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ABSTRACT OF THE DISSERTATION

Self-Extensions and Prime Factorizations of Representations of Quantum Affine Algebras

by

Mathew Arthur Lunde

Doctor of Philosophy, Graduate Program in Mathematics

University of California, Riverside, June 2015

Professor Vyjayanthi Chari, Chairperson

It is well known that the category of finite dimensional representations of a quantum affine

algebra is not semi-simple. Moreover, the tensor product of irreducible representations

remains irreducible generically. This observation leads naturally to the definition of prime

objects and the factorization of irreducible objects into irreducible primes. We show that

there is an interesting connection between the prime objects and the homological properties

of the category: an irreducible representation V of Ûq(sl2) is a tensor product of r prime

representations if and only if the dimension of the space of self-extensions of V is r. In

addition, in the case when V is a tensor power of an irreducible prime module, we give

generators and relations for V , as well as classify all self-extensions of V (up to equivalence)

in terms of polynomials.
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Introduction

The category F of finite-dimensional representations of a quantum affine algebra has

been intensively studied in recent years. The simple objects were classified in [4, 5], and

since then many authors have attempted to understand the structure of these representa-

tions. Many important tools have been developed, in particular the theory of q-characters,

developed in [11, 12], has given deeper insight into the combinatorial structure of the rep-

resentations, and a connection to cluster algebras has been established in [13, 17]. It was

shown in [8] that the “q = 1” limit of certain families of objects in F give rise to graded

representations of the corresponding current algebra. Recently, there has been a lot of work

to understand these graded representations of the current algebra in an attempt to under-

stand the representations of the corresponding quantum affine algebra. See for example

[9].

It is well known that F is not a semi-simple category and the tensor product of ir-

reducible representations in F remains irreducible in general. This leads naturally to the

definition of prime objects, that is objects that cannot be decomposed into nontrivial ten-

sor products. More generally, one is interested in the factorization of simple objects into
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a tensor product of prime representations. When g = sl2, it was shown in [4] that the

finite-dimensional, simple prime objects are precisely the evaluation modules. Outside of

the sl2-case, a complete classification of the simple prime objects is not known. However,

many examples of prime objects are known, for example the Kirillov-Reshetikhin modules,

and more generally the minimal affinizations are known to be prime. Other examples of

prime objects may be found in [13].

In this dissertation, we continue the investigation of prime objects and prime factor-

izations initiated in [3], by analyzing the homological properties of F . In [3], it was shown

for g = sl2 that a simple object of F is prime if and only if

dimC Ext1F (V, V ) = 1.

Our main result (Theorem 1) generalizes the above statement to prime factorizations. We

show that a simple object V of F is a tensor product of r simple prime representations if

and only if

dimC Ext1F (V, V ) = r.

The proof yields some results that we believe are of independent interest. In addition to

proving the above, we give a presentation of V in terms of generators and relations when

V is a tensor power of an evaluation module, i.e. a prime power. In particular, we show

in this case that V is the quotient of the corresponding local Weyl module obtained by

imposing a single linear relation. This linear relation allows us to construct an explicit

basis of Ext1F (V, V ) as a vector space over C in this case and give a classification, up to

equivalence, of the self-extensions of V in terms of polynomials whose coefficients involve

2



the Eulerian numbers.

The dissertation is organized as follows: In Chapter 1, we introduce the notation and

develop the necessary preliminaries used in the dissertation, recall the classification of sim-

ple and simple prime objects in F , and recall the definition of and various results about

Ext1F (V, V ). In Chapter 2 we state the main results of the dissertation. In Chapter 3 we

prove an upper bound on the dimension of Ext1F (V, V ), namely the dimension of Ext1F (V, V )

is less than or equal to the number of prime factors in a prime factorization of V .

In Chapter 4, we prove Theorem 1 in the case that V is a “prime power”, i.e. a tensor

power of an evaluation module. To do so, we prove the previously mentioned presentation

of V in terms of generators and relations (Theorem 2) and give a classification of the

self-extensions of V (Theorem 3). Finally, in Chapter 5, for an arbitrary simple object

V , we prove a lower bound on the the dimension of Ext1F (V, V ), namely the dimension of

Ext1F (V, V ) is greater than or equal to the number of prime factors in the prime factorization

of V .
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Chapter 1

Notation and preliminaries

In this chapter we will set notation and define the algebras that we will study, review

basic properties of their structure, discuss important subalgebras, review basic facts about

their representations and their homological properties.

1.1 Notation

Throughout this dissertation C (resp. Z, Z+, N) denotes the set of complex numbers

(resp. integers, non-negative integers, positive integers) and C× is the set of non-zero

complex numbers. Given an indeterminate u, let C[u] (resp. C(u), C[[u]]) be the algebra

of polynomials (resp. field of rational functions, ring of formal power series) in u with

coefficients in C. We fix q ∈ C× not a root of unity. For m ∈ Z, r, s ∈ Z+ we define

[m] =
qm − q−m

q − q−1
, [0]! = 1, [r]! = [r][r − 1] · · · [2][1],

[
r

s

]
q

=
[r]!

[r − s]![s]!

4



1.2 The quantum affine algebra

Let Ûq(sl2) be the associative algebra defined over C which is generated by the elements

e±i , k±1i , i = 0, 1, with defining relations: for i, j ∈ {0, 1},

kik
−1
i = 1, kikj = kjki, kie

±
j k
−1
i = q±2e±j , [e+i , e

−
j ] = δij

ki − k−1i
q − q−1

,

(e±i )3 − [3](e±i )2e±j e
±
i + [3]e±i e

±
j (e±i )2 − e±j (e±i )3 = 0, i 6= j. (1.2.1)

It is well-known that Ûq(sl2) is a Hopf algebra with counit ε, comultiplication ∆, and

antipode S, defined on generators as follows: for i = 0, 1,

ε(ki) = 1, ε(e±i ) = 0, ∆(ki) = ki ⊗ ki,

∆(e+i ) = e+i ⊗ 1 + ki ⊗ e+i , ∆(e−i ) = e−i ⊗ k
−1
i + 1⊗ e−i ,

S(ki) = k−1i , S(e+i ) = −k−1i e+i , S(e−i ) = −e−i ki.

1.3 The quantum loop algebra

The quantum loop algebra Ûq is the quotient of Ûq(sl2) by the two sided ideal generated

by k0k1−1. It is clearly a Hopf ideal, and thus Ûq acquires the structure of a Hopf algebra.

The algebra Ûq has an alternate presentation which was given in [10] and is more

suited for the study of finite-dimensional representations. Namely Ûq is isomorphic to the

associative algebra over C with generators x±r , hs, k
±1, where r ∈ Z, s ∈ Z r {0}, and

defining relations: for all r, ` ∈ Z and for all s, s′ ∈ Z r {0},

kk−1 = 1, khs = hsk, hshs′ = hs′hs,

5



[hs, x
±
r ] = ±1

s
[2s]x±r+s, kx±r k

−1 = q±2x±r ,

x±r x
±
` − q

±2x±` x
±
r = q±2x±r−1x

±
`+1 − x

±
`+1x

±
r−1,

[x+r , x
−
` ] =

φ+r+` − φ
−
r+`

q − q−1
,

where for m > 0, φ±∓m = 0, and for m ≥ 0, φ±±m are defined by the following equality of

formal power series in u,

∑
m≥0

φ±±mu
m = k±1 exp

(
±(q − q−1)

∑
s>0

h±su
s

)
.

It will often be convenient to use the following convention: for s ∈ Z, set

φs =



φ+s , s > 0

(k − k−1), s = 0

−φ−s , s < 0

(1.3.1)

Note that with this definition, we have,

[x+` , x
−
s ] =

φ`+s
q − q−1

, for all `, s ∈ Z

The algebra Ûq has a Z-grading satisfying

grx±r = r, grhs = s, grφm = m (1.3.2)

for r,m ∈ Z, s ∈ Z r {0}.

1.3.1

We will also need the subalgebra Uq generated by the elements e±1 , k
±1
1 which we recall

is isomorphic to the quantized enveloping algebra associated to sl2. Given a ∈ C×, let

6



eva : Ûq → Uq be the homomorphism of algebras given on generators by

eva(k) = k1, eva(x
+
s ) = asks1e

+
1 , eva(x

−
s ) = ase−1 k

s
1 s ∈ Z.

Remark 1.3.1. It is important to recall that we are working in the sl2-case in this disser-

tation and outside of the sln-case there is no analogue of the maps eva.

1.3.2

Let Û±q (resp. Ûq(0)) be the subalgebra of Ûq generated by the elements {x±r : r ∈ Z}

(resp. {φm : m ∈ Z}). We have an isomorphism of vector spaces,

Ûq = Û−q Ûq(0)Û+
q . (1.3.3)

Let Û0
q be the subalgebra of Ûq(0) generated by {φs : s ∈ Z r {0}}. It is well-known [1, 2]

that it is a Z-graded polynomial algebra in these variables. It is clear from the defining

relations that it is also the polynomial algebra in the variables {hs : s ∈ Z r {0}}. We will

also need a third set of algebraically independent generators for Û0
q , originally defined in

[4]. We define Λm, m ∈ Z by the following equality of formal power series in u,

∑
m≥0

Λ±mu
m = exp

−∑
s≥1

h±s
[s]

us

 . (1.3.4)

Notice, if we set

Φ±(u) =
∑
s≥0

φ±±su
s, Λ±(u) =

∑
m≥0

Λ±mu
m,

then we have the following equality of formal power series in u,

Φ±(u) = k±1
Λ±(q∓1u)

Λ±(q±1u)
. (1.3.5)

7



1.3.3

The next proposition, proved in [6], gives partial information on the comultiplication

of Ûq sufficient for our purposes. Let ∆ : Ûq → Ûq ⊗ Ûq be the comultiplication. Let X±

be the subspaces of Ûq spanned by x±s , s ∈ Z.

Proposition 1.3.2. The comultiplication ∆ of Ûq satisfies, ∆(k) = k ⊗ k, and

(i) Modulo terms in ÛqX− ⊗ ÛqX
2
+,

∆(x+s ) = x+s ⊗ 1 + k ⊗ x+s +
s∑
j=1

φj ⊗ x+s−j , s ≥ 0,

∆(x+−s) = x+−s ⊗ 1 + k−1 ⊗ x+−s +

s−1∑
j=1

φ−j ⊗ x+−(s−j), s > 0.

(ii) Modulo terms in ÛqX
2
− ⊗ ÛqX+,

∆(x−s ) = x−s ⊗ k + 1⊗ x−s +
s−1∑
j=1

x−s−j ⊗ φj , s > 0,

∆(x−−s) = x−−s ⊗ k−1 + 1⊗ x−−s +
s∑
j=1

x−−(s−j) ⊗ φ−j , s ≥ 0.

(iii) Modulo terms in ÛqX− ⊗ ÛqX+ + ÛqX+ ⊗ ÛqX− we have for s > 0,

∆(φ±±s) =

s∑
j=0

φ±±(s−j) ⊗ φ
±
±j , ∆(Λ±s) =

s∑
j=0

Λ±(s−j) ⊗ Λ±j ,

∆(h±s) = h±s ⊗ 1 + 1⊗ h±s

8



1.4 Finite dimensional representations

A representation V of Uq or Ûq is said to be of type 1 if

V =
⊕
µ∈Z

Vµ, Vµ = {v ∈ V : kv = qµv} (1.4.1)

Let F be the category of finite-dimensional, type 1 representations of Ûq. Since the algebra

Ûq is Hopf algebra, it follows that F is a tensor category. It is however, not a semi-simple

category and one of the goals of this dissertation is to explore the relationship between the

tensor structure on F and its homological properties. To make this precise we have the

following definition:

Definition 1. We say that an object V of F is prime if it is either trivial or cannot be

written in a nontrivial way as a tensor product V ∼= V1 ⊗ V2 where V1, V2 are nontrivial

objects of F .

