €6 ot L¥°0 LT°T 8C'C L2°0 L2°0 8T ot 9JUADIA UBS 0LOIIY-23491] OfY
69°0 L€°0 L€°0 G0°0 S0°0 €6 8 ¥¥°0 [44nn L1°T 61°0 cT0 8T 8 sunbriedy oforry-9319n ory 4a385Db08hIYD O
9.°0 000 000 000 00°0 16 1T 890 9C'1T ¥y GT'0 92°0 8T Gc OUI[OIN] [ 0011y -SOyou0) ory
g9°0 T0°0 T0°0 000 10°0 06 8 290 €0°'T 90T 90°0 €0°0 8T 6 onYy oy -soyduoy ory
89°0 000 000 00°0 00°0 16 qr 79°0 €0'T LT €0°0 €00 81 qat euha1() 0L0ITY-SOYDUOY) OFY
99°0 €0°0 €0°0 200 T0°0 16 6T 970 9C'T 90°C L2°0 92°0 ST 61 ©[[2138 B[ OLOLIY-OLRIN Oy
99°0 200 200 T0°0 T0°0 6 QT 8%°0 6C°T €€C 820 62°0 81 at rUOWERpPUER) OIY-OABIN OIY
9470 000 00°0 000 00°0 16 9€ ¥<'0 6T°T v6°1 61°0 61°0 LT 9€ ousyouoy) oforry-oLey ory
89°0 00°0 000 00°0 00°0 6 ST L€°0 0S'T vv'e 2s'0 0g°0 ST at e[[oIopuRyg Ookorry-ednirg-mbex oryg
S9°0 200 200 000 T0°0 6 €T taaltl Tv'T 8L'C 8¢°0 [47] ST €T eoenyny, opy-ednirg-mbex oryg
S9°0 cT0 70°0 200 T0°0 6 (14 0S°0 ST'T 68T 61°0 8T°0 ST 1c oy[es [ oALoary-edniig-mbex ory
290 70°0 70°0 c0°0 T0°0 16 9T 9€°0 T 920°€ 6€°0 70 8T 9T ouooo)) [ okorry-adsiaeg-mbex ory
95°0 ¥€°0 800 Y00 V00 6 VI 0 LV'T 19 S¥°0  L¥'0 8T 9T oSrer] okoxry-odsiaeg-mbex ory
09°0 €0°0 €0°0 T0°0 T0°0 6 (028 9€°0 LV T 68'C 970 Lv0 8T (028 [europod odoiry-adsiaeg-mbex ory
19°0 €0°0 €0°0 T00 T0°0 6 (48 8¢°0 Sv'T 68°C 6€°0 G¥°0 8T (45 ©)1sa1d '] okosry-odsiaeg-mbex ory
79°0 200 200 00°0 T0°0 06 8T 16°0 9T'T T9°1T 9T°0 910 8T LT seyonay, ser] odorry-adsiaeg-mbex ory
290 70°0 €0°0 T0°0 T0°0 06 0c 8¢°0 8¥'T v6°C 8%°0 8%°0 8T 0z umbus g oforry-odsiaeg-mbex ory
7.0 000 000 000 00°0 6 14 970 LT T v6°1T Gz'0 L2°0 LT 92 so[errEn ) sor] okorry-adsiaeg-mbex ory
79°0 €0°0 200 T0°0 T10°0 6 €C v w1 TLT 6€°0 70 8T €T el ] oforry-adsiarg-mbex ory
99°0 €0°0 200 000 10°0 6 (44 670 ee'T 9¢°C €0 Geo 8T €T sedewreoeny) se] odorry-odsiaeg-mbex ory
89°0 8T°0 T0°0 T0°0 10°0 €6 92 290 €Tt 191 c10 €10 81 LT OpeLIB[ROSH OAoIIy-ugwzny) ory ONSN
19°0 90 70 €10 ST°0 €6 6€ g€0 T 8C'€ €€°0 70 ST 0¥ oSurwo( ojueg ory
L€°0 v6°0 980 €€°0 €€°0 €6 Le L2°0 09T 9¢€°'¢ 8¢°0 09°0 4! Le IDATY I9jeMISOMG
€€°0 L6°0 980 ¥€'0 ve0 €6 €y iy 791 629 ¥9°0 79°0 VI Ly Paa) ewined
8€°0 86°0 L8°0 T€0 T€°0 €6 Ly 0€°0 09T V6L 09°0 09°0 81 Ly uofue) uoI -39 9dsog-IaATY BIR[) ejURS
L€°0 96°0 980 €€°0 €€°0 €6 9% L2°0 29T cL'S 290 290 ST i4 3201 R[I[IVRIN IO YIION-OID) BINJUDIA
9€°0 S6°0 68°0 ze'0 €€°0 €6 Ly erale} T9°T 0S'9 L8°0 19°0 8T Ly P01y sopandis[eg-I9ATY ZOUX ejuRg
L€°0 96°0 06°0 ze0 ze0 €6 Ly 0€°0 €9'T 829 €9°0 €9°0 ST Ly I9ATY O0NDSIG-I0ATY LI\ RIURS
0%'0 06°0 €8°0 geo0 €€°0 6 1€ 820 €9°'T 9¢°¢ 79°0 €9°0 8T 1€ P9I UOIBUIUUDJ-HOIID) OLIOYD)
ge0 86°0 L6°0 LE0 8€°0 6 ce v2'0 L9°T 68'8 89°0 190 8T ce ISATY [PULIe))
9€°0 96°0 G6°0 LE0 Le0 6 1€ tale) €9°'T Tl 29°0 €9°0 8T 1€ 921D [PPPEM
8€°0 °6°0 68°0 LE0 9€°0 6 144 820 29T €99 G9°0 290 LT 144 {991y sodURIL], SOTT-}aI) ojmbspuRIfUES
g€0 86°0 06°0 ¥€'0 €€°0 €6 87 ¥2'0 L9°T TL'8 G9°0 190 8T 87 I9ATY UBDLIDWY 310 YHION-I9AIY OjusweIdeyg
ce0 00T 96°0 6€°0 8€°0 €6 92 €20 cLT €€'8 TL0 cL0 8T 92 10A1Y eqng rodd-1oAry ojusureIdES
62°0 00°T 86°0 8¢°0 LE°0 €6 €V TT0 VLT 68°CT cL0 7.0 8T €V P9I I99(-ISATY Ojudueldeg
62°0 00°T 66°0 Ge'0 L€°0 €6 Ly 12°0 89T veet 99°0 89°0 LT Ly PRI d[jred-IsATY ojusweIdeg
L€°0 260 €8°0 2e0 g0 €6 0€ 920 99T T L ¥9°0 990 8T o€ 91 dUIoqIR[H-ISATY OjusureIdeg
0€°0 66°0 66°0 70 0¥°0 6 62 vZ0 89T LV'8 89°0 890 LT 62T P9I B[N -I9ATY R[N
ge0 L6°0 88°0 Ge'0 ge0 6 1€ vZo 0L'T 00°'8 €L°0 040 LT 1€ P9I Jedd IO YINOS-I9ATY S[01BIN
ge0 L6°0 06°0 €0 €€°0 6 (45 020 QLT 9¢'TT ¥.L0 GL0 81 (43 P9I Ing-IaAlY Yiewre[s] wospPu w0
LS,1 (66°0) (g6°0) oy Hdpr 1007 jo N LS,1 dy snoojf oy Hipr 1007 jo N uoryeindog dnoin
osimared astmuared
Q‘NWE d d 4832 Q@@E \m®~®:< 4852
SANS SIeSIA

