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Abstract of the Dissertation

Thermal modeling of electrochemical capacitors

by

Anna Leone d’Entremont

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2015

Professor Laurent G. Pilon, Chair

The present study rigorously develops continuum thermal models of electrochemical capac-

itors (ECs) accounting for the dominant interfacial and transport phenomena. It also aims

to identify design rules and modeling tools to define safe modes of operation and to develop

appropriate thermal management strategies. ECs are promising electrical energy storage de-

vices, particularly for providing high power or long cycle life. They can be divided into two

categories, namely electric double layer capacitors (EDLCs) storing charge electrostatically

in the electric double layer (EDL) at the electrode/electrolyte interface and pseudocapaci-

tors using both EDL and chemical charge storage. Unfortunately, ECs generate heat during

operation due to a variety of interfacial and transport phenomena. Consequently, they may

experience substantial changes in temperature, leading to problems such as accelerated aging

and increased self-discharge rates. EC charge storage mechanisms involve complex multi-

physics and multiscale transport phenomena and this complexity has impeded the physical

understanding of EC heating. This study derives rigorous, physics-based continuum models

for both EDLCs and pseudocapacitors from first principles. Then, detailed numerical simu-

lations were performed to investigate characteristic thermal behavior, to physically interpret

experimental measurements from the literature, and to develop design rules.

First, thermal models were developed for EDLCs. The heat diffusion equation and asso-

ciated heat generation rates were derived from first principles and coupled with the transient

electrodiffusion of ions in binary and symmetric electrolyte. Irreversible Joule heating and
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reversible heat generation rates due to ion diffusion, steric effects, and changes in entropy

of mixing in the electrolyte were formulated. The predicted temperature rise for planar

EDLCs qualitatively reproduced experimental data from the literature under various charg-

ing/discharging conditions. Scaling analysis simplified this model from twelve independent

design parameters to seven dimensionless similarity parameters. Scaling laws were developed

for the heat generated during a charging step and for the maximum temperature oscillations

under galvanostatic cycling. In addition, a first-order thermal analysis for EDLCs was devel-

oped based on the lumped-capacitance approximation and accounting for both irreversible

and reversible heating. A simple analytical expression for the overall temperature rise dur-

ing galvanostatic cycling was derived and scaled. This simple thermal model enables rapid

estimation of temperature evolution in EDLCs without computationally intensive numerical

simulations and was quantitatively validated with experimental measurements from commer-

cial EDLC devices. Moreover, the first-principles thermal model was generalized to account

for multiple ion species and/or asymmetric electrolytes. Simulations with binary and asym-

metric electrolytes indicated that the irreversible Joule heating decreased with increasing

valency and/or diffusion coefficient of either ion while the local reversible heating near a

given electrode increased with increasing counterion valency and/or decreasing counterion

diameter.

Finally, the first-principles model was extended to hybrid pseudocapacitors by accounting

for redox reactions and Li+ intercalation and by rigorously deriving the associated irreversible

and reversible heat generation rates. The model accounted simultaneously for charge storage

by EDL formation and by faradaic reactions. Simulations were performed for a planar hy-

brid pseudocapacitor to investigate the electrochemical interfacial and transport phenomena

as well as the thermal behavior under galvanostatic cycling. Two asymptotic regimes were

identified corresponding to (i) dominant faradaic charge storage at low current and low fre-

quency or (ii) dominant EDL charge storage at high current and high frequency. Predicted

cell potential, heat generation rates, and temperature showed good qualitative agreement

with experimental measurements and can be used to physically interpret experimental ob-

servations.
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CHAPTER 1

Introduction

1.1 Need for electrical energy storage

The importance of electrical energy storage (EES) systems in our society is continually

increasing. Compact and efficient EES systems are required for myriad portable electronic

devices such as laptop computers and mobile phones. They are increasingly in demand for

vehicle applications, due to the increasing popularity of hybrid and fully-electric vehicles

to minimize emissions and reduce dependence on fossil fuels. In addition, many sources of

“clean” and renewable energy such as solar, wind, or wave energy require EES systems to

facilitate electric load following so that they can be effectively integrated into the power

grid [6].

1.1.1 Hybrid and electric vehicles

Hybrid and fully-electric vehicles provide a way to reduce dependence on fossil fuels and

emission of CO2. A major challenge for these vehicles is the development of suitable electrical

energy storage systems to enable good vehicle performance and driving range [6]. The use of

EES systems to replace or supplement internal combustion engines offers greater flexibility

in the choice of energy sources for vehicle applications. It also enables more efficient energy

use. For example, hybrid vehicles can shut down the internal combustion engine in situations

where its efficiency is low and/or recapture energy that would otherwise be wasted, such as

that dissipated during braking [7–9].
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1.1.2 Expanding the usability of energy sources

Efficient electrical energy storage is needed to improve the flexibility and applicability of

energy sources such as solar energy, wind energy, and nuclear energy. Solar and wind en-

ergy are intermittent, while nuclear power provides a set, steady power output over long

timescales. Neither of these two extremes is capable of following short-term demand fluc-

tuations in the power grid. EES systems enable the storage of energy during periods when

electricity production exceeds demand and the release of that energy during demand peaks

that exceed the current production [7].

1.2 Types of electrical energy storage

Electrical energy storage methods can be classified into two major types: chemical storage

and physical or capacitive storage [6, 10]. Both types of storage are based on electrochem-

istry and involve the interaction of complex physical and chemical processes [6, 10]. The

fundamental difference is that chemical storage methods store energy in the form of elec-

trically neutral chemical reactants which can produce electric charge [6, 10]. On the other

hand, physical storage methods store energy directly as separated electronic and/or ionic

charge [6, 10]. Figure 1.1 shows the classifications of various EES devices.

1.2.1 Batteries: Chemical charge storage

Batteries store electrical energy via reversible redox reactions between an electrolyte and an

electrode that consume or release electrons and ions. Figure 1.2 illustrates the operating

mechanism of a lithium-ion battery during charging and discharging [11]. The electrons flow

from one electrode to the other through an external circuit, while the ions travel through the

electrolyte. Batteries provide a relatively constant output voltage independent of the state

of charge [6, 10]. This voltage is determined by the chemical reaction occurring within the

cell [6,12]. Individual battery cells may be connected in series to provide higher voltage or in

parallel to provide higher power [6]. Batteries offer high energy densities because the redox
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Electrical energy storage

Physical energy storage

(Capacitors)

Chemical energy storage

(Batteries)

Dielectric capacitors Electrochemical capacitors

Electric double layer

capacitors (EDLCs)
Pseudocapacitors

Figure 1.1: Classification of electrical energy storage systems.

reactions can store charge throughout the volume of the electrode material [6]. However, the

volume and phase changes associated with ion intercalation into the material severely limit

the cycle life due to irreversible changes [6]. As a result, battery cycle life is typically on

the order of a few thousand cycles [6, 10, 13]. The power density of batteries is limited by

the reaction kinetics and by mass transfer of the reactants [6]. As a result, the charge and

discharge rates often differ [6].

1.2.2 Conventional capacitors: Physical charge storage

Capacitors store electrical energy electrostatically by physically separating positive and neg-

ative electric charges on either side of an electrically insulating layer [6]. Different types

of capacitors, e.g., dielectric capacitors or electrolytic capacitors, are differentiated by their

structure and the types of charge carrier involved, namely electrons and/or ions. Figure

1.3(a) illustrates a conventional dielectric capacitor. It stores electronic charge within two

electrodes separated by a dielectric material [13]. The voltage across a capacitor varies

continuously with its state of charge [13]. Conventional capacitors have very high power

densities, since they are not limited by reaction kinetics, as well as very long cycle life, since
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Figure 1.2: Illustration of the charge storage mechanism of a lithium-ion battery during

charging and discharging (from Ref. [11]).
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Figure 1.3: Illustrations of (a) a dielectric capacitor, (b) an electric double layer capacitor

(EDLC), and (c) a hybrid pseudocapacitor.
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electrostatic charge storage is highly reversible [6, 13]. However, they provide very low en-

ergy densities, because charge is stored only at the interfaces on either side of the dielectric

layer [6, 13].

1.2.3 Electrochemical capacitors

Electrochemical capacitors (ECs) involve both electronic and ionic charge. There are two

types of ECs, namely electric double layer capacitors (EDLCs) and pseudocapacitors. Both

consist of two electrodes immersed in an electrolyte and separated by an ion-permeable sep-

arator [6, 13, 14]. Figure 1.3(b) illustrates the charge storage mechanism of EDLCs. They

store electrical energy within the electric double layer (EDL) forming at the porous elec-

trode/electrolyte interfaces without chemical reactions or phase changes [10, 15]. The EDL

consists of two layers of electric charge on either side of the electrode/electrolyte interface:

a layer of electronic charge within the electrode and a layer of ionic charge of opposite sign

within the electrolyte [6, 10, 15]. The electrode/electrolyte interface serves as the insulating

layer of the capacitor, because neither electrons nor ions cross the surface. By contrast,

pseudocapacitors combine both physical and chemical storage mechanisms and consist of

a hybrid between EDLCs and batteries. Charge is stored chemically using redox reactions

as well as electrostatically within the EDLs [10, 15, 16]. Despite their use of chemical stor-

age, the electrical performance of pseudocapacitors closely resembles that of EDLCs rather

than that of batteries [6, 10, 16, 17]. In fact, an ideal battery operates at a constant cell

potential independent of its state of charge (SOC), whereas the cell potential of an EDLC

or a pseudocapacitor varies continuously with its SOC, analogous to conventional capaci-

tors [6,10,18,19]. Finally, hybrid pseudocapacitors can be designed by pairing a redox-active

or pseudocapacitive electrode (e.g., TiO2, MnO2, Nb2O5) with an EDLC-type electrode made

of carbon [6, 13,19]. Figure 1.3(c) illustrates a hybrid pseudocapacitor.
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Figure 1.4: Comparison of energy and power densities of different EES systems (from Ref.

[6]).

1.2.4 Energy storage performance

The performance of different EES devices can be conveniently compared and assessed based

on their specific energy and power densities. The energy density is the energy stored and

delivered upon discharge per unit mass of the EES device. Power density is the rated

power per unit mass of the EES device [20]. Figure 1.4 shows a Ragone chart plotting the

power density as a function of energy density for several types of EES system [6]. The

energy and power densities of electrochemical capacitors fall between those of dielectric

capacitors and batteries and span several orders of magnitude of both measures [6,10,14,19,

21]. The energy storage capacity of EDLCs increases with increasing electrode surface area,

since they store energy within the EDL at the electrode/electrolyte interface [6]. For this

reason, they use porous electrodes with high surface area, typically made of carbon [6,10,19].

This results in significantly larger energy densities in EDLCs compared with conventional

dielectric capacitors. However, their energy densities remain significantly smaller than those

of batteries [10, 13]. The lack of chemical reactions and phase changes makes EDLC charge

storage highly reversible, resulting in cycle life from hundreds of thousands to millions of

cycles [6, 10, 12–14]. EDLC power densities are significantly larger than those of batteries
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because no chemical reaction kinetics limit the charge and discharge rates [6, 10]. However,

their power densities are significantly smaller than those of dielectric capacitors. ECs have

response times on the order of seconds, while dielectric capacitors have response times on the

order of nanoseconds [6]. EDLC power is limited primarily by the ionic conductivity through

the separator [6, 13]. Pseudocapacitors offer higher capacitances and energy densities than

EDLCs because they combine faradaic and EDL charge storage and thus can accommodate

more charge per unit electrode surface area and volume than EDL charge storage alone

[13, 16, 17, 19, 22, 23]. However, their electrode materials, such as noble metal oxides RuO2

and IrO2, are typically more costly than those of EDLCs [6].

The operating voltage across an EC changes continuously during charging and discharg-

ing, providing an indication of the state of charge at all times [6,10]. The operating voltage

is limited by the breakdown voltage of the electrolyte, equal to about 1.2 V for aqueous

electrolytes and about 2.3 − 2.7 V for organic electrolytes [6, 13]. Individual EC cells are

often connected in series for applications where higher voltages are required [6].

1.3 Motivation of the present study

Electrochemical capacitors (ECs) are a promising form of electrical energy storage for ap-

plications requiring high power, rapid cycling, or long cycle life [6, 10, 19]. Such high power

applications include (i) hybrid or electric vehicles, where they can provide high power for

acceleration and can capture braking energy more efficiently than batteries, (ii) load-leveling

to allow the electrical grid to follow short-term fluctuations or accommodate intermittent

energy sources, or (iii) fast restarting and recharging of equipment. Long cycle lives are

advantageous for applications where EES replacement is difficult, such as those in remote lo-

cations [13]. Depending on the application, ECs may supplement battery systems or replace

them entirely.

Like batteries, electrochemical capacitors dissipate energy as heat during charging or

discharging. Elevated temperatures increase EDLC capacitance, decrease EC resistance,

and increase faradaic reaction rates [9, 24–28]. However, they also accelerate EDLC aging
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[7, 8, 21, 25, 29, 30] and increase self-discharge rates [8, 21, 25, 29]. Previous studies have

demonstrated that the heat generation in EDLCs can cause temperature rises exceeding the

operating range of the device [25].

To avoid these harmful effects, temperature changes in ECs should be mitigated. To this

end, thermal modeling should be developed (i) to improve understanding of the physical

processes resulting in EC heating, (ii) to provide simulation tools for predicting device op-

erating temperatures in existing and novel EC devices, and (iii) to identify design rules and

thermal management strategies for ECs to avoid excessive heating.

1.4 Objectives of the present study

The present study aims to develop a physical understanding of coupled electrodiffusion and

heat transfer occurring during the operation of electrochemical capacitors. To do so, a

physics-based, continuum thermal model will be developed step by step. This model will be

solved numerically for simple EC cells and used to physically interpret the thermal behavior

of ECs observed in experimental studies. Scaling analyses will be used to identify key

dimensionless numbers governing ion transport and EC heating. This can facilitate the

formulation of design rules to mitigate undesirable temperature rise in ECs.

1.5 Organization of the document

Chapter 2 reviews previous models of the electric double layer and of ion transport within

electrolytes, materials used in electrochemical capacitors, Joule heating, and existing exper-

imental and modeling studies of the thermal behavior of ECs. Chapter 3 presents a model

and scaling analysis of coupled electrodiffusion and heat transfer in planar EDLCs. The

chapter considers the simple case of charging with a step change in potential and includes

heat generation due to irreversible Joule heating only. Chapter 4 derives the irreversible and

reversible heat generation rates within binary and symmetric electrolyte based on energy con-

servation. Several contributions to the heat generation rate arising from EDL formation are
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introduced and discussed. The model was applied to the practical case of galvanostatic cy-

cling. The results of numerical simulations are qualitatively compared to experimental data

from the literature. Chapter 5 presents a simplified first-order thermal model for predicting

the transient temperature of an EDLC device based on the lumped-capacitance model. Its

predictions showed good quantitative agreement with experimental measurements for the

literature for a variety of commercial EDLCs. Chapter 6 presents a scaling analysis of the

thermal model from Chapter 4. It reduced the number of independent design parameters,

facilitating the identification of scaling laws for the heat generation rate. Chapter 7 gen-

eralizes the thermal model from Chapter 4 to account for multi-species and/or asymmetric

electrolytes. Numerical simulations were performed for binary and asymmetric electrolytes

to investigate the effects of asymmetric ion valencies, ion diameters, and ion diffusion coef-

ficients on the heat generation rates and temperature. Chapter 8 applies a first-principles

electrochemical transport model for hybrid pseudocapacitors to galvanostatic cycling. It

accounts for redox reactions and ion intercalation in addition to the transport processes

previously derived for EDLCs. Simulations were performed to investigate the characteristic

electrochemical transport behavior associated with galvanostatic cycling. Chapter 9 uses the

electrochemical model from Chapter 8 to derive the heat generation rates associated with a

hybrid pseudocapacitor, including all of the heat generation rates derived for EDLCs plus

additional irreversible and reversible heat generation rates due to faradaic reactions. Simu-

lations were performed for a planar hybrid pseudocapacitor cycled galvanostatically, and the

predicted heat generation rates and temperature evolution were qualitatively compared to

experimental measurements from the literature. Finally, Chapter 10 discusses recommenda-

tions for future work.
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CHAPTER 2

Background

2.1 Capacitance

The capacitance of an EC characterizes the amount of electric charge (in C) stored from

the external circuit as a function of the cell potential ψs (in V). The differential Cs,diff and

integral Cs,int areal capacitances (in F m−2) per unit electrode/electrolyte interfacial area

are defined as [10,31]

Cs,diff =
dqs
dψs

and Cs,int =
qs
ψs

(2.1)

where qs is the surface charge density (in C m−2). For galvanostatic cycling consisting of

alternating charging and discharging steps at a constant imposed current density ±js =

dqs/dt, the differential and integral capacitances can be expressed as [10,31]

Cs,diff =
js

|dψs/dt|
and Cs,int =

jstc/2

ψmax − ψmin
(2.2)

where tc is the cycle period and ψmax and ψmin are the upper and lower limits of the cell

potential.

2.2 Electric double layer structure

The distribution of ions in an electrolyte is perturbed near a charged surface. The charged

surface attracts ions of opposite charge, called counterions, and repels ions of like charge,

called coions [32]. At the same time, the ions are subject to random thermal motion [32].

The distribution of ions at equilibrium is governed by the combination of these competing

influences of electrostatic attraction/repulsion and of diffusion due to the presence of concen-

tration gradients. This results in a region of electrolyte near the electrode surface with a net
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Figure 2.1: Illustrations of the (a) Helmholtz, (b) Gouy-Chapman, (c) Stern, and (d) Gra-

hame models of EDL structure.

ionic space charge density in contrast to the electrically neutral bulk electrolyte. Together,

the layer of electronic charge within the electrode and the corresponding layer of ionic charge

within the electrolyte are called the electric double layer (EDL) [26,32]. The net ionic charge

in the EDL per unit electrode surface area (in C m−2) is equal and opposite to the electronic

surface charge density in the electrode so that the region around the interface is electrically

neutral overall [26–28].

Several proposed models for the electric double layer structure are illustrated in Fig-

ure 2.1. The earliest model and the term “double layer” were both proposed by Helmholtz
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[10, 26, 33]. In his model, the counterions form a single layer along the electrode surface,

resulting in two layers of electric charge separated by a distance on the order of molecular

dimensions, as illustrated in Figure 2.1(a) [10,26]. This model predicts a constant differential

capacitance similar to that of a parallel-plate dielectric capacitor. However, experimental

measurements have shown that the differential capacitance of ECs is not constant. It varies

with the electrode potential and the electrolyte concentration [26].

The Gouy-Chapman model illustrated in Figure 2.1(b) instead proposed that the ions

form a diffuse layer in the electrolyte under the competing influences of electrostatic forces

and random thermal motion [10, 34–36]. In this model, the concentration of excess charge

is largest next to the electrode surface, where the electrostatic forces are strongest and

override the effect of diffusion. The excess charge decreases with increasing distance from the

electrode [26]. In this model, the ions are assumed to be point charges [10]. The thickness of

the diffuse layer varies with electrolyte concentration, ion valencies, and temperature [26,27].

The differential capacitance predicted by the Gouy-Chapman model qualitatively resembles

that measured experimentally at low concentrations and potentials [10, 26, 27]. However, at

higher concentrations and potentials, the model breaks down and overpredicts the differential

capacitance [10,26,27].

The present study uses the Stern model [37] illustrated in Figure 2.1(c). This model

combined the concepts behind the Helmholtz and Gouy-Chapman models. It proposed that

the excess charge in the electrolyte can be divided into two layers, the Stern layer and the

diffuse layer. The Stern layer is the compact layer adjacent to the electrode surface and

containing no free charge [19,26,27,32]. This layer accounts for the fact that ions have finite

size [26,32] and resembles the Helmholtz model of the EDL. The Stern/diffuse layer interface

corresponds to the closest distance of approach for an electrostatically adsorbed ion [28]. Ions

in the diffuse layer move under the competing influences of electrostatic forces, diffusion, and

steric effects [26,27,38], as in the Gouy-Chapman diffuse layer. The concentration of excess

charge is the largest at the Stern/diffuse layer interface and decreases with increasing distance

from the electrode [26, 32]. The Stern model accounts for the major behavior observed in

real systems [26].
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It should be noted that a further extension of the Stern model exists. Grahame [39]

observed that the capacitive behavior of an EDL next to a mercury electrode depended

on the type of cations and anions in the electrolyte, especially on the properties of the

anion [10]. The Grahame model thus subdivides the compact layer at the electrode surface

into the inner Helmholtz layer and the outer Helmholtz layer [10, 26, 27], as illustrated in

Figure 2.1(d). These layers correspond to different distances of closest approach for different

ions [10, 26, 27]. The inner Helmholtz plane (IHP) is the locus of the centers of ions that

are specifically or covalently adsorbed to the surface [26,27]. The specifically adsorbed ions

are unsolvated [26, 27]. The outer Helmholtz plane (OHP) corresponds to the Stern/diffuse

layer interface of the Stern model. It is the locus of the centers of electrostatically adsorbed

ions [26,27]. These ions remain solvated [26,27].

2.3 Materials for ECs

There are a variety of desirable material properties for an EC electrode. Among the more

obvious ones are high specific area (on the order of 1000 − 2000 m2/g) to maximize energy

density and low electrical resistance [10]. The electrical resistance depends not only on

the conductivity of the electrode material, but also on its structure, since the structure

determines the paths an electron must follow to reach the current collectors. The resistance

to ion transport in the pores should also be low [10]. This depends on the pore structure and

must be balanced with the need for high surface area. In addition, good wettability enables

the electrolyte to penetrate into the pores and create the necessary electrode/electrolyte

interface for charge storage [10]. Finally, cost must be considered.

EDLC electrodes should not react chemically with the electrolyte or current collector

materials [10, 14]. They are typically made of carbon, which has the advantages of low cost

and well established fabrication techniques [6, 13, 14]. Different forms of carbon, including

activated carbon, carbon aerogels, and carbon nanotubes have been used for EDLCs. Ac-

tivated carbon is used most commonly due to its low cost and high surface area [13]. By

contrast, pseudocapacitive electrodes must react reversibly with an ion in the electrolyte.
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They typically consist of metal oxides or conducting polymers and react with cations such

as Li+, K+, H+ [13].

Desirable properties for electrolytes include high relative permittivity or dielectric con-

stant, high decomposition voltage, high ionic conductivity, and a wide usable temperature

range [10]. Aqueous electrolytes, such as aqueous H2SO4 or KOH, offer very high dielectric

constants as well as relatively low resistivity and minimum pore size requirements [10, 14].

However, water has a low decomposition voltage (≈ 1.23 V) and a relatively high freezing

point [10, 13, 14]. Nonaqueous solvents such as acetonitrile and propylene carbonate offer

substantially higher decomposition voltages at the cost of lower dielectric constants and

higher resistivities [10, 14]. Most commercial EDLCs use nonaqueous electrolytes [12].

2.4 Modeling ion transport in electrolytes

An electrolyte is an ionic conductor, so the electric current is carried by the movement of

ions [27]. The current density j within an electrolyte, expressed in A m−2, can be expressed

in terms of ion fluxes as [28,32,40]

j = F
n∑
i=1

ziNi (2.3)

where F = 9.648 × 104 C mol−1 is the Faraday constant, zi and Ni are the valency and

molar flux (in mol m−2s−1) of species i, respectively, and n is the number of ion species

present. The electrical conductivity σ of the electrolyte depends on the concentration ci and

ionic mobility ui of each ion species i present [27] and can be expressed as σ = F 2
n∑
i=1

z2i uici.

The mobility ui of an ion species can be interpreted as the average velocity of an ion under

a force of 1 N mol−1, with units m mol s−1N−1 [32]. The mobility ui and the diffusion

coefficient Di of an ion species are directly linked. For dilute solutions, they are related by

the Nernst-Einstein equation ui = Di/RuT , where Ru is the universal gas constant and T

is the absolute temperature [28, 32,41]. Thus, the electrical conductivity σ of an electrolyte

can also be expressed as [28,32]

σ =
F 2

RuT

n∑
i=1

z2iDici. (2.4)
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2.4.1 Poisson-Nernst-Planck (PNP) model

Within an electrolyte, ions may move due to diffusion, advection, and migration due to an

electric field, also called electromigration [32]. The distribution of the electric potential ψ

and the ion distributions are intimately coupled, such that the ion distributions determine

the electric potential profile at any instant while the potential profile simultaneously drives

ion motion. The classical model for time-dependent local potential and ion transport within

the diffuse layer is the Poisson-Nernst-Planck (PNP) model [38]. This model is based on

dilute solution theory and treats the ions as non-interacting point charges [38] in motion

due to diffusion, electromigration, and advection. The Poisson equation describes the local

electric potential ψ(r, t) at time t in terms of the volumetric charge density and is expressed

as [38,41–43]

−∇ · (ε0εr∇ψ) =


0 in the Stern layers

F
n∑
i=1

zici in the diffuse layer
(2.5)

where ε0 = 8.854 × 10−12 F m−1 and εr are the vacuum permittivity and the relative per-

mittivity of the electrolyte, respectively. Here, the potential profile within the Stern layers

is linear due to the lack of free charge.

In the absence of chemical reactions, the concentration ci(r, t) (in mol L−1) of each ion

species i satisfies the mass conservation equation given by [38]

∂ci
∂t

= −∇ ·Ni for i = 1, 2...n in the diffuse layer. (2.6)

For dilute solutions, the ion fluxes due to diffusion, electromigration, and advection can be

linearly superimposed [32] and the total ion flux is given by [32,41]

Ni = −Di∇ci −
DiziFci
RuT

∇ψ + ciu (2.7)

where u is the velocity of the bulk electrolyte. The first, second, and third terms on the

right-hand side of Equation (2.7) represent the flux contributions of (i) diffusion due to

concentration gradients, (ii) electromigration due to the electric field, and (iii) advection due

to bulk electrolyte motion, respectively. The combination of Equations (2.6) and (2.7) forms
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the transient transport equation for each ion species i. These are called the Nernst-Planck

equations.

Because the PNP model assumes the ions behave as non-interacting point charges, there

is no upper limit to the ion concentrations at the electrode surface [38]. When either the bulk

ion concentration or the surface potential is large, the point charges can accumulate without

limit and reach unrealistically high concentrations [38]. In reality, ion accumulation is limited

by the finite size of the ions and by repulsive forces between them. Assuming simple cubic

packing of ions with effective diameter a, the theoretical maximum concentration cmax is

given by cmax = 1/NAa
3 where NA = 6.022× 1023 mol−1 is the Avogadro constant [38]. The

PNP model predicts concentrations exceeding cmax for surface potentials only a few times

larger than the thermal voltage ψT = RuT/zF [38]. Thus, the validity of the PNP model is

limited to cases with dilute electrolytes and low surface potentials.

2.4.2 Modified Poisson-Nernst-Planck (MPNP) model

In order to model ion transport for large electrolyte concentrations and/or surface poten-

tials, Kilic et al. [38] derived a modified Poisson-Nernst-Planck (MPNP) model of the local

potential and ion transport within the diffuse layer accounting for the finite size of ions. This

model was developed by accounting for steric effects in the expression of the free energy of

the electrolyte used to derive the chemical potentials and the corresponding ion fluxes [38].

The model assumed the electrolyte was binary and symmetric with constant permittivity

and negligible advection [38]. In symmetric electrolytes, the valency zi, diffusion coefficient

Di, and effective diameter ai are assumed to be identical in magnitude for both ion species.

Thus, the subscripts i may be dropped from the diffusion coefficient D, the ion diameter a,

and the valency magnitude z. However, the valencies zi of the two ion species still differ in

sign, i.e., z1 = −z2, so the subscript are retained where the sign is relevant. Note that sym-

metric electrolytes have also been defined based on symmetric valency alone, i.e., z1 = −z2,

without considering the ion diameter or the diffusion coefficient [10,26,27]. However, detailed

models accounting for transient ion transport and finite ion size require a more restrictive
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definition of electrolyte symmetry. The MPNP model uses the same Poisson Equation (2.5)

and mass conservation Equation (2.6) defined above, with n = 2 for binary electrolyte, while

the modified ion flux is given by [38]

Ni = −D∇ci −D
ziF

RuT
ci∇ψ −D

NAa
3ci

1−NAa3(c1 + c2)
∇(c1 + c2). (2.8)

The last term on the right-hand side of Equation (2.8) accounts for the finite ion size.

It prevents the total ion concentration c1 + c2 from exceeding the theoretical maximum

concentration cmax = 1/NAa
3 corresponding to simple cubic packing of ions.

In the limit of negligible ion diameter, i.e., a→ 0, the MPNP model reduces to the clas-

sical PNP model. The MPNP model has been validated against established models of EDL

behavior for planar electrodes. Ref. [42] confirmed that the equilibrium electric potential pro-

file predicted by the MPNP model for small surface potential and dilute electrolyte (i.e., small

c∞) agreed well with the exact solution predicted using the Gouy-Chapman model [44–46].

Ref. [42] also showed that the MPNP predictions of equilibrium Stern and diffuse layer ca-

pacitances agreed well with those based on the modified Poisson-Boltzmann model [40, 47],

which accounts for finite ion size and has successfully reproduced the experimentally mea-

sured equilibrium capacitance of a three-dimensional ordered EDLC electrode [48].

2.4.3 Generalized modified Poisson-Nernst-Planck (GMPNP) model

Many of the existing ion transport models accounting for finite ion size, like the MPNP

model described above, are limited to binary and/or symmetric electrolytes [38, 49–56].

However, many widely used electrolytes are asymmetric, such as aqueous H2SO4 [57–60].

In addition, electrolyte mixtures including more than two ion species have attracted interest

for EDLC applications because certain mixtures perform better than either of the original

electrolytes. For example, eutectic mixtures of ionic liquids can provide broader operating

temperature ranges than either constituent individually [61–63]. The generalized modified

Poisson-Nernst-Planck (GMPNP) model developed by Wang et al. [57] predicts the local

electric potential and ion concentrations in asymmetric and multi-species electrolytes with

finite ion size. The Poisson Equation (2.5) for the electric potential and the mass conserva-
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tion Equation (2.6) for the ion concentrations remain the same [57]. In general, the ion flux

Ni can be written as [57]

Ni = −Dici

[
ziF

RuT
∇ψ +∇ ln(γi,Lci)

]
(2.9)

where γi,L is the activity coefficient of ion species i. The GMPNP model assumed the activity

coefficient γi,L obeys a Langmuir-type law accounting for the excluded volume due to finite

ion size and expressed as [57,64]

γi,L =
1

1−
n∑
i=1

ci
ci,max

. (2.10)

Here, ci,max = 1/NAa
3
i is the theoretical maximum concentration of ion species i assuming

simple cubic packing of ions with effective ion diameter ai. Then, the GMPNP ion flux can

be expressed as [57]

Ni = −DiFzici
RuT

∇ψ −Di∇ci −
DiNAci

1−NA

n∑
j=1

a3jcj

n∑
j=1

a3j∇cj. (2.11)

Here, the derivation assumed that the effective ion diameters ai are independent of location,

i.e., they did not vary with the local ion concentrations or temperature. The first, second,

and third terms on the right-hand side of Equation (2.11) correspond to the ion fluxes due

to electromigration, diffusion, and steric effects, respectively.

For binary and symmetric electrolytes, i.e., n = 2, a1 = a2 = a, and |z1| = |z2| = z,

the GMPNP model reduces to the MPNP model. Similarly, in the limit of negligible ion

diameter, i.e., ai → 0 for all ion species i, it reduces to the PNP model.

2.5 Modeling heat transfer

2.5.1 Heat diffusion equation

The governing equation for the temperature in a medium can be derived from energy con-

servation principles applied to a differential control volume [65]. For a medium with no bulk
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motion, the temperature is governed by the heat diffusion equation expressed as [65]

ρcp
∂T

∂t
= ∇ · (k∇T ) + q̇ (2.12)

where ρ, cp, and k are the density, specific heat, and thermal conductivity of the material,

respectively. The local volumetric heat generation rate q̇ (in W/m3) represents the conversion

of other forms of energy (e.g., electrical, chemical, etc.) into thermal energy [65]. It may be

either positive (exothermic), as other types of energy are converted into thermal energy, or

negative (endothermic), as thermal energy is converted into another form.

2.5.2 Joule heating

Joule heating refers to a form of volumetric heating occurring when electric current flows

through a conducting medium [66]. It occurs in electrolytes as well as electronic conductors

[66] and corresponds to a conversion of electrical energy into thermal energy [67]. The Joule

heat generation rate was empirically formulated by J. P. Joule [68] as Q̇J = I2R (in W),

where R is the electrical resistance of the conductor. It was irreversible, i.e., always positive

regardless of the direction of the current. For conductors obeying Ohm’s law, the current

can be expressed as I = V/R or j = σE where V and E are respectively the voltage across

the conductor and the electric field vector while σ is the electrical conductivity [69,70]. For

such ohmic conductors, the Joule heat generation rate Q̇J can be expressed in the equivalent

forms Q̇J = I2R = IV = V 2/R or in volumetric form as q̇J = |j|2/σ = j · E = σ|E|2 (in

W/m3). The form I2R is used in several existing thermal models of EDLCs [25, 29, 30],

and several studies of Joule heating in electrolytes use the forms j2/σ [71] or σ|E|2 [66, 72].

However, electrolytes are ohmic conductors only in the absence of concentration gradients.

Thus, it is important to carefully choose the correct expression for the model and to clearly

define “Joule heating.” Unfortunately, there does not appear to be a clear consensus on the

definition of Joule heating for non-ohmic conductors. Some studies, for example that by

Biesheuvel et al. [73], have defined Joule heating in electrolytes as j ·E. This heat generation

rate can be either positive or negative within the EDLs. Biesheuvel et al. [73] described

the cooling phenomenon as “negative Joule heating.” In the present study, I use the term
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“Joule heating” solely for the irreversible contribution q̇J,irr = |j|2/σ by analogy to Joule

heating in ohmic conductors and to the expression originally defined by Joule [68]. Here, the

electrical conductivity σ for an electrolyte is given by Equation (2.4) and depends on the

local concentrations of all ion species. Chapter 4 will derive the heat generation rate due to

Joule heating in an electrolyte from conservation of energy and discuss the physics in more

depth.

2.6 Thermal behavior of ECs

2.6.1 Effects of temperature on EDLC performance

Several experimental studies have investigated the effect of temperature on EDLC perfor-

mance and properties. Experimental measurements on commercial EDLCs with carbon

electrodes and organic electrolytes have shown that the effective resistance increased and

the capacitance decreased with decreasing temperature [9, 24, 25]. This was attributed to

the increase in solvent viscosity and electrolyte resistivity at low temperatures [9, 24, 25].

This temperature dependence varied with the frequency of the electrochemical impedance

spectroscopy (EIS) measurements and with the solvent type in otherwise identical EDLCs

[9, 24, 25]. The temperature dependence of both resistance and capacitance of EDLCs was

the strongest for temperatures below 0◦C [9,24,25].

Increased temperatures can also significantly increase the aging rate of EDLCs by acceler-

ating undesirable electrochemical reactions [29,74]. The aging process results in permanently

decreased capacitance and increased internal resistance of the EDLCs [74]. Indeed, a 20%

decrease in capacitance and/or a 100% increase in internal resistance typically define the

end of life for an EDLC [75]. A 10 K temperature increase or a 100 mV increase in cell

voltage approximately doubles the aging rate [29, 74]. The temperature influence on aging

was confirmed experimentally with commercial EDLCs held at elevated temperatures and

voltages [74]. Electrical impedance spectroscopy (EIS) measurements performed periodically

at the test voltage and temperature indicated a continual increase in the effective resistance
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of the EDLCs over time. This increase accelerated towards the end of the tests [74]. There

was a simultaneous decrease in the effective capacitance [74]. Bohlen et al. [30] developed

a equivalent electric circuit model based on experimental data. It accounted for the cell’s

inductance, the resistance due to conductors and bulk electrolyte, and the impedance as-

sociated with the electrode pores [30]. This circuit was used to model an EDLC module

under current loads from actual hybrid vehicle tests. The temperature distribution resulting

from constant-temperature boundaries and internal heat generation was predicted using a

thermal circuit model. Their model indicated that even a moderately non-uniform tempera-

ture distribution (initially ≈ 2 K differences between the hottest and coolest cells) caused a

self-accelerating cycle that led to dramatic differences in cell resistances, capacitances, and

operating temperatures after 7 years of simulated operation [30]. Hotter cells aged faster,

leading to higher resistances and lower capacitances than their neighbors [30]. This caused

increased internal heat generation and larger cell voltages in the higher-temperature cells [30].

Both of these effects further accelerated aging.

2.6.2 Experimentally measured temperature and heat generation rates in ECs

Various experimental studies have investigated the temperature rise and/or heat generation

rate occurring during charging and discharging of commercial [7, 8, 25, 29, 76] or lab-built

[77,78] EDLCs. These studies have typically focused on galvanostatic cycling under current

±Is [7, 8, 25, 29, 76–78]. Miller [7] tested a variety of commercial EDLCs with capacitances

ranging from 2000 to 3500 F as well as a commercial 10000 F hybrid pseudocapacitor. The

ECs were cycled between their rated voltage and one half of their rated voltage [7]. The

efficiency of the ECs, defined as the ratio of the energy retrieved during discharging to

that added during charging, decreased substantially as the charging current increased [7].

Simultaneously, the EC temperature increased over time as the lost energy was dissipated

as heat [7].
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Figure 2.2: Measured EDLC surface temperature as a function of time for galvanostatic

cycling at three different currents over the potential window 1.5 − 2.5 V (Figure 10 from

Ref. [29]).

2.6.2.1 Electric double layer capacitors (EDLCs)

EDLC temperature evolution during galvanostatic cycling featured both an overall tempera-

ture rise from cycle to cycle attributed to irreversible heating and superimposed temperature

oscillations at the same frequency as the charge-discharge cycles attributed to reversible heat-

ing [29, 76–78]. For example, Figure 2.2 shows the temperature measured at the surface of

a thermally insulated 5000-F commercial EDLC cycled galvanostatically at several currents

Is [29]. Both the overall temperature rise and superimposed oscillations or “ripple” were

evident for all values of Is. For the thermally insulated EDLC, the overall temperature

rise was approximately linear and was proportional to I2s [29]. Indeed, it was consistent with

that predicted by Joule heating based on the imposed current and cell resistances fitted from

impedance data [29]. By contrast, for commercial EDLCs cooled by natural convection in air,

the overall temperature rise measured under galvanostatic cycling was not linear. Although

it rose initially, it eventually leveled off to a steady-state value as the internal heat generation
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Figure 2.3: Measured EDLC surface temperature as a function of time for constant-current

cycling beginning with charging versus beginning with discharging. (Figure 8 from Ref. [29]).

rate was balanced by the convective heat losses to the surroundings [8, 25]. For example,

a 1500-F EDLC cycled at 75 A reached a steady-state temperature about 9 K above the

ambient temperature after 1 hour [25]. Note that this was enough to approximately double

the aging rate per Bohlen et al. [30].

The reversible heat generation rate responsible for the temperature oscillations was found

to be exothermic during charging, endothermic during discharging, and proportional to the

current Is based on experimentally measured temperature and heat generation rates [29,78].

Indeed, Figure 2.3 illustrates this with the measured temperature as a function of time

during two tests that were identical, except that one began with a charging step while the

other began with a discharging step [29]. Here, the test beginning with charging initial

resulted in an initial temperature rise, while the test beginning with discharging had an

initial temperature drop. Finally, the amplitude of the temperature oscillations was found

to increase with increasing potential window [29].

Gualous et al. [76] measured the internal temperature of an EDLC at several locations
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using embedded thermocouples. Figure 2.4(a) shows the measured temperatures versus time

at three surface locations and four internal locations (T1–T4) as the EDLC temperature rose

from its initial temperature to an oscillatory steady state and (b) at the same four internal

locations during oscillatory steady-state. The temperature oscillations inside the EDLC were

significantly larger in amplitude than those at the surface. They were also approximately

triangular, in contrast to the rounded oscillations observed in the surface temperatures in

Figure 2.4(a) as well as in Figures 2.2 and 2.3.

2.6.2.2 Pseudocapacitors

Dandeville et al. [78,79] measured the time-dependent heat generation rates during galvano-

static cycling of a hybrid pseudocapacitor consisting of an MnO2 positive electrode and an

activated carbon negative electrode in 0.5 M aqueous K2SO4 electrolyte. Here, K+ ions from

the electrolyte reacted reversibly with MnO2 so that the positive electrode charged by dein-

tercalation of K+ ions. The authors also considered an EDLC consisting of two activated

carbon electrodes identical to that of the hybrid pseudocapacitor [78]. The heat generation

rates in each carbon electrode, either in the EDLC or in the hybrid pseudocapacitor, were

assumed to be identical at any given current. This enabled the authors to identify the re-

versible heat generation rates associated with each half-cell in the hybrid pseudocapacitor. In

contrast to EDLCs, the reversible heat generation rate associated with the pseudocapacitive

MnO2 electrode half-cell was found to be (i) endothermic during charging by deintercala-

tion of K+ and (ii) exothermic during discharging by intercalation of K+ [78]. However, its

magnitude was proportional to Is, as observed in EDLCs [78]. Note that it was not possible

to differentiate between faradaic and EDL contributions to the heat generation rate in the

pseudocapacitive electrode half-cell.
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(a)

(b)

Figure 2.4: Measured temperature as a function of time for (a) three surface locations

[T(Lid-), Tsurface, T(Lid+)] and four internal locations (T1, T2, T3, and T4) as the EDLC

rose from its initial temperature to an oscillatory steady state and (b) internal locations

T1-T4 at oscillatory steady state. (Figure 10 from Ref. [76]).
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2.6.3 Thermal models of ECs

2.6.3.1 Electric double layer capacitors (EDLCs)

Previous EDLC thermal models typically predicted the temperature of the device by solving

the transient heat diffusion equation in two [8,76] or three dimensions [77,80,81]. Guillemet

et al. [21] solved the two-dimensional steady-state heat diffusion equation to predict the

steady-state local temperature and ignored temperature oscillations due to reversible heat

generation. In addition, several models have predicted the transient EDLC temperature

while assuming uniform temperature throughout the device [82] or by treating the device

as multiple regions of uniform temperature connected by thermal resistances [21, 25, 30,

83]. Most of these studies treated EDLCs as “black boxes” characterized experimentally

to retrieve parameters necessary for the thermal models [8, 21, 25, 30, 80, 81]. The heat

generation rate was prescribed as either (i) uniform throughout the entire device [8, 25, 76,

77,82], (ii) uniform in the “active components,” i.e., the electrodes and separator [80,81], or

(iii) as having different values in the current collectors, electrodes, and separator [21]. The

irreversible heat generation rate was either imposed as an input parameter [8, 21, 77, 80] or

predicted as Joule heating (in W) equal to I2sR, where R was the experimentally measured

resistance of the EDLC cell [25,29,30,81,82].

Most existing thermal models ignored reversible heat generation and typically did not

consider in detail the electrochemical phenomena occurring inside the device [8,21,25,77,80,

81]. However, Schiffer et al. [29] developed an expression for the reversible heat generation

rate Q̇rev based on estimated changes in the entropy of the ions due to electric double

layer formation. Their derivation approximated the EDL as a monolayer of ions (i.e., the

Helmholtz model) and assumed that the capacitance was independent of the cell potential.

The reversible heat generation rate (in W) was expressed as [29]

Q̇rev = −2
TkB
e

ln

(
VS
V0

)
C
dψs
dt

= −2
TkB
e

ln

(
VS
V0

)
Is(t) (2.13)

where T is the temperature, kB is the Boltzmann constant, and e is the elementary charge.

The cell capacitance, cell voltage, and current were denoted by C, ψs, and Is, respectively.
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The total electrolyte volume and the Stern layer volume were given by VS and V0. However,

the value of VS/V0 was difficult to evaluate for porous electrodes. Instead, it was used as

a fitting parameter. Nonetheless, the expression of Q̇rev given by Equation (2.13) was later

adopted by other thermal models [30, 76,82].

Models developed for individual EDLC cells were also combined to predict the tempera-

tures of EDLC modules. Bohlen et al. [30] and Al Sakka et al. [25] developed thermal-circuit

models of 12-cell and 20-cell EDLC modules, respectively, and tested them using current

loads obtained from actual vehicle tests. The model by Bohlen et al. [30] predicted coupled

temperature behavior and aging effects such as resistance and capacitance changes over a

period of 7 years in simulation time. It demonstrated that even small initial temperature

differences would cause the component EDLC cells to age at different rates, leading to even

larger temperature differences [30]. The model of Al Sakka et al. [25] predicted that natural

convection in air was insufficient to keep the 20-cell module within the operating tempera-

ture range of the EDLCs and that substantial temperature differences would exist between

different parts of the module, with ≈ 10 K differences between the maximum and mini-

mum temperatures under forced convection cooling and even larger differences for natural

convection [25].