Since any object of F is finite dimensional, clearly any object can be written as a tensor

product

V ∼= V1 ⊗ · · · ⊗ Vr, Vs prime. (1.4.2)

Definition 2. We call (1.4.2) a prime factorization of V with prime factors Vs, 1 ≤ s ≤ r.

We note that it is far from clear that such a factorization is unique up to a permutation.

In fact it is not clear that r is independent of the choice of prime factors. Observe also that

if V is irreducible then every prime factor of V is also irreducible. We shall see later in this

chapter that these facts are true for Ûq (which is the quantized affine algebra associated to

sl2), but this is not known for the higher rank algebras.
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1.5 Irreducible and prime objects of F

We now discuss the classification and construction of the irreducible and prime irre-

ducible objects of F . It is well-known [15] that the irreducible representations of Uq are

indexed by the non-negative integers. Moreover, if we denote by V (m) an irreducible rep-

resentation of Uq associated to m ∈ Z+, then dimC V (m) = m+ 1 and V (m) is prime, i.e.,

is not isomorphic to a nontrivial tensor product of Uq representations. It is also known

that any finite-dimensional representation of Uq is completely reducible. It follows that for

every m ∈ Z+ we get by using eva : Ûq → Uq, a ∈ C×, an (m + 1)-dimensional, prime

nontrivial, irreducible representation, denoted V (ωm,a) defined as follows: V (ωm,a) has a

basis vm, . . . , v0 and the action of Ûq is given on generators by,

x+s vi = (aq−m+2i+2)s[i+ 1]vi+1, x−s vi = (aq−m+2i)s[m− i+ 1]vi−1, (1.5.1)

where 0 ≤ i ≤ m and v−1 = vm+1 = 0. The action of φs and hs for all s ∈ Z r {0} can be

determined using the defining relations. For future use we have,

φsvm = (aqm)s(qm − q−m)vm, hsvm = as
[sm]

s
vm. (1.5.2)

Note that V (ω0,a) and V (ωm,0) are the trivial module and will just be denoted as C. More-

over, V (ωm,a) ∼= V (ωn,b) if and only if m = n and a = b.

Since Ûq is a Hopf algebra, the vector space dual V ∗ of an object of F is also in F ,

with action given by the the antipode S of Ûq,

(xf)(v) = f(S(x)v), x ∈ Ûq, f ∈ V ∗, v ∈ V.

It was shown in [4] that the antipode S of Ûq satisfies the relation S ◦ evaq2 = eva ◦S, and

10



hence,

V (ωm,a)
∗ ∼= V (ωm,aq2). (1.5.3)

The following result was proved in [4].

Proposition 1.5.1.

(i) Any nontrivial prime irreducible object of Ûq is isomorphic to V (ωm,a) for a unique

choice of m ∈ N, a ∈ C×.

(ii) Let V be an irreducible object of F . There exists a unique integer r and unique (up to

ordering) elements (ms, as) ∈ N× C×, 1 ≤ s ≤ r with

as
a`
6= q±(ms+m`−2p), 0 ≤ p < min{ms,m`},

such that

V ∼=Ûq
V (ωm1,a1)⊗ · · · ⊗ V (ωmr,ar).

Moreover, if we set v = vm1 ⊗ · · · ⊗ vms and m = m1 + · · · + mr, then for all k ∈ Z,

s ∈ Z r {0}, we have

x+k v = 0, kv = qmv, hsv =

r∑
`=1

am`
[sm`]

s
v, (x−0 )m+1v = 0.

It is worth isolating the following corollary.

Corollary 1.5.2. Any nontrivial irreducible representation in F has a unique factorization

(up to permutations) as a tensor product of prime representations, and we can write

V ∼= V ⊗s11 ⊗ · · · ⊗ V ⊗srr ,

11



where r ≥ 1 and V1, · · · , Vr are non-isomorphic nontrivial prime representations and s1, . . . , sr ∈

N.

With the notation of the corollary, we call V1, · · · , Vr the prime factors of V occurring

with multiplicity s1, · · · , sr.

1.5.1

Given (m, a) ∈ N× C×, define the following polynomial in C[u],

ωm,a(u) = (1− aqm−1u)(1− aqm−3u) · · · (1− aq−m+1u). (1.5.4)

Notice we have,

ωm,a−1(u) = (−a)mumωm,a(u
−1). (1.5.5)

Let V be any irreducible object of F generated by a vector v, and let (mi, ai) ∈ N × C×

for 1 ≤ i ≤ r such that V ∼= V (ωm1,a1) ⊗ · · · ⊗ V (ωmr,ar) as in Proposition 1.5.1. It is

clear from the relations in part (ii) of Proposition 1.5.1 that there exist complex numbers

ds, s ∈ Z such that Λsv = dsv. The following result was proven in [4] and explains our

previous notation.

Proposition 1.5.3. With the notation above, we have an equalities in C[u],

∑
s≥0

dsu
s =

r∏
j=1

ωmj ,aj (u),
∑
s≥0

d−su
s =

r∏
j=1

ωmj ,a
−1
j

(u).

Set πV (u) =
∏r
i=1 ωmi,ai(u). Using equation (1.5.5) we see that ds for s ≤ 0 is deter-

mined by πV .

12



In view of Proposition 1.5.3, we shall use the following convention: for all s ∈ Z, set

Λs(πV ) = ds, with ds as in the proposition. Then we have,

Λsv = Λs(πV )v. (1.5.6)

Define φs(πV ), s ∈ Z similarly.

1.6 Self-extensions in F

We recall the definition of self-extensions of objects of F . We shall always work with

the Yoneda Ext-groups. We discuss the main tools we will need and refer the interested

reader to [19] for a more detailed explanation.

Given an object U of F we say that an object V of F is a self-extension of U if we have

a short exact sequence in F of the form,

0→ U
ι−→ V

τ−→ U → 0.

We say that V is trivial if the sequence splits and say it is nontrivial otherwise. Given

self-extensions, V1 and V2 of U , we say V1 and V2 are equivalent if we have a commutative

diagram of the form,

0 // U
ι1
// V1

τ1
//

φ
��

U // 0

0 // U
ι2
// V2

τ2
// U // 0

(1.6.1)

and we call the set of equivalences classes of the above relation Ext1F (U,U). Given a self-

extension V of U , we shall denote the equivalence class of V in Ext1F (U,U) by [V ], and

the equivalence class of the trivial extension is denoted by [0]. Note, if [V ] = [0], then

13



V ∼= U ⊕U as Ûq-modules and the trivial object C satisfies Ext1F (C,C) = 0. Notice also, if

V1 and V2 are self-extensions of U such that [V1] = [V2] in Ext1F (U,U), then by (1.6.1) it is

clear that V1 ∼= V2 as Ûq-modules. The set Ext1F (U,U) is an abelian group under the Baer

sum and has a natural scalar multiplication and hence is actually a complex vector space.

It is a well known consequence of the adjoint pairs of exact functors,

(−⊗ V,−⊗ V ∗), (V ∗ ⊗−, V ⊗−),

that for any objects U , V , and W in F , we have natural isomorphisms in the category of

C-vector spaces,

Ext1F (W ⊗ V,U) ∼= Ext1F (W,U ⊗ V ∗), Ext1F (W,V ⊗ U) ∼= Ext1F (V ∗ ⊗W,U). (1.6.2)

1.6.1

It is easy to construct a self-extension of any object V of F . For s ∈ Z, let Ûq[s] be

the s-th graded piece of Ûq. Given V ∈ F define an object E(V ) of F by requiring that

E(V ) = V ⊕ V as a vector space and the action of Ûq is given by,

gs(v, w) = (gsv, sgsv + gsw), gs ∈ Ûq[s], v, w ∈ V (1.6.3)

The following was proved in [3, Propositions 3.3, 3.6, 5.4 and Lemma 3.5 ].

Proposition 1.6.1. Let V, V ′ be irreducible objects of F such that V ⊗ V ′ is irreducible.

(i) The representation E(V ) defines a non-zero element of Ext1F (V, V ).

(ii) If Ṽ is a nontrivial self-extension of V , then Ṽ ⊗ V ′ is a nontrivial self-extension of

V ⊗ V ′.

14



(iii) If Ṽ1 and Ṽ2 are nontrivial self-extensions of V , then

Ṽ1 ⊗ V ′ ∼=Ûq
Ṽ2 ⊗ V ′ if and only if Ṽ1 ∼=Ûq

Ṽ2.

(iv) Suppose that V and V ′ are non-isomorphic objects of F ; then E(V )⊗V ′ and V ⊗E(V ′)

define linearly independent elements of Ext1F (V ⊗ V ′, V ⊗ V ′).

We have the following consequence.

Corollary 1.6.2. Let V, V ′ be irreducible objects of F such that V ⊗V ′ is irreducible. Then,

we have an injective map of vector spaces,

p : Ext1F (V, V )→ Ext1F (V ⊗ V ′, V ⊗ V ′), [V ] 7→ [V ⊗ V ′]

Proof. The fact that p is a well-defined and linear follows from the exactness of the functor

(− ⊗ V ′) and the vector space structure of Ext1F (V, V ). The fact that p is injective now

follows immediately from part (ii) of Proposition 1.6.1.
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Chapter 2

Statements of results

In this chapter we present the main results of this dissertation.

2.1 The main result

The main result of this dissertation is:

Theorem 1. Let V be an irreducible object in F . Then

dimC Ext1F (V, V ) = r, equivalently dimC Ext1F (C, V ⊗ V ∗) = r

if and only if there exists irreducible prime objects of F , Vs, 1 ≤ s ≤ r such that

V ∼= V1 ⊗ · · · ⊗ Vr

Remark 2.1.1. The theorem generalizes the work of [3] in the case of quantum affine sl2.

It was shown in that paper, that if V is irreducible and had r non-isomorphic prime factors

(possibly occurring with multiplicity), then dimC Ext1F (V, V ) ≥ r. It was also shown that
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V was prime and irreducible if and only if dimC Ext1F (V, V ) = 1. We discuss this further

in the rest of this chapter. We also isolate some results that we establish in the course of

proving Theorem 1 that we believe are of independent interest.

2.2 Generators and relations of prime powers

It is clear from Proposition 1.6.1(iv) that one of the obstructions to proving Theorem 1

comes from the case V (ωm,a)
⊗r; notice that the representation is irreducible by Proposition

1.5.1(ii). A key step in the proof of Theorem 1 is to prove this case. Note that the relations

satisfied by the element v in Proposition 1.5.1(ii) are not a defining set of relations for the

irreducible module V (ωm1,a1)⊗ · · · ⊗ V (ωmr,ar) and in fact such relations are not known in

general. Our next result gives a defining set of relations in the case of V (ωm,a)
⊗r. Define

an element x−a (m, r) ∈ Ûq, by

x−a (m, r) =

r∑
s=0

(−aqm)s
(
r

s

)
x−r−s. (2.2.1)

We shall prove,

Theorem 2. The Ûq-module V (ωm,a)
⊗r is isomorphic to the Ûq-module generated by a

non-zero vector v with defining relations: for all j ∈ Z and s ∈ Z r {0},

x+j v = 0, kv = qrmv, hsv = ras
[sm]

s
v,

(x−0 )rm+1v = 0, x−a (m, r)v = 0. (2.2.2)

The proof of Theorem 2 will be given in Chapter 4, Section 4.1.
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2.3 Self-extensions of prime powers: a classification

Using Theorem 2 we can now construct all of the self-extensions of V (ωm,a)
⊗r (up to

equivalence). For the rest of this section, we assume that m, a, r are all fixed. Let v be as

in Theorem 2 and recall for s ∈ Z r {0},

Λsv = Λs(ω
r
m,a)v.

Given c ∈ C, let D : C[u]→ C[u] be the operator defined by,

Dc[f ] = (cu)
d

du
f, f ∈ C[u].

For each 1 ≤ j < r, define Zj(u) by,

Zj(u) =


[ωm,aq2(u)]rDj

aqm+1

[
1

1−aqm+1u

]
, 1 ≤ j < r,

D1[ωm,a(u)], j = r.