'66°0 pue

G6°0 1€ (g) o] orydarwA[od jo e8ejusdrad {(Hy ) sseuyodlr oro[re ‘Ajso8Azorarey (Of) paatesqo pue (Hfy) pejoodxy ‘A[earpoadsar
eued JNS 2ys pue [oued ojr[[ojesordiwr oY) Ym padLjousd A[[NJsosoons S[eNPIAIPUL JO IOQqUINU N 'SOI9S1IR)S Arewrwing :g'¢ o[qe],

128



8€°0 880 080 1£0 1£0 €6 LY 820 09T 3¢ 990 090 LT ¥ ureng eyseys 4N
0¥'0 $6°0 L0 ¥T0  ST0 €6 L¥ 620 091 8T'¢ 690 090 LT L¥ urern}g oxer] o[Sey
70 080 €L°0 €20 €20 6 L¥ 920 191 L¥'L 650 190 LT LF uren}g sdoojurey sorIoOgRY
zE0 G6°0 060 ¥€0  ¥E0 €6 9F 920  T9'T ¥P'9 190 T9'0 8T 9¥ urel}g uewa[o) ®IUIOJI[RD
£€°0 260 160 9¢°0  €£0 €6 €L ¥2'0  T9'T ¥6'¢ 190 790 8T  GL [gO0YDRNY) B[0DINI) 01UD)) AIOYdIeH
7€°0 16°0 ¥6'0 980 9£°0 €6 81 €20 691 ¥6'9 890 690 8T 81  SOIOPedUSA eIN}NOSI] AIoydje[-0ZULIOTTURS OIY
050 $L'0 L0 80  LT0 €6 ) 1€°0 091 8L'€  G9°0 090 81 L A1oydyey pouopueqe onbrredy oLoiry-9119ng ory
6£°0 ¥6°0 060 V€0 €€0 €6 61 20 1L LT'9 €40 1.0 8T 0% 'ysa1d B seyony], L1eyojeH-odsiaeg-mbeg ory set1aydIRY
9€°0 960 88'0 €80 V€0 €6 1T €20  0LT ¥6'9 690 0L0 8T 1% umbuex oforry Areyojel-edsiaeg-mbex ory ueDIXSIN
€L°0 000 000 000 000 06 0T 170 SV €v'e 820 SO ¥T 01 spuely ory
120 000 000 000 000 68 8 160 T1E'T vI'c 620 1£0 i v I0ATY OpRIO[OD
€L°0 000 000 000 000 06 91 8V'0  6V'T 1€ ¢F0 670 €T 91 poomue[D-o[[iAeuUOg
€L°0 z0°0 20’0 100 100 06 61 or'0 TVl ST’y LSO  TVO €1 6 M21) SsouIRg-10ATY ONRUS
1L°0 1270 ST'0 €00 V00 16 LV 0v'0  T9'T LP'L ¥S0 790 LT LY 1) odey “dss 14410 "0
140 100 100 000 100 16 < 9%'0 0T’ 69T 610 020 €1 G P91y puowrel( UIRIN-I0AIY 1D aopb O
0.0 100 100 100 100 €6 < ov'0 9V’ €V’ SY0 90 ja G T0ATY PRI 10 1SOM ayondo -0
€70 €80 180 280 630 €6 LT 620 69T 8C'¥F T90 650 8T LT se[joqe)) ser] oforry-ejeuodesy ory
9%°0 €80 1.0 230 ¥%0 €6  g¢ ge'0 19T L9%  LF'0 IS0 8T L¢ eIRqIRq RjuRg OKOIIy-olren[eq ory
fadl) $8°0 08°0 620 0£0 €6 ST L0 ¥9°T LT'S %90  ¥90 8T oI eSo/\ e[ op epeiqony) oLolry-oIpisaid ory
0L'0 80°0 800 €00 €00 €6 ST €50 €T1 L9°'T  ST0 €20 8T 6T eSxrer] zni) ofoiry-e(sxerd ory
69°0 010 600 €00 €00 €6 LT 170 LeT e LT0  LTO 8T 8¢ [epiog o[ed oLolry-el3xerd ory
69°0 11°0 110 ¥0°0 %00 €6 €€ g0 08T €8¢ 180 0€0 8T ¢ '[ONZEB[J B Op OA0OIIV-B[IXEld OIY
TL0 $0°0 $0'0 %00 TO'0 €6 92 97’0  0T'T L9°'T 610  0T0 8T 92 oziuely) [op oLolry-e[IXeld ory
£€9°0 1€°0 8T°'0  L00  L0OO [ €50 92T 1Tz 080 920 8T 11 oruojuyueg oforry-e[ixerqd ory
0L'0 8G°0 91'0 %00 ¥0°0 €6 OF TS0 12T 11'e 610  1%°0 8T OF sepa1s/\ se] 0AOIIy-0ZUL8107] ueg Oy
£€9°0 19°0 ¥E'0 800 800 €6 LT g0 921 19 920 920 8T 8¢ Seyoniy, ser] 0011y -0ZueloT] UrS OrYy
LS, (66'0)  (g6°0) OH dyg  »of jo N LS,p dy snoo[ OH g o[ jo N uorje[ndog dnoap
ostmared astmared
ueaN d d Tuan N ueaN \w®~®:< SuIn N
SANS syes|y

