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Abstract  

Air temperature thresholds are investigated and proposed for acceptable comfort in air-conditioned 
buildings. Using the ASHRAE database of field studies in which acceptability votes were obtained from 
occupants, it is shown that within the thresholds, the acceptability is indistinguishable. Therefore, there is 
little gain from conditioning spaces to an “optimum” air temperature and a significant energy savings.  
However beyond the thresholds, there is a significant drop-off in acceptability.  Ideally, air-conditioning 
would be used only when the environmental conditions are beyond the thresholds.  The use of ceiling fans 
or personal environmental control systems broadens the threshold range. Thresholds are determined for 
both air-conditioned and ventilation-cooled buildings in the database.  The equally-acceptable range 
between the thresholds is 8 – 10 K wide in both types of buildings.  It is possible that a perception of 
reduced air quality in warm environments could impose an upper temperature threshold. Perceived air 
quality (PAQ) is examined in two laboratory studies done at air temperatures from 18 - 30 deg C.  PAQ is 
seen to be closely correlated to thermal comfort rather than temperature; as long as thermal comfort is 
maintained by the air movement, PAQ will be acceptable. Relationships between temperature thresholds 
and productivity, operating setpoints, and energy use are also discussed.   

Keywords:  

Thermal acceptability, air movement, free running, personal environmental control (PEC), air-conditioned 
buildings, adaptive comfort, thermal comfort  
 

Introduction  
A suite of physiological and behavioural adjustments allows one to adapt unconsciously to one’s 
environments.  As a result, one is able to experience a range of environmental conditions as equally 
comfortable, or acceptable.  For thermal environments in buildings, this acceptable range roughly centers 
on the ‘neutral’ or ‘optimal’ temperature for the particular activity or occupancy in the building.  Since 
individual occupants will differ physiologically, and may have somewhat different requirements for their 
behaviour, their optimal temperatures (and acceptable comfort ranges) will be diverse.  A change from a 
given temperature can increase the acceptability for some people while decreasing it for others.  This effect 
lowers the maximum percentage of the population that finds any given temperature acceptable, and 
broadens the zone that any given percentage of the population finds acceptable.  Beyond the zone 
boundaries, acceptability will drop off, both for a single person and for a given majority of population.  
Although the comfort literature (and the air conditioning industry) tends to focus on neutral and optimal 
temperatures, it is perhaps more important to examine these zone boundaries and ways to expand them 
because they are the ‘thresholds’ beyond which energy is needed to condition interior space.  
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Historically, mechanical air-conditioning (heating, ventilation and air conditioning systems, HVAC) has 
enabled designers to engineer buildings to previously unimaginable levels of certainty, guaranteeing 
standards’ comfort criteria for specific fractions of the year (e.g., 99%).  This type of engineering had not 
been done for the naturally ventilated (NV) or free-running designs of the past.  

The shift toward air-conditioning over NV in design practice was accompanied by more restrictive comfort 
requirements.  If one could do it, why not? From pre-HVAC to now, the ‘comfort zone’ has shrunk at least 
1K at each end.  The comfort of a building’s entire occupancy is now extrapolated from the predicted 
thermal sensation of a single representative occupant (using PMV calculated for one clothing and activity 
level); the extrapolation to the borders where unacceptability or dissatisfaction begins (using PPD) is 
entirely based on laboratory studies (Standard 55of the American Society of Heating, Refrigerating, and 
Air-Conditioning Engineers (ASHRAE), 2010).  This approach is not based on real buildings with real 
populations of occupants, nor on direct measurement of comfort or acceptability.  It is based on an ideal of 
what HVAC could make possible.  

The need to address energy efficiency has forced the authors to look at space conditioning requirements 
more directly to understand how they affect the occupants of actual functioning buildings.  For this one 
must use the results of field studies in which occupants were surveyed and concurrent physical 
measurements taken.  A number of such studies have been made.  A database of their results has been 
accumulated under the auspices of ASHRAE (de Dear 1998) allowing analysis of real occupant 
populations in a number of counties worldwide.  Another database of European results (SCATs) has been 
assembled for European countries (McCartney and Nicol, 2002).   