Given a vector c = (c1, . . . , cr) ∈ Cr set,

Zc(u) =

r∑
j=1

cjZj(u).

We shall prove,

Theorem 3. Given any nonzero vector c = (c1, . . . , cr) ∈ Cr, there exists a nontrivial

self-extension V (c) of V (ωm,a)
⊗r such that the action of Û0

q on V (c)rm is determined by

the functional equations,

Λ+(u)(v, w) = ([ωm,a(u)]rv, [ωm,a(u)]rw + Zc(u)v) , v, w ∈ V (c)rm.
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The equivalence classes [V (ej)], 1 ≤ j ≤ r form a basis of Ext1F (V (ωm,a)
⊗r, V (ωm,a)

⊗r). In

particular, V (c) is uniquely determined (up to isomorphism) by the Baer sum

[V (c)] =

r∑
j=1

cj [V (ej)],

and if V is any self-extension of V (ωm,a)
⊗r, then V ∼= V (c) as Ûq-modules for some c ∈ Cr.

We remark that V (0) is isomorphic to the trivial self-extension. The proof of Theorem

3 will be given in Chapter 4.
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Chapter 3

An upper bound

In this chapter we take the first step toward proving Theorem 1. Namely, our goal in

this chapter is to prove the following proposition,

Proposition 3.0.1. Let V be an irreducible object of F with prime factors Vi, 1 ≤ i ≤ k

occurring with multiplicities ri ∈ Z+, 1 ≤ i ≤ k. Then,

dim Ext1F (V, V ) ≤
k∑
i=1

ri.

3.1 Jordan-Hölder multiplicities

In the case when r = 1, Proposition 3.0.1 was proved in [3] and in [14]. We recall the

key step of the proof in [14] since this will play an important role in this dissertation. Given

(m, a) ∈ N× C×, set

V (αm,a) = V (ωm+1,aq)⊗ V (ωm−1,aq). (3.1.1)

It follows from Proposition 1.5.1 that V (αm,a) is an irreducible object of F .
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Proposition 3.1.1. Let V be an irreducible object of F . Then,

dimC Ext1F (C, V ) =


1, if V ∼=Ûq

V (αm,a) for some (m, a) ∈ N× C×,

0, otherwise.

Given objects M and V of F such that V is irreducible, let [M : V ] be the multiplicity

of V in a Jordan-Hölder series of M . The following consequence of Proposition 3.1.1 is

proved by a straightforward induction on the length of a Jordan-Hölder series for M .

Corollary 3.1.2. We have

dim Ext1F (C,M) ≤
∑

(m,a)∈N×C×
[M : V (αm,a)].

As a consequence of the corollary, we see that Proposition 3.0.1 follows if we prove that

∑
(m,a)∈N×C×

[V ⊗ V ∗, V (αm,a)] ≤ r. (3.1.2)

Establishing this inequality is our goal in this section from now on.

3.1.1

The first step in understanding the Jordan-Hölder multiplicities in the inequality (5.1.1)

is the following proposition proved in [4].

Proposition 3.1.3. Let (m, a), (n, b) ∈ N×C× and assume that a/b = q±(m+n−2p) for some

0 ≤ p < min{m,n}. Then V (ωm,a) ⊗ V (ωn,b) is indecomposable and has a Jordan-Hölder
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series of length two. The non-zero multiplicities are,

[V (ωm,a)⊗ V (ωn,b) : V (ωm−p,aq−p)⊗ V (ωn−p,bqp)] = 1,

[V (ωm,a)⊗ V (ωn,b) : V (ωp−1,aqm−p+1)⊗ V (ωm+n−p+1,bq−(m−p+1))] = 1.

Moreover, if U is isomorphic to the unique irreducible submodule of V (ωm,a)⊗V (ωn,b) then

U is isomorphic to the unique irreducible quotient of V (ωn,b)⊗ V (ωm,a).

The proof of the inequality (5.1.1) in the case when V = V (ωm,a) is then completed as

follows. Recall from equation (1.5.3) that V (ωm,a)
∗ ∼= V (ωm,aq2). Then, Proposition 3.1.3

tells us that the Jordan-Hölder constituents are the trivial representation and V (αm,a) each

occurring with multiplicity one. Appyling the functor Ext1F (C,−) to the Jordan-Hölder

series of V ⊗ V ∗ and using Proposition 3.1.1 now proves the inequality (5.1.1) in this case.

3.1.2

We need some further results on the Jordan-Hölder multiplicities in the (reducible)

tensor products of irreducible prime objects of F .

Lemma 3.1.4. Suppose that Vs, 1 ≤ s ≤ k are irreducible prime representations of Ûq

and let σ be any element of the symmetric group on k-letters. Then V1 ⊗ · · · ⊗ Vk and

Vσ(1) ⊗ · · · ⊗ Vσ(k) have the same Jordan-Hölder multiplicities.

Proof. It suffices to show the result when σ = (i, i+ 1) for some 1 ≤ i < k. If Vi ⊗ Vi+1 is

irreducible, then it follows from Corollary 1.5.1 that it is isomorphic to Vi+1⊗Vi and hence
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the Lemma follows. If Vi ⊗ Vi+1 is reducible, then by Proposition 3.1.3 the Jordan-Hölder

series of Vi ⊗ Vi+1 and Vi+1 ⊗ Vi are respectively,

0→ U1 → Vi ⊗ Vi+1 → U2 → 0, 0→ U2 → Vi+1 ⊗ Vi → U1 → 0. (3.1.3)

Let

V1 = V1 ⊗ · · · ⊗ Vi−1 and V2 = Vi+2 ⊗ · · · ⊗ Vk

Applying the exact functors (V1⊗−) and (−⊗V2) to the short exact sequences in equation

(3.1.3) we see that

[V1 ⊗ U1 ⊗V2 : V ] + [V1 ⊗ U2 ⊗V2 : V ]

gives the multiplicity of a representation V in a Jordan-Hölder series for both V1 ⊗ Vi ⊗

Vi+1 ⊗V2 and V1 ⊗ Vi+1 ⊗ Vi ⊗V2. This proves the lemma.

3.1.3

The following is a straightforward application of Proposition 3.1.3 by using the appro-

priate tensor functors.

Lemma 3.1.5. Let (mj , aj) ∈ N × C× be distinct elements for 1 ≤ j ≤ k. Then, for all

rj ∈ N, 1 ≤ j ≤ k, the module

(V (ωm1,a1)⊗ V (ωm1,a1q2))⊗r1 ⊗ · · · ⊗ (V (ωmk,ak)⊗ V (ωmk,akq2))⊗rk ,

has a decreasing filtration where the successive quotients are of the form

V (αm1,a1)⊗p1 ⊗ · · · ⊗ V (αmk,ak)⊗pk
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where pk ∈ Z+ 1 ≤ j ≤ k and we understand that if all the pk = 0 then we have the trivial

module. Further, the multiplicity of V (αmj ,aj ) in this filtration is at most rj.

3.1.4

Assume the following result for the moment.

Proposition 3.1.6. Let (mj , aj) ∈ N×C×, 1 ≤ j ≤ k be distinct and let rj ∈ N 1 ≤ j ≤ k

be such that r1 + · · ·+ rk ≥ 2. Assume moreover, that

V (ωm1,a1)⊗r1 ⊗ · · · ⊗ V (ωmk,ak)rk

is irreducible. Then, for all (m, a) ∈ N× C×, we have

[V (αm1,a1)⊗r1 ⊗ · · · ⊗ V (αmk,ak)rk : V (αm,a)] = 0.

The proof of the inequality (5.1.1) is now completed as follows. Let V be an irreducible

object of F with prime factors V (ωmj ,aj ) occurring with multiplicity rj ∈ N for 1 ≤ j ≤ k.

Lemma 3.1.4 implies that V ⊗ V ∗ has the same Jordan-Hölder multiplicities as the module

V = (V (ωm1,a1)⊗ V (ωm1,a1q2))⊗r1 ⊗ · · · ⊗ (V (ωmk,ak)⊗ V (ωmk,akq2))⊗rk ,

and hence it suffices to prove that

∑
(m,a)∈N×C×

[V : V (αm,a)] ≤ (r1 + · · ·+ rk). (3.1.4)

Let V = V0 ⊃ V1 ⊃ · · · ⊃ Vs ⊃ Vs+1 = {0}, be the filtration of Lemma 3.1.5. Then

[V, V (αm,a)] =
s∑

p=0

[Vp/Vp+1 : V (αm,a)].
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Using the last statement of Lemma 3.1.5 and Proposition 3.1.6, we have for each 0 ≤ p ≤ s

[Vp/Vp+1 : V (αm,a)] ≤


0, (m, a) 6= (mj , aj), 1 ≤ j ≤ k,

rj , (m, a) = (mj , aj),

thus proving the inequality in (3.1.4). The proof of Proposition 3.1.6 will be our goal from

now on.

3.2 q-characters

One of the main tools to prove Proposition 3.1.6 is the theory of q-characters. We

begin this section by recalling the notation and the main results that we shall need from

this theory.

3.2.1

The elements φs, s ∈ Zr {0} are commutative and hence, it follows that any object V

of F can be written, as a sum of joint generalized eigenspaces for their action, namely

V =
⊕

($+,$−)

V($+,$−), $± =
∑
s≥1

$±s u
s ∈ C[[u]], (3.2.1)

where

V($+,$−) = {v ∈ V :
(
φ±m −$±m

)N
v = 0, for some N = N(m) ∈ N and all m ∈ Z r {0}}.

(3.2.2)

It was shown in [12] that V($+,$−) is non-zero only if $±(u) are actually rational functions

in u with $±(0) = 1; moreover, the function $−(u) is completely determined by $+(u)
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and hence we shall just write V$, $ ∈ C(u) for the eigenspaces. Set

wt` V = {$ ∈ C(u) : V$ 6= 0}, wt±` V = (wt` V )±1 ∩ C[u].

Moreover, if M is any subquotient or submodule of V , then wt`M ⊂ wt` V . Note that for

the trivial module C, we have

wt`C = wt+` C = {1}.

Since wt` V ⊂ C(u) for all objects V of F , we use the standard notions such as the greatest

common divisor (gcd), least common multiple(lcm) associated with C[u] freely; moreover if

we write $ = $′/$′′ we shall assume without mention that $′ and $′′ are coprime.

It follows from this discussion that Proposition 3.1.6 is a consequence of,

Proposition 3.2.1. Let (mj , aj) ∈ N×C×, 1 ≤ j ≤ k be distinct and let rj ∈ N 1 ≤ j ≤ k

be such that r1 + · · ·+ rk ≥ 2. Assume moreover, that

V (ωm1,a1)⊗r1 ⊗ · · · ⊗ V (ωmk,ak)rk

is irreducible. Then, for all (m, a) ∈ N× C×, we have

wt` V (αm,a) 6⊂ wt`
(
V (αm1,a1)⊗r1 ⊗ · · · ⊗ V (αmk,ak)⊗rk

)
. (3.2.3)

The proof of Proposition 3.2.1 will be given in Section 3.3.

3.2.2

Given (m, a) ∈ N× C×, define polynomials in C[u] by,

ωm,a = (1− aqm−1u)(1− aqm−3u) · · · (1− aq−m+1u),

αm,a = ωm+1,aqωm−1,aq =
m−1∏
s=0

(1− aqm+1−2su)(1− aqm−1−2su).
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It is also convenient to adopt the convention that ω0,a = α0,a = 1. The following was proved

in [12] and explains our choice of notation.

Proposition 3.2.2. We have,

(i) For (m, a) ∈ N× C×, we have

wt` V (ωm,a) = {ωm,aα−1s,aqm−s : 0 ≤ s ≤ m}, (3.2.4)

or equivalently, $ ∈ wt` V (ωm,a) if and only if,

$ =
(1− aqm−2s−1u)(1− aqm−2s−3u) · · · (1− aq−m+1u)

(1− aqm+1u)(1− aqm−1u) · · · (1− aqm−2s+3u)

for some 0 ≤ s ≤ m − 1, where we understand that if s = 0 then $ = ωm,a and if

s = m− 1, then $ = (ωm,aq2)−1.