penuiuop g'¢ Aqel,

129



Some general patterns can be observed across the different K values. For exam-
ple, clear breaks occur between O. mykiss, NSMO, O. chrysogaster, and rios San Lorenzo
and Piaxtla. Within the Rio Conchos populations I observed an unexpected pattern.
On one hand, rios Rituchi and Ureyna cluster with the rest of the NSMO complex, and
on the other hand, Arroyo El Molino shares ancestry with both the NSMO complex
and O. chrysogaster. 1 saw the same situation for Rio Fuerte-Rio Verde. Within O.
chrysogaster I observed two populations that do not follow the same pattern as others.
Rio Fuerte-Arroyo Aparique and Rio Fuerte-Arroyo San Vicente clearly share ancestry
with O. mykiss -maybe an indication of genetic introgression. The Rios Presidio, Balu-
arte and Acaponeta also show admixture with O. mykiss and more specifically with the
Central Valley DPS populations and hatchery strains (Figure 3.4).

Highly significant genetic differentiation was documented based on the esti-
mated pairwise Fgp values when both microsatellites and SNPs were combined (Tables
S2 and S3). The strongest differentiation was observed among SMO populations (mean
pairwise Fgr = 0.39 - 0.73) and between SMO and O. mykiss populations.

The PCA revealed seven well-differentiated clusters (Figure 3.5). The first
cluster (dark green) corresponds to the NSMO, and comprises all the localities from
both Rio Yaqui tributaries (rios Bavispe and Sirupa), Rio Guzmén, Rio Mayo, and two
tributaries from the Rio Conchos (rios Rituchi and Ureyna). A second cluster (dark
pink) includes all tributaries from rios Piaxtla and San Lorenzo except for Arroyo La
Sidra (above and below waterfall; see below for more information about this locality).

A third cluster (yellow/orange) encompasses all 0. mykiss populations, including O. m.
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Figure 3.2: Mean observed heterozygosity per population. a) Microsatellites; b) SNPs.
The populations are organized from north to south except for populations 61 to 67,
which correspond to O. apache, O. gilae, and O. clarkii. NSMO: Northern Sierra Madre
Occidental; SSMO: Southern Sierra Madre Occidental.
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Figure 3.3: Correlation between mean Fgr and genetic diversity. a) Microsatellite
allelic richness and b) percentage of polymorphic SNPs at 0.95 and 0.99. Populations
are organized from north to south except for populations 61 to 67, which correspond to
0. apache, O. gilae, and O. clarkii. NSMO: Northern Sierra Madre Occidental; SSMO:
Southern Sierra Madre Occidental.
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Figure 3.4: STRUCTURE analysis. Estimated membership fraction (represented by
color proportions) of 1,932 individuals from 18 O. mykiss populations, 42 trout popu-
lations from northwestern Mexico, one O. gilae and one O. apache population, five O.
clarkii subspecies, and five Mexican and four California rainbow trout stocks, using 18
microsatellites and 93 SNPs. Horizontal plots represent STRUCTURE runs constructed
with Distruct. Each thin, colored, vertical line represents one individual. Vertical black
lines separate collection localities. A summary of the 20 runs for each K value (K = 2
- 7) is shown. The right column indicates the number of observations for that specific
pattern. NSMO: Northern Sierra Madre Occidental; SSMO: Southern Sierra Madre
Occidental. Numbers on top represent the Population number in table S1.
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nelsoni, all California and Mexican hatcheries, as well as fishes from the SSMO southern-
most localities (rios Presidio, Baluarte and Acaponeta). A fourth cluster (green/blue)
includes two localities: Rio Conchos-Arroyo El Molino and Rio Fuerte-Rio Verde, the
last being previously described as O. chrysogaster. The rest of the O. chrysogaster
localities form a fifth group (light blue), except for two tributaries from Rio Fuerte
(arroyos Aparique and San Vicente). These Rio Fuerte tributaries surprisingly cluster
with the O. mykiss group when PC1 and PC2 are plotted (Figure 3.5a) and with the
San Lorenzo/Piaxtla cluster when PC1 and PC3 are used. O. gilae and O. apache trout
define the sixth group (olive green). Finally, O. clarkii subspecies (light green) overlap
with two O. chrysogaster populations (Rio Sinaloa-Arroyo El Potrero and Rio Fuerte-
Arroyo Las Truchas) when PC1 and PC2 are plotted (Figure 3.5a) but separate when
PC1 and PC3 are used (Figure 3.5b).