2.6.3.2 Pseudocapacitors

Fewer thermal models for pseudocapacitors are available in the literature. Srinivasan and

Weidner [84] predicted the transient temperature evolution of a pseudocapacitor cell assum-

ing (i) uniform temperature, (ii) uniform electrolyte concentration at all times, i.e., ignoring

the EDL formation, and (iii) heat generation solely due to irreversible Joule heating [84].

Wang et al. [81] predicted the local temperature for a commercial hybrid pseudocapacitor

under galvanostatic cycling by solving the 3D heat diffusion equation with heat generation.

They accounted only for irreversible Joule heating based on the experimentally measured

resistance of the device and neglected reversible heating [81]. The numerically predicted

maximum temperature in the core of a commercial hybrid pseudocapacitor was considered
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to be in good agreement with experimental surface temperature measurements, although the

model underpredicted the surface temperature by several degrees [81].

2.6.4 Equivalent resistances of ECs

Joule heating in existing models has been predicted using equivalent resistances. The most

commonly used equivalent resistance was the equivalent series resistance (ESR), defined as

the resistance in a series RC-circuit model of the EC [10]. The ESR was determined from

experimental data in various ways. Several studies determined the ESR using impedance

data, either taking the real component of measured EC impedance as the ESR [9, 25] or

plotting the impedance data in the complex plane and taking the the intersection with the

real axis as the ESR [7]. The ESR was also evaluated based on the instantaneous voltage

drops or “IR drops” at the beginning or end of a charging cycle with known current [24].

According to Liu et al. [24], resistances measured by this method correlate well with those

measured using impedance. It should be noted that Miller [7] compared the energy efficiencies

predicted by a series RC-circuit model to experimental measurements of four commercial

EDLCs and one hybrid pseudocapacitor. He concluded that in general, the series RC-circuit

model failed to adequately represent EC electrical behavior and attributed this to the effects

of electrode porosity [7]. The studies by Schiffer et al. [29] and Bohlen et al. [74] used a more

complex equivalent electric circuit including multiple resistances with values fitted based on

impedance data instead of using the ESR to account for all resistive behavior.

2.6.5 Open questions

Existing models of EC thermal behavior are relatively simple and designed to predict the

temperature evolution of experimentally characterized ECs. To do so, they take a macro-

scopic approach, imposing uniform heat generation rates rather than computing the local

heat generation rates inside the device from first principles and accounting for their spatial

variation. They generally account only for Joule heating without considering other heat gen-

eration rates. Although a few existing models [30,76,82] have incorporated the reversible heat
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generation rate estimated by Schiffer et al. [29], even this formula was estimated using a very

simplified model of the EDL. The existing models allow the prediction of the temperature

distributions within a device whose properties have been characterized experimentally, but

provide little physical insight for interpreting experimental data or designing novel EDLCs.

For pseudocapacitors, few thermal models exist at all. To the best of my knowledge, no

existing model accounts for reversible heat generation rates present in pseudocapacitors.

The present study aims to analyze the heat generation rates and temperature based on

the electrochemical transport processes occurring within EDLCs and pseudocapacitors. It

aims to address the following fundamental questions: (1) What physical phenomena cause re-

versible heat generation rates in EDLCs and in pseudocapacitors? (2) How do these heat gen-

eration rates vary in space and/or time? (3) How can they be practically accounted for, e.g.,

by use of scaling laws and/or analytical approximations? A coupled thermal-electrochemical

model facilitates the understanding of experimentally observed thermal behavior such as the

temperature oscillations observed in several studies [29, 77, 78]. This physical understand-

ing of EC heating will aid (i) physical interpretation of experimental measurements and (ii)

formulation of design rules for new ECs.
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CHAPTER 3

Thermal modeling of planar EDLCs under a step

change in potential

This chapter aims to develop physical understanding of the coupled electrodiffusion and

thermal transport taking place in electric double layer capacitors during operation in order

to facilitate the modeling and optimization of actual EDLCs. To this end, scaling analysis

and detailed numerical simulations were performed for EDLCs with planar electrodes. This

chapter focuses on the heat generation rate due to irreversible Joule heating alone and the

resulting temperature rise, as considered by most existing thermal models. Here, I consider

the simple case of a step change in cell potential. Scaling laws were identified for the peak

heat generation rate and for the total amount of heat generated due to the step change in

potential.

3.1 Analysis

3.1.1 Schematic and assumptions

Figure 3.1 illustrates the simulated one-dimensional cell of thickness 2L consisting of one

planar electrode with surface potential ψs(t) and a counterelectrode with surface potential

−ψs(t) separated by an electrolyte. To make the problem mathematically tractable, the fol-

lowing assumptions were made: (1) Chemical reactions and ion insertion into the electrode

were absent. (2) The electrolyte was binary and symmetric and obeyed the MPNP model. (3)

Dissociation of the electrolyte was complete. (4) Bulk movement of the electrolyte, i.e., ad-

vection, was negligible. (5) All electrolyte properties were constant and independent of local
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Figure 3.1: Illustration of simulated 1D cell along with the associated coordinate system and

computational domain.

ion concentrations or temperature, with the sole exception of the concentration-dependent

electrical conductivity σ of the electrolyte. (6) The EDLC was thermally insulated, and (7)

the Stern layer thickness H was assumed to be equal to half of the effective ion diameter,

i.e., H = a/2.

Assumptions (1) to (3) are realistic for typical EDLC devices using, for example, aqueous

KOH or TEABF4 in acetonitrile as electrolyte [29,85]. Bazant et al. [52] suggested that the

assumption of symmetric ion size is reasonable for solvated ions since smaller bare ions

tend to be more solvated than larger ions. Assumption (4) is satisfied if the electrolyte is

confined in a porous separator inhibiting bulk fluid motion [8, 9, 21]. Assumptions (5) and

(6) are appropriate first-order approximations for relatively small temperature variations.

The effects of temperature on the electrolyte properties and ion transport are expected to

become significant for large temperature rises. These assumptions will be relaxed in future

work, but they are appropriate and often used for the purpose of scaling analysis.

3.1.2 Governing equations

The coupled one-dimensional governing equations for the electric potential and the cation

and anion concentrations solved in this study account for the Stern (0 ≤ x < a/2) and diffuse
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layers (a/2 ≤ x ≤ L) and for steric effects. The electric potential ψ(x, t) is governed by the

Poisson equation (2.5). The anion c1(x, t) and cation c2(x, t) concentrations in the diffuse

layer (a/2 ≤ x ≤ L) satisfy the mass diffusion Equation (2.6) with ion flux Ni(x, t) given by

the MPNP model according to Equation (2.8). The ion flux Ni(x, t) was evaluated based on

the initial temperature T0, assuming that ion transport was independent of the temperature

rise.

The absolute local temperature T (x, t) at time t was computed by solving the heat

diffusion Equation (2.12). The heat generation rate q̇ was solely due to irreversible Joule

heating expressed as [65]

q̇ = q̇J,irr =
j2

σ
(3.1)

with the local ionic current density j and the local electrical conductivity σ given by Equa-

tions (2.3) and (2.4), respectively. Because there was no ion insertion into the electrode

[Assumption (1)], the ion flux Ni was equal to zero within the Stern layer. Consequently, the

current density j and Joule heat generation rate q̇J,irr vanished within this compact layer.

3.1.3 Boundary and initial conditions

One initial condition and two boundary conditions were necessary to solve each governing

equation for ψ(x, t), ci(x, t), and T (x, t). Initially, the potential, ion concentrations, and

temperature were assumed to be uniform throughout the computational domain so that

ψ(x, 0) = 0 V, c1(x, 0) = c2(x, 0) = c∞, and T (x, 0) = T0. (3.2)

The potential ψs(t) at the electrode surface was imposed as a step function,

ψ(0, t) = ψs(t) = ψs,maxH(t) (3.3)

where H(t) is the Heaviside step function. In addition, the electrode surface was assumed

to be thermally insulated, i.e.,

−k∂T
∂x

(0, t) = 0 W m−2. (3.4)
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The electric potential and electric displacement were continuous across the Stern/diffuse

layer interface located at x = H, so that [42,43,45],

ψ(H−, t) = ψ(H+, t) and ε0εr
∂ψ

∂x
(H−, t) = ε0εr

∂ψ

∂x
(H+, t). (3.5)

As previously mentioned, ion insertion into the electrode was ignored, so the ion fluxes at

the Stern/diffuse layer interface were zero, i.e.,

N1(H, t) = N2(H, t) = 0 mol m−2s−1. (3.6)

In addition, the temperature and heat flux were also continuous across the Stern/diffuse

layer interface such that

T (H−, t) = T (H+, t) and − k∂T
∂x

(H−, t) = −k∂T
∂x

(H+, t). (3.7)

At the plane of antisymmetry between the two electrodes (x = L), the electric potential, ion

concentrations, and heat flux were such that [42,43],

ψ(L, t) = 0 V, c1(L, t) = c2(L, t) = c∞, and − k∂T
∂x

(L, t) = 0 W m−2 (3.8)

where c∞ is the bulk concentration for both ion species.

3.1.3.1 Heat generation in the electrode

The magnitudes of the heat generation rates due to Joule heating within the electrolyte

relative to that within the carbon electrode can be estimated as

q̇electrolyte
q̇electrode

=
j2/σ

j2/σC
=
σC
σ

(3.9)

where σ is the electrolyte conductivity and σC the carbon electrode conductivity. The

current in the electrolyte and in the electrode is the same based on charge conservation.

Taking for example 1 mol L−1 aqueous KCl with valency z = 1 and diffusion coefficient

D ≈ 2× 10−9 m2/s [60] at room temperature T0 = 298 K yields σ = 15 S/m. The electrical

conductivity σC of activated carbon falls in the range between 90 and 1000 S m−1 [14,86,87].

Under these conditions, the volumetric Joule heat generation rate in the electrolyte would be
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6 to 67 times larger than that in the electrode. Thus, only heat generation in the electrolyte

was considered in this study. Note that the fraction of the total heat generation (in J)

contributed by each component would depend on their relative volumes in the device.

3.1.4 Scaling analysis

3.1.4.1 Dimensionless equations and parameters

The governing Equations (2.5), (2.6), and (2.12) along with the boundary and initial condi-

tions given by Equations (3.2) to (3.8) were non-dimensionalized using the following dimen-

sionless variables:

x∗ =
x

λD
, t∗ =

t

λ2D/D
, ψ∗(x∗, t∗) =

ψ(x, t)

RuT0/zF
,

T ∗(x∗, t∗) =
T (x, t)− T0

T0
, and c∗i (x

∗, t∗) =
ci(x, t)

c∞
. (3.10)

Here, the location x was scaled by the Debye length λD corresponding to an estimate of

the EDL thickness at the initial temperature T0 and defined for a binary and symmetric

electrolyte as λD =
√
ε0εrRuT0/2z2F 2c∞ [40, 41]. The time t was scaled by the character-

istic diffusion time λ2D/D [65]. The thermal voltage RuT0/zF represents the voltage that

would induce a potential energy equivalent to the thermal energy of an ion of charge z [41].

The dimensionless surface potential ψ∗ thus characterizes the extent to which the potential

perturbs the ion concentrations from their distribution under zero electric field. Finally, the

concentration ci(x, t) was scaled by the bulk ion concentration c∞.

Substituting Equation (3.10) into Equations (2.5) yields the following governing equation

for the dimensionless potential ψ∗(x∗, t∗)

−2
∂2ψ∗

∂x∗2
=


0 0 ≤ x∗ < a/2λD

c∗1 − c∗2 a/2λD ≤ x∗ ≤ L/λD.

(3.11)

Similarly, in the diffuse layer corresponding to a/2λD ≤ x∗ ≤ L/λD, the dimensionless

concentration c∗i (x
∗, t∗) satisfies

∂c∗i
∂t∗

= −∂N
∗
i

∂x∗
i = 1 or 2 (3.12)
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where N∗i is the dimensionless ion flux defined as N∗i = Ni/(Dc∞/λD) and expressed as

N∗i =−
[
∂c∗i
∂x∗

+ sgn(zi)c
∗
i

∂ψ∗

∂x∗
+

(c∞/cmax)c
∗
i

1− (c∞/cmax)(c∗1 + c∗2)

∂(c∗1 + c∗2)

∂x∗

]
(3.13)

where sgn(zi) is the function equal to +1 or −1 depending on the sign of the valency zi.

Finally, the dimensionless form of the heat diffusion Equation (2.12) can be expressed as

∂T ∗

∂t∗
= Le

∂2T ∗

∂x∗2
+

(
RuT0c∞
ρcpT0

)
j∗2

c∗1 + c∗2
. (3.14)

where the Lewis number is denoted by Le and defined as Le = αth/D where αth = k/ρcp is

the thermal diffusivity of the electrolyte [65]. Here, j∗ is the dimensionless current density

defined as

j∗ =
j

zFDc∞/λD
=

2∑
i=1

sgn(zi)N
∗
i . (3.15)

Substituting the dimensionless variables into the boundary and initial conditions given

by Equations (3.2) to (3.8) yields the following dimensionless initial conditions corresponding

to t∗ = 0

ψ∗(x∗, 0) = 0, c∗1(x
∗, 0) = c∗2(x

∗, 0) = 1, and T ∗(x∗, 0) = 0. (3.16)

The dimensionless boundary conditions at the electrode surface (x∗ = 0) can be expressed

as

ψ∗(0, t∗) =
ψs,max

RuT0/zF
H(t∗) and

∂T ∗

∂x∗
(0, t∗) = 0. (3.17)

At the Stern/diffuse layer interface located at x∗ = H/λD = a/2λD, the dimensionless

potential satisfies

ψ∗
(
a−

2λD
, t∗
)

= ψ∗
(
a+

2λD
, t∗
)

and
∂ψ∗

∂x∗

(
a−

2λD
, t∗
)

=
∂ψ∗

∂x∗

(
a+

2λD
, t∗
)
. (3.18)

In addition, the dimensionless ion flux at the Stern/diffuse layer interface is equal to zero,

i.e.,

N∗1 (a/2λD, t
∗) = N∗2 (a/2λD, t

∗) = 0. (3.19)

The boundary conditions for the dimensionless temperature at the Stern/diffuse layer inter-

face are expressed as

T ∗
(
a−

2λD
, t∗
)

= T ∗
(
a+

2λD
, t∗
)

and
∂T ∗

∂x∗

(
a−

2λD
, t∗
)

=
∂T ∗

∂x∗

(
a+

2λD
, t∗
)
. (3.20)

36



Finally, at the separator centerline, corresponding to x∗ = L/λD, the boundary conditions

simplify to

ψ∗
(
L

λD
, t∗
)

= 0, c∗1

(
L

λD
, t∗
)

= c∗2

(
L

λD
, t∗
)

= 1, and
∂T ∗

∂x∗

(
L

λD
, t∗
)

= 0. (3.21)

3.1.4.2 Physical interpretation of dimensionless numbers

Overall, the dimensionless governing equations along with the boundary and initial condi-

tions for a step change in potential yield six dimensionless numbers expressed as

a∗ =
a

λD
, L∗ =

L

λD
, ψ∗s,max =

ψs,max
RuT0/zF

,

νp =
2c∞
cmax

, Le =
αth
D
, and C∗ =

ρcpT0
RuT0c∞

. (3.22)

Dimensionless numbers a∗ and L∗ respectively scale the Stern layer thickness and the domain

size by the Debye length. Dimensionless number ψ∗s,max represents the ratio of the maximum

imposed surface potential to the thermal voltage. The packing parameter νp [38] is the ratio

of the volume per ion at the theoretical maximum concentration for close-packed ions to that

at the bulk concentration, and Le is the ratio of the characteristic time for heat diffusion to

that for ion diffusion. Finally, C∗ represents the ratio of the thermal energy density of the

solvent ρcpT0 to the thermal energy density of the ions RT0c∞, both expressed in J m−3.

3.1.5 Method of solution

The governing Equations (2.5), (2.6), and (2.12) were solved in dimensional form using finite

element methods. Due to antisymmetry of the electric potential and symmetry of the elec-

trolyte, both the electric potential and the ion concentrations at the cell centerline remain

unchanged from their initial values when L is much larger than the EDL thickness [43].

Therefore, it suffices to simulate only half of the cell by imposing zero electric potential

and bulk ion concentrations at the centerline x = L [Equation (3.8)] [43]. The computa-

tional domain considered in this study therefore comprises only the electrolyte between the

electrode/electrolyte interface at x = 0 and the cell centerline at x = L.

Numerical convergence was assessed based on the computed local electric potential ψ, ion
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concentrations c1 and c2, and temperature T at time t. Of these quantities, the temperature

was the most sensitive to the mesh refinement. The mesh size was the smallest at the

Stern/diffuse layer boundary due to the large potential and concentration gradients and then

gradually increased away from this interface. The mesh was refined by reducing the element

size at the Stern/diffuse layer interface and the maximum element growth rate. The time

step was refined by decreasing the relative and absolute tolerances [88]. During each time

step, these tolerances were compared to the estimated local error between solutions at the

previous and current time steps for each degree of freedom in the model [88]. The dimensional

solutions for ψ(x, t), ci(x, t), and T (x, t) were scaled by COMSOL before performing this

procedure [88]. The time step was then adjusted until a convergence criterion was satisfied, as

described in Ref. [88]. This enabled the use of very small time steps during the initial charging

phase while using a larger time step for the rest of the computation. The convergence criteria

for the mesh and time step were defined so that the maximum relative difference in the local

temperature rise (T − T0) was less than 0.5% when dividing by two (i) the element size at

the Stern/diffuse layer interface, (ii) the maximum element growth rate, and (iii) both the

relative and absolute tolerances.

3.1.6 Data processing

Several dimensional and dimensionless variables are of particular interest, namely the tem-

perature rise ∆T = T − T0 and the local heat generation rate q̇J,irr. Based on the scaled

variables given by Equations (3.10) and the expressions for j and σ, the dimensionless heat

generation rate can be defined as

q̇∗J,irr(x
∗, t∗) =

j2/σ

RuT0Dc∞/λ2D
=

j∗2

c∗1 + c∗2
. (3.23)

Moreover, the total thermal energy QJ,irr(x) generated per unit volume at location x due

to the potential step is defined as the integral of the local volumetric heat generation rate

q̇J,irr(x, t) = j2/σ with respect to time

QJ,irr(x) =

∫ ∞
0

q̇J,irr(x, t)dt. (3.24)
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Table 3.1: Input parameters of three cases used to illustrate the scaling analysis and such

that a∗ = 2.0, L∗ = 395, ψ∗s,max = 4, νp = 0.2, Le = 50, and C∗ = 400.

Case 1 Case 2 Case 3

z 1 2 2

a (nm) 0.5 0.25 1

D (m2 s−1) 2.626× 10−9 3.282× 10−10 2.626× 10−9

c∞ (mol L−1) 1.329 10.630 0.1661

εr 72.15 288.6 144.3

k (W m−1K−1) 0.58 0.58 0.0725

ρ (kg m−2) 1000 1000 125

cp (J kg−1K−1) 4418 35340 4418

ψs,max (V) 0.10273 0.10273 0.05137

L (nm) 100 50 200

T0 (K) 298 596 298

This value was evaluated by numerically integrating the local heat generation q̇J,irr(x, t) over

the entire simulation time necessary to reach steady state when j and q̇J,irr vanished. The

corresponding total dimensionless heat generation can be expressed as

Q∗J,irr(x
∗) =

QJ,irr(x)

RuT0c∞
=

∫ ∞
0

q̇∗J,irr(x
∗, t∗)dt∗. (3.25)

The scaling analysis shows that the dimensionless heat generation rate q̇∗J,irr(x
∗, t∗) and

consequently the total heat generation Q∗J,irr(x
∗) depend on only four of the six dimensionless

numbers defined in Equation (3.22), namely a∗, L∗, ψ∗s,max, and νp.

3.2 Results and discussion

3.2.1 Illustration of scaling analysis

Table 3.1 summarizes three sets of input parameters used to illustrate the scaling analysis.

Case 1 was based on properties of aqueous KOH electrolyte for concentration c∞ = 1 mol L−1
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[60] and potential ψs,max = 0.1 V. The associated dimensionless numbers were a∗ = 2.0,

L∗ = 395, ψ∗s,max = 4, νp = 0.2, Le = 50, and C∗ = 400. The input parameters z, a, D, c∞,

εr, k, ρ, cp, ψs,max, L, and T0 for Cases 2 and 3 were all varied arbitrarily. However, the six

dimensionless numbers a∗, L∗, ψ∗s,max, νp, Le, and C∗ were identical for Cases 1 to 3. If the

scaling analysis based on Equations (3.10) is correct, any cases with identical dimensionless

groups should yield the same scaled results for ψ∗, c∗1, c
∗
2, and T ∗ for all values of x∗ and t∗.

3.2.1.1 Scaling of ψ(x, t), ci(x, t), and T (x, t)

Figure 3.2(a) shows the predicted electric potential at the Stern/diffuse layer interface ψ(H, t)

as a function of time t after imposing the step change in surface potential given by Equation

(3.3). The electric potential at the Stern/diffuse layer interface decreased from its initial

value very close to ψs,max at t = 0+ to a steady-state value as counter-ions migrated towards

the electrode to form the EDL. As expected, the temporal evolution of ψ(H, t) and/or its

equilibrium value were different for the three cases considered. The steady-state potentials

for Cases 1 and 2 were identical since ψs,max was the same in both cases. Figure 3.2(b) plots

the same results shown in Figure 3.2(a) in terms of dimensionless potential ψ∗(x∗ = a∗/2, t∗)

as a function of dimensionless time t∗. All three cases collapsed onto a single curve. The

same results were obtained at all locations in the domain.

Similarly, Figures 3.3(a) and 3.4(a) show the temporal evolution of the predicted anion

concentration c2(H, t) and the temperature rise ∆T (H, t) = T (H, t)−T0 at the Stern/diffuse

layer interface, respectively. Both the anion concentration and the temperature increased

with time as the ions migrated to form the EDL before reaching their respective equilibrium

values. Due to the low surface potential in this case, the electrode surface was not saturated

with ions, i.e., c2(H, t) did not reach cmax. Similarly, the temperature rise was very small.

The same data are presented in dimensionless form in Figures 3.3(b) and 3.4(b). Here also,

the dimensionless concentration c∗2(a
∗/2, t∗) and dimensionless temperature rise T ∗(a∗/2, t∗)

collapsed onto a single curve for the three different cases considered. Similar results were

obtained at other locations in the domain.
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Figure 3.2: Predicted (a) electric potential at the Stern/diffuse layer interface ψ(a/2, t) as

a function of time t and (b) corresponding dimensionless electric potential ψ∗(a∗/2, t∗) as a

function of dimensionless time t∗ for Cases 1 to 3 (Table 3.1). Similar results were obtained

for other locations.
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Figure 3.3: Predicted (a) anion concentration at the Stern/diffuse layer interface c2(a/2, t)

as a function of time t and (b) corresponding dimensionless anion concentration c∗2(a
∗/2, t∗)

as a function of dimensionless time t∗ for Cases 1 to 3 (Table 3.1).
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Figure 3.4: Predicted (a) temperature rise at the Stern/diffuse layer interface

∆T (a/2, t) = T (a/2, t) − T0 as a function of time t and (b) corresponding dimensionless

temperature rise T ∗(a∗/2, t∗) as a function of dimensionless time t∗ for Cases 1 to 3 (Ta-

ble 3.1).
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3.2.1.2 Scaling of Joule heat generation rate q̇J,irr(x, t)

Figure 3.5(a) shows the Joule heat generation rate q̇J,irr(x, t) as a function of location x for

Cases 1 to 3 at different times corresponding to the same dimensionless time t∗ = 63 shown in

Figure 3.4(b) and within the period of intense heat generation shortly after the step change

in potential. It is evident that the heat generation rate varied significantly among the three

cases simulated. However, in all cases, the heat generation rate q̇J,irr was uniform across 99%

of the computational domain, only decreasing sharply to zero very close to the Stern/diffuse

layer interface where the current density vanished. This resulted in uniform temperature rise

across the domain (not shown). Therefore, the heat generation rate and temperature rise at

the cell centerline (x = L) can be used to estimate their values everywhere in the domain at

any given time.

Figure 3.5(b) shows the same data from Figure 3.5(a) plotted in terms of dimensionless

heat generation rate q̇∗J,irr(x
∗, t∗) as a function of x∗ for t∗ = 63. It establishes that all three

cases collapsed onto a single curve when the results were plotted in dimensionless form.

Overall, these results illustrate the scaling analysis performed on the coupled MPNP

and heat diffusion equations and their initial and boundary conditions for EDLCs with

binary and symmetric electrolytes under a step change in potential. The dimensionless

variables ψ∗(x∗, t∗), c∗i (x
∗, t∗), and T ∗(x∗, t∗) depended only on the six similarity parameters

a∗, L∗, ψ∗s,max, νp, Le, and C∗. This substantially reduces the number of independent design

parameters to be considered, facilitating the development scaling laws for Joule heating in

EDLCs.

3.2.2 Scaling laws for Joule heating in EDLCs under a step change in potential

A step change in cell potential was used to investigate the effect of different dimensionless

numbers on Joule heating in EDLCs. This charging method is one of the simplest pos-

sible, being completely characterized by the single value ψs,max. The scaling analysis of

Section 3.1.4 indicates that the dimensionless Joule heat generation rate q̇∗J,irr(x
∗, t∗) is a

function of dimensionless numbers a∗, L∗, ψ∗s,max, and νp only.
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Figure 3.5: Predicted (a) heat generation rate q̇(x, t) as a function of location x and at

time t such that t∗ = 63 and (b) corresponding dimensionless heat generation q̇∗(x∗, 63) as

a function of dimensionless location x∗ for Cases 1 to 3 (Table 3.1).
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A realistic range for each one of these dimensionless numbers can be estimated based on

typical values of z, a, L, εr, T0, and ψs,max. For aqueous electrolyte EDLCs, the dielectric

constant and the surface potential are typically εr = 78.5 and ψs,max = 0.5 V (for a total cell

potential of 1.0 V) with bulk concentration and initial temperature equal to c∞ = 1 mol L−1

and T0 = 298 K, respectively. The ion diameter can range from 0.1 to 0.9 nm encompassing

small non-hydrated ions to large hydrated ions [60]. The ion valency z typically ranges

between 1 and 3. The domain size is such that 10 µm ≤ L ≤ 150 µm based on reported

commercial separator thickness [89]. Under these conditions, the dimensionless numbers a∗,

L∗, ψ∗s,max, and νp fall within the ranges 0.33 ≤ a∗ ≤ 9.9, 2.5 × 104 ≤ L∗ ≤ 1.5 × 106,

19.47 ≤ ψ∗s,max ≤ 58.41, and 0.0012 ≤ νp < 1.0. Here, νp is strictly less than 1 because the

bulk ion concentration must be less than cmax.

3.2.2.1 Peak Joule heat generation rate q̇peak

Simulations showed that the maximum heat generation rate in response to a step change

in potential occurred immediately after the step, i.e., at t = 0+. Then, this peak heat

generation rate, denoted as q̇peak(x), is given by

q̇peak = q̇J,irr(x, 0
+) =

[j(x, 0+)]
2

σ(x, 0+)
. (3.26)

At t = 0+, the ions have not had time to migrate so their concentrations are uniform, i.e.,

c1(x, 0
+) = c2(x, 0

+) = c∞ and ∂c1/∂x(x, 0+) = ∂c2/∂x(x, 0+) = 0. Under these conditions,

the Poisson Equation (2.5) simplifies to ∂2ψ/∂x2 = 0, indicating that the potential profile

is linear over the entire domain between x = 0 and x = L. Then, the ion fluxes N1 and N2,

defined by Equation (2.8), simplify as

Ni(x, 0
+) = D

ziF

RuT0
c∞
ψs,max
L

i = 1 or 2. (3.27)

In addition, the ionic current density and electrical conductivity at t = 0+ can be written as

j(x, 0+) = F

2∑
i=1

ziNi(x, 0
+) =

2z2F 2Dc∞ψs,max
RuT0L

and σ(x, 0+) =
2Dz2F 2c∞
RuT0

. (3.28)
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Finally, the peak heat generation can be expressed, in dimensional and dimensionless forms,

as

q̇peak =
2z2F 2Dc∞ψ

2
s,max

RuT0L2
and q̇∗peak = 2

ψ∗2s,max
L∗2

. (3.29)

Figure 3.6 compares the dimensionless peak heat generation rate q̇∗peak computed nu-

merically with that predicted by Equation (3.29) for the range of dimensionless numbers

previously discussed. It shows that there was excellent agreement between the analytical

and the numerical predictions over a very wide range of q̇∗peak. Thus, the expression given by

Equation (3.29) can be used as an upper bound for the Joule heat generation rate in EDLCs

r a step change in potential.

Equation (3.29) indicates that the peak heat generation rate q̇peak increased linearly with

increasing electrolyte concentration c∞ and diffusion coefficient D and increased quadrat-

ically with increasing ion valency z. This corresponds to q̇peak increasing with increasing

conductivity σ. Although σ appears in the denominator of q̇J,irr, large σ also resulted in

larger current density j in response to the same potential drop, increasing the Joule heating.

In addition, q̇peak increased quadratically with increasing surface potential ψs,max and with

decreasing electrode separation L, i.e., with increasing initial electric field and thus larger

current. Note that, in order to increase energy and power densities of EDLCs, it is desir-

able to use large potential windows and to maximize electrolyte conductivity [13, 14]. The

present results show that these measures would also increase the peak heat generation rate in

EDLCs subjected to abrupt changes in cell potential. This further confirms the importance

of understanding and predicting heat transfer in high-performance EDLCs.

3.2.2.2 Total Joule heat generated QJ,irr

In contrast to q̇peak, the total Joule heat QJ,irr [Equation (3.24)] generated by the step

change in potential was more difficult to predict analytically and did not lend itself to a

simple analytical expression. However, some clear trends relating Q∗J,irr [Equation (3.25)] to

the dimensionless groups could be observed. Figure 3.7(a) shows Q∗J,irr as a function of L∗

for ψ∗s,max = 19 and different combinations of a∗ and νp values. It indicates that Q∗J,irr was
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Figure 3.6: Comparison of the dimensionless peak heat generation rate q̇∗peak computed nu-

merically with that predicted by Equation (3.29) for realistic range of dimensionless numbers

0.33 ≤ a∗ ≤ 9.9, 2.5× 104 ≤ L∗ ≤ 1.5× 106, 19.47 ≤ ψ∗s,max ≤ 58.41, and 0.0012 ≤ νp < 1.0.
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Figure 3.7: (a) Total dimensionless heat generation Q∗J,irr as a function of L∗ for ψ∗s,max = 19.
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inversely proportional to L∗. Similar plots were obtained for different values of ψ∗s,max, νp,

and a∗. Similarly, Figure 3.7(b) shows the dimensionless total heat generation Q∗J,irr as a

function of dimensionless surface potential ψ∗s,max for different values of νp and for a∗ = 2.2

and L∗ = 6.5×104. Here, Q∗J,irr was approximately proportional to ψ∗2s,max. The same trends

were observed for different values of a∗ and L∗. Based on these results, Figure 3.7(c) shows

the ratio ψ∗2s,max/Q
∗
J,irrL

∗ as a function of 1/a∗ for L∗ = 2.5 × 104 and ψ∗s,max = 19 and

different values of νp. It indicates that ψ∗2s,max/Q
∗
J,irrL

∗ was independent of a∗ for a∗ � 1

and reached a plateau whose value, denoted as f1(νp), depended on νp only. Similarly, for

a∗ � 1, it was independent of νp and approached a curvilinear asymptote f2(a
∗). In fact,

Figure 3.8 shows the values of ψ∗2s,max/Q
∗
J,irrL

∗ (a) as a function of νp for a∗ = 0.016 and

0.033 and (b) as a function of a∗ for a∗ � 1 with packing parameters νp ranging from 0.0012

to 0.88. Both plots were fitted by power laws to find the curvilinear asymptotes

f1(νp) = 2.43ν0.4p and f2(a
∗) = 0.83a∗0.86. (3.30)

For all values of a∗ and νp, the dimensionless total heat generation can be expressed as

Q∗J,irr =
ψ∗2s,max
L∗

[
(f1(νp))

2 + (f2(a
∗))2
]−1/2

=
ψ∗2s,max
L∗

[(
2.43ν0.4p

)2
+
(
0.83a∗0.86

)2]−1/2
.

(3.31)

The average relative error between the total heat generation Q∗J,irr predicted by Equation

(3.31) and that predicted numerically was less than 6% for all values of a∗, L∗, ψ∗s,max, and

νp considered.

3.3 Conclusion

This chapter presented a model for coupled electrodiffuseion and Joule heating during charg-

ing of electric double layer capacitors by a step change in cell potential. The model accounted

for the presence of the Stern layer and for the finite size of ions by using the modified

Poisson-Nernst-Planck model. One-dimensional transient electrodiffusion and heat diffusion

with Joule heating for the EDLC was found to be governed by eleven dimensional parame-

ters. Scaling analysis reduced the number of independent governing parameters to only six
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meaningful dimensionless numbers. The Joule heat generation rate was found to depend on

the dimensionless surface potential ψ∗s,max, domain length L∗, packing parameter νp, and ion

diameter a∗ only. An analytical expression for the peak Joule heat generation rate q̇peak was

derived and validated against simulation results. This expression provides an upper bound

for the Joule heat generation rate during a step change in potential. It also indicates that

strategies for increasing energy and power densities, such as increasing the potential window,

ion concentrations, diffusion coefficient, and valency or decreasing the electrode spacing and

ion diameter, would also increase Joule heat generated by abrupt changes in cell potential.

Simulation results were also used to identify the asymptotic behaviors of the total heat gen-

eration Q∗J,irr and to develop a simple scaling law. This chapter illustrated the importance of

heat transfer in EDLCs and provided scaling analysis tools to interpret and to model their

thermal behavior.
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CHAPTER 4

First-principles thermal modeling of EDLCs under

galvanostatic cycling with binary and symmetric

electrolyte

This chapter aims to develop a physical model and physical understanding of the coupled

electrodiffusion, irreversible and reversible heat generation rates, and thermal transport oc-

curring in electric double layer capacitors during galvanostatic cycling. To do so, the heat

diffusion equation including irreversible and reversible heat generation rates was derived

from first principles for binary and symmetric electrolyte. Detailed numerical simulations

of an EDLC with planar electrodes were performed and qualitatively compared with exper-

imental data reported in the literature. The results were used to (i) physically interpret the

experimentally observed temperature oscillations and (ii) to investigate how the irreversible

and/or reversible heat generation rates varied with space and/or time.

4.1 Analysis

4.1.1 Schematic and assumptions

Figure 4.1 schematically shows a one-dimensional cell consisting of two planar electrodes

separated by liquid electrolyte of thickness 2L. The electrode located at x = 0 will be

denoted by Electrode A and the electrode at x = 2L by Electrode B. The electrolyte is divided

three regions: a Stern layer adjacent to each electrode and one diffuse layer. As in Chapter

3, the present study models the electrolyte only. The EDLC is charged and discharged

under current density jim(t) imposed at Electrode A. To make the problem mathematically
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Figure 4.1: Illustration of simulated 1D cell and associated coordinate system.

tractable, the same Assumptions (1)–(7) used in Chapter 3 were made.

4.1.2 Electrochemical transport model

4.1.2.1 Governing equations

The electric potential and ion concentrations in the binary and symmetric electrolyte obey

the MPNP model. The electric potential ψ(r, t) at location r and time t is governed by the

Poisson Equation (2.5) where n = 2 and z1 = −z2 for binary and symmetric electrolytes.

The cation c1(r, t) and anion c2(r, t) concentrations satisfy the mass conservation Equation

(2.6) with the MPNP ion flux Ni(r, t) given by Equation (2.8). The ion flux Ni(r, t) was

evaluated based on the initial temperature T0 assuming that ion transport was independent

of the temperature rise.

4.1.2.2 Boundary and initial conditions

The one-dimensional Poisson Equation (2.5) and mass conservation Equation (2.6) in Carte-

sian coordinates are first-order partial differential equations (PDE) in time and second-order

in space. Each equation required one initial condition and two boundary conditions in each
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region where it was solved. The Poisson equation was solved within both the Stern and the

diffuse layers while the mass conservation equation was solved only in the diffuse layer.

The electric potential was initially assumed to be uniform throughout the entire EDLC

and equal to

ψ(x, 0) = 0 V. (4.1)

The current density jim(t) at the electrode/electrolyte interface of Electrode A at x = 0 was

imposed as a square signal alternating between js and −js. The imposed current corresponds

to an electronic current in the external circuit which induces an ion flux within the electrolyte.

The boundary condition at the surface of Electrode A corresponds to charge conservation

across the electrode/electrolyte interface so that the displacement current equals the imposed

electronic current jim(t), i.e.,

−ε0εr
∂2ψ

∂t∂x
(0, t) = jim(t) =


js for (nc − 1)tc ≤ t < (nc − 1/2)tc

−js for (nc − 1/2)tc ≤ t < nctc

(4.2)

where js is the magnitude of the imposed current density and nc is the cycle number. In addi-

tion, the electric potential and electric displacement were continuous across the Stern/diffuse

layer interface located at x = H so that [42,43,45]

ψ(H−, t) = ψ(H+, t) and ε0εr
∂ψ

∂x
(H−, t) = ε0εr

∂ψ

∂x
(H+, t). (4.3)

Similarly, they were continuous across the second Stern/diffuse layer interface located at

x = 2L−H, i.e. [42, 43,45],

ψ(2L−H−, t) = ψ(2L−H+, t)

and ε0εr
∂ψ

∂x
(2L−H−, t) = ε0εr

∂ψ

∂x
(2L−H+, t). (4.4)

Furthermore, the electrical ground was defined at the surface of Electrode B, located at

x = 2L, i.e.,

ψ(2L, t) = 0 V. (4.5)

The choice of reference potential is arbitrary and does not affect ion transport or heat

transfer.

55



Both ion species were assumed to start at the same uniform bulk concentration c∞

throughout the diffuse layer (H ≤ x ≤ 2L−H) such that

c1(x, 0) = c2(x, 0) = c∞. (4.6)

Since ion insertion into the electrode was ignored, the ion flux vanished at the Stern/diffuse

layer interface located at x = H so that

N1(H, t) = N2(H, t) = 0 mol m−2s−1 (4.7)

and at the second Stern/diffuse layer interface located at x = 2L−H, i.e.,

N1(2L−H, t) = N2(2L−H, t) = 0 mol m−2s−1. (4.8)

4.1.3 Thermal model

4.1.3.1 Energy conservation equation

Applying energy conservation principles to a fixed control volume of electrolyte in the absence

of bulk motion and chemical reactions yields the following energy conservation equation [32]

∂

∂t
(ρu) = −∇ · q′′ (4.9)

where ρ(r, t) is the electrolyte density, u(r, t) is the specific internal energy of the electrolyte,

and q′′(r, t) is the local energy flux at location r and time t. For a multicomponent system

with concentration gradients, the energy flux q′′ includes contributions from Fourier heat

conduction, interdiffusion of species, and the Dufour effect [28, 32]. The Dufour or diffusion

thermo-effect refers to an energy flux driven by a gradient of electrochemical potential or

pressure [90]. It is the reverse of the Soret effect or thermal diffusion [90]. The contribution

from the Dufour effect is usually negligible [28, 32, 90] and will not be included here. Thus,

the energy flux can be expressed as [28,32]

q′′ = −k∇T +
n∑
i=0

H̄iNi (4.10)

where k is the electrolyte thermal conductivity, H̄i is the partial molar enthalpy of species i in

the electrolyte (in J mol−1), n is the number of ion species, and subscript i = 0 refers to the
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solvent. Substituting Equation (4.10) into Equation (4.9) and using the mass conservation

Equation (2.6) yields

∂

∂t
(ρu) = ∇ · (k∇T ) +

n∑
i=0

H̄i
∂ci
∂t
−

n∑
i=0

Ni · ∇H̄i. (4.11)

The first, second, and third terms on the right-hand side of Equation (4.11) represent the net

increase of energy within the control volume due to (i) heat conduction, (ii) accumulation of

ions and/or solvent molecules, and (iii) flow of ions and/or solvent from regions with different

partial molar enthalpy H̄i, respectively.

The energy balance given by Equation (4.11) can be transformed into a thermal energy

balance in terms of local temperature T (r, t). First, the change in ρu can be expressed in

terms of the enthalpy per unit volume, defined by ρh, as

∂

∂t
(ρu) =

∂

∂t
(ρh)− ∂p

∂t
(4.12)

where h(r, t) and p(r, t) are respectively the specific enthalpy of the electrolyte in J kg−1 and

the pressure in Pa at location r and time t. The term ∂(ρh)/∂t can be expanded further.

The exact differential of the enthalpy per unit volume ρh of an n-component mixture can be

expressed as [91]

d(ρh) = ρcpdT +

[
1 +

(
∂ ln ρ

∂ lnT

)
p,ci

]
dp+

n∑
i=0

H̄idci (4.13)

where cp is the specific heat of the electrolyte in J kg−1K−1. Typically (∂ ln ρ/∂ lnT )p,ni
� 1

for liquids and solids [91]. Then, combining Equations (4.12) and (4.13) yields

∂

∂t
(ρu) = ρcp

∂T

∂t
+

n∑
i=0

H̄i
∂ci
∂t
. (4.14)

The first and second terms on the right-hand side of Equation (4.14) represent the time

rates of change of the thermal energy and of the electrochemical potential energy, respec-

tively. Combining Equation (4.14) with Equation (4.11) yields the governing equation for

the temperature T within the electrolyte

ρcp
∂T

∂t
= ∇ · (k∇T )−

n∑
i=0

Ni · ∇H̄i. (4.15)
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This expression corresponds to the heat diffusion Equation (2.12) with the heat generation

rate q̇ expressed as

q̇ = −
n∑
i=0

Ni · ∇H̄i. (4.16)

4.1.3.2 Heat generation rate

The partial molar enthalpy of species i can be expressed as a function of the electrochemical

potential µ̃i and the partial molar entropy S̄i = −∂µi/∂T according to [91]

H̄i = µ̃i + T S̄i. (4.17)

The electrochemical potential µ̃i = ziFψ+µi of species i accounts for the electrical potential

energy ziFψ of charged species as well as the chemical potential µi = µ0
i +RuT ln ai [28,91].

Here, µ0
i is the chemical potential of species i at a standard state and is a function of T only,

while ai is the local thermodynamic activity of species i [28, 91]. Thus, the gradient ∇H̄i

can be written as

∇H̄i = ziF∇ψ +∇µi +∇(T S̄i). (4.18)

Finally, substituting Equation (4.18) and the expressions for µi and S̄i into Equation (4.16),

the heat generation rate q̇ can be written as

q̇ = q̇E + q̇S = −∇ψ ·

(
n∑
i=1

ziFNi

)
+

n∑
i=0

Ni ·Ru∇
(
T 2∂ ln ai

∂T

)
. (4.19)

The first term on the right-hand side of Equation (4.19) represents the thermal energy

released due to ion flow into regions of lower electrical potential energy. It will be denoted

as the “electrical heating.” It is summed over the n charged ion species i, with z0 = 0

for the neutral solvent. The second term arises from the gradient ∇(T S̄i) and is the net

contribution to the heat generation rate due to the gradients of chemical potential, partial

molar entropy, and temperature. This term represents the thermal energy released due to

flow towards regions of lower (T S̄i) and will be denoted as the “entropic heating.”

Electrical Heating. The first term on the right-hand side of Equation (4.19) can alter-

natively be written as q̇E = j · E where the ionic current density vector j is given by Equa-
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tion (2.3) and E = −∇ψ is the electric field vector. This term corresponds to conversion of

electrical energy into thermal energy [67].

As mentioned in Section 2.5.2, an electrolyte with non-uniform concentration is a non-

ohmic conductor wherein the current density may depend on diffusion and steric effects as

well as on the electric field. Indeed, for a binary and symmetric electrolyte with cations

referred to by i = 1 and anions by i = 2, the local ionic current density j can be expressed

by combining Equations (2.3) and (2.8) as

j = σE−DzF∇(c1 − c2)−
Da3NAzF (c1 − c2)
1− a3NA(c1 + c2)

∇(c1 + c2) (4.20)

with electrical conductivity σ depending on the local ion concentrations and given by Equa-

tion (2.4). After some manipulations, Equation (4.20) can be used to express the electric

field vector E and substitute it into the expression of the electrical heat generation rate q̇E.

