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ABSTRACT OF THE DISSERTATION
Thermal modeling of electrochemical capacitors
by

Anna Leone d’Entremont
Doctor of Philosophy in Mechanical Engineering
University of California, Los Angeles, 2015

Professor Laurent G. Pilon, Chair

The present study rigorously develops continuum thermal models of electrochemical capac-
itors (ECs) accounting for the dominant interfacial and transport phenomena. It also aims
to identify design rules and modeling tools to define safe modes of operation and to develop
appropriate thermal management strategies. ECs are promising electrical energy storage de-
vices, particularly for providing high power or long cycle life. They can be divided into two
categories, namely electric double layer capacitors (EDLCs) storing charge electrostatically
in the electric double layer (EDL) at the electrode/electrolyte interface and pseudocapaci-
tors using both EDL and chemical charge storage. Unfortunately, ECs generate heat during
operation due to a variety of interfacial and transport phenomena. Consequently, they may
experience substantial changes in temperature, leading to problems such as accelerated aging
and increased self-discharge rates. EC charge storage mechanisms involve complex multi-
physics and multiscale transport phenomena and this complexity has impeded the physical
understanding of EC heating. This study derives rigorous, physics-based continuum models
for both EDLCs and pseudocapacitors from first principles. Then, detailed numerical simu-
lations were performed to investigate characteristic thermal behavior, to physically interpret

experimental measurements from the literature, and to develop design rules.

First, thermal models were developed for EDLCs. The heat diffusion equation and asso-
ciated heat generation rates were derived from first principles and coupled with the transient

electrodiffusion of ions in binary and symmetric electrolyte. Irreversible Joule heating and
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reversible heat generation rates due to ion diffusion, steric effects, and changes in entropy
of mixing in the electrolyte were formulated. The predicted temperature rise for planar
EDLCs qualitatively reproduced experimental data from the literature under various charg-
ing/discharging conditions. Scaling analysis simplified this model from twelve independent
design parameters to seven dimensionless similarity parameters. Scaling laws were developed
for the heat generated during a charging step and for the maximum temperature oscillations
under galvanostatic cycling. In addition, a first-order thermal analysis for EDLCs was devel-
oped based on the lumped-capacitance approximation and accounting for both irreversible
and reversible heating. A simple analytical expression for the overall temperature rise dur-
ing galvanostatic cycling was derived and scaled. This simple thermal model enables rapid
estimation of temperature evolution in EDLCs without computationally intensive numerical
simulations and was quantitatively validated with experimental measurements from commer-
cial EDLC devices. Moreover, the first-principles thermal model was generalized to account
for multiple ion species and/or asymmetric electrolytes. Simulations with binary and asym-
metric electrolytes indicated that the irreversible Joule heating decreased with increasing
valency and/or diffusion coefficient of either ion while the local reversible heating near a
given electrode increased with increasing counterion valency and/or decreasing counterion

diameter.

Finally, the first-principles model was extended to hybrid pseudocapacitors by accounting
for redox reactions and Li™ intercalation and by rigorously deriving the associated irreversible
and reversible heat generation rates. The model accounted simultaneously for charge storage
by EDL formation and by faradaic reactions. Simulations were performed for a planar hy-
brid pseudocapacitor to investigate the electrochemical interfacial and transport phenomena
as well as the thermal behavior under galvanostatic cycling. Two asymptotic regimes were
identified corresponding to (i) dominant faradaic charge storage at low current and low fre-
quency or (ii) dominant EDL charge storage at high current and high frequency. Predicted
cell potential, heat generation rates, and temperature showed good qualitative agreement
with experimental measurements and can be used to physically interpret experimental ob-

servations.
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CHAPTER 1

Introduction

1.1 Need for electrical energy storage

The importance of electrical energy storage (EES) systems in our society is continually
increasing. Compact and efficient EES systems are required for myriad portable electronic
devices such as laptop computers and mobile phones. They are increasingly in demand for
vehicle applications, due to the increasing popularity of hybrid and fully-electric vehicles
to minimize emissions and reduce dependence on fossil fuels. In addition, many sources of
“clean” and renewable energy such as solar, wind, or wave energy require EES systems to
facilitate electric load following so that they can be effectively integrated into the power

grid [6].

1.1.1 Hybrid and electric vehicles

Hybrid and fully-electric vehicles provide a way to reduce dependence on fossil fuels and
emission of CO,. A major challenge for these vehicles is the development of suitable electrical
energy storage systems to enable good vehicle performance and driving range [6]. The use of
EES systems to replace or supplement internal combustion engines offers greater flexibility
in the choice of energy sources for vehicle applications. It also enables more efficient energy
use. For example, hybrid vehicles can shut down the internal combustion engine in situations
where its efficiency is low and/or recapture energy that would otherwise be wasted, such as

that dissipated during braking [7-9].



1.1.2 Expanding the usability of energy sources

Efficient electrical energy storage is needed to improve the flexibility and applicability of
energy sources such as solar energy, wind energy, and nuclear energy. Solar and wind en-
ergy are intermittent, while nuclear power provides a set, steady power output over long
timescales. Neither of these two extremes is capable of following short-term demand fluc-
tuations in the power grid. EES systems enable the storage of energy during periods when
electricity production exceeds demand and the release of that energy during demand peaks

that exceed the current production [7].

1.2 Types of electrical energy storage

Electrical energy storage methods can be classified into two major types: chemical storage
and physical or capacitive storage [6,10]. Both types of storage are based on electrochem-
istry and involve the interaction of complex physical and chemical processes [6,10]. The
fundamental difference is that chemical storage methods store energy in the form of elec-
trically neutral chemical reactants which can produce electric charge [6,10]. On the other
hand, physical storage methods store energy directly as separated electronic and/or ionic

charge [6,10]. Figure 1.1 shows the classifications of various EES devices.

1.2.1 Batteries: Chemical charge storage

Batteries store electrical energy via reversible redox reactions between an electrolyte and an
electrode that consume or release electrons and ions. Figure 1.2 illustrates the operating
mechanism of a lithium-ion battery during charging and discharging [11]. The electrons flow
from one electrode to the other through an external circuit, while the ions travel through the
electrolyte. Batteries provide a relatively constant output voltage independent of the state
of charge [6,10]. This voltage is determined by the chemical reaction occurring within the
cell [6,12]. Individual battery cells may be connected in series to provide higher voltage or in

parallel to provide higher power [6]. Batteries offer high energy densities because the redox
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Figure 1.1: Classification of electrical energy storage systems.

reactions can store charge throughout the volume of the electrode material [6]. However, the
volume and phase changes associated with ion intercalation into the material severely limit
the cycle life due to irreversible changes [6]. As a result, battery cycle life is typically on
the order of a few thousand cycles [6,10,13]. The power density of batteries is limited by
the reaction kinetics and by mass transfer of the reactants [6]. As a result, the charge and

discharge rates often differ [6].

1.2.2 Conventional capacitors: Physical charge storage

Capacitors store electrical energy electrostatically by physically separating positive and neg-
ative electric charges on either side of an electrically insulating layer [6]. Different types
of capacitors, e.g., dielectric capacitors or electrolytic capacitors, are differentiated by their
structure and the types of charge carrier involved, namely electrons and/or ions. Figure
1.3(a) illustrates a conventional dielectric capacitor. It stores electronic charge within two
electrodes separated by a dielectric material [13]. The voltage across a capacitor varies
continuously with its state of charge [13]. Conventional capacitors have very high power

densities, since they are not limited by reaction kinetics, as well as very long cycle life, since
3
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Figure 1.2: Illustration of the charge storage mechanism of a lithium-ion battery during

charging and discharging (from Ref. [11]).
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Figure 1.3: Illustrations of (a) a dielectric capacitor, (b) an electric double layer capacitor

(EDLC), and (c) a hybrid pseudocapacitor.



electrostatic charge storage is highly reversible [6,13]. However, they provide very low en-
ergy densities, because charge is stored only at the interfaces on either side of the dielectric

layer [6,13].

1.2.3 Electrochemical capacitors

Electrochemical capacitors (ECs) involve both electronic and ionic charge. There are two
types of ECs, namely electric double layer capacitors (EDLCs) and pseudocapacitors. Both
consist of two electrodes immersed in an electrolyte and separated by an ion-permeable sep-
arator [6,13,14]. Figure 1.3(b) illustrates the charge storage mechanism of EDLCs. They
store electrical energy within the electric double layer (EDL) forming at the porous elec-
trode/electrolyte interfaces without chemical reactions or phase changes [10,15]. The EDL
consists of two layers of electric charge on either side of the electrode/electrolyte interface:
a layer of electronic charge within the electrode and a layer of ionic charge of opposite sign
within the electrolyte [6,10,15]. The electrode/electrolyte interface serves as the insulating
layer of the capacitor, because neither electrons nor ions cross the surface. By contrast,
pseudocapacitors combine both physical and chemical storage mechanisms and consist of
a hybrid between EDLCs and batteries. Charge is stored chemically using redox reactions
as well as electrostatically within the EDLs [10,15,16]. Despite their use of chemical stor-
age, the electrical performance of pseudocapacitors closely resembles that of EDLCs rather
than that of batteries [6,10,16,17]. In fact, an ideal battery operates at a constant cell
potential independent of its state of charge (SOC), whereas the cell potential of an EDLC
or a pseudocapacitor varies continuously with its SOC, analogous to conventional capaci-
tors [6,10,18,19]. Finally, hybrid pseudocapacitors can be designed by pairing a redox-active
or pseudocapacitive electrode (e.g., TiOy, MnOg, NbyO5) with an EDLC-type electrode made
of carbon [6,13,19]. Figure 1.3(c) illustrates a hybrid pseudocapacitor.
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Figure 1.4: Comparison of energy and power densities of different EES systems (from Ref.

