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I. INTRODUCTION 

Methane is a relatively simple polyatomic molecule whose 

structure and spectroscopy are well studied. 1 The presence 

of four fundamental vibrations makes the energy level diagram, 

Fig. 1, sufficiently complex that methane should be a useful 

prototype for understanding energy transfer processes in larger 

molecules. In many molecules CH stretching vibrations are 
-1 clustered near 3000 em and bending vibrations in the 1200 -

- 1500 cm-l range. 2 The proximity of bending overtones and 

stretches provides a relaxation path which is undoubtedly 

important in most hydrocarbons. 

In methane energy transfer among the vibrational modes, 

V ~ V transfer, is complete in a few microseconds at 1 Torr 

pressure. 3 • 4 Vibrational deactivation to translation and 

rotation, V ~ T, R energy transfer, occurs only on the milli-

second mescale at 1 Torr. V ~ T, R relaxation rates have 

been measured by many methods in pure methane and in mixtures 
5 - 8 with many other gases. These results have helped to 

establish a good qualitative understanding of the role of 

rotation in vibrational relaxation. Laser-excited vibrational 

fluorescence experiments have given rates for V ~ V transfer 

between stretching and bending vibrations. 3• 4 Recent spectro-

phone data give some qualitative information on the overall 

mechanism of V ~ V transfer. 6 • 7 

In this work a new powerful tunable ir laser system is 

used to excite a variety of combination and overtone levels as 
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II. EXPERIMENTAL 

The basic experimental method has been descrived previous-

ly. 4' 9, 10 H h f 1 bl . owever, a new muc more power u tuna e 1r 

ser was developed,for this work. A Raytheon model SS-404 

Nd-YAG laser was used to pump an angle-tuned LiNb0 3 para-

met c .oscillator (OPO). The master oscillator of the Nd:YAG 

laser is followed by three amplifiers. The bandwidth of the 

1.06 ~m pump beam was reduced by an etalon in the master 

oscillator. The Nd:YAG laser output consisted of pulses 

about 15 nsec in duration with energy limited to 190 - ZOO 

mJ/pulse to avoid damage in the OPO. A repetition rate of 

10 sec-l was used in all experiments. The design of the OPO 

was similar to that described by Eyer et a1. 11 and utilised 

a grating and an etalon as line narrowing elements in the 

OPO cavity. This reduced the bandwidth of the OPO output 
-1 to 0.15 em . The signal and idler waves of the OPO output 

were not separated because in all cases studied here only 

one of the two wavelengths was coincident with a CH 4 line. 

Typically, pulses with 3 mJ - 10 mJ were obtained depending 

on the pump power, the wavelength and whether the idler or 

the signal was used for excitation. To tune the OPO to 

desired wavelength the OPO output was reflected into a 

spectrometer. For fine tuning about 10% of the radiation 

was reflected into a spectrophone by a quartz beam splitter. 

The signal and idler were focused into the fluorescence cell, 

beam diameter one mm, and reflected back through this cell 
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Matheson research-grade CH4 was used without further 

purification (impurities in ppm: 02 - 5 N2 - 20, co 2 - SO, 

C2H6 - 75, and C 3H8 - 5). The 13cH 4 sample was provided by 

ohler Isotope Chemicals and contained about 90% 13cH 4. 
12 cH 4 plus 13cH 4 were 98% - 99%. According to the manufacturer 

there are traces of air and CO. These impurities are far 

too dilute to affect measurements of the fast V ~ V rates 

described here. For accurate measurements of the much slower 

V T R I . . 'l. 1 h. h 12 ~ , rates t,1ese ~mpurl ty ,.ueve s are too lg . 
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-1 tuning the OPO signal wavelength to 6002.5 em , Q(6), and 

to 6077 Cm=l. R(6)- 13 Th 1 t. t. . d d t f . _ ere axa 1on 1me was 1n epen en o-

the rotation~l level excited. Hot v 3 fluorescence was studied 

using the g~s filter cell with 50 500 Torr CH 4 . The data 

for 250 and 500 Torr CH 4 in the filter cell give the same 

rates as for pressures down to 50 Torr. The relaxation time 

rived from these data, Fig. 2, is 1.2 ± 0.3 us Torr. Some 

experiments were performed without the filter cell. The pT 

value found for the decay of the total v
3 

fluorescence was 

2.3 ± 0.5 us Torr. By subtracting the hot v 3 fluorescence 

from the total v 3 fluorescence a time of 3.3 ± 0.7 us Torr, 

Fig. 2, was found for 1 + 0 relaxation of v 3 • Clearly the 

tot fluorescence decays as the sum of at least two 

exponentials; thus the fit to a single decay time of 2.3 usee 

Torr is meaningless. 