Initial examination of these databases found that space conditioning requirements in naturally ventilated 
(NV) buildings differ from those in HVAC buildings.  Analyses (de Dear and Brager 1998) supported 
earlier suggestions (Nicol and Humphreys, 1972) that human adaptation was more active in NV buildings, 
and that zones of equal thermal sensation for occupants of NV buildings were generally broader than for 
those in HVAC buildings.  The resulting ‘adaptive’ comfort zones have obvious energy efficiency 
implications, and adaptive models of comfort have now been adopted into building codes for buildings 
with operable windows (ASHRAE Std 55, 2010) and for free-running buildings (CEN/ISO 15251, 2007).  

The adaptive comfort zones, like earlier comfort zones, were developed from thermal sensation votes in 
occupant surveys, employing an assumed relationship between a person’s warm/cool sensations and 
his/her thermal satisfaction.  Satisfaction in field studies is assumed when sensation votes are between –1 
(slightly cool) and + 1 (slightly warm) on a seven-point scale ranging from cold to hot.  A more direct 
approach to determining comfort zones is to obtain the occupants’ assessment of whether they find their 
thermal environment acceptable.  (The question is usually a binary ‘yes’ or ‘no’ on the survey, but it can 
also be measured in a continuous scale from ‘very unacceptable’ to ‘very acceptable’).  With this question 
the occupants are judging their thermal condition in the context of their expectations for the type of 
environment or work setting that they are in.  It should be the ‘bottom-line’ question for determining a 
building’s comfort zone.  

Not all field studies have asked an acceptability question, but a substantial number in the ASHRAE 
database have done so.  A previous examination of the ‘acceptability’ votes in a subset of ASHRAE field 
studies showed a broader and flatter acceptable temperature range than when the range was extrapolated 
from thermal sensation votes (Arens et al. 2010).  The zone boundaries, or thresholds beyond which space 
conditioning is needed, tended to suggest ‘thresholds’, since the drop-off beyond them is rapid.  In this 
paper, the threshold concept is examined further, using field survey data from the entire ASHRAE 
database of acceptability votes. Of particular interest are additional expanded threshold values that might 
be possible with energy-efficient cooling systems, such as ceiling fans and personal fans that offset warm 
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temperatures, and personal heating systems that offset cool ambient temperatures. 

The paper also examines whether temperature thresholds might be imposed by occupants’ perception of air 
quality.  Perceived air quality (PAQ) is a temperature-related issue.  If perceptions of bad air quality 
inevitably occurred at warm temperatures (Fang et al., 1998), the upper threshold of the comfort zone 
might be ultimately dictated by perceived air quality acceptability, rather than by thermal acceptability.  
Recent laboratory test results are used to analyse this issue (Zhang et al., 2010).  

The paper briefly discusses relationships between temperature thresholds and occupant productivity, 
HVAC operating setpoints, and building energy use.   

Method  

Acceptability votes are used for determining for the temperature thresholds.  Within the ASHRAE field 
study database, sixteen studies of 71 buildings in 7 locations include acceptability votes.  These are 
assembled for analysis into Dataset 1.  Dataset 2 supplements the ASHRAE database with acceptability 
votes from an additional building and location, studied in two seasons. It is a naturally ventilated building, 
the Berkeley Civic Center (BCC, Brager and Paliaga, 2004).  

Table 1 shows the study locations for the 72 buildings in Datasets 1 and 2.  HVAC buildings are 
distinguished from NV plus mixed-mode (MM) buildings. MM buildings contain air-conditioning but 
operate at times in NV mode.    

Table 1.  ASHRAE database locations analyzed in this paper, by building type.  

 

 

 

 

Notes: “N” represents the number of votes in each category.  Also shown are number of buildings in each field study, and 

Location Season Number of 
buildings 

Tmax (ºC) Tmin (ºC) Tavg (ºC)  