Then, q̇E for an electrolyte obeying the MPNP model can be written as the sum of three

contributions

q̇E(r, t) = q̇J,irr(r, t) + q̇E,d(r, t) + q̇E,s(r, t). (4.21)

The heat generation rates q̇Jirr, q̇E,d, and q̇E,s correspond to the contributions of irreversible

Joule heating, ion diffusion, and steric effects, respectively. These three contributions are

expressed as

q̇J,irr(r, t) =
|j|2

σ
, q̇E,d(r, t) =

DzF

σ
j · ∇(c1 − c2),

and q̇E,s(r, t) =
DzFa3NA(c1 − c2)
σ[1− a3NA(c1 + c2)]

j · ∇(c1 + c2). (4.22)

If the ion concentrations ci(r, t) are uniform or if the concentration gradients are perpendicu-

lar to the current density j, then q̇E,d and q̇E,s vanish and the electric heat generation reduces

to Joule heating q̇J,irr. The latter condition applies to applications such as electroosmosis,

where the electric current is parallel to the electric double layer. The Joule heating term

q̇J,irr is always positive whereas q̇E,d and q̇E,s can be either positive or negative.

Entropic Heating. The second term on the right-hand side of Equation (4.19) is a func-

tion of the thermodynamic activity gradients and of the temperature gradient. Gu et al. [67]
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also derived this term in modeling transport phenomena in battery systems. The activity

can be expressed in terms of the activity coefficient γi defined as ai = γici/cref where cref is

a reference concentration [91]. Then, the entropic heat generation rate q̇S is given by

q̇S(r, t) =
n∑
i=0

Ni · ∇
[
T 2Ru

∂ ln γi
∂T

]
. (4.23)

An expression for γi in terms of the temperature and ion concentrations is required to

evaluate this expression. For dilute solutions of binary and symmetric electrolytes, the

activity coefficient γi of ion species i can be evaluated using the Debye-Hückel limiting law

expressed as [28,91]

ln γi = −z
3eF 2(c1 + c2)

1/2

8π(ε0εrRuT )3/2
. (4.24)

Combining Equations (4.23) and (7.6) and assuming the contribution from the flow of solvent

is negligible compared to that of the ions yields q̇S = q̇S,c + q̇S,T where

q̇S,c(r, t) =
3

32π

z3eF 2

(ε0εr)3/2R
1/2
u T 1/2(c1 + c2)1/2

(N1 + N2) · ∇(c1 + c2)

and q̇S,T (r, t) = − 3

32π

z3eF 2(c1 + c2)
1/2

(ε0εr)3/2R
1/2
u T 3/2

(N1 + N2) · ∇T. (4.25)

In the absence of concentration gradients, q̇S,c vanishes, while q̇S,T vanishes if the temperature

is uniform. Here also, q̇S,c and q̇S,T can be either positive or negative.

Overall, the temperature is governed by the heat diffusion Equation (2.12) with a heat

generation rate q̇ consisting of five contributions such that

q̇ = q̇J,irr + q̇E,d + q̇E,s + q̇S,c + q̇S,T (4.26)

where the electrical heat generation rates due to (i) Joule heating q̇J,irr, (ii) ion diffusion

q̇E,d, and (iii) steric effects q̇E,s are given by Equation (4.22). The entropic heat generation

terms due to (iv) concentration gradients q̇S,c and (v) temperature gradients q̇S,T are defined

in Equation (4.25).

Finally, because there was no ion insertion into the electrodes [Assumption (1)], the ion

fluxes Ni were equal to zero within the Stern layers. Consequently, the ionic current density

and the heat generation rates q̇E(r, t) and q̇S(r, t) vanished within this compact layer.
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4.1.3.3 Boundary and initial conditions

The one-dimensional heat diffusion Equation (2.12) in Cartesian coordinates is a first-order

PDE in time and second-order in space. It was solved in both the Stern and the diffuse

layers and required one initial condition and two boundary conditions for each layer. The

temperature was initially assumed to be uniform throughout the EDLC and equal to

T (x, 0) = T0. (4.27)

The surface of Electrode A located at x = 0 was assumed to be thermally insulated, i.e.,

−k∂T
∂x

(0, t) = 0 W m−2. (4.28)

The temperature and heat flux were continuous across the Stern/diffuse layer interface lo-

cated at x = H so that

T (H−, t) = T (H+, t) and − k∂T
∂x

(H−, t) = −k∂T
∂x

(H+, t) (4.29)

and across the second Stern/diffuse layer interface located at x = 2L−H, i.e.,

T (2L−H−, t) = T (2L−H+, t) and − k∂T
∂x

(2L−H−, t) = −k∂T
∂x

(2L−H+, t), (4.30)

Finally, the surface of Electrode B located at x = 2L was thermally insulated, i.e.,

−k∂T
∂x

(2L, t) = 0 W m−2. (4.31)

4.1.4 Constitutive relationships

The current chapter focuses on tetraethylammonium tetrafluoroborate (TEABF4) electrolyte

in propylene carbonate (PC) solvent. The ions TEA+ (i = 1) and BF−4 (i = 2) had valency

z1 = −z2 = 1 [48, 92, 93]. Their effective diameter was taken as a = 0.68 nm [48, 92].

The dielectric constant, thermal conductivity, density, and specific heat were taken as the

properties of the PC solvent and equal to εr = 66.1, k = 0.164 W m−1K−1, ρ = 1205 kg m−3,

and cp = 2141 J kg−1K−1, respectively [94]. All properties were evaluated at approximately

T0 = 298 K. The diffusion coefficient was estimated to be D = 1.7 × 10−10 m2 s−1 using
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Equation (2.4) from electrical conductivity data for a concentration of c1 = c2 = c∞ =

1 mol L−1 [93].

The simulations were performed for c∞ = 1 mol L−1 of TEABF4 in PC with a domain

size of L = 50 µm and an initial temperature of T0 = 298 K. The EDLC was cycled at

constant current of js = 14 mA cm−2 with a cycle period tc = 10 ms.

4.1.5 Method of solution

The one-dimensional governing Equations (2.5), (2.6), and (2.12) and the associated initial

and boundary conditions were solved numerically using finite element methods. The numer-

ical convergence of the solution was assessed based on the predicted local electric potential

ψ(x, t), ion concentrations c1(x, t) and c2(x, t), and temperature T (x, t). The temperature

was the most sensitive to the choice of mesh element size and time step. The mesh element

size was smallest at the Stern/diffuse layer interfaces due to the large gradients of potential

and concentrations in this region and gradually increased away from these boundaries. The

mesh was refined by reducing the element size at the Stern/diffuse layer interface and by

reducing the maximum element growth rate. The time step was controlled by the relative

and absolute time tolerances [95]. At each time step, the estimated local error between the

solutions at the previous and the current time step was compared with the time tolerances.

The time step was then adjusted until the convergence criterion was satisfied, as described

in Ref. [95]. This enabled the use of small time steps during periods of rapid changes in

ψ(x, t), ci(x, t), and/or T (x, t), while using a larger time step for the rest of the simulation.

The numerical solution was considered converged when halving (i) the element size at the

Stern/diffuse layer interface, (ii) the maximum element growth rate, and (iii) both the rel-

ative and absolute tolerances resulted in less than 0.5% maximum relative difference in the

local temperature rise T (x, t)− T0.
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4.2 Results and discussion

4.2.1 Electric potential

Figure 4.2(a) shows the electric potential ψ(0, t) at the surface of Electrode A as a function

of time t. The surface potential ψ(0, t) corresponded to the total voltage across the cell,

since Electrode B was electrically grounded. Figure 4.2(a) shows that the surface potential

varied nearly linearly between the minimum potential of 0 V and the maximum potential

of 2.5 V. The potential window was determined by the combination of the imposed current

density js and the cycle period tc. The maximum potential of 2.5 V was chosen by analogy

with the operating voltage of many commercial EDLCs using organic electrolytes [10,12].

4.2.2 Ion concentrations

Figure 4.2(b) shows the anion concentration c2(a/2, t) at the Stern/diffuse layer interface

near Electrode A as a function of time t. It shows that the anion concentration at the

Stern/diffuse layer interface increased rapidly at the beginning of the charge step. It then

leveled off to the maximum concentration cmax and remained at this value for most of the

cycle. It decreased back to the bulk concentration at the end of the discharge step. The

plateau of c2(a/2, t) corresponded to the surface potential ψ(0, t) exceeding 0.75 V.

Figure 4.3 shows the anion concentration c2(x, t) as a function of location x for sev-

eral times t during a charging step (a) near Electrode A and (b) near Electrode B. Figure

4.3(a) indicates that the anion concentration near Electrode A increased from the initial

concentration c∞ = 1 mol L−1 to cmax as the electric double layer formed. After the sur-

face concentration reached cmax, a close-packed layer with uniform concentration c2 = cmax

formed next to the surface. Beyond the close-packed layer, the concentration decreased to

the bulk concentration c∞ over a narrow region with large concentration gradients. This

transition region will be referred to as the EDL region. As charging proceeded, the close-

packed layer became thicker and the EDL region propagated within the electrolyte in the

positive x-direction. By contrast, Figure 4.3(b) shows that the anion concentration near
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Figure 4.2: (a) Electric potential ψ(0, t) at the surface of Electrode A and (b) anion concen-

tration c2(a/2, t) at the Stern/diffuse layer interface as functions of time.
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Electrode B decreased from the initial concentration c∞ to zero as the EDL charged. The

concentration decreased from the bulk concentration to zero over a narrow EDL region.

As charging proceeded, the EDL region propagated within the electrolyte in the negative

x-direction and the region of anion depletion adjacent to electrode B became wider. The

cation concentration c1(x, t) (not shown) was the mirror image of the anion concentration

c2(x, t) such that c1(x, t) = c2(2L− x, t).

4.2.3 Current density

Figure 4.4(a) shows the predicted current density j(L, t) at the centerline as a function of time

t. It demonstrates that the current ±js imposed at Electrode A [Equation (4.2)] resulted in

cycles of constant ionic current density of the same magnitude, i.e., j(L, t) = ±14 mA/cm2.

In addition, there was no significant delay between the switching of the imposed current

density and the response of the current density j(L, t) at the centerline between Electrodes

A and B. Figure 4.4(b) shows the current density j(x, 14 ms) as a function of location x

shortly before the end of the charging step. The current density was uniform across the

domain, except very close to the electrodes where it sharply decreased to zero due to the

absence of ion insertion. The current density was symmetric about the centerline such that

j(x, t) = j(2L− x, t). Similar results were observed at all times.

4.2.4 Thermal behavior

4.2.4.1 Local heat generation rates

Figure 4.5(a) shows the five heat generation rates q̇J,irr(x, 14 ms), q̇E,d(x, 14 ms), q̇E,s(x, 14 ms),

q̇S,c(x, 14 ms), and q̇S,T (x, 14 ms) as a function of location x at time t = 14 ms shortly before

the end of a charging step. The main figure shows the heat generation rates very close to

Electrode A, while the inset plots them over the entire electrolyte domain. Note that all

of the heat generation rates were symmetric about the centerline. Figure 4.5(a) indicates

that q̇E,d, q̇E,s, and q̇S,c featured large peaks near the electrode surfaces. They were several

orders of magnitude larger than q̇J,irr within this narrow region but vanished in the rest of

66



0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 10 20
-15

-10

-5

0

5

10

15

0 20 40 60 80 100
0

5

10

15

(b)

(a)

 

C
ur

re
nt

 d
en

si
ty

, j
(x

, 1
4 

m
s)

 (m
A

 c
m

-2
)

Location, x (nm)

16 ms

 

 

C
ur

re
nt

 d
en

si
ty

, j
(L

, t
) (

m
A

 c
m

-2
)

Time, t (ms)

14 ms

 
 

j(x
, 1

4 
m

s)
 (m

A
 c

m
-2

)

x ( m)

a/2

Figure 4.4: Predicted current density (a) j(L, t) at the centerline as a function of time t and

(b) j(x, 14 ms) as a function of location x.

67



0 2 4 6
-1

0

1

2

3

4

5

6

0 20 40 60 80 100
0

5

10

15

0 2 4 6

-6

-5

-4

-3

-2

-1

0

1

0 20 40 60 80 100
0

5

10

15

(b)

 

 

q (
x,
 1

4 
m

s)
 (k

W
 c

m
-3

)

Location, x (nm)

 qE,j

 qE,d

 qE,s

 qS,c

 qS,T

(a)

 

 

q(
x,
 1

4 
m

s)
 (m

W
 c

m
-3

)

Location, x ( m)

 

q (
x,
 1

6 
m

s)
 (k

W
 c

m
-3

)

Location, x (nm)

 
 

q(
x,
 1

6 
m

s)
 (m

W
 c

m
-3

)

Location, x ( m)

Figure 4.5: Predicted heat generation rates q̇J,irr(x, t), q̇E,d(x, t), q̇E,s(x, t), q̇S,c(x, t), and

q̇S,T (x, t) as a function of location x (a) at time t = 14 ms shortly before the end of a

charging step and (b) at time t = 16 ms shortly after the beginning of a discharging step.
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the electrolyte domain. The locations of the peaks corresponded to the regions of large con-

centration gradients shown in Figure 4.3. All three terms were positive during the charging

step. By contrast, the inset of Figure 4.5(a) shows that the Joule heating q̇J,irr was uni-

form throughout the electrolyte. Indeed, the ionic current density j was uniform and equal

to js nearly everywhere in the electrolyte [Figure 4.4(b)]. Joule heating q̇J,irr was also the

only significant heat generation rate in most of the electrolyte. Finally, q̇S,T was negligible

compared to the other heat generation rates over the entire domain at all times.

Similarly, Figure 4.5(b) shows the five heat generation rates q̇J,irr(x, 16 ms), q̇E,d(x, 16 ms),

q̇E,s(x, 16 ms), q̇S,c(x, 16 ms), and q̇S,T (x, 16 ms) as a function of location x at time t = 16 ms

shortly after the beginning of the discharging step. This time was chosen because the con-

centration profiles were almost identical to those at time t = 14 ms. Figure 4.5(b) indicates

that q̇E,d, q̇E,s, and q̇S,c had large negative peaks near the electrode surface. These peaks had

identical location and magnitude but opposite sign to those shown in Figure 4.5(a). The

inset of Figure 4.5 establishes that q̇J,irr remained positive, uniform, and the only signifi-

cant source of heat generation in most of the electrolyte domain. Here also, q̇S,T remained

everywhere negligible compared with the other heat generation rates.

Overall, these results suggest that Joule heating q̇J,irr accounts for all irreversible heat

generation within the electrolyte while q̇E,d, q̇E,s, and q̇S,c are reversible heat generation pro-

cesses. Finally, q̇S,T could be ignored compared to the other heat generation processes for

the conditions tested. Furthermore, the expressions for these heat generation rates corrob-

orate experimental observations presented in Section 2.6.2. The irreversible heat generation

rate q̇J,irr derived here was proportional to j2. Two of the reversible heat generation rates,

q̇E,d and q̇E,s, are directly proportional to the current density j. For a binary, symmetric

electroyte, the third reversible heat generation rate q̇S,c is directly proportional to the sum

of the ion fluxes N1 + N2, where the ion fluxes Ni and the current density j are related

by Equation (2.3). As in the analysis by Schiffer et al. [29], the present study identified a

reversible heat generation rate q̇S,c associated with changes in entropy. It was exothermic

during charging and endothermic during discharging, as they predicted [29]. However, other

reversible heat generation rates q̇E,d and q̇E,s were also identified and found to be associated
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with changes in the electrical potential energy. During the charging step, the ions migrated

in the direction of decreasing electric potential energy to form the EDLs, releasing thermal

energy in the process. During discharging, the ion motion was driven by diffusion and steric

effects as the EDLs relaxed. The ion fluxes were then in the direction of increasing electric

potential energy and thermal energy was absorbed.

4.2.4.2 Total heat generation rates

The heat generation terms q̇E,d, q̇E,s, and q̇S,c were very large. However, unlike q̇J,irr, they

were confined to very small regions near the electrode surfaces. To fully assess their relative

significance, one should consider their total contributions integrated over the electrolyte

domain. The total heat generation rate per unit separator area (in W m−2) associated with

local heat generation rate q̇i(x, t) is defined as Q̇′′i (t) =
2L∫
0

q̇i(x, t)dx. Figure 4.6 shows the
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individual total heat generation rates as well as the overall heat generation rate Q̇′′(t) =

Q̇′′J,irr(t) + Q̇′′E,d(t) + Q̇′′E,s(t) + Q̇′′S,c(t) as a function of time. First, it indicates that the

irreversible Joule heating Q̇′′J,irr was positive and constant over the entire simulation time.

In addition, the reversible heat generation rates Q̇′′E,d, Q̇
′′
E,s, and Q̇′′S,c were positive during

charging and negative during discharging, as observed experimentally [78]. Their magnitudes

quickly reached a plateau whose duration corresponded to that observed in the concentration

at the Stern/diffuse layer interface, i.e., when c2(a/2, t) = cmax [Figure 4.2(a)]. For the

conditions tested, this corresponded to a surface potential ψ(0, t) ≥ 0.75 V. It is interesting

to note that EDLCs are often operated between their rated voltage and one-half of their rated

voltage, typically 1.25−2.5 V or 1.35−2.7 V for commercial EDLCs with organic electrolyte

[7, 8, 25, 76]. Under such conditions, the magnitude of the reversible heat generation rates

would remain constant for the entire cycle. Finally, the four heat generation rates considered

had the same order of magnitude and all contributed to the total heat generation rate Q̇′′(t)

in the electrolyte. The net heat generation over an entire cycle was positive and equal to

the irreversible Joule heating Q̇′′J,irrtc.

4.2.4.3 Temperature profiles

Figures 4.7 shows the predicted temperature change (a) T (a/2, t) − T0 at the Stern/diffuse

layer interface and (b) T (L, t)−T0 at the centerline as a function of time t as each contribution

q̇J,irr, q̇E,d, q̇E,s, and q̇S,c was accounted for sequentially. Note that the Stern/diffuse layer

interface x = a/2 was very close to the EDL region where the reversible heat generation

terms q̇E,d, q̇E,s, and q̇S,c were maximum. By contrast, only the Joule heat generation rate

was significant at the centerline x = L. Both figures indicate that q̇J,irr alone would cause

the temperature to rise linearly. The reversible heat generation terms q̇E,d, q̇E,s, and q̇S,c

all contributed to temperature oscillations. Figure 4.7(a) shows that the oscillations of

T (a/2, t) at the Stern/diffuse layer interface were relatively large. In addition, T (a/2, t)

responded quickly to switches from charging to discharging and vice versa. During the first

charging step, the T (a/2, t) predictions accounting for the reversible heat generation rates

diverged immediately from those accounting for Joule heating only. Similarly, T (a/2, t)
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started to decrease immediately as the discharging step began. By contrast, the response

of the centerline temperature T (L, t) showed a delayed response to changes in the reversible

heat generation rates occurring near the electrode surface. In particular, T (L, t) diverged

only slightly from that predicted using q̇J,irr alone through most of the first charging step.

Thereafter, the rise and fall of the temperature appeared to be delayed by almost half a cycle

period from that predicted at x = a/2. In fact, the centerline temperature rose through most

of the discharging step and fell through most of the charging step. The oscillations of T (L, t)

were also smaller and more rounded than those of T (a/2, t). Temperature profiles at locations

between x = a/2 and x = L (not shown) were intermediate between those shown in Figures

4.7(a) and 4.7(b). In particular, the temperature oscillations became smaller, more rounded,

and more delayed with increasing distance from the electrode surface.

4.2.5 Comparison with experimental data

The numerically predicted temperature behavior qualitatively resembled experimental tem-

perature measurements. Temperature measurements inside a commercial EDLC reported

by Gualous et al. [76] (Figure 2.4) showed angular temperature oscillations similar to those

shown in Figure 4.7(a). Similarly, temperature measurements at the outer surface, i.e., far

from the electrode/electrolyte interfaces, of commercial EDLCs (e.g., Figures 2.2, 2.3, and

2.4(a) [29, 76]) showed smaller and smoother oscillations similar to those shown in Figure

4.7(b).

Figure 4.8(a) compares the predicted temperature change T (L, t)−T0 at the centerline as

a function of time t for simulations starting with either a charging step or a discharging step.

In both cases, the predicted temperature increased linearly for a short period (t < 2.5 ms)

with a slope equal to q̇J,irr/ρcp = j2s/σρcp. For the case starting with a charging step under

+js, the temperature continued increasing to reach a peak at t ≈ 10 s. However, for the case

starting with a discharging step under −js, the temperature decreased to reach a minimum

also around t ≈ 10 ms. After the first cycle, the temperature in both cases oscillated around

an overall temperature rise of slope q̇J,irr/ρcp = j2/σρcp corresponding to irreversible Joule
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heating. Figure 4.8(b) shows the reported surface temperature of a commercial EDLC as

a function of time t for several charging/discharging cycles starting with either a charging

step or a discharging step [29]. The predicted thermal behavior shown in Figure 4.8(a)

was remarkably similar to that observed experimentally. Note that quantitative comparison

could not be performed due to the complexity of the porous electrode architecture in the

actual EDLC compared with the simple planar electrode simulated. However, the results

indicate that the physical model captured the physical phenomena governing the EDLC

thermal response during galvanostatic cycling.

Figure 4.9(a) shows the predicted temperature change T (L, t) − T0 at the centerline as

a function of time t for cycling at three different current densities over the same potential

window 0 V ≤ ψ(0, t) ≤ 2.5 V. For all cases, the slope of the overall temperature rise

was equal to j2s/ρcpσ, corresponding to irreversible Joule heating. The amplitude of the

temperature oscillations decreased with increasing current density js. Figure 4.9(b) shows

the reported surface temperatures of a commercial EDLC cycled at three different currents

Is over the same potential window 1.5–2.5 V. Here also, the predicted temperature behavior

shown in Figure 4.9(a) closely resembled that observed experimentally.

Both the predicted and experimental results in Figure 4.9 indicate that the amplitude

of the temperature oscillations decreased with increasing current density. Initially, this

appears to contradict earlier observations that the reversible heat generation rates derived

here increase with increasing current density. However, the temperatures close to the EDL

region showed quite different behavior than that shown in Figure 4.9. The temperature

oscillations at the Stern/diffuse layer x = a/2 (not shown) resembled those shown in Figure

4.7(a) in shape. They were significantly larger in amplitude than those at the centerline and

increased in amplitude with increasing current density. Thus, the apparent contradiction can

be attributed to the fact that the reversible heat generated near the electrode/electrolyte

interface did not have time to propagate deep into the electrolyte due to the reduction in

cycle period with increasing current density. Therefore, temperature oscillations at the outer

surface of a device behave differently from those near the electrode/electrolyte interface

and underestimate the internal temperature oscillations. In fact, the large temperature
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fluctuations near the electrodes create “hot spots” with maximum temperatures significantly

higher than those predicted by Joule heating alone. These local high temperatures may

contribute to premature degradation of EDLC materials or electrolyte decomposition [10].

Finally, Figure 4.10 shows the predicted temperature change T (L, t)−T0 at the centerline

as a function of time t for cycling at current density js = 14 mA cm−2 over different potential

windows, namely 0–2.5 V, 0–1.25 V, and 1.25–2.5 V. It indicates that the temperature rise in

all three cases had the same overall slope since the current density js, and thus q̇J,irr, was the

same. The largest temperature oscillations were observed for the 2.5 V potential window.

The amplitudes of the temperature oscillations for the two 1.25 V potential windows were

significantly smaller than those for the 2.5 V window and of similar magnitude to one another.

Similarly, Schiffer et al. [29] reported that the measured temperature oscillation amplitudes
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for an EDLC cycled over the potential windows 0.5–1.5 V and 1.5–2.5 V were almost identical

while that measured for the broader potential window 0.5–2.5 V was significantly larger.

However, the authors did not include the temperature evolution over time to compare to

Figure 4.10.

The physical model developed in the present chapter captured the thermal behavior of

EDLCs observed experimentally [29,76]. Unlike previous thermal models, the present model

predicts the local heat generation rate based on first principles. The Joule heat generation

rate q̇J,irr accounted for the irreversible heating within the electrolyte. Three additional

reversible heat generation rates arose in the presence of concentration gradients due to dif-

fusion, steric effects, and entropy changes. These reversible heat generation rates caused

the temperature to oscillate, particularly near the electrode surfaces. Although the irre-

versible heat generation rate was uniform, the reversible heat generation rates were localized

to large peaks close to the electrode surfaces. The location and magnitude of the maximum

internal temperatures may thus differ significantly from that predicted under the common

assumptions of uniform heat generation rate and Joule heating alone. The irreversible heat

generation rate was constant during galvanostatic cycling, as expected. Moreover, the mag-

nitudes of the reversible heat generation rates were constant above a certain cell potential.

4.3 Conclusion

This chapter presented a physics-based model for coupled electrodiffusion and heat transfer

during galvanostatic charging and discharging of electric double layer capacitors. The model

accounted for the presence of the Stern layer and for the finite size of ions by using the

modified Poisson-Nernst-Planck model. Several contributions to the total heat generation

rate were derived. One took the familiar form q̇J,irr = j2/σ of irreversible Joule heating and

was always positive. Reversible heat generation rates arose in the presence of concentration

gradients. They were exothermic during charging and endothermic during discharging. The

inclusion of the reversible heat generation rates resulted in thermal behavior remarkably

similar to that observed in experiments. The comparison with experimental data indicates
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that my physical model captures the key physical phenomena governing EDLC thermal

behavior.

The present model is important in that it enables the prediction of both the spatial

and the temporal variation of the heat generation rates inside the EDLC based on first

principles. The results indicated that the total heat generation rate is not uniform, as is

frequently assumed in existing thermal models. While the irreversible heat generation was

indeed uniform, the reversible heat generation rates had large peaks close to the electrodes.

This resulted in large temperature oscillations with maximum temperatures significantly

higher than those predicted by Joule heating alone. The present physical model also shows

how local heat generation rate is affected by individual electrolyte properties. This would

be difficult or impossible to determine experimentally. Such information can facilitate the

selection of EDLC materials for better thermal performance.
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CHAPTER 5

First-order thermal model of commercial EDLC

devices

This chapter develops a first-order thermal analysis for electric double layer capacitors

(EDLCs). It is based on the lumped-capacitance approximation and accounts for both

irreversible and reversible heat generation rates. A simple analytical expression for the over-

all temperature rise during galvanostatic cycling was derived. In addition, a scaling analysis

was performed and demonstrated with experimental data collected from commercial EDLCs.

Scaling analysis has been widely used in physics and engineering analyses of complex systems.

It reduces the number of independent parameters to be considered in the analysis and facil-

itates the development of widely applicable thermal design rules [65]. This thermal model

and scaling analysis enable rapid estimation of the temperature evolution resulting from

irreversible and reversible heating in EDLCs without performing computationally intensive

numerical simulations. Model predictions were validated using experimental measurements

on commercial EDLCs reported in the literature [8, 29].

5.1 Analysis

The following assumptions were made: (1) The device properties were constant. (2) The

thermal resistance to heat transfer between the EDLC and its surroundings was constant,

and (3) temperature gradients within the device were small compared to that between the

EDLC and its surroundings, so that lumped-capacitance analysis was appropriate. In fact,

for large cycling currents, the measured temperature difference between the outer surface

of commercial devices and their surroundings was significantly larger than the temperature
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difference inside the device [8, 25].

5.1.1 Dimensional energy balance

The thermal energy balance performed on the entire EDLC device yields the governing

equation for its temperature T (t) expressed as [65]

Cth
dT

dt
= Q̇(t)− (T − T∞)

Rth

(5.1)

where Cth is the heat capacity of the device (in J K−1) and Q̇(t) is the internal heat generation

rate for the entire EDLC (in W), including both irreversible and reversible heating. The

second term on the right-hand side of Equation (5.1) represents the rate of heat transfer (in

W) from the device to its surrounding environment at temperature T∞, characterized by the

thermal resistance Rth (in K W−1). The latter may be expressed for convective heat transfer

as Rth = 1/h̄A, where h̄ is the average convective heat transfer coefficient (in W m−2K−1)

and A is the external surface area of the device (in m2).

The total heat generation rate consists of irreversible and reversible contributions, i.e.,

Q̇(t) = Q̇irr(t)+Q̇rev(t). The detailed, first-principles thermal model derived in Chapter 4 in-

dicates that irreversible Joule heating is the only irreversible heat generation rate in EDLCs,

while reversible heating arises from several phenomena involved in EDL formation. During

galvanostatic cycling, the current I(t) is a square signal of magnitude Is with cycle period

tc. Then, the irreversible Joule heat generation rate is constant and equal to Q̇irr = I2sR,

where R is the electrical resistance of the EDLC [2,29,78]. Experimental measurements and

the model from Chapter 4 have shown that the reversible heat generation rate is exothermic

during charging, endothermic during discharging, and proportional to Is [2, 29, 78]. Here, it

is assumed to be a square wave expressed as

Q̇rev(t) =


+βIs during charging

−βIs during discharging

(5.2)

where β is a positive semi-empirical parameter specific to each device and expressed in

V. As previously mentioned, Chapter 4 showed that the reversible heat generation rates
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were constant in magnitude in the upper half of the cell potential range considered, and

commercial EDLCs are frequently operated within this range [7, 8, 25,76].

Finally, Equation (5.1) is a first-order, linear ordinary differential equation (ODE) re-

quiring one initial condition. Here, the EDLC’s initial temperature was assumed to be equal

to T0, i.e., T (t = 0) = T0.

5.1.2 Scaling analysis

The governing Equation (5.1) was non-dimensionalized using the dimensionless variables

t∗ =
t

tc
and T ∗(t∗) =

T (t)− T0
I2sRtc/Cth

. (5.3)

The time t was scaled by the cycle period tc, while the temperature change T (t) − T0 was

scaled by the temperature rise per cycle associated with irreversible Joule heating and ex-

pressed as Q̇irrtc/Cth = I2sRtc/Cth.

Substituting Equation (5.3) into the energy conservation Equation (5.1) yields the gov-

erning equation for the dimensionless temperature T ∗(t∗)

dT ∗

dt∗
= 1− T ∗(t∗)− T ∗∞

τ ∗th
+ Q̇∗rev(t

∗). (5.4)

Here, T ∗∞ = (T∞ − T0)/(I2sRtc/Cth) is the dimensionless ambient temperature. The dimen-

sionless thermal time constant is defined as τ ∗th = RthCth/tc, where the thermal time constant

RthCth characterizes how rapidly the EDLC temperature responds to changes in its ther-

mal environment [65]. Finally, the dimensionless heat generation rate Q̇∗rev = Q̇rev/Q̇irr =

±β/IsR represents the ratio of the reversible to the irreversible heat generation rates. The

initial condition is expressed in dimensionless form as T ∗(0) = 0.

The dimensionless ODE given by Equation (5.4) can be solved to yield the following

expression for the dimensionless temperature

T ∗(t∗) = (τ ∗th + T ∗∞)
(
1− e−t∗/τ∗th

)
+ e−t

∗/τ∗th

∫ t∗

0

et
∗′/τ∗thQ̇∗rev(t

∗′)dt∗′. (5.5)
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5.1.3 Irreversible and reversible temperatures

Based on the superposition principle, the temperature T (t) may be viewed as the sum

of two contributions associated with irreversible and reversible heat generation so that

T (t) = Tirr(t) + Trev(t). The overall temperature Tirr(t), resulting from Q̇irr, accounts

for the temperature rise from cycle to cycle, while the superimposed reversible temperature

oscillations Trev(t) result from Q̇rev. These contributions can be expressed in dimensionless

form as

T ∗irr(t
∗) =

Tirr(t)− T0
I2sRtc/Cth

and T ∗rev(t
∗) =

Trev(t)

I2sRtc/Cth
. (5.6)

For an EDLC cooled by convection, T ∗irr is expressed as

T ∗irr(t
∗) = (τ ∗th + T ∗∞)

(
1− e−t∗/τ∗th

)
(5.7)

and is governed by two dimensionless similarity parameters, namely, τ ∗th and T ∗∞. Over time,

T ∗irr approaches a steady-state value given by T ∗irr(t
∗ →∞) = τ ∗th+T ∗∞. In dimensional form,

Tirr(t) can be written as

Tirr(t) = T0 + (I2sRRth + T∞ − T0)(1− e−t/RthCth). (5.8)

Thus, under steady-state conditions, the irreversible temperature is expressed as Tirr(t →

∞) = RthI
2
sR + T∞. Subtracting Equation (5.7) from Equation (5.5) yields

T ∗rev(t
∗) = e−t

∗/τ∗th

∫ t∗

0

et
∗′/τ∗thQ̇∗rev(t

∗′)dt∗′. (5.9)

5.1.4 Thermally insulated EDLC

In the limiting case of a perfectly thermally insulated EDLC, Rth and τ ∗th approach infinity.

Then, τ ∗th � t∗ and e−t
∗/τ∗th ≈ 1 − t∗/τ ∗th, so that the overall dimensionless temperature rise

is linear with t∗ and given in dimensionless and dimensional form by

T ∗irr(t
∗) = t∗ and Tirr(t) = T0 +

I2sR

Cth
t. (5.10)

Similarly, the dimensionless reversible temperature can be expressed as

T ∗rev(t
∗) =


±|Q̇∗rev|(t∗ − nc) 0 ≤ (t∗ − nc) < 1/2

±|Q̇∗rev|[(nc + 1)− t∗] 1/2 ≤ (t∗ − nc) < 1

(5.11)
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where nc = 0, 1, 2... is the number of completed charge-discharge cycles. Here, the positive

and negative signs correspond to cycling starting with a charging or a discharging step,

respectively. In dimensional form, Trev(t) can be expressed as

Trev(t) =


±βIs
Cth

(t− nctc) nctc ≤ t < (nc + 1/2)tc

±βIs
Cth

[(nc + 1)tc − t] (nc + 1/2)tc ≤ t < (nc + 1)tc.

(5.12)

5.1.5 Method of solution

The dimensionless temperature T ∗(t∗) accounting for reversible heat generation was eval-

uated by numerically solving Equation (5.4) using an explicit third-order Runge-Kutta

method [96]. The solver adjusted the time step to satisfy specified relative and absolute

tolerances. It compared the estimated error associated with T ∗(t∗) to these tolerances at

each time step. The convergence criterion was defined such that the relative error in the

dimensionless temperature T ∗ was less than 0.5% when dividing both tolerances by two.

5.1.6 Experimental data

Table 5.1 summarizes the values of the capacitance C, electrical resistance R, heat capac-

ity Cth, and thermal resistance Rth of commercial EDLCs whose thermal behaviors have

been investigated in the literature [8, 25, 29] including Maxwell BCAP1500 [97], Maxwell

BCAP0350 [98], and Nesscap ESHCP-5000C0-002R7 [99]. Note that Cth for the Nesscap

5000-F cell was measured experimentally and reported in Ref. [29]. The Maxwell EDLCs

were cooled by natural convection in air at T∞ [8, 25] while the Nesscap cell was thermally

insulated [29]. Table 5.1 also provides the operating conditions including the current Is, po-

tential window ∆ψ, initial temperature T0, and ambient air temperature T∞, used in three

experimental studies reported in the literature [8,25,29]. The cycle period tc was estimated

from the device capacitance C, the potential window ∆ψ, and the current Is according to

tc = 2C∆ψ/Is [29]. Experimental data from these different studies were used to validate the

present model and the associated scaling analysis.
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5.2 Results and discussion

5.2.1 Parametric study

Figure 5.1(a) shows T ∗(t∗) predicted by numerically solving Equation (5.4) and T ∗irr(t
∗)

predicted analytically by Equation (5.7) as functions of t∗ for τ ∗th ranging from 10 to∞ with

T ∗∞ = 0, i.e., the EDLC started at the same temperature as its surroundings. The cycles

started with a charging step and |Q̇∗rev| was equal to 5. In all cases, the temperature T ∗(t∗)

featured nearly triangular temperature oscillations around T ∗irr, as predicted by Equation

(5.11) in the limiting case of τ ∗th approaching infinity. For finite values of τ ∗th, T
∗
irr initially

satisfied T ∗irr(t
∗ ≈ 0) ≈ t∗, and then T ∗irr approached the steady-state value T ∗irr(t

∗ → ∞) =

T ∗∞ + τ ∗th as convective heat losses increased due to the increasing temperature difference

between the device and the surroundings. In other words, in the oscillatory steady-state

regime, the rate of heat loss to the surroundings balanced the irreversible heat generation

rate. This relationship could be used in practice to determine the values of τ ∗th and Rth =

tcτ
∗
th/Cth of actual EDLCs.

Similarly, Figure 5.1(b) shows T ∗(t∗) predicted by solving Equation (5.4) and T ∗irr(t
∗)

given by Equation (5.7) as functions of t∗ for τ ∗th = 5 and T ∗∞ = 0. Here, |Q̇∗rev| was equal

to either 2 or 5 and the cycle started with either a discharging or a charging step. The

local maxima and minima of T ∗(t∗) occurred at the end of the charging steps and of the

discharging steps, respectively. In cases beginning with a charging step, T ∗(t∗) initially

increased and oscillated within the envelope T ∗irr(t
∗) ≤ T ∗(t∗) ≤ T ∗irr(t

∗) + |Q̇∗rev|/2 where

T ∗irr(t
∗) is given by Equation (5.7). By contrast, in cases beginning with a discharging

step, T ∗(t∗) initially decreased, oscillating within the range T ∗irr(t
∗) ≥ T ∗(t∗) ≥ T ∗irr(t

∗) −

|Q̇∗rev|/2. However, as T ∗(t∗) approached oscillatory steady-state, all cases fell within the

envelope T ∗irr(t
∗) − |Q̇∗rev|/4 ≤ T ∗(t∗) ≤ T ∗irr(t

∗) + |Q̇∗rev|/4. Interestingly, the amplitude

of the dimensionless temperature oscillations ∆T ∗rev was equal to |Q̇∗rev|/2 = β/2IsR at all

times and for all cases considered, as illustrated in Figure 5.1(b). In dimensional form, it

is expressed as ∆Trev = βIstc/2Cth. In fact, this provides a simple and convenient way

to estimate the coefficient of proportionality β associated with reversible heat generation
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Figure 5.1: Dimensionless temperature T ∗(t∗) predicted by solving Equation (5.4) and di-

mensionless irreversible temperature T ∗irr(t
∗) given by Equation (5.7) as functions of t∗ for

(a) different values of τ ∗th with T ∗∞ = 0 for |Q̇∗rev| = 5 and (b) different values of |Q̇∗rev| for

T ∗∞ = 0 and τ ∗th = 5.
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directly from experimental data as β = 2Cth∆Trev/Istc.

5.2.2 EDLCs cooled by natural convection

Figure 5.2 shows the temperatures T (t) as a function of time t measured by Gualous and

coworkers at the outer surface of (a) a 1500-F EDLC [25] and (b) a 350-F EDLC [8] galvano-

statically cycled at ±75 A and ±30 A, respectively. These Maxwell Technologies EDLCs

were cooled by natural convection in air at T∞ of 20◦C and 17.5◦C, respectively [8,25]. Both

figures display a clear overall temperature rise with small temperature oscillations. Here also,

the temperature rose quickly at the beginning of the test and then approached an oscillatory

steady-state as the rate of convective heat loss balanced the irreversible heat generation rate.

Figures 5.2(a) and 5.2(b) also plot Tirr(t) predicted by Equation (6.12) using the properties

summarized in Table 5.1 as well as predictions for thermal resistance Rth ± 10% to account

for the possible uncertainty in the reported values of Rth. In both Figures 5.2(a) and 5.2(b),

the experimental data fell approximately between the temperature predictions of Equation

(6.12) using Rth ± 10%.

Figures 5.2(c) and 5.2(d) plot the data shown in Figures 5.2(a) and 5.2(b) in terms of

dimensionless temperature T ∗(t∗) and time t∗. They also show the overall dimensionless

temperature rise T ∗irr(t
∗) predicted by Equation (5.7). Here also, predictions for T ∗irr(t

∗) were

in good agreement with scaled temperature measurements for both EDLCs. In addition,

the dimensionless temperature oscillations were small compared to the overall dimensionless

temperature rise, i.e., Q̇∗rev/2 was small compared to τ ∗th + T ∗∞. It was difficult to accurately

quantify the temperature oscillation amplitude ∆Trev in order to retrieve β. However, from

visual inspection, ∆T ∗rev ranged approximately between 1/2 and 1 for both EDLCs, yielding

β between 0.04 V and 0.07 V for BCAP1500 and 0.1 V and 0.2 V for BCAP0350. This

corresponded to a dimensional temperature oscillation amplitude ∆Trev between 0.2 K and

0.4 K for BCAP1500 and between 0.7 K and 1.4 K for BCAP0350.
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Figure 5.2: Measured temperature T (t) as a function of time t at the outer surface of (a) a

1500-F EDLC cycled at ±75 A (Figure 7 of Ref. [25]) and (b) a 350-F EDLC cycled at ±30 A

(Figure 8 of Ref. [8]), as well as (c) and (d) the corresponding dimensionless temperatures

T ∗(t∗) as functions of dimensionless time t∗ and the predictions by Equation (5.7) using data

in Table 5.1.
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5.2.3 Thermally insulated EDLC

Figure 5.3(a) shows the temperature T (t) measured at the surface of a thermally insulated

5000-F EDLC (ESHCP-5000C0-002R7 by Nesscap Co.) as a function of time t. This EDLC

was cycled galvanostatically at currents Is between 25 A and 100 A and cycle periods tc

ranging from 100 s to 400 s [29]. The electrical resistance R, the heat capacity Cth, the

thermal resistance Rth, and the ambient temperature T∞ remained the same for all five

cases and are summarized in Table 5.1. The temperature featured oscillations superimposed

over an approximately linear temperature rise of slope I2sR [29].

Figure 5.3(b) shows the same data as in Figure 5.3(a) but in dimensionless form. The

scaled data for all five cases approximately collapsed around an overall temperature rise

predicted by T ∗irr = t∗ and corresponding to the limiting case when τ ∗th or Rth approached

infinity. As observed in Figure 5.1, the initial slope dT ∗irr/dt
∗ in the experimental data

was equal to about 1. However, as T ∗ increased, the overall slope of the measured T ∗ slowly

decreased. This can be attributed to heat losses to the surroundings due to imperfect thermal

insulation. In fact, Rth and τ ∗th were large but finite, and T ∗(t∗) would eventually approach

an oscillatory steady-state around the dimensionless temperature T ∗irr(t
∗ → ∞) = τ ∗th + T ∗∞

similar to the behavior shown in Figure 5.1. This behavior was more apparent at smaller

currents when irreversible heat generation was smaller. For larger current Is, heat generation

was large compared with convective heat losses to the surroundings in the time frame for

which data are available. Unfortunately, the steady-state EDLC temperature could not be

evaluated because the actual values of Rth and τ ∗th were not measured. It is also interesting to

note that, by scaling t by the cycle period tc, the temperature maxima and minima occurred

at the same dimensionless times t∗.

Figure 5.4 plots the same data as in Figure 5.3(a) separately in terms of dimensionless

temperature T ∗(t∗) as a function of t∗ for cycles beginning with a charging step with (a) Is =

25 A, (b) Is = 50 A, and (c) Is = 100 A as well as (d) a case beginning with a discharging

step with Is = 100 A. It also plots the predictions for T ∗(t∗) obtained by numerically solving

Equation (5.4). As previously discussed, the dimensionless temperature oscillation amplitude
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Figure 5.3: (a) Measured temperature T (t) at the surface of a thermally insulated Nesscap

5000-F EDLC as a function of time t for different values of current Is and cycle period tc

(Figures 8 and 10 of Ref. [29]) and (b) the corresponding dimensionless temperature T ∗(t∗)

as well as T ∗irr(t
∗) predicted by Equation (5.10) as functions of dimensionless time t∗.
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Figure 5.4: Dimensionless temperature T ∗(t∗) as a function of dimensionless time t∗ based

on experimental measurements at the EDLC outer surface [29] and predicted by solving

Equation (5.4) for a thermally insulated EDLC cycled at (a) Is = 25 A, (b) Is = 50 A, and

(c) Is = 100 A beginning with a charging step as well as (d) cycled at Is = 100 A beginning

with a discharging step.
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was equal to ∆T ∗rev = |Q̇∗rev|/2 = β/2IsR. These oscillations were the largest for experimental

data with Is = 25 A [Figure 5.4(a)]. Thus, the average value of ∆T ∗rev was estimated for

this dataset to yield the semi-empirical constant β = 2∆T ∗revIsR = 0.06± 0.012 V with 95%

confidence interval. This value of β was of the same order of magnitude as those estimated

for the other EDLCs. In addition, it was the same for all datasets considered in Figure 5.4,

since they were collected with the same EDLC. The corresponding values of |Q̇∗rev| ranged

from 1.8 to 7.3 as the current Is decreased from 100 A to 25 A. Here, |Q̇∗rev| increased

with decreasing Is because |Q̇∗rev| characterizes the ratio of the reversible to the irreversible

heat generation rates, and Q̇irr ∝ I2s decreased faster with decreasing Is than |Q̇rev| ∝ Is.