Overall, topologies were concordant between the two unrooted phylogenetic
trees (Figure 3.6 and Figure 3.7), with the exception of the southern populations rios
Presidio and Baluarte that cluster within the O. mykiss lineage on the combined tree
while they form a separate group on the microsatellite tree.

Several noticeable features can be identified in the population grouping pat-
terns in both trees. First, the topology observed is mostly consistent with the different
species as well as with the geographic proximity of streams; clustering all the O. mykiss
populations into a monophyletic lineage (including O. mykiss nelsoni) separate from
most of the SMO populations and O. clarkii. However, some exceptions where observed.

First, Rio Acaponeta trout, the southernmost population, clusters with Mexican hatch-
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Figure 3.5: Principal Components Analysis (PCA) of allele frequencies from 18 mi-
crosatellites and 93 SNPs and the first 50 eigenvalues. a) First (PC1) and second (PC2)
principal components and b) first (PC1) and third (PC3) principal components. The
difference in color (red, blue and green channel) between clusters indicates divergence
using the first three PCs. Seven clusters are shown (see text for description of cluster
membership). NSMO: Northern Sierra Madre Occidental.



ery trout within the O. mykiss lineage in both trees and, second, two tributaries of
Rio Fuerte, the rios Aparique and San Vicente, group with the Rio San Lorenzo/Rio
Piaxtla lineage, although the branches grouping them do not have significant bootstrap
support.

A long well-supported internal branch separates all the populations from rios
Yaqui, Mayo, and Guzman as well as two tributaries of the Rio Conchos. This result
is consistent with the PCA. In addition, strong support was observed for a division
between the northern and southern Rio Yaqui regions. Populations from rios Fuerte,
Sinaloa and Culiacén (O. chrysogaster) form a monophyletic cluster on both trees, which
also includes Rio Conchos-Arroyo El Molino. Also consistent with the PCA, support
was found for a cluster of rios San Lorenzo and Piaxtla with populations interspersed

with one another.

3.3.1 Genetic introgression

Results from the PCA and STRUCTURE analyses indicate that fish raised
at all the Mexican hatcheries sampled in this study correspond to O. mykiss and are
closely related to California hatchery rainbow trout strains (Figure 3.8 and Figure 3.9).
I observed that introgression from hatchery rainbow trout is present in Mexican native
trout populations. The analyses revealed that introgression is localized in tributaries
where rainbow trout hatcheries occur, and that it varies from site to site (Figure 3.8 and
Figure 3.9). Also, I observed completed shared ancestry between California hatchery

rainbow trout and O. chrysogaster from the hatchery “Centro Truticola Guachochi”.
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Figure 3.6: Unrooted neighbor-joining dendogram using data from 12 microsatellite
markers. The tree was constructed with pairwise genetic distances and 1,000 boot-
strapped distance matrices from 18 O. mykiss, 19 NSMO, 10 O. chrysogaster, and 12
SSMO natural-origin populations, four O. clarkii subspecies, and five Mexican and four
California hatchery stocks. >50% percent bootstrap support is indicated in internal
branches for Mexican trout (for O. mykiss see Garza et al. 2014). DPS affiliations of
California O. mykiss populations (creeks) are highlighted in colors. Note that Battle
Creek, Deer Creek and the Upper Yuba are not part of the Central Valley DPS but are
part of the same region. Mexican natural-origin populations are indicated with branches

and names colored.
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Figure 3.7: Unrooted neighbor-joining dendogram using both types of markers (12 mi-
crosatellites and 85 SNPs) combined. The dendogram was constructed with pairwise
genetic distances and 1,000 bootstrapped distance matrices from the 18 O. mykiss, 19
NSMO, 10 O. chrysogaster, and 12 SSMO natural-origin populations, four O. clarkii sub-
species, and five Mexican and four California hatchery stocks. >50% percent bootstrap
support is indicated in internal branches. California O. mykiss populations (creeks) are
highlighted in colors. Mexican natural-origin populations are indicated with branches

and names colored.