HVAC buildings (N=4730)      
Kalgoolie summer  21  31.7  19.8  23.7  
 winter  22  24.5  16.6  22.1  
Townsville  summer  12  27.7  21.2  23.8  
 winter  12  25.7  19.8  23.4  
Montreal  summer  12  26.9  21.0  23.6  
 winter  11  25.0  19.9  22.6  
Sydney  winter  2  23.8  20.9  22.3  
Honolulu  hot season  2  26.9  19.6  23.3  
 cool season  2  23.5  21.0  22.5  
NV and MM buildings (summer, N=2512)     
Berkeley  NV  1  30.3  19.7  21.4  
Sydney  MM  1  27.3  20.8  24.0  
Merseyside     NV  3  25.9  16.6  21.9  
Athens  NV  6  36.4  17.7  30.1  
NV and MM buildings (winter, N=2632)     
Berkeley  NV  1  27.9  17.6  22.9  
Sydney  MM  1  27.3  16.8  23.2  
Merseyside     MM  1  25.9  18.7  23.4  
Merseyside     NV  8  25.9  18.6  21.9  
Honolulu  NV  4  27.6  23.1  26.1  
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their mean measured indoor temperature maxima, minima, and averages. 
HVAC = heating, mechanical ventilation and air-conditioning 
MM = mixed mode 
NV = naturally ventilated  
 
In these field studies, the acceptability scale is a binary scale.  The occupants chose either ‘yes’ or ‘no’ to 
decide whether their thermal environments were acceptable.  From these data, the percentage of occupants 
voting acceptable or unacceptable can be calculated for a range of temperature bins.  The criterion for a 
successful design in comfort standards (ASHRAE, 2010) is 80% of the occupants satisfied. If one can 
equate ‘satisfaction’ with ‘acceptability’ (which seems reasonable), it can be said the warm and cold 
thresholds occur when acceptable votes drop below 80%.  

The analysis of perceived air quality is done using the BCC results (Dataset 2), since Database 1 surveys 
did not include a PAQ question.  In the BCC study perceived air quality was measured with a 7-point scale 
ranging from ‘very dissatisfied’ to ‘very satisfied’.  The velocities measured in BCC were in general quite 
low.  In order to find thresholds for warm conditions with higher levels of air movement, the results from 
two human subject studies of local cooling/heating devices (Datasets 3 and 4) were used. These studies 
were performed in an environmental chamber at the University of California at Berkeley at 18, 20, 25, 28, 
and 30ºC, and the PAQ effect of temperature and air movement was tested, so Dataset 3 and 4 results are 
used together with Dataset 2 to define the PAQ thresholds. The PAQ scale used in the human subject tests 
is a continuous scale (Figure 1). It has a break in the middle to force a clear decision in the neutral region.  
In both environmental chamber studies, 18 college students experienced each test condition.    

 

Figure 1. Perceived air quality scale used in the laboratory studies in Datasets 3 and 4.  

The results are presented below in two parts, I for thermal acceptability and II for perceived air quality.  
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Results I: temperature thresholds for thermal acceptability  

Previous work 

Arens et al. (2010) analyzed occupants’ operative temperature acceptability votes in the ASHRAE 
database of 45 central-HVAC office buildings in Kalgoorlie and Townsville (both in Australia), Montreal 
in Canada, and the NV BCC building in Berkeley.  The airspeeds in the buildings were generally very low.  
The results showed very similar acceptability levels over large temperature ranges. A figure combining all 
4 locations and both summer and winter is shown in Figure 2. The data was binned at the middle of each 
degree, and the brackets indicate ± 1 standard deviation.    

The figure shows a roughly flat top in acceptability over a 9K temperature range (16.5 – 25.5ºC).  Between 
25.5 – 28.5ºC, the acceptability reduced significantly and consistently, well below the 80% acceptability.  
Because of low vote numbers in cool conditions, it is unclear whether 17 or 18ºC is acceptable.  

 
Figure 2. Acceptability against temperature at the workstation, annual; pooled three locations of ASHRAE 
and Berkeley Civic Center (BCC) data.  (summer and winter, N = 5190). .    

Acceptability thresholds for air-conditioned versus naturally ventilated buildings 

The authors have here enlarged the above-mentioned dataset by including all ASHRAE database studies in 
which thermal acceptability was measured.  Three HVAC building studies (Honolulu hot- and cool 
seasons, and Sydney winter) are added to the locations included in Figure 2 (Kalgoorlie, Townsville, 
Montreal).  Now HVAC buildings are treated separately from NV and MM buildings. Because in the 
HVAC buildings the indoor temperatures are not very different between summer and winter, we combined 
winter and summer in Figure 3.  Figure 4 and 5 show results for NV and MM buildings, separating winter 
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and summer.  The building locations for each figure are listed above in Table 1.  