This range of |Q̇∗rev| explained why the temperature oscillations shown in Figure 5.4 were

significantly larger than those observed in Figure 5.2, when |Q̇∗rev| was estimated to range

between 1 and 2. The larger values of |Q̇∗rev| in the Nesscap EDLC were likely due to (i)

smaller cycling currents and/or (ii) smaller resistance R (Table 5.1).

Overall, predictions of T ∗(t∗) closely resembled the measured behavior. However, there

was a temporal offset between the predicted and measured temperature oscillations. In

fact, Figure 5.4 indicates that the local maxima and minima of the measured T ∗ were shifted

towards later dimensionless times t∗ compared with predictions obtained by solving Equation

(6.12). This effect was also observed in the previous simulations in Chapter 4. The delay was

attributed to heat diffusion from the electrode/electrolyte interface to the bulk electrolyte

[2]. Indeed, reversible heat generation occurs mainly near the electrode/electrolyte interface

where the electric double layer forms and is transported by conduction through the electrolyte

and through the electrode to the outer surface of the EDLCs.

Moreover, the measured T ∗(t∗) was larger than the model predictions for cases beginning

with a charging step [Figures 5.4(a) and 5.4(b)] and smaller for cases beginning with a

discharging step [Figure 5.4(d)]. This can also be attributed to heat diffusion inside the

EDLC. In fact, Chapter 4 showed that the temperature oscillation amplitude decreased

with increasing distance from the electric double layer. Thus, retrieving the reversible heat

generation rate and the parameter β from surface temperature measurements underpredicted

its actual value since temperature oscillations were larger inside the device.
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Figure 5.5: Procedure to estimate temperature evolution of an EDLC.

Finally, the present model predicted the main features of the experimental data quite

well. Figure 5.5 summarizes the procedure to predict the overall temperature rise Tirr(t)

and the temperature oscillation amplitude ∆Trev. It provides an excellent first-order esti-

mate of the EDLC temperature behavior without relying on detailed and computationally

intensive numerical simulations. In addition, it offers a simple and convenient method for

retrieving the thermal resistance Rth and the semi-empirical parameter β for reversible heat

generation from experimental temperature measurements. Note that β is the only empirical

parameter retrieved from temperature measurements. All the other input parameters can be

obtained from product data sheets. In addition, the model’s irreversible temperature pre-

dictions agreed well with experimental measurements reported in the literature for EDLCs

of different sizes and manufacturers. This suggests that the present model is robust and
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broadly applicable.

5.3 Conclusion

This study developed an engineering thermal model accounting for both irreversible and re-

versible heat generation to predict the temporal evolution of temperature in EDLC devices

during galvanostatic cycling. The dimensionless temperature T ∗(t∗) was governed by three

dimensionless similarity parameters, namely, τ ∗th, T
∗
∞, and Q̇∗rev, characterizing the rate of

heat transfer to the surroundings, the ambient temperature, and the reversible heat genera-

tion rate, respectively. Temperature predictions showed good agreement with experimental

data obtained from different commercial devices and reported in the literature [8, 25, 29].

This first-order model has the advantage of predicting the temperature evolution of actual

EDLC devices without relying on computationally intensive numerical simulations. It can

be used in designing thermal management strategies for EDLCs.
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CHAPTER 6

Scaling laws for EDLC heating and temperature

oscillations

This chapter provides a framework for developing design rules and thermal management

strategies for electric double layer capacitors (EDLCs). First, it presents a scaling analysis

of the physical model derived from first principles in Chapter 4 for coupled electrodiffusion

and thermal transport in electric double layer capacitors. The model rigorously accounts for

irreversible Joule heating and for reversible heat generation rates arising from electric double

layer formation in binary and symmetric electrolytes obeying the modified Poisson-Nernst-

Planck (MPNP) model. Scaling analysis simplified the problem from twelve independent

design parameters to seven meaningful dimensionless similarity parameters governing the

spatiotemporal evolution of the electric potential, ion concentrations, heat generation rates,

and temperature in the electrolyte. Then, similarity behavior was observed and scaling laws

were developed for the total irreversible and reversible heat generated during a charging

step and for the maximum temperature oscillations in EDLCs with planar electrodes under

galvanostatic cycling using detailed numerical simulations.

6.1 Motivation for scaling

Scaling analysis has proved to be a useful and powerful tool in numerous areas of physics

and engineering, particularly in heat transfer [65]. Scaling of the governing Equations (2.5),

(2.6), and (2.12) and of the associated initial and boundary conditions could significantly

reduce the number of independent parameters that must be considered in performing thermal

analysis of EDLC electrolytes. This can facilitate the development of thermal design rules to
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mitigate EDLC heating applicable to a wide range of electrolytes and operating conditions.

6.2 Analysis

6.2.1 Problem statement

Figure 4.1 illustrates the simulated one-dimensional EDLC consisting of two planar electrodes

separated by a binary and symmetric electrolyte with inter-electrode distance 2L. The

planar electrodes located at x = 0 and x = 2L were denoted as Electrodes A and B,

respectively. The electrolyte was divided into three regions: a Stern layer adjacent to each

electrode and a diffuse layer. The same Assumptions (1)–(7) used in Chapters 3 and 4

were used in the present chapter. The assumption of constant properties [Assumption (5)]

is reasonable for small changes in temperature and commonly used for scaling analysis.

Thus, the temperature T appearing in the expressions for Ni, q̇S,c, and q̇S,T was taken as

the initial temperature T0. As in Chapters 3 and 4, the present chapter models only the

electrolyte region 0 ≤ x ≤ 2L. In EDLC devices, the electrodes and the current collectors also

contribute to irreversible Joule heating and to the thermal inertia. However, electrodes and

current collectors obey Ohm’s law [28] and thus do not contribute to the reversible heating.

In addition, the electrical conductivity of the electrode and current collector materials are

expected to be much larger than that of the electrolyte. For example, the bulk electrical

conductivity σ∞ of the electrolyte considered in Chapter 4 and in the current chapter was

on the order of 1 S m−1 while the conductivity of activated carbon is on the order of 100-

1000 S m−1 [14,86,87]. Thus, the electrolyte is expected to dominate the heat generation in

the device.

For an EDLC with binary and symmetric electrolyte, the electric potential ψ(r, t), ion

concentrations ci(r, t), and temperature T (x, t) were governed by Equation (2.5), Equation

(2.6) with MPNP ion flux given by Equation (2.8), and Equation (2.12) with heat generation

rate given by Equation (4.26), respectively.
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6.2.2 Initial and boundary conditions for planar electrodes

In one-dimensional (1D) Cartesian coordinates, the governing Equations (2.5), (2.6),and

Equation (2.12) are first-order partial differential equations (PDEs) in time and second-

order PDEs in space. They require one initial condition and two boundary conditions in

each region. The initial and boundary conditions were identical to those used in Chapter 4

and described in Sections 4.1.2.2 and 4.1.3.3.

6.2.3 Scaling analysis

6.2.3.1 Dimensionless variables

Equations (2.5), (2.6), (2.8), (2.12), and (4.26) along with the associated initial and boundary

conditions were non-dimensionalized using the dimensionless variables

r∗ =
r

λD
, t∗ =

t

λ2D/D
, ψ∗(r∗, t∗) =

ψ(r, t)

RuT0/zF
,

c∗i (r
∗, t∗) =

ci(r, t)

c∞
, and T ∗(r∗, t∗) =

T (r, t)− T0
T0

. (6.1)

Here, the position vector r was scaled by the Debye length defined for binary and symmetric

electrolyte as λD =
√
ε0εrRuT0/2z2F 2c∞ and corresponding to an estimate of the EDL

thickness at temperature T0 [40, 41, 44]. Specifically, it characterizes the distance required

for the potential to decay by about 66% from its value at the electrode surface [44]. The time

t was scaled by the characteristic time for ion diffusion across the EDL thickness estimated as

τd = λ2D/D [65]. The thermal voltage RuT0/zF represents the voltage inducing an electrical

potential energy equivalent to the thermal energy for an ion of valency z at temperature

T0 [41]. Thus, the dimensionless surface potential ψ∗ characterizes the extent to which the

potential ψ perturbs the ion concentrations from their equilibrium distribution under zero

electric field. Finally, the concentration ci(x, t) and the temperature change T (x, t)−T0 were

scaled by the bulk ion concentration c∞ and the initial temperature T0, respectively.

Note that this scaling analysis is very similar to that used in Chapter 3. However,

this chapter extends that scaling analysis to the general three-dimensional (3D) govern-
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ing equations as well as the galvanostatic cycling boundary conditions. Using the scaled

position vector r∗, the gradient, divergence, and Laplacian operators can be respectively

non-dimensionalized as

∇∗f ∗(r∗) =
λD
f0
∇f, ∇∗ · v∗(r∗) =

λD
v0
∇ · v, and ∇∗2f ∗ =

λ2D
f0
∇2f. (6.2)

where the function f(r) and the vector v(r) are scaled by the scalars f0 and v0, respectively

so that f ∗ = f/f0 and v∗ = v/v0.

6.2.3.2 Dimensionless Poisson equation

Substituting Equation (6.1) into the 1D Poisson Equation (2.5) yields the following governing

equation for the dimensionless electric potential ψ∗(x∗, t∗) [57]

−2∇∗2ψ∗ =


0 in the Stern layers

c∗1 − c∗2 in the diffuse layer.

(6.3)

6.2.3.3 Dimensionless mass conservation equation

The dimensionless concentrations c∗i (x
∗, t∗) of the cations and anions in the diffuse layer

satisfy the dimensionless 1D mass conservation equations expressed as

∂c∗i
∂t∗

= −∇∗ ·N∗i i = 1 and 2. (6.4)

The dimensionless local ion flux vector N∗i (x
∗, t∗) is defined as N∗i = Ni/(Dc∞/λD) and

expressed for binary and symmetric electrolytes as

N∗i =−
[
∇∗c∗i + sgn(zi)c

∗
i∇∗ψ∗ +

c∗i νp/2

1− (c∗1 + c∗2)νp/2
∇∗(c∗1 + c∗2)

]
. (6.5)

Here, the dimensionless number νp = 2c∞/cmax = 2c∞NAa
3 is the so-called packing pa-

rameter corresponding to the ratio of the total bulk concentration 2c∞ to the theoretical

maximum concentration cmax [38]. It is less than unity as the bulk concentration cannot

exceed cmax. It approaches zero in the limiting case of negligibly small ion diameter a. The

function sgn(zi) is equal to +1 or −1 depending on the sign of the valency zi.
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6.2.3.4 Dimensionless heat diffusion equation

The dimensionless energy equation derived from Equation (2.12) can be expressed as

∂T ∗

∂t∗
= Le∇∗2T ∗ +

q̇∗

C∗
. (6.6)

The Lewis number Le is defined as Le = αth/D where αth = k/ρcp is the thermal diffusiv-

ity [65]. The dimensionless heat capacity C∗ is defined as C∗ = ρcp/Ruc∞. Here, the dimen-

sionless local volumetric heat generation rate is given by q̇∗ = q̇/(RuT0Dc∞/λ
2
D) = q̇∗J,irr+q̇

∗
rev

where q̇∗rev = q̇∗E,d + q̇∗E,s + q̇∗S,c + q̇∗S,T . The irreversible Joule heating q̇J,irr [Equation (4.22)]

is expressed in dimensionless form as

q̇∗J,irr =
|j∗|2

c∗1 + c∗2
(6.7)

where j∗ = j/(zFDc∞/λD) = N∗1−N∗2 is the dimensionless local current density vector. The

diffusion and steric contributions q̇E,d and q̇E,s [Equation (4.22)] are expressed in dimension-

less form as

q̇∗E,d =
j∗ · ∇∗(c∗1 − c∗2)

c∗1 + c∗2
and q̇∗E,s =

j∗ · ∇∗(c∗1 + c∗2)

c∗1 + c∗2

(c∗1 − c∗2)νp/2
[1− (c∗1 + c∗2)νp/2]

(6.8)

while the heat of mixing contributions q̇S,c and q̇S,T [Equation (4.25)] can be non-dimensionalized

as

q̇∗S,c =
3

32
√

2π

a∗3

νp

(N∗1 + N∗2) · ∇∗(c∗1 + c∗2)

(c∗1 + c∗2)
1/2

,

and q̇∗S,T = − 3

32
√

2π

a∗3

νp
(N∗1 + N∗2)(c

∗
1 + c∗2)

1/2 · ∇∗T ∗. (6.9)

Here, a∗ = a/λD is the dimensionless effective ion diameter.

6.2.4 Dimensionless initial and boundary conditions for planar electrodes

In 1D Cartesian coordinates, the initial conditions for the dimensionless variables ψ∗, c∗i ,

and T ∗ can be expressed as ψ∗(x∗, 0) = 0, c∗1(x
∗, 0) = c∗2(x

∗, 0) = 1, and T ∗(x∗, 0) = 0.

Table 6.1 summarizes the dimensionless boundary conditions for ψ∗, c∗i , and T ∗ at the

electrode/electrolyte and Stern/diffuse layer interfaces. The Stern layers for Electrodes A
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and B are located at 0 ≤ x∗ < a∗/2 and (2L∗ − a∗/2) < x∗ ≤ 2L∗, respectively, where

L∗ = L/λD is the dimensionless inter-electrode half-width. The diffuse layer is the region

a∗/2 ≤ x∗ ≤ 2L∗ − a∗/2. Here, j∗s = js/(zFDc∞/λD) is the dimensionless current density

imposed at the electrode surface and t∗c = tc/(λ
2
D/D) is the dimensionless cycle period.

6.2.5 Physical interpretation

The solution of the governing Equations (2.5), (2.6), and (2.12) and their initial and boundary

conditions for galvanostatic cycling of planar EDLCs with binary and symmetric electrolyte

depended on twelve parameters, namely z, a, D, εr, ρ, cp, k, c∞, L, T0, js, and tc. The

scaling analysis of these equations and their initial and boundary conditions revealed that

the dimensionless variables ψ∗, c∗i , and T ∗ depended on only seven dimensionless similarity

parameters expressed as

a∗ =
a

λD
, L∗ =

L

λD
, j∗s =

js
zFDc∞/λD

, t∗c =
tc

λ2D/D

νp =
2c∞
cmax

, Le =
αth
D
, and C∗ =

ρcp
Ruc∞

. (6.10)

The dimensionless numbers a∗ and L∗ scale the Stern layer thickness and the inter-electrode

distance by the Debye length, respectively. The dimensionless current density j∗s scales the

imposed current density at the electrode by a characteristic diffusion current density driven

by a concentration gradient from c∞ to 0 mol L−1 across the Debye length λD (equal to the

concentration drop of the coion across the EDL). In addition, t∗c is the ratio of the cycle

period to the characteristic time τd = λ2D/D for ion diffusion across the Debye length. The

Lewis number Le can be interpreted as the ratio of the characteristic time for ion diffusion

τd = λ2D/D to that for heat diffusion τth = λ2D/αth. The dimensionless heat capacity C∗

represents the ratio of the volumetric heat capacity ρcp of the solvent to that of the ions at

bulk concentration Ruc∞, both expressed in J m−3K−1. Note that a∗, L∗, νp, Le, and C∗ are

defined in the same way as in Chapter 3 [Equation (3.22)].

Finally, ψ∗(x∗, t∗) and c∗i (x
∗, t∗) are functions of the dimensionless similarity parameters

a∗, L∗, j∗s , t
∗
c , and νp only. On the other hand, the Lewis number Le and the dimensionless

heat capacity C∗ govern the transient dimensionless temperature response T ∗(x∗, t∗) for a
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given dimensionless volumetric heat generation rate. Since the dimensionless volumetric heat

generation rates q̇∗J,irr, q̇
∗
E,d, q̇

∗
E,s, and q̇∗S,c do not depend on T ∗, Le, or C∗, they should also

be functions of the five parameters a∗, L∗, j∗s , t
∗
c , and νp.

6.2.6 Numerical simulations

6.2.6.1 Method of solution

The governing Equations (2.5), (2.6), and (2.12) were solved numerically in dimensional form

using the same method and convergence criteria described in Section 4.1.5.

6.2.6.2 Data processing

As in Chapter 5, the temperature evolution can be characterized by the irreversible tem-

perature rise Tirr, the temperature oscillation amplitude ∆Trev, and the cycle period tc [2].

The irreversible temperature rise Tirr corresponds to the temperature that would result from

irreversible Joule heating alone. Chapter 4 showed that q̇J,irr was uniform through the elec-

trolyte and equal to

q̇J,irr =
j2s
σ∞

(6.11)

where σ∞ = 2Dz2F 2c∞/RuT0 is the electrolyte conductivity at the bulk concentration c1 =

c2 = c∞. Thus, for thermally insulated electrode/electrolyte interfaces, Tirr was also uniform

and expressed as

Tirr(t) = T0 +
q̇J,irr
ρcp

t = T0 +
j2s

ρcpσ∞
t. (6.12)

The irreversible volumetric heat generation rate and the irreversible temperature rise given

by Equations (6.11) and (6.12), respectively, are expressed in dimensionless form as

q̇∗J,irr =
q̇J,irr

RuT0Dc∞/λ2D
=
j∗2s
2

(6.13)

and T ∗irr(t
∗) =

Tirr(t)− T0
T0

=
q̇∗J,irr
C∗

t∗ =
j∗2s
2C∗

t∗. (6.14)

The temperature oscillations Trev(x, t) associated with the reversible heating can be eval-

uated by subtracting the irreversible temperature rise Tirr(t) from the temperature T (x, t),
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i.e., Trev(x, t) = T (x, t) − Tirr(t). The temperature oscillations varied with location x due

to the non-uniformity of q̇rev [2]. For temperature-independent electrolyte properties and

ion transport, Trev(x, t) was a periodic function of t. In the present study, the oscillation

amplitude ∆Trev(x) was evaluated at the Stern/diffuse layer interface where it was found to

be the largest [2]. It was defined as ∆Trev(a/2) = max
tc≤t≤2tc

[Trev(a/2, t)]− min
tc≤t≤2tc

[Trev(a/2, t)]

and was an unknown function of the twelve parameters characterizing the electrolyte, inter-

electrode spacing, and cycling conditions. In dimensionless form, the reversible tempera-

ture evolution and the oscillation amplitude are expressed as T ∗rev(x
∗, t∗) = Trev(x, t)/T0 =

T ∗(x∗, t∗) − T ∗irr(t
∗) and ∆T ∗rev(a

∗/2) = ∆Trev(a/2)/T0. Based on the above dimensional

analysis, one can show that ∆T ∗rev is a function of the seven similarity parameters identified

in Equation (6.10). The parameters j∗s and νp do not affect ∆T ∗rev directly, but they affect

the value of q̇∗rev. A correlation relating ∆T ∗rev to these seven parameters would enable es-

timation of the EDLC temperature evolution for various design and operating parameters

without performing complex and time-consuming numerical simulations [2].

Finally, the reversible heat generation rate was characterized by the total amount of

reversible heat Q′′rev generated per unit electrode surface area during a complete charging

step (in J m−2). Here, Q′′rev comprises the sum of all reversible contributions such that

Q′′rev = Q′′E,d + Q′′E,s + Q′′S,c. Individual Q′′i were computed by integrating the corresponding

local volumetric heat generation rate q̇i(x, t) spatially over the electrolyte domain 0 ≤ x ≤ 2L

and temporally over one charging step tc ≤ t ≤ 3tc/2 so that

Q′′i =

∫ 3tc/2

tc

∫ 2L

0

q̇i(x, t)dxdt. (6.15)

Here, the time integral was taken over the second charging step in the simulation, i.e.,

tc ≤ t ≤ 3tc/2, to avoid start-up effects occurring near t = 0. Longer simulations showed

that two cycles were sufficient to reach oscillatory steady state. In dimensionless form, each

individual contribution to the reversible heat generation is expressed as

Q∗i =
Q′′i

RuT0c∞λD
=

∫ 3t∗c/2

t∗c

∫ 2L∗

0

q̇∗i (x
∗, t∗)dx∗dt∗. (6.16)

Note that Q′′S,T was ignored because its contribution to the total Q′′rev was negligible for

all cases considered. During the corresponding discharging step (3tc/2 ≤ t ≤ 2tc), the
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Table 6.2: Input parameters for Cases 1 to 3 used to illustrate the scaling analysis. The

dimensionless parameters a∗ = 2.4, L∗ = 7.2×104, j∗s = 2.4×10−6, t∗c = 2.2×107, νp = 0.38,

Le = 374, and C∗ = 310 are the same for all three cases.

Case 1 Case 2 Case 3

z 1 1 2

a (nm) 0.68 0.34 1.36

D (m2 s−1) 1.7× 10−10 1.7× 10−10 3.4× 10−10

εr 66.1 88.2 66.1

ρ (kg m−2) 1205 2409 602

cp (J kg−1K−1) 2141 8564 535

k (W m−1K−1) 0.16 1.3 0.041

c∞ (mol L−1) 1.0 8.0 0.125

L (µm) 20 10 40

T0 (K) 298 447 596

js (mA cm−2) 14 224 3.5

tc (ms) 10 2.5 20

energy −Q′′i was consumed so that the net reversible heat generation over a complete charg-

ing/discharging cycle was zero.

6.3 Results and discussion

6.3.1 Illustration of scaling analysis

Table 6.2 summarizes three sets of input parameters used to illustrate the scaling analysis.

Case 1 was based on the properties of tetraethylammonium tetrafluoroborate (TEABF4)

electrolyte at 1 mol L−1 in propylene carbonate (PC) solvent. This electrolyte was treated as

binary and symmetric. The ions TEA+ (i = 1) and BF−4 (i = 2) have valency z1 = −z2 = 1.

Their effective diameter was taken as that of non-solvated TEA+ ions, i.e., a = 0.68 nm

[48,92]. In fact, Wang and Pilon [48] found that using this ion diameter resulted in integral
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capacitance predictions for ordered bimodal mesoporous carbon electrodes that agreed well

with experimental data. The dielectric constant εr, thermal conductivity k, density ρ, and

specific heat cp were taken as the properties of the PC solvent [94, 100]. The ion diffusion

coefficient D was estimated from the experimentally measured electrical conductivity σ for

a concentration of c1 = c2 = c∞ = 1 mol/L using the expression given in Equation (2.4) [93].

The electrolyte properties εr, k, ρ, cp, and σ were measured at temperatures within 5 K

of the simulated initial temperature T0 = 298 K [93, 94, 100]. The inter-electrode half-

width L = 20 µm fell within the range reported in experimental studies of EDLCs [77, 78].

Similarly, the current density js = 14 mA cm−2 was within the typical range of current

densities per unit separator surface area [29,78]. The cycle period tc = 10 ms was selected to

yield a maximum voltage of ψ(0, t)−ψ(2L, t) = 2.5 V chosen by analogy with the operating

voltages of many commercial EDLCs using organic electrolytes [10, 12]. Note that planar

electrodes charge very rapidly compared to porous electrodes, resulting in a significantly

shorter cycle period.

The dimensionless numbers associated with Case 1 were a∗ = 2.4, L∗ = 7.2 × 104, j∗s =

2.4× 10−6, t∗c = 2.2× 107, νp = 0.38, Le = 374, and C∗ = 310. The dimensionless governing

Equations (6.3), (6.4), and (6.6) and their associated initial and boundary conditions indicate

that the dimensionless solution for ψ∗, c∗1, c
∗
2, and T ∗ depends only on the seven dimensionless

numbers defined in Equation (6.10). To illustrate this, the twelve input parameters z, a, D,

εr, ρ, cp, k, c∞, L, T0, js, and tc for Cases 2 and 3 were all varied arbitrarily, while the seven

dimensionless numbers a∗, L∗, j∗s , t
∗
c , νp, Le, and C∗ remained identical for Cases 1 to 3.

6.3.1.1 Dimensionless potential

Figure 6.1(a) shows the computed electric potential ψ(0, t) at the surface of Electrode A

as a function of time t during two consecutive galvanostatic cycles for Cases 1 to 3. As

expected, the surface potential increased during charging and decreased during discharging.

The temporal evolution of ψ(0, t) and/or its peak value differed among the three cases

considered. As previously mentioned, Case 1 featured realistic electrolyte properties and
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Figure 6.1: Computed (a) electric potential ψ(0, t) at the surface of Electrode A as a function

of time t and (b) dimensionless electric potential ψ∗(0, t∗) as a function of dimensionless time

t∗ during two consecutive galvanostatic charging/discharging cycles for Cases 1 to 3 (Table

6.2).
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cycling conditions resulting in a maximum surface potential of 2.5 V. On the other hand, the

surface potential in Case 2 reached values in excess of 3.7 V due to the different properties of a

hypothetical electrolyte chosen to maintain the same dimensionless similarity parameters as

in Case 1. Figure 6.1(b) plots the same data shown in Figure 6.1(a) in terms of dimensionless

potential ψ∗(0, t∗) as a function of dimensionless time t∗. It is evident that the dimensionless

data for all three cases collapsed onto a single curve. Similar results were obtained at any

arbitrary location in the domain (not shown).

6.3.1.2 Dimensionless concentration

Similarly, Figure 6.2(a) shows the computed anion concentration c2(a/2, t) at the Stern/diffuse

layer interface near Electrode A as a function of time t for Cases 1 to 3. The computed max-

imum values of c2(a/2, t) for the different cases varied by nearly two orders of magnitude.

This can be attributed to the differences in ion diameter a between the different cases caus-

ing large differences in cmax. Figure 6.2(b) presents the same data in dimensionless form as

c∗2(a
∗/2, t∗) versus t∗. Here also, the computed dimensionless concentration c∗2(a

∗/2, t∗) at

the Stern/diffuse layer interface as a function of t∗ collapsed onto a single curve for the three

different cases considered. The maximum dimensionless concentration c∗max was determined

by the packing parameter νp as c∗max = 2/νp. Similar results were obtained at other locations

in the domain as well as for the cation concentration c1(x, t) and c∗1(x
∗, t∗) (not shown).

6.3.1.3 Dimensionless temperature

Finally, Figures 6.3(a) and 6.3(b) show the temporal evolution of the computed temperature

change T (a/2, t)− T0 at the Stern/diffuse layer interface and T (L, t)− T0 at the centerline,

respectively. Temperature oscillations about an overall temperature rise were evident at

each location. Figures 6.3(c) and 6.3(d) show the same data but in dimensionless form. Here

also, the dimensionless temperatures T ∗(a∗/2, t∗) and T ∗(L∗, t∗) for all three cases considered

collapsed onto a single curve. Similar results were obtained at other locations in the domain

(not shown). Figure 6.3(c) also shows the irreversible temperature rise T ∗irr(t
∗) associated
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Figure 6.2: Computed (a) anion concentration c2(a/2, t) at the Stern/diffuse layer interface

as a function of time t and (b) dimensionless anion concentration c∗2(a
∗/2, t∗) as a function of

dimensionless time t∗ during two consecutive galvanostatic charging/discharging cycles for

Cases 1 to 3 (Table 6.2).
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during two consecutive galvanostatic charging/discharging cycles for Cases 1 to 3 (Table 6.2).
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Table 6.3: Baseline values of the seven dimensionless similarity parameters used in Figure

6.4 to develop the correlation for ∆T ∗rev given by Equation (6.17).

Case 1 Case 4 Case 5

a∗ 2.4 1.6 6.1

L∗ 7.2× 104 4.7× 104 1.4× 105

j∗s 2.4× 10−6 8.7× 10−6 6.0× 10−7

t∗c 2.2× 107 9.2× 106 4.4× 107

νp 0.38 0.16 0.74

Le 374 748 281

C∗ 310 735 233

with irreversible Joule heating and given by Equation (6.13) as well as the temperature

oscillation amplitude ∆T ∗rev(a
∗/2) associated with reversible heating. As expected, the slope

of the overall dimensionless temperature rise was given by j∗2s /2C
∗.

Overall, these results illustrate the scaling analysis performed on the coupled MPNP and

energy conservation equations and their initial and boundary conditions for EDLCs with

binary and symmetric electrolytes under galvanostatic cycling. The dimensionless variables

ψ∗(x∗, t∗), c∗i (x
∗, t∗), and T ∗(x∗, t∗) depended only on the seven similarity parameters a∗,

L∗, j∗s , t
∗
c , νp, Le, and C∗. The same observations were made for the dimensionless local

volumetric heat generation rates q̇∗irr and q̇∗rev (see Appendix A).

6.3.2 Scaling laws for thermal effects

6.3.2.1 Temperature oscillation amplitude

Table 6.3 summarizes three baseline sets of dimensionless similarity parameters used to

develop scaling laws for ∆T ∗rev. Case 1 corresponds to the similarity parameters for 1 mol L−1

TEABF4 in PC solvent, previously used to illustrate the scaling analysis. Cases 4 and 5

feature different values of a∗, L∗, j∗s , t
∗
c , νp, Le, and C∗.

Figure 6.4(a) shows ∆T ∗rev(a
∗/2) as a function of the dimensionless heat capacity C∗
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Figure 6.4: Computed values of (a) ∆T ∗rev(a
∗/2) as a function of C∗, (b) ∆T ∗rev(a
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as a function of Le, (c) ∆T ∗rev(a
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∗/2)C∗Le1/2/Q∗rev as a function of t∗c .
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varying from 78 to 735 while the other six relevant dimensionless similarity parameters are

provided in Table 6.3. Since the reversible heat generation Q∗rev does not depend on C∗, it

remained identical for all points in each case. Figure 6.4(a) indicates that ∆T ∗rev(a
∗/2) was

proportional to 1/C∗. Note that this was consistent with the expression of T ∗irr given by

Equation (6.13).

Figure 6.4(b) plots ∆T ∗rev(a
∗/2)C∗ as a function of the Lewis number Le ranging from

187 to 748. Here also, the similarity parameters other than Le are given in Table 6.3. Figure

6.4(b) reveals that ∆T ∗rev(a
∗/2)C∗ was proportional to 1/Le1/2. As previously mentioned,

large Lewis numbers correspond to rapid heat diffusion compared to mass diffusion. Thus,

∆T ∗rev(a
∗/2) at the Stern/diffuse layer interface decreased as Le increased due to the increased

rate of heat diffusion within the electrolyte.

Figure 6.4(c) plots ∆T ∗rev(a
∗/2)C∗Le1/2 as a function of Q∗rev computed numerically for

various values of j∗s and νp in the ranges 3× 10−7 ≤ j∗s ≤ 2.4× 10−6 and 0.0012 ≤ νp ≤ 0.88.

It confirms that ∆T ∗rev(a
∗/2)C∗Le1/2 was linearly proportional to Q∗rev.

Figure 6.4(d) shows ∆T ∗rev(a
∗/2)C∗Le1/2/Q∗rev as a function of the cycle period t∗c ranging

from 1.2 × 106 to 4.4 × 107 with all other parameters given by Table 6.3. It indicates that

∆T ∗rev(a
∗/2)C∗Le1/2/Q∗rev was proportional to 1/t

∗1/2
c and that all cases fell on a single curve.

In fact, charging over a longer cycle period t∗c allows more time for the heat generated to

dissipate from the EDL region to the bulk electrolyte, thus reducing the maximum oscillation

amplitude.

Finally, the ratio ∆T ∗rev(a
∗/2)C∗Le1/2t

∗1/2
c /Q∗rev was found to be independent of a∗ and

varied negligibly with L∗ (see Appendix A). It was approximately constant and equal to 1.3

so that the dimensionless temperature oscillation amplitude was given by

∆T ∗rev(a
∗/2) = 1.3

Q∗rev

t
∗1/2
c Le1/2C∗

= 1.3
Q∗E,d +Q∗E,s +Q∗S,c

t
∗1/2
c Le1/2C∗

. (6.17)

It can be expressed in dimensional form as

∆Trev(a/2) = 1.3
Q′′rev

(tckρcp)1/2
. (6.18)

The temperature oscillation amplitude ∆Trev(a/2) increased with increasing amount of re-
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versible heat generated during the charging step Q′′rev and with decreasing cycle period tc,

as well as decreasing electrolyte thermal effusivity defined as eth = (kρcp)
1/2. The latter

represents the rate at which the electrolyte can absorb heat from its surroundings [101].

6.3.2.2 Heat generation

The scaling analysis of Section 6.2.3 indicated that the dimensionless volumetric heat gener-

ation rates q̇∗E,d, q̇
∗
E,s, and q̇∗S,c were functions of a∗, L∗, j∗s , t

∗
c , and νp only. This section aims

to derive scaling laws for Q∗E,d, Q
∗
E,s, and Q∗S,c as functions of these five similarity parameters

to be used in Equation (6.17).

First, plotting Q∗E,d, Q
∗
E,s, and Q∗S,c as functions of L∗ and a∗ indicated that the dimen-

sionless inter-electrode spacing L∗ had no effect on Q∗E,d, Q
∗
E,s, and Q∗S,c (see Appendix A).

Indeed, for sufficiently large L∗, i.e., L∗ � 1, the EDLs did not overlap, and the EDL con-

centration profiles, responsible for reversible heating, were independent of L∗ as previously

observed by Wang and Pilon [42, 43, 47]. In addition, the heat of mixing contribution Q∗S,c

was found to be proportional to a∗3 while Q∗E,d and Q∗E,s were independent of a∗. This is

consistent with the expressions for q̇∗E,d, q̇
∗
E,s, and q̇∗S,c given by Equations (6.8) and (6.9).

Plotting Q∗E,d as a function of the dimensionless product j∗s t
∗
c for several combinations of

νp, j
∗
s , and t∗c showed that predictions for the same values of νp and j∗s t

∗
c overlapped despite

featuring different values of j∗s and t∗c . This indicates that Q∗E,d depended only on the product

j∗s t
∗
c rather than on the individual parameters j∗s and t∗c . This was also true for Q∗E,s and

Q∗S,c/a
∗3 (see Appendix A).

Figure 6.5(a) shows the reciprocal 1/Q∗E,d as a function of the packing parameter νp

for various values of j∗s t
∗
c . It indicates that 1/Q∗E,d was a linear function of νp given by

1/Q∗E,d = AE,d(j
∗
s t
∗
c)νp + BE,d(j

∗
s t
∗
c) where AE,d and BE,d are semi-empirical functions of

j∗s t
∗
c . As νp increased and steric effects became more significant, Q∗E,d decreased, i.e., 1/Q∗E,d

increased. Figure 6.5(b) shows the fitting functions AE,d and BE,d as functions of the product

j∗s t
∗
c . Both could be fitted as power law functions of j∗s t

∗
c so that AE,d = 0.4(j∗s t

∗
c)
−0.6 and
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Figure 6.5: (a) Computed values of 1/Q∗E,d as a function of νp for different values of j∗s t
∗
c

along with curve fits of the form 1/Q∗E,d = AE,dνp + BE,d [Equation (6.19)] and (b) fitting

functions AE,d and BE,d versus j∗s t
∗
c .
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BE,d = 10(j∗s t
∗
c)
−1.8. This yielded the correlation for Q∗E,d

Q∗E,d =
1

10(j∗s t
∗
c)
−1.8 + 0.4(j∗s t

∗
c)
−0.6νp

. (6.19)

Note that in the limiting case when νp approaches zero, Q∗E,d = 0.1(j∗s t
∗
c)

1.8. This corresponds

to cases when ions can be treated as point charges whose transport is governed by the

Poisson-Nernst-Planck model [38].

Similarly, Figure 6.6(a) plots Q∗E,s as a function of the packing parameter νp for different

values of j∗s t
∗
c . It indicates that Q∗E,s was (i) linearly proportional to νp for small values of νp

and (ii) inversely proportional to νp as νp approached 1. The dashed lines are curve fits of

the form Q∗E,s = [1/ (AE,s(j
∗
s t
∗
c)νp) + νp/BE,s(j

∗
s t
∗
c)]
−1 where AE,s and BE,s are functions of

the product j∗s t
∗
c . Figure 6.6(b) shows the fitting functions AE,s and BE,s versus j∗s t

∗
c . Both

could be fitted as power laws such that AE,s = (j∗s t
∗
c)

3.3/680 and BE,s = (j∗s t
∗
c)/6.7. Then,

the correlation for Q∗E,s can be written as

Q∗E,s =
1

680(j∗s t
∗
c)
−3.3ν−1p + 6.7(j∗s t

∗
c)
−1νp

. (6.20)

Finally, Figure 6.7(a) plots Q∗S,c/a
∗3 as a function of νp for various values of j∗s t

∗
c . It

is evident that Q∗S,c/a
∗3 (i) was inversely proportional to νp when νp was small and (ii)

decreased steeply towards zero as νp approached 1. In the latter case, the behavior of

Q∗S,c/a
∗3 can be estimated based on the expression for q̇∗S,c given by Equation (6.9) and

indicating that q̇∗S,c was proportional to the concentration gradient ∂(c∗1 + c∗2)/∂x
∗. This

concentration gradient could be approximated in the limiting case when the dimensionless

surface concentration is c∗max = 2/νp. Then, the dimensionless concentration sum c∗1 + c∗2

decreased from c∗1 + c∗2 = 2/νp at the electrode surface to the bulk concentration c∗1 + c∗2 = 2

over the EDL thickness (∆x∗ ∼ 1) so that ∂(c∗1 + c∗2)/∂x
∗ ∼ (1 − νp)/νp. Thus, Figure

6.7(b) plots Q∗S,c/a
∗3 as a function of (1− νp)/νp, along with dashed lines of slope 2 to guide

the eye. It indicates that for small values of (1 − νp)/νp, i.e., for νp approaching unity,

Q∗S,c/a
∗3 was proportional to [(1− νp)/νp]2. The data can be fitted with curve fits of the

form Q∗S,c/a
∗3 =

[
νp/AS,c(j

∗
s t
∗
c) + ν2p/(1− νp)2BS,c(j

∗
s t
∗
c)
]−1

represented by the dashed lines in

Figure 6.7(a). Figures 6.8(a) and 6.8(b) show the fitting functions AS,c and BS,c, respectively,
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Figure 6.6: (a) Computed values of Q∗E,s as a function of νp for different values of j∗s t
∗
c along

with curve fits of the form Q∗E,s = [1/AE,sνp + νp/BE,s]
−1 [Equation (6.20)] and (b) fitting

functions AE,s and BE,s versus j∗s t
∗
c .
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given by Equation (6.21).
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as functions of j∗s t
∗
c . They were fitted as AS,c = (j∗s t

∗
c)

2.7/6700 and BS,c = 0.0095j∗s t
∗
c − 0.045.

Thus, the correlation for Q∗S,c can be expressed as

Q∗S,c =
a∗3

6700νp(j∗s t
∗
c)
−2.7 + 100(0.95j∗s t

∗
c − 4.5)−1[(1− νp)/νp]−2

. (6.21)

The above scaling laws for ∆T ∗rev(a
∗/2) and for Q∗E,d, Q

∗
E,s, and Q∗S,c were derived for a

wide range of dimensionless parameters, namely, 1.2 ≤ a∗ ≤ 29, 3.6× 104 ≤ L∗ ≤ 2.2× 105,

3.0×10−7 ≤ j∗s ≤ 8.7×10−6, 1.2×106 ≤ t∗c ≤ 8.7×107, 0.0012 ≤ νp ≤ 0.88, 187 ≤ Le ≤ 748,

and 78 ≤ C∗ ≤ 735. Note that Q∗E,d, Q
∗
E,s, and Q∗S,c given by Equations (6.19) to (6.21)

could predict those computed numerically with average relative error of 5%, 20%, and 46%,

respectively, as well as ∆T ∗rev given by Equation (6.17) with average relative error of 12%

(see Appendix A).

The correlations for the reversible heating terms Q∗E,d, Q
∗
E,s, and Q∗S,c given by Equations

(6.19) to (6.21) offer several interesting insights into the reversible heating in an EDLC. In

particular, Q∗E,d, Q
∗
E,s, and Q∗S,c/a

∗3 were all found to be functions of j∗s t
∗
c = jstc/zFc∞λD =

jstc/(ε0εrRuT0c∞/2)1/2 and νp = 2Naa
3c∞ only. This indicates that the amount of reversible

heat generated during a charging step Q′′rev depended only on the electrolyte properties and

on the amount of charge added to the EDLC corresponding to ∆qs = jstc/2 (in C/m2). In

addition, the amount of reversible heat consumed during the discharging step was equal to

−Q′′rev. This implies that the net reversible heating in an EDLC is zero over any complete

charge/discharge cycle, even if the charging and discharging current densities differ, since

the total charge ∆qs would remain the same. Moreover, Q′′E,d and Q′′E,s (in dimensional

form) were proportional to z−1 while Q′′S,c was proportional to z2. This is consistent with

the expressions for q̇E,d and q̇E,s [Equation (4.22)], depending on z−1 through the electrical

conductivity σ. By contrast, the dependence of Q′′S,c on the valency z was weaker than

that of the local volumetric heat generation rate q̇S,c [Equation (4.25)] which is proportional

to z3. This difference can be attributed to the fact that the ion fluxes N1 and N2 were

approximately proportional to z−1. As a result, the heat of mixing contributed the most to

the reversible heat generation rate for electrolytes featuring large valency z. Interestingly,

the diffusion coefficient D did not affect the amount of reversible heat generated per charging
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step represented by Q′′rev. This was due to the fact that, although D appears in the numerator

of the expressions for q̇E,d and q̇E,s [Equation (4.22)], the electrical conductivity σ, appearing

in the denominator, is also proportional to D.

6.3.2.3 Thermal behavior of porous electrodes

The above scaling laws were derived from simulations of planar electrodes while, in prac-

tice, EDLC electrodes are porous. Previous studies using equilibrium models found that

electrodes with radii of curvature larger than 40 nm yielded the same areal capacitance as

planar electrodes [47, 48]. This suggests that applying scaling laws for planar electrodes to

electrodes with large enough pores is a reasonable approximation. However, the choice of

surface area used to define the surface current density js must be carefully considered. In-

deed, in contrast to planar electrodes, the surface areas of the separator and of the porous

electrode differ significantly [29]. Based on charge conservation, the average current density

at the electrode/electrolyte interface should equal js = Is/AC , where Is is the current (in A)

imposed at the current collector and AC is the accessible surface area of the porous electrode

(in m2).

EDLC electrodes often feature mesopores and micropores smaller than 40 nm [19]. For

such systems, the above scaling laws for planar electrodes could be corrected by a factor

accounting for the morphology of the electrode. In fact, Wang et al. [102] successfully

modeled the integral capacitance of nanoporous carbon electrodes as the product of the

theoretical planar-electrode capacitance and a function depending only on the average pore

radius in the electrode and on the effective ion diameter scaled by the Debye length. In

addition, the dielectric constant εr decreases under large electric fields typical of those found

near electrode/electrolyte interfaces in EDLCs [103]. However, here, εr was assumed to be

constant to facilitate the scaling analysis. Wang et al. [102] also made this assumption and

showed that the effect of field-dependent relative permittivity was indirectly accounted for by

the semi-empirical constants appearing in the correlation. A similar approach could be used

to extend the present model to predict the heat generation rates and temperature oscillations
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in actual porous electrodes. To do so, a broad range of experimental data for various porous

electrode structures and electrolytes would be required to validate this approach. However,

this falls beyond the scope of the present study. Moreover, experimental temperature data

currently available in the literature for EDLCs would be insufficient to rigorously identify a

correction factor for porous electrodes and demonstrate the validity of any scaling analysis

[7, 8, 25, 29, 76–78]. Indeed, most of the data were collected on commercial EDLC devices

[7, 8, 25, 29, 76] whose electrolyte composition and electrode morphologies are not readily

available.