(ii) Let Mj, j = 1, 2 be finite-dimensional Uq(ĝ)-modules. Then

wt`(M1 ⊗M2) = wt`M1 wt`M2 = wt`M2 ⊗M1.

The following corollary is immediate.

Corollary 3.2.3. We have

wt` V (αm,a) = {αm,a(αs1,aqm+1−s2 )−1(αs2,aqm−1−s2 )−1 : 0 ≤ s1 ≤ m+ 1, 0 ≤ s2 ≤ m− 1}.
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We note further consequences of the proposition. For all r ≥ 1, we have

wt+` V (ωm,a)
⊗r = {ωrm,a}, wt−` V (ωm,a)

⊗r = {ωrm,aq2}, (3.2.5)

wt+` V (αm,a)
⊗r = ωrm+1,aq wt` V (ωm−1,aq)

⊗r =


r∏
j=1

α
m−sj+1,aq−sj+1 : 0 ≤ sj ≤ m

 ,

(3.2.6)

wt−` V (αm,a)
⊗r = ωrm+1,aq3 wt` V (ωm−1,aq)

⊗r =


r∏
j=1

α
m−sj+1,aqsj+1 : 0 ≤ sj ≤ m

 .

(3.2.7)

Finally, observe that if $ = $′/$′′ ∈ wt` V (ωn1,b1) ⊗ · · · ⊗ V (ωnr,br) for some (nj , rj) ∈

N× C× then

gcd(ω′, ωn1,b1 · · ·ωnr,br) = ω′, gcd(ω′′, ωn1,b1q2 · · ·ωnr,brq2) = ω′′. (3.2.8)

3.2.3

The following elementary lemma (whose proof we include for completeness) will be

useful.

Lemma 3.2.4. Let a ∈ C× and p ∈ Z+ and suppose that

(1− au)p
s∏
j=1

(1− bju)(1− bjq2u) =

r∏
j=1

(1− cju)(1− cjq2u), (3.2.9)

for some r, s ∈ Z+ and bj , cj ∈ C×. Then p = 0. Equivalently, the element (1− au)p is not

in the multiplicative subgroup of C(u) generated by the elements {αn,b : (n, b) ∈ N× C×}.

Proof. We proceed by induction on s, with induction obviously beginning at s = 0. Hence

we can assume that bi, cj ∈ aqZ for all 1 ≤ i ≤ r and 1 ≤ j ≤ s. Let m ∈ Z be maximal so
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that (1−aqm+2) divides the right hand side of equation (3.2.9). Then (1−aqm)(1−aqm+2)

occurs on the right hand side of (3.2.9) and hence must also divide the left hand side of

(3.2.9). Assume that m 6= 0,−2. Since (1 − aqm+4) does not divide the right hand side of

(3.2.9), it follows that there must exist bj with bj = aqm and hence (1 − aqm)(1 − aqm+2)

cancels on both sides of (3.2.9), i.e we get a similar expression with s replaced by s− 1 and

the result follows from the inductive hypothesis.

If m = 0, then (1 − aq2u) must divide the left hand side of (3.2.9): i.e, there must

exist bi with bi = a or bi = aq2. In the first case the term (1− au)(1− aq2u) will cancel on

both sides of (3.2.9) and induction gives the result again. In the second case, we have the

situation where there is no bi with bi = a, which means that the left hand side of (3.2.9)

has a term of the form (1− aq2u)(1− aq4u), but this is impossible because (1− aq4u) does

not occur on the right hand side of (3.2.9).

Finally, consider the case m = −2. If p > 0, then (1− au)p divides the right hand side

of (3.2.9) and we must have ci = a for at least p values of i and we get an expression

s∏
j=1

((1− bju)(1− bjq2u)) = (1− aq−2u)p
r−p∏
j=1

(1− cju)(1− cjq2u)).

Since 2r = 2s + p, we see that r − p < s, and we get a contradiction to the inductive

hypothesis. Hence p = 0 and the proof is complete.

The following consequence of Corollary 3.2.2(ii) and Lemma 3.2.4 will be crucial in the

rest of this section.

(1− au)p /∈ wt` (V (αn1,b1)⊗ · · · ⊗ V (αnk,bk)) if p ∈ Z r {0}. (3.2.10)

29



3.2.4

Suppose that (mj , aj) ∈ N × C×, 1 ≤ j ≤ k are distinct and let rj ∈ N, 1 ≤ j ≤ k, be

such that r1 + · · ·+ rk ≥ 2. Assume moreover, that

V = V (ωm1,a1)⊗r1 ⊗ · · · ⊗ V (ωmk,ak)rk

is irreducible. Recall that the conditions given in Proposition 1.5.1 for this module to be

irreducible are:

aj/as 6= q±(mj+ms−2p), 0 ≤ p ≤ min{mj ,ms}.

This means that we can and will assume without loss of generality (after a relabeling

if necessary) that (m1, a1) is such that the following hold: for 2 ≤ j ≤ k we have,

either gcd(ωm1,a1 , ωmj ,aj ) = 1, or gcd(ωm1,a1 , ωmj ,aj ) = ωmj ,aj . Moreover, in the case

gcd(ωm1,a1 , ωmj ,aj ) = 1, we may also assume that either a1 /∈ ajqZ or that a1 = ajq
m1+mj−2+s

where s ∈ Nr {2}. Observe that with these choices the element ωm1,a1 divides lcm(ωmj ,aj :

1 ≤ j ≤ k).

Set

J1(V ) = {1 ≤ j ≤ k : gcd(ωm1,a1 , ωmj ,aj ) = ωmj ,aj},

J2(V ) = {1, · · · , k}r J1(V ) = {1 ≤ j ≤ k : gcd(ωm1,a1 , ωmj ,aj ) = 1}.

It is trivially checked that for j ∈ J1(V ) and j′ ∈ J2(V ), we have

gcd(αmj ,ajq2 , αmj′ ,aj′ ) = 1 = gcd(αmj ,aj , αmj′ ,aj′ ). (3.2.11)

Consider the modules

V1 =
⊗

j∈J1(V )

V (αmj ,aj )
⊗rj , V2 =

⊗
j∈J2(V )

V (αmj ,aj )
⊗rj .
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where we understand that if J2(V ) = ∅, then V2 is the trivial module. Using Lemma

3.2.2(ii), we see that if

V = V (αm1,a1)⊗r1 ⊗ · · · ⊗ V (αmk,ak)⊗rk .

then

wt` V = wt` V1 wt` V2. (3.2.12)

Proposition 3.2.5. Retain the notation of this section.

(i) For all ($′i/$
′′
i ) ∈ wt` Vi, i = 1, 2, we have gcd($′′1 , $

′
2) = 1.

(ii) We have

wt+` V ⊂ wt+` V1 wt` V2.

(iii) For $± ∈ wt` V1,

$+ =

m1∏
s=0

(1− a1q−m+2s+1u)p
+
s , , $− =

m1∏
s=0

(1− aqm−2s+3u)p
−
s

where p±s ∈ Z+ are such that: p±0 ≥ r1,
∑m1

s=1 p
±
s > 0.

(iv) 1 /∈ wt` V.

Proof. Using equation (3.2.8), we have

gcd($′′1 ,
∏
j∈J1

(αmj ,ajq2)rj ) = $′′1 , gcd($′2,
∏
j∈J2

(αmj ,aj )
rj ) = $′2.

Equation 3.2.11 now forces gcd($′′1 , $
′
2) = 1 and part (i) is proved.

To prove (ii), given, $ ∈ wt+` V, using equation (3.2.12), we write it as$ = ($′1/$
′′
1)($′2/$

′′
2),

with ($′i/$
′′
i ) ∈ wt` Vi for i = 1, 2. Using part (i) of the proposition we see immediately

that $′′ = 1 and the proof is complete.
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To prove part (iii), let $ ∈ wt+` V1 or equivalently assume that J2(V ) = ∅ and recall

from equation (3.2.10) that $ 6= (1− bu)s for any (s, b) ∈ N× C×. Write

$ = ($′1/$
′′
1)($′2/$

′′
2), ($′1/$

′′
1) ∈ wt` V (αm1,a1)⊗r1 , ($′2/$

′′
2) ∈ wt`(⊗kj=2V (αmj ,aj )

⊗rj ).

Since αmj ,aj divides αm1,a1 for all 1 ≤ j ≤ k, one sees trivially, using Lemma 3.2.2, that $′j

is a product of terms of the form (1 − a1q−m1+2s+1u), 0 ≤ s ≤ m1 and $′′j is a product of

terms of the form (1− a1qm1−2s+3u), 0 ≤ s ≤ m1. In particular,

gcd(1− aq−m1+1u,$′′2) = 1 = gcd(1− a1qm1+3u,$′2), (3.2.13)

and hence we must also have

gcd(1− a1qm1+3u,$′′1) = 1.

Since

$′1/$
′′
1 ∈ wt` V (αm1,a1)⊗r1 = wt` V (ωm1+1,a1q)

⊗r1 wt` V (ωm1−1,a1q)
⊗r1 ,

the explicit description of wt` V (ωm1,a1) given in Lemma 3.2.2 forces $′′1 = 1, i.e.,

$′1 ∈ wt` V (αm1,a1)⊗r1 .

Equation (3.2.6) gives,

$′1 =

r1∏
j=1

α
m1−sj+1,a1q

−sj+1 , for some 0 ≤ sj ≤ m1.

Since (1− a1q−m1+1u)r1 divides $′1, we get by using the first equality in equation (3.2.13),

that,

$ = (1− a1q−m1+1u)r1$0,
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for some $0 ∈ C[u] which is a product of terms of the form (1 − aq−m+2s+1u), with

0 ≤ s ≤ m. Since $ 6= (1 − a1q−m1+1u)p for any p ∈ N by equation (3.2.10), the proof

of part (iii) is complete in this case. The case of $ ∈ wt−` V1 is identical and we omit the

details.

To prove (iv) assume for a contradiction that 1 ∈ wt` V , i.e. 1 ∈ wt+` V. By part (ii) of

the proposition, we may write 1 = $1($
′
2/$

′′
2) with $1 ∈ wt+` V1 and $′2/$

′′
2 ∈ wt` V2. It

is then immediate that we must have $1 = $′′2 and $′2 = 1. By part (iii) of the proposition,

there exists s ≥ 1 such that (1 − aq−m+1+2su) divides $1; on the other hand it does not

divide $′′2 by (3.2.11) and the proof is complete.

3.2.5

We keep the notation from Section 3.2.4. We now prove,

Lemma 3.2.6. If J2(V ) 6= ∅, then αn,b 6∈ wt+` V for any (n, b) ∈ N× C×.

Proof. Assume for a contradiction that αm,a ∈ wt+` V. Using Proposition 3.2.5 we may

write

αn,b =

m1∏
s=0

(1− aq−m1+1+2su)ps($′/$′′) (3.2.14)

where the following hold:

(i) p0 ≥ r1,
∑m1

s=1 ps > 0 ,

(ii) $′/$′′ ∈ wt V2 and $′ 6= $′′,

(iii) gcd(1− a1q−m1+2s+1u,$′′) = 1, for all 1 ≤ s ≤ m1.
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It follows that $′′ = (1 − a1q−m1+1u)` for some ` ∈ Z+, with 0 ≤ ` ≤ p0 and now Lemma

3.2.4 forces $′ 6= 1. Hence equation (3.2.14) now becomes,

αn,b = (1− a1q−m1+1u)p0−`

(
m1∏
s=1

(1− a1q−m1+1+2su)ps

)
$′, $′ 6= 1. (3.2.15)

Since

αn,b = (1− bqn+1u)(1− bqn−1u)2 · · · (1− bq−n+3u)2(1− bq−n+1u),

we can now draw the following conclusions:

(i) the fact that ps1 > 0 for some s1 ≥ 1 implies that (1− a1q−m1+1+2s1u) divides αn,b,

(ii) the fact that $′ 6= 1 implies that there exists j ∈ J2(V ) such that (1− ajqmj+1−2sju)

divides $′ and hence also αn,b for some 0 ≤ sj ≤ mj .

