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ABSTRACT OF DISSERTATION 

 

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for 

Transportation Analysis 

 

by 

 

George Alexander Scora 

 

Doctor of Philosophy, Graduate Program in Chemical and Environmental Engineering 

University of California, Riverside, March 2012 

Dr. Matthew Barth, Chairperson 

 

One of the most important issues concerning transportation is the impact of 

vehicle emissions on air quality and human health. Vehicle emission modeling is used to 

predict and evaluate the relationship between transportation activity and transportation 

emissions for many applications. The first part of this dissertation builds on previous 

emission modeling work and focuses on the development of a microscale HDD emission 

model for particulate matter (PM), one of the primary diesel pollutants of concern. In this 

work, a hybrid approach is used in which a physically based fuel and emission model is 

coupled with a statistical model to produce PM estimates at the microscale level.  The 

microscale model is calibrated using measured on-road real-time data from UC 

Riverside’s Mobile Emissions Laboratory (MEL). Microscale modeling errors are less 

than 3% for fuel consumption and less than 17% for PM over a 2.5 hour validation cycle. 

PM emissions from compression release braking events were also observed, quantified in 

the data set, and modeled to improve the overall PM emissions estimation.  



v 

 

A key factor in HDD fuel use and carbon dioxide estimation is the operational 

variability associated with heavy duty truck use. With a better understanding of this 

variability, it is possible to alter vehicle operation in order to reduce CO2. The second 

part of this dissertation focuses on operational parameters and the development of a 

mesoscale fuel consumption and emission model that accounts for road grade and vehicle 

weight in addition to velocity. Model development and validation for this portion of work 

are based on simulated data from the microscale HDD model of measured activity and 

various road grade and vehicle weight combinations. Mesoscale modeling errors for the 

validation data set are less than 2% for fuel consumption and less than 12% for PM 

emissions. 

In the final portion of this dissertation, the usefulness of this new mesoscale fuel 

and emissions model for transportation applications is demonstrated by its 

implementation in an environmentally friendly navigation (EFNav) application. The 

focus of EFNav is to decrease the amount of wasted energy (or increased emissions) due 

to poor routing choices. Routing today is typically based on minimizing the distance or 

duration traveled. With the inclusion of the new mesoscale fuel/emissions model, vehicle 

routing can now be based on fuel consumption or emissions that vary with average real-

time link speed, average link road grade, and vehicle weight. The application of the 

mesoscale model is supported by a digital roadway map that integrates real-time traffic 

data from multiple sources. Vehicle testing of the mesoscale model with EFNav 

demonstrates the sensitivity of the system to road grade and vehicle weight and the ability 
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of the system to accurately predict fuel consumption and emissions, making it a useful 

tool for HDD routing.    
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1.0 Introduction 

The estimation of emissions from transportation sources is critical for air quality 

management and control. The ability to relate emissions and specific transportation 

activity is useful for various purposes including policymaking and the development and 

evaluation of Intelligent Transportation System (ITS) ideas and technologies. To date, 

there has been much effort put into the development of emission models for a variety of 

LD vehicles, but not as much for HDD vehicles, even though their contribution to freight 

movement and the emission inventory is significant. The most recent developments in 

on-highway truck emission certification standards in the United States called for 

significant reductions in NOx emission for 2007 and for significant PM reductions for 

2010 (EPA, 1997).  These new on-highway HDD emission standards are forcing 

improvements in HDD emission controls such as the use of exhaust after-treatment 

devices, most notably the diesel-particulate filter (DPF) for PM emissions.  

Improvements in emission control technologies for new vehicles further increase the 

variation in emission performance between new and old HDD vehicles.    

Part of the objective of this research is the development of an HDD PM emission 

model that can be used for transportation analysis at the microscale level. A new 

modeling methodology has been implemented as a hybrid approach in which a 

parameterized physical model, vehicle characteristics and different aspects of vehicle 

operation are used to calculate energy and fuel consumption which are then related to PM 

emissions through a statistical model. One of the key benefits of the microscale modeling 
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approach, in comparison to the more traditional mesoscale or macroscale modeling 

approaches, is the ease of integration with traffic simulation software with similar time 

resolutions.    