Excitation of v 

Essentially the same experiments as for 2v were carried 
3 

out for the combination band v 3 + v 4 • The Q-branch of this 

band at 4313 cm-l was excited. The PT values for the fall of 

the hot and fundamental v
3 

fluorescence are the same within 

experimental error as those obtained for zv 3 excitation, 

Fig. 2. 

ation of v1_~--Y-4 

For excitation of the Q-branch at 4216 cm-l the v 3 

uorescence decay times are the same as for 2v 3 and v 3 + v
4

, 
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detector a second long pass filter was inserted with more 

than 90% transmission around 1300 cm- 1 , hal transmission 

point at 1510 cm- 1 , and less than 1% transmission beyond 

1590 cm- 1 . In addition a wideband pass interference filter 

was employed outside the detector. This filter had between 

80% and 90% transmission in the \)4 band region, hal trans-

mission at 1357 em -1 and 853 em -1 and less than 1% trans-
' 

mission outside 820 -1 and 1410 -1 In the following em em 

subsections the v 4 fluorescence experiments performed with 

this Iter combination are described in detail. 

Excitation of v 

The Q-branch lines Q(3) and Q(4) of the v 3 band were 
14 

excited at 3018 cm-l with the OPO. Figure 5 shows the 

results obtained for the rise of the total v 4 fluorescence. 

The PT values derived from this figure are 3.2 ± 0.6 ~sec 

Torr for the rise of the tot v 4 fluorescence. The signal-

to~noise was about 50 in these experiments. The rise and 

fall of the hot v 4 fluorescence were observed by using the 

CH 4 gas filter cell. Signali~ensities are much weaker than 

for the total v 4 fluorescence. In addition the fall of the 

hot v 4 fluorescence did not return to the base line on the 

~sec timescale but rather on the msec times e. Therefore, 

the uncertainty in the data analysis was much larger in this 

case than usual. In Fig. 5 the rise data are splayed. 

The approximate value determined from this figure is pT 

= 1.8 ± 0.6 ~sec Torr for the rise of the hot v4 fluorescence. 
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fluorescence experiments. The rise of the total v 4 

fluorescence was relatively slmv and could therefore be 

investigated. The rise time was pT = 1.5 ± 0.3 ~sec Torr. 

Subtraction of the hot v 4 fluorescence from the total v 4 

uorescence leads to apT value of 3.0 ± 0.8 usee Torr for 

the rise of the fundamental v 4 fluorescence. 
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A. v +~ v stretching equilibration 
~1~-~-~3-~--~~---~-----~~--------- "" 
The most rapid energy transfer observed is the appearance 

of v
3 

fluorescence following excitation of v1 + v 4 • The only 

process which can lead to hot v 3 is 

k 
CH 4 ( v l + v 4) + -M . 

CH4 (v 3) may be produced subsequently by 

or directly by 

or by the sequence 

-1 em 

k4 -1 
CH 4 (v 1+v 4) + CH 4 ~ CH 4 (v 1) + CH 4 (v 4) + 1 em 

ks -1 CH4 (v 1) + CH 4 ....-+ CH4 (v 3) + CH 4 - 103 em 

Stretching energy may also be converted to two quanta of 

k6 
CH4 (v 1+v 4) + CH4 --+ CH 4 ((3-n)vb) + CH4 (nvb) 

k7 
\CH4 (v 1) + CH 4 ~ CH 4 ((2-n)vb) + CH 4 (nvb) 

kg 
CH 4 (v 3+v 4) + CH 4 -+ CH 4 ((3-n)vb) + CH 4 (nvb) 

(1) 

(2) 

( 3) 

( 4) 

(5) 

(6) 

( 7) 

(8)' 

(9) 
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v
3 

+ v 4 , process (1), before processes (3), (4) and (6) have 

proceeded significantly. Thus the v1 and v 3 modes are 

equilibrated by collision-induced intermode transfer within 

the excited molecule at a rate fast compared to loss of 

stretching quanta or transfer from molecule to molecule. When 

the two stretching modes are equilibrated, 64% is v 3 and 36% 

is v 1 . The rate constant (k1 + k_ 1) = 1.56 k1 is the rate 

constant for approach to this equilibrium. Thus k1 = kb/1.56 
-1 -1 = 1.2 ± 0.3 ~sec torr . Rate constants involving v 3 on 

the reactants side which are for an equilibrated v3 and v1 
' mixture are denoted by a prime, e.g., kz = 0.64(k2+k 10 ) 

+ 0.~6(k 3+k 4 ). Since v3 and v 1 products are not distinguished, 

both are included. 