It follows that a1 ∈ ajq2Z and hence by the the discussion in Section 3.2.4 we get

a1 = ajq
m1+mj+2r, for some r ≥ 2.

Hence we have proved that ((1− a1q−m1+1+2s1u)(1− a1q−m1−2r−2sj+1u) divides αn,b. The

form of αn,b then gives us that (1 − a1q−m1+1+2pu)2 divides αn,b if −r − sj < p < s1, and

we get also that there exists 0 < s0 ≤ m1 with

ps =



0, s > s0,

1, s = s0,

2, 0 < s < s0,

`+ 2, s = 0.
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In other words, we have shown that if αn,b ∈ wt+` V, then for some ` ≥ 0, the element

(1−a1q−m1+2s0+1u)(1−a1q−m1−1+2s0u)2 · · · (1−a1q−m1+3u)2(1−a1q−m1+1u)`+2 ∈ wt+` V1,

or equivalently,

αs0,a1qs0−m1 (1− a1q−m1+1u)`+1 ∈ wt` V1.

Equation (3.2.10) now shows that (1− a1q−m1+1u)`+1 is in the subgroup of C(u) generated

by the elements {αr,z : (r, z) ∈ N × C×} contradicting Lemma 3.2.4 and the proof is

complete.

3.3 Proof of Proposition 3.2.1

We now complete the proof of Proposition 3.2.1. Notice that Lemma 3.2.6 proves the

proposition if J2(V ) 6= ∅ and hence we now consider the case when J2(V ) = ∅.

Assume for a contradiction that there exists (n, b) ∈ N × C× such that αn,b ∈ wt+` V

and αn,bq2 ∈ wt−` V. Then, by part (iii) of Proposition 3.2.5, we may write,

αn,b =

m1∏
s=0

(1− a1q−m+2s+1u)p
+
s , αn,bq2 =

m1∏
s=0

(1− aqm−2s+3u)p
−
s , (3.3.1)

where p±s ∈ Z+ are such that: p±0 ≥ r1,
∑m1

s=1 p
±
s > 0. Using the explicit form of αn,b and

αn.bq2 and arguing as in the proof of Lemma 3.2.6, we find that

p±0 = 1, a1q
±m1 = bq±n, and so, r1 = 1, (m1, a1) = (n, b).

In other words we have shown that

V = V (αm1,a1)⊗ (⊗ks=2V (αms,as)
⊗rs), αm1,a1 ∈ wt+` V, αm1,a1q2 ∈ wt−` V.
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Now, using Proposition 3.2.2(ii) along with the fact that if $′/$′′ ∈ wt` V (αms,as), then

gcd(1− a1qm1+3u,$′) = 1 = gcd(1− a1q−m1+1u,$′′),

we may write αm1,a1 = $+$1 and αm1,a1q2 = $−$2 with

$± ∈ wt±` V (αm1,a1) $j ∈ wt`⊗ks=2V (αms,as)
⊗rs , j = 1, 2.

Equations (3.2.6) and (3.2.7) show that $+ = αm1−s1+1,aq−s1+1 for some 0 ≤ s1 ≤ m1 and

$− = αm1−s2+1,a1qs2+1 for some 0 ≤ s2 ≤ m1. Moreover if s1 = 0 or s2 = 0 we would have

1 ∈ wt`⊗ks=2V (αms,as)
⊗rs) which would contradict Proposition 3.2.5(iv). Hence si ≥ 1 for

i = 1, 2 and we now get,

$1 = (1− a1qm1+1u)(1− aqm1+1u)2 · · · (1− a1qm1+3−2s1u)2(1− a1qm1+1−2s1u) (3.3.2)

and

$2 = (1−a1q−m1+3−2s2u)(1−a1q−m1+1−2s2u)2 · · · (1−a1q−m1+5u)2(1−a1q−m1+3u) (3.3.3)

Since V1 = ⊗kj=2V (ωmj ,aj ) is irreducible, the preceding equations along with Lemma

3.2.6 imply that we must have J2(V1) = ∅. On the other hand, we claim also that J2(V1) 6= ∅

which gives the desired contradiction and establishes Proposition 3.2.1.

For the claim, assume without loss of generality (see Section 3.2.4) that for 2 <

j ≤ k, we have gcd(ωm2,a2 , ωmj ,aj ) = 1, or gcd(ωm2,a2 , ωmj ,aj ) = ωmj ,aj and in the case

gcd(ωm2,a2 , ωmj ,aj ) = 1, we have a2 = ajq
m2+mj+2s for some s ≥ 2. Using equations (3.3.2)

and (3.3.3) we see that we must have

a1q
m1 = a2q

m2 , a1q
−m1 = ajq

−mj for some 2 ≤ j ≤ k. (3.3.4)
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If j ∈ J1(V1), i.e., ωmj ,aj divides ωm2,a2 , then the condition for irreducibility of V1 given in

Proposition 1.5.1 and equation (3.3.4) forces (m2, a2) = (m1, a1) contradicting our assump-

tion that they were distinct. Hence, j ∈ J2(V1) and proves the claim. This completes the

proof of Proposition 3.2.1 and thus completes the proof of Proposition 3.0.1.
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Chapter 4

Prime Powers

In this chapter, we will prove Theorem 2 and Theorem 3. We note that this will prove

Theorem 1 in the case that V is a prime power, i.e V ∼= V (ωm,a)
⊗r for some (m, a) ∈ N×C×

and r ∈ Z+.

4.1 Generators and Relations for V (ωm,a)
⊗r

In this section, we prove Theorem 2. We recall here, the statement of Theorem 2 for

the readers convenience. From now on, we fix (m, a) ∈ N × C× and also r ∈ N and we let

V(r) = V (ωm,a)
⊗r. Let x−r = x−a (m, r) be as in equation (2.2.1),

x−r =

r∑
s=0

(−aqm)s
(
r

s

)
x−r−s =

r−1∑
s=0

(−aqm)s
(
r − 1

s

)
(x−r−s − aqmx−r−s−1)
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Let Ṽ(r) be the Ûq-module generated by an element ṽr with defining relations: for all j ∈ Z

and s ∈ Z r {0},

x+j ṽr = 0, kv = qrmṽr, hsṽr = ras
[sm]

s
ṽr, (4.1.1)

(x−0 )rm+1ṽr = 0, x−r ṽr = 0. (4.1.2)

4.1.1

To prove Theorem 2 we must show that

Ṽ(r) ∼= V(r).

The proof proceeds as follows. Recall from Section 1.5 that V (ωm,a) has a basis v0, . . . , vm

with the action of Ûq given in equation (1.5.1). We shall first prove that the element v⊗rm

satisfies the relations in equations (4.1.1) and (4.1.2). Since V(r) is irreducible, it follows

that the assignment ṽr → v⊗rm defines a surjective map Ṽ(r) → V(r) → 0 of Ûq-modules

and hence

dim Ṽ(r) ≥ dim V(r) = (m+ 1)r.

After that we shall prove that we have an equality of dimensions thus completing the proof

of Theorem 2.

4.1.2

We proceed by induction on r; with the case r = 1 being clear from the explicit action

in (1.5.1). Assume the result for r−1. The fact that v⊗rm = vm⊗v⊗r−1m satisfies the relations

in (4.1.1) and the first relation in (4.1.2) is now immediate from Proposition 1.3.2. To prove
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that it satisfies the second relation in (4.1.2) we need to understand the comulitpication

on the element x−r . But before we do this, we collect together some consequences of our

inductive hypothesis.

Note first that we have the following easily checked recursive formula:

x−r = − 1

[2]
[h1,x

−
r−1]− aq

mx−r−1. (4.1.3)

Using our induction hypothesis that x−r−1v
⊗r−1
m = 0 and h1(v

⊗r−1
m ) = (r− 1)[m](v⊗r−1m ), we

see that

x−r (v⊗r−1m ) = 0. (4.1.4)

The next consequence is that we have

x+0 x−r−1v
⊗r−1
m = 0.

Taking commutators, we get

r−1∑
s=0

(−aqm)s
(
r − 1

s

)
φr−s−1v

⊗r−1
m = 0. (4.1.5)

4.1.3

For 1 ≤ s ≤ r, let

cs = (−aqm)s
(
r − 1

s

)
.

Proposition 4.1.1. Modulo terms in ÛqX− ⊗ ÛqX+, we have for r > 1, we have

∆(x−r ) = 1⊗ x−r +
r−2∑
s=0

cs(x
−
r−s − aqmxr−s−1)⊗ k +

r−2∑
s=0

r−s−j∑
j=1

cs(x
−
r−s−j − aq

mx−r−s−j−1)⊗ φj

+ cr−1(x
−
1 ⊗ k − aq

mx−0 ⊗ k
−1) + x−1 ⊗

r−2∑
s=0

csφr−s−1.
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Proof. The proof proceeds by an induction on r. If r = 1, the result is immediate by using

Proposition 1.3.2. The inductive step is a straightforward calculation using equation (4.1.3)

and we omit the details.

Calculating ∆(x−r ) on vm⊗ vr−1m using Proposition 4.1.1, we find that the first term on

the right hand side of the formula in the preceding proposition is zero by (4.1.4). The next

two terms are zero since (x−s − aqmx−s−1)vm = 0 for all s. To see that the sum of the last

two terms is zero we see by using equation (1.5.1), that

cr−1(aq
mvm−1 ⊗ q(r−1)mv⊗r−1m − aqmvm−1 ⊗ q−(r−1)mvr−1m ) + aqmvm−1 ⊗

r−2∑
s=0

csφr−s−1v
r−1
m

= aqmvm−1 ⊗

[
cr−1(q

(r−1)m − q−(r−1)m) +

r−2∑
s=0

csφr−s−1

]
vr−1m

= aqmvm−1 ⊗

[
cr−1φ0 +

r−2∑
s=0

csφr−s−1

]
vr−1m = aqmvm−1 ⊗

[
r−1∑
s=0

csφr−s−1

]
vr−1m

The last equality is zero by equation (4.1.5) and we have proved that V(r) is a quotient of

Ṽ(r).

4.1.4

We now prove that

dim Ṽ(r) ≤ dim V(r),

which completes the proof that Ṽ(r) and V(r) are isomorphic Ûq-modules. The first step

is to understand the classical limit (q → 1) of Ṽ(r). For this, we let ε be an indeterminate

and consider the algebra Ûε as an algebra over C(ε) given by the same generators and

relations as Ûq. Similarly, we let Vε(ωm,a) be the C(ε) vector space with the action of Ûε
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being given by the formulae in equation 1.5.1. The modules Vε(r) and Ṽε(r) are defined in

the obvious way . Setting A = C[ε, ε−1] we recall [16] that Ûε admits a free A-submodule

denoted ÛA such that we have an isomorphism of C(ε)-algebras

Ûε
∼= ÛA ⊗A C(ε).

It was shown in [8, 7] that the modules Vε(r) admit free ÛA-submodules, VA(r) of rank

equal to (m+ 1) and (m+ 1)r respectively (we emphasize here that we are assuming that

a ∈ C×; the statement need not be true otherwise). Moreover, the arguments in [8, Lemma

4.6] show that Ṽε(r) also admits a free A-lattice. If q is not a root of unity, we have an

isomorphism of algebras and modules over C,

Ûq
∼= ÛA ⊗A Cq, V(r) ∼= VA(r)⊗A Cq, Ṽ(r) ∼= ṼA ⊗A Cq

where Cq is the irreducible A-module obtained by letting ε acts as q.