138



Rio Yaqui- Rio
Bavispe
Largo Kamloopsg Kamloops
0 4 Las Guacamayas
Los Cuarteles

La Presita Eagl 0 - Arroyo La Sidra
La Nutria (above) Arroyo La Sidra
El Cocofio (below)  Hatchery
NS Pedernal Colema Vencedores
&) :8Yenqum Hatchery La Presita
Rio G : o 4
0 Buzman Hatchery Arroyo
Yenquin Arroyo Las Truchas
0 | IArroyo Las Veredas
0 |
1
a) Shasta C) Shasta
T T T T T T T T
-10 -5 0 5 -10 -5 0 5
B amloops
Rio Verdgj

Eagle

1
y Rio Acaponet
‘, Rio Presidio
Abandoned hatchery Arroyo Las Truchas

. ( o -
LN) 0 | amloops Coleman
a !
Rio Baluarte
o Arroyo 0
\nl Aparique !
Arroyo
San Vicente \
2 | b) d) Shasta
' 5 0 5 10 -10 5 0 5
PC1 PC1

Figure 3.8: Principal Components Analysis (PCA) of allele frequencies. Each plot in-
cludes populations from four California hatchery strains (Coleman, Kamloops, Eagle
Lake, and Mount Shasta) and a) Populations from all Rio Yaqui-Rio Bavispe and Rio
Guzman tributaries, and samples from “Truchas La Presita” and “Yenquin” hatcheries;
b) Populations from all Rio Fuerte tributaries, samples from an abandoned hatchery
located at the Rio Fuerte-Arroyo Aparique, and samples from “Centro Truticola Gua-
chochi”; ¢) Populations from all Rio San Lorenzo tributaries and samples from “Pisci-
cultura Vencedores” hatchery; d) Populations from the three southernmost populations,
rios Presidio, Baluarte, and Acaponeta. The difference in color (red, blue and green
channel) between clusters indicates divergence using the first three PCs.
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Figure 3.9: STRUCTURE analysis of hatchery rainbow trout ancestry. Estimated mem-
bership fraction (represented by color proportions) from four California hatchery strains
Coleman, Kamloops, Eagle Lake, and Mount Shasta) and a) Populations from all Rio
Yaqui-Rio Bavispe and Rio Guzmaén tributaries, and samples from “Truchas La Pre-
sita” and “Yenquin” hatcheries; b) Populations from all Rio Fuerte tributaries, samples
from an abandoned hatchery located at the Rio Fuerte-Arroyo Aparique, and samples
from “Centro Truticola Guachochi”; ¢) Populations from all Rio San Lorenzo tributaries
and samples from “Piscicultura Vencedores” hatchery; d) Populations from the three
southernmost populations, rios Presidio, Baluarte, and Acaponeta. Horizontal plots
represent STRUCTURE runs constructed with Distruct. Each thin, colored, vertical
line represents one individual. Populations are separated by vertical black lines. Five
iterations of each K value are shown (K =2-7).
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3.4 Discussion

Despite previous efforts, little is known about the relationships among Mexican
trout populations (Ruiz-Campos & Pister 1995; Hendrickson et al. 2002, 2006; Ruiz-
Campos et al. 2003; Camarena-Rosales et al. 2007), and between them and other
trout species (Nielsen et al. 1998; Nielsen & Sage 2001; De los Santos-Camarillo 2008;
Mayden et al. 2010).

In this study, I find at least five major lineages of trout inhabiting northwestern
Mexico that originated from at least two, and possibly three, separate colonization
events. I found significant divergence between trout from the SMO and O. mykiss
populations, as well as the other three previously named species analyzed (O. apache,
O. gilae, and O. clarkii).

I confirmed the vast genetic diversity present in the trout inhabiting northwest-
ern Mexico. In spite of the diversity previously shown in the Mexican trout complex,
only two taxa have been formally described and protected by Mexican law (SEMARNAT
2000). These are Nelson’s trout, O. mykiss nelsoni (Evermann 1908) and the Mexican
golden trout, O. chrysogaster (Needham & Gard 1964). Nelson’s trout is native to the
Rio Santo Domingo in the Sierra de San Pedro Mértir in northern Baja California (Ev-
ermann 1908; Snyder 1926; Ruiz-Campos & Pister 1995), but its taxonomic status as
a subspecies has been questioned (Miller et al. 2005). Results from the STRUCTURE
analysis and PCA indicate that Nelson’s trout is, in fact, more closely related to O.

mykiss than to SMO trout or other species, in agreement with early observations. This
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subspecies was the first group of Mexican trout to be characterized, when Evermann
(1908) described it as a new species (Salmo nelsoni). Later, Snyder (1926) concluded
that these trout were closely related to Salmo irideus, now called O. mykiss irideus
(Needham 1938). Moreover, the phylogenetic tree shows a stronger proximity of this
group to O. mykiss Southern California DPS populations than to any other California
populations or hatchery rainbow trout. This result indicates that during the most recent
radiation of coastal steelhead, populations extended their range at least as far south as
the Sierra de San Pedro Martir in Baja California. Even though I did not find strong
genetic differentiation of this population from other O. mykiss with the markers used,
it is important to note that O. m. nelsoni had significantly lower genetic diversity than
all other O. mykiss populations and the highest Fgp values among them (Tables S2 and
S3), an indication of small effective population size (Ne) and long isolation time.