Figure 3 shows a roughly similar acceptability profile as Figure 2.  Again it shows a drop below 80% 
acceptability above 25.5 ºC.  Within 16.5 – 25.5ºC, the acceptability does not show a significant and 
consistent peak value over a specific range, but is mostly above 80% as presented by the flat line. From 
both figures, it can be observed that the temperatures 16.5 ºC and 25.5ºC are likely to be the thresholds for 
the HVAC buildings when putting both summer and winter together. Again, there are only 32 votes at 
temperatures below 19.5 ºC, so the location of the lower threshold remains unclear.   

 
 

Figure 3. Acceptability against temperature at the workstation, winter and summer; HVAC buildings in 
the ASHRAE database (N = 4730); five locations shown in Table 1.  

In NV and MM buildings, the indoor operative temperatures are quite different for winter and  
summer. In winter, the upper threshold at which acceptability drops below 80% occurs at 27.5ºC, 2K 
higher than the threshold for the HVAC buildings.  Between 16.5 – 27.5ºC, there is no specific range that 
the acceptability is significantly better than the others, although the number of votes at 17 and 18ºC are 
very small (Figure 4).    

In summer, the NV and MM thresholds move towards the warm side (Figure 5).  The significant drop-off 
below 80% acceptability occurs at 30ºC, 2K above the threshold in winter.  On the cool side, the drop 
happens at 21.5ºC, clearly at a warmer temperature than in winter.  Most acceptability below this 
temperature is less than 80%.    
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Figure 4. Acceptability against temperature at the workstation; winter; naturally ventilated and mixed-
mode buildings (N = 2512) in the ASHRAE and BCC databases; five locations shown in Table 1.  
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Figure 5. . Acceptability against temperature at the workstation; summer; naturally ventilated and mixed-
mode buildings (N = 2632) in the ASHRAE and Berkeley Civic Center databases; four locations shown in 
Table 1.   

There are other field studies in the ASHRAE database which do not have the acceptability question but 
have been examined for comfort limits based on sensation and comfort questions  (e.g. Busch 1992, Nicol 
et al. 1999).  These studies have found comfortable ranges that are somewhat greater than those shown 
here.   

Example of difference between AC and NV buildings  

If the ASHRAE database studies of HVAC and NV in the same climate (Singapore) are compared, it is 
evident the acceptability of the two thermal environments (in this case approximated by sensations 
between -1 and 1 inclusive because the acceptability votes are not available) was very similar (78 and 
76%), although the indoor thermal environmental conditions were very different (Figure 6).  The higher 
thermal thresholds in NV building than in HVAC building are presumably due to expectation, physical and 
behavior adaptation (de Dear and Brager, 1998), and the somewhat stronger air movement in the NV 
building (average 0.22 m/s versus 0.11 m/s for the HVAC building).    
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Figure 6.  Similar acceptable rate for very different indoor thermal environments in HVAC (dots) and 
naturally ventilated (triangles) buildings in Singapore.  

 

Threshold concept and values for HVAC buildings  

Figure 7 uses the above field results to suggest thresholds for air-conditioned buildings.  The thresholds 
provide guidance for operating HVAC buildings in “free running” mode as much as possible, with HVAC 
heating and cooling applied only after more energy-efficient alternatives such as fans and local heat 
sources and sinks have reached their outer temperature limits.  The data for the alternative limits is 
gathered from laboratory studies.  

The energy-efficient alternatives in Figure 7 are divided into two categories—1) sources that affect 
communal space conditions such as ceiling fans and 2) sources that affect the occupant directly and are 
under their personal environmental control (PEC) such as desk fans and heaters.    

Figure 3 reveals that acceptability in HVAC buildings in the ASHRAE database dropped below 80% 
between 25 and 26ºC in warm conditions, and between 19 and 20ºC in cool conditions.  Therefore, the 
Figure 7 temperature range for free-running mode is defined between 19.5 and 25.5ºC.  
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On the warm side, area sources like ceiling fans provide comfort, with or without group control, from 25.5 
to 28ºC (McIntyre 1978, Fountain and Arens 1993, Rohles 1983, Schaetzle 1989, Arens et al 2009).  PEC 
fans provide individual-level comfort from 25.5 to 30 ºC.  Recent PEC studies at 28 and 30ºC show that 
comfort is well maintained with breathing-zone air movements of 0.6 and 1.0 m/s (Zhang and Zhao 2009, 
Zhang et al., 2010).    