4.1.5

Suppose now that we take q = 1. It is well-known that the algebra Û1 = ÛA ⊗A Cq

is essentially the enveloping algebra of the loop algebra L(sl2). Recall that sl2 is the Lie

algebra of complex 2 × 2-matrices of trace zero, with standard basis x±, h. As a complex

vector space, L(sl2) = sl2 ⊗ C[t, t−1], where t is an indeterminate and the commutator is

given by:[x⊗ f, y ⊗ g] = [x, y]⊗ fg, wehere x, y ∈ sl2 and f, g ∈ C[t, t−1]. Then U(Lsl2) is

isomorphic to Û1 by the ideal generated by the elements k± − 1. Moreover the elements

(x±r ⊗ 1) ∈ Û1 map to the elements x± ⊗ tr in U(L(sl2); a similar statement is true for

the element hr ⊗ 1. It is also easily checked that the element x−r maps to the element
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x− ⊗ (t − a)r of L(sl2). Finally, V1(r) = VA(r) ⊗A C1, and Ṽ1(r) are modules for L(sl2)

with

dimC V1(r) = (m+ 1)r = rkAVε(r), , dimC Ṽ1(r) = rkAṼε(r) = dimC Ṽ(r).

Hence to complete the proof of dim Ṽ(r) ≤ dim V(r) it suffices to prove that

dim Ṽ1(r) = (m+ 1)r.

For this, we set wr = ṽr ⊗ 1 ∈ Ṽ1(r). The preceding comments show that the element wr

generates Ṽ1(r) and satisfies the relations,

(x+⊗ tk)wr = 0, (h⊗ (t−a)k)wr = δk,0(rm), (x−⊗1)rm+1wr = 0, (x−⊗ (t−a)r)wr = 0.

It follows that

(sl2 ⊗ (t− a)rC[t, t−1])wr = 0.

This means that we have an isomorphism of Lie algebras

sl2 ⊗ C[t, t−1]/(t− a)rC[t, t−1] ∼= sl2 ⊗ C[t]/(t− a)rC[t],

and hence we may regard Ṽ1(r) as a module for sl2⊗C[t]. Consider the pull-back of Ṽ1(r)

via the automorphism of sl2⊗C[t] which maps x⊗ ts → x⊗ (t+a)s, s ∈ Z+. The pull back

is generated by the element wr with relations,

(x+ ⊗ tk)wr = 0, (h⊗ tk)wr = δk,0rm, (x− ⊗ 1)rm+1wr = 0, (x− ⊗ tr)wr = 0.

It was shown in [9, Theorem 5(ii) ] that the dimension of such a module is at most (m+ 1)r

which now completes our proof.
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4.2 Local and Global Weyl Modules

We will require the use of the local and global Weyl modules, originally defined in [8].

In this section, we recall their definitions and summarize their important properties. We

use the approach developed in [18].

4.2.1

Given m ∈ Z+, the global Weyl module W (m) is the Ûq-module generated by a vector

wm with defining relations,

kwm = qmwm, x+r wm = 0, (x−0 )m+1wm = 0,

for all r ∈ Z. If m 6= 0, then W (m) is an infinite-dimensional type 1 module, and W (0) is

the trivial module. Notice also that if V = V (ωm1,a1)⊗ · · · ⊗ V (ωmk,ak) is irreducible such

that m = m1 + · · ·mk, then the relations in Proposition 1.5.1 show that V is a quotient of

W (m).

4.2.2

We may regard W (m) as a right Û0
q-module by setting

(uwm)φs = uφswm, u ∈ Ûq, s ∈ Z r {0} .

Consider the annihilating ideal of wm in Ûq,

Ann(wm) = {x ∈ Û0
q : wmx = 0} = {x ∈ Û0

q : xwm = 0},
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and let Am be the quotient of Û0
q by Ann(wm). Then, W (m) is a (Ûq,Am)-bimodule.

Moreover, the subspace W (m)m is also a left Am-module and we have an isomorphism of

Am-bimodules,

W (m)m ∼= Am.

If we regard Û0
q as the polynomial algebra in the variables Λr, r ∈ Zr{0}, then it is known

that Am is the quotient of Û0
q obtained by setting,

Λr=0 for |r| > m and (ΛmΛ−s − Λm−s) = 0 for 0 ≤ s ≤ m. (4.2.1)

In particular, if we let Λ̄s be the image of Λs in Am, then we have

Am
∼= C[Λ̄1, . . . , Λ̄m, Λ̄

−1
m ].

4.2.3

Denote by Am-mod the category of finitely generated left Am-modules, and for an

object M of Am-mod, define

WmM = W (m)⊗Am M.

We have an isomorphism in Am-mod,

(WmM)m = W (m)m ⊗Am M ∼= M.

If V is a quotient of W (m), then the Û0
q-action on Vm descends to Am since

uVm = 0 for u ∈ Ann(wm).

It is simple to check, [18, Proposition 3.6] that V is a quotient of WmVm. The following

was proved in [3],
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Proposition 4.2.1. For objects M,N of Am-mod and f ∈ HomAm(M,N), the assignment

WmM = W (m)⊗Am M, Wmf = 1⊗ f,

defines an exact functor Wm : Am-mod→ F . Moreover, M is indecomposable in Am-mod

if and only if WmM is indecomposable in F .

4.2.4

Let V = V (ωm1,a1)⊗· · ·⊗V (ωmk,ak) be an irreducible object in F , generated by v and

set π = ωm1,a1 · · ·ωmk,ak so that for s ∈ Z,

φsv = φs(π)v.

Define Λs(π) similarly for s ∈ Z. Let C(π) be the 1-dimensional quotient of Û0
q defined by

taking the quotient by the ideal generated by the elements

{Λs − Λs(π) : s ∈ Z r {0}}

or equivalently

{φs − φs(π) : s ∈ Z r {0}}.

It is clear from equation (4.2.1) that C(π) is a Am-module where m = m1 + · · ·+mk. The

local Weyl module W (π) is given by

W (π) = WmC(π), wπ = wm ⊗ 1.

Alternatively, W (π) is the quotient of W (m) obtained by imposing the additional relations:

for all s ∈ Z r {0},

(Λs − Λs(π))wm = 0 or equivalently (φs − φs(π))wm = 0
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It is clear from Theorem 2 that V as above is a quotient of W (π). In fact, V is the unique

irreducible quotient of W (π) by the maximal submodule not containing W (π)m = Cwπ.

4.2.5

Let V be as in the previous section. For a Ûq-module W , such that W is a quotient of

W (m), let Wm be the unique maximal submodule of W such that

Wm ∩Wm = 0.

Recall from the previous section that

W (π)/W (π)m ∼= V (π).

The following was proved in [3],

Proposition 4.2.2. We have,

(i) Let V ′ be any self-extension of V . The restriction V ′ → V ′m induces an injective map

of vector spaces

Ext1F (V, V )→ Ext1Am
(C(π),C(π)) ∼= Ext1F (W (π),W (π))

(ii) Let W be a nontrivial self-extension of W (π),

0→W (π)
ι−→W

τ−→W (π)→ 0

such that τ(Wm) = W (π)m, then V ′ = W/Wm is a nontrivial self-extension of V . In

particular, V ′m
∼=Am Wm.
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The following is immediate from part (i) of Proposition 4.2.2,

Corollary 4.2.3. Let V j, 1 ≤ j ≤ s be nontrivial self-extensions of V . If the equivalence

classes [V j
m], 1 ≤ j ≤ s are linearly independent in Ext1Am

(C(π),C(π)), then the equivalence

classes [V j ], 1 ≤ j ≤ s are linearly independent in Ext1F (V, V ).

4.2.6

We retain the notation from the previous section. We shall need the following result

concerning self-extensions of the Am-module C(π). Recall that C(π) is the one dimensional

Am-module generated by a vector vπ satisfying, for all s ∈ Z r {0},

Λsvπ = Λs(π)vπ. (4.2.2)

Given a self-extension U of C(π) it is clear that dimC U = 2. We now prove,

Lemma 4.2.4. Let U and Ui, 1 ≤ i ≤ j be self-extensions of C(π) and suppose there exists

ci ∈ C for 1 ≤ i ≤ j such that [U ] =
∑j

i=1 ci[Ui] in Ext1Am
(C(π),C(π)). Then, the action

of Û0
q is given by: for s ∈ Z r {0},

Λs(v, w) =

(
Λs(π)v,Λs(π)w +

j∑
i=1

cizi,sv

)
, v, w ∈ C(π). (4.2.3)

for some zi,s ∈ C, 1 ≤ i ≤ j.

Proof. Let

ρ : Û0
q → End(C(π)), ρi : Û0

q → End(Ui)
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be the representations corresponding to C(π) and Ui, 1 ≤ i ≤ j respectively. Since Ui =

C(π)⊕ C(π) as a vector space, ρi can be given by the operator,

ρi(Λs) =

ρ(Λs) 0

fi(Λs) ρ(Λs)

 , s ∈ Z r {0} , (4.2.4)

where fi(Λs) ∈ HomC(C(π),C(π)). Since C(π) is one dimensional and generated by vπ,

fi(Λs) is completely determined by the image of vπ and we must have,

fi(Λs)(vπ) = zi,svπ for some zi,s ∈ C.

It now follows by equation (4.2.4) that the action of Û0
q on Ui is given by: for s ∈ Zr {0},

Λs(v, w) = (Λs(π)v,Λs(π)w + zi,sv), v, w ∈ C(π).

The result now follows from the definition of the Baer sum and the lemma is proved.

4.3 Self-extensions of V (ωm,a)
⊗r: proof of Theorem 3

In this section we will prove Theorem 3. We fix (m, a, r) ∈ N×C××N and recall from

Section 1.5.1 that V (ωm,a) has a basis v0, . . . , vm with the action of Ûq given by equations

(1.5.1) and (1.5.2). Set,

V(r) = V (ωm,a)
⊗r, vr = v⊗rm ,

and recall from Proposition 1.5.1 that V(r) is generated as a Ûq-module by vr. Set

π(u) = [ωm,a(u)]r

so that we have,

Λsvr = Λs(π)vr, s ∈ Z r {0} .
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Let W (rm) and W (π) be the global and local Weyl modules respectively defined in Section

4.2. Recall also that C(π) is the one dimensional Arm-module generated by a non-zero

vector vπ satisfying,

Λsvπ = Λs(π)vπ, s ∈ Z r {0} . (4.3.1)

Finally, recall that given a Ûq-module U that is a quotient of W (rm) we have U rm is the

unique maximal submodule of U such that

U rm ∩ Urm = 0.

4.3.1

We recall for the readers convenience

Arm = C[Λ̄1, . . . , Λ̄rm, Λ̄
−1
rm]

and we have a homomorphism of algebras Û0
q → Arm given on generators by,

Λs 7→



0, s > rm

Λ̄s, 0 < s ≤ rm

Λ̄rm+sΛ̄
−1
rm, −rm ≤ s ≤ 0.

Set Λ̄0 = 1 and,

Λ̄(u) =

rm∑
s=0

Λ̄su
s.

Recall also that we have

ωm,a(u) = (1− aqm−1u)(1− aqm−3u) · · · (1− aq−m+1u).

50



4.3.2

For integers 0 ≤ k ≤ j, the Eulerian numbers
〈
j
k

〉
are defined by,

〈
j

k

〉
=

k∑
i=0

(−1)i
(
j + 1

i

)
(k + 1− i)j . (4.3.2)

We note that
〈
j
j

〉
= 0 for j > 1 and we have

〈
j
0

〉
= 1 =

〈
j
j−1
〉

for all j ≥ 0. It is a well known

fact we have for j > 0,
j−1∑
k=0

〈
j

k

〉
= j! (4.3.3)

It is also well known that for j > 0 we have,

∑
s≥0

sjus =

[
u
d

du

]j ( 1

1− u

)
=

1

(1− u)j+1

j−1∑
k=0

〈
j

k

〉
uk+1. (4.3.4)

Given c ∈ C, let D : C[u]→ C[u] be the operator defined by,

Dc[f ] = (cu)
d

du
f, f ∈ C[u].