6.4 Conclusion

In this chapter, scaling analysis was performed for the thermal model derived from first prin-

ciples in Chapter 4 for EDLCs with binary and symmetric electrolyte under galvanostatic

cycling [2]. The scaling analysis reduced the design problem from twelve independent dimen-

sional parameters to seven physically meaningful dimensionless similarity parameters govern-

ing coupled electrodiffusion and thermal transport in EDLC electrolyte. Scaling laws charac-

terizing the maximum temperature fluctuations and the total irreversible and reversible heat

generated during a charging step were developed for planar electrodes. These expressions

can estimate the heat generation and temperature behavior for various realistic electrolytes

and cycling conditions without having to perform sophisticated and time-consuming numer-

ical simulations. These dimensionless numbers and the scaling laws provide a framework

that can be used for developing design rules and thermal management strategies for actual

EDLCs.
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CHAPTER 7

Thermal effects of asymmetric electrolytes in EDLCs

This chapter generalizes the first-principles thermal model derived in Chapter 4 for electric

double layer capacitors (EDLCs) with binary and symmetric electrolytes to account for

multiple ion species and/or asymmetric electrolytes. It accounts for both irreversible and

reversible heat generation rates resulting from the transient electrodiffusion of ions within

the electrolyte. This generalization is important because many widely used electrolytes, such

as aqueous H2SO4, are asymmetric [57–60]. In addition, electrolyte mixtures including more

than two ion species have attracted interest for EDLC applications because certain mixtures

perform better than either of the original electrolytes. For example, eutectic mixtures of ionic

liquids can provide broader operating temperature ranges than either constituent [61–63].

These asymmetric and/or multi-species electrolytes cannot be rigorously accounted for by

existing thermal models accounting for reversible heating [2, 29, 30, 76, 82], as they were

limited to binary and/or symmetric electrolytes. In addition, detailed numerical simulations

were performed for EDLCs with planar electrodes and binary and asymmetric electrolytes

in order to investigate the effects of electrolyte asymmetry on the irreversible and reversible

heat generation rates within the EDLCs and on the resulting local temperature.

7.1 Analysis

7.1.1 Schematic and assumptions

Figure 4.1 illustrates the one-dimensional EDLC simulated in the present study. It consists

of two planar electrodes separated by an electrolyte with inter-electrode spacing 2L. The

electrodes located at x = 0 and x = 2L are denoted as Electrodes A and B, respectively. The
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ion species with the largest effective ion diameter corresponds to i = 1. In contrast to EDLC

cells using symmetric electrolytes, those using asymmetric electrolytes lack antisymmetry

in the electric potential and ion concentrations [57]. Thus, for asymmetric electrolytes, the

entire electrolyte region must be simulated [57].

To make the problem mathematically tractable, the following assumptions were made: (1)

Chemical reactions and ion insertion into the electrode were absent. (2) The electrolyte was

obeyed the GMPNP model (Section 2.4.3). (3) Dissociation of the electrolyte was complete.

(4) Bulk movement of the electrolyte, i.e., advection, was negligible. (5) All electrolyte

properties were constant and independent of local ion concentrations and temperature, with

the sole exception of the concentration-dependent electrical conductivity of the electrolyte.

(6) The simulated EDLC was thermally insulated, and (7) the Stern layer thickness H was

assumed to be equal to the effective radius of the largest ion species, i.e., H = a1/2. Here,

Assumption (1) and Assumptions (3)–(6) were identical to those used in Chapters 3, 4,

and 6, while Assumptions (2) and (7) were modified to account for multi-species and/or

asymmetric electrolytes.

7.1.2 Heat generation in multi-species and asymmetric electrolytes

Chapter 4 defined the electrical heat generation rate q̇E as

q̇E = j · E (7.1)

where j =
n∑
i=1

ziFNi is the ionic current density [28] and E = −∇ψ is the electric field vector.

Based on the expression for the ion flux Ni in the GMPNP model [Equation (2.11)], the

current density j in a general electrolyte solution containing n ion species can be written as

j = σE− F
n∑
i=1

Dizi∇ci −

 FNA

n∑
i=1

Dizici

1−NA

n∑
j=1

a3jcj

 n∑
j=1

a3j∇cj. (7.2)

Here, σ is the electrical conductivity of the electrolyte given by Equation (2.4). Equation

(7.2) can be rearranged to find an expression for the electric field vector E to be substituted

into Equation (7.1). As in Chapter 4, this results in three contributions to q̇E such that
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q̇E = q̇J,irr + q̇E,d + q̇E,s. The first term q̇J,irr corresponds to the irreversible Joule heating.

Its form is identical to that derived in Chapter 4, i.e.,

q̇J,irr =
|j|2

σ
. (7.3)

The heat generation rates q̇E,d and q̇E,s are reversible and arise from ion diffusion and steric

repulsion, respectively. They are expressed as

q̇E,d =
j

σ
·

(
F

n∑
i=1

Dizi∇ci

)
and q̇E,s =

j

σ
·

(
F

n∑
i=1

Dizici

)(
NA

n∑
i=1

a3i∇ci
)

(
1−NA

n∑
i=1

a3i ci

) (7.4)

and are the more general forms of those in Equation (4.22). Note that q̇E,d and q̇E,s differ

from zero only in the presence of an ion concentration gradient ∇ci.

Chapter 4 defined the heat of mixing q̇S as [2]

q̇S =
n∑
i=0

Ni ·Ru∇
(
T 2∂ ln γi,DH

∂T

)
(7.5)

where γi,DH is the activity coefficient of ion species i or of the solvent i = 0. This chapter

again uses the expression of γi,DH given by the Debye-Hückel limiting law as it accounts for

the effects of both temperature and ion concentrations. It was derived for dilute electrolytes

and accounts for long-range electrical interactions between ions and for thermal agitation

while neglecting short-range ion-solvent or ion-ion interactions [28, 104]. Then, the activity

coefficient of ion species i in a general multi-species and/or asymmetric electrolyte can be

expressed as [28,104]

ln γi,DH = −
z2i eF

2(
n∑
i=1

z2i ci)
1/2

8π(ε0εrRuT )3/2
. (7.6)

Substituting Equation (7.6) into the expression for the heat of mixing q̇S given by Equation

(7.5) and assuming negligible contribution from the solvent (i = 0) yields two terms such
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that q̇S = q̇S,c + q̇S,T , where q̇S,c and q̇S,T are expressed as

q̇S,c =
3

32π

eF 2

(ε0εr)3/2
(
RuT

n∑
i=1

z2i ci

)1/2

(
n∑
i=1

z2i Ni

)
·

(
n∑
i=1

z2i∇ci

)

and q̇S,T = − 3

32π

eF 2

(
n∑
i=1

z2i ci

)1/2

(ε0εr)3/2R
1/2
u T 3/2

n∑
i=1

z2i Ni · ∇T (7.7)

and are more general forms of those in Equation (4.25). These terms correspond to the heat

of mixing arising from concentration gradients and from temperature gradients, respectively.

Here, q̇S,c represents heat released by ions migrating in the direction of increasing concen-

tration, e.g., into the EDL region, as this leads to a more ordered distribution of ions and

consequently smaller entropy. Meanwhile, q̇S,T represents heat released by ions migrating

in the direction of decreasing temperature, as smaller thermal agitation results in smaller

entropy. For binary and symmetric electrolytes, Equations (7.3), (7.4), and (7.7) simplify to

those derived in Chapter 4.

Note that the expression for the activity coefficient γi,DH differs from the Langmuir-type

activity coefficient γi,L used to derive the GMPNP model and given by Equation (2.10). The

different formulations were used because the heat of mixing q̇S must account for the temper-

ature dependence of γi,DH while the GMPNP derivation must account for the steric effects

through γi,L. Unfortunately, neither γi,L nor γi,DH captures all these effects simultaneously.

However, the steric repulsion represented by the Langmuir-type activity coefficient γi,L does

affect the heat generation rates through its influence on the ion concentrations ci, the ion

fluxes Ni, and the current density j appearing in the expressions of q̇J,irr, q̇E,d, q̇E,s, q̇S,c, and

q̇S,T .

Overall, the total heat generation rate q̇ can be expressed as the sum of an irreversible

q̇J,irr and a reversible q̇rev heat generation rate such that q̇ = q̇J,irr + q̇rev where q̇rev =

q̇E,d + q̇E,s + q̇S,c + q̇S,T .
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7.1.3 Initial and boundary conditions

The one-dimensional governing Equation (2.5) for ψ(x, t) was solved within the two Stern

layers and the diffuse layer. It required one initial condition and two boundary conditions

for each region. Initially, the potential was uniform and equal to zero throughout the EDLC

(0 ≤ x ≤ 2L) such that

ψ(x, 0) = 0 V. (7.8)

During galvanostatic cycling, the electric current density at Electrode A alternated between

charging at current density +js and discharging at current density −js as a square wave

of cycle period tc. Charge conservation requires the displacement current density in the

electrolyte at the surface of Electrode A to equal the electronic current density jim(t) within

the electrode. This condition was expressed as

−ε0εr
∂2ψ

∂t∂x
(0, t) = jim(t) =


js for charging (nc − 1)tc ≤ t < (nc − 1/2)tc

−js for discharging (nc − 1/2)tc ≤ t < nctc

(7.9)

where nc = 1, 2, ... is the cycle number. Moreover, the electric potential and the electric field

were continuous across the Stern/diffuse layer interface located at x = H such that

ψ(H−, t) = ψ(H+, t) and
∂ψ

∂x
(H−, t) =

∂ψ

∂x
(H+, t). (7.10)

Similarly, they were continuous across the Stern/diffuse layer interface at x = 2L − H so

that

ψ(2L−H−, t) = ψ(2L−H+, t) and
∂ψ

∂x
(2L−H−, t) =

∂ψ

∂x
(2L−H+, t). (7.11)

Finally, the surface of Electrode B was electrically grounded, i.e., ψ(2L, t) = 0 V.

The one-dimensional mass conservation Equation (2.6) with GMPNP ion flux Equation

(2.11) for ion concentration ci(x, t) was solved only within the diffuse layer since the Stern

layer does not contain free charge [26, 27]. Thus, one initial condition and two boundary

conditions were required. The ion concentrations were initially uniform, and the solution

was electrically neutral, i.e.,

ci(x, 0) = ci,∞ with
n∑
i=1

zici,∞ = 0. (7.12)
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At the Stern/diffuse layer interfaces located at x = H and x = 2L−H, all ion fluxes vanished

because there was no ion insertion into the electrodes, i.e.,

Ni(H, t) = Ni(2L−H, t) = 0 mol m−2s−1. (7.13)

The one-dimensional energy conservation Equation (2.12) expressed in terms of the tem-

perature T (x, t) was solved within the two Stern layers and the diffuse layer. It required one

initial condition and two boundary conditions for each region. The initial temperature was

uniform and equal to T (x, 0) = T0. The surfaces of Electrode A at x = 0 and of Electrode

B at x = 2L were assumed to be thermally insulated such that

−k∂T
∂x

(0, t) = 0 W m−2 and − k∂T
∂x

(2L, t) = 0 W m−2. (7.14)

The temperature and heat flux were continuous across the Stern/diffuse layer interface at

x = H, i.e.,

T (H−, t) = T (H+, t) and − k∂T
∂x

(H−, t) = −k∂T
∂x

(H+, t). (7.15)

Similarly, they were continuous across the second Stern/diffuse layer interface at x = 2L−H

so that

T (2L−H−, t) = T (2L−H+, t) and − k∂T
∂x

(2L−H−, t) = −k∂T
∂x

(2L−H+, t). (7.16)

7.1.4 Constitutive relationships

The electrolytes simulated were based on the properties of aqueous H2SO4, a common binary

and asymmetric electrolyte used in EDLCs [10]. The ion valencies for aqueous H2SO4 were

equal to z1 = −2 and z2 = 1, where i = 1 and i = 2 corresponded to SO2−
4 and H+,

respectively. The associated solvated ion diameters were taken as a1 = 0.76 nm and a2 =

0.56 nm and the diffusion coefficients as D1 = 1.1× 10−9 m2s−1 and D2 = 9.3× 10−9 m2s−1

[58–60]. It is evident that aqueous H2SO4 was significantly asymmetric with respect to

valency, ion diameter, and diffusion coefficient. Finally, the relative permittivity εr = 78.4,

density ρ = 997 kg m−3, specific heat cp = 4180 J kg−1K−1, and thermal conductivity

k = 0.61 W m−1K−1 were taken as those of water [58].
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7.1.5 Method of solution

The one-dimensional governing Equations (2.5), (2.6), and (2.12) were solved using the same

method and same convergence criteria described in Section 4.1.5.

7.2 Results and discussion

Table 7.1 summarizes the cases simulated to investigate the effect of asymmetric valencies zi,

ion diameters ai, and diffusion coefficients Di on the thermal behavior of EDLCs with binary

electrolytes. Case 1 represents a symmetric electrolyte with ion properties corresponding to

those of H+ ions and was used as a baseline case. Cases 2–4 were chosen to illustrate the

effect of valency zi with all other properties equal to those of Case 1. Case 2 corresponded

to symmetric electrolyte with −z1 = z2 = 2 based on the valency of SO2−
4 while Case

3 and 4 represented asymmetric electrolytes with z1 = −2 and z2 = 1. Asymmetry in

valency required asymmetric bulk ion concentrations c2,∞ = −z1c1,∞/z2 in order to satisfy

electroneutrality. Thus, Cases 3 and 4 were chosen with different bulk concentrations ci,∞

so that z1 and c1,∞ in Case 3 equaled those of Case 2, while z2 and c2,∞ in Case 4 equaled

those of Case 1.

Similarly, the effect of ion diameter ai was demonstrated by Case 5 (a1 = a2 = 0.76 nm)

and Case 6 (a1 = 0.76 nm and a2 = 0.56 nm), while the effect of diffusion coefficient Di was

shown in Case 7 (D1 = D2 = 1.1 × 10−9 m2s−1) and Case 8 (D1 = 1.1 × 10−9 m2s−1 and

D2 = 9.3× 10−9 m2s−1). The electrolyte relative permittivity εr, density ρ, specific heat cp,

and thermal conductivity k remained the same for all cases. The inter-electrode spacing and

initial temperature were equal to L = 20 µm and T0 = 298 K, respectively. The cell was

cycled galvanostatically at js = 14 mA cm−2 with cycle period tc = 7.6 ms. This current

density js was within the range of current densities per unit surface area of the current

collector reported in experimental studies [29,78]. The combination of js and tc was chosen

to yield a maximum cell voltage of 1 V for the baseline Case 1. The current density and

cycle period were held constant for all cases to facilitate comparison. The temperature in the
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expressions of Ni, q̇S,c, and q̇S,T was taken as the initial temperature T0, since the electrolyte

properties were assumed to be constant and independent of temperature [Assumption (5)].

7.2.1 Electric potential

Figure 7.1 shows the cell potential ψs(t) = ψ(0, t)−ψ(2L, t) computed as a function of time t

over one and a half cycles for (a) Cases 1–4 featuring different ion valencies zi and (b) Cases 1,

5, and 6 featuring different effective ion diameters. Results for Cases 7 and 8 featuring differ-

ent diffusion coefficients Di were not shown because the predicted cell potentials overlapped

that of Case 1 (D1 = D2 = 9.3 × 10−9 m2s−1) at all times. In all cases, the cell potential

increased during the charging step and decreased during the discharging step. As previously

mentioned, the current density js and cycle period tc were chosen so that the maximum cell

potential for the baseline Case 1 would equal 1 V. The numerically predicted cell potential

qualitatively resembled those measured during galvanostatic cycling of EDLCs [77,78]. Note

that the measured cell potential often featured a significant “IR drop” due to ohmic resis-

tance. However, the predicted cell potential, shown in Figure 7.1, was almost entirely due to

the electric double layer formation. The portion of the cell potential due to ohmic resistance

in the electrolyte can be approximated as js(2L)/σ∞ where σ∞ is the electrical conductivity

of the electrolyte given by Equation (2.4) with the bulk ion concentrations c1,∞ and c2,∞.

This ohmic potential drop was on the order of 10−3 to 10−5 V and was less than 0.1% of the

maximum cell potential for all Cases 1–8. The IR drop can be reproduced numerically by

increasing the electrical resistance of the simulated EDLC, e.g., by reducing the electrolyte

conductivity σ∞, increasing the inter-electrode spacing, and/or accounting for the electrical

resistance of the electrodes and current collectors (see Appendix B).

Figure 7.1(a) indicates that increasing either or both ion valencies |zi| resulted in a

smaller cell potential at all times. Here, the surface charge density ∆qs = jstc/2 added

during the charging step was the same for all cases. Thus, the integral capacitance Cs,int,

given by Equation (2.2), increased with increasing |zi| (Table 7.1). In addition, Cases 3

and 4 featuring the same ion properties zi, ai, and Di, but different bulk ion concentrations
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Figure 7.1: Cell potential ψs(t) = ψ(0, t) − ψ(2L, t) as a function of time t over the first

cycle and a half for (a) Cases 1–4 featuring different ion valencies zi and (b) Cases 1, 5, and

6 featuring different effective ion diameters. Results for Cases 7 and 8 featuring different

diffusion coefficients Di were identical to those of Case 1.
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ci,∞ demonstrate that doubling ci,∞ slightly increased Cs,int. By contrast, Figure 7.1(b)

indicates that increasing either or both effective ion diameters ai substantially increased the

cell potential, corresponding to a decrease in capacitance Cs,int (Table 7.1). These changes

in integral capacitance with |zi| and ai were consistent with those observed from cyclic

voltammetry simulations of EDLCs with binary and asymmetric electrolytes [57]. Table

7.1 also shows that decreasing either or both ion diffusion coefficients Di had no effect on

Cs,int. This was also consistent with the results of cyclic voltammetry simulations outside

the “diffusion-limited” regime [57].

7.2.2 Concentrations

Figure 7.2 shows (a) and (c) the anion concentration c1(x, 3tc/2) near the positive Electrode

A as a function of location x as well as (b) and (d) the cation concentration c2(x, 3tc/2) near

the negative Electrode B as a function of 2L− x at time t = 3tc/2 at the end of a charging

step. Figures 7.2(a) and 7.2(b) show Cases 1–4 featuring different ion valencies zi, while

Figures 7.2(c) and 7.2(d) show Cases 1, 5, and 6 with different effective ion diameters ai.

Figure 7.2 indicates that electrolytes with asymmetric zi or ai, e.g., those in Cases 3,

4, and 6, exhibited spatially asymmetric concentration profiles. Overall, the concentration

profiles near each electrode were determined by the properties of the counterion, i.e., by

the anion (species 1) near the positive electrode [Figures 7.2(a) and 7.2(c)] and by the

cation (species 2) near the negative electrode [Figures 7.2(b) and 7.2(d)]. The ion diameter

ai controlled the counterion concentration at the Stern/diffuse layer interfaces located at

x = H and x = 2L−H where the counterion concentration reached its theoretical maximum

ci,max = 1/NAa
3
i . The maximum concentration gradient also decreased with increasing ai

due to the smaller concentration drop between the Stern/diffuse layer interface and the bulk

electrolyte. By contrast, increasing the counterion valency |zi| had no effect on the surface

counterion concentration. However, it resulted in a thinner EDL and steeper concentration

gradients near the electrodes. These effects can be attributed to the fact that (i) fewer ions

were necessary to balance the same electrode charge and (ii) the electrostatic forces were
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Figure 7.2: Anion concentration c1(x, 3tc/2) near the positive Electrode A as a function of

location x for (a) Cases 1–4 with different values of zi and (c) Cases 1, 5, and 6 with different

values of ai as well as cation concentration c2(x, 3tc/2) near the negative Electrode B as a

function of location 2L−x for (b) Cases 1–4 and (d) Cases 1, 5, and 6. All cases correspond

to time t = 3tc/2 at the end of a charging step.
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larger on ions of larger valency.

Note that Cases 7 and 8 considered asymmetry in diffusion coefficient Di but were not

shown since the results were identical to those for Case 1 (D1 = D2 = 9.3 × 10−9 m2s−1)

everywhere in the electrolyte. Thus, the diffusion coefficient Di had no effect on the con-

centration profiles for the cycling conditions considered. This was attributed to the fact

that galvanostatic cycling was simulated so that the current density js was imposed and

the fluxes of ions into the EDLs remained the same in all cases. Indeed, the increase in

cell potential ψs(t) required to maintain the desired current density js for electrolytes with

smaller diffusion coefficients was negligibly small compared to the potential drop due to the

EDLs for Cases 1, 7, and 8.

7.2.3 Irreversible Joule heat generation rate q̇J,irr

For all Cases 1–8, q̇J,irr (in W m−3) was found to be uniform and equal to q̇J,irr = j2s/σ∞

throughout the entire diffuse layer of the electrolyte, except in the EDL regions within a

few nanometers of the electrode where it decreased steeply to zero (see Appendix B). The

differences in q̇J,irr summarized in Table 7.1 reflect the fact that σ∞ increased with increasing

|zi|, Di, and/or ci,∞ of either ion species, as suggested by Equation (2.4). Note also that,

like σ∞, q̇J,irr was independent of the ion diameter ai, as illustrated by Cases 1, 5, and 6 in

Table 7.1.

7.2.4 Reversible heating

7.2.4.1 Diffusion heat generation rate q̇E,d

Figures 7.3(a) and 7.3(c) show the diffusion heat generation rate q̇E,d(x, 11tc/8) [Equation

(7.4)] at time t = 11tc/8 near the end of a charging step as a function of location x near the

positive Electrode A for Cases 1–4 and for Cases 1, 5, and 6, respectively. Similarly, Figures

7.3(b) and 7.3(d) show q̇E,d(x, 11tc/8) as a function of 2L− x near the negative Electrode B

for Cases 1–4 and for Cases 1, 5, and 6, respectively. Note that the heat generation rate was
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Figure 7.3: Diffusion heat generation rate q̇E,d(x, 11tc/8) as a function of location (a) and

(c) x near the positive Electrode A and (b) and (d) 2L − x near the negative Electrode B.

Plots (a) and (b) show Cases 1–4 with different zi while plots (c) and (d) show Cases 5 and

6 with different ai. All cases correspond to time t = 11tc/8 near the end of a charging step.
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plotted at a slightly earlier time than the concentrations shown in Figure 7.2 in order to show

the profiles characteristic of the charging step rather than those during the switch in current

direction occurring at t = 3tc/2. Figure 7.3 indicates that electrolytes with asymmetric

valency zi or ion diameter ai, e.g., those in Cases 3, 4, and 6, yielded spatially asymmetric

heat generation rate q̇E,d profiles. Moreover, for a given electrode, electrolytes sharing the

same counterion properties zi and ai as well as bulk concentration ci,∞ yielded the same heat

generation rate q̇E,d profiles. In other words, q̇E,d profiles near the positive electrode were

identical for Cases 2 and 3 [Figure 7.3(a)] and for Cases 5 and 6 [Figure 7.3(c)] while those

for Cases 1 and 4 were identical near the negative electrode [Figure 7.3(b)]. In addition, the

heat generation rate profiles for cases sharing the same counterion properties zi and ai, but

featuring different bulk concentrations ci,∞, had the same location and were very similar in

shape but had different magnitudes. For example, the peaks of the heat generation rate q̇E,d

for Case 4 spanned the same spatial regions those for Case 3 but were larger in magnitude

due to the smaller local electrical conductivity σ(x, t).

Furthermore, the heat generation rate q̇E,d was confined to a narrower region as the

valency |zi| increased due to the narrowing of the EDL region, as discussed previously [Figures

7.2(a) and 7.2(b)]. However, the maximum value of q̇E,d remained unaffected by changes in

|zi|. This can be attributed to the fact that increasing |zi| increased the local electrical

conductivity σ and the concentration gradient by the same proportion in the expression of

q̇E,d given by Equation (7.4).

Finally, increasing the counterion diameter ai reduced the magnitude of the heat gen-

eration rate q̇E,d. Although the ion diameter ai does not appear directly in the expression

of q̇E,d, it affects q̇E,d via its strong influence on the concentration profiles [Figures 7.2(c)

and 7.2(d)]. Both the concentration gradient and the electrical conductivity σ decreased

with increasing ai. However, the concentration gradient decreased more than the conduc-

tivity, resulting in a net decrease in q̇E,d. By contrast, changing the diffusion coefficient Di

had no effect. In fact, values of q̇E,d(x, t) for Case 7 (D2 = D2 = 1.1 × 10−9m2s−1) and

Case 8 (D1 = 1.1 × 10−9m2s−1, D2 = 9.3 × 10−9m2s−1) were identical to those obtained for

Case 1 (D2 = D2 = 9.3 × 10−9m2s−1) at all times and locations. The increase in the diffu-
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sion ion fluxes associated with increasing Di was balanced by the corresponding increase in

the electrical conductivity σ. In fact, for electrolytes with symmetric diffusion coefficients

D1 = D2 = D, such as Cases 1 and 7, q̇E,d was independent of diffusion coefficient D because

D appearing in the numerator canceled with that in the expression of σ in the denominator

[Equation (7.4)].

7.2.4.2 Steric heat generation rate q̇E,s

Figures 7.4(a) and 7.4(c) show the steric heat generation rate q̇E,s(x, 11tc/8) [Equation (7.4)]

as a function of location x near the positive Electrode A for Cases 1–4 and for Cases 1, 5, and

6, respectively. Similarly, Figures 7.4(b) and 7.4(d) show q̇E,s(x, 11tc/8) as a function of 2L−x

near the negative Electrode B for Cases 1–4 and for Cases 1, 5, and 6, respectively. Figure

7.4 indicates that the profiles of the heat generation rates q̇E,s were spatially asymmetric

for electrolytes with asymmetric zi and/or ai, e.g., those in Cases 3, 4, and 6. It is also

interesting to note that the heat generation rate q̇E,s had the same order of magnitude as

q̇E,d (Figure 7.3) for all cases considered. For a given electrode, electrolytes sharing the same

counterion properties zi and ai and bulk concentration ci,∞ featured the same heat generation

rate q̇E,s profiles. Increasing |zi| narrowed the region where the steric heat generation rate

q̇E,s was significant without affecting its maximum value. However, increasing ai reduced

the magnitude of q̇E,s. Here also, the steric heat generation rate q̇E,s was unaffected by the

diffusion coefficient Di. In fact, in the limiting case of D1 = D2 = D, its expression was

independent of diffusion coefficient.

7.2.4.3 Heat of mixing heat generation rate q̇S,c

Figures 7.5(a) and 7.5(c) show the heat of mixing heat generation rate q̇S,c(x, 11tc/8), [Equa-

tion (7.7)] as a function of location x near the positive Electrode A for Cases 1–4 and for

Cases 1, 5, and 6, respectively. Similarly, Figures 7.5(b) and 7.5(d) show q̇S,c(x, 11tc/8) as a

function of 2L − x near the negative Electrode B for Cases 1–4 and for Cases 1, 5, and 6,

respectively. The heat generation rate profiles q̇S,c near each electrode were very similar for
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Figure 7.4: Steric heat generation rate q̇E,s(x, 11tc/8) as a function of location (a) and (c) x

near the positive Electrode A and (b) and (d) 2L − x near the negative Electrode B. Plots

(a) and (b) show Cases 1–4 with different zi while plots (c) and (d) show Cases 5 and 6 with

different ai. All cases correspond to time t = 11tc/8 near the end of a charging step.
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Figure 7.5: Heat of mixing heat generation rate q̇S,c(x, 11tc/8) as a function of location (a)

and (c) x near the positive Electrode A and (b) and (d) 2L− x near the negative Electrode

B. Plots (a) and (b) show Cases 1–4 with different zi while plots (c) and (d) show Cases 5

and 6 with different ai. All cases correspond to time t = 11tc/8 near the end of a charging

step.
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cases sharing the same counterion properties zi and ai. The heat of mixing heat generation

rate q̇S,c increased strongly with increasing valency |zi|. Indeed, increasing the counterion

valency from |zi| = 1 to |zi| = 2 increased the maximum value of q̇S,c by nearly an order

of magnitude. By contrast, recall that q̇E,d and q̇E,s both decreased with increasing |zi|.

Equation (7.7) indicates that, for electrolytes with symmetric valency −z1 = z2 = z such

as in Cases 1 and 2, the local heat generation rate q̇S,c was proportional to z3. In fact, for

|zi| > 1, q̇S,c provided the largest contribution to the total reversible heat generation rate

q̇rev. The strong effect of |zi| on q̇S,c resulted from strong electrostatic interactions between

ions accounted for by the Debye-Hückel activity coefficient [Equation (7.6)]. Moreover, the

heat of mixing heat generation rate q̇S,c decreased with increasing counterion diameter ai.

Here also, the dependence of q̇S,c on ai was stronger than that of q̇E,d and q̇E,s. Finally,

results for Cases 7 and 8 with varying Di were identical to those of Case 1 everywhere (not

shown). This indicates that q̇S,c was independent of the diffusion coefficient Di as suggested

by its definition in Equation (7.7).

7.2.4.4 Overall reversible heat generation rate q̇rev

Figures 7.6(a) and 7.6(c) show the overall reversible heat generation rate q̇rev(x, t) = q̇E,d(x, t)+

q̇E,s(x, t) + q̇S,c(x, t) + q̇S,T (x, t) as a function of location x near the positive Electrode A for

Cases 1–4 and for Cases 1, 5, and 6, respectively, at time t = 11tc/8 near the end of a charg-

ing step. Similarly, Figures 7.6(b) and 7.6(d) show q̇rev(x, 11tc/8) as a function of 2L − x

near the negative Electrode B for Cases 1–4 and for Cases 1, 5, and 6, respectively. The

overall reversible heat generation rate q̇rev was spatially asymmetric for electrolytes with

asymmetric zi and ai, e.g., those in Cases 3, 4, and 6. It was larger near the electrode whose

counterion had a larger valency |zi| and/or a smaller ion diameter ai. The strong effect of

zi on q̇rev was caused by its effects on q̇S,c which dominated over the other heat generation

terms for |zi| > 1. Finally, q̇rev, like all its components, was independent of the diffusion

coefficient Di for all cases considered. Note that the heat generation rate q̇S,T [Equation

(7.7)] was negligible compared with the other heat generation rates for Cases 1–8. This was

also observed in the simulations of binary and symmetric electrolytes in Chapters 4 and 6.
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Figure 7.6: Overall reversible heat generation rate q̇rev(x, 11tc/8) as a function of location (a)

and (c) x near the positive Electrode A and (b) and (d) 2L− x near the negative Electrode

B. Plots (a) and (b) show Cases 1–4 with different zi while plots (c) and (d) show Cases 5

and 6 with different ai. All cases correspond to time t = 11tc/8 near the end of a charging

step.
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7.2.4.5 Total Heat Generation Rates Q̇′′J,irr and Q̇′′rev

It is difficult to directly compare the total irreversible and reversible heating based on the

local volumetric heat generation rates q̇J,irr and q̇rev. Indeed, in all cases, q̇J,irr was very small

compared to the peak values of q̇rev. However, q̇J,irr was uniform throughout the 40 µm-thick

electrolyte region while q̇rev was significant only inside the EDL region located within a few

nanometers of the electrode surfaces. To compare their relative significance, they should be

integrated over the entire electrolyte volume to assess their overall contribution to the total

heat generation. To do so, the total irreversible and reversible heat generation rates per unit

separator surface area (in W m−2) were defined as

Q̇′′J,irr(t) =

2L∫
0

q̇J,irr(x, t)dx and Q̇′′rev(t) =

2L∫
0

q̇rev(x, t)dx. (7.17)

Figure 7.7 shows the total reversible heat generation rate Q̇′′rev(t) as a function of time t

for (a) Cases 1–4 with different values of zi and (b) Cases 1, 5, and 6 with different values

of ai over one and a half cycles. The corresponding values of Q̇′′J,irr(t) were constant and

equal to Q̇′′J,irr = 2q̇J,irrL where L = 20 µm and q̇J,irr is reported in Table 7.1. The total

reversible heat generation rate Q̇′′rev(t) was periodic in time t, positive during charging, and

negative during discharging. For the conditions simulated, the reversible heat generation

rate Q̇′′rev(t) was systematically larger than Q̇′′J,irr. Indeed, the maximum value of |Q̇′′rev(t)|

was on the order of 20 to 40 W m−2 while Q̇′′J,irr was on the order of 0.001 to 0.1 W m−2.

Note that the simulations in Chapter 4 for binary and symmetric organic electrolyte, namely

TEABF4 in propylene carbonate, also predicted that |Q̇′′rev(t)| was larger than Q̇′′J,irr(t) by

about one order of magnitude. The relatively small values of Q̇′′J,irr(t) obtained in the present

study compared to that in Chapter 4 can be attributed to the larger conductivity σ∞ of the

aqueous electrolyte resulting in smaller Joule heating.

Figure 7.7(a) establishes that increasing either or both ion valencies |z1| and |z2| led

to larger reversible heat generation while Joule heating decreased (Table 7.1). Cases 1–

3 corresponded to the same bulk electrolyte concentration c1,∞. Comparing these cases

reveals that Q̇′′rev(t) and Q̇′′J,irr(t) for Case 3 (z1 = −2, z2 = 1) with asymmetric zi fell
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Figure 7.7: Total reversible heat generation rates Q̇′′rev(t) as functions of t over one and a

half cycles for (a) Cases 1–4 with a1 = a2 = 0.56 nm, D1 = D2 = 9.3 × 10−9 m2s−1, and

different zi and (b) Cases 1, 5, and 6 featuring −z1 = z2 = 1, D1 = D2 = 9.3× 10−9 m2s−1,

and different ai.
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between those corresponding to symmetric electrolytes, namely Case 1 (−z1 = z2 = 1) and

Case 2 (−z1 = z2 = 2). Cases 3 and 4 demonstrate that the total heat generation rates were

also sensitive to the bulk ion concentrations ci,∞. These two cases featured the same ion

properties zi, ai, and Di for both ion species, but the bulk ion concentrations ci,∞ of Case 4

were half those of Case 3. The results established that both |Q̇′′rev(t)| and Q̇′′J,irr(t) increased

with decreasing bulk concentrations c1,∞ and c2,∞ due to the associated smaller electrical

conductivity σ∞.

Figure 7.7(b) shows the total reversible heat generation rate Q̇′′rev(t) as a function of time

t over one and a half cycles for Cases 1, 5, and 6 corresponding to different values of a1 and

a2. The total irreversible heat generation rate Q̇′′J,irr(t) was unaffected by ai and remained

constant and equal to Q̇′′J,irr = 11 mW m−2. It was smaller than |Q̇′′rev(t)| by several orders of

magnitude. On the other hand, the total reversible heat generation rate |Q̇′′rev(t)| increased

with decreasing ai for either ion species. For Case 6 with asymmetric ai (a1 = 0.76 nm,

a2 = 0.56 nm), Q̇′′rev(t) was approximately equal to the arithmetic mean of those for the

corresponding symmetric electrolytes represented by Case 1 (a1 = a2 = 0.56 nm) and Case

5 (a1 = a2 = 0.76 nm).

Finally, the total irreversible heat generation rate Q̇′′J,irr(t) for Case 1 (D1 = D2 = 9.3×

10−9 m2s−1), Case 7 (D1 = D2 = 1.1×10−9 m2s−1), and Case 8 (D1 = 1.1×10−9 m2s−1, D2 =

9.3 × 10−9 m2s−1) featuring different values of Di was constant and equal to 11 mW m−2,

95 mW m−2, and 20 mW m−2, respectively. Its magnitude increased with decreasing diffusion

coefficient Di of either ion. It was more strongly influenced by the larger of the two diffusion

coefficients. This can be attributed to the fact that the ion with the larger diffusion coefficient

carried the majority of the current density within the bulk electrolyte. On the other hand,

Q̇′′rev(t), like the local reversible heat generation rates q̇E,d, q̇E,s, and q̇S,c, was unaffected by

the values of Di and equal to that of the baseline Case 1 (Figure 7.7).
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7.2.5 Temperature

Figure 7.8 shows the temperature differences (a) T (a/2, t)−T0 near the positive Electrode A,

(b) T (L, t)− T0 at the centerline, and (c) T (2L− a/2, t)− T0 near the negative Electrode B

for Cases 1–4 featuring different values of zi. Note that the temperature rise for the present

simulations was on the order of millikelvins. This can be attributed to the very rapid charging

of planar electrodes resulting in very small cycle periods on the order of milliseconds. Cases

3 and 4 had asymmetric valency z1 = −2 and z2 = 1 and yielded spatially asymmetric

temperature oscillations caused by the asymmetric reversible heat generation rate q̇rev. In

both cases, the temperature oscillations near the positive electrode [Figure 7.8(a)] were

approximately three times larger than as those near the negative electrode [Figure 7.8(c)].

This can be attributed to the fact that the large valency z1 = −2 of the anion produced large

q̇S,c near the positive electrode. In addition, the asymmetric electrolyte considered in Cases

3 and 4 produced larger temperature oscillations at x = a/2 than either of the symmetric

electrolytes of Case 1 (−z1 = z2 = 1) and Case 2 (−z1 = z2 = 2). For symmetric electrolytes

as in Cases 1 and 2, the temperature profiles always remained spatially symmetric so that

no significant heat fluxes crossed the cell centerline. By contrast, for asymmetric electrolytes

as in Cases 3 and 4, there was significant heat exchange between the two halves of the cell.

As a result, the temperatures evolved differently between the symmetric and asymmetric

electrolytes.

Figures 7.8(d), 7.8(e), and 7.8(f) respectively show the temperature difference T (a/2, t)−

T0 near the positive Electrode A, T (L, t)−T0 at the centerline, and T (2L−a/2, t)−T0 near

the negative Electrode B for Cases 1, 5, and 6 featuring different values of ai. The asymmetric

electrolyte of Case 6 (a1 = 0.76 nm, a2 = 0.56 nm) exhibited larger temperature oscillations

near the negative electrode [Figure 7.8(f)] than near the positive electrode [Figure 7.8(d)].

This can be attributed to the larger reversible heat generation rate q̇rev associated with the

smaller cation diameter a2 = 0.56 nm.

Moreover, Figures 7.8(b) and 7.8(e) indicate that, for a given case, the temperature

oscillations at the centerline were smaller in amplitude, less angular, and slightly delayed
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Figure 7.8: Temperature rise T (x, t) − T0 as functions of time t for (a)-(c) Cases 1–4 with

different zi and (d)-(f) Cases 1, 5, and 6 with different ai. Results are shown for three

locations, namely, (a) and (d) at x = a/2 near the positive Electrode A, (b) and (e) at the

centerline x = L, and (c) and (f) at x = 2L− a/2 near the negative Electrode B.
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compared to those close to the electrodes. This was also observed for binary and sym-

metric electrolytes in Chapters 4 and 6. It was attributed to the fact that the reversible

heat generated at the electrode surfaces had to conduct through the electrolyte to reach

the centerline [2]. In addition, the centerline temperature T (L, t) for the asymmetric elec-

trolyte of Case 3 (z1 = −2, z2 = 1) fell between those of the symmetric electrolytes con-

sidered in Case 1 (−z1 = z2 = 1) and Case 2 (−z1 = z2 = 2) corresponding to the same

bulk concentration c1,∞. Likewise, the centerline temperature T (L, t) [Figure 7.8(e)] for the

asymmetric electrolyte of Case 6 (a1 = 0.76 nm, a2 = 0.56 nm) fell between those of the

corresponding symmetric electrolytes represented by Case 1 (a1 = a2 = 0.56 nm) and Case

5 (a1 = a2 = 0.76 nm). Note also that the centerline temperature T (L, t) for Cases 1, 5,

and 6 converged to the same value after each complete cycle (e.g., t = 7.6 ms). Indeed, re-

versible heating during the charging step was compensated by reversible cooling during the

discharging step. Thus, the net reversible heat generated over a complete charge-discharge

cycle was
tc∫
0

Q̇′′rev(t)dt = 0 and the net temperature rise over one cycle was solely due to the

irreversible heat generation rate Q̇′′J,irr. For these three cases, Q̇′′J,irr was identical (Table 1).

Table 7.2 summarizes qualitative changes in the heat generation rates q̇J,irr, q̇rev, Q̇
′′
J,irr,

and Q̇′′rev as well as in the integral areal capacitance Cs,int caused by increasing the ions’

effective diameter ai, valency |zi|, diffusion coefficient Di, or bulk concentration ci,∞. Note

that the bulk concentrations c1,∞ and c2,∞ cannot be varied independently, as they are

coupled by the requirement for electroneutrality. Table 7.2 suggests a few design rules for

choosing electrolytes in order to minimize heat generation in EDLCs. First, large bulk

concentrations ci,∞ are desirable to increase ionic conductivity σ and thus reduce both the

total irreversible and reversible heat generation rates Q̇′′J,irr and Q̇′′rev as well as increasing

the capacitance. Similarly, at least one ion with large diffusion coefficient Di should be

used to minimize Q̇′′J,irr. This ion species will carry the majority of the current in the bulk

electrolyte. Note that large diffusion coefficient is also beneficial to the EDLC capacitance

at large scan rates [43]. Finally, increasing |zi| and/or decreasing ai increases the EDLC

capacitance Cs,int but also increases the reversible heat generation rate Q̇′′rev. In particular,

thermal management strategies for EDLCs using large-valency ions should be designed to
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Table 7.2: Summary of the effects of changing ion properties on the heat generation rates

q̇J,irr, q̇rev, Q̇
′′
J,irr, and Q̇′′rev as well as the integral capacitance Cs,int during galvanostatic

cycling.

Increasing   
Diameter 

ai 

Valency 

|zi| 

Diffusion coefficient 

Di 

Bulk concentration 

ci,∞ 

—    

counter-electrode   —  
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—    

  —  

  —  

, ,
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Q

,s in t
C

rev
q

,J irr
q

accommodate large reversible heat generation rates q̇rev near the counter-electrode.

7.2.6 Asymmetric electrolytes in porous electrodes

The present simulations were limited to planar electrodes while practical EDLC devices

use porous electrodes. The present model could be extended to porous electrodes in at

least three possible ways. First, the continuum model presented in Section 7.1 could be

used to predict local heat generation rates and temperature in transient two-dimensional

or three-dimensional simulations of porous electrodes. However, such simulations would be

computationally very costly and time consuming and fall beyond the scope of the present

study. Second, volume averaging theory could be applied to the governing equations derived

in the present study, as performed for numerous transport phenomena in porous media [105].

Third, correlations predicting the heat generation rates in porous electrodes could be devel-

oped based on scaling analysis of the governing equations for planar electrodes modified

by a semi-empirical geometric parameter identified from experimental data for porous elec-

trodes. This method was successfully used to develop a correlation for the equilibrium areal

capacitance of porous electrodes in Ref. [102]. I anticipate that the qualitative observations

regarding the effects of ion valency and size reported for planar electrodes will also apply to
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porous electrodes regardless of their morphology.

Finally, it is important to note that the electrode’s porous morphology adds complications

that cannot be accounted for in the planar analysis. First, when the effective ion diameter

is too large for ions to enter the pores, the active electrode surface area is reduced and

consequently the overall reversible heating would be reduced. In addition, ions may shed

their solvation shells to enter pores smaller than their solvated radii, resulting in a sharp

increase in capacitance [22, 92]. However, the present model assumes that the effective

diameter of the ions is constant. As a result, it cannot predict the thermal effects associated

with ion desolvation.

7.3 Conclusion

The present study developed the first thermal model based on first principles for the local

irreversible and reversible heat generation rates and temperature of EDLCs with multiple

ion species and/or asymmetric electrolytes. Detailed numerical simulations were performed

for different binary and asymmetric electrolytes based on the properties of aqueous H2SO4.