My results show extremely strong genetic differentiation among Mexican trout
from the SMO, not only between basins but also at a smaller scale among localities
within basins. I observed higher pairwise Fgr estimates between SMO trout (mean Fgr
=0.351 - 0.684) than between O. mykiss populations (mean Fgp = 0.244 - 0.527). As
mentioned above, Fgr is highly influenced by Ne. Small populations experience stronger
effects of genetic drift and, in turn, reduced heterozygosity. This is directly related to
the estimation of Fgp; therefore, the high values observed between SMO populations
are likely a consequence of the small population sizes. This is also supported by the low
microsatellite allelic richness and the proportion of polymorphic SNPs found in SMO

trout.
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Within the SMO trout, I found at least four well-differentiated lineages. The
rios Yaqui, Mayo, Guzmaén, and the northern Rio Conchos tributaries form a unique
evolutionary unit, very different from the other species, as well as from other SMO
drainages. This result is concordant with previous reports using mtDNA (Nielsen et
al. 1998; Camarena-Rosales et al. 2007) and microsatellites (Nielsen & Sage 2001;
De los Santos-Camarillo 2008). My analysis also confirmed the previously observed
local structure within the Rio Yaqui (Hendrickson et al. 1980; Nielsen & Sage 2001;
Camarena-Rosales et al. 2007; De los Santos-Camarillo 2008), represented by the two
main tributaries: the Rio Bavispe populations to the north and the Rio Sirupa ones
to the south. Rio Guzman trout seem to be closely related to trout from Rio Bavispe,
while Rio Mayo trout associate with Rio Sirupa populations. These Rio Bavispe/Rio
Guzman and Rio Sirupa/Rio Mayo relationships were detected by Nielsen and Sage
(2001), who discussed the hypotheses of multiple natural environmental events that
interconnected several tributaries of the rios Yaqui, Guzmén, Mayo, and Conchos basins
(Hendrickson et al. 1980), permitting the migration of multiple species of fish from one
to the other (Schonhuth et al. 2011; Dominguez-Dominguez et al. 2011), versus inter-
basin transplants by humans (Behnke 1992). They concluded that both hypotheses are
highly plausible and neither their nor my results can confirm one or the other and it
could be a combination of both factors played a role in creating the observed patterns.

The results confirm that O. chrysogaster populations from rios Fuerte, Sinaloa
and Culiacan form a monophyletic group, with the exception of trout from two tribu-

taries of the Rio Fuerte (arroyos San Vicente and Aparique), which jumped from cluster
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to cluster depending on the analysis used. For example, they cluster with O. mykiss
or San Lorenzo/Piaxtla with the PCA depending on which principal components are
used (Figure 3.5), but they cluster with San Lorenzo/Piaxtla on the phylogenetic trees
(Figure 3.6 and Figure 3.7). This could be the result of reduced genetic variation or ge-
netic introgression. Also, I found very strong genetic differentiation between and within
the three basins where they were known to occur. However, I did not observe any evi-
dence of subgrouping by basin as in Ruiz-Campos et al. (2003) and Camarena-Rosales
et al. (2007), but a strong association between tributaries from different basins that
are geographically adjacent to each other (PCA not shown), an indication of migration
between them. More detailed studies would be necessary to understand the small-scale
structure found here.

Rio Conchos trout were originally described as “cutthroat type” (Cope 1886)
but then not seen for decades. Trout were recently rediscovered in the Rio Conchos
after exhaustive efforts from the group “Truchas Mexicanas” (Hendrickson et al. 2006).
My results do not indicate that populations from this basin are related to cutthroat
trout, but more closely related to either the Yaqui/Mayo/Guzman complex or to O.
chrysogaster. Trout from rios Rituchi and Ureyna, tributaries of the Rio Conchos,
group tightly with Rio Yaqui-Rio Bavispe trout. In contrast, Conchos-El Molino and
Fuerte-Verde formed a single cluster on the PCA and cluster together in the trees along
with the O. chrysogaster lineage. In spite of the fact that these two tributaries are on
alternative sides of the continental divide, they are geographically adjacent (Figure 3.1)

and stream capture episodes could have caused dispersal from Rio Fuerte-Verde into
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Rio Conchos-El Molino. This movement of fish between Rio Fuerte and Rio Conchos
has been previously reported in other freshwater fish species (Schénhuth et al. 2011,
2014; Dominguez-Dominguez et al. 2011).

Rio San Lorenzo and Rio Piaxtla formed another independent evolutionary
group in the analyses. Unfortunately, trout from Rio San Lorenzo-Arroyo La Sidra are
heavily introgressed by hatchery rainbow trout (Figure 3.8 and Figure 3.9), as indicated
in previous reports where a considerable number of migrants between native and exotic
trout (Nm = 2.7) was estimated (De los Santos-Camarillo 2008). Samples taken below
the hatchery (downstream) showed a higher level of introgression than those above
the hatchery (upstream). No introgression was detected at other Rio San Lorenzo
tributaries, indicating that hatchery rainbow trout has not extended its range in this
basin beyond the immediate vicinity of the hatchery.

I observed that trout from rios Presidio, Baluarte and Acaponeta are more
closely related to O. mykiss than the other SMO lineages. Hybridization between trout
from these southern drainages and exotic rainbow trout has been previously detected
(De los Santos-Camarillo 2008) and other studies have considered them to be introduced
rainbow trout based on morphologic characteristics (Miller et al. 2005). My results in-
dicate that trout from rios Presidio and Baluarte may be partly of hatchery origin,
although the combined tree (Figure 3.7), the PCA (Figure 3.8) and the STRUCTURE
runs (Figure 3.9) suggest that they may form a unique lineage of, at least partially,
native ancestry. These observations could be the result of a more recent natural colo-