[6])-
1.2.4 Energy storage performance

The performance of different EES devices can be conveniently compared and assessed based
on their specific energy and power densities. The energy density is the energy stored and
delivered upon discharge per unit mass of the EES device. Power density is the rated
power per unit mass of the EES device [20]. Figure 1.4 shows a Ragone chart plotting the
power density as a function of energy density for several types of EES system [6]. The
energy and power densities of electrochemical capacitors fall between those of dielectric
capacitors and batteries and span several orders of magnitude of both measures [6,10,14,19,
21]. The energy storage capacity of EDLCs increases with increasing electrode surface area,
since they store energy within the EDL at the electrode/electrolyte interface [6]. For this
reason, they use porous electrodes with high surface area, typically made of carbon [6,10,19].
This results in significantly larger energy densities in EDLCs compared with conventional
dielectric capacitors. However, their energy densities remain significantly smaller than those
of batteries [10,13]. The lack of chemical reactions and phase changes makes EDLC charge
storage highly reversible, resulting in cycle life from hundreds of thousands to millions of

cycles [6,10,12-14]. EDLC power densities are significantly larger than those of batteries



because no chemical reaction kinetics limit the charge and discharge rates [6,10]. However,
their power densities are significantly smaller than those of dielectric capacitors. ECs have
response times on the order of seconds, while dielectric capacitors have response times on the
order of nanoseconds [6]. EDLC power is limited primarily by the ionic conductivity through
the separator [6,13]. Pseudocapacitors offer higher capacitances and energy densities than
EDLCs because they combine faradaic and EDL charge storage and thus can accommodate
more charge per unit electrode surface area and volume than EDL charge storage alone
[13,16,17,19,22,23]. However, their electrode materials, such as noble metal oxides RuOy

and IrO., are typically more costly than those of EDLCs [6].

The operating voltage across an EC changes continuously during charging and discharg-
ing, providing an indication of the state of charge at all times [6,10]. The operating voltage
is limited by the breakdown voltage of the electrolyte, equal to about 1.2 V for aqueous
electrolytes and about 2.3 — 2.7 V for organic electrolytes [6,13]. Individual EC cells are

often connected in series for applications where higher voltages are required [6].

1.3 Motivation of the present study

Electrochemical capacitors (ECs) are a promising form of electrical energy storage for ap-
plications requiring high power, rapid cycling, or long cycle life [6,10,19]. Such high power
applications include (i) hybrid or electric vehicles, where they can provide high power for
acceleration and can capture braking energy more efficiently than batteries, (ii) load-leveling
to allow the electrical grid to follow short-term fluctuations or accommodate intermittent
energy sources, or (iii) fast restarting and recharging of equipment. Long cycle lives are
advantageous for applications where EES replacement is difficult, such as those in remote lo-
cations [13]. Depending on the application, ECs may supplement battery systems or replace

them entirely.

Like batteries, electrochemical capacitors dissipate energy as heat during charging or
discharging. Elevated temperatures increase EDLC capacitance, decrease EC resistance,

and increase faradaic reaction rates [9,24-28]. However, they also accelerate EDLC aging
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(7,8, 21, 25,29, 30] and increase self-discharge rates [8,21,25,29]. Previous studies have
demonstrated that the heat generation in EDLCs can cause temperature rises exceeding the

operating range of the device [25].

To avoid these harmful effects, temperature changes in ECs should be mitigated. To this
end, thermal modeling should be developed (i) to improve understanding of the physical
processes resulting in EC heating, (ii) to provide simulation tools for predicting device op-
erating temperatures in existing and novel EC devices, and (iii) to identify design rules and

thermal management strategies for ECs to avoid excessive heating.

1.4 Objectives of the present study

The present study aims to develop a physical understanding of coupled electrodiffusion and
heat transfer occurring during the operation of electrochemical capacitors. To do so, a
physics-based, continuum thermal model will be developed step by step. This model will be
solved numerically for simple EC cells and used to physically interpret the thermal behavior
of ECs observed in experimental studies. Scaling analyses will be used to identify key
dimensionless numbers governing ion transport and EC heating. This can facilitate the

formulation of design rules to mitigate undesirable temperature rise in ECs.

1.5 Organization of the document

Chapter 2 reviews previous models of the electric double layer and of ion transport within
electrolytes, materials used in electrochemical capacitors, Joule heating, and existing exper-
imental and modeling studies of the thermal behavior of ECs. Chapter 3 presents a model
and scaling analysis of coupled electrodiffusion and heat transfer in planar EDLCs. The
chapter considers the simple case of charging with a step change in potential and includes
heat generation due to irreversible Joule heating only. Chapter 4 derives the irreversible and
reversible heat generation rates within binary and symmetric electrolyte based on energy con-

servation. Several contributions to the heat generation rate arising from EDL formation are



introduced and discussed. The model was applied to the practical case of galvanostatic cy-
cling. The results of numerical simulations are qualitatively compared to experimental data
from the literature. Chapter 5 presents a simplified first-order thermal model for predicting
the transient temperature of an EDLC device based on the lumped-capacitance model. Its
predictions showed good quantitative agreement with experimental measurements for the
literature for a variety of commercial EDLCs. Chapter 6 presents a scaling analysis of the
thermal model from Chapter 4. It reduced the number of independent design parameters,
facilitating the identification of scaling laws for the heat generation rate. Chapter 7 gen-
eralizes the thermal model from Chapter 4 to account for multi-species and/or asymmetric
electrolytes. Numerical simulations were performed for binary and asymmetric electrolytes
to investigate the effects of asymmetric ion valencies, ion diameters, and ion diffusion coef-
ficients on the heat generation rates and temperature. Chapter 8 applies a first-principles
electrochemical transport model for hybrid pseudocapacitors to galvanostatic cycling. It
accounts for redox reactions and ion intercalation in addition to the transport processes
previously derived for EDLCs. Simulations were performed to investigate the characteristic
electrochemical transport behavior associated with galvanostatic cycling. Chapter 9 uses the
electrochemical model from Chapter 8 to derive the heat generation rates associated with a
hybrid pseudocapacitor, including all of the heat generation rates derived for EDLCs plus
additional irreversible and reversible heat generation rates due to faradaic reactions. Simu-
lations were performed for a planar hybrid pseudocapacitor cycled galvanostatically, and the
predicted heat generation rates and temperature evolution were qualitatively compared to
experimental measurements from the literature. Finally, Chapter 10 discusses recommenda-

tions for future work.
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CHAPTER 2

Background

2.1 Capacitance

The capacitance of an EC characterizes the amount of electric charge (in C) stored from
the external circuit as a function of the cell potential 15 (in V). The differential Cj 4, and
integral Cs,;,; areal capacitances (in F m™2) per unit electrode/electrolyte interfacial area

are defined as [10,31]

ds qs
d Cgime = — 2.1
gy, 4 Com =y (2.1)

where ¢, is the surface charge density (in C m~2). For galvanostatic cycling consisting of

Csdiff =

alternating charging and discharging steps at a constant imposed current density +j, =
dqs/dt, the differential and integral capacitances can be expressed as [10,31]

jStC/2
wmam - 2/)m'm

where t. is the cycle period and ,,4, and ,,;, are the upper and lower limits of the cell

Cs,diff = and Cs,mt = (2.2)

Js
|da)s /dt|
potential.

2.2 Electric double layer structure

The distribution of ions in an electrolyte is perturbed near a charged surface. The charged
surface attracts ions of opposite charge, called counterions, and repels ions of like charge,
called coions [32]. At the same time, the ions are subject to random thermal motion [32].
The distribution of ions at equilibrium is governed by the combination of these competing
influences of electrostatic attraction/repulsion and of diffusion due to the presence of concen-

tration gradients. This results in a region of electrolyte near the electrode surface with a net
11



(b) diffuse layer

v

©® electron %
) @ cation
@ anion
® Q solvent @
molecule

B
%%

IHP OHP
(d) 51 h/ diffuse layer

(©) Stern layer g p)ge layer

Figure 2.1: Illustrations of the (a) Helmholtz, (b) Gouy-Chapman, (c) Stern, and (d) Gra-

hame models of EDL structure.

ionic space charge density in contrast to the electrically neutral bulk electrolyte. Together,
the layer of electronic charge within the electrode and the corresponding layer of ionic charge
within the electrolyte are called the electric double layer (EDL) [26,32]. The net ionic charge
in the EDL per unit electrode surface area (in C m~2) is equal and opposite to the electronic
surface charge density in the electrode so that the region around the interface is electrically

neutral overall [26-28].

Several proposed models for the electric double layer structure are illustrated in Fig-

ure 2.1. The earliest model and the term “double layer” were both proposed by Helmholtz
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[10,26,33]. In his model, the counterions form a single layer along the electrode surface,
resulting in two layers of electric charge separated by a distance on the order of molecular
dimensions, as illustrated in Figure 2.1(a) [10,26]. This model predicts a constant differential
capacitance similar to that of a parallel-plate dielectric capacitor. However, experimental
measurements have shown that the differential capacitance of ECs is not constant. It varies

with the electrode potential and the electrolyte concentration [26].

The Gouy-Chapman model illustrated in Figure 2.1(b) instead proposed that the ions
form a diffuse layer in the electrolyte under the competing influences of electrostatic forces
and random thermal motion [10,34-36]. In this model, the concentration of excess charge
is largest next to the electrode surface, where the electrostatic forces are strongest and
override the effect of diffusion. The excess charge decreases with increasing distance from the
electrode [26]. In this model, the ions are assumed to be point charges [10]. The thickness of
the diffuse layer varies with electrolyte concentration, ion valencies, and temperature [26,27].
The differential capacitance predicted by the Gouy-Chapman model qualitatively resembles
that measured experimentally at low concentrations and potentials [10,26,27]. However, at
higher concentrations and potentials, the model breaks down and overpredicts the differential

capacitance [10, 26, 27].