First, the irreversible heat generation rate q̇J,irr was uniform across the electrolyte and equal

to q̇J,irr = j2s/σ∞. It decreased with increasing valency |zi| or diffusion coefficient Di of

one or both ion species due to the resulting increase in electrical conductivity σ∞ of the

electrolyte. However, q̇J,irr was independent of the ion diameter ai. The reversible heat

generation rate q̇rev near each electrode was governed by the properties of the counterion. It

increased with increasing valency |zi| and decreasing ion diameter ai but was independent of

diffusion coefficient Di. As a result, electrolytes with asymmetric valency zi or ion diameter

ai featured spatially asymmetric heat generation rates and larger temperature oscillations

near the electrode with the larger |zi| or smaller ai of the counterion. The results demonstrate

that thermal models must account for electrolyte asymmetry in order to accurately predict

the local heat generation rates and temperature. This study suggests that to reduce the

overall heat generation in EDLCs, electrolytes should feature large bulk concentrations ci,∞

and at least one ion species with large diffusion coefficient. In addition, electrolytes chosen
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to yield large capacitance via ions with large valency |zi| and/or small diameter ai are likely

to feature large reversible heat generation rates generated near the electrode surfaces.
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CHAPTER 8

Electrochemical transport phenomena in hybrid

pseudocapacitors under galvanostatic cycling

This chapter aims to provide physical insights into the electrochemical transport and interfa-

cial phenomena in hybrid pseudocapacitors under galvanostatic cycling. Particular attention

was paid to determining the respective contributions of EDL formation and faradaic reac-

tions to energy storage (in other words, how effectively the pseudocapacitive charge storage

was utilized) under various cycling conditions and to identifying the physical phenemena lim-

iting the faradaic charge storage. These insights were used to physically interpret features of

experimentally measured cell potentials, and could help to guide optimization of hybrid pseu-

docapacitor designs, materials, and operating conditions. To accomplish these objectives,

detailed numerical simulations were performed for a hybrid pseudocapacitor with planar elec-

trodes using a first-principles continuum model accounting simultaneously for charge storage

by electric double layer (EDL) formation and by faradaic reactions with intercalation [106].

Two asymptotic regimes were identified corresponding to (i) dominant faradaic charge stor-

age at low current and low frequency or (ii) dominant EDL charge storage at high current

and high frequency. Analytical expressions for the intercalated ion concentration and surface

overpotential were derived for both asymptotic regimes. Features of the experimentally mea-

sured cell potential were physically interpreted. These insights could guide the optimization

of hybrid pseudocapacitors.
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8.1 Background

8.1.1 Experimental studies of pseudocapacitive materials

Various transition metal oxides have shown promising pseudocapacitive performance [17,

107]. For example, recent studies have demonstrated large capacitance associated with Li+

intercalation into crystalline Nb2O5 [23, 107–110]. In hybrid Nb2O5/activated carbon pseu-

docapacitors, the Nb2O5 electrode typically serves as the negative electrode relative to the

positive activated carbon electrode [107, 109, 110]. This corresponds to Li+ intercalation in

the Nb2O5 electrode during charging and deintercalation during discharging. It is interest-

ing to note that the synthesis of Nb2O5 described in Ref. [108] resulted in Nb2O5 electrodes

with no initial Li and minimal contaminants, based on X-ray photoelectron spectroscopy

data [108].

Pseudocapacitance has also been demonstrated with MnO2 involved in reversible redox

reactions with H+, K+, and Li+ [111–115]. In contrast to Nb2O5, MnO2 has typically been

used as the positive electrode in hybrid pseudocapacitors [111]. This corresponds to charging

the device by deintercalation of the cation. Then, the pseudocapacitive electrode must con-

tain a significant concentration of the reduced cation at the beginning of the cycle. Indeed,

several pseudocapacitor studies, featuring MnO2 electrodes reacting with K+, synthesized

pseudocapacitive MnO2 electrodes by reduction of KMnO4 [112–114], resulting in the initial

electrode composition K0.02MnO2H0.33 [112]. This corresponded to an initial concentration

of K in the pseudocapacitive electrode of around 1 mol L−1. Similarly, a study considering

pseudocapacitors with Li+ intercalation into MnO2 synthesized the pseudocapacitive elec-

trodes by reacting MnO2 with Li2CO3 to obtain the initial composition Li0.5MnO2 [115], i.e.,

an initial Li+ concentration around 30 mol L−1.

Experimentally, it is difficult to discriminate between the fraction of charge storage

achieved from faradaic reactions and that from EDL formation. For cyclic voltammetry

(CV) cycling, experimentalists have attempted to differentiate between surface-controlled

processes, such as EDL capacitance, and diffusion-controlled processes, such as battery-like

faradaic charge storage with intercalation. To do so, they analyzed the relationship between
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the amount of charge stored (called the “capacity” in C or in mAh) or the current and

the scan rate [23, 110, 116]. However, this analysis was derived from the behavior associ-

ated with EDL and faradaic charge storage occurring independently of each other [17]. In

practice, EDL formation and redox reactions can take place simultaneously, making it dif-

ficult to interpret experimental results for pseudocapacitors. Note also that, to the best of

my knowledge, this analysis method is specific to CV and cannot be used for galvanostatic

cycling.

For experiments under galvanostatic cycling, the cell potential ψs(t) is typically reported

as a function of time. EC cell potentials are typically computed as the potential of the

electrode giving up electrons to the external circuit during charging relative to that receiv-

ing electrons. Thus, the cell potential ψs(t) increases during charging and decreases during

discharging. Figure 8.1 shows some typical examples of cell potential ψs(t) as a function

of time for hybrid pseudocapacitors featuring (a) a Nb2O5 negative electrode reacting with

Li+ [107] or (b) a MnO2 positive electrode reacting with K+ [117]. Figure 8.1(a) indicates

that, for hybrid pseudocapacitors with Nb2O5, the cell potential ψs(t) increased rapidly

at the beginning of the charging step [107, 116, 118]. Then, the rate of change |dψs/dt|

abruptly decreased, resulting in a distinct “kink” in the potential evolution. The slope

|dψs/dt| also increased towards the end of the cycle, although it was not as large as at

the beginning of the cycle. The cell potential ψs varied approximately linearly for the rest

of the cycle, except for a very brief period of large slope |dψs/dt| immediately after the

charging/discharging transition [107,116,118]. Figure 8.1(a) also shows experimentally mea-

sured potential drops between each electrode and a reference electrode, denoted as ∆ψP (t)

and ∆ψC(t) for the pseudocapacitive and carbon electrodes, respectively, and such that

ψs(t) = ∆ψC(t)−∆ψP (t). It indicates that ∆ψC(t) for the carbon electrode varied linearly

and that the variation of |dψs/dt| was associated with the pseudocapacitive electrode. Note

that the range of ∆ψP (t) and of ∆ψC(t), and thus the integral capacitances of the individual

electrodes, were of the same order of magnitude. This can be attributed to the fact that the

carbon electrode’s mass loading was 4.7 times that of the Nb2O5 electrode, ensuring that

both electrodes had the same capacitance at a particular current density [107]. Indeed, it is
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Figure 8.1: Experimental (a) cell potential ψs(t) = ∆ψC(t) − ∆ψP (t) for a hybrid pseudo-

capacitor using Nb2O5 and potentials of the pseudocapacitive ∆ψP (t) and carbon ∆ψC(t)

electrodes relative to a reference electrode, as well as (b) ψs(t) = ∆ψP (t) − ∆ψC(t) for a

hybrid pseudocapacitor using MnO2 [117] as functions of time t.
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common for hybrid pseudocapacitors to have electrodes with different loadings in order to

match their capacitances [114–119]. Figure 8.1(b) indicates that, for hybrid pseudocapacitors

featuring MnO2 positive electrodes, ψs(t) = ∆ψP (t)−∆ψC(t) varied approximately linearly

through most of the cycle. There was a slightly larger slope |dψs/dt| immediately after the

charging/discharging transition. Finally, pseudocapacitors and EDLCs with large electrical

resistance and/or cycled at large currents also featured IR drops corresponding to instanta-

neous jumps in ψs at the transitions between charging and discharging steps and given by

Ohm’s law. The present chapter aims to numerically reproduce these typical experimental

curves in order to interpret their features.

8.1.2 Existing models of pseudocapacitors

Various models have been proposed for the electrochemical behavior of pseudocapacitors.

Several studies have employed equivalent RC circuit models composed of ideal resistors and

capacitors [18, 120–123]. The values of resistances and capacitances used in such models

were fitted from experimental data. RC circuit models can be used for control purposes

but, unfortunately, provide little insight into the physical phenomena governing pseudoca-

pacitor operation [124]. In addition, many were developed under the assumption of uniform

electrolyte concentration and cannot adequately account for EDL formation [54,125,126].

Other proposed models for pseudocapacitors solved the Poisson equation governing lo-

cal electric potential [106, 127–132], sometimes coupled with the mass transport equation

governing the ion concentrations in the electrolyte [106, 128, 129]. Most of these models

considered porous electrodes as homogeneous composites with some effective electrical con-

ductivity [127–132] and effective ion diffusion coefficients [128, 129]. They were used to

investigate the effects of pseudocapacitive electrode morphology [127, 128, 133], exchange

current density [130, 131], and EDL areal capacitance [131] on the temporal evolution of

the cell potential during discharging as well as the energy and power densities under gal-

vanostatic operation. Some studies also focused on tool development for simulating stacks

of many pseudocapacitor cells with relatively low computational cost [129] or for retrieving
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cell properties such as the electrical conductivity of the electrode or electrolyte, the EDL

capacitance, and/or the exchange current density from experimental measurements [131].

Such models are valuable for simulating entire devices with porous electrodes of realistic

dimensions. However, they often accounted for the EDL formation only via a constant EDL

capacitance [127–132] taken from experimental measurements for carbon [127, 128, 132] or

used as a fitting parameter [129]. They also typically assumed that the ion concentrations in

the electrolyte were uniform [127, 130–133], treated ions as point charges [128, 129], and/or

accounted only for ion diffusion while ignoring electromigration [128]. In other words, the two

charge storage mechanisms, i.e., EDL formation and redox reactions, were entirely decou-

pled. Recently, Girard et al. [106] presented a continuum model accounting simultaneously

for coupled EDL formation and faradaic reactions and for finite ion size [106]. This model

was used to physically interpret cyclic voltammetry (CV) measurements for hybrid pseudo-

capacitors with planar electrodes and binary and asymmetric electrolyte [106]. The study

established that CV curves featured a faradaic regime dominated by redox reactions and a

capacitive regime dominated by EDL formation. It also clarified the physical interpretation

of the so-called “b-value” observed experimentally in the power law relating current and scan

rate [106].

Finally, molecular dynamics (MD) models, accounting for individual atoms and their

interactions, have also been developed for pseudocapacitors [134–138]. They have been used

to predict the energy barriers associated with surface adsorption and bulk intercalation [134–

137] as well as the charge distribution [135] and the crystal structure of the pseudocapacitive

electrode material [134,135,137,138]. Unfortunately, the large computational cost limits MD

simulations to time and length scales on the order of 10 nm and 10 µs [139,140], respectively.

These are much smaller than realistic device dimensions or time scales for pseudocapacitor

charging and discharging under galvanostatic cycling, making MD models impractical for

simulating realistic device operation.
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8.2 Analysis

The present chapter adapts the first-principles continuum model presented in Ref. [106] for

galvanostatic cycling. In contrast to most existing continuum models [127–133], it simulta-

neously accounted for the coupling between the EDL formation and the faradaic reaction.

8.2.1 Schematic and assumptions

Figure 8.2 illustrates (a) the EDL structure near the pseudocapacitive electrode according to

the Stern model and (b) the one-dimensional (1D) hybrid pseudocapacitor considered in the

present study along with the associated coordinate system. The simulated device consisted

of two current collectors supporting planar electrodes separated by a binary and asymmetric

electrolyte with inter-electrode distance 2L. The pseudocapacitive electrode of thickness LP

consisted of a transition metal oxide MpOq reacting chemically with Li+ according to the

following reversible redox reaction

mLi+ + MpOq +me− 
 LimMpOq (8.1)

where m is the number of Li+ ions intercalated per molecule of the metal oxide MpOq.

Its maximum value depends on the metal oxide. For example, Nb2O5 reacting with Li+

forms Li2Nb2O5 with m = 2 in its fully-lithiated state [107]. The heterogeneous reaction

occurring at the pseudocapacitive electrode/electrolyte interface transferred Li+ ions from

the electrolyte into the MpOq matrix [26–28]. Subsequently, the intercalated Li+ migrated

farther into the pseudocapacitive electrode, accompanied by reduction of the transition metal

cations [28, 107]. On the other hand, the planar carbon electrode of thickness LC did not

react chemically with the electrolyte. Instead, it stored charge only in the EDL forming

near its surface. Here, the subscripts P , E, and C will be used to differentiate between

concentrations and material properties within the pseudocapacitive electrode, the electrolyte,

and the carbon electrode, respectively.

To make the problem mathematically tractable, the following assumptions were made:

(1) The heterogeneous redox reaction expressed by Equation (8.1) occurred within the Stern
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Figure 8.2: Illustration of (a) the electric double layer structure of a binary and asymmet-

ric electrolyte with redox reactions near a planar electrode and (b) the simulated hybrid

pseudocapacitor with planar electrodes, along with the associated coordinate system.
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layer near the pseudocapacitive electrode. This assumption is commonly used in models of

batteries and electrochemical capacitors, since free electrons and free Li+ ions are assumed

to be confined to the electrodes and to the diffuse layer, respectively [26]. (2) No phase

transition occurred in the pseudocapacitive material. This was consistent with experimental

observations for Nb2O5 [107]. (3) Transport of the intercalated species in the pseudocapac-

itive electrode was treated as a diffusion process. (4) Bulk motion of the electrolyte was

negligible. (5) The physicochemical properties of the electrodes and the electrolyte were

assumed to be constant. In practice, the electrical conductivity σP and the Li+ diffusion

coefficient D1,P in the pseudocapacitive electrode may change with the concentration of in-

tercalated Li+. Similarly, the electrolyte transport properties may change with the local

electric field and/or ion concentrations. However, to the best of my knowledge, no quanti-

tative models or experimental measurements for σP or D1,P of metal oxides as a function

of intercalated Li+ concentration exist. (6) The Stern layer thickness H was identical at

both electrodes and equal to half the effective diameter ai,E of the largest ion species i, i.e.,

H = max(ai,E/2). (7) Non-electrostatic ion adsorption was negligible. In fact, previous sim-

ulations of EDLCs using this assumption [48, 141] agreed well with experimental data. (8)

The potential drop across the current collectors was negligible, so that only the electrodes

and the electrolyte were simulated. (9) The cell temperature was uniform and constant, and

heat generation was ignored.

8.2.2 Governing equations

8.2.2.1 In the electrodes

The local electric potential ψ(r, t) in each electrode obeys Poisson’s equation given by [106,

142]

∇ · (σP∇ψ) = 0 in the pseudocapacitive electrode

and ∇ · (σC∇ψ) = 0 in the carbon electrode (8.2)

where σP and σC are the electrical conductivities of the pseudocapacitive and carbon elec-

trode materials, respectively. The spatiotemporal evolution of the local concentration c1,P (r, t)
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of intercalated lithium ions in the pseudocapacitive electrode is governed by the mass diffu-

sion equation written as [106,143–145]

∂c1,P
∂t

= −∇ ·N1,P with N1,P = −D1,P∇c1,P . (8.3)

Here, N1,P is the molar flux vector given by Fick’s law (in mol m−2s−1) and D1,P is the

diffusion coefficient (in m2s−1) of intercalated Li+ inside the pseudocapacitive material. Note

that lithium intercalation did not take place in the carbon electrode assumed to be chemically

inert.

8.2.2.2 In the electrolyte

The local electric potential ψ(r, t) and the local ion concentrations ci,E(r, t) were modeled

using the generalized modified Poisson-Nernst-Planck (GMPNP) model described in Section

2.4.3 [57, 106]. The electric potential ψ(r, t) in the electrolyte is governed by Poisson’s

Equation (2.5). The local ion concentrations ci,E(r, t) in the diffuse layer are governed by

the mass conservation Equation (2.6) with GMPNP ion flux Ni,E(r, t) given by Equation

(2.11).

8.2.2.3 The faradaic current density

The transport processes in the pseudocapacitive electrode and in the electrolyte are coupled

with the faradaic reaction occurring at their interface. The faradaic current density jF (rs, t)

(in A m−2) due to the redox reaction and the intercalation of lithium ions (species 1) is

typically described by the generalized Frumkin-Butler-Volmer model [26, 28, 106, 146, 147],

i.e.,

jF (rs, t) = jF,0(rs, t)

{
exp

[
(1− α)z1,EFη(rs, t)

RuT

]
− exp

[
−αz1,EFη(rs, t)

RuT

]}
ns (8.4)

where rs is the position vector for a point on the electrode/electrolyte interface and ns is the

unit normal vector to the electrode/electrolyte interface pointing into the electrolyte. Here,

α, η(rs, t), and jF,0(rs, t) are the transfer coefficient, surface overpotential, and exchange

current density, respectively. The surface overpotential η(rs, t) = ∆ψH(rs, t) − ∆ψeq(rs, t)
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(in V) represents the deviation of the electric potential drop across the Stern layer ∆ψH

from its value at equilibrium ∆ψeq [28]. Here, ∆ψH is defined as the difference between the

potential at the pseudocapacitive electrode/electrolyte interface and that at the Stern/diffuse

layer interface, i.e., ∆ψH(rs, t) = ψ(rs, t) − ψ(rs + Hns, t). The exchange current density

jF,0 is expressed as [143,148]

jF,0(rs, t) = z1,EFk0[c1,E(rs +Hns, t)]
1−α[c1,P,max − c1,P (rs, t)]

α[c1,P (rs, t)]
α (8.5)

where c1,P,max is the theoretical maximum concentration of intercalated Li+ in the pseudo-

capacitive electrode and k0 is the reaction rate constant in m1+3αmol−αs−1. For the reaction

considered in the present study [Equation (8.1)], z1,E = 1. Note, however, that Equations

(8.4) and (8.5) are also applicable to reactions of anions (z1,E < 0) or larger-valency cations

(z1,E > 1). Finally, the transfer coefficient α was taken as α = 1/2 corresponding to identical

energy barriers for the forward and backward redox reactions [26,28].

The above governing equations were expressed in their general form independent of the

coordinate system or a specific cell geometry. The present study of a one-dimensional (1D)

hybrid pseudocapacitor [Figure 8.2(b)] used 1D Cartesian coordinates with the origin lo-

cated at the separator centerline. Then, the pseudocapacitive electrode/electrolyte interface

was located at x = −L while the Stern/diffuse layer interface was at x = −L + H. The

pseudocapacitive electrode was located at −L − LP ≤ x ≤ −L and the carbon electrode

at L ≤ x ≤ L + LC . The present study will treat all vector variables (e.g., jF , Ni,P , Ni,E)

as scalars, positive if they point in the positive x-direction, and negative if in the nega-

tive x-direction. In addition, because jF , jF,0, η, and ∆ψH were defined only at a single

point x = −L, they will be treated as functions of time only, i.e., jF (t), jF,0(t), η(t), and

∆ψH(t). Note that Li+ intercalation corresponds to faradaic current density in the negative

x-direction, i.e., jF < 0 mA cm−2.

8.2.3 Initial and boundary conditions

The governing Equations (8.2), (2.5), (8.3), and (2.6) in 1D Cartesian coordinates for ψ(x, t),

c1,P (x, t), and ci,E(x, t) are first-order partial differential equations in time and second order
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in space. Thus, each equation requires one initial condition and two boundary conditions in

each region where it is solved.

8.2.3.1 Initial conditions

Initially, the potential was taken as uniform and equal to zero across the device such that

ψ(x, 0) = 0 V. (8.6)

The initial ion concentrations in the diffuse layer (−L+H ≤ x ≤ L−H) were uniform with

bulk concentrations ci,E,∞ satisfying electroneutrality so that

ci,E(x, 0) = ci,E,∞ with
2∑
i=1

zi,Eci,E,∞ = 0 (8.7)

The initial concentration of Li+ intercalated in the pseudocapacitive electrode (−L− LP ≤

x ≤ −L) was uniform and equal to c1,P,0, i.e.,

c1,P (x, 0) = c1,P,0 (8.8)

Note that an initial concentration c1,P,0 of identically zero resulted in zero faradaic cur-

rent density jF [Equation (8.4)] at all subsequent times. Thus, initially “empty” electrodes

charged by intercalation were simulated using an arbitrary small, but non-zero, value of the

initial Li+ concentration c1,P,0. It was verified that the predictions for ψ(x, t), c1,P (x, t), and

ci,E(x, t) under oscillatory steady state were not sensitive to the choice of c1,P,0.

8.2.3.2 Boundary conditions

Under galvanostatic cycling, the current density jim(t) = ±js was imposed at the interface

between the current collector and the pseudocapacitive electrode located at x = −L − LP

according to Ohm’s law and expressed as [28]

−σP
∂ψ

∂x
(−L− LP , t) = jim(t). (8.9)

In the present study, the amount of charge ∆qs = jstc/2 stored during the charging step

and retrieved during the discharging step was kept identical for all cycles and charging
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corresponded to Li+ intercalation. The imposed current density jim(t) alternated between

charging and discharging as a square wave of fixed cycle period tc expressed as

jim(t) =


−js for charging (nc − 1)tc ≤ t < (nc − 1/2)tc

js for discharging (nc − 1/2)tc ≤ t < nctc

(8.10)

where nc = 1, 2, 3... is the cycle number. Note that ECs are often experimentally cycled over

a fixed potential window ∆ψs rather than with fixed ∆qs. The fixed-charge method was

used here to facilitate the physical interpretation and the comparison with previous EDLC

simulations [2, 5].

Charge conservation required the electronic current density in the pseudocapacitive elec-

trode at the electrode/electrolyte interface to equal the sum of the faradaic current density

jF (t), given by Equation (8.4), and the capacitive current density jC(t) at the Stern/diffuse

layer interface such that

−σP
∂ψ

∂x
(−L, t) = jF (t) + jC(t). (8.11)

The capacitive current density jC(t) arises due to the formation and dissolution of the EDL

near the pseudocapacitive electrode. It is defined as the displacement current density within

the Stern layer at the pseudocapacitive electrode. It was uniform across the Stern layer due

to the uniform potential gradient and given by

jC(t) = −ε0εr
∂2ψ

∂x∂t
(−L+H, t). (8.12)

The electric potential gradient was uniform across the Stern layers near each electrode due

to the lack of free charge [Equation (2.5)]. The potential ψ(x, t) in the Stern layers was

not explicitly simulated. Instead, it was accounted for by the boundary conditions [54,149].

At the Stern/diffuse layer interface near the pseudocapacitive electrode, it was expressed

as [48,125]
∂ψ

∂x
(−L+H, t) =

ψ(−L+H, t)− ψ(−L, t)
H

. (8.13)

Similarly, at the Stern/diffuse layer interface near the carbon electrode, the potential satisfied

∂ψ

∂x
(L−H, t) =

ψ(L, t)− ψ(L−H, t)
H

. (8.14)

164



At the carbon electrode/electrolyte interface, located at x = L, the electronic current density

equaled the displacement current density at the Stern/diffuse layer interface such that

−σC
∂ψ

∂x
(L, t) = −ε0εr

∂2ψ

∂x∂t
(L−H, t). (8.15)

Finally, the interface between the carbon electrode and the current collector was electrically

grounded such that

ψ(L+ LC , t) = 0 V. (8.16)

Note that the choice of reference potential is arbitrary. It did not affect the computed

currents, ion concentrations, or cell potential ψs(t).

Moreover, lithium ions could not intercalate into the current collector so that

N1,P (−L− LP , t) = 0 mol m−2s−1. (8.17)

The molar fluxes of Li+ in the electrolyte and intercalated Li+ entering and exiting the Stern

layer near the pseudocapacitive electrode were proportional to the faradaic current density

jF (t) [Equation (8.4)], while the anion mass flux vanished so that

N1,P (−L, t) = N1,E(−L+H, t) =
jF (t)

z1,EF
and N2,E(−L+H, t) = 0 mol m−2s−1. (8.18)

In addition, both ion mass fluxes vanished at the Stern/diffuse layer interface near the carbon

electrode as no ion intercalation occurred, i.e.,

Ni,E(L−H, t) = 0 mol m−2s−1 for i = 1 and 2. (8.19)

8.2.4 Constitutive relationships

The present study uses arbitrary yet realistic material properties for the pseudocapacitive

material. Its electrical conductivity σP was taken as σP = 7 × 10−2 S m−1, within the

range typical of metal oxides used in pseudocapacitors [150]. As previously mentioned, the

transfer coefficient was taken as α = 1/2 corresponding to identical energy barriers for the

reaction in both directions. For transition metal oxides, the reaction rate coefficient k0

for Li+ intercalation typically ranged from about 10−11 to 10−8 m5/2mol−1/2s−1 [148, 151–
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153] and the diffusion coefficient D1,P from 10−18 to 10−10 m2s−1 [152, 154]. Here, they

were taken as k0 = 5 × 10−9 m5/2mol−1/2s−1 and D1,P = 10−10 m2s−1 to provide favorable

conditions for faradaic charge storage. The maximum concentration of intercalated Li+ in

the pseudocapacitive electrode was approximated as c1,P,max = 2ρP/MP ≈ 32.9 mol L−1

where MP = 279.7 g mol−1 and ρP ≈ 4.6 g cm−3 correspond to the molecular mass and

density of fully-intercalated Li2Nb2O5, respectively. The initial Li+ concentration in the

electrode was c1,P,0 = 10−6 mol L−1. Finally, the electrical conductivity of the simulated

carbon electrode was taken as σC = 100 S m−1 [14, 86,87].

Experimental studies [123,155] have shown that the equilibrium potential drop ∆ψeq for

pseudocapacitive electrodes may vary with the state of charge and thus change over time

during operation. Ref. [123] expressed ∆ψeq of MnO2 as a linear function of the oxidation

state of the pseudocapacitive material according to

∆ψeq = A

(
Osmax −

c1,P
c1,P,max

)
+B (8.20)

where Osmax = 4 was the theoretical maximum oxidation state for MnO2 and A and B were

empirically fitted constants expressed in V. The present study expresses ∆ψeq in slightly

different form, i.e.,

∆ψeq(t) = ∆ψeq,0 − Seq
(
c1,P (−L, t)− c1,P,0

c1,P,max

)
. (8.21)

where ∆ψeq,0 is the initial value of ∆ψeq corresponding to c1,P (−L, t) = c1,P,0. Equations

(8.20) and (8.21) are equivalent with Seq = A and ∆ψeq,0 = B + A(Osmax − c1,P,0/c1,P,max).

The present study assumed that the cell started from an equilibrium state such that ∆ψeq,0 =

0 V, consistent with Equation (8.6). Note that ∆ψeq,0 6= 0 V could be simulated with

appropriate initial conditions, e.g., non-uniform electric potential and ion concentrations

corresponding an equilibrium state such that ∆ψH(0) = ∆ψeq,0, but this is beyond the

scope of the present investigation. Here, I primarily considered the ideal faradaic behavior

Seq = 0 V when ∆ψeq is constant. The effects of variable ∆ψeq were investigated using

Seq = 1 V and Seq = 10.5 V based on experimentally measured values for thin-film and thick

porous MnO2 electrodes, respectively [123]. Equation (8.21) indicates that, for Seq > 0 V as
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measured experimentally for MnO2, ∆ψeq decreases with increasing c1,P . This makes intuitive

sense, since it results in further cation intercalation becoming increasingly “difficult” with

increasing c1,P (i.e., the potential drop ∆ψH must be more negative to achieve the same

ηF < 0 V than for smaller c1,P ) while deintercalation becomes “easier” (i.e., ηF > 0 V can

be achieved with smaller ∆ψH).

The binary and asymmetric electrolyte simulated corresponded to 1 mol L−1 LiClO4

in propylene carbonate (PC) solvent. The relative permittivity εr = 66.1 was taken as

constant and equal to that of PC at zero electric field [58]. The solvated ion diameters of

Li+ and ClO−4 were taken as a1,E = 0.67 nm and a2,E = 1.0 nm, respectively [58,156]. Their

diffusion coefficients in PC were D1,E = 2.6 × 10−10 m2s−1 and D2,E = 3.3 × 10−10 m2s−1,

respectively [156,157]. Their bulk concentrations equaled c1,E,∞ = c2,E,∞ = 1 mol L−1.

The pseudocapacitive and carbon electrodes had the same thickness LP = LC = 5 nm

while the inter-electrode half-width was much larger and equal to L = 1 µm. The use of

thin electrodes facilitated comparison to analytical calculations in the limiting case when the

intercalated Li+ concentration c1,P (x, t) remained uniform in the pseudocapacitive electrode.

The temperature was taken as uniform, constant, and equal to T = 298 K. The cell was

cycled galvanostatically at various current densities js and cycle periods tc such that the

stored charge density ∆qs = jstc/2 = 0.3 C m−2 added to the cell during charging and

removed during discharging was the same for all cases. This charge density was comparable

to the charge density per unit electrode/electrolyte interfacial area for experimentally cycled

EDLCs and hybrid pseudocapacitors reported in the literature [29, 78].

8.2.5 Method of solution

The 1D governing Equations (8.2), (2.5), (8.3), and (2.6) and the associated initial and

boundary conditions were solved numerically using finite element methods. Numerical con-

vergence was assessed based on the predicted potential ψ(x, t) and concentrations c1,E(x, t),

c2,E(x, t), and c1,P (x, t) and using the procedure and convergence criteria described in Section

4.1.5.
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Finally, several cycles were simulated and an oscillatory steady state in ψ(x, t), c1,E(x, t),

c2,E(x, t), and c1,P (x, t) was considered to be reached when the maximum relative error

between the value of each variable at time t and its value at time t − tc was less than 1%.

For small current densities js . 8 mA cm−2, these conditions were typically met by the

third cycle. The number of cycles required to reach oscillatory steady state increased with

increasing current density js. For example, at current density js = 256 mA cm−2, almost 80

cycles were required to reach oscillatory steady state.

8.2.6 Analytical expressions for limiting cases

The preceding model accounts simultaneously for two contributions to charge storage: (i)

faradaic charge storage associated with the faradaic current density jF (t) and (ii) EDL

charge storage associated with the capacitive current density jC(t). The complex interactions

between the faradaic reaction and the EDL formation can make physical interpretation of

the model predictions difficult. The latter can be facilitated by simpler analytical expressions

for certain variables such as c1,P and η as functions of time derived in the limiting cases when

one of the storage mechanisms dominates. This section analyzes these two limiting cases in

more detail. Here, the intercalated Li+ concentration c1,P was assumed to be uniform in the

pseudocapacitive electrode due to its small thickness. Note that the expressions derived for

c1,P and η are valid for charging either by intercalation or by deintercalation.

8.2.6.1 General expressions

First, it is useful to express the Li+ concentration c1,P and the overpotential η as functions

of the current densities jF and jC . Based on mass conservation, the uniform intercalated

Li+ concentration c1,P (x, t) at time t is the sum of the initial concentration c1,P,0 and the net

Li+ intercalated due to the faradaic reaction per unit volume of the electrode, i.e.,

c1,P (x, t) = c1,P,0 +
AP
z1F

t∫
0

[−jF (t)]dt. (8.22)
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Here, AP is the pseudocapacitive electrode/electrolyte interfacial area per unit volume of

pseudocapacitive material (in m−1). It is given by AP = 1/LP for a 1D cell with planar elec-

trodes. The second term is positive and c1,P increases during Li+ intercalation corresponding

to negative jF (t), as previously mentioned.

Moreover, for α = 1/2, the expression of jF (t) given by Equations (8.4) and (8.5) can be

solved for η(t) to yield

η(t) = 2
RuT

z1,EF
sinh−1

(
jF (t)

2z1,EFk0
√
c1,E(−L+H, t)

√
c1,P,max − c1,P (−L, t)

√
c1,P (−L, t)

)
.

(8.23)

Alternatively, η(t) can be expressed in terms of the EDL surface charge density qs,C(t) stored

in the EDL at the pseudocapacitive electrode and of the Stern layer capacitance CSt
s = ε0εr/H

as [48]

η(t) = ∆ψH(t)−∆ψeq(t) =
qs,C(t)

CSt
s

−∆ψeq(t) =
Hqs,C(t)

ε0εr
−∆ψeq(t). (8.24)

The EDL surface charge density qs,C(t) at the pseudocapacitive electrode is equal to qs,C(t) =
t∫
0

jC(t′)dt′. Thus, the time rate of change of η varies linearly with the capacitive current

density jC(t) = dqs,C/dt according to

dη

dt
(t) =

jC(t)H

ε0εr
− d∆ψeq(t)

dt
. (8.25)

8.2.6.2 Asymptotic faradaic regime

In the faradaic regime, the faradaic current density jF (t) carries most of the imposed current

density js so that jF (t) ≈ ±js and jC(t) ≈ 0 mA cm−2. Then, based on Equation (8.22),

the corresponding Li+ concentration c1,P,F (x, t) varies linearly as a function of t with slope

jsAP/z1,EF and can be expressed as

c1,P,F (t) = c1,P,0 + (−1)p


jstcAP
z1,EF

(
t

tc
− nc + 1

)
for charging

jstcAP
z1,EF

(
nc −

t

tc

)
for discharging

(8.26)

where p = 0 for charging by Li+ intercalation (analogous to Nb2O5 negative electrodes)

and p = 1 for charging by Li+ deintercalation (analogous to Mn2O5 positive electrodes). In
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the faradaic regime, EDL formation near the pseudocapacitive electrode is expected to be

negligible, and the ion concentrations at the Stern/diffuse layer interface to remain close to

their bulk concentrations such that c1,E(−L + H, t) ≈ c1,E,∞ and c2,E(−L + H, t) ≈ c2,E,∞.

Then, Equation (8.23) for the surface overpotential ηF (t) simplifies as

ηF (t) =
2RuT

z1,EF
sinh−1

[
jim(t)

2z1,EFk0
√
c1,E,∞

√
c1,P,max − c1,P,F (t)

√
c1,P,F (t)

]
. (8.27)

Here, the overpotential magnitude |ηF | required to drive the current density jF (t) = ±js and

predicted by Equation (8.27) decreases with decreasing js, increasing reaction rate constant

k0, increasing c1,E,∞, and/or c1,P,F approaching c1,P,max/2.

8.2.6.3 Asymptotic capacitive regime

I define the capacitive regime as the limiting case in which the capacitive current density jC(t)

carries the entire imposed current density jim(t) such that jC(t) ≈ ±js while the faradaic

current density is negligible, i.e., jF (t) ≈ 0 mA cm−2. Then, the Li+ concentration inside the

pseudocapacitive electrode and thus ∆ψeq [Equation (8.21)] are approximately constant, i.e.,

c1,P (x, t) ≈ c1,P,C and ∆ψeq ≈ ∆ψeq,C . Note that the steady-state concentration c1,P,C could

differ significantly from the initial value c1,P,0 despite the small magnitude of jF (t) when

the number of cycles required to reach oscillatory steady state is large. Then, according to

Equation (8.25), the overpotential ηC(t) varies linearly with time such that

dηC
dt

(t) =
jim(t)H

ε0εr
= ±jsH

ε0εr
. (8.28)

The value of ηC at the beginning of the cycle depends on the EDL charge density qs,C(nctc−tc).

For cycling with fixed ∆qs, the total stored charge density from the external circuit qs(t) =

qs,C(t) + qs,F (t) is zero at the beginning of the cycle, so the EDL charge density is given by

qs,C(nctc − tc) = −qs,F (nctc − tc) = z1,EF (c1,P,C − c1,P,0)/Ap and

ηC(nctc − tc) =
H

ε0εr

z1,EF (c1,P,C − c1,P,0)
Ap

−∆ψeq,C . (8.29)

Note that for EDLCs with no faradaic reactions [2, 5], c1,P,C = c1,P,0 and η(t) returned to

0 V at the end of each cycle.
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8.3 Results and discussion

This section presents simulation results for the previously described hybrid pseudocapacitor

charged by Li+ intercalation, analogous to Nb2O5 as a negative electrode. Various cur-

rent densities js and cycle periods tc were explored for the same amount of stored charge

∆qs = jstc/2 = 0.3 C m−2. Sections 8.3.1 to 8.3.4 present detailed results for constant

equilibrium potential drop ∆ψeq. Section 8.3.5 briefly illustrates the effect of state-of-charge-

dependent ∆ψeq. Finally, Section 8.3.6 briefly presents results for a hybrid cell charged by

Li+ deintercalation with constant equilibrium potential drop ∆ψeq.

8.3.1 Current densities

Figures 8.3(a) and 8.3(b) respectively show the numerically predicted faradaic current density

jF (t) [Equation (8.4)] and capacitive current density jC(t) [Equation (8.12)] as functions of

dimensionless time t/tc for various pairs of [js, tc] under galvanostatic cycling at oscillatory

steady state. For small values of js (< 4 mA cm−2), the faradaic current density jF (t) was

negative during charging, positive during discharging, and constant in magnitude during

most of the cycle. The capacitive current density jC(t) was small compared to jF (t). On

the other hand, for large values of js (> 32 mA cm−2), the capacitive current density jC(t)

was significantly larger than jF (t) at all times. In fact, the maximum value of |jC | increased

continuously with increasing js. By contrast, the faradaic current density jF (t) approached

an asymptotic limit at large js.

Figures 8.3(c) and 8.3(d) respectively show the fractions of the imposed current density

jF (t)/js carried by the faradaic current and jC(t)/js carried by the capacitive current as func-

tions of dimensionless time t/tc for various values of js and tc under galvanostatic cycling.

For small values of js, the current density was almost exclusively faradaic, i.e., jF (t)� jC(t)

and jF (t)/js ≈ ±1. Then, jF (t) diverged from the imposed current density jim(t) = ±js only

around the charging/discharging transitions at t/tc = nc− 1 and t/tc = nc− 0.5. Simultane-

ously, the capacitive current fraction jC(t)/js featured peaks following these transitions so

that the sum jF (t) + jC(t) always equaled jim(t) = ±js. The faradaic contribution jF (t)/js
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Figure 8.3: Predicted (a) faradaic current density jF (t) and (b) capacitive current density

jC(t) as well as the faradaic and capacitive fractions (c) jF (t)/js and (d) jC(t)/js of the

total current density as functions of dimensionless time t/tc for different values of js and tc

under galvanostatic cycling and oscillatory steady state. Here, js and tc were chosen such

that ∆qs = jstc/2 = 0.3 C m−2.
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for different values of js and tc such that ∆qs = jstc/2 = 0.3 C m−2. The concentration was

uniform throughout the pseudocapacitive electrode.

decreased with increasing js. Indeed, for js = 256 mA cm−2, the current density was almost

entirely capacitive, i.e., jC(t)� jF (t) at all times and jC(t)/js ≈ ±1.

Overall, two asymptotic regimes were evident: a faradaic regime characterized by jF (t) ≈

jim(t) for small values of js and slow cycling and a capacitive regime featuring jC(t) ≈ jim(t)

for large values of js and fast cycling.

8.3.2 Intercalated Li+ concentration in the pseudocapacitive electrode

Figure 8.4 shows the predicted concentration of intercalated Li+ c1,P (−L, t) at the pseudoca-

pacitive electrode/electrolyte interface as a function of dimensionless time t/tc for different

values of js and tc under galvanostatic cycling. In all cases, c1,P was uniform throughout
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the electrode due to the small electrode thickness LP = 5 nm and to the relatively large

diffusion coefficient D1,P . In fact, the penetration depth, defined as dp =
√
D1,P tc, ranged

from 150 nm to 2400 nm as the cycle period ranged from 0.23 ms to 60 ms. Thus, dp was

much larger than the electrode thickness LP of 5 nm. In other words, Li+ diffusion in the

electrode was fast and never limiting.

In the faradaic regime, c1,P increased almost linearly during the charging step and de-

creased linearly during the discharging step. Indeed, for js = 1 mA cm−2, the numerically

predicted Li+ concentration c1,P (−L, t) agreed very well with that predicted by Equation

(8.26), derived from mass conservation considerations and assuming jF (t) = ±js. The

largest discrepancies occurred near the transition from discharging to charging, when c1,P

was small and jF (t) differed from ±js (Figure 8.3). In the capacitive regime, c1,P remained

approximately constant and equal to c1,P,C ≈ 0.514 mol L−1.

8.3.3 Electric potentials

Figure 8.5 shows (a) the cell potential ψs(t) = ∆ψC(t)−∆ψP (t) = ψ(L + LC , t)− ψ(−L−

LP , t), (b) the surface overpotential η(t), and the potential drop between the electrode/current

collector interface and the electrolyte centerline (c) ∆ψP (t) = ψ(−L−LP , t)−ψ(0, t) for the

pseudocapacitive electrode half-cell and (d) ∆ψC(t) = ψ(L+ LC , t)− ψ(0, t) for the carbon

electrode half-cell as functions of dimensionless time t/tc for different current densities js

and cycle periods tc for galvanostatic cycling at oscillatory steady state. Here, ∆ψP (t) and

∆ψC(t) are equivalent to the electrode potentials measured relative to a reference electrode

in three-electrode measurements (plus or minus a constant), since reference electrodes are

designed to have constant potential relative to the electrolyte solution [26,28].

Figure 8.5(a) indicates that ψs(t) increased throughout the charging step and decreased

during the discharging step for all cases considered. The potential window ∆ψs = ψmax −

ψmin increased with increasing js, corresponding to decreasing integral capacitance Cs,int

[Equation (2.2)] as the faradaic fraction of the charge storage decreased. In the faradaic

regime, corresponding to small current density js, the cell potential ψs returned to ψmax ≈ 0 V
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electrode surface overpotential η(t) as well as the potentials of the (c) pseudocapacitive

∆ψP (t) = ψ(−L−LP , t)−ψ(0, t) and (d) carbon ∆ψC(t) = ψ(L+LC , t)−ψ(0, t) electrodes

relative to the bulk electrolyte as functions of dimensionless time t/tc over one cycle during

galvanostatic cycling for various values of js and tc such that ∆qs = jstc/2 = 0.3 C m−2.
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at the beginning and end of the cycle when fully discharged. The temporal evolution of ψs

was asymmetric around the transition from charging to discharging at t/tc = nc − 0.5. At

the beginning of the charging step, the time rate of change |dψs/dt| was relatively large for a

short period. After this brief period, |dψs/dt| sharply decreased, resulting in a distinct “kink”

in the ψs(t) curve. In fact, it qualitatively resembled that measured experimentally [Figure

8.1(a)] [107,109,116,118]. This kink can be attributed to the brief peak of capacitive current

jC at the beginning of the charging step [Figure 8.3(d)] and associated with relatively small

differential capacitance Cs,diff and large |dψs/dt| [Equation (2.2)]. Then, Cs,diff abruptly

increased and |dψs/dt| decreased as the faradaic current jF became dominant [Figure 8.3(c)].

In the capacitive regime, under large current density js, the temporal evolution of ψs was

linear and symmetric around t/tc = nc − 0.5. The cell changed polarity during each cycle,

and ψs was equal to ψmin ≈ −0.55 V at the beginning and end of the cycle. This non-zero cell

potential for the fully discharged cell occurred because a significant amount of Li+ originally

from the electrolyte remained intercalated as Li+ in the electrode, as evidenced by c1,P,C

being significantly larger than the initial concentration c1,P,0, i.e., c1,P,C − c1,P,0 ≈ c1,P,C =

0.514 mol L−1 (Figure 8.4). Then, the electrolyte retained a net negative charge, because

more ClO−4 than Li+ ions remained in the electrolyte, while the pseudocapacitive electrode

had a net positive charge of equal magnitude.

Figure 8.5(b) shows that the sign of the surface overpotential η(t) was always the same

as that of the faradaic current density jF (t), as suggested by Equations (8.4) and (8.23).

The magnitude of η increased with increasing js. In the faradaic regime, the magnitude of

η(t) was small and varied relatively little with time. For js = 1 mA cm−2, the numerical

predictions of η(t) agreed very well with ηF (t) predicted analytically by Equation (8.27)

over most of the cycle. The numerical and analytical predictions differed from one another

immediately after each charging/discharging transition and at the very end of the cycle.

Then, ηF (t) increased rapidly and jC(t) was significant, as suggested by Equation (8.25).

Equation (8.27) indicates that the overpotential ηF (t) required to drive faradaic current

density jF (t) = jim(t) changed instantaneously when jim(t) changed sign at the transitions

between charging and discharging steps. However, the actual time rate of change of η(t)
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was finite and related to jC(t) = jim(t) − jF (t) by Equation (8.25). Thus, the capacitive

current density jC(t) dominated immediately after charging/discharging transitions until the

overpotential approached ηF (t), as observed in Figure 8.3. Similarly, ηF (t) increased rapidly

and jC was significant at the end of the cycle as c1,P,F approached zero. In the capacitive

regime, η(t) varied linearly with t/tc with slope ±jstcH/ε0εr. Indeed, for js = 256 mA cm−2,

η(t) showed excellent agreement with ηC(t) predicted analytically by Equations (8.28) and

(8.29) with c1,P,C − c1,P,0 ≈ c1,P,C = 0.514 mol L−1 (Figure 8.4). Attempts were made to

derive an analytical expression for η(t) for intermediate values of js, but were unsuccessful.