For each 1 ≤ j < r, define Zj(u) by,

Zj(u) =


[π(q2u)]rDj

aqm+1

[
1

1−aqm+1u

]
, 1 ≤ j < r,

D1[π(u)], j = r.

(4.3.5)

Using the explicit form of ωm,a(u), we see that we have,

gcd
(
[π(q2u)]r, (1− aqm+1u)r

)
= (1− aqm+1u)r.

In particular, using equation (4.3.4) we see that Zj(u) ∈ C[u] for all 1 ≤ j ≤ r and,

deg Zj(u) =


rm− 1, 1 ≤ j < r

rm, j = r.

(4.3.6)
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We also note that it is clear form the definition that the polynomials Zj(u), 1 ≤ j ≤ r have

no constant term.

4.3.3

Let ej , 1 ≤ j ≤ r be the standard basis of Cr, i.e ej = (e1, · · · , er) with ei = δi,j . For

each 1 ≤ j ≤ r and we define the Arm-module C(ej) by,

C(ej) ∼= C(π)⊕ C(π),

as a vector space and the action of Arm is given by the functional equation,

Λ̄(u)(v, w) = (π(u)v, π(u)w + Zj(u)v) , v, w ∈ C(π), (4.3.7)

in the sense that the action of Λ̄s, 1 ≤ s ≤ rm is determined by the coefficient of us on the

right-hand side of equation 4.3.7. We note it is easily seen that the coefficient cj of u in

Zj(u) is nonzero for all 1 ≤ j < r, and using the action in equation (4.3.7), we see that,

(Λ̄1 − Λ1(π))(vπ, 0) = cj(0, vπ). (4.3.8)

Setting,

vj = (vπ, 0), 1 ≤ j < r,

we have C(ej) is generated as a Arm-module by vj for all 1 ≤ j < r. Moreover, it is

clear from the actions in equations (1.6.3) and (4.3.7) that we have an isomorphism of

Arm-modules,

C(er) ∼= E(V(r))rm.
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4.3.4

Clearly, for each 1 ≤ j ≤ r we have a self-extension in Arm-mod,

0→ C(π)→ C(ej)→ C(π)→ 0.

Recall from Proposition 4.2.1 that we have the functor Wrm : Arm-mod → F given on

objects by ,

WrmM = W (rm)⊗Arm M, M ∈ Ob Arm-mod

For all 1 ≤ j ≤ r, set

V (ej) =


WrmC(ej)/(WrmC(ej))

rm, 1 ≤ j < r,

E(Vr), j = r.

We shall prove,

Proposition 4.3.1. With the notation above, the equivalence classes [V (ej)], 1 ≤ j ≤ r

form a basis of Ext1F (V(r),V(r)).

Assuming we have proven the proposition, the proof of Theorem 3 proceeds as follows.

It is clear that given a nonzero vector c = (c1, . . . , cr) ∈ Cr we can produce a self-extension

V (c) as a representative of the equivalence class of the Baer sum

[V (c)] =
r∑
j=1

cj [V (ej)],

in Ext1F (V(r),V(r)). It is also clear by construction that V (c)rm is isomorphic to the

Arm-module given by a representative of the Baer sum,

r∑
j=1

cj [C(ej)]

53



in Ext1Arm
(C(π),C(π)). Using Lemma 4.2.4 and equation (4.3.7), we see that the action of

Arm on V (c)rm is given by the functional equation,

Λ̄(u)(v, w) =

π(u)v, π(u)w +
r∑
j=1

cjZj(u)v

 , v, w ∈ C(π).

Since we have,

Zc(u) =
r∑
j=1

cjZj(u), (4.3.9)

the proof of Theorem 3 is complete. The proof of Proposition 4.3.1 will be given in Section

4.3.8.

4.3.5

Our first step in the proof of Proposition 4.3.1 is the following.

Proposition 4.3.2. The equivalence classes [C(ej)], 1 ≤ j ≤ r, are linearly independent

in Ext1Arm
(C(π),C(π)).

Proof. Suppose that there exists dj ∈ C, 1 ≤ j ≤ r, such that the Baer sum,

r−1∑
j=1

dj [C(ej)] = [0] = [C(π)⊕ C(π)] (4.3.10)

Let U be a representative of the equivalence class above. Then, it is clear from Lemma

4.2.4 and equation (4.3.7) that the action of Arm on U is given by the functional equation,

Λ̄(u)(v, w) = π(u)(v, w) +

r∑
j=1

djZj(u)(0, v), v, w ∈ C(π). (4.3.11)

In particular, since by equation (4.3.10) we have U ∼= C(π)⊕C(π) as Arm-modules we must

have
r∑
j=1

djZj(u) = 0, (4.3.12)
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Since by equation (4.3.6)

deg Zr(u) > deg Zj(u) for all 1 ≤ j < r,

we must have dr = 0. For 1 ≤ j < r, using the explicit form of Zj(u), and setting aqm+1 = 1

for clarity, equation (4.3.12) is equivalent to,

dr−1

r−2∑
k=0

〈
r − 1

k

〉
uk+1 = (1− u)

r−2∑
j=1

j−1∑
k=0

dj(1− u)r−j−2
〈
j

k

〉
uk+1.

In particular, either dr−1 = 0 or we have,

(1− u) divides

r−2∑
k=0

〈
r − 1

k

〉
uk+1.

However, if the latter holds, then it would imply that,

r−2∑
k=0

〈
r − 1

k

〉
= 0,

contradicting equation 4.3.3, and thus dr−1 = 0. Repeating this argument for all 1 ≤ j ≤

r − 2 shows that dj = 0 for all 1 ≤ j ≤ r and completes the proof.

4.3.6

We shall need the following elementary lemma,

Lemma 4.3.3. For all 0 ≤ j < r and ` ∈ Z we have,

r∑
s=0

(−1)r−s
(
r

s

)
(s+ `)j = 0.

Proof. We first assume that ` = 0. The case when r = 1 is trivial. We proceed by induction

on r > 1. Assume we have shown the result for k < r. If j = 0 the result is clear. We have
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for j > 0,

r∑
s=0

(−1)r−s
(
r

s

)
sj =

r−1∑
s=0

(−1)r−1−s
(

r

s+ 1

)
(s+ 1)j = r

r−1∑
s=0

(−1)r−1−s
(
r − 1

s

)
(s+ 1)j−1

and thus,

r∑
s=0

(−1)r−s
(
r

s

)
sj = r

j−1∑
k=0

(
j − 1

k

) r−1∑
s=0

(−1)r−1−s
(
r − 1

s

)
sk.

The result follows from the inductive hypothesis. For ` 6= 0 we have for all 1 ≤ j < r,

r∑
s=0

(−1)r−s
(
r

s

)
(s+ `)j =

j∑
k=0

(
j

k

)
`j−k

r∑
s=0

(−1)r−s
(
r

s

)
sk.

The last sum in the equation above is zero by the ` = 0 case above completing the proof.

Using the functional equation,

Φ±(u) = k±1
Λ±(q∓1u)

Λ+(q±1u)
,

and equation (4.3.4), for 1 ≤ j < r it is clear that the action given in equation (4.3.7) is

equivalent to the Û0
q action given by: for s ∈ Z,

φs(v, w) = (φs(π)v, φs(π)w + zj,sv), v, w ∈ C(π), (4.3.13)

where for 1 ≤ j < r,

zj,s = sj(aqm)s, s ∈ Z.

In particular, we see from Lemma 4.3.3 that for all 1 ≤ j < r and ` ∈ Z,

r∑
s=0

(−aqm)r−s
(
r

s

)
zj,s+` = (aqm)r+`

r∑
s=0

(−1)r−s
(
r

s

)
(s+ `)j = 0. (4.3.14)

56



4.3.7

For 1 ≤ j ≤ r set

W (ej) = WrmC(ej) = W (rm)⊗Arm C(ej), wj = wrm ⊗ vj .

For all 1 ≤ j ≤ r, set,

w̃j = (Λ̄1 − Λ1(π))wj .

Recall from Section 4.2 that W (rm) is a right Û0
q-module via the action,

(uwrm)x = (xu)wrm, u ∈ Ûq, x ∈ Û0
q ,

and if V is a quotient of W (rm) then the Û0
q action descends to Arm. Hence for x ∈ Û0

q

we have

xW (ej) = W (rm)x⊗Arm C(ej) = W (rm)⊗Arm xC(ej). (4.3.15)

By Proposition 4.3.2 and Proposition 4.2.1, for each 1 ≤ j ≤ r, we have a non-split short

exact sequence of Ûq-modules,

0→W (π)
ιj−→W (ej)

τj−→W (π)→ 0. (4.3.16)

Let x−r = x−r (m, a) be as in equation (2.2.1) and recall also since

V(r) ∼= W (π)/W (π)rm

it follows from the defining relations of V(r) given in Theorem 2 that,

W (π)rm ∼= Ûq(x
−
r wπ). (4.3.17)

We now prove,
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Proposition 4.3.4. For each 1 ≤ j < r, we have τj(W (ej)
rm) = W (π)rm. In particular,

for each 1 ≤ j < r,

V (ej) = W (ej)/(W (ej))
rm,

gives a non-trivial element of Ext1F (Vr,Vr).

Proof. Fix 1 ≤ j < r. Using equation (4.3.17), to prove that τj(W (ej)
rm) = W (π)rm, it

suffices to show that the submodule generated by x−r wj is contained in W (ej)
rm. To prove

this, it suffices to show that,

(Ûqx
−
r wj)rm = 0.

The subspace (Ûqx
−
r wj)rm is the Û0

q- submodule generated by the elements x+` x−r wj for

all ` ∈ Z. Using the relation,

(q − q−1)[x+` , x
−
s ] = φ`+s, s, ` ∈ Z,

since x+` wj = 0 for all ` ∈ Z, we have,

(q − q−1)x+` x−r wj =
r∑
s=0

(−aqm)r−s
(
r

s

)
φs+`wj , (4.3.18)

Using the action given in equation (4.3.13), the right hand side of equation (4.3.18) is

equivalent to,

r∑
s=0

(−aqm)r−s
(
r

s

)
φs+`(π)wj +

r∑
s=0

(−aqm)r−s
(
r

s

)
zj,s+`w̃j . (4.3.19)

The second sum in equation (4.3.19) is zero by equation (4.3.14). Using the defining relations

of V(r) in Theorem 2 we have,

0 = (q − q−1)[x+` ,x
−
r ]vr =

r∑
s=0

(−aqm)r−s
(
r

s

)
φs+`vr.
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In particular,
r∑
s=0

(−aqm)r−s
(
r

s

)
φs+`(π) = 0, (4.3.20)

showing the first sum in equation (4.3.19) is also 0 as desired. The second statement in the

proposition is now immediate from part (ii) of Proposition 4.2.2.

4.3.8

We now complete the proof of Proposition 4.3.1 and thus complete the proof of Theorem

3. Recall that we have,

V (ej) =


W (ej)/W (ej)

rm, 1 ≤ j < r

E(V(r)), j = r.

Proposition 4.3.4 and part (i) of Proposition 1.6.1 show that for each 1 ≤ j ≤ r, [V (ej)] is a

nontrivial element of Ext1F (V(r),V(r)). Using Proposition 3.0.1, to prove Proposition 4.3.1

it suffices to show [V (ej)], 1 ≤ j ≤ r are linearly independent in Ext1F (V(r),V(r)), and by

Corollary 4.2.3 it actually suffices to show [V (ej)rm] for 1 ≤ j ≤ r are linearly independent

in Ext1Arm
(C(π),C(π)). Proposition 4.3.2 now completes the proof.