In addition, concerns over limiting Green House Gas (GHG) emissions has put 

added attention on heavy duty trucks and improving their fuel economy thereby reducing 

their CO2 emissions. Most of the focus to date has been placed on specific vehicle 

technologies and alternative fuels. Another key area, which is often overlooked, is the 

operational variability associated with heavy-duty truck use and how vehicle operation 

can affect CO2 and other emissions. In the second portion of this dissertation, operational 

parameters such as vehicle speed, road grade and vehicle weight, and their influence on 

fuel consumption and emissions are examined.  A modeling data set is created based on 

simulated microscale fuel and emissions results for measured activity and various road 

grade and vehicle weight combinations.  A statistical mesoscale fuel model which utilizes 

not only average speed, but road grade and vehicle mass, is developed and calibrated 

from the modeling data set. 

In the final portion of this dissertation, the mesoscale model is applied in an 

EFNav application. It has been shown that a significant amount of CO2 reductions can be 

achieved by traffic operation improvements (Barth & Boriboonsomsin, 2008). One of the 

means of implementing these ideas is EFNav which focuses on optimizing driver routing 

choices and driving behavior based on a variety of operational parameters and road 

conditions (Barth, Boriboonsomsin, & Vu, 2007). In many cases, the shortest or quickest 
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route will minimize fuel use and emissions, but this does not always hold true during 

congestion or with significant road grade. This is especially true for HDD vehicles due to 

their low power to weight ratios. In this portion of work, the model’s ability to predict 

fuel use and emissions based on average roadway speed, average road grade and vehicle 

mass are utilized by the EFNav routing algorithm.  

Intellectual Merit: HDD engine emissions are known to cause adverse health as 

well as environmental effects and according to the California Air Resource Board 

(CARB) about 70% of the cancer risk in California from breathing toxic air pollutants 

stems from diesel exhaust particles (CARB, 2000). HDD emissions also contribute 

significant amounts of CO2, the most important GHG. Characterizing HDD emission 

sources and understanding operational conditions affecting HDD emissions is an 

important step in developing control strategies and HDD related policy decisions. Mobile 

source emission models are a necessary part of transportation analysis and are used 

widely in a number of applications at the federal, local and private level to quantify and 

characterize vehicle emissions. Microscale emission models function at a higher time 

scale resolution than traditional transportation emission models and are more suited for 

the development and analysis of numerous ITS strategies, which will likely be an 

increasingly important part of future vehicle emission control strategies and up-and-

coming driver’s aids, which can utilize EFNav technologies.     

Broader Impacts This research combines elements of environmental engineering, 

transportation engineering and public policy. Given the recent focus on HDD emissions 
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and the current global interest in reducing greenhouse gases, results from this work would 

be helpful in developing strategies to address these issues as they relate to on-highway 

heavy-duty transportation. Methods of analysis and modeling used and developed in this 

work may also be applicable elsewhere. 

1.1 Research Objectives 

The three key goals of this research are: 1) to develop a microscale modeling tool 

for HDD PM emissions; 2) to evaluate vehicle operational parameters for HDD and 

develop a mesoscale emission model that accounts for these operational parameters; and 

3) to demonstrate the usefulness of the mesoscale model for transportation applications 

with an example implementation in an Environmentally Friendly Navigation (EFNav) 

application. The specific objectives of the research are listed below. 

 Develop a modeling tool that estimates second-by-second HDD fuel use and PM 

emissions calibrated with a unique set of real-time emission and activity data 

gathered by UCR’s Mobile Emission Lab.  

 Further the understanding of operational parameters in relation to HDD emissions 

through data analysis. Develop a unique comprehensive modeling dataset for the 

HDD operational parameters of vehicle speed, vehicle weight and road grade for 

use in data analysis and mesoscale model development. Utilizing the modeling 

data set, develop a mesoscale emission model based on the key operational 

parameters of vehicle speed, road grade and vehicle weight. 



5 

 

  Demonstrate the usefulness of the mesoscale model for transportation 

applications by implementing it in an example EFNav application, thereby 

improving the EFNav application, extending its capabilities, and making it 

applicable to HDD vehicles. Evaluate the performance of the mesoscale model in 

the EFNav application for HDD vehicles. 