nization event of an anadromous O. mykiss or hybridization between native trout and
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hatchery rainbow trout. Previous studies that looked at impacts of hatchery rainbow
trout on natural origin trout in southern California indicate that they did not have a
significant impact on the naturally spawning populations (Clemento et al. 2009) and
suggested that this low contribution of hatchery fish to natural reproduction could be
the consequence of ancestral differences in reproductive patterns. Natural origin trout
from the Presidio, Baluarte and Acaponeta are at the extreme south of the species nat-
ural distribution and they are presumably well adapted to the local conditions prevalent
in their environment. This local adaptation could be somewhat acting as a reproductive
barrier between the native and exotic trout, explaining the divergence observed between
trout from the rios Presidio and Baluarte. Also, strong differences in body size between
native and introduced rainbow trout in that region has been suggested as an impedi-
ment to hybridization (De los Santos-Camarillo 2008). Unfortunately, trout from Rio
Acaponeta clusters with O. mykiss in every analysis performed here and, more specif-
ically, this trout associates with hatchery rainbow trout strains. These results provide
strong evidence that trout from Rio Acaponeta are descended directly from hatchery
rainbow trout or, if still present, that the native population is completely introgressed.

Samples from Centro Truticola, the hatchery in Guachochi, Chihuahua come
from a program with objectives to raise and cross a strain of O. chrysogaster for con-
servation purposes (Barriga-Sosa et al.). Unfortunately, my results indicate that trout
from this hatchery do not correspond to O. chrysogaster or any other native SMO lin-
eages. In contrast, they tightly cluster with hatchery rainbow trout, indicating incorrect

identification of the fish when collected, or total introgression from rainbow trout also
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raised at the hatchery.

The first documented introduction of non-native trout into Mexican waters was
in 1886, when about 33,000 O. mykiss irideus eggs were imported from Baird Station
on the McCloud River, California, United States (Arredondo-Figueroa 1983). The total
number of rainbow trout hatcheries in Mexico is unknown, but some unofficial reports
indicate that there are around 40 hatcheries that produce 110 tons a year in the state
of Durango alone and about 182 hatcheries that produce 184 tons a year in the state
of Chihuahua (Diaz 2010; Aquahoy 2011). Both of these states possess native trout
populations.

Fish reared at hatcheries face problems such as domestication selection, in-
breeding depression and increased disease susceptibility. Introductions of non-native
species in any environment can have devastating effects on local species. These effects
can range from reduction of the native genetic diversity, to complete extinction of local
populations (Rhymer & Simberloff 1996; USFWS 2003). Introgression from non-native
rainbow trout was present at different levels in most of the tributaries with established
hatcheries, but the genetic integrity of native trout from northwestern Mexico is still
maintained in many watersheds. The information in the present study is crucial to

guide effective conservation strategies for this globally important group of fishes.
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The dissertation presented here represents an in-depth evaluation of trout pop-
ulations in Northwest America at different scales, from the evaluation of biological traits
throughout the reconstruction of pedigrees in two populations to a phylogeographic ex-
amination of multiple trout species. Here, the combination of novel molecular techniques
allow me to answer critical ecological questions for the appropriate management of per-
haps one of the most important group of fish in the world: The Pacific Trout.

Chapter one is a description of the discovery, characterization and development
of assays for a large number (139) of SNP loci for steelhead/rainbow trout (Abadia-
Cardoso et al. 2011). I exploited EST databases to design nearly 500 primer sets for
functional genome regions. PCR products resulting from these genes, which include
both exonic and intronic regions, were then sequenced in an ascertainment panel of
22 fish designed to simultaneously represent some of the phylogenetic diversity of the
species and to provide polymorphic markers for focal populations in California. These
SNP markers represent a valuable resource for studying ecological interactions, phylo-
geography, and conservation status, as well as for pedigree reconstruction, individual
and genetic stock identification and, eventually, for linkage mapping.

During the past decade, microsatellite markers have dominated population
genetic work in salmonids, due to their high variability and conservation among related
species (Aguilar & Garza 2006; Clemento et al. 2009; Pearse et al. 2007; Pearse et al.
2009). However, microsatellites have significant drawbacks, among them relatively high
genotyping error/mutation rates, significant staff time necessary for data generation

and allele calling, and homoplasy. Moreover, the results obtained with microsatellites
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in one laboratory are not directly combinable with data generated in other laboratories
(Seeb et al. 2007). Conversely, data obtained from SNP loci are easily portable and
combinable between laboratories. Although SNPs were initially granted dim prospects
for relationship inference in molecular ecology (Glaubitz et al. 2003), Anderson and
Garza (2006) demonstrated that a relatively small number of SNPs (< 100) would
allow accurate parentage studies larger than any that had been previously attempted.
The coincidence of that work with the advent of novel genotyping platforms that permit
the rapid genotyping of thousands of individuals at many loci has now set the stage for
SNPs to be the marker of choice for large-scale parentage studies and for genetic tagging
of migratory species.