Figure 8.5(c) indicates that, for the pseudocapacitive electrode, the evolution of ∆ψP (t)

qualitatively resembled that of the surface overpotential η(t) [Figure 8.5(b)]. In the faradaic

regime, it was small, asymmetric around the transition from charging to discharging, and

varied relatively little in magnitude over most of the cycle (see inset). As previously men-

tioned, such a constant potential drop during charging or discharging is characteristic of

batteries [19]. Like η(t) and the experimentally measured ∆ψP (t) [Figure 8.1(a)] [107], the

potential drop ∆ψP (t) featured relatively steep slopes |d∆ψP/dt| immediately following each

charging/discharging transition and near the end of the cycle. However, the experimental

∆ψP (t) featured significant slope outside |d∆ψP/dt| throughout the cycle, while the nu-

merical ∆ψP (t) was almost constant when jF dominated. This difference may result from

SOC-dependence of ∆ψeq which was neglected in the simulations shown in Figure 8.5(c). For

the simulated cell with identical surface area for both planar electrodes, ∆ψP (t) was much

smaller than ∆ψC(t) since the faradaic charge storage yielded a larger capacitance than EDL

charge storage. This explains why the large changes in d∆ψP/dt resulted in relatively small

kinks in the cell potential ψs(t) [Figure 8.5(a)] compared to those observed for experimental

cells with oversized porous carbon electrodes [Figure 8.1(a)]. By contrast, in the capacitive

regime, the temporal evolution of ∆ψP (t) was linear and symmetric around the transition

from charging to discharging. These distinct asymptotic behaviors suggest that measuring

the potential of the pseudocapacitive electrode relative to a reference electrode provides a

practical way to assess whether it is operating in the faradaic or the capacitive regime.

Figure 8.5(d) establishes that, for the carbon electrode, the evolution of ∆ψC(t) was
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symmetric around the transition from charging to discharging. Its variation was nearly linear,

but the slope |dψs/dt| did vary noticeably over the cycle, indicating that the EDL differential

capacitance Cs,diff was not constant, as assumed by many existing models [127–132]. Here,

∆ψC(t) was also self-similar and identical for all values of js when plotted as a function

of t/tc. This implies that there was no ion diffusion limitation in the electrolyte, even at

large values of js when jF was negligible. Thus, the changes in the cell potential ψs(t) with

increasing js were associated solely with changes on the pseudocapacitive side of the cell.

Here, the carbon electrode had zero net charge and ∆ψC = 0 V at the end of each cycle with

fixed ∆qs, as it exchanged charge only with the external circuit.

8.3.4 Ion concentrations in the electrolyte

Figure 8.6 shows the predicted concentrations of (a) Li+ cations c1,E(−L+H, t) and (b) ClO−4

anions c2,E(−L+H, t) at the Stern/diffuse layer interface near the pseudocapacitive electrode

as functions of dimensionless time t/tc for different values of js and tc under oscillatory

steady state. Similarly, Figures 8.6(c) and 8.6(d) respectively show the predicted cation

c1,E(L − H, t) and anion c2,E(L − H, t) concentrations at the Stern/diffuse layer interface

near the carbon electrode. Here, ion concentrations larger than the bulk concentrations

c1,E,∞ = c2,E,∞ correspond to the presence of an EDL.

Figures 8.6(a) and 8.6(b) indicate that EDLs formed near the pseudocapacitive electrode

for all js considered. However, the concentrations of both Li+ and ClO−4 remained closer

to their bulk concentrations c1,E,∞ = c2,E,∞ = 1 mol L−1 as js decreased. In fact, in the

faradaic regime, the deviations from the bulk concentrations did not result in a large error

in the value of ηF (t) predicted by Equation (8.27) and derived by assuming c1,E(−L +

H, t) ≈ c2,E(−L + H, t) ≈ c1,E,∞ = c2,E,∞. In this regime, an EDL of Li+ formed near

the pseudocapacitive electrode during the charging step and an EDL of ClO−4 during the

discharging step. As js increased, the formation of the Li+ EDL near the pseudocapacitive

electrode occurred later in the charging step. In the capacitive regime, an EDL consisting

of ClO−4 formed at the beginning and end of the cycle while a Li+ EDL formed briefly

178



nc 1 nc 0.5 nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

nc 1 nc 0.5 nc

0.0

0.5

1.0

1.5

nc 1 nc 0.5 nc

0.0

0.5

1.0

nc 1 nc 0.5 nc

0.0

0.5

1.0

1.5

Charging Discharging

c1, = c2,

(a)

 

 
L

i+  c
at

io
n,

 c
1,
E(

L+
H

,t)
 (m

ol
/L

)

Dimensionless time, t/tc

Near pseudocapacitive electrode

Charging Discharging

c2,max

c1, = c2,

(b)

 
 

C
lO

- 4 a
ni

on
, c

2,
E(

L+
H

,t)
 (m

ol
/L

)

Dimensionless time, t/tc

Charging Discharging

Near carbon electrode

c1, = c2,

(c)

 

 

L
i+  c

at
io

n,
 c

1,
E(
L

H
,t)

 (m
ol

/L
)

Dimensionless time, t/tc

2[ ( )mA cm , (ms)]s cj t

 [1, 60]
 [2, 30]
 [4, 15]
 [8, 7.5]
 [16, 3.8]
 [32, 1.9]
 [256, 0.23]

Same evolution for all js

Charging Discharging

Same evolution for all js

c2,max

c1, = c2,

(d)

 

 
C

lO
- 4 a

ni
on

, c
2,
E(
L

H
,t)

 (m
ol

/L
)

Dimensionless time, t/tc

Figure 8.6: Predicted concentrations of (a) Li+ cation c1,E(−L + H, t) and (b) ClO−4 anion

c2,E(−L+H, t) at the Stern/diffuse layer interface near the pseudocapacitive electrode as well

as concentrations of (c) Li+ c1,E(L−H, t) and (d) ClO−4 c2,E(L−H, t) at the Stern/diffuse

layer interface near the carbon electrode as functions of dimensionless time t/tc over one cycle

at oscillatory steady state for different values of js and tc such that ∆qs = jstc/2 = 0.3 C m−2.
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around the transition from charging to discharging (around t/tc ≈ nc − 0.5). In addition,

the Li+ concentration c1,E(−L + H, t) approached zero at the beginning and end of the

cycle when ∆ψH was positive and large. This resulted in a very small faradaic current

density jF [Figure 8.3(a)] as the exchange current density jF,0 vanished due to Li+ starvation

[Equation (8.5)]. In both regimes, the sign of the electric field E(−L+H, t) = ∆ψH(t)/H at

the Stern/diffuse layer interface near the pseudocapacitive electrode determined which ion

species formed the EDL. For ∆ψeq = 0 V, E(−L + H, t) always had the same sign as the

surface overpotential η(t) [Figure 8.5(b)]. Positive η(t) and E(−L + H, t) corresponded to

an EDL of ClO−4 and negative η(t) and E(−L + H, t) to an EDL of Li+. When they were

equal to zero, the EDL vanished and both ion species were at their bulk concentrations, i.e.,

c1,E(−L+H, t) = c2,E(−L+H, t) = c1,E,∞ = c2,E,∞.

Figures 8.6(c) and 8.6(d) establish that the temporal evolutions of the ion concentrations

near the carbon electrode were self-similar and were identical when plotted as functions

of t/tc for all current densities js and cycle periods tc considered. This further confirms

that ion transport in the electrolyte was not diffusion limited in the range of js considered.

In addition, the results obtained near the carbon electrode resembled those observed in

previous simulations of EDLCs [5]. Figure 8.6(d) indicates that, during the charging step,

the concentration c2,E(L −H, t) of the anion ClO−4 increased until it reached its maximum

value c2,E,max, corresponding to the formation of an EDL of ClO−4 .

8.3.5 Effect of variable equilibrium potential drop ∆ψeq

Figure 8.7 shows the numerically predicted (a) faradaic jF (t)/js and (b) capacitive jC(t)/js

fractions of the total current density, (c) potential ∆ψP (t) of the pseudocapacitive electrode

relative to bulk electrolyte, and (d) cell potential ψs(t) as functions of dimensionless time t/tc

for Seq equal to 0 V, 1 V, and 10.5 V. The selected cases with [js (mA cm−3), tc (ms)] = [2, 30]

and [256, 0.23] respectively corresponded to the faradaic and capacitive regimes previously

identified for ideal faradaic behavior with Seq = 0 V (Figure 8.3). Figures 8.7(a) and 8.7(b)

show that the evolutions of jF/js and jC/js for a given [js, tc] were qualitatively similar for
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Figure 8.7: Predicted (a) faradaic jF (t)/js and (b) capacitive jC(t)/js fractions of the

total current density, (c) potential ∆ψP (t) of the pseudocapacitive electrode relative to

bulk electrolyte, and (d) cell potential ψs(t) as functions of dimensionless time t/tc for

Seq = 0, 1, and 10.5 V under galvanostatic cycling. The two selected cases [js, tc] cor-

responded to the faradaic and capacitive regimes identified for Seq = 0 V and satisfying

∆qs = jstc/2 = 0.3 C m−2.
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all values of Seq considered. For js = 256 mA cm−3, the capacitive current density jC(t)

dominated (capacitive regime) and was not significantly affected by changes in Seq. The

changes in jF (t)/js and the corresponding small changes in jC(t)/js can be attributed to

the fact that the Li+ concentration c1,E(−L+H, t) at the Stern/diffuse layer interface near

the pseudocapacitive electrode increased with increasing Seq (not shown). As a result, the

Li+ starvation observed at the beginning and end of the cycle in Figure 8.6(a) and causing

very small jF (t) vanished for Seq = 10.5 V. For js = 2 mA cm−3, the faradaic fraction of

the total current |jF (t)/js| decreased with increasing Seq. This can be attributed to the fact

that non-zero rate of change d∆ψeq/dt resulted in non-zero capacitive current density jC .

Rearranging Equation (8.25) and combining it with jim(t) = jF (t) + jC(t) yields

jC(t) = jim(t)− jF (t) =
ε0εr
H

[
dη(t)

dt
+

d∆ψeq(t)

dt

]
. (8.30)

After substitution for ∆ψeq based on Equations (8.21) and (8.22), jF can be expressed as

jF (t) =
jim(t)− ε0εr

H

dη(t)

dt

1 +
ε0εrSeqAP

Hc1,P,maxz1,EF

. (8.31)

As a result, Seq > 0 V prevented the hybrid pseudocapacitor from reaching the faradaic limit

jF (t) ≈ jim(t) even when dη(t)/dt was negligible. For the cases considered in the present

study and dη/dt ≈ 0, Equation (8.31) predicted jF = 0.93jim for Seq = 1 V and jF =

0.56jim for Seq = 10.5 V. This agrees well with the numerical predictions shown in Figure

8.7(a). Figures 8.7(c) shows that, for js = 2 mA cm−2, the potential drop ∆ψP (t) across

the pseudocapacitive electrode half-cell decreased with increasing Seq. For Seq = 10.5 V,

∆ψP (t) had a significant slope d∆ψP (t)/dt throughout the cycle and qualitatively resembled

that measured experimentally [Figure 8.1(a)]. Figure 8.7(d) shows that this resulted in the

potential window ∆ψs increasing and thus the integral capacitance Cs,int decreasing with

increasing Seq for js = 2 mA cm−2.

It is interesting to note that experimental measurements for MnO2 electrodes showed

smaller values of Seq for thin-film electrodes than for thick porous electrodes [123]. The

present results suggest that this would cause smaller faradaic current and smaller capaci-

tances for thick porous electrodes compared with thin films. Indeed, smaller capacitance
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for thicker electrodes has been observed experimentally [158]. It is also noteworthy that the

predicted jF and jC corresponding to ideal faradaic behavior with Seq = 0 V were quite

close to those for Seq = 1 V, approximately the value measured for thin MnO2 films [123].

This suggests that constant ∆ψeq is a reasonable first approximation for simulating thin

electrodes.

8.3.6 Charging by Li+ deintercalation

As previously mentioned, for some hybrid pseudocapacitors, such as those using MnO2 pos-

itive electrodes, charging corresponds to deintercalation of the cation. This can be imple-

mented by replacing Equation (8.10) with

jim(t) =


js for charging (nc − 1)tc ≤ t < (nc − 1/2)tc

−js for discharging (nc − 1/2)tc ≤ t < nctc.

(8.32)

In addition, a significant initial concentration of intercalated Li+ c1,P,0 = 1 mol L−1 was used

in order to accommodate the initial deintercalation of Li+, as done during material synthesis

of MnO2 electrodes [112, 115]. As in Sections 8.3.1 to 8.3.4, Seq was taken as Seq = 0 V

corresponding to ideal faradaic behavior.

Figure 8.8 shows (a) the faradaic jF (t)/js and (b) capacitive jC(t)/js fractions of the

imposed current as well as (c) the surface overpotential η(t) and (d) the cell potential

ψs(t) = ∆ψP (t) − ∆ψC(t) for the hybrid pseudocapacitor charged by deintercalation. Fig-

ures 8.8(a) and 8.8(b) indicated that the previously observed faradaic and capacitive regimes

also occurred for charging by deintercalation. In addition, Figure 8.8(c) shows that the nu-

merically predicted overpotential η agreed well with the analytical predictions ηF and ηC

[Equations (8.27) to (8.29)]. Here, |ηF | reached a maximum at the end of the charging

step when c1,P,F was minimum. Moreover, |ηC | was large and positive around the transi-

tion from charging to discharging. This resulted in Li+ starvation in the electrolyte, i.e.,

c1,E(−L + H, t) ≈ 0 mol L−1 (not shown), and jF ≈ 0 mA cm−2 at this time rather than

around the transition from discharging to charging as previously observed [Figure 8.3(a)].

Figure 8.8(d) shows that the cell potential evolution ψs(t) had similar qualitative behavior
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Figure 8.8: Predicted (a) the faradaic jF (t)/js and (b) capacitive jC(t)/js fractions of the

imposed current as well as (c) the surface overpotential η(t) and (d) the cell potential

ψs(t) = ∆ψP (t) − ∆ψC(t) for the hybrid pseudocapacitor charged by deintercalation for

various [js, tc] satisfying ∆qs = jstc/2 = 0.3 C m−2.
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to that observed for charging by intercalation [Figure 8.5(a)]. In the faradaic regime, it qual-

itatively resembled experimental measurements [Figure 8.1(b)]. The potential window ∆ψs

was smaller than that for the same values of js and tc when charging by intercalation. Thus,

charging by deintercalation, with the present planar electrodes, resulted in a larger integral

capacitance Cs,int. At the pseudocapacitive electrode, |ηF | remained relatively small because

c1,P,F remained relatively large (> 0.38 mol L−1). At the carbon electrode, the EDL was

formed by the smaller Li+ ions rather than ClO−4 , leading to larger maximum concentration

c1,E,max and thus to larger EDL capacitance [5]. Here also, a faradaic “kink” in ψs(t) was

evident at the beginning of both the charging and discharging steps. However, it was more

prominent at the beginning of the discharging step. This can be attributed to the fact that

|ηF | was maximum at the transition from charging to discharging, requiring a relatively large

change in η before the faradaic current could become dominant again.

8.4 Conclusion

The present study investigated the electrochemical transport phenomena occurring inside

hybrid pseudocapacitors under galvanostatic cycling using a rigorous physical model ac-

counting for coupled faradaic reaction and EDL formation. Detailed numerical simulations

were performed for a hybrid pseudocapacitor with planar electrodes under various current

densities and cycle periods. First, two asymptotic regimes were identified: (i) a faradaic

regime dominated by redox reactions at small js and slow charging and (ii) a capacitive

regime dominated by EDL formation under large js and fast charging. In these regimes,

simple analytical expressions were derived for the Li+ concentration in the pseudocapacitive

electrode and for the surface overpotential as functions of time during a galvanostatic cycle.

The surface overpotential was important in determining whether EDL or faradaic charge

storage dominated. The larger its value at the charging/discharging transitions, the smaller

the faradaic fraction of the charge storage. In addition, large and positive overpotential re-

sulted in small faradaic current due to Li+ starvation in the electrolyte. Second, the predicted

cell potentials resembled those reported experimentally. In particular, characteristic “kinks”
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occurred immediately after charging/discharging transitions and were attributed to brief pe-

riods of capacitive operation as the surface overpotential and ion concentrations adjusted to

the new direction of the current, before the faradaic charge storage became dominant again.

Finally, variation of the equilibrium potential drop ∆ψeq with the state of charge negatively

affected the faradaic charge storage and prevented the device from operating in the faradaic

regime, even at small current, thus reducing its capacitance. Overall, this study indicates

that accounting for coupling between EDL formation and faradaic reactions is essential for

reproducing experimental features such as the faradaic kinks in the cell potential and for

determining whether the cell operates in the faradaic or the capacitive regimes. The numer-

ical model and the derived analytical expressions provide useful tools for optimizing hybrid

pseudocapacitor performance.
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CHAPTER 9

First-principles thermal modeling of hybrid

pseudocapacitors under galvanostatic cycling

This chapter presents a theoretical framework developed from first principles for predicting

the spatiotemporal thermal behavior of hybrid pseudocapacitors under galvanostatic cycling.

It accounts for irreversible and reversible heat generation rates in the electrolyte and in the

electrodes due to Joule heating, electric double layer (EDL) formation, and redox reac-

tions. Detailed numerical simulations were performed to investigate the different local heat

generation rates and the temperature as functions of time and cycling current. Numerical

predictions showed good qualitative agreement with the limited experimental data available

in the literature. Such numerical simulations can be used to physically interpret experimen-

tal measurements. For example, the present results suggest that a distinctive endothermic

peak observed in the experimental heat generation rate resulted from cation starvation in the

electrolyte reducing the faradaic current density. In addition, heating due to EDL formation

significantly affected the local temperature and must be accounted for. The thermal model

and the present results will help to define safe modes of operation and to develop thermal

management strategies for pseudocapacitors.

9.1 Analysis

9.1.1 Schematic and assumptions

Figure 8.2(b) illustrates the one-dimensional (1D) hybrid pseudocapacitor cell considered in

the present study. It was identical to that considered in Chapter 8.
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To make the problem mathematically tractable, Assumptions (1)–(8) from Chapter 8 were

used in the present chapter. In addition, I assumed that (9) the Dufour energy flux, i.e.,

the energy flux due to gradients of electrochemical potential and/or pressure, was negligible

[28,32,90]. Finally, (10) the temperature was assumed to be uniform within the narrow Stern

layers at all times, and (11) the cell was thermally insulated. For simplicity and in the interest

of physical interpretation, the governing equations for the thermal model are presented in

1D Cartesian coordinates. The general 3D derivation of the faradaic heat generation rates

can be found in Appendix C.

9.1.2 Electrochemical transport model

The governing equations for (i) the local electric potential ψ(x, t) in both electrodes and in

the electrolyte, (ii) the local concentrations ci,E(x, t) of ion species i in the diffuse layer of the

electrolyte, and (iii) the local intercalated Li+ concentration c1,P (x, t) in the pseudocapacitive

electrode as well as the expressions of the faradaic jF (t) and capacitive jC(t) current densities

were the same as those presented in Section 8.2. Here also, the subscripts P , E, and C denote

concentrations and properties within the pseudocapacitive electrode, the electrolyte, and the

carbon electrode, respectively.

9.1.3 Thermal model

The governing equation for the temperature and the local heat generation rates in each region

of the hybrid pseudocapacitor can be derived from energy conservation principles applied to

a fixed control volume [2, 5]. The temperature is governed by the heat diffusion Equation

(2.12).

9.1.3.1 Heat generation rates in the electrodes and electrolyte diffuse layer

In the electrodes and in the diffuse layer, there is negligible bulk motion and Dufour energy

flux [Assumptions (2) and (8)]. The general mass conservation equation accounting for
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homogeneous chemical reactions can be expressed as [28]

∂ci
∂t

= −∂Ni

∂x
+ ṙi (9.1)

where ṙi is the local production rate of species i (in mol m−3s−1) due to chemical reactions.

Then, following the derivation procedure used in Chapters 4 for EDLCs, the local volumetric

heat generation rate q̇(r, t) (in W m−3) can be expressed as

q̇ = −
n+1∑
i=0

Ni
∂H̄i

∂x
−

n+1∑
i=0

H̄iṙi (9.2)

where H̄i is the partial molar enthalpy of ion species i (1 ≤ i ≤ n) or of the electrons,

corresponding to i = n + 1. The first term on the right-hand side of Equation (9.2) is the

same as that derived for EDLCs in Chapters 4 and 7. It is the sum of the heat generation

rates (i) q̇E [Equation (7.1)] arising from electric charge carriers (ions or electrons) decreasing

their electrical potential energy and (ii) the “heat of mixing” q̇S [Equation (7.5)] arising from

fluxes of ions and/or electrons along gradients of chemical potential, partial molar entropy,

and temperature [2, 67]. Finally, the second term on the right-hand side of Equation (9.2)

corresponds to heat generated by homogeneous chemical reactions.

In the 1D electrodes The current density j results from the flux of electrons and is

related to the electric field E by Ohm’s law expressed as j = σPE in the pseudocapacitive

electrode and j = σCE in the carbon electrode [28]. Here, the transport of intercalated Li+

ions is accompanied by equal numbers of electrons according to Equation (8.1) and thus does

not affect the net electric current. Thus, the electrical heat generation rate q̇E reduces to

irreversible Joule heating expressed as

q̇E = q̇J,irr =


j2

σP
in the pseudocapacitive electrode

j2

σC
in the carbon electrode.

(9.3)

The heat of mixing due to the 1D electron flux Nn+1,P = −j/F and to the 1D flux of in-

tercalated Li+ N1,P = −D1,P∂c1,P/∂x could potentially produce a reversible heat generation

rate in the electrode expressed as

q̇S = −Ru

{
j

F

∂

∂x

[
T 2∂ ln(γn+1,P )

∂T

]
+D1,P

∂c1,P
∂x

∂

∂x

[
T 2∂ ln(γ1,P )

∂T

]}
. (9.4)
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The present study neglects q̇S in the electrodes. Indeed, the first term associated with the

electrons is expected to be negligible as (i) the EDL region in an electrode is negligibly thin

[27] and (ii) reversible heating in the electrode has not been reported for other applications

such as dielectric capacitors where this expression would also apply. The second term on the

right-hand side of Equation (9.4) was neglected as the required expression for the activity

coefficient γ1,P of intercalated Li+ as a function of temperature and of Li+ concentration

inside the pseudocapacitive material is, to the best of my knowledge, not available in the

literature.

Finally, in the pseudocapacitive electrode, the heat generation rate q̇F,P (x, t) =
n+1∑
i=0

(H̄i,P ṙi,P )(x, t) arises as intercalated Li+ ions move from one lattice site to the next. Here,

the local rate of LimMpOp production can be related to the concentration c1,P predicted by

the electrochemical transport model as (1/m)∂c1,P/∂t. In addition, the production rates ṙi,P

are related by stoichiometry. As a result, the heat generation rate q̇F,P can be expressed as

q̇F,P (x, t) = q̇F,P,rev(x, t) = −∆Hr

m

∂c1,P
∂t

(9.5)

where ∆Hr = H̄LimMpOq − H̄MpOq − mH̄Li+ − mH̄e− is the enthalpy of reaction corre-

sponding to Equation (8.1), i.e., the enthalpy change resulting from the production of

one mole of LimMpOq [159, 160]. Since ∂c1,P/∂t changes sign based on the direction of

the reaction while ∆Hr does not, q̇F,P is a reversible heat generation rate. Note that,

for constant ∆Hr, the total contribution of q̇F,P (x, t) in the electrode
−L∫

−LP−L
q̇F,P (x, t)dx =

−(∆Hr/m)
∂

∂t

−L∫
−LP−L

c1,P (x, t)dx is proportional to the faradaic current density jF (t).

In the diffuse layer The physical processes causing heat generation in the diffuse layer

of hybrid pseudocapacitors are identical to those taking place in EDLCs and derived in

Chapter 7. Thus, the overall heat generation rate q̇ in the diffuse layer was equal to q̇ =

q̇J,irr + q̇E,d + q̇E,s + q̇S,c + q̇S,T . The irreversible Joule heating q̇J,irr was given by Equation

(7.3). The reversible heat generation rates q̇E,d, q̇E,s, q̇S,c, q̇S,T were associated with EDL

formation. They were given by Equation (7.4) for q̇E,d and q̇E,s and by Equation (7.7) for

q̇S,c and q̇S,T .
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9.1.3.2 Stern layers

The temperature across the Stern layer was assumed to be uniform due to its small thickness.

Then, in the absence of ion or solvent accumulation, the energy conservation equation for

each Stern layer can be expressed as

∂(ρEu)

∂t
= ρEcp,E

∂T

∂t
=
q′′in − q′′out

H
. (9.6)

Here, u is the specific internal energy of the electrolyte in the Stern layer while q′′in and

q′′out are the energy fluxes into and out of the Stern layer, respectively. Near the carbon

electrode, the energy fluxes q′′in and q′′out are solely due to heat conduction. Then, the energy

conservation equation can be written as

ρEcp,E
∂T

∂t
=

1

H

[
kC
∂T

∂x
(L, t)− kE

∂T

∂x
(L−H,T )

]
. (9.7)

Near the pseudocapacitive electrode, the energy fluxes result not only from heat conduction

but also from chemical reactants entering and exiting the Stern layer. Assuming negligible

Dufour effect, the local energy fluxes q′′in(t) = q′′(−L, t) at the electrode/electrolyte interface

and q′′out(t) = q′′(−L+H, t) at the Stern/diffuse layer interface can be expressed as [28]

q′′in(t) = −kP
∂T

∂x
(−L, t) +

n+1∑
i=1

(H̄i,PNi,P )(−L, t) (9.8)

and q′′out(t) = −kE
∂T

∂x
(−L+H, t) +

n∑
i=1

(H̄i,ENi,E)(−L+H, t). (9.9)

Then, in the Stern layer near the pseudocapacitive electrode, Equation (9.6) becomes

ρEcp,E
∂T

∂t
=

1

H

[
kE
∂T

∂x
(−L+H, t)− kP

∂T

∂x
(−L, t)

]
+ q̇F,E(t) (9.10)

where q̇F,E is the heat generation rate due to the faradaic reaction given by

q̇F,E(t) = − 1

H

[
n∑
i=1

(
H̄i,ENi,E

)
(−L+H, t)−

n+1∑
i=1

(
H̄i,PNi,P

)
(−L, t)

]
. (9.11)

The only non-zero terms in Equation (9.11) correspond to species involved in the redox

reaction [Equation (8.1)] because no other species enter or exit the Stern layer. The fluxes

Ni,E and Ni,P of all reacting species are related to the electron flux Nn+1,P and the faradaic
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current density jF by stoichiometry [28]. Let us consider the general redox reaction occurring

at the pseudocapacitive electrode/electrolyte interface
n+1∑
i=0

(si,PMi,P + si,EMi,E)
 0, where

si is the stoichiometric coefficient for reactant Mi and subscripts P and E respectively

refer to the pseudocapacitive electrode and the electrolyte. For this reaction, the fluxes

of reactants Ni,E in the electrolyte and Ni,P in the pseudocapacitive electrode are related

by jF (t)/F = −Nn+1,P (−L, t) = −(sn+1,P/si,P )Ni,P (−L, t) = (sn+1,P/si,E)Ni,E(−L + H, t).

Then, q̇F,E can be expressed as

q̇F,E = − jF (t)

HFsn+1,P

n+1∑
i=1

[
si,EH̄i,E(−L+H, t) + si,P H̄i,P (−L, t)

]
. (9.12)

Expressing the partial molar enthalpy as H̄i = µ̃i + T S̄i [91] yields

q̇F,E = −jF (t)

H

{
1

sn+1,PF

n+1∑
i=1

[si,Eµ̃i,E(−L+H, t) + si,P µ̃i,P (−L, t)]

+
1

sn+1,PF
T

n+1∑
i=1

[
si,ES̄i,E(−L+H, t) + si,P S̄i,P (−L, t)

]}
. (9.13)

The two terms within the brackets correspond to expressions for the surface overpotential η

and the Peltier coefficient Π, respectively defined as [28]

η = −
n+1∑
i=0

(si,P µ̃i,P + si,Eµ̃i,E)

sn+1,PF
and Π = −T

F

n+1∑
i=0

(
si,P S̄i,P + si,ES̄i,E

)
sn+1,P

. (9.14)

Then, q̇F,E(x, t) can be divided into one irreversible q̇F,E,irr and one reversible q̇F,E,rev con-

tribution such that q̇F,E = q̇F,E,irr + q̇F,E,rev with the remarkably simple expressions

q̇F,E,irr(t) =
jF (t)

H
η(t) and q̇F,E,rev(t) =

jF (t)

H
Π(t). (9.15)

These heat generation rates were confined to the Stern layer adjacent to the pseudocapacitive

electrode, i.e., −L ≤ x ≤ −L + H. Note that the form of the heat generation rates defined

by Equation (9.15) was also derived in Ref. [28] for an electrochemical reaction at steady

state but ignoring EDL formation.

Here, q̇F,E,rev generated at the electrode/electrolyte interface [Equation (9.15)] and the

total heat generation rate due to q̇F,P,rev inside the pseudocapacitive electrode [Equation
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Table 9.1: Summary of the irreversible and reversible heat generation rates q̇irr and q̇rev

simulated in each region for the 1D hybrid pseudocapacitor illustrated in Figure 8.2 such

that q̇ = q̇irr + q̇rev.

Region Coordinates Irreversible heat 
generation rate 

(W m
-3

) 

Reversible heat 
generation rate 

(W m
-3

) 

Pseudocapacitive 

electrode P xL L L     
2

irr

P

j
q

σ
  N/A 

Pseudocapacitive 

electrode Stern 

layer 
L x L H      F

irr

j η
q

H
  F

rev

j
q

H


  

Electrolyte 

diffuse layer 
L H x L H      

2

irr

E

j
q

σ
  , , , ,rev E d E s S c S Tq q q q q   

 

Carbon electrode 

Stern layer 
L H x L    N/A N/A 

Carbon electrode CL x L L    
2

C

irr

j
q

σ
  N/A 

  

(9.5)] are both proportional to jF . Experimentally, it would be difficult to distinguish be-

tween them to measure separate values for Π and ∆Hr. Indeed, to the best of my knowledge,

the data required to evaluate ∆Hr for the homogeneous reaction inside the electrode is not

available in the literature. As a result, the present study simulates q̇F,E,rev inside the Stern

layer only and neglects q̇F,P,rev.

To summarize, Table 9.1 gives the expressions for the irreversible and reversible heat

generation rates simulated in each region of the 1D hybrid pseudocapacitor for the present

study.

9.1.4 Initial and boundary conditions

The governing Equations (8.2) and (2.5) for ψ(x, t), Equation (8.3) for c1,P (x, t), Equation

(2.6) for c1,E(x, t) and c2,E(x, t), and Equation (2.12) for T (x, t) are first-order partial differ-

ential equations (PDEs) in time and second-order PDEs in space. Each equation requires
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one initial condition and two boundary conditions in each region where it is solved. Here,

the Li+ concentration c1,P (x, t) was computed only in the pseudocapacitive electrode, and

the ion concentrations c1,E(x, t) and c2,E(x, t) only in the diffuse layer. Meanwhile, the

potential ψ(x, t) and the temperature T (x, t) were computed in the pseudocapacitive and

carbon electrodes as well as the diffuse layer of the electrolyte. The potential ψ and tem-

perature T inside the Stern layers were not explicitly simulated. Instead, the Stern layers

and the faradaic heat generation rate q̇F,E therein were accounted for by using the boundary

conditions at the electrode/electrolyte and at the Stern/diffuse layer interfaces.

The initial and boundary conditions for the potential ψ(x, t) and the concentrations

c1,P (x, t), c1,E(x, t), and c2,E(x, t) during galvanostatic cycling under current density ±js

were the same as those given in Section 8.2.3, except for the expression of the imposed cur-

rent density jim(t). In contrast to Chapter 8, the present chapter considers galvanostatic

cycling over a fixed potential window ψmin ≤ ψs ≤ ψmax, analogous to that performed ex-

perimentally. Then, for charging corresponding to Li+ deintercalation, jim(t) was expressed

as

jim(t) =


js if ψmin < ψs < ψmax and dψs/dt ≥ 0 or ψs = ψmin

−js if ψmin < ψs < ψmax and dψs/dt < 0 or ψs = ψmax.

(9.16)

In this method, the duration of the charging and discharging steps was allowed to vary, as

implemented experimentally.

Moreover, the initial temperature was uniform and equal to T0 throughout the device so

that

T (x, 0) = T0. (9.17)

The pseudocapacitive electrode was thermally insulated at the electrode/current collector

interface such that

−kP
∂T

∂x
(−L− LP , t) = 0 W m−2. (9.18)

The temperature at the electrode/electrolyte interface was equal to that at the Stern/diffuse

layer interface [Assumption (10)], i.e.,

T (−L, t) = T (−L+H, t). (9.19)
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The heat flux at the Stern/diffuse layer interface was obtained from the energy conservation

Equation (9.10) so that

−kE
∂T

∂x
(−L+H, t) = −kP

∂T

∂x
(−L, t) +H

[
q̇F,E(t)− ρEcp,E

∂T

∂t
(−L, t)

]
. (9.20)

Moreover, the temperature was constant across the Stern layer near the carbon electrode so

that

T (L−H, t) = T (L, t). (9.21)

In the carbon electrode, the heat flux at the electrode/electrolyte interface satisfied Equation

(9.7) such that

−kC
∂T

∂x
(L, t) = −kE

∂T

∂x
(L−H, t)−HρEcp,E

∂T

∂t
(L, t). (9.22)

Finally, the carbon electrode was thermally insulated at the electrode/current collector in-

terface so that

−kC
∂T

∂x
(L+ LC , t) = 0 W m−2. (9.23)

9.1.5 Constitutive relationships

Table 9.2 summarizes the properties of the electrodes and electrolyte used to solve the

electrochemical transport model for ψ(x, t), c1,E(x, t), c2,E(x, t), and c1,P (x, t) for a hybrid

pseudocapacitor with binary and asymmetric electrolyte. They were the same as those used

in Chapter 8. Arbitrary but realistic material properties were chosen for the pseudocapacitive

material. Its density ρP and specific heat cp,P were based on those of Nb2O5 and taken

as ρP = 4550 kg m−3 [162] and cp,P = 496 J kg−1K−1 [163], respectively. Its thermal

conductivity was taken as kP = 10 W m−1K−1, typical of various metal oxides [164]. The

electrolyte simulated was 1 mol L−1 LiClO4 in propylene carbonate (PC) solvent, with the

Li+ and ClO−4 ion species denoted by i = 1 and 2, respectively. Its density ρE = 1205 kg m−3,

specific heat cp,E = 2141 J kg−1K−1, and thermal conductivity kE = 0.164 W m−1K−1 were

taken as those of PC [58]. The density, specific heat, and thermal conductivity of the carbon

electrode were taken as ρC = 2248 kg m−3, cp,C = 710 J kg−1K−1, and kC = 1.7 W m−1K−1,

respectively [165]. In the absence of reported values for Li+ intercalation in pseudocapacitive
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Table 9.2: Electrochemical transport properties used for simulating the hybrid pseudocapac-

itor with binary and asymmetric electrolyte [161].

Electrodes Electrolyte

σP 7× 10−2 S/m εr 66.1

LP 5 nm a1,E 0.67 nm

D1,P 10−10 m2/s a2,E 1.0 nm

c1,P,max 32.9 mol/L D1,E 2.6× 10−10 m2/s

α 1/2 D2,E 3.3× 10−10 m2/s

k0 5× 10−9 m5/2/mol1/2s c1,E,∞ 1 mol/L

∆ψeq 0 V c2,E,∞ 1 mol/L

σC 100 S/m L 1 µm

LC 5 nm

materials, the Peltier coefficient Π was taken as constant and approximated as Π = −0.363 V

based on measurements for the reaction Li→ Li+ + e− [166].

Finally, the initial Li+ concentration c1,P,0 in the pseudocapacitive electrode was equal

to c1,P,0 = 1 mol L−1. The initial temperature was T0 = 298 K. The cell was cycled galvano-

statically at various current densities js over a fixed potential window with minimum and

maximum cell potentials equal to ψmin = 0 V and ψmax = 0.45 V, respectively.

9.1.6 Method of solution

The one-dimensional governing equations given by Equations (8.2) and (2.5), (8.3), (2.6),

and (2.12) and the associated initial and boundary conditions were solved numerically using

finite element methods. Numerical convergence was assessed based on the predicted potential

ψ(x, t), concentrations c1,E(x, t), c2,E(x, t), and c1,P (x, t), and temperature T (x, t) using the

procedure and convergence criteria described in Section 4.1.5. Oscillatory steady state in

ψ(x, t), c1,E(x, t), c2,E(x, t), and c1,P (x, t) was determined as described in Section 8.2.5.
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9.1.7 Data processing

It is difficult to directly compare the various local volumetric heat generation rates within

the hybrid pseudocapacitor because they act within different sections of the device (Table

9.1). For example, the faradaic heat generation rates q̇F,E,irr and q̇F,E,rev were non-zero only

inside the narrow Stern layer near the pseudocapacitive electrode while Joule heating q̇J,irr

was non-zero throughout both electrodes and the diffuse layer. To assess the contribution

of each heat generation rate to the total heat generation, they should be integrated over

the entire volume of the cell. Thus, the total Joule heat generation rate Q̇′′J,irr(t) per unit

electrode surface area (in W m−2) was defined as

Q̇′′J,irr(t) =

L+LC∫
−L−LP

q̇J,irr(x, t)dx =

−L∫
−L−LP

j2

σP
dx+

L−H∫
−L+H

j2

σE
dx+

L+LC∫
L

j2

σC
dx. (9.24)

It can also be defined based on averaging over each half-cell as

Q̇′′J,irr(t) =

0∫
−L−LP

q̇J,irr(x, t)dx+

L+LC∫
0

q̇J,irr(x, t)dx = Q̇′′J,irr,P (t) + Q̇′′J,irr,C(t). (9.25)

Similarly, the total irreversible Q̇′′F,irr,P (t) and reversible Q̇′′F,rev,P (t) faradaic heat generation

rates at the pseudocapacitive electrode were defined as

Q̇′′F,irr,P (t) =

−L+H∫
−L

q̇F,E,irr(t)dx = q̇F,E,irr(t)H

and Q̇′′F,rev,P (t) =

−L+H∫
−L

q̇F,E,rev(t)dx = q̇F,E,rev(t)H. (9.26)

To facilitate comparison with experimental measurements from Ref. [78], the reversible heat

generation rates due to EDL formation were computed separately for the pseudocapacitive

electrode half-cell Q̇′′EDL,rev,P and for the carbon electrode half-cell Q̇′′EDL,rev,C and defined as

Q̇′′EDL,rev,P (t) =

0∫
−L+H

(q̇E,d + q̇E,s + q̇S,c + q̇S,T ) dx

and Q̇′′EDL,rev,C(t) =

L−H∫
0

(q̇E,d + q̇E,s + q̇S,c + q̇S,T ) dx. (9.27)
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Then, the overall heat generation rate Q̇′′P (t) from all sources in the pseudocapacitive elec-

trode half-cell was given by

Q̇′′P (t) =

0∫
−L−LP

q̇(x, t)dx = Q̇′′J,irr,P (t) + Q̇′′EDL,rev,P (t) + Q̇′′F,irr,P (t) + Q̇′′F,rev,P (t) (9.28)

while Q̇′′C(t) in the carbon electrode half-cell was expressed as

Q̇′′C(t) =

L+LC∫
0

q̇(x, t)dx = Q̇′′J,irr,C(t) + Q̇′′EDL,rev,C(t). (9.29)

Finally, in order to effectively compare time-dependent heat generation rates, the time-

average Q̇
′′
j of heat generation rate Q̇′′j (t) at oscillatory steady state was defined as

Q̇
′′
j =

1

tc

nctc∫
(nc−1)tc

Q̇′′j (t)dt (9.30)

where cycle nc is at oscillatory steady state while subscript j refers to the different heat

generation rate contributions.

9.2 Results and discussion

This section presents simulation results for charging the hybrid pseudocapacitor by Li+ dein-

tercalation and cycling over a fixed potential window 0 V≤ ψs ≤ 0.45 V under several current

densities js. Predictions for the heat generation rates and temperature are qualitatively com-

pared with experimental measurements reported in the literature [78,79]. To better interpret

the results, it is informative to consider the electrochemical transport in the device.

9.2.1 Electrochemical transport

Figure 9.1 shows the cell potential ψs(t) = ψ(−L − LP , t) − ψ(L + LC , t) as a function of

time t − nctc under oscillatory steady state for (a) small values of js and (b) large values

of js. Here, the cycle period corresponded to the time required for ψs to vary from ψmin

to ψmax and back to ψmin. Figure 9.1(a) shows that the evolution of ψs(t) for small cur-

rent densities js features a characteristic “kink” after the charging/discharging transitions.
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Figure 9.1: Predicted cell potential ψs(t) as a function of time t− nctc for different current

densities js at oscillatory steady state between ψmin = 0 V and ψmax = 0.45 V.
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Similar kinks have also been observed experimentally for hybrid pseudocapacitors under gal-

vanostatic cycling [107,116–118]. They were reproduced numerically in Chapter 8 and were

associated with a transition between capacitive-dominated and faradaic-dominated current.

The relatively large slope |dψs/dt| immediately following the switch in the current direction

can be attributed to a brief period of dominant capacitive current. Then, |dψs/dt| abruptly

decreased as the faradaic current became dominant, resulting in the kink. At large values of

js, this faradaic kink vanished and the evolution of ψs(t) became approximately symmetric

around the peak ψs = ψmax. Note that the faradaic kink is distinct from the instantaneous

“IR” drops arising from the electrical resistance of the cell. Indeed, the IR drops for the

simulated cell were negligibly small, since the overall cell thickness was small, resulting in

small electrical resistance RA = 9.7 mΩ·cm2. However, the present model can also reproduce

the IR drops (see Appendix B).

Figure 9.2 shows the (a) faradaic jF (t)/js and (b) capacitive jC(t)/js fractions of the

imposed current density as functions of dimensionless time t/tc at oscillatory steady state.

The cycle period tc was retrieved from Figure 9.1. For small current densities js, the cell

operated in the faradaic regime, i.e., the faradaic current dominated so that jF (t) ≈ ±js

[Figure 9.2(a)] while the capacitive current was small except for brief peaks following the

charging/discharging transitions [Figure 9.2(b)]. For large current densities js, the cell oper-

ated in the capacitive regime, i.e., jC(t) ≈ ±js [Figure 9.2(b)] while the faradaic current was

small [Figure 9.2(a)]. These regimes are the same as those previously defined and analyzed in

Chapter 8 for a hybrid pseudocapacitor charged by Li+ intercalation under constant charge

instead of constant potential window.

Figure 9.3 shows the intercalated Li+ concentration c1,P (−L, t) in the pseudocapacitive

electrode as a function of dimensionless time t/tc. In all cases, c1,P was uniform throughout

the pseudocapacitive electrode due to its small thickness LP = 5 nm. Figure 9.3 indicates

that, in the faradaic regime, c1,P decreased almost linearly throughout the charging step as

Li+ deintercalated and increased throughout the discharging step as Li+ intercalated. In

fact, for js = 2 mA cm−2, the evolution of c1,P showed excellent agreement with the faradaic

limit c1,P,F predicted by Equation (8.26). In the capacitive regime, c1,P was approximately
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Figure 9.2: Predicted (a) faradaic jF (t)/js and (b) capacitive jC(t)/js fractions of the im-

posed current density as functions of dimensionless time t/tc. All cases are plotted over one

cycle under oscillatory steady state for different values of js and the same potential window

0 V ≤ ψs ≤ 0.45 V.
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in the faradaic regime and ηC [Equation (8.28)] for js = 256 mA cm−2 in the capacitive

regime.

constant due to the small faradaic current jF and equal to c1,P,C = 0.8 mol L−1. Note

that no Li+ starvation occurred inside the electrode for any of the cases considered with

∆ψs = 0.45 V.

Figure 9.4 shows the surface overpotential η(t) as a function of dimensionless time t/tc.

As previously observed in Chapter 8, the magnitude |η(t)| was almost constant in the faradaic

regime, except for brief transition periods immediately following the charging/discharging

transitions. The evolution of η(t) in the limits of small and large current density js agreed

well with analytical predictions ηF (t) in the faradaic regime [Equation (8.27)] and ηC(t) in

the capacitive regime [Equation (8.28)].