1.2 Impact of Research 

The lack of real-time HDD PM emissions data and the limited availability of real-

time HDD emission data measured in-situ in general has made the development of HDD 

microscale emission models difficult in the past.  This research utilizes a unique set of 

HDD emission data to develop an emission model with new capabilities as well as 

increasing the general knowledge of HDD on-road emission factors. This research also 

presents a method of HDD routing based on vehicle mass and road grade, an important 

parameter not utilized in commercially available truck routing software.  

1.3 Overview of Dissertation 

This dissertation begins with an introduction in Chapter 1.0 which focuses on the 

research objectives and impact of this work. Chapter 2.0 gives background data for the 

area of research including the area of transportation and how it relates to HDD as well as 

vehicle emission modeling and EFNav.  Chapter 0 presents the development of the 

microscale HDD PM emissions model including discussions on the modeling approach 

and the measured data set used for development and validation. Chapter 4.0 describes the 
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use of the HDD microscale emission model to create a modeling data set, the evaluation 

of operational parameters based on measured data and the modeling data set, and the 

application of the modeling data set in the development of a mesoscale model for HDD 

vehicles.  In Chapter 5.0, the use of the mesoscale model in an EFNav application is 

demonstrated and initial results are presented. The dissertation concludes in Chapter 6.0 

with a discussion of results and areas for future work.   
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2.0 Background and Rationale 

This chapter describes some basic background information relating to the areas of 

research, namely transportation, how transportation and more specifically HDD vehicles 

contribute to air pollution as well as the methods to model these emission contributions.  

Environmentally friendly navigation is also introduced as one way to reduce certain 

transportation related emissions. 

2.1 Transportation and Heavy Duty Trucks 

Transportation is an important part of the US energy picture, accounting for 

roughly 27% of the total US energy consumption and 72% of the petroleum use in 2009 

as seen in Figure 2-1 (AEI, 2010). Petroleum accounts for 94% of the energy source for 

the transportation sector (AEI, 2010).  

A large portion of the fuel used in the transportation sector is from heavy-duty 

trucks. According to the U.S. Department of Transportation, heavy-duty trucks accounted 

for roughly 67% of the total tonnage carried by all modes of domestic freight 

transportation in 2009 and the demand for truck transport is expected to increase by 

nearly 68% between 2009 and 2040 at which point heavy-duty trucks will account for 

roughly 79% of the total estimated tonnage moved by transportation in the U.S. (FHWA, 

2011).  
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Figure 2-1 U.S. energy consumption by source and sector in quadrillion BTU 

in 2009 (AEI, 2010). 

Figure 2-2 shows the breakdown of transportation related greenhouse gas 

emissions which are primarily CO2. Since most of the carbon in fuel is converted to CO2 

during the combustion process (only a small portion remains partially oxidized or 

unoxidized), CO2 is closely correlated to fuel use. Figure 2-2 shows that in 2008 roughly 

20% of transportation related GHG emissions in California were produced by heavy 

trucks.    
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Figure 2-2 Transportation related greenhouse gas emissions for California in 

2008. (CARB, 2010) 

Heavy-duty trucks rely primarily on diesel engines as their power source due to 

the fuel efficiency, reliability and low end torque characteristics of diesel engines. As a 

result of the high power requirements and heavy loads carried by heavy-duty trucks, the 

fuel economy for these trucks is around 6 miles per gallon of diesel fuel and has not 

changed significantly in the last 30 years as shown in Figure 2-3 (AEI, 2010). The 

reliability of diesel engines is improved due to the lack of an electrical ignition system, 

their robust nature to handle high compression combustion, and the lower engine speeds 

at which they operate.    

    



10 

 

 

Figure 2-3 Vehicle fuel economy (EIA, 2010).  

Although heavy-duty diesel trucks have a lower mile per gallon fuel economy 

value than light-duty vehicles as shown in Figure 2-3, they are more fuel efficient in 

terms of work per gallon of fuel.  Diesel engines have higher conversion efficiencies than 

gasoline engines since they operate at higher compression ratios and temperatures. Their 

abundant use in the transportation sector, however, makes them the largest contributors to 

the freight emission inventory, accounting for an estimated 66.8% of the NOx emissions 

and 64.7% of the PM emissions (FHWA, 2011).  