On the cool side, the authors’ laboratory study (Zhang et al. 2010) showed that local radiation sources 
provide comfort for people at ambient condition 18ºC.  Below that, a study for automobile industry by 
Zhang et al. (2007) showed that a warmed contact seat can make people comfortable at ambient air 
temperature 15ºC.  Recent tests at UC Berkeley found comfort with a heated seat to 12ºC ambient.  
Because it may be too much to extrapolate these tests to building environments, the authors have left the 
lower limit unknown.  Below the unknown mark, space heating is needed.  

 
 

 

 

Figure 7. Thermal comfort air temperature thresholds for HVAC buildings with fans and radiant sources in 
buildings  

Results II: thresholds for perceived air quality (PAQ)   

If perceived air quality were reduced in warm temperatures, it might impose a practical limit on the 
warmer comfort zone boundaries.  The ASHRAE database does not include PAQ questions.  This is 
investigated using the PEC studies conducted in the University of California at Berkeley environmental 
chamber (Datasets 3 and 4), and the field study at the Berkeley Civic Center (Dataset 2).    

PAQ related to air temperature and air movement  

Figure 8 shows that at air temperatures ranging from 18 to 25ºC, PAQ is does not vary much (Dataset 3). It 
drops significantly at air temperature 28ºC, and is further reduced at 30ºC.  The drop happens between 25 
and 28ºC, although the particular test conditions do not allow the exact temperature to be determined.  Air 
movement is seen to bring PAQ at 28 and 30ºC back to the level found under neutral conditions (see the 
circles and triangles in the figure, Arens et al. 2008). Therefore, with air movement, the PAQ threshold is 
beyond 30ºC.    
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Figure 8. PAQ versus air temperature and air movement  

PAQ as measured in the Berkeley Civic Center  

The threshold for PAQ without air movement is not clear from Figure 8—it is somewhere between 25 and 
27.5 ºC.  The authors looked for the threshold in the BCC field data (Dataset 2), the only study in which 
perceived air quality and concurrent air temperatures have been measured.  The questions and the answers 
are presented in Figures 9a and b, for winter and summer studies respectively.  It shows that for the air 
temperature ranges measured (up to 26ºC in winter and 28ºC in summer), no clear threshold was reached.  
It should be noted that although the BCC is a NV building, measured velocities were low, averaging 0.04 
m/s in summer and 0.05 m/s in winter.    
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Figure 9. Perceived air quality versus temperature for BCC database: ‘How satisfied are you with the air 
quality in your workspace?’ (a): winter BCC; N = 804, clear threshold not reached within 18-26ºC, and 
(b): summer BCC; N = 779; clear threshold not visible within 20-28ºC.  
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PAQ related to thermal comfort  

In the absence of a clear temperature threshold for PAQ, the authors looked for other means of assuring 
good PAQ in practice.  Humphreys et al. (2002) had found that PAQ is mostly related to thermal comfort, 
as opposed to air temperature.  Figure 10 confirms this, showing PAQ to be closely correlated with thermal 
comfort at a mixture of temperatures and air movements.  Figure 10 is from the two laboratory studies 
(Datasets 3 and 4) where ambient air temperatures were at 28 and 30ºC, and PEC fans were used to 
provide thermal comfort (the comfort scale is presented in the X axis in the figure).  If this strong 
correlation holds in real buildings, it might be assumed that when comfort is maintained, PAQ is 
maintained as well, and that air movement can be used to provide the necessary thermal comfort at high 
operative temperatures.   

  
 

Figure 10.  Perceived air quality versus thermal comfort, binned data.  Circle diameters represent the 
number of votes shown nearby (N=450, Datasets 3 and 4)  

Discussion  

Thresholds for productivity 
Productivity might also follow thresholds in temperature or comfort. Figure 11 (adapted from Seppanen et 
al. 2003 by adding results from Tawada et al. 2010) shows that within air temperatures from 21 – 27ºC, 
there is no obvious best temperature for productivity.  Beyond this range, productivity declines in most of 
the studies.  However, one should note that these tests did not have elevated air movement under warm 
conditions.  If productivity were actually a function of occupant comfort instead of temperature, the 
temperatures shown might not represent productivity in buildings where air movement is present.  
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Figure 11. Summary of the studies on the effect of room temperature on decrement of performance and 
productivity.  Sources: adapted from Seppanen et al. (2004), with the addition of Tawada et al. (2010)  