B. Stretch-to-bend deactivation 

Deactivation of CH 4 (v 3) by energy transfer to the 

bending vibrations has been studied previously'by exciting 

the fundamental band with a chopped ~e-Ne laser 3 and with a 

4 low power pulsed OPO. Here a much higher power OPO is used. 

The original value for the relaxation time of 5.3 ± 0.8 ~sec 

Torr is in reasonable agreement with the low power OPO value 

of 3,9 ± 0.6 ~sec Torr. The still shorter value found here, 

3.2 ± 0.6 ~sec Torr, for excitation of the fundamental band 

may result from some heating by the laser or from the 

population of hot bands during the relaxation. The decay of 

"fundamental" ·fluorescence from overtone and combination 

excitations, 3.3 ~sec Torr, can be distorted by subtracting 
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caution with respect to this conclusion. 

Observations of v 4 fluorescence following excit on of 

Zv 3 and v3 + v4 give similar decay mes to those discussed 

above. However, analysis of these results in terms of single 

and double exponentials does not give additional information 

on rate constants. There are just too many processes occuring 

simultaneously. 

c. Relaxation of combination and ove one levels of v 
~~~----N-~-~~-NN~--~------------~----------------~3 
The excitation of CH4 (2v 3) is followed by rapid equilibra-

tion of the v 3 and v 1 vibrations. At the lowest pressures 

the decay time was observed to be approximately the same as 

for the rise of v 3 fluorescence following v1 +v 4 ex tation. 

The amplitude of this initial rapid decay •,.:as about 

expected from the 36% population of v1 when equilibrated with 

v 3. Further relaxation may occur via the following processes, 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

and by process (9). 
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1 -1 sec Torr • 

The fast initial decay due to equilibration between the v
3 

and v1 modes is not included the analysis of the v 3 + v
4 

results; rates are measured for the last half of the decay. 

The difference of less than 10% between the rates for v
3 

+ v
4 

and v1 + v 4 , Fig. 4, is a measure of the systematic error in­

volved. 

Following v
3 

+ v
4 

excitation and v1 +~ v
3 

equilibration, 

excited state concentrations are 

kz ·1 .:k ·t - k t ] 
Nv 3 = No k + k - k-- e 9 - e c . 

2 8 9 . 

If Einstein A coeffficients are equal for v
3 

emission and if 

the Iter transmissions are equal and there is no self 

ab~orption, then the fluorescence intensity ratios give the 
y ' ' v rate constant ratio [k 2/(k 2+k8-k9)]. The total v 3 fluores-

cence was analyzed as the sum of two exponentials \vi th decay 

rate constants kc and k9 . Since both decay constants are 

determined independently, the amplitude ratio was determined 

relatively well. In the pressure range 0.4 to 1 Torr it is 

constant at 0.25 ± 0.05. The constant ratio indicates that 

self-absorption is negligible below 1 Torr. Hmvever, some 

saturated absorption in the Q-branch may be possible. The 

true population amplitude ratio could be as high as 0.40. 
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been neglected. The relaxation is monitored by observing 

total fluorescence from the v 4 mode and also the hot fluores­

cence transmitted through a gas filter. Initi ly there is 

one quantum of v 4 excitation per photon absorbed and all of 

the fluorescence is hot. After V + V equilibration, con­

version of v 2 quanta to v 4 and sharing of the excitation 

among molecules yields 1. 64 quanta of "cold" excitation, 

fundamental fluorescence. Total v 4 fluorescence increases 

monotonically toward this limit. The hot v 4 fluorescence, 

Fig. 6, increases or decreases initially depending on whether 

k17 - k18 - k19 is positive or negative. The small initial 

increase and plateau of hot v 4 fluorescence shows that k17 
is slightly larger than k18 + k19 . As v 2 + v 4 equilibrates 

.with 2v 4 at a ratio of 1/3, hot v 4 fluorescence decays at a 

rate of 

-1 -1 0.75 k 20 + 0.25(k 18+k19 ) = 0.6 ± 0.2 vsec Torr • 

The rate constants for internolecular transfer of bending 