Diesel engines operate under lean conditions (excess oxygen) and therefore emit 

relatively low levels of carbon monoxide (CO) in relation to their gasoline counterparts. 

Gaseous hydrocarbons (HC) emissions from diesel engines are typically 5 times lower 

than those of gasoline engines (Heywood, 1988).  Diesel engines are a significant source 

of oxides of nitrogen (NOx) and particulate matter (PM). In the diesel engine combustion 

process, fuel is injected into the cylinder just before combustion and the fuel distribution 
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is non-uniform resulting in hot spots and areas of incomplete combustion, which strongly 

affects pollutant formation. Elevated levels of NOx emissions in diesel engines are a 

result of the oxidation of atmospheric nitrogen at high combustion temperatures and PM 

is primarily from the incomplete combustion of hydrocarbon compounds from the fuel or 

lubricating oil resulting in soot and absorbed organic compounds (Heywood, 1988).  One 

of the problems in controlling engine out NOx and PM emissions in diesel engines is the 

inverse relationship that exists between the two emissions. Measures that reduce 

combustion temperatures in an effort to reduce NOx such as retarding fuel injection 

timing or fuel-water emulsions will also result in more incomplete combustion thereby 

increasing HC, CO and predominantly PM emissions.  

2.2 Greenhouse Gases and Pollutant Emissions  

Air pollution can be generally defined as the presence of one or more 

contaminants in the air in such quantities and duration that it causes damage to human 

life, plant life, animal life or property, or that it interferes with the comfortable enjoyment 

of life or property (Wark & Warner, 1981).  The effects of air pollution can be divided 

into two basic categories; those having local impacts and those having more of a global 

impact. Historically, vehicle emissions standards were put in place to control gaseous 

emissions associated with local air quality problems such as poor visibility and 

respiratory illness. NOx and PM emissions have been the main criteria pollutants of 

concern for heavy-diesel vehicles since they are produced in greater quantities relative to 
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HC and CO in the diesel engine. PM in particular was listed by the California Air 

Resources Board (CARB) as a Toxic Air Contaminant (TAC) in 1998 (CARB, 1998). 

2.2.1 Carbon Dioxide  

Currently, there is an emphasis on reducing GHG emissions whose increasing 

levels in the atmosphere are believed to affect climate change on a global scale. In 

California, landmark climate-change legislation (AB 32) was signed into law in 2006 

with the intent of creating programs to reduce California’s GHG emissions to below 1990 

levels by 2020 (CARB, 2009). In December 2008, the CARB adopted the Heavy-Duty 

Greenhouse Gas Emission Reduction Regulation which requires California trucks and 

trucks operating in California to meet certain performance requirements between 2011 

and 2023.  Under the new rule, diesel exhaust filters must be installed on diesel trucks 

with almost all vehicles upgraded by 2014 and truck engines older than 2011 will have to 

be replaced during a phase in period between 2012 and 2022 (ARB, 2008). 

One of the primary GHG pollutants of concern is CO2 which is a byproduct of 

fuel combustion.  The amount of CO2 emission produced from the combustion of fuel is 

directly related to the carbon content of fuel.  The carbon content of fuel varies, but the 

typical carbon content of diesel fuel is roughly 2,778 grams of carbon per gallon of fuel 

in comparison to gasoline which has around 2,421 grams of carbon per gallon of fuel 

(EPA, 2005).  



13 

 

2.2.2 Carbon Monoxide  

CO emissions are a product of incomplete combustion and are controlled 

primarily by the air-fuel ratios occurring during combustion (Heywood, 1988). The 

formation of CO is typical for a rich air-fuel ratio where excess fuel is present and an 

insufficient amount of air to combust it. Diesel engines typically run under lean air-fuel 

conditions which means they have an excess amount of air for the quantity of fuel they 

are burning. Under these conditions, incomplete combustion is less common and 

therefore diesel CO emissions are extremely low unlike gasoline engines which run close 

to stoichiometry and which run rich at full load. It has been shown that for diesel engines, 

CO does not vary significantly with the air-fuel ratio (Heywood, 1988). Due to its low 

levels, diesel CO is not considered to be of great concern.   