 
 
A study by Uchida et al. (2009) shows that self-estimated performance is strongly related with thermal 
comfort satisfaction (Figure 12, r=0.97).  When correlating the self-estimated performance with air 
temperature, the correlation is very poor, r=-0.21.  The result shown in Figure 12 is strongly similar to that 
shown for PAQ in Figure 10.  This might lead to the hypothesis that making people thermally comfortable 
is the key factor in maintaining PAQ and productivity.  

 

 

Figure 12. Self estimated performance vs. thermal satisfaction - 335 observations from workers.  R=0.97 
(Uchida et al. 2009)  
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Overcooling and overheating in HVAC buildings 

Recent field studies in a large number of US office buildings (Mendell and Mirer, 2009, for 95 buildings, 
and Choi et al., 2010, for 20 buildings) show that the average indoor air temperature is being maintained 
cooler in summer than in winter (22.9ºC in summer and 23.4ºC in winter in Mendell and Mirer; and 23.3ºC 
and 23.5ºC in Choi et al.).  This summer overcooling works against human adaptation, the reasons for it 
are unclear since the practice increased both discomfort (Mendell and Choi et al.) and sickness symptoms 
(Mendell) in each season.  In addition, health surveys in a large number of buildings (Burge et al. 1987, 
Zweers et al. 1992, Fisk et al. 1993) found that sick building syndrome is significantly more prevalent in 
air-conditioned buildings than in naturally ventilated buildings.  It is necessary to understand why this 
obviously non-adaptive operation of HVAC buildings is so widespread, and what role it might be playing 
in the worldwide conversion of NV buildings to HVAC.  

Energy impacts of thresholds in HVAC buildings 

By focusing on the environmental conditions outside the thresholds and not tightly controlling within 
them, the threshold concept encourages the design of free-running, mixed-mode, or naturally ventilated 
buildings.  It also encourages the use within HVAC buildings of energy efficient technologies with limited 
cooling capacity (such as evaporative coolers); and increases the effectiveness of other energy efficient 
measures that may be inherently slow-acting or unpredictable (such as radiant ceilings/floors) and that 
inherently cause fluctuation in space air temperature.    

Figure 13 shows that, by broadening the interior temperature thresholds in HVAC buildings, each 1K 
broadening corresponds to about 7 – 15% energy saving (see Figure 16, Hoyt 2009).  

In addition to the operational savings seen in Figure 13, savings may be obtained by reducing the required 
sizes of HVAC equipment.  

 
 
Figure 13.   HVAC energy savings for widened air temperature setpoints relative to conventional 
setpoint range in San Francisco, Miami, Phoenix, and Minneapolis (Hoyt et al. 2009)   
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Threshold applicability 
The thresholds described in this paper are based on occupant surveys taken at random times.  The rate of 
change that may have been occurring in the occupants’ environments was not measured.  If the 
temperature is changing rapidly, people may not adapt to the full threshold range observed.  The thresholds 
do not shed light on the extent of adaptation within short time ranges, such as an hour or a day, but they do 
reflect typical changes occurring in real buildings.  

Conclusion  

The threshold concept presented in this paper suggests that when indoor air temperature is within defined 
thresholds, there is little advantage from fine-tuning the air temperature to an optimum.  The air-
conditioning system should focus on bringing environmental conditions outside the thresholds within 
them.  In NV buildings the thresholds are broad due to occupant adaptive behavior in the presence of 
outdoor climate.  The acceptability-based thresholds presented in Figure 7 are independent of seasonal 
climate, and also of operable windows.  The thresholds may be broadened in both HVAC and NV 
buildings by adding air movement and radiation to the occupied space, or the occupants directly through 
PEC systems.  Perceived air quality in warm conditions does not appear to be a problem as long as the 
occupants are kept thermally comfortable. The energy impacts of broadened thresholds are very 
substantial.  The threshold concept makes the design of free-running-mode- and naturally ventilated 
buildings more feasible, and reduces the need for energy-intensive air-conditioning in buildings.  
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