The present study uses the Stern model [37] illustrated in Figure 2.1(c). This model
combined the concepts behind the Helmholtz and Gouy-Chapman models. It proposed that
the excess charge in the electrolyte can be divided into two layers, the Stern layer and the
diffuse layer. The Stern layer is the compact layer adjacent to the electrode surface and
containing no free charge [19,26,27,32]. This layer accounts for the fact that ions have finite
size [26,32] and resembles the Helmholtz model of the EDL. The Stern/diffuse layer interface
corresponds to the closest distance of approach for an electrostatically adsorbed ion [28]. Ions
in the diffuse layer move under the competing influences of electrostatic forces, diffusion, and
steric effects [26,27,38], as in the Gouy-Chapman diffuse layer. The concentration of excess
charge is the largest at the Stern/diffuse layer interface and decreases with increasing distance
from the electrode [26,32]. The Stern model accounts for the major behavior observed in
real systems [26].
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It should be noted that a further extension of the Stern model exists. Grahame [39]
observed that the capacitive behavior of an EDL next to a mercury electrode depended
on the type of cations and anions in the electrolyte, especially on the properties of the
anion [10]. The Grahame model thus subdivides the compact layer at the electrode surface
into the inner Helmholtz layer and the outer Helmholtz layer [10,26,27], as illustrated in
Figure 2.1(d). These layers correspond to different distances of closest approach for different
ions [10,26,27]. The inner Helmholtz plane (IHP) is the locus of the centers of ions that
are specifically or covalently adsorbed to the surface [26,27]. The specifically adsorbed ions
are unsolvated [26,27]. The outer Helmholtz plane (OHP) corresponds to the Stern/diffuse
layer interface of the Stern model. It is the locus of the centers of electrostatically adsorbed

ions [26,27]. These ions remain solvated [26,27].

2.3 Materials for ECs

There are a variety of desirable material properties for an EC electrode. Among the more
obvious ones are high specific area (on the order of 1000 — 2000 m?/g) to maximize energy
density and low electrical resistance [10]. The electrical resistance depends not only on
the conductivity of the electrode material, but also on its structure, since the structure
determines the paths an electron must follow to reach the current collectors. The resistance
to ion transport in the pores should also be low [10]. This depends on the pore structure and
must be balanced with the need for high surface area. In addition, good wettability enables
the electrolyte to penetrate into the pores and create the necessary electrode/electrolyte

interface for charge storage [10]. Finally, cost must be considered.

EDLC electrodes should not react chemically with the electrolyte or current collector
materials [10,14]. They are typically made of carbon, which has the advantages of low cost
and well established fabrication techniques [6,13,14]. Different forms of carbon, including
activated carbon, carbon aerogels, and carbon nanotubes have been used for EDLCs. Ac-
tivated carbon is used most commonly due to its low cost and high surface area [13]. By

contrast, pseudocapacitive electrodes must react reversibly with an ion in the electrolyte.
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They typically consist of metal oxides or conducting polymers and react with cations such
as Lit, K, H [13].

Desirable properties for electrolytes include high relative permittivity or dielectric con-
stant, high decomposition voltage, high ionic conductivity, and a wide usable temperature
range [10]. Aqueous electrolytes, such as aqueous HySO, or KOH, offer very high dielectric
constants as well as relatively low resistivity and minimum pore size requirements [10, 14].
However, water has a low decomposition voltage (= 1.23 V) and a relatively high freezing
point [10, 13, 14]. Nonaqueous solvents such as acetonitrile and propylene carbonate offer
substantially higher decomposition voltages at the cost of lower dielectric constants and

higher resistivities [10,14]. Most commercial EDLCs use nonaqueous electrolytes [12].

2.4 Modeling ion transport in electrolytes

An electrolyte is an ionic conductor, so the electric current is carried by the movement of
ions [27]. The current density j within an electrolyte, expressed in A m~2, can be expressed

in terms of ion fluxes as [28,32,40]
j=F> &N (2.3)
i=1

where F' = 9.648 x 10* C mol~! is the Faraday constant, z; and N; are the valency and
molar flux (in mol m~2s™!) of species i, respectively, and n is the number of ion species
present. The electrical conductivity o of the electrolyte depends on the concentration ¢; and
ionic mobility u; of each ion species ¢ present [27] and can be expressed as o = F? i 22u;c;.
The mobility u; of an ion species can be interpreted as the average velocity of an ;cz)rll under
a force of 1 N mol™!, with units m mol s7'N™! [32]. The mobility u; and the diffusion
coefficient D; of an ion species are directly linked. For dilute solutions, they are related by
the Nernst-Einstein equation u; = D;/R,T, where R, is the universal gas constant and T

is the absolute temperature [28,32,41]. Thus, the electrical conductivity o of an electrolyte

can also be expressed as [28,32]

2 &
0= Z 22 Djc;. (2.4)
vt =1
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2.4.1 Poisson-Nernst-Planck (PNP) model

Within an electrolyte, ions may move due to diffusion, advection, and migration due to an
electric field, also called electromigration [32]. The distribution of the electric potential 1)
and the ion distributions are intimately coupled, such that the ion distributions determine
the electric potential profile at any instant while the potential profile simultaneously drives
ion motion. The classical model for time-dependent local potential and ion transport within
the diffuse layer is the Poisson-Nernst-Planck (PNP) model [38]. This model is based on
dilute solution theory and treats the ions as non-interacting point charges [38] in motion
due to diffusion, electromigration, and advection. The Poisson equation describes the local
electric potential ¥ (r,¢) at time ¢ in terms of the volumetric charge density and is expressed
as [38,41-43]

0 in the Stern layers

—V - (€06, V) = (2.5)

F > zic; in the diffuse layer
i=1

where €¢g = 8.854 x 1072 F m™! and ¢, are the vacuum permittivity and the relative per-

mittivity of the electrolyte, respectively. Here, the potential profile within the Stern layers

is linear due to the lack of free charge.
In the absence of chemical reactions, the concentration ¢;(r,t) (in mol L™!) of each ion

species ¢ satisfies the mass conservation equation given by [38]

0 C;
ot

=-V-N; for 7 = 1,2..n in the diffuse layer. (2.6)

For dilute solutions, the ion fluxes due to diffusion, electromigration, and advection can be

linearly superimposed [32] and the total ion flux is given by [32,41]

.DZZZPWCZ
Ni = —DZch — va +cu (27)

where u is the velocity of the bulk electrolyte. The first, second, and third terms on the
right-hand side of Equation (2.7) represent the flux contributions of (i) diffusion due to
concentration gradients, (ii) electromigration due to the electric field, and (iii) advection due
to bulk electrolyte motion, respectively. The combination of Equations (2.6) and (2.7) forms
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the transient transport equation for each ion species i. These are called the Nernst-Planck

equations.

Because the PNP model assumes the ions behave as non-interacting point charges, there
is no upper limit to the ion concentrations at the electrode surface [38]. When either the bulk
ion concentration or the surface potential is large, the point charges can accumulate without
limit and reach unrealistically high concentrations [38]. In reality, ion accumulation is limited
by the finite size of the ions and by repulsive forces between them. Assuming simple cubic
packing of ions with effective diameter a, the theoretical maximum concentration c¢;,q, is
given by ¢nae = 1/Naa® where Ny = 6.022 x 10?3 mol ™! is the Avogadro constant [38]. The
PNP model predicts concentrations exceeding c,,,. for surface potentials only a few times
larger than the thermal voltage ¢y = R, T/zF [38]. Thus, the validity of the PNP model is

limited to cases with dilute electrolytes and low surface potentials.

2.4.2 Modified Poisson-Nernst-Planck (MPNP) model

In order to model ion transport for large electrolyte concentrations and/or surface poten-
tials, Kilic et al. [38] derived a modified Poisson-Nernst-Planck (MPNP) model of the local
potential and ion transport within the diffuse layer accounting for the finite size of ions. This
model was developed by accounting for steric effects in the expression of the free energy of
the electrolyte used to derive the chemical potentials and the corresponding ion fluxes [38].
The model assumed the electrolyte was binary and symmetric with constant permittivity
and negligible advection [38]. In symmetric electrolytes, the valency z;, diffusion coefficient
D;, and effective diameter a; are assumed to be identical in magnitude for both ion species.
Thus, the subscripts ¢« may be dropped from the diffusion coefficient D, the ion diameter a,
and the valency magnitude z. However, the valencies z; of the two ion species still differ in
sign, i.e., 21 = —23, so the subscript are retained where the sign is relevant. Note that sym-
metric electrolytes have also been defined based on symmetric valency alone, i.e., 2 = —2,
without considering the ion diameter or the diffusion coefficient [10,26,27]. However, detailed

models accounting for transient ion transport and finite ion size require a more restrictive
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definition of electrolyte symmetry. The MPNP model uses the same Poisson Equation (2.5)
and mass conservation Equation (2.6) defined above, with n = 2 for binary electrolyte, while

the modified ion flux is given by [3§]

% F Naa’c
Ni= —DVe — D2 eVip — D
¢ RUTC v 1 — Nya3(ep + )

V(Cl + CQ). (28)

The last term on the right-hand side of Equation (2.8) accounts for the finite ion size.
It prevents the total ion concentration c¢; 4+ ¢y from exceeding the theoretical maximum

concentration ¢,,q; = 1/Naa® corresponding to simple cubic packing of ions.