4.3.9

Before ending this chapter, we shall collect some results about the polynomials Zc(u),

c = (c1, . . . , cr) ∈ Cr, that will be used in the next chapter. Recall that we have,

Λ±(u) =
∑
s≥0

Λ±su
s.
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It is clear from the relations of Arm and Proposition 1.5.3 that given c ∈ Cr, the action of

Arm on V (c)rm can be extended to Û0
q by,

Λ±(u)(v, w) =
(
π±(u)v, π±(u)w + Z±c (u)v

)
, v, w ∈ C(π), (4.3.21)

where Z+
c (u) = Zc(u), π+(u) = π(u) and,

Z−c (u) = (−a)rmurmZ+
c (u−1), π−(u) = (−a)rmurmπ(u−1) = [ωm,a−1(u)]r. (4.3.22)

It is clear using the explicit form of Z+
j (u) for 1 ≤ j < r that we have,

gcd
(
Z+
j (u), (1− aq−m+1u)

)
= 1.

Moreover, since ωm,a(u) has distinct roots and,

gcd(ωm,a(u), (1− aq−m+1u)) = (1− aq−m+1u),

we have that,

gcd(D1ωm,a(u), (1− aq−m+1u)) = 1.

Since D1[π(u)] = [ωm,a(u)]r−1D1[ωm,a(u)], we see that,

gcd
(
Z+
r (u), (1− aq−m+1u)r

)
= (1− aq−m+1u)r−1.

In particular, the above discussion shows that if c ∈ Cr, then

(1− aq−m+1u)r does not divide Z+
c (u). (4.3.23)

A similar argument shows,

(1− a−1qm−1u)r does not divide Z−c (u). (4.3.24)
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Chapter 5

A Lower Bound

In this chapter, we will complete the proof of Theorem 1.

5.1 Proof of Theorem 1

Assume for the moment we have proven the following result,

Proposition 5.1.1. Let V be an irreducible object of F which has r prime factors Vi with

multiplicities si, 1 ≤ i ≤ r. Then,

dimC Ext1F (V, V ) =
r∑
i=1

si.

Proposition 5.1.1 clearly proves one direction of Theorem 1. For the other direction,

let V be an irreducible object of F such that dimC Ext1F (V, V ) = r. Proposition 1.5.2 shows

that V is isomorphic to a (unique up to order) tensor product of s irreducible prime objects

of F for some s ∈ Z+. By Proposition 5.1.1 we must have s = r completing the proof.

61



We note that Proposition 5.1.1 follows from Theorem 3 when r = 1. Moreover, by

Proposition 3.0.1 we see that it suffices to prove

dimC Ext1F (V, V ) ≥
r∑
i=1

si. (5.1.1)

Establishing this inequality will be our goal for the rest of the chapter.

5.1.1

Before proceeding with the proof of Proposition 5.1.1 we fix notation that will be used

throughout this chapter. Let V be as in Proposition 5.1.1. By Corollary 1.5.2, for each

1 ≤ i ≤ r there exists unique (up to order) (mi, ai) ∈ N×C× such that Vi ∼= V (ωmi,ai), and

V ∼= V ⊗s11 ⊗ · · · ⊗ V ⊗srr

For each 1 ≤ i ≤ r, set

Ṽi = V ⊗s11 ⊗ · · · ⊗ V ⊗si−1

i−1 ⊗ V ⊗si+1

i+1 ⊗ · · · ⊗ V ⊗srr .

We note that by Proposition 1.5.1, V ∼= V ⊗sii ⊗ Ṽi since V is irreducible. Recall that

V (ωmi,ai) has a basis vmi , . . . , v0 and that V (ωmi,ai)
⊗si is generated as a Ûq-module by

v⊗simi
. For each 1 ≤ i ≤ r, set

vi = v⊗simi
, ṽi = v⊗s1m1

⊗ · · · ⊗ v⊗si−1
mi−1 ⊗ v

⊗si+1
mi+1 ⊗ · · · ⊗ v⊗srmr

(5.1.2)

For 1 ≤ i ≤ r, set

π(u) =

r∏
j=1

[ωmj ,aj ]
sj , πi(u) = [ωmi,ai ]

si , π̃i(u) =
r∏

j=1

j 6=i

[ωmj ,aj ]
sj (5.1.3)

so that for each s ∈ Z r {0} and 1 ≤ i ≤ r we have,

Λs(vi ⊗ ṽi) = Λs(π)(vi ⊗ ṽi), Λsvi = Λs(πi)vi, Λsṽi = Λs(π̃i)ṽi.
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5.1.2

The following elementary result will be useful in the proof of Proposition 5.1.1. We

include the proof for completeness.

Lemma 5.1.2. With V as above, there exists 1 ≤ k ≤ r such that for all 1 ≤ j 6= k ≤ r,

one of the following hold,

akq
mk 6= ajq

mj or akq
−mk 6= ajq

−mj .

Proof. Suppose for a contradiction that for all 1 ≤ k ≤ r there exists 1 ≤ j 6= k ≤ r such

that

akq
mk = ajq

mj and akq
−mk = ajq

−mj . (5.1.4)

It follows that we must have (mk, ak) = (mj , aj) contradicting our assumption that the

prime factors of V were distinct. This completes the proof.

5.1.3

Our first step in the proof of Proposition 5.1.1 is,

Proposition 5.1.3. There exists a unique map of vector spaces,

f :
r⊕
i=1

Ext1F (V ⊗sii , V ⊗sii ) −→ Ext1F (V, V ),

given by,

([U1], . . . , [Ur]) 7→
r∑
i=1

[Ui ⊗ Ṽi], [Ui] ∈ Ext1F (V ⊗sii , V ⊗sii ).
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Proof. By Corollary 1.6.2, for each 1 ≤ i ≤ r, we have an injective map of vector spaces

pi : Ext1F (V ⊗sii , V ⊗sii ) −→ Ext1F (V, V )

given by

[Ui] 7→ [Ui ⊗ Ṽi], [Ui] ∈ Ext1F (V ⊗sii , V ⊗sii )

For each 1 ≤ i ≤ r, let

ιi : Ext1F (V ⊗sii , V ⊗sii ) −→
r⊕
i=1

Ext1F (V ⊗sii , V ⊗sii ),

be the natural inclusions in the category of C-vector spaces. It follows from the universal

property of coproducts in the category of C-vector spaces that there exists a unique map

of vector spaces ,

f :

r⊕
i=1

Ext1F (V ⊗sii , V ⊗sii ) −→ Ext1F (V, V ),

such that f ◦ ιi = pi for all 1 ≤ i ≤ r. In particular, using the definition of pi for 1 ≤ i ≤ r,

and the linearity and uniqueness of f it follows that,

f([U1], . . . , [Ur]) =

r∑
i=1

pi([Ui]) =

r∑
i=1

[Ui ⊗ Ṽi]. (5.1.5)

as desired.

5.1.4

Assume for the moment we have shown the following result,

Proposition 5.1.4. If Ui is a non-trivial self-extension of V ⊗sii for all 1 ≤ i ≤ r, then{
[Ui ⊗ Ṽi] : 1 ≤ i ≤ r

}
is a linearly independent subset of Ext1F (V, V ).
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The proof of Proposition 5.1.1 is completed as follows. Clearly, it suffices to show that

the map f in Proposition 5.1.3 is injective. For 1 ≤ i ≤ r, let Ui be self-extensions of V ⊗sii

such that in Ext1F (V, V ) we have,

f([U1], . . . , [Ur]) =
r∑
i=1

[Ui ⊗ Ṽi] = 0.

By Proposition 5.1.4 we must have that [Ui] = 0 in Ext1F (V ⊗sii , V ⊗sii ) completing the proof.

Proving Proposition 5.1.4 will be our goal from now on.

5.1.5

Fix 1 ≤ i ≤ r, and let ci = (ci,1, . . . , ci,si) be a non zero vector in Csi . Recall from

Theorem 3 that there exists a unique (up to equivalence) self-extension V (ci) of V ⊗sii such

that the action of Asimi on V (ci)simi is given by the functional equation,

Λ̄(u)(v, w) = (πi(u)v, πi(u)w + Zci(u)v), v, w ∈ V (ci)simi . (5.1.6)

where Zci(u) is as in Theorem 3. Set

Zi(u) = Zci(u)π̃(u), Z−i (u) = Z−ci(u)π̃−(u), (5.1.7)

where Z−ci(u) is defined in equation (4.3.22) and

π̃−(u) =

r∏
j=1

j 6=i

[ωmj ,a
−1
j (u)]

sj .

Set

V(ci) = V (ci)⊗ Ṽi,
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Finally, set m = s1m1+· · ·+mrsr, and notice that dimC V(ci)m = 2 and V(ci)m is spanned

by vectors of the form,

(v, w)⊗ ṽi, (v, w) ∈ V (ci)simi ,

with ṽi defined in equation (5.1.2). We now prove,

Lemma 5.1.5. With the notation above, for each 1 ≤ i ≤ r, the action of Am on V(ci)m

is given by,

Λ(u)((v, w)⊗ ṽi) = (π(u)v, π(u)w + Zi(u)v)⊗ ṽi, v, w ∈ V (ci)simi .

Proof. Fix 1 ≤ i ≤ r. Using the comultiplication formulae in Proposition 1.3.2 it is clear

that the comultiplication of Λ̄(u) is given by the functional equation,

∆(Λ̄(u)) = Λ̄(u)⊗ Λ̄(u)

Thus, using equation (5.1.6) and Proposition 1.5.3 we have for (v, w)⊗ ṽi ∈ V(ci)m,

∆(Λ̄(u))((v, w)⊗ ṽi) = Λ̄(u)(v, w)⊗ Λ̄(u)ṽi = (πi(u)v, πi(u)w + Zci(u)v)⊗ π̃i(u)ṽi

Since π(u) = πi(u)π̃i(u) and Zi(u) = Zci(u)π̃i(u) by equations (5.1.3) and (5.1.7) respec-

tively, the proof is complete.

5.2 Proof of proposition 5.1.1

We now prove Proposition 5.1.4 and thus complete the proofs of Proposition 5.1.1 and

Theorem 1. By Theorem 3, if Ui is a self-extension of V ⊗sii , then as Ûq-modules, Ui is

isomorphic to V (ci) for some ci ∈ Csi . Thus, we must show that {[V(ci)] : 1 ≤ i ≤ r} as

66



defined in the previous section are linearly independent in Ext1F (V, V ). The case when r = 1

is given by Theorem 3.

We proceed by induction on r > 1. Suppose we have proven the result for all s < r.

Let E be a trivial self-extension of C(π) such that in Ext1Am
(C(π),C(π)) we have the Baer

sum,

[E] =

r∑
i=1

di[V(ci)m] = [0].

for some di ∈ C. In particular, we have an isomorphism of Am-modules, E ∼= C(π)⊕C(π).

Using Lemma 5.1.2, notice we can assume, after possible reordering that, for all 1 < j ≤ r,

a1q
−m1 6= ajq

−mj or a1q
m1 6= ajq

mj .

Suppose first that we have

a1q
−m1 6= ajq

−mj for all 1 < j ≤ r. (5.2.1)

Using the Am-action in Lemma 5.1.5 and Lemma 4.2.4, it follows that we must have,

r∑
i=1

diZi(u) = 0.

In particular, using equation (5.1.7) we have,

d1Zc1(u)π̃1(u) = −
r∑
i=2

diZci(u)π̃i(u). (5.2.2)

Notice that π1(u) divides every term in the sum on the right hand side of equation (5.2.2).

In particular, we must have that, (1− a1q−m1+1u)si divides the right hand side of equation

(5.2.2), and thus must also divide Zc1(u)π̃1(u). However, using the definition of π̃1(u)

in equation (5.1.3) and our assumption in equation (5.2.1) above, this implies that (1 −
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a1q
−m1+1u)si divides Zc1(u) or d1 = 0. Since the former contradicts equation (4.3.23) we

must have d1 = 0. It now follows from the inductive hypothesis that di = 0 for all 1 ≤ i ≤ r.

If instead the second statement in the equation proceeding equation 5.2.1 holds, a similar

argument using the polynomials Z−i (u) and equation (4.3.24) completes the proof. We omit

the details.
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