2.2.3 Hydrocarbons  

Engine HC emissions in general are primarily a result of unburned hydrocarbons 

due to combustion inefficiencies which can arise is several ways.  During the 

compression stroke, unburned fuel can be forced into crevices between the piston rings 

and cylinder walls where the combustion flame is too large to enter. Unburned fuel in 

crevices can escape later during the exhaust stroke. Another source of unburned 

hydrocarbons is from a fuel layer “quench layer” left on the cylinder walls which remains 

unburned, not being reached by the combustion flame before it extinguishes. Yet another 

source for unburned HC emissions is from the adsorption and desorption of fuel by any 

lubricating oil left on any of the cylinder surfaces (Heywood, 1988).   
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For diesel engines, fuel is injected toward the end of the compression stroke, 

shortly prior to combustion.  For this reason, fuel has a limited time to distribute and fuel 

distribution becomes critical for the combustion process. This results in unburned 

hydrocarbons in areas of the combustion flame where air-fuel mixtures either prevent 

combustion from starting or the fuel spray is quenched on the cylinder walls (Heywood, 

1988).   

2.2.4 Nitrogen Oxides 

One of the primary emissions of concern for diesel engines are (Nitrogen Oxides) 

NOx, the other being Particulate Matter (PM).  NOx is a collective term that refers to both 

Nitric Oxide (NO) and Nitrogen Dioxide (NO2), but the predominant emission for diesel 

engines is NO. The primary source of NOx in vehicle emissions is from the oxidation of 

N2 from the atmosphere. Atmospheric air is composed of roughly 78% N2. The basic 

mechanisms for the formation of NO during combustion are given in equations 2.1 and 

2.2 and for NO2 are given in equation 2.3 (Heywood, 1988). 

N NOO N 2  2.1 

O NO ON  2  2.2 

OH NO HONO  22  2.3 

The formation of NOx emissions in diesel engines is well understood and is 

dependent mainly on the presence of sufficient oxygen and high temperatures (Heywood, 

1988).  
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2.2.5 Particulate Matter 

Diesel particulate matter refers to the aerosol portion of diesel exhaust.  This is 

basically the portion of the exhaust that can be collected and measured on a sampling 

filter. A typical diesel generated PM particle is presented in the  

TEM picture in Figure 2-4. 

 

Figure 2-4 TEM image of diesel PM particle (Park, Cao, Kittelson, & 

McMurray, 2003). 

Diesel PM consists of three main parts: elemental carbon (EC), the soluble 

organic fraction (SOF), and hydrated sulfuric acid.  The various parts that make up a 

diesel PM particle are illustrated in Figure 2-5 (Twigg & Phillips, 2009). The elemental 

carbon portion of PM, also known as black carbon or soot, is the solid portion of diesel 

PM.  The soluble organic fraction contains the heavier hydrocarbons.  This portion 

contains any polycyclic aromatic hydrocarbons (PAH) that may be present in the 

emissions. Several PAHs are known carcinogens, especially the ones with four or more 

aromatic rings.  The last portion is hydrated sulfuric acid and its portion will be directly 

related to the amount of sulfur in the diesel fuel. 
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Figure 2-5 Schematic of diesel particulate matter composition (Twigg & 

Phillips, 2009). 

PM ranges in size from a few nanometers to one micron. Some of the constituents 

in PM are in the nuclei mode and others are present in agglomerations of several nuclei 

particles.  This creates a bimodal size distribution.  PM under 2.5 microns in diameter is 

classified as fine and PM over 2.5 microns is considered coarse.  Fine particulate has the 

characteristic of being able to penetrate deep into the respiratory system, which has 

serious health consequences (Seinfeld & Pandis, 1998).  

Diesel PM has been classified by CARB in 1998 as a toxic air contaminant 

(TAC). In a 2000 study, CARB also attributed roughly 70% of the cancer risk from air 

contaminants to diesel PM (CARB, 2000).  In addition to this, PM is known to be a 

respiratory irritant and is believed to be a precursor to serious respiratory illness. 