In the limit of negligible ion diameter, i.e., a — 0, the MPNP model reduces to the clas-
sical PNP model. The MPNP model has been validated against established models of EDL
behavior for planar electrodes. Ref. [42] confirmed that the equilibrium electric potential pro-
file predicted by the MPNP model for small surface potential and dilute electrolyte (i.e., small
(o) agreed well with the exact solution predicted using the Gouy-Chapman model [44-46].
Ref. [42] also showed that the MPNP predictions of equilibrium Stern and diffuse layer ca-
pacitances agreed well with those based on the modified Poisson-Boltzmann model [40,47],
which accounts for finite ion size and has successfully reproduced the experimentally mea-

sured equilibrium capacitance of a three-dimensional ordered EDLC electrode [48].

2.4.3 Generalized modified Poisson-Nernst-Planck (GMPNP) model

Many of the existing ion transport models accounting for finite ion size, like the MPNP
model described above, are limited to binary and/or symmetric electrolytes [38,49-56].
However, many widely used electrolytes are asymmetric, such as aqueous HySO,4 [57-60].
In addition, electrolyte mixtures including more than two ion species have attracted interest
for EDLC applications because certain mixtures perform better than either of the original
electrolytes. For example, eutectic mixtures of ionic liquids can provide broader operating
temperature ranges than either constituent individually [61-63]. The generalized modified
Poisson-Nernst-Planck (GMPNP) model developed by Wang et al. [57] predicts the local
electric potential and ion concentrations in asymmetric and multi-species electrolytes with

finite ion size. The Poisson Equation (2.5) for the electric potential and the mass conserva-
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tion Equation (2.6) for the ion concentrations remain the same [57]. In general, the ion flux
N; can be written as [57]

1 R va + Vn(ype) (2.9)

where ; 1, is the activity coefficient of ion species ¢. The GMPNP model assumed the activity
coefficient 7; 1, obeys a Langmuir-type law accounting for the excluded volume due to finite

ion size and expressed as [57,64]

1
. — (2.10)

-y

i=1 Ci,mazx

Here, ¢;max = 1/N. Aag3 is the theoretical maximum concentration of ion species ¢ assuming
simple cubic packing of ions with effective ion diameter a;. Then, the GMPNP ion flux can

be expressed as [57]

DFZZ D;N ac;
N; = R ;C Vi —D;Ve;, — A% Za3Vc] (2.11)
1—Ngy Ea ‘c; j=1

Here, the derivation assumed that the effective ion diameters a; are independent of location,
i.e., they did not vary with the local ion concentrations or temperature. The first, second,
and third terms on the right-hand side of Equation (2.11) correspond to the ion fluxes due
to electromigration, diffusion, and steric effects, respectively.

For binary and symmetric electrolytes, i.e., n = 2, a; = as = a, and |z1| = |z| = z,
the GMPNP model reduces to the MPNP model. Similarly, in the limit of negligible ion

diameter, i.e., a; — 0 for all ion species %, it reduces to the PNP model.

2.5 Modeling heat transfer

2.5.1 Heat diffusion equation

The governing equation for the temperature in a medium can be derived from energy con-

servation principles applied to a differential control volume [65]. For a medium with no bulk

19



motion, the temperature is governed by the heat diffusion equation expressed as [65]

aT .
where p, ¢,, and k are the density, specific heat, and thermal conductivity of the material,
respectively. The local volumetric heat generation rate ¢ (in W/m?) represents the conversion
of other forms of energy (e.g., electrical, chemical, etc.) into thermal energy [65]. It may be
either positive (exothermic), as other types of energy are converted into thermal energy, or

negative (endothermic), as thermal energy is converted into another form.

2.5.2 Joule heating

Joule heating refers to a form of volumetric heating occurring when electric current flows
through a conducting medium [66]. It occurs in electrolytes as well as electronic conductors
[66] and corresponds to a conversion of electrical energy into thermal energy [67]. The Joule
heat generation rate was empirically formulated by J.P. Joule [68] as Q; = IR (in W),
where R is the electrical resistance of the conductor. It was irreversible, i.e., always positive
regardless of the direction of the current. For conductors obeying Ohm’s law, the current
can be expressed as [ = V/R or j = cE where V and E are respectively the voltage across
the conductor and the electric field vector while o is the electrical conductivity [69,70]. For
such ohmic conductors, the Joule heat generation rate Q J can be expressed in the equivalent
forms Q; = I?R = IV = V?/R or in volumetric form as ¢; = |j|*/0 = j-E = o|E]* (in
W/m?). The form IR is used in several existing thermal models of EDLCs [25, 29, 30],
and several studies of Joule heating in electrolytes use the forms j*/o [71] or o|E|? [66,72].
However, electrolytes are ohmic conductors only in the absence of concentration gradients.
Thus, it is important to carefully choose the correct expression for the model and to clearly
define “Joule heating.” Unfortunately, there does not appear to be a clear consensus on the
definition of Joule heating for non-ohmic conductors. Some studies, for example that by
Biesheuvel et al. [73], have defined Joule heating in electrolytes as j-E. This heat generation
rate can be either positive or negative within the EDLs. Biesheuvel et al. [73] described

the cooling phenomenon as “negative Joule heating.” In the present study, I use the term
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“Joule heating” solely for the irreversible contribution ¢;., = |j|*/o by analogy to Joule
heating in ohmic conductors and to the expression originally defined by Joule [68]. Here, the
electrical conductivity o for an electrolyte is given by Equation (2.4) and depends on the
local concentrations of all ion species. Chapter 4 will derive the heat generation rate due to
Joule heating in an electrolyte from conservation of energy and discuss the physics in more

depth.

2.6 Thermal behavior of ECs

2.6.1 Effects of temperature on EDLC performance

Several experimental studies have investigated the effect of temperature on EDLC perfor-
mance and properties. Experimental measurements on commercial EDLCs with carbon
electrodes and organic electrolytes have shown that the effective resistance increased and
the capacitance decreased with decreasing temperature [9,24,25]. This was attributed to
the increase in solvent viscosity and electrolyte resistivity at low temperatures [9, 24, 25].
This temperature dependence varied with the frequency of the electrochemical impedance
spectroscopy (EIS) measurements and with the solvent type in otherwise identical EDLCs
9,24, 25]. The temperature dependence of both resistance and capacitance of EDLCs was

the strongest for temperatures below 0°C [9, 24, 25].

Increased temperatures can also significantly increase the aging rate of EDLCs by acceler-
ating undesirable electrochemical reactions [29,74]. The aging process results in permanently
decreased capacitance and increased internal resistance of the EDLCs [74]. Indeed, a 20%
decrease in capacitance and/or a 100% increase in internal resistance typically define the
end of life for an EDLC [75]. A 10 K temperature increase or a 100 mV increase in cell
voltage approximately doubles the aging rate [29,74]. The temperature influence on aging
was confirmed experimentally with commercial EDLCs held at elevated temperatures and
voltages [74]. Electrical impedance spectroscopy (EIS) measurements performed periodically

at the test voltage and temperature indicated a continual increase in the effective resistance
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of the EDLCs over time. This increase accelerated towards the end of the tests [74]. There
was a simultaneous decrease in the effective capacitance [74]. Bohlen et al. [30] developed
a equivalent electric circuit model based on experimental data. It accounted for the cell’s
inductance, the resistance due to conductors and bulk electrolyte, and the impedance as-
sociated with the electrode pores [30]. This circuit was used to model an EDLC module
under current loads from actual hybrid vehicle tests. The temperature distribution resulting
from constant-temperature boundaries and internal heat generation was predicted using a
thermal circuit model. Their model indicated that even a moderately non-uniform tempera-
ture distribution (initially ~ 2 K differences between the hottest and coolest cells) caused a
self-accelerating cycle that led to dramatic differences in cell resistances, capacitances, and
operating temperatures after 7 years of simulated operation [30]. Hotter cells aged faster,
leading to higher resistances and lower capacitances than their neighbors [30]. This caused
increased internal heat generation and larger cell voltages in the higher-temperature cells [30].

Both of these effects further accelerated aging.

2.6.2 Experimentally measured temperature and heat generation rates in ECs

Various experimental studies have investigated the temperature rise and/or heat generation
rate occurring during charging and discharging of commercial [7, 825,29, 76] or lab-built
[77,78] EDLCs. These studies have typically focused on galvanostatic cycling under current
+1, [7,8,25,29,76-78]. Miller [7] tested a variety of commercial EDLCs with capacitances
ranging from 2000 to 3500 F as well as a commercial 10000 F hybrid pseudocapacitor. The
ECs were cycled between their rated voltage and one half of their rated voltage [7]. The
efficiency of the ECs, defined as the ratio of the energy retrieved during discharging to
that added during charging, decreased substantially as the charging current increased [7].
Simultaneously, the EC temperature increased over time as the lost energy was dissipated

as heat [7].
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Figure 2.2: Measured EDLC surface temperature as a function of time for galvanostatic
cycling at three different currents over the potential window 1.5 — 2.5 V (Figure 10 from

Ref. [29]).
2.6.2.1 Electric double layer capacitors (EDLCs)

EDLC temperature evolution during galvanostatic cycling featured both an overall tempera-
ture rise from cycle to cycle attributed to irreversible heating and superimposed temperature
oscillations at the same frequency as the charge-discharge cycles attributed to reversible heat-
ing [29,76-78]. For example, Figure 2.2 shows the temperature measured at the surface of
a thermally insulated 5000-F commercial EDLC cycled galvanostatically at several currents
I [29]. Both the overall temperature rise and superimposed oscillations or “ripple” were
evident for all values of I,. For the thermally insulated EDLC, the overall temperature
rise was approximately linear and was proportional to I? [29]. Indeed, it was consistent with
that predicted by Joule heating based on the imposed current and cell resistances fitted from
impedance data [29]. By contrast, for commercial EDLCs cooled by natural convection in air,
the overall temperature rise measured under galvanostatic cycling was not linear. Although

it rose initially, it eventually leveled off to a steady-state value as the internal heat generation
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Figure 2.3: Measured EDLC surface temperature as a function of time for constant-current

cycling beginning with charging versus beginning with discharging. (Figure 8 from Ref. [29]).

rate was balanced by the convective heat losses to the surroundings [8,25]. For example,
a 1500-F EDLC cycled at 75 A reached a steady-state temperature about 9 K above the
ambient temperature after 1 hour [25]. Note that this was enough to approximately double

the aging rate per Bohlen et al. [30].