Chapter two consists of the elucidation of critical reproductive patterns in
ESA-listed steelhead from a supplementation program in the Russian River, CA, using
a pedigree-based intergenerational genetic tagging protocol to provide information com-
parable to that obtained by physical tagging methods (Abadia-Cardoso et al. 2013).
Artificial propagation and subsequent supplementation can have numerous negative ef-
fects on natural populations (Utter 1998; Bryant & Reed 1999; Frankham 2008; Williams
& Hoffman 2009; Christie et al. 2012) and detailed estimates of reproductive and be-
havioral trait values of the propagated population is a critical first step in understanding
and minimizing these consequences. I demonstrated how the use of pedigree-based ge-
netic tagging provides a powerful means of understanding many basic biological traits
in relatively high fecundity species with significant conservation concerns. The use of

such analyses as a surrogate for traditional tagging methods provided us with a large
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number of pedigrees, and allowed us to evaluate patterns on a family level. Specifically,
I assigned most individuals that return from the ocean to pairs of parents that were
spawned on the same day, but without cross information recorded. A matching samples
analysis allowed us to estimate the number of fish that were spawned multiple times
within a single season and the number that return and reproduce in multiple seasons.
These estimates reveled inconsistencies from hatchery program goals. The two hatchery
programs evaluated here use local fish as broodstock, provide substantial numbers of
spawners in natural areas, and are not genetically differentiated from the natural pop-
ulations in the Russian River (Deiner et al. 2007). As such, elucidation of life history
patterns in these hatchery steelhead populations allowed us to examine whether they
were negatively influencing the associated natural populations. I estimated the vari-
ation in family size and the age distribution amongst reproducing fish. I observed a
high proportion of age-two spawners, contrasting with the management plan for these
hatchery programs (FISHPRO 2004) that recommends less than 1% of spawners be
age-two fish. I also found that fish of different ages spawn on significantly different
dates. These patterns on a family level are exactly what is necessary for a classical esti-
mation of trait heritability using parent/offspring and sibling/sibling regression (Fisher
1918). The finding that spawning time in steelhead is highly heritable is both a novel
and important outcome of this approach, with implications for management and con-
servation. All the information obtained in this chapter will allow for better strategies
for supplementation programs and ultimately lead to more effective conservation and

management plans.
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Simultaneously, the powerful molecular tools developed along with the exten-
sive sampling effort, were applied in chapter three to population genetic analysis of the
Mexican trout, to evaluate population structure and differentiation, and to understand
its phylogeographic distribution. An important first steps in construction of an effec-
tive conservation strategy for any taxon is to document the diversity of biological units
in that taxon and gain understanding of the evolutionary processes that result in the
generation of those biological units (Mayden & Wood 1995). However, the taxonomic
status of native trout inhabiting northwestern Mexico has been the subject of specula-
tion and controversy for decades. Only two taxa from the Mexican trout complex have
been formally described, even though the complex has long been considerd as highly
diverse (Behnke 2002), and other groups of trout distributed along the Sierra Madre
Occidental (SMO) have not been formally described. For years, researchers have tried
to investigate the evolutionary relationships among the Mexican trout complex pro-
viding valuable information and some insight into the diversity of the trout inhabiting
northwestern Mexico. However, these groups of trout have been considered as unde-
scribed subspecies of O. mykiss (Nielsen & Sage 2001; Behnke 2002). It is evident that
the incomplete sampling effort, the small sample sizes, and the low resolution of these
analyses have left many unresolved questions. Conservation of the trout inhabiting
northwestern Mexico first requires complete documentation of the genetic diversity, as
well as a complete understanding of the evolutionary history of this species complex.
My analysis included fish from all the Mexican basins in which native trout have been

reported. I also put these Mexican populations in a phylogeographic perspective by
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comparing them with other trout species (O. mykiss and O. clarkii), specifically with
those that are presumably closely related and with a similar evolutionary history (O.
gilae and O. apache).

Here, I confirmed the vast genetic diversity present in the trout inhabiting
northwestern Mexico. I also confirmed that Nelson’s trout is, in fact, more closely re-
lated to O. mykiss than to SMO trout or other species. I provided evidence that trout
inhabiting the SMO correspond to independent lineages separated from O. mykiss. The
results show extremely strong genetic differentiation among Mexican trout from the
SMO, not only between basins but also at a smaller scale among localities within basins.
Within the SMO trout I found at least four well-differentiated lineages. The rios Yaqui,
Mayo, and Guzman form a unique evolutionary unit and the rios San Lorenzo and Pi-
axtla another one, very different from the other species. O. chrysogaster populations
form a monophyletic group and show strong differentiation between and within the three
basins where they were known to occur. Rio Conchos trout were originally described as
“cutthroat type” but then not seen for decades. Trout were recently rediscovered in the
Rio Conchos after exhaustive efforts from the group “Truchas Mexicanas” (Hendrickson
et al. 2006). The present work represents the first to genetically examine Rio Conchos
trout since these small populations were rediscovered. My results do not indicate that
populations from this basin are related to cutthroat trout, but alternatively that pop-
ulations from tributaries of the northern Rio Conchos are more closely related to the
Yaqui/Mayo/Guzmén complex and tributaries from the southern Rio Conchos to O.

chrysogaster. Finally, I observed that trout from rios Presidio, Baluarte and Acaponeta

160



are more closely related to O. mykiss than the other SMO lineages, and it is unclear
if it is a result of hybridization with hatchery rainbow trout or a more recent natural
colonization event of an anadromous O. mykiss.

Introgression from non-native rainbow trout was present at different levels in
most of the tributaries with established hatcheries, but the genetic integrity of native
trout from Northwestern Mexico is still maintained in many watersheds. The informa-
tion in the present study is crucial to guide effective conservation strategies for this

globally important group of fishes.
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Supplemental material

Supplement 3.1. Pairwise Fgr estimates for all populations and strains (below di-
agonal) and significance p-values (above diagonal). Labels on the y-axis indicate full
location and abbreviations are on the x-axis. Lines indicate breaks for the main groups
(0. mykiss, O. m. nelsoni, NSMO, O. chrysogaster, SSMO, O. apache, O. gilae, and
O. clarkii ssp., Mexican and California hatcheries.
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