quanta k 20 and k18 + k19 should be of approximately the same 
-1 -1 order of magnitude and thus k20 ~ 0.6 vsec Torr . From 

the initial shape of the hot fluorescence curve and from the 

approximate equalities deduced above we may conclude that 

1 -1 k17 = 1 ± 0.5 vsec Torr . 
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though they involve smaller changes in total vibrational 

energy. The rates for transfer of a bending or a stretching 

quantum from one molecule to another are listed at the 

bottom of Table I. 

Recently de Vasconcelos and de Vries 7 have reported 

spectrophonc relaxation measurements on CH 4 and CD4 in which 

both v 3 and v 4 excitation were used. Their data are completely 

consistent with the laser fluorescence data presented here 

3 4 and in previous works. ' They observed relaxation times 

for overall V + T, R relaxation analyzed by a two-state model 

of 1.63 ± 0.02 ~sec atm for v 4 excitation and 1.41 ~sec atm 

r ~3 excitation. When v 3 is excited, V + V equilibration 

produces an equilibrated mixture of v 2 and v 4 excitation on 

a timescale two orders 

by acoustic response. 

fered to an excitation 

of magnitude faster than detectable 
-1 The 3019 em v 3 quantum is trans-

of 2[(0.82°1306) + (0."18•1533)] = 2694 
-1 em Thus the V + V transfer energy discrepancies are de-

posited instantly as translation-rotation energy and 2694/3019 

= 0.89 of the energy is transfered at the V + T, R rate. It 

is for this reason that the ratio of observed relaxation 

times Tv /T = 0.87 ± >0.02. The relaxation mechanism from 
3 \) 4 

which de Vasconcelos and de Vries derive a V + V transfer 

rate of 0.003 ~sec-l Torr-l is incorrect. 

In conclusion, approximate values are found for the 

different.types of V + V energy transfer processes which relax 

the higher vibrational levels of methane. In systems which 
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are only partial relaxed relative speed of intra-

molecular processes vs intermolecular ones will tend to k 

the excitation energy concentrated in the mole e e ted. 

in eriments such as those of Ehrli or Yates 17 

and their call orators on -surface interactions the 

pop ation of CH 4 (Zv 4) will be more important an the 

production of 2CH4 (v 4) following v
3 

excitation. To the 

extent that intramo cular transfers are ter than inter-

mo cular ones, laser-induced chemical re ons of 1 

mo cules may be favored by keeping the total energy a 

molecule above. threshold while energy is transfered to the 

most effective modes r reactions. 
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TABLE I. Rates of collisional V-+ V energy transfer in CH 4 at 294 K. 

. a n 
-.; ·-1 

(pT) k X 1011 pb 

-1 -1 
(llS ec Torr ) .3 -1 (em molec 

sec- 1) 

Processes predominantly intramolecular 

\) .3+-+\) 1 1 k1 = 1.2' ± 0.3 3.6 0.09 

vz+v4+-+2\ll4 2 kl7 "" 1 ± 0.5 3 0.08 

t 

v3 + 2vb 1 kg "" 0.28 ± 0.06 0.8 0.022 

' ' 2v 3 -+ v 3+ 2vb 2 ~12+kl3 = 0.6 ± 0.2 1.8 0.05 

' v 3+v 4 + .3vb 1-2 kg "" 0.7 ± 0.2 2.1 0.05 

Intermolecular s r 

\)4 2 k20 = 0,6 ± 0.2 1.8 0.05 

I I 

stretch 2 kll+Zk14 "" 0.25 ± 0.15 0.8 0.02 

bend and ' 1 kz = 0.2 ± 0.1 0.6 0.02 strech 

a. Normalization factor for first order perturbation of harmonic 
oscillators 

b. -1 Probability per gas kinetic collision, (pTZ) , Ref. 4. 
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Fi 1. Energy leve of CH 4 wi laser excitation 

some scence ) transi ons icated. 

Figure 2 c of \)3 rescence foll ng overtone 
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1 4' ex 

\) 3; excitation of P(S) \)3 

4 is 3.2 ± 0.6 psec Torr and 

1 

Figure 5. V + V transfer ben ve1s. Rec :rocal 

li t vs pressure r: rise of total 



fluorescence after v 3 Q-branch excitation; and fall of hot 

v4 fluorescence after v2 + v4 excitation. The slopes are 0.31 

and 0.55 ~sec-l Torr~ 1 . 

Figure 6. Hot v 4 fluorescence intensity vs time follow-

ing v 2 + v 4 excitation at 1.11 Torr. Be~ond 2 ~sec the decay time 

is 1.5 ~sec. The electronics response time has been in-

creased to 0.3 ~sec. S/N is the lowest of all data used in 

this work. 
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