The reversible heat generation rate responsible for the temperature oscillations was found
to be exothermic during charging, endothermic during discharging, and proportional to the
current I, based on experimentally measured temperature and heat generation rates [29,78].
Indeed, Figure 2.3 illustrates this with the measured temperature as a function of time
during two tests that were identical, except that one began with a charging step while the
other began with a discharging step [29]. Here, the test beginning with charging initial
resulted in an initial temperature rise, while the test beginning with discharging had an
initial temperature drop. Finally, the amplitude of the temperature oscillations was found

to increase with increasing potential window [29].

Gualous et al. [76] measured the internal temperature of an EDLC at several locations
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using embedded thermocouples. Figure 2.4(a) shows the measured temperatures versus time
at three surface locations and four internal locations (T1-T4) as the EDLC temperature rose
from its initial temperature to an oscillatory steady state and (b) at the same four internal
locations during oscillatory steady-state. The temperature oscillations inside the EDLC were
significantly larger in amplitude than those at the surface. They were also approximately
triangular, in contrast to the rounded oscillations observed in the surface temperatures in

Figure 2.4(a) as well as in Figures 2.2 and 2.3.

2.6.2.2 Pseudocapacitors

Dandeville et al. [78,79] measured the time-dependent heat generation rates during galvano-
static cycling of a hybrid pseudocapacitor consisting of an MnO, positive electrode and an
activated carbon negative electrode in 0.5 M aqueous K5SOy electrolyte. Here, Kt ions from
the electrolyte reacted reversibly with MnOs so that the positive electrode charged by dein-
tercalation of K ions. The authors also considered an EDLC consisting of two activated
carbon electrodes identical to that of the hybrid pseudocapacitor [78]. The heat generation
rates in each carbon electrode, either in the EDLC or in the hybrid pseudocapacitor, were
assumed to be identical at any given current. This enabled the authors to identify the re-
versible heat generation rates associated with each half-cell in the hybrid pseudocapacitor. In
contrast to EDLCs, the reversible heat generation rate associated with the pseudocapacitive
MnO, electrode half-cell was found to be (i) endothermic during charging by deintercala-
tion of K* and (ii) exothermic during discharging by intercalation of Kt [78]. However, its
magnitude was proportional to I, as observed in EDLCs [78]. Note that it was not possible
to differentiate between faradaic and EDL contributions to the heat generation rate in the

pseudocapacitive electrode half-cell.
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Figure 2.4: Measured temperature as a function of time for (a) three surface locations
[T(Lid-), Tsurface, T(Lid+)] and four internal locations (T1, T2, T3, and T4) as the EDLC
rose from its initial temperature to an oscillatory steady state and (b) internal locations

T1-T4 at oscillatory steady state. (Figure 10 from Ref. [76]).
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2.6.3 Thermal models of ECs
2.6.3.1 Electric double layer capacitors (EDLCs)

Previous EDLC thermal models typically predicted the temperature of the device by solving
the transient heat diffusion equation in two [8,76] or three dimensions [77,80,81]. Guillemet
et al. [21] solved the two-dimensional steady-state heat diffusion equation to predict the
steady-state local temperature and ignored temperature oscillations due to reversible heat
generation. In addition, several models have predicted the transient EDLC temperature
while assuming uniform temperature throughout the device [82] or by treating the device
as multiple regions of uniform temperature connected by thermal resistances [21, 25, 30,
83]. Most of these studies treated EDLCs as “black boxes” characterized experimentally
to retrieve parameters necessary for the thermal models [8, 21, 25,30, 80,81]. The heat
generation rate was prescribed as either (i) uniform throughout the entire device [8,25,76,
77,82], (ii) uniform in the “active components,” i.e., the electrodes and separator [80,81], or
(iii) as having different values in the current collectors, electrodes, and separator [21]. The
irreversible heat generation rate was either imposed as an input parameter [8,21,77,80] or
predicted as Joule heating (in W) equal to I2R, where R was the experimentally measured

resistance of the EDLC cell [25,29,30,81,82].

Most existing thermal models ignored reversible heat generation and typically did not
consider in detail the electrochemical phenomena occurring inside the device [8,21,25,77,80,
81]. However, Schiffer et al. [29] developed an expression for the reversible heat generation
rate Q,e, based on estimated changes in the entropy of the ions due to electric double
layer formation. Their derivation approximated the EDL as a monolayer of ions (i.e., the
Helmholtz model) and assumed that the capacitance was independent of the cell potential.
The reversible heat generation rate (in W) was expressed as [29]

) Tkp Vs dips Tkp Vs
=—-2—In|—+ =-2—1In|— ) Lt 2.1
Q=272 () 0% = 2T (1) 10 213

where T is the temperature, kg is the Boltzmann constant, and e is the elementary charge.

The cell capacitance, cell voltage, and current were denoted by C, 1, and I, respectively.
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The total electrolyte volume and the Stern layer volume were given by Vg and V;,. However,
the value of Vg/Vy was difficult to evaluate for porous electrodes. Instead, it was used as
a fitting parameter. Nonetheless, the expression of Q,e, given by Equation (2.13) was later

adopted by other thermal models [30, 76, 82].

Models developed for individual EDLC cells were also combined to predict the tempera-
tures of EDLC modules. Bohlen et al. [30] and Al Sakka et al. [25] developed thermal-circuit
models of 12-cell and 20-cell EDLC modules, respectively, and tested them using current
loads obtained from actual vehicle tests. The model by Bohlen et al. [30] predicted coupled
temperature behavior and aging effects such as resistance and capacitance changes over a
period of 7 years in simulation time. It demonstrated that even small initial temperature
differences would cause the component EDLC cells to age at different rates, leading to even
larger temperature differences [30]. The model of Al Sakka et al. [25] predicted that natural
convection in air was insufficient to keep the 20-cell module within the operating tempera-
ture range of the EDLCs and that substantial temperature differences would exist between
different parts of the module, with ~ 10 K differences between the maximum and mini-
mum temperatures under forced convection cooling and even larger differences for natural

convection [25].

2.6.3.2 Pseudocapacitors

Fewer thermal models for pseudocapacitors are available in the literature. Srinivasan and
Weidner [84] predicted the transient temperature evolution of a pseudocapacitor cell assum-
ing (i) uniform temperature, (ii) uniform electrolyte concentration at all times, i.e., ignoring
the EDL formation, and (iii) heat generation solely due to irreversible Joule heating [84].
Wang et al. [81] predicted the local temperature for a commercial hybrid pseudocapacitor
under galvanostatic cycling by solving the 3D heat diffusion equation with heat generation.
They accounted only for irreversible Joule heating based on the experimentally measured
resistance of the device and neglected reversible heating [81]. The numerically predicted

maximum temperature in the core of a commercial hybrid pseudocapacitor was considered
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to be in good agreement with experimental surface temperature measurements, although the

model underpredicted the surface temperature by several degrees [81].

2.6.4 Equivalent resistances of ECs

Joule heating in existing models has been predicted using equivalent resistances. The most
commonly used equivalent resistance was the equivalent series resistance (ESR), defined as
the resistance in a series RC-circuit model of the EC [10]. The ESR was determined from
experimental data in various ways. Several studies determined the ESR using impedance
data, either taking the real component of measured EC impedance as the ESR [9,25] or
plotting the impedance data in the complex plane and taking the the intersection with the
real axis as the ESR [7]. The ESR was also evaluated based on the instantaneous voltage
drops or “IR drops” at the beginning or end of a charging cycle with known current [24].
According to Liu et al. [24], resistances measured by this method correlate well with those
measured using impedance. It should be noted that Miller [7] compared the energy efficiencies
predicted by a series RC-circuit model to experimental measurements of four commercial
EDLCs and one hybrid pseudocapacitor. He concluded that in general, the series RC-circuit
model failed to adequately represent EC electrical behavior and attributed this to the effects
of electrode porosity [7]. The studies by Schiffer et al. [29] and Bohlen et al. [74] used a more
complex equivalent electric circuit including multiple resistances with values fitted based on

impedance data instead of using the ESR to account for all resistive behavior.

2.6.5 Open questions

Existing models of EC thermal behavior are relatively simple and designed to predict the
temperature evolution of experimentally characterized ECs. To do so, they take a macro-
scopic approach, imposing uniform heat generation rates rather than computing the local
heat generation rates inside the device from first principles and accounting for their spatial
variation. They generally account only for Joule heating without considering other heat gen-

eration rates. Although a few existing models [30,76,82] have incorporated the reversible heat
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generation rate estimated by Schiffer et al. [29], even this formula was estimated using a very
simplified model of the EDL. The existing models allow the prediction of the temperature
distributions within a device whose properties have been characterized experimentally, but
provide little physical insight for interpreting experimental data or designing novel EDLCs.
For pseudocapacitors, few thermal models exist at all. To the best of my knowledge, no

existing model accounts for reversible heat generation rates present in pseudocapacitors.