Figure 9.5 shows the predicted (a) Li+ concentration c1,E(−L + H, t) and (b) ClO−4
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Figure 9.5: Predicted concentrations (a) c1,E(−L + H, t) of Li+ and (b) c2,E(−L + H, t) of

ClO−4 in the electrolyte near the pseudocapacitive electrode as well as (c) c1,E(L − H, t) of

Li+ and (d) c2,E(L−H, t) of ClO−4 near the carbon electrode.
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concentration c2,E(−L+H, t) at the Stern/diffuse layer interface near the pseudocapacitive

electrode. In the faradaic regime, Figure 9.5 indicates that a ClO−4 EDL existed at the

pseudocapacitive electrode during the charging step and was replaced by a Li+ EDL during

the discharging step. For large values of js, a Li+ EDL formed at the beginning and end

of the cycle while a ClO−4 EDL formed in the middle of the cycle. The concentrations

c1,E(−L + H, t) and c2,E(−L + H, t) were strongly correlated with the Stern layer electric

field E(−L + H, t) = ∆ψH(t)/H = η(t)/H, with η(t) reported in Figure 9.4. In the middle

of the cycle, when the surface overpotential η(t) and thus E(−L + H, t) were positive and

large (Figure 9.4), the Li+ ions were repelled and their concentration c1,E(−L + H, t) was

small, approaching zero for js ≥ 8 mA cm−2. This Li+ starvation decreased the faradaic

current density jF (t), explaining the dip in jF around the charging/discharging transition at

t/tc = nc − 0.5 [Figure 9.2(a)]. The positive peak in jF during the discharging step resulted

from c1,E(−L+H, t) increasing as the ClO−4 EDL dissipated while η(t) was still positive.

Figure 9.5 also shows the concentrations (c) c1,E(L−H, t) of Li+ and (d) c2,E(L−H, t)

of ClO−4 near the carbon electrode. A Li+ EDL existed near the carbon electrode for the

entire cycle without ever completely dissipating. This can be attributed to the fact that

Li+ originally from the pseudocapacitive electrode remained in the electrolyte, i.e., c1,P was

smaller than its initial value c1,P,0 [Figure 9.3]. As a result, the electrolyte retained a net

positive charge even when the cell potential ψs was zero, while the electrodes retained a

corresponding negative charge.

9.2.2 Heat generation rates

In all cases, the Joule heat generation rate q̇J,irr in the diffuse layer of the electrolyte was found

to be constant and uniform for galvanostatic cycling, except very close to the Stern/diffuse

layer interfaces where it decreased sharply to zero, as observed in previous simulations of

EDLCs [2, 5]. It was also constant and uniform within each electrode. The total Joule heat

generation rate Q̇′′J,irr ranged from 3.9 × 10−5 to 0.64 mW cm−2 as js ranged from 2 to

256 mA cm−2.
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9.2.2.1 Heat generation rates in the pseudocapacitive electrode half-cell

Figure 9.6 shows the total (a) irreversible faradaic Q̇′′F,irr,P (t) and (b) reversible faradaic

Q̇′′F,rev,P (t) heat generation rates as well as the reversible EDL heat generation rate

Q̇′′EDL,rev,P (t) of the pseudocapacitive electrode half-cell for (c) small and (d) large values

of js as functions of dimensionless time t/tc. First, Figure 9.6(a) shows that the irre-

versible faradaic heat generation rate Q̇′′F,irr,P was always positive. In the faradaic regime

(js ≤ 4 mA cm−2), Q̇′′F,irr,P was proportional to the surface overpotential |ηF (t)| given by

Equation (8.27) such that Q̇′′F,irr,P ≈ js|ηF (t)| (see inset). The heat generation rate Q̇′′F,irr,P

reached a maximum half-way through the cycle corresponding to the smallest Li+ concentra-

tions c1,P (−L, t) in the pseudocapacitive electrode and to the largest values of |ηF (t)| (Figure

9.3). As js increased, the maximum Q̇′′F,irr,P increased. In addition, several distinct peaks

in Q̇′′F,irr,P were evident for large current densities js in the capacitive regime. These peaks

corresponded to those observed in the faradaic current density magnitude |jF (t)| [Figure

9.2(a)].

Figure 9.6(b) shows that the reversible faradaic heat generation rate Q̇′′F,rev,P (t) was signif-

icantly larger in magnitude than its irreversible counterpart Q̇′′F,irr,P (t) [Figure 9.6(a)] for all

js considered. It was also larger than the reversible EDL heat generation rate Q̇′′EDL,rev,P (t)

[Figure 9.6(c)] for small js. This can be attributed to the fact that the surface overpoten-

tial η(t) (Figure 9.4) was smaller in magnitude (|η(t)| . 0.1 V) than the Peltier coefficient

|Π| = 0.363 V for all js considered and that the EDL contribution was small in the faradaic

regime. Indeed, Q̇′′F,rev,P (t) dominated Q̇′′P (t) [Equation (9.28)] for js ≤ 8 mA cm−2. In all

cases, Q̇′′F,rev,P (t) was directly proportional to jF (t) due to the constant value of Π [Equations

(9.15) and (9.26)]. Because Π was negative, the sign of Q̇′′F,rev,P was opposite to that of jF .

In other words, it was endothermic (i.e., negative) during charging by Li+ deintercalation

and exothermic (i.e., positive) during discharging by Li+ intercalation. Thus, the mid-cycle

dip in |Q̇′′F,rev,P | and subsequent endothermic peak during discharging for js ≥ 8 mA cm−2

can be attributed to Li+ starvation limiting the faradaic current density jF . Moreover, the

time-averaged reversible faradaic heat generation Q̇
′′
F,rev,P over a cycle was zero at oscilla-
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tory steady state, since Q̇′′F,rev,P (t) was proportional to jF (t) and no net Li+ intercalation

occurred, i.e.,
tc∫

(nc−1)tc
jF (t)dt = 0.

Figures 9.6(c) and (d) show that the magnitude of the EDL heating Q̇′′EDL,rev,P (t) in-

creased with increasing js. However, the temporal evolution of Q̇′′EDL,rev,P near the pseudo-

capacitive electrode was distinctly different from that of Q̇′′EDL,rev,C near the carbon electrode

or in previous simulations of EDLCs (Chapters 4 and 7). For small current densities js [Fig-

ure 9.6(c)], Q̇′′EDL,rev,P (t) was exothermic during both the charging and the discharging steps.

It also featured both exothermic and endothermic periods during each step for larger values

of js [Figure 9.6(d)]. Over a full cycle, the time average Q̇
′′
EDL,rev,P was positive for all js

considered and will be discussed in more detail in Section 9.2.2.3. By contrast, the EDL

reversible heating in EDLCs or in the carbon electrode half-cell was exothermic throughout

the entire charging step, endothermic throughout the entire discharging step, and its time

average Q̇
′′
EDL,rev,C over a full cycle was zero. Indeed, near the carbon electrode at oscilla-

tory steady state, the temporal evolution of the ion concentrations was symmetric around

the charging/discharging transition [Figures 9.5(c) and 9.5(d)], while the direction of the

current density changed sign. As a result, the reversible heat generation rates q̇E,d, q̇E,s,

q̇S,c [Equations (7.4) and (7.7)] in the carbon electrode half-cell were symmetric in magni-

tude but opposite in sign during charging and discharging. However, faradaic reactions at

the pseudocapacitive electrode resulted in an asymmetic evolution of the ion concentrations

[Figures 9.5(a) and 9.5(b)]. As a result, Q̇′′EDL,rev,P (t) did not average to zero over the full

cycle period. In other words, although the EDL heat generation rates are reversible, they

behave reversibly only for symmetric EDL formation between charging and discharging such

as that in EDLCs.

9.2.2.2 Overall half-cell heat generation rates

Figure 9.7 shows the numerically predicted overall heat generation rate (a) Q̇′′P (t) [Equa-

tion (9.28)] of the pseudocapacitive electrode half-cell and (b) Q̇′′C(t) [Equation (9.29)] of

the carbon electrode half-cell as functions of dimensionless time t/tc over one cycle under
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Figure 9.7: Numerically predicted total heat generation rates (a) Q̇′′P (t) of the pseudocapac-

itive electrode half-cell and (b) Q̇′′C(t) of the carbon electrode half-cell for 0 V ≤ ψs ≤ 0.45 V

as well as experimentally measured total heat generation rates minus Joule heating (c)

Q̇′′P (t) − Q̇
′′
J,irr,P of the pseudocapacitive electrode half-cell and (d) Q̇′′C(t) − Q̇

′′
J,irr,C of the

carbon electrode half-cell for a hybrid pseudocapacitor cycled over the potential window

0 V ≤ ψs ≤ 1.0 V [78] as functions of dimensionless time t/tc for different values of js.
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oscillatory steady state for different values of js and for 0 V ≤ ψs ≤ 0.45 V. Figure 9.7(a) es-

tablishes that Q̇′′P (t) was endothermic during charging and exothermic during discharging for

small current densities js, as the contribution Q̇′′F,rev,P (t) dominated (Figure 9.6). For larger

values of js, Q̇
′′
P (t) featured both endothermic and exothermic periods during the charging

and discharging steps. In particular, for js ≥ 8 mA cm−2, Q̇′′P (t) featured the endother-

mic peak during discharging previously noted in Q̇′′F,rev,P and associated with Li+ starvation

in the electrolyte. Figure 9.7(b) indicates that Q̇′′C(t) was exothermic during charging and

endothermic during discharging for all values of js considered. This was consistent with

the fact that the EDL always consisted of Li+ [Figure 9.5(b)] and agreed with my previous

simulations of EDLCs (Chapters 4 and 7).

Figure 9.7 also reproduces experimentally measured total heat generation rates minus

constant Joule heating (c) Q̇′′P (t)− Q̇
′′
J,irr,P for the porous MnO2 pseudocapacitive electrode

half-cell and (d) Q̇′′C(t)−Q̇
′′
J,irr,C for the carbon electrode half-cell as functions of dimensionless

time t/tc for galvanostatic cycling over fixed potential window 0 V ≤ ψs ≤ 1.0 V (Figure 12

of Ref. [78]). Here, the authors subtracted the constant Joule heat generation rate estimated

from the IR drops at charging/discharging transitions [78,79]. The remainder was presented

as the “reversible heat” associated with each electrode half-cell [78]. However, these values

comprise all time-dependent contributions to the heat generation rate including irreversible

faradaic heat generation rate. For this reason, the experimental data are compared to the

numerically predicted overall heat generation rates Q̇′′P (t) and Q̇′′C(t) rather than to the

reversible contributions only. It is interesting to note that the experimental measurements for

js = 12.5, 25, and 50 mA cm−2 qualitatively resembled the numerically predicted evolutions

of Q̇′′P (t) and Q̇′′C(t) for js = 2, 4, and 8 mA cm−2 in both shape and in relative magnitudes

for the different currents. For js = 50 mA cm−2, experimentally Q̇′′P (t) − Q̇
′′
J,irr,P [Figure

9.7(c)] featured an endothermic peak at the beginning of the discharging step very similar to

that observed numerically in Figure 9.7(a) for js = 8 mA cm−2 and caused by Li+ starvation

at the Stern/diffuse layer interface, as previously discussed.
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9.2.2.3 Time-averaged heat generation rates

Figure 9.8(a) shows the numerically predicted time-averaged heat generation rates over a full

cycle at oscillatory steady state due to (i) Joule heating Q̇
′′
J,irr, (ii) irreversible faradaic heat-

ing Q̇
′′
F,irr,P , and (iii) EDL reversible heating near the pseudocapacitive electrode Q̇

′′
EDL,rev,P

as well as (iv) the overall time-averaged heat generation rate for the entire cell Q̇
′′

as func-

tions of current density js for ψmax = 0.45 V and for ψmax = 1.0 V. First, as previously

mentioned, Q̇
′′
F,rev,P and Q̇

′′
EDL,rev,C were zero and were not plotted. Thus, the overall Q̇

′′

can be expressed as Q̇
′′

= Q̇
′′
J,irr + Q̇

′′
F,irr,P + Q̇

′′
EDL,rev,P . In addition, Figure 9.8(a) indicates

that the Joule heat generation rate Q̇
′′
J,irr was proportional to j2s for all js, as indicated by

Equation (9.25). It also establishes that, in the faradaic regime, the irreversible faradaic heat

generation rate Q̇
′′
F,irr,P was proportional to j2s for small values of js. This was consistent with

the fact that, in this regime, |jF | ≈ js and the magnitude of the surface overpotential ηF was

approximately proportional to js, as indicated by the first-order Taylor series approximation

of Equation (8.27). Here, Q̇
′′
F,irr,P was also several orders of magnitude larger than the Joule

heat generation rate Q̇
′′
J,irr for small values of js due to the small electrical resistance of the

simulated cell. At larger current densities js, in the capacitive regime, Q̇
′′
F,irr,P reached a

plateau and became independent of js because both jF and η were found to be independent

of js. As a result, Q̇
′′
J,irr eventually exceeded Q̇

′′
F,irr,P for large enough values of js. Moreover,

the average EDL heat generation rate Q̇
′′
EDL,rev,P near the pseudocapacitive electrode was

smaller but followed the same trend as Q̇
′′
F,irr,P for all js. It provided a significant contribu-

tion to the net heat generated over a cycle, despite being a “reversible” heat generation rate.

Finally, the overall average heat generation rate Q̇
′′

was (i) proportional to j2s and dominated

by the irreversible faradaic Q̇
′′
F,irr,P and the reversible EDL Q̇

′′
EDL,rev,P heat generation rates

in the faradaic regime, (ii) proportional to j2s and dominated by the Joule heat generation

rate Q̇′′J,irr in the capacitive regime, and (iii) featured a transition zone between these two

regimes when it was independent of js. For the broader potential window ∆ψs = 1.0 V and

a given current js, the Joule heating Q̇
′′
J,irr remained identical to that for ∆ψs = 0.45 V.

However, the irreversible faradaic Q̇
′′
F,irr,P and reversible EDL Q̇

′′
EDL,rev,P heat generation

rates increased with increasing potential window. Indeed, for ∆ψs = 1.0 V, the intercalated
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Figure 9.8: Time-averaged (a) numerically predicted Joule Q̇
′′
J,irr, irreversible faradaic

Q̇
′′
F,irr,P , reversible EDL Q̇

′′
EDL,rev,P , and overall Q̇

′′
= Q̇

′′
J,irr + Q̇

′′
F,irr,P + Q̇

′′
EDL,rev,P heat

generation rates as well as (b) experimental overall Q̇
′′

[79] and estimated Joule Q̇
′′
J,irr heat-

ing as functions of current density js.
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Li+ concentration c1,P reached smaller values than for ∆ψs = 0.45 V, resulting in Li+ star-

vation in the electrode for js = 2 mA cm−2 as well as longer periods of Li+ starvation in the

electrolyte. This resulted in larger values of η(t) and larger EDLs near the pseudocapacitive

electrode, thus increasing Q̇
′′
F,irr,P and Q̇

′′
EDL,rev,P . As a result, the total heat generation rate

Q̇
′′

increased with increasing ∆ψs for small values of js.

Figure 9.8(b) reproduces experimentally measured time-averaged overall heat generation

rates Q̇
′′

reported by Dandeville [79] as a function of js for several potential windows with

ψmin = 0 V and ψmax ranging from 0.9 and 1.5 V (Figure III.15 in Ref. [79]). The dashed line

corresponds to the estimated time-averaged Joule heating Q̇
′′
J,irr for the entire device. Here,

I estimated the electrical resistance as 2.8 Ω cm2 based on the IR drop in ψs(t) reported

for ∆ψs = 1.0 V and js = 25 mA cm−2 [78]. For large values of js, Q̇
′′

for all potential

windows 0.9 V ≤ ∆ψs ≤ 1.5 V fell approximately along the same line corresponding to the

estimated Joule heat generation rate. For small values of js, Q̇
′′

exceeded the estimated

Q̇
′′
J,irr, particularly for the broader potential windows ∆ψs = 1.3 V and 1.5 V. This behavior

is qualitatively similar to that predicted numerically [Figure 9.8(a)] and attributed to Q̇
′′
F,irr,P

and Q̇
′′
EDL,rev,P increasing with increasing ∆ψs due to Li+ starvation in the pseudocapacitive

electrode and the electrolyte. The transition between the faradaic and capacitive regime

behaviors was not as distinct for the experimental cell, particularly for small ∆ψs. This can

be attributed to the relatively large electrical resistance and thus large value of Q̇
′′
J,irr in the

experimental cell.

9.2.3 Temperature

Figure 9.9 shows the predicted temperature T (0, t) at the cell centerline as a function of time

t for 0 V ≤ ψs ≤ 0.45 V and (a) small and (b) large current densities js. For all current

densities js, temperature oscillations around an overall temperature rise Tirr(t) from cycle

to cycle due to irreversible heating were evident. The slope of this irreversible temperature

rise was proportional to the overall time-averaged heat generation rate Q̇
′′

over a cycle and
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Figure 9.9: Predicted centerline temperature T (0, t) − T (0, tc) as a function of time t over

the potential window 0 V≤ ψs ≤ 0.45 V for (a) small and (b) large current densities js.
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given by

dTirr
dt

=
Q̇
′′

Cth
=
Q̇
′′
J,irr + Q̇

′′
F,irr,P + Q̇

′′
EDL,rev,P

Cth
(9.31)

where Cth = ρP cp,PLP + 2ρEcp,EL + ρCcp,CLC was the total heat capacity per unit surface

area, equal to 5.18 J m−2K−1.

Figure 9.9(a) shows that the overall slope increased significantly with increasing js as

these cases were in the faradaic regime when Q̇
′′

was approximately proportional to j2s [Figure

9.8(a)]. The temperature oscillations had a triangular shape and the temperature initially

decreased. This can be attributed to the dominance of Q̇′′F,rev,P , which was endothermic for

Li+ deintercalation, i.e., during the charging step, and approximately constant in magnitude

[Figure 9.6(b)]. Similar triangular oscillations were measured experimentally for a hybrid

pseudocapacitor charged by deintercalation and reported in Ref. [78].

By contrast, Figure 9.9(b) shows that the slope dTirr/dt was approximately the same

for js = 32 and 64 mA cm−2. In fact, these cases were in the transition region observed in

Figure 9.8(a) when Q̇
′′

was nearly independent of js. In addition, the temperature oscillations

featured local maxima and minima within each cycle. This can be attributed to the fact that

the total reversible heat generation rates due to the faradaic reaction Q̇′′F,rev,P and due to

EDL formation Q̇′′EDL,rev,P and Q̇′′EDL,rev,C were of similar magnitude and all had a significant

effect on the temperature evolution. Finally, in the capacitive regime for js = 256 mA cm−2,

the temperature oscillations were triangular and the temperature initially increased, similar

to the EDLC temperatures reported in Ref. [78]. This can be attributed to the fact that Q̇′′C

[Figure 9.7(b)] dominated the heat generation rate.

9.3 Conclusion

The present study developed a novel first-principles continuum thermal model for hybrid

pseudocapacitors accounting for local irreversible and reversible heat generation rates arising

from Joule heating, faradaic reactions, and EDL formation. First, the temporal evolution of

the different heat generation rates and of the temperature predicted numerically for a hybrid
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pseudocapacitor with planar electrodes charged by deintercalation of Li+ under galvanostatic

cycling showed excellent qualitative agreement with those measured experimentally [78].

This suggests that the model successfully captured the key physical phenomena governing

the thermal behavior in pseudocapacitors. Interestingly, the predicted reversible heat gen-

eration rates due to EDL formation produced significant net heating over a cycle near the

pseudocapacitive electrode and thus contributed to the overall cycle-to-cycle temperature

rise of the device. In addition, Li+ starvation in the electrolyte near the pseudocapacitive

electrode resulted in a distinctive endothermic peak in the heat generation rate that was also

observed in the experimental data. These observations indicate that both EDL formation

and faradaic reactions and the resulting heat generation rates must be considered simultane-

ously in thermal models of pseudocapacitors. Moreover, two asymptotic regimes of operation

were observed, depending on the imposed cycling current density. In the faradaic regime,

corresponding to small imposed current density and slow charging, irreversible faradaic and

reversible EDL heating dominated the time-average heat generation rate. In the capacitive

regime, corresponding to large imposed current density and fast charging, Joule heating dom-

inated. The time-averaged heat generation rate Q̇
′′

and the slope of the overall temperature

rise were proportional to the square of the imposed current density j2s in both the faradaic

and capacitive regimes with different proportionality coefficients. In addition, Q̇
′′

was nearly

independent of js in the transition region between the faradaic and capacitive regimes.
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CHAPTER 10

Future work

This chapter presents recommendations for future modeling and experimental efforts to

further the understanding and optimization of both EDLCs and pseudocapacitors.

10.1 Thermal modeling for porous electrode geometries

The simulations presented in the present study have focused on one-dimensional geometries,

i.e., EDLCs and pseudocapacitors with planar electrodes, in order to elucidate the funda-

mental physical phenomena involved in idealized ECs. The use of planar electrodes vastly

simplified both the numerical computations and the physical interpretation of the results by

paring the EC cells down to their fundamentals. Indeed, this approach was very successful,

resulting in remarkably good qualitative agreement between the numerical simulations using

planar electrodes and experimental data involving porous electrodes.

However, simulations using planar electrodes cannot (i) provide quantitative predictions

for practical EC devices with porous electrodes or (ii) provide insight into the effects of

electrode geometry including pore size, tortuosity, and curvature of the electrode surface,

in order to provide design rules. Indeed, the use of porous rather than planar electrodes is

expected to impact the thermal behavior in several ways. First, the local current density

will no longer be uniform throughout the cell. For example, the Joule heating in the current

collectors and in the bulk electrolyte would be controlled by the current per unit current

collector surface area. By contrast, the EDL and faradaic heat generation rates would be

driven by the current per unit electrode/electrolyte interfacial area. For porous electrodes,

these areas can differ by several orders of magnitude, resulting in very different magnitudes
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of the current density as well as increasing the volume where the interfacial heat generation

rates are significant. This may alter the relative importance of these heat generation rates

to the total cell heat generation rate. Second, tortuosity and geometric confinement of the

pores could result in diffusion limitations and/or ion depletion. A significant reduction in the

local ion concentrations would affect the magnitudes of both Joule and EDL heat generation

rates through the local electrolyte conductivity. In pseudocapacitors, ion starvation would

significantly affect the faradaic heat generation rates by altering the surface overpotential and

the relative faradaic and capacitive fractions of the current. Quantitative thermal models

accounting for porous electrodes could be accomplished using several approaches.

10.1.1 First-principles simulations of porous electrodes

First, local heat generation rates and temperature for two-dimensional or three-dimensional

(3D) electrode geometries could be directly simulated using the general 3D formulations

of the first-principles thermal models derived in the present study. Indeed, simulations of

the electrochemical transport phenomena of ordered 3D EDLC electrodes are currently un-

derway in our laboratory using the GMPNP model. The heat generation rates derived in

Chapter 7 could be incorporated into this model. However, the simulations are computa-

tionally intensive and time-consuming, and accounting for the heat generation rates and

temperature would add additional complexity. As a result, it would be prohibitively costly

to simulate practical EC devices using materials such as activated carbon with multiscale

and disordered pore distribution. This approach could be useful for simulating electrode

geometries that are highly ordered, so that symmetry conditions reduce the necessary com-

putational domain. Such simulations could provide insight into the key differences in the

thermal behavior between planar and porous electrodes.

10.1.2 Empirical fitting of scaling laws for planar electrodes

As previously mentioned in Chapters 6 and 7, scaling laws developed using simulations of

planar electrodes could be extended to account for porous electrodes using semi-empirical
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geometric parameters accounting for electrode morphology. This approach was successfully

applied by Wang et al. [102] to model the equilibrium areal capacitance of nanoporous carbon

electrodes as the product of the theoretical planar-electrode capacitance and a semi-empirical

function depending on the average electrode pore radius and on the effective ion diameter.

Similarly, the scaling laws obtained in Chapter 6 or developed from the expanded models

in Chapters 7 and 9 could be adapted to predict the heat generation rates and temperature

oscillations in actual EC devices with porous electrodes. I anticipate that the qualitative

observations obtained for planar electrodes, e.g., the effects of ion valency and size and the

faradaic and capacitive regimes in hybrid pseudocapacitors, will also apply to porous elec-

trodes regardless of their morphology. However, this approach would require a broad range

of experimental data for the heat generation rates and/or the detailed temperature evolu-

tion for ECs with different porous electrode structures and electrolytes. The experimental

temperature data currently available in the literature for ECs would be insufficient for this

purpose [7, 8, 25,29,76–78].

10.2 Experimental measurements of heat generation rates and

temperature

Experimental measurements are vital for developing and validating thermal models. For ex-

ample, the detailed temperature measurements reported and analyzed by Schiffer et al. [29]

for a commercial EDLC cycled under a wide range of operating conditions was invaluable

for qualitatively validating the EDLC thermal model developed in Chapter 4. Similarly, the

time-dependent heat generation rates measured by Dandeville et al. [78,79] were important

for validating the hybrid pseudocapacitor model in Chapter 9. Unfortunately, there is rel-

atively little experimental data for heat generation rates and temperature evolution of ECs

available in the literature, especially for pseudocapacitors. In addition, most of the exist-

ing thermal studies investigated commercial EC devices whose electrolyte composition and

electrode morphologies are not readily available [7, 8, 25,29,76].

For validating thermal models and improving physical interpretation of experimental
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measurements, it would be helpful to measure detailed temperature and/or heat generation

rate evolutions (i) for the same EC under a wide range of operating conditions, i.e., vari-

ous cycling currents and potential windows, as performed in Ref. [29] and (ii) for ECs with

different electrolytes and electrode morphologies under the same operating conditions. To

be most useful for comparing to model predictions and for physical interpretation, the tem-

perature evolutions should have sufficient resolution to show the shape of the temperature

oscillations.

10.3 Expanding available property data for EC materials

Currently, a major limitation for first-principles modeling of ECs is the difficulty of finding

transport properties of the electrode materials and the electrolytes. More extensive experi-

mental characterization of EC materials could help to alleviate this problem. For electrolytes,

it is difficult to find values for the solvated ion diameter ai and diffusion coefficient Di of

ions in various solvents and as functions of concentration and temperature as well as the

relative permittivity εr as a function of electric field. Similarly, for modeling pseudocapaci-

tors, values of properties such as the electrical conductivity σP and the diffusion coefficient

D1,P for intercalated species in the pseudocapacitive electrode as well as the reaction rate

k0 and equilibrium potential drop ∆ψeq are lacking. Ideally, these would be obtained as

functions of the concentration c1,P and the temperature. Here, accounting for temperature

dependence of the transport properties would be necessary to simulate full coupling between

the electrochemical transport and the temperature, such that the temperature rise affects

the EC resistance and capacitance as observed experimentally.

Unfortunately, some of the key properties used in the GMPNP and MPNP ion trans-

port models are difficult to measure. For example, it is challenging to obtain the diffusion

coefficient Di of an individual ion species independent of its counterion due to the electri-

cal forces between the ions tending to keep the local concentrations of both ion species the

same. Similarly, obtaining the electric-field-dependent relative permittivity εr of the solvent

is challenging, since the predicted values of the electric field in the EDL are extremely large,
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on the order of 1 V/nm. Measuring εr under such large electric field would require applying

very large voltages on either side of the solvent sample and/or a test apparatus with very

small yet well-controlled separation between the electrodes. As a result, finding alternative

methods for obtaining such properties would also be helpful. For example, molecular dy-

namics (MD) models accounting for inter-atomic forces may provide useful data and insights

into these properties. Indeed, I have been collaborating with researchers performing MD

simulations of a planar EDLC in order to identify appropriate definitions of the effective ion

diameters and the electric-field-dependent relative permittivity based on the MD results such

that the continuum and MD models give consistent capacitance predictions. Such methods

could help to fill the gaps in available experimental data.

Chapter 8 suggests that the equilibrium potential drop ∆ψeq is of particular interest to

explore further. Experimental measurements for MnO2 electrodes indicated that the varia-

tion of ∆ψeq with the state of charge was weaker for thin-film electrodes than for thick porous

electrodes, i.e., the thin-film electrodes featured smaller values of Seq [123]. Simulation results

suggest that this would result in thick porous electrodes having a smaller faradaic fraction

jF/js of the current than thin-film electrodes and could explain why smaller capacitances

are measured for thick porous electrodes compared to thin films [158]. However, it remains

unclear why the relationship between ∆ψeq and the state of charge would depend on the

electrode geometry. This phenomenon should be investigated further, given the significant

limitation on the faradaic current predicted when ∆ψeq varied strongly with SOC. First, it

would be valuable to collect more experimental data for ∆ψeq as a function of intercalated

cation concentration c1,P for different pseudocapacitive materials with different electrode ge-

ometries and thicknesses. A wide range of data would make it possible to identify trends and

could be used in future simulations. Second, identifying the physical phenomena responsible

for the measured differences in Seq would be valuable to guide the design of individual elec-

trodes and devices. For example, do the experimentally observed differences in Seq between

thin-film and thick porous electrodes reflect differences in the local reaction properties of the

material or do the apparent changes in Seq result from other transport limitations in porous

electrodes? Numerical simulations of two-dimensional or three-dimensional pseudocapaci-
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tive electrode geometries could help to differentiate between the effects of porous-electrode

transport limitations and actual changes in the local Seq.
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APPENDIX A

Supplementary material for Chapter 6

A.1 Illustration of scaling analysis: Dimensionless heat generation

rates

Figure A.1(a) shows the local irreversible volumetric heat generation rate q̇irr(x, 7tc/5) as

a function of location x at time 7tc/5 during charging near Electrode A for Cases 1 to

3 summarized in Table 6.2. It was uniform and equal to j2s/σ∞ throughout most of the

electrolyte domain, where σ∞ is the electrolyte conductivity at the bulk concentration c∞.

However, q̇irr decreased sharply to zero near the electrode surface because ion insertion into

the electrode was negligible and the ionic current density j vanished. The transition from

the plateau value of j2s/σ∞ to zero occurred over a region only a few nanometers thick.

Both the value of j2s/σ∞ and the thickness of the transition region differed for Cases 1 to 3.

However, Figure A.1(b) shows the dimensionless irreversible volumetric heat generation rate

q̇∗irr(x
∗, 7t∗c/5) as a function of dimensionless location x∗ for Cases 1 to 3. It indicates that

the data in dimensionless form collapsed onto a single curve with q̇∗irr = j∗2s /2 far from the

electrode.

Similarly, Figure A.2(a) shows the local reversible volumetric heat generation rate

q̇rev(x, 7tc/5) = q̇E,d(x, 7tc/5) + q̇E,s(x, 7tc/5) + q̇S,c(x, 7tc/5) as a function of location x near

Electrode A at time 7tc/5 for Cases 1 to 3. The time t = 7tc/5 occurred during a charging

step, so the reversible heat generation rates were positive (Chapter 4). This is reflected by the

large positive peak of q̇rev observed in all three cases. Its height and width varied significantly

among Cases 1 to 3. However, Figure A.2(b) shows that the corresponding dimensionless

reversible volumetric heat generation rates q̇∗rev(x
∗, 7t∗c/5) as a function of dimensionless loca-

223



0 1 2 3 4 5 6 7
10-1

100

101

102

103

0 5 10 15
10-15

10-14

10-13

10-12

10-11

 

 

q i
rr
(x

, 7
/5
t c)

 (m
W

/c
m

3 )

Location, x (nm)

 Case 1
 Case 2
 Case 3

(a) (b)

 

 

q* ir
r(x

* , 7
/5
t* c)

Dimensionless location, x*

j*2
s /2

Figure A.1: Computed (a) irreversible volumetric heat generation rate q̇irr(x, 7tc/5) as a func-

tion of location x and (b) corresponding dimensionless irreversible volumetric heat generation

rate q̇∗irr(x
∗, 7t∗c/5) as a function of dimensionless location x∗ for Cases 1 to 3 (Table 6.2).

0 1 2 3 4 5
10-2

10-1

100

101

102

103

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

 

 

q r
ev

(x
, 7

/5
t c)

 (k
W

/c
m

3 )

Location, x (nm)

 Case 1
 Case 2
 Case 3

(a) (b)
x10-6

 

 

q* re
v(x

* , 7
/5
t* c)

Dimensionless location, x*

Figure A.2: Computed (a) reversible volumetric heat generation rate q̇rev(x, 7tc/5) as a func-

tion of location x and (b) corresponding dimensionless reversible volumetric heat generation

rate q̇∗rev(x
∗, 7t∗c/5) as a function of dimensionless location x∗ for Cases 1 to 3 (Table 6.2).

224



0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a* = 2.4
j*s = 2.4x10-6

t*c = 2.2x107

p = 0.38
Le = 374
C* = 310

L* = 7.2x104

j*s = 2.4x10-6

t*c = 2.2x107

p = 0.38
Le = 374
C* = 310

 

 
T* re

v(a
* /2

)C
* L
e1/

2 t* c1/
2 /Q

* re
v

a*

 

 

T* re
v(a

* /2
)C

* L
e1/

2 t* c1/
2 /Q

* re
v

L*

(a) (b)

x105

Figure A.3: Computed values of ∆T ∗revC
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tion x∗ collapsed onto the same curve. This demonstrates that the scaling captured the large

spatial variations associated with the irreversible and reversible volumetric heat generation

rates.

A.2 Correlations for thermal effects

A.2.1 Temperature oscillation amplitude

Figure A.3 plots ∆T ∗rev(a
∗/2)C∗Le1/2t

∗1/2
c /Q∗rev as a function of (a) a∗ ranging from 2.4 to 29

with L∗ = 7.2×104 and (b) L∗ ranging from 3.6×104 to 2.1×105 with a∗ = 2.4, while the other

dimensionless similarity parameters were taken as j∗s = 2.4× 10−6, t∗c = 2.2× 107, νp = 0.38,

Le = 374, and C∗ = 310. Figure A.3(a) indicates that ∆T ∗rev(a
∗/2)C∗Le1/2t

∗1/2
c /Q∗rev was

independent of a∗. Figure A.3(b) features small variations of ∆T ∗rev(a
∗/2)C∗Le1/2t

∗1/2
c /Q̇∗rev

with L∗, but the average value ∆T ∗rev(a
∗/2)C∗Le1/2t

∗1/2
c /Q∗rev = 1.3 was used for the corre-

lation.
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A.2.2 Heat generation

Figure A.4 plots Q∗E,d, Q
∗
E,s, and Q∗S,c as functions of (a) the dimensionless interelectrode

spacing L∗ ranging from 3.6× 104 to 2.1× 105 with a∗ = 2.4 and (b) the dimensionless ion

diameter a∗ ranging from 2.4 to 29 with L∗ = 7.2×104, while the other relevant dimensionless

similarity parameters were taken as j∗s = 2.4 × 10−6, t∗c = 2.2 × 107, and νp = 0.38. It

indicates that the dimensionless interelectrode spacing L∗ had no effect on Q∗E,d, Q
∗
E,s, and

Q∗S,c. Indeed, for sufficiently large L∗, the EDLs did not overlap, i.e., L∗ � 1, and the

EDL concentration profiles, responsible for reversible heating, were independent of L∗, as

previously observed by Wang et al. [42,43,47]. In addition, the heat of mixing contribution

Q∗S,c was proportional to a∗3 while Q∗E,d and Q∗E,s were independent of a∗.

Figure A.5 plots (a) Q∗E,d, (b) Q∗E,s, and (c) Q∗S,c/a
∗3 as functions of the dimensionless

product j∗s t
∗
c for two values of νp and several values of j∗s and t∗c with a∗ = 2.4 and L∗ =

7.2× 104. It is evident that predictions for the same values of νp and j∗s t
∗
c overlapped despite

the different values of j∗s and t∗c . This indicates that Q∗E,d, Q
∗
E,s, and Q∗S,c depended only on

the product j∗s t
∗
c rather than on the individual parameters j∗s and t∗c .
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Figure A.6(a) plots the values of Q∗E,d, Q
∗
E,s, and Q∗S,c predicted by Equations (6.19) to

(6.21) versus those predicted numerically for all simulations used to develop the correlations.

The data covers the ranges 1.2 ≤ a∗ ≤ 29, 3.6 × 104 ≤ L∗ ≤ 2.1 × 105, 3.0 × 10−7 ≤

j∗s ≤ 8.7 × 10−6, 5.5 × 106 ≤ t∗c ≤ 8.7 × 107, 0.0012 ≤ νp ≤ 0.88, 187 ≤ Le ≤ 748, and

78 ≤ C∗ ≤ 735. Similarly, Figure A.6(b) shows the temperature oscillation amplitude ∆T ∗rev

predicted by Equation (6.17) with Q∗E,d, Q
∗
E,s, and Q∗S,c predicted by Equations (6.19)–(6.21)

versus that predicted by numerical simulations. The average relative error for ∆T ∗rev was

12%.
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APPENDIX B

Supplementary material for Chapter 7

B.1 IR drops in cell potential

Figure B.1 shows the cell potential ψs(t) = ψ(0, t) − ψ(2L, t) as a function of time t for

a symmetric electrolyte with −z1 = z2 = 1, a1 = a2 = 0.56 nm, and D1 = D2 = 1 ×

10−11 m2s−1. Aside from the smaller diffusion coefficients, the electrolyte properties were

the same as those of Case 1. Here, significant “IR drops” due to the ohmic resistance

of the electrolyte were evident at the beginning and end of each charging and discharging

step. The magnitude of the potential drop due to the electrolyte resistance was equal to

js(2L)/σ∞ = 0.075 V. It was positive during the charging step and negative during the

discharging step. Thus, the IR drop at the transition from charging to discharging at time

tc/2 = 3.8 ms was equal to twice this value, i.e., 0.15 V.

B.2 Irreversible heat generation rate

Figure B.2 shows the irreversible heat generation rate q̇irr(x, 11tc/8) as a function of location

x for (a) Cases 1-4 with varying zi and (b) Cases 1, 7, and 8 with varying Di near the end

of a charging step. Note that the heat generation rate was plotted at a slightly earlier time

than the concentrations shown in Figure 7.2 in order to show the profiles characteristic of

the charging step rather than those during the switch in current direction from charging to

discharging occurring at t = 3tc/2.
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Figure B.1: Cell potential ψs(t) = ψ(0, t)− ψ(2L, t) as a function of time t for a symmetric

electrolyte with −z1 = z2 = 1, a1 = a2 = 0.56 nm, and D1 = D2 = 1 × 10−11 m2s−1.

Significant IR drops were evident due to the relatively low conductivity σ∞ resulting from

the small diffusion coefficients.
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correspond to time t = 11tc/8 near the end of a charging step.
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APPENDIX C

Three-dimensional formulation of faradaic heat

generation rates

The temperature across the Stern layer was assumed to be uniform due to its small thickness.

Then, in the absence of ion or solvent accumulation, the energy conservation equation for

each Stern layer can be expressed as

∂(ρEu)

∂t
= ρEcp,E

∂T

∂t
=

[q′′(rs, t)− (AH/As)q
′′(rs +Hns, t)] · ns

VH/As
. (C.1)

where rs is the position vector for a point on the electrode/electrolyte interface and ns is

the unit normal vector to the electrode/electrolyte interface pointing into the electrolyte.

Here, u is the specific internal energy of the electrolyte in the Stern layer while q′′(rs, t) and

q′′(rs+Hns, t) are the energy fluxes into and out of the Stern layer, respectively. In addition,

As and AH are the areas of the electrode/electrolyte and Stern/diffuse layer interfaces,

respectively, while VH is the Stern layer volume. The ratio AH/As can be expressed for

simple electrode geometries as

AH
As

=



1 for planar electrodes

Rs +H

Rs

for cylindrical electrodes

(Rs +H)2

R2
s

for spherical electrodes

(C.2)

and VH/As as

VH
As

=



H for planar electrodes

H

(
1 +

H

2Rs

)
for cylindrical electrodes

H

(
1 +

H

Rs

+
H2

3R2
s

)
for spherical electrodes

(C.3)
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where Rs is the radius of curvature of the electrode/electrolyte interface. Near the carbon

electrode, the energy fluxes q′′in and q′′out are solely due to heat conduction. Then, the energy

conservation equation can be written as

ρEcp,E
∂T

∂t
=

[kE∇T (rs +Hns, t)(AH/As)− kC∇T (rs, t)] · ns
VH/As

. (C.4)

Near the pseudocapacitive electrode, the energy fluxes result not only from heat conduction

but also from chemical reactants entering and exiting the Stern layer. Assuming negligible

Dufour effect, the energy fluxes q′′in = q′′(rs, t) and q′′out = q′′(rs + Hns, t) can be expressed

as [28]

q′′in = −kP∇T (rs, t) +
n+1∑
i=0

(
H̄i,PNi,P

)
(rs, t) (C.5)

and q′′out = −kE∇T (rs +Hns, t) +
n∑
i=0

(
H̄i,ENi,E

)
(rs +Hns, t) (C.6)

where H̄i is the partial molar enthalpy of ion species i (1 ≤ i ≤ n) in the electrolyte, of the

electrons i = n + 1, P or of the intercalated Li+ i = 1, P in the pseudocapacitive electrode.

Then, in the Stern layer near the pseudocapacitive electrode, Equation (C.4) becomes

ρEcp,E
∂T

∂t
=

[kE∇T (rs +Hns, t)(AH/As)− kP∇T (rs, t)] · ns
VH/As

+ q̇F,E(rs, t) (C.7)

Here, q̇F,E is the heat generation rate in the Stern layer due to the faradaic reaction and

given by

q̇F,E(rs, t) = −As
VH

[
n∑
i=1

(H̄i,ENi,E)(rs +Hns, t)
AH
As
−

n+1∑
i=1

(H̄i,PNi,P )(rs, t)

]
· ns. (C.8)

The only non-zero terms in Equation (C.8) correspond to species involved in the redox re-

action because no other species enter or exit the Stern layer. The electron flux Nn+1,P and

the faradaic current density jF are related by jF (rs, t) = −FNn+1,P (rs, t) [28]. Similarly,

the fluxes Ni,E and N1,P of all other reacting species are related to Nn+1,P and jF by stoi-

chiometry. Let us consider the general redox reaction occurring at the pseudocapacitive elec-

trode/electrolyte interface
n+1∑
i=0

(si,PMi,P + si,EMi,E)
 0, where si is the stoichiometric coef-

ficient for reactant Mi and subscripts P and E respectively refer to the pseudocapacitive elec-

trode and the electrolyte. For this reaction, the reactant fluxes are related by jF (rs, t)/F =
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−Nn+1,P (rs, t) = −(sn+1,P/si,P )Ni,P (rs, t) = (sn+1,P/si,E)(AH/As)Ni,E(rs + Hns, t). Then,

q̇F,E can be expressed as

q̇F,E(rs, t) =
jF (rs, t) · ns

(VH/As)Fsn+1,P

{
−

n+1∑
i=1

[
si,EH̄i,E(rs +Hns, t) + si,P H̄i,P (rs, t)

]}
. (C.9)

Expressing the partial molar enthalpy as H̄i = µ̃i + T S̄i [91] yields

q̇F,E(rs, t) =
jF (rs, t) · ns

(VH/As)

{
− 1

sn+1,PF

n+1∑
i=1

[si,Eµ̃i,E(rs +Hns, t) + si,P µ̃i,P (rs, t)] (C.10)

− 1

sn+1,PF

n+1∑
i=1

[
si,ES̄i,E(rs +Hns, t) + si,P S̄i,P (rs, t)

]}
. (C.11)

The two terms within the brackets correspond to the surface overpotential η and the Peltier

coefficient Π given by Equation (9.14) [28]. Then, q̇F,E(t) can be divided into one irreversible

and one reversible contribution such that q̇F,E = q̇F,E,irr + q̇F,E,rev where

q̇F,E,irr(rs, t) =
jF (rs, t)η(rs, t) · ns

VH/As
and q̇F,E,rev(t) =

jF (rs, t)Π(rs, t) · ns
VH/As

. (C.12)
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pp. 207–237, Weinheim, Germany: Wiley-VCH Verlag, 2013.

[17] P. Simon, Y. Gogotsi, and B. Dunn, “Where do batteries end and supercapacitors
begin?,” Science, vol. 343, pp. 1210–1211, 2014.

[18] B. E. Conway, V. Birss, and J. Wojtowicz, “The role and utilization of pseudoca-
pacitance for energy storage by supercapacitors,” Journal of Power Sources, vol. 66,
pp. 1–14, 1997.

[19] T. Pandolfo, V. Ruiz, S. Sivakkumar, and J. Nerkar, “General properties of elec-
trochemical capacitors,” in Supercapacitors: Materials, Systems, and Applications
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