The present study aims to analyze the heat generation rates and temperature based on
the electrochemical transport processes occurring within EDLCs and pseudocapacitors. It
aims to address the following fundamental questions: (1) What physical phenomena cause re-
versible heat generation rates in EDLCs and in pseudocapacitors? (2) How do these heat gen-
eration rates vary in space and/or time? (3) How can they be practically accounted for, e.g.,
by use of scaling laws and/or analytical approximations? A coupled thermal-electrochemical
model facilitates the understanding of experimentally observed thermal behavior such as the
temperature oscillations observed in several studies [29,77,78]. This physical understand-
ing of EC heating will aid (i) physical interpretation of experimental measurements and (ii)

formulation of design rules for new ECs.
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CHAPTER 3

Thermal modeling of planar EDLCs under a step

change in potential

This chapter aims to develop physical understanding of the coupled electrodiffusion and
thermal transport taking place in electric double layer capacitors during operation in order
to facilitate the modeling and optimization of actual EDLCs. To this end, scaling analysis
and detailed numerical simulations were performed for EDLCs with planar electrodes. This
chapter focuses on the heat generation rate due to irreversible Joule heating alone and the
resulting temperature rise, as considered by most existing thermal models. Here, I consider
the simple case of a step change in cell potential. Scaling laws were identified for the peak
heat generation rate and for the total amount of heat generated due to the step change in

potential.

3.1 Analysis

3.1.1 Schematic and assumptions

Figure 3.1 illustrates the simulated one-dimensional cell of thickness 2L consisting of one
planar electrode with surface potential ¥,(t) and a counterelectrode with surface potential
—1)4(t) separated by an electrolyte. To make the problem mathematically tractable, the fol-
lowing assumptions were made: (1) Chemical reactions and ion insertion into the electrode
were absent. (2) The electrolyte was binary and symmetric and obeyed the MPNP model. (3)
Dissociation of the electrolyte was complete. (4) Bulk movement of the electrolyte, i.e., ad-

vection, was negligible. (5) All electrolyte properties were constant and independent of local
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Figure 3.1: Illustration of simulated 1D cell along with the associated coordinate system and

computational domain.

ion concentrations or temperature, with the sole exception of the concentration-dependent
electrical conductivity o of the electrolyte. (6) The EDLC was thermally insulated, and (7)
the Stern layer thickness H was assumed to be equal to half of the effective ion diameter,

ie., H=a/2.

Assumptions (1) to (3) are realistic for typical EDLC devices using, for example, aqueous
KOH or TEABF, in acetonitrile as electrolyte [29,85]. Bazant et al. [52] suggested that the
assumption of symmetric ion size is reasonable for solvated ions since smaller bare ions
tend to be more solvated than larger ions. Assumption (4) is satisfied if the electrolyte is
confined in a porous separator inhibiting bulk fluid motion [8,9,21]. Assumptions (5) and
(6) are appropriate first-order approximations for relatively small temperature variations.
The effects of temperature on the electrolyte properties and ion transport are expected to
become significant for large temperature rises. These assumptions will be relaxed in future

work, but they are appropriate and often used for the purpose of scaling analysis.

3.1.2 Governing equations

The coupled one-dimensional governing equations for the electric potential and the cation

and anion concentrations solved in this study account for the Stern (0 < = < a/2) and diffuse
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layers (a/2 < z < L) and for steric effects. The electric potential ¢(x,t) is governed by the
Poisson equation (2.5). The anion c¢;(x,t) and cation ¢y(x,t) concentrations in the diffuse
layer (a/2 < x < L) satisfy the mass diffusion Equation (2.6) with ion flux N;(z,t) given by
the MPNP model according to Equation (2.8). The ion flux N;(x,t) was evaluated based on
the initial temperature Tj, assuming that ion transport was independent of the temperature
rise.

The absolute local temperature T'(z,¢) at time ¢ was computed by solving the heat
diffusion Equation (2.12). The heat generation rate ¢ was solely due to irreversible Joule
heating expressed as [65]

4= drirr = % (3.1)
with the local ionic current density j and the local electrical conductivity o given by Equa-
tions (2.3) and (2.4), respectively. Because there was no ion insertion into the electrode
[Assumption (1)], the ion flux NV; was equal to zero within the Stern layer. Consequently, the

current density j and Joule heat generation rate ¢;;» vanished within this compact layer.

3.1.3 Boundary and initial conditions

One initial condition and two boundary conditions were necessary to solve each governing
equation for ¥(z,t), ¢;(x,t), and T(x,t). Initially, the potential, ion concentrations, and

temperature were assumed to be uniform throughout the computational domain so that

P(x,0) =0V, c¢1(2,0) =c2(2,0) = oo, and T(z,0) = Tp. (3.2)

The potential 1,(t) at the electrode surface was imposed as a step function,

1/)(07 t) = ws(t) = ¢s,maa:7'[(t) (33)

where H(t) is the Heaviside step function. In addition, the electrode surface was assumed

to be thermally insulated, i.e.,

or, .,
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The electric potential and electric displacement were continuous across the Stern/diffuse

layer interface located at © = H, so that [42,43,45],

0 0
G(H 1) = S(H 1) and  coe, 20 (H 1) = coer 22 (H* 1), (3.5)
ox ox
As previously mentioned, ion insertion into the electrode was ignored, so the ion fluxes at

the Stern/diffuse layer interface were zero, i.e.,
Ni(H,t) = Ny(H,t) =0 mol m s (3.6)

In addition, the temperature and heat flux were also continuous across the Stern/diffuse

layer interface such that

oT oT
- _ + Y A — — L. +
T(H ) =T(H',1) and — ko (H 1) = k> (H".1). (3.7)

At the plane of antisymmetry between the two electrodes (x = L), the electric potential, ion
concentrations, and heat flux were such that [42,43],

Y(L,t) =0V, ¢ (L,t)=co(L,t) =co, and — kg—Z(L,t) =0Wm? (3.8)

where ¢, is the bulk concentration for both ion species.

3.1.3.1 Heat generation in the electrode

The magnitudes of the heat generation rates due to Joule heating within the electrolyte

relative to that within the carbon electrode can be estimated as

. .2
Gelectrolyte J /U oc

" pu— " = —— 3-9
Gelectrode J 2/ oc o ( )

where o is the electrolyte conductivity and oc the carbon electrode conductivity. The
current in the electrolyte and in the electrode is the same based on charge conservation.
Taking for example 1 mol L~! aqueous KCI with valency z = 1 and diffusion coefficient
D =~ 2 x 1072 m?/s [60] at room temperature Ty = 298 K yields o = 15 S/m. The electrical
conductivity o¢ of activated carbon falls in the range between 90 and 1000 S m~* [14,86,87].

Under these conditions, the volumetric Joule heat generation rate in the electrolyte would be
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6 to 67 times larger than that in the electrode. Thus, only heat generation in the electrolyte
was considered in this study. Note that the fraction of the total heat generation (in J)

contributed by each component would depend on their relative volumes in the device.

3.1.4 Scaling analysis
3.1.4.1 Dimensionless equations and parameters

The governing Equations (2.5), (2.6), and (2.12) along with the boundary and initial condi-
tions given by Equations (3.2) to (3.8) were non-dimensionalized using the following dimen-

sionless variables:

T o Ve =R
T(z,t) —T, Sz, t

T* (2", %) = % and oz, 1) = G (3.10)
0 Coo

Here, the location = was scaled by the Debye length A\p corresponding to an estimate of

the EDL thickness at the initial temperature Ty and defined for a binary and symmetric

electrolyte as A\p = \/ €06 R T0 /222 F2cy, [40,41]. The time ¢t was scaled by the character-
istic diffusion time A% /D [65]. The thermal voltage R,Ty/zF represents the voltage that
would induce a potential energy equivalent to the thermal energy of an ion of charge z [41].
The dimensionless surface potential ©* thus characterizes the extent to which the potential
perturbs the ion concentrations from their distribution under zero electric field. Finally, the

concentration ¢;(x,t) was scaled by the bulk ion concentration cy.
Substituting Equation (3.10) into Equations (2.5) yields the following governing equation
for the dimensionless potential *(x*, t*)

2 0 0<az*<a/2\p

-2 —
ax*Z

(3.11)

*

& —ch a/2\p < z* < L/Ap.

Similarly, in the diffuse layer corresponding to a/2Ap < x* < L/Ap, the dimensionless

concentration ¢} (x*,t*) satisfies

oc;  ON?
ot Oz
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where N} is the dimensionless ion flux defined as N} = N;/(Dcs/Ap) and expressed as

80* aw* (Coo/cmax)c)'k 8(0’1‘ + 05)
¢ 1
* Sgn(%) K dz* " 1-— (Coo/cmax>(c>{ + CS) dx* (3 3)

N* — _
) 8*

where sgn(z;) is the function equal to +1 or —1 depending on the sign of the valency z;.

Finally, the dimensionless form of the heat diffusion Equation (2.12) can be expressed as
ar* CIe 0T ( R, Thcs ) j*?
B c+as

ot* Ox*2 (3.14)

where the Lewis number is denoted by Le and defined as Le = ay,/ D where oy, = k/pcy, is

pcp 1o

the thermal diffusivity of the electrolyte [65]. Here, j* is the dimensionless current density

defined as
i i ) 3.15
J zFDcOO 2FDco/p ngn = (3:15)

Substituting the dimensionless variables into the boundary and initial conditions given
by Equations (3.2) to (3.8) yields the following dimensionless initial conditions corresponding

tot* =0

Y (2*,0) =0, cj(z",0) =c3(2*,0)=1, and T*(z*0)=0. (3.16)

*

The dimensionless boundary conditions at the electrode surface (z* = 0) can be expressed

as

wsmax * a T~
7 TO/ZFH(t ) and P ——(0,") = 0. (3.17)

At the Stern/diffuse layer interface located at #* = H/Ap = a/2)\p, the dimensionless

$r(0,8%) =

potential satisfies

N A S A O (a” L\ _ oy
4 (2AD’t)w (2/\D’t) and 5 (2)\D’t) o (mﬂ) (3.18)

In addition, the dimensionless ion flux at the Stern/diffuse layer interface is equal to zero,

ie.,

Nl*(a/2/\D,t*) = N;(G/Q)\D,t*) =0. (319)

The boundary conditions for the dimensionless temperature at the Stern/diffuse layer inter-

face are expressed as

*a’*_*cﬁ or* (a= OT*
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Finally, at the separator centerline, corresponding to z* = L/Ap, the boundary conditions

simplify to
L L L or* (L
") =0 )=t =1 d —, ") =0. (321
¢ ()\D, ) ) ¢ ()\D’ ) Cy ()\D7 ) ) ar or* <)\D’ ) ( )

3.1.4.2 Physical interpretation of dimensionless numbers

Overall, the dimensionless governing equations along with the boundary and initial condi-

tions for a step change in potential yield six dimensionless numbers expressed as

L s, max
a*:i’ L*:—, w:max:d}’—’
Ap AD ’ R, Ty/zF
2C00 T
vy = CC , Le= %, and C* = B;OC#CO. (3.22)

Dimensionless numbers a* and L* respectively scale the Stern layer thickness and the domain

*
s,mazx

size by the Debye length. Dimensionless number v represents the ratio of the maximum
imposed surface potential to the thermal voltage. The packing parameter v, [38] is the ratio
of the volume per ion at the theoretical maximum concentration for close-packed ions to that
at the bulk concentration, and Le is the ratio of the characteristic time for heat diffusion to

that for ion diffusion. Finally, C* represents the ratio of the thermal energy density of the

solvent pc, Ty to the thermal energy density of the ions RTjyc, both expressed in J m™3.

3.1.5 Method of solution

The governing Equations (2.5), (2.6), and (2.12) were solved in dimensional form using finite
element methods. Due to antisymmetry of the electric potential and symmetry of the elec-
trolyte, both the electric potential and the ion concentrations at the cell centerline remain
unchanged from their initial values when L is much larger than the EDL thickness [43].
Therefore, it suffices to simulate only half of the cell by imposing zero electric potential
and bulk ion concentrations at the centerline © = L [Equation (3.8)] [43]. The computa-
tional domain considered in this study therefore comprises only the electrolyte between the

electrode/electrolyte interface at * = 0 and the cell centerline at = = L.

Numerical convergence was assessed based on the computed local electric potential ¢, ion
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concentrations ¢; and ¢y, and temperature T at time ¢t. Of these quantities, the temperature
was the most sensitive to the mesh refinement. The mesh size was the smallest at the
Stern/diffuse layer boundary due to the large potential and concentration gradients and then
gradually increased away from this interface. The mesh was refined by reducing the element
size at the Stern/diffuse layer interface and the maximum element growth rate. The time
step was refined by decreasing the relative and absolute tolerances [88]. During each time
step, these tolerances were compared to the estimated local error between solutions at the
previous and current time steps for each degree of freedom in the model [88]. The dimensional
solutions for ¥ (x,t), ¢;(x,t), and T'(x,t) were scaled by COMSOL before performing this
procedure [88]. The time step was then adjusted until a convergence criterion was satisfied, as
described in Ref. [88]. This enabled the use of very small time steps during the initial charging
phase while using a larger time step for the rest of the computation. The convergence criteria
for the mesh and time step were defined so that the maximum relative difference in the local
temperature rise (1" — Tp) was less than 0.5% when dividing by two (i) the element size at
the Stern/diffuse layer interface, (ii) the maximum element growth rate, and (iii) both the

relative and absolute tolerances.

3.1.6 Data processing

Several dimensional and dimensionless variables are of particular interest, namely the tem-
perature rise AT = T — T and the local heat generation rate ¢;;.. Based on the scaled
variables given by Equations (3.10) and the expressions for j and o, the dimensionless heat

generation rate can be defined as

<2 cx2
A ) = = ) 3.23
Qirr (5 17) R,/ TyDco /N2 ¢+ (3.23)

Moreover, the total thermal energy @ () generated per unit volume at location = due
to the potential step is defined as the integral of the local volumetric heat generation rate

qrirr(x,t) = j*/0o with respect to time

QJ,iTT(x) = / QJ,irr(aja t)dt (324)
0
38



Table 3.1: Input parameters of three cases used to illustrate the scaling analysis and such

that a* = 2.0, L* = 395, ¥} ... = 4, vp = 0.2, Le = 50, and C* = 400.
Case 1 Case 2 Case 3

z 1 2 2
a (nm) 0.5 0.25 1
D (m? s71) 2.626 x 1079 3.282 x 1071 2.626 x 107°
Coo (mol L71) 1.329 10.630 0.1661
€ 72.15 288.6 144.3
E (W m K1) 0.58 0.58 0.0725
p (kg m™2) 1000 1000 125
¢ (J kg 1K) 4418 35340 4418
Ys.maz (V) 0.10273 0.10273 0.05137
L (nm) 100 50 200
To (K) 298 596 298

This value was evaluated by numerically integrating the local heat generation ¢, ;,-(x,t) over
the entire simulation time necessary to reach steady state when j and ¢;;-» vanished. The
corresponding total dimensionless heat generation can be expressed as

QJ,ir'r (l‘)

QJ,irr(w ) = RuTOCoo

- / G (27,6 d1". (3.25)
0

The scaling analysis shows that the dimensionless heat generation rate ¢j,,,.(z*,t*) and

consequently the total heat generation Q7 ,..(z*) depend on only four of the six dimensionless

*
s,max’

numbers defined in Equation (3.22), namely a*, L*, ¢ and v,.

3.2 Results and discussion

3.2.1 Illustration of scaling analysis

Table 3.1 summarizes three sets of input parameters used to illustrate the scaling analysis.

Case 1 was based on properties of aqueous KOH electrolyte for concentration co, = 1 mol L™}
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[60] and potential g mq = 0.1 V. The associated dimensionless numbers were a* = 2.0,
L* =395, ¢ 00 = 4, vp = 0.2, Le = 50, and C* = 400. The input parameters z, a, D, Cw,
€, K, P, Cpy Ysmaz, L, and T for Cases 2 and 3 were all varied arbitrarily. However, the six
dimensionless numbers a*, L*, 97 ..., Vp, Le, and C* were identical for Cases 1 to 3. If the

scaling analysis based on Equations (3.10) is correct, any cases with identical dimensionless

groups should yield the same scaled results for ©*, ¢}, ¢, and T™ for all values of z* and ¢*.

3.2.1.1 Scaling of ¥ (x,t), ¢;(x,t), and T (z,t)

Figure 3.2(a) shows the predicted electric potential at the Stern/diffuse layer interface ¢ (H, t)
as a function of time ¢ after imposing the step change in surface potential given by Equation
(3.3). The electric potential at the Stern/diffuse layer interface decreased from its initial
value very close t0 9 mar at t = 07 to a steady-state value as counter-ions migrated towards
the electrode to form the EDL. As expected, the temporal evolution of ¥(H,t) and/or its
equilibrium value were different for the three cases considered. The steady-state potentials
for Cases 1 and 2 were identical since ¥s 4, Was the same in both cases. Figure 3.2(b) plots
the same results shown in Figure 3.2(a) in terms of dimensionless potential ¢*(z* = a*/2,*)
as a function of dimensionless time t*. All three cases collapsed onto a single curve. The

same results were obtained at all locations in the domain.

Similarly, Figures 3.3(a) and 3.4(a) show the temporal evolution of the predicted anion
concentration co(H,t) and the temperature rise AT(H,t) = T'(H,t) — T} at the Stern/diffuse
layer interface, respectively. Both the anion concentration and the temperature increased
with time as the ions migrated to form the EDL before reaching their respective equilibrium
values. Due to the low surface potential in this case, the electrode surface was not saturated
with ions, i.e., co(H,t) did not reach ¢,q,. Similarly, the temperature rise was very small.
The same data are presented in dimensionless form in Figures 3.3(b) and 3.4(b). Here also,
the dimensionless concentration ¢4(a*/2,t*) and dimensionless temperature rise T*(a* /2, t*)
collapsed onto a single curve for the three different cases considered. Similar results were

obtained at other locations in the domain.

40



@ 12

i —=—Case 1 T
—o— Case 2
—<—Case 3 |

Potential, y(a/2,r) (V)
o o o o
T & &8 S
| | | |

e
0.00 0.02 0.04 0.06 0.08 0.10
Time, 7 (us)

Dimensionless potential, v (a /2, 1)

I I
0 500 1000 . 1500
Dimensionless time, 7

Figure 3.2: Predicted (a) electric potential at the Stern/diffuse layer interface ¢ (a/2,t) as
a function of time ¢ and (b) corresponding dimensionless electric potential ¢*(a*/2,t*) as a
function of dimensionless time t* for Cases 1 to 3 (Table 3.1). Similar results were obtained

for other locations.
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Figure 3.3: Predicted (a) anion concentration at the Stern/diffuse layer interface co(a/2,1t)
as a function of time ¢ and (b) corresponding dimensionless anion concentration cj(a*/2,t*)

as a function of dimensionless time t* for Cases 1 to 3 (Table 3.1).
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Figure 3.4:
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AT(a/2,t) = T(a/2,t) — Ty as a function of time ¢ and (b) corresponding dimensionless

temperature rise 7%(a*/2,t*) as a function of dimensionless time t* for Cases 1 to 3 (Ta-
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3.2.1.2 Scaling of Joule heat generation rate ¢,;.-(z,1)

Figure 3.5(a) shows the Joule heat generation rate ¢;,;.(x,t) as a function of location = for
Cases 1 to 3 at different times corresponding to the same dimensionless time ¢* = 63 shown in
Figure 3.4(b) and within the period of intense heat generation shortly after the step change
in potential. It is evident that the heat generation rate varied significantly among the three
cases simulated. However, in all cases, the heat generation rate ¢ ;.. was uniform across 99%
of the computational domain, only decreasing sharply to zero very close to the Stern/diffuse
layer interface where the current density vanished. This resulted in uniform temperature rise
across the domain (not shown). Therefore, the heat generation rate and temperature rise at
the cell centerline (x = L) can be used to estimate their values everywhere in the domain at

any given time.

Figure 3.5(b) shows the same data from Figure 3.5(a) plotted in terms of dimensionless
heat generation rate ¢7,,..(v*,t*) as a function of z* for t* = 63. It establishes that all three

cases collapsed onto a single curve when the results were plotted in dimensionless form.

Overall, these results illustrate the scaling analysis performed on the coupled MPNP
and heat diffusion equations and their initial and boundary conditions for EDLCs with
binary and symmetric electrolytes under a step change in potential. The dimensionless
variables ¢*(z*, t*), ¢f(x*,t*), and T*(z*,t*) depended only on the six similarity parameters
a*, L*, Y% aw Vpy Le, and C*. This substantially reduces the number of independent design

parameters to be considered, facilitating the development scaling laws for Joule heating in

EDLCs.

3.2.2 Scaling laws for Joule heating in EDLCs under a step change in potential

A step change in cell potential was used to investigate the effect of different dimensionless
numbers on Joule heating in EDLCs. This charging method is one of the simplest pos-
sible, being completely characterized by the single value g ,,4,. The scaling analysis of

Section 3.1.4 indicates that the dimensionless Joule heat generation rate ¢7,,..(*,t*) is a

*
s,max’
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Figure 3.5: Predicted (a) heat generation rate ¢(z,t) as a function of location x and at
time ¢ such that ¢* = 63 and (b) corresponding dimensionless heat generation ¢*(z*,63) as

a function of dimensionless location z* for Cases 1 to 3 (Table 3.1).
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A realistic range for each one of these dimensionless numbers can be estimated based on
typical values of z, a, L, €., Ty, and 15 ;mq,. For aqueous electrolyte EDLCs, the dielectric
constant and the surface potential are typically €, = 78.5 and 15 ;e = 0.5 V (for a total cell
potential of 1.0 V) with bulk concentration and initial temperature equal to cs, = 1 mol L™}
and Ty = 298 K, respectively. The ion diameter can range from 0.1 to 0.9 nm encompassing
small non-hydrated ions to large hydrated ions [60]. The ion valency z typically ranges
between 1 and 3. The domain size is such that 10 pm < L < 150 pm based on reported
commercial separator thickness [89]. Under these conditions, the dimensionless numbers a*,
L*) Y and v, fall within the ranges 0.33 < a* < 9.9, 2.5 x 10* < L* < 1.5 x 105,

s,max’

19.47 < ? < 58.41, and 0.0012 < v, < 1.0. Here, v, is strictly less than 1 because the

s, max

bulk ion concentration must be less than ¢,,qz.

3.2.2.1 Peak Joule heat generation rate ¢,cq

Simulations showed that the maximum heat generation rate in response to a step change
in potential occurred immediately after the step, i.e., at ¢ = 0. Then, this peak heat
generation rate, denoted as gpeqr (), is given by

(2, 0))"

a0 (3.26)

q.peak: = QJ,irr (ZE, O+) =

At t = 07, the ions have not had time to migrate so their concentrations are uniform, i.e.,
c1(x,0") = co(2,0") = ¢oo and Jey /0z(x,07) = Deg/0x(x,07) = 0. Under these conditions,
the Poisson Equation (2.5) simplifies to 9*y/0x? = 0, indicating that the potential profile
is linear over the entire domain between x = 0 and x = L. Then, the ion fluxes N; and N,
defined by Equation (2.8), simplify as

ZzF ws,max

Ni(z.0") = D
i(,07) R, ™ L

i=1or?2. (3.27)

In addition, the ionic current density and electrical conductivity at ¢ = 0T can be written as

222 F2Dcoos max

2D2?F?c.,
R, 1oL .

Ru TO

(2,07) = FZZ, z,0") = and o(z,0%) = (3.28)
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Finally, the peak heat generation can be expressed, in dimensional and dimensionless forms,

as
. 2z2F2DCOO¢§,max - :,Zmax
Qpeak = RUT()LQ and Qpeak = 2 12 (329)

Figure 3.6 compares the dimensionless peak heat generation rate ¢ ., computed nu-
merically with that predicted by Equation (3.29) for the range of dimensionless numbers
previously discussed. It shows that there was excellent agreement between the analytical
and the numerical predictions over a very wide range of ¢, Thus, the expression given by
Equation (3.29) can be used as an upper bound for the Joule heat generation rate in EDLCs

r a step change in potential.

Equation (3.29) indicates that the peak heat generation rate gpeqr increased linearly with
increasing electrolyte concentration ¢, and diffusion coefficient D and increased quadrat-
ically with increasing ion valency z. This corresponds to gpeqr increasing with increasing
conductivity o. Although o appears in the denominator of ¢;;.., large o also resulted in
larger current density j in response to the same potential drop, increasing the Joule heating.
In addition, gpeqr increased quadratically with increasing surface potential g 4, and with
decreasing electrode separation L, i.e., with increasing initial electric field and thus larger
current. Note that, in order to increase energy and power densities of EDLCs, it is desir-
able to use large potential windows and to maximize electrolyte conductivity [13,14]. The
present results show that these measures would also increase the peak heat generation rate in
EDLCs subjected to abrupt changes in cell potential. This further confirms the importance

of understanding and predicting heat transfer in high-performance EDLCs.

3.2.2.2 Total Joule heat generated @),

In contrast to peqr, the total Joule heat @, [Equation (3.24)] generated by the step
change in potential was more difficult to predict analytically and did not lend itself to a
simple analytical expression. However, some clear trends relating Q7 [Equation (3.25)] to
the dimensionless groups could be observed. Figure 3.7(a) shows Q7. as a function of L*

for 9% =19 and different combinations of a* and v}, values. It indicates that (7, was

s,max
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Figure 3.7 (a) Total dimensionless heat generation Q7. as a function of L* for ¢, ., = 19.
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*
s,max?

inversely proportional to L*. Similar plots were obtained for different values of 1 Up,

and a*. Similarly, Figure 3.7(b) shows the dimensionless total heat generation Q%;,, as a

*

function of dimensionless surface potential ¥}

for different values of v, and for a* = 2.2

*2
s,mazx*

and L* = 6.5 x 10%. Here, Q7 i Was approximately proportional to 1 The same trends

were observed for different values of a* and L*. Based on these results, Figure 3.7(c) shows

the ratio ¥%,,,/Q%,.L* as a function of 1/a* for L* = 2.5 x 10* and ¢} = 19 and

s, max s,max

different values of v,. It indicates that ¢2 ,./Q%,..L* was independent of a* for a* < 1

and reached a plateau whose value, denoted as fi(v,), depended on v, only. Similarly, for
a* > 1, it was independent of v, and approached a curvilinear asymptote fo(a*). In fact,
Figure 3.8 shows the values of 27, ,./Q% . L* (a) as a function of v, for a* = 0.016 and

s,max

0.033 and (b) as a function of a* for a* > 1 with packing parameters v, ranging from 0.0012

to 0.88. Both plots were fitted by power laws to find the curvilinear asymptotes
filyy) =2430% and  fa(a*) = 0.83a™"%. (3.30)

For all values of a* and v, the dimensionless total heat generation can be expressed as

*2

*2 B
Qe = 222 (1)) + (o)) = 2o [ (2030047 4 (0.830°09)’]

1/2

(3.31)

The average relative error between the total heat generation Q7. predicted by Equation

*
s,mazx’

(3.31) and that predicted numerically was less than 6% for all values of a*, L*, and

v, considered.

3.3 Conclusion

This chapter presented a model for coupled electrodiffuseion and Joule heating during charg-
ing of electric double layer capacitors by a step change in cell potential. The model accounted
for the presence of the Stern layer and for the finite size of ions by using the modified
Poisson-Nernst-Planck model. One-dimensional transient electrodiffusion and heat diffusion
with Joule heating for the EDLC was found to be governed by eleven dimensional parame-

ters. Scaling analysis reduced the number of independent governing parameters to only six
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meaningful dimensionless numbers. The Joule heat generation rate was found to depend on

*
s,mazx’

the dimensionless surface potential 1) domain length L*, packing parameter v, and ion
diameter a* only. An analytical expression for the peak Joule heat generation rate ¢peq.r was
derived and validated against simulation results. This expression provides an upper bound
for the Joule heat generation rate during a step change in potential. It also indicates that
strategies for increasing energy and power densities, such as increasing the potential window,
ion concentrations, diffusion coefficient, and valency or decreasing the electrode spacing and
ion diameter, would also increase Joule heat generated by abrupt changes in cell potential.
Simulation results were also used to identify the asymptotic behaviors of the total heat gen-
eration (7., and to develop a simple scaling law. This chapter illustrated the importance of

heat transfer in EDLCs and provided scaling analysis tools to interpret and to model their

thermal behavior.
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CHAPTER 4

First-principles thermal modeling of EDLCs under
galvanostatic cycling with binary and symmetric

electrolyte

This chapter aims to develop a physical model and physical understanding of the coupled
electrodiffusion, irreversible and reversible heat generation rates, and thermal transport oc-
curring in electric double layer capacitors during galvanostatic cycling. To do so, the heat
diffusion equation including irreversible and reversible heat generation rates w