Currently, diesel engines are being regulated to reduce PM and NOx, and reducing 

CO2 emissions has become an increasingly important goal. Some evidence suggests that 
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there is a fuel penalty associated with aftertreatment devices, such as diesel particulate 

filters (DPF), used to meet the more stringent current emission standards (Johnson, 2006) 

(Parks & Huff, 2007). 

2.3 Vehicle Emission Modeling 

Vehicle emission modeling is useful to evaluate and predict the relationship 

between vehicle activity and vehicle emissions for mobile source emission analysis. 

Vehicle emission modeling has long had a place at the local, state and federal levels as a 

tool to develop and evaluate transportation policy or for related decision making. This 

method of estimating the contributions of emissions from mobile sources has been used 

by the EPA to evaluate highway mobile source emission control strategies and by state, 

local and regional planning agencies like CARB in the development of control strategies 

for State Implementation Plans (SIP) under the Clean Air Act.  In addition to this, 

emission modeling is used by metropolitan planning organizations and transportation 

departments for conformity analysis and transportation planning as well as by industry, 

academia and research organizations in many endeavors including the development of 

environmental impact statements (EPA, 2002). To date, there has been much effort put 

into the development of emission models for a variety of LD vehicles, but not as much 

for HDD vehicles. Vehicle emissions can be modeled at various levels of temporal 

resolution and generally fall into three major categories: macroscale, mesoscale and 

microscale.  
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2.4 Macroscale/Mesoscale Emission Models 

Macroscale or large scale models are used to calculate emissions for large 

regional inventories. Regional to national models, such as the US EPA’s MOBILE model 

(EPA, 2002) or CARB’s EMFAC model (CARB, 2000), are large scale models and have 

been used for many years in evaluating fleet emissions. These models calculate vehicle 

emission rates under various conditions affecting in-use emissions such as ambient 

temperatures and average traffic speeds, based on user inputs.  

Mesoscale traffic emission models estimate emissions at the roadway network 

link or corridor level based on mesoscopic parameters such as average link velocity. 

Results from mesoscale emission models as well as from higher resolution microscale 

modeling can be aggregated to produce macroscale emission results although this may be 

computationally intensive depending on the size of the network.  Emission results from 

macroscale models cannot be reasonably broken down to the microscale level.     

2.4.1 MOBILE and EMFAC 

One of the primary functions of transportation emission models is to help generate 

emission inventories for the conformity analysis of transportation projects and air quality 

plans. Conformity analyses are necessary for the development of State Implementation 

Plans (SIP)’s which demonstrate the compliance of Regional Transportation Plans 

(RTPs) and Transportation Improvement Plans (TIPs) with the federal Clean Air Act. 

EPA’s Highway Vehicle Emission Factor (MOBILE) model and CARB’s Emission 

Factor (EMFAC) model have been the official models recognized by the federal and state 
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governments for these purposes for many decades.  EPA’s MOBILE model has been 

superseded by the MOVES model discussed in 2.6.1, however at this time it is not 

required for regional conformity analysis until March 2013 (EPA, 2011). EMFAC is used 

in California while MOBILE and MOVES are used in the remaining 49 states.   

Emission model scales vary in level of resolution from macroscale to mesoscale 

to microscale. MOBILE and EMFAC are both macroscale emission models designed to 

estimate emissions from a wide area or region using vehicle average-speed emission 

factors. These emission models are based primarily on engine certification and 

dynamometer test data.      

One of the drawbacks of macroscale emission models such as the MOBILE and 

EMFAC series is that they do a poor job at estimating emissions at smaller time scales. 

Macroscale models cannot be used to evaluate transportation designs or operational 

improvements at the vehicle level as is required for new Intelligent Transportation 

Strategies (ITS).  

2.5 Microscale Emission Models 

Large scale models, although good for predicting large inventories, are not well 

suited for evaluating operational effects that involved activity at the “microscopic” level, 

such as ramp metering, signal coordination, and many ITS strategies.  These limitations 

have resulted in a need for emission models that consider emissions at a more 

fundamental level based on “modal” operation, i.e., emissions during activities of 

acceleration, deceleration, cruising, idle, etc. (Barth, Malcolm, & Scora, 2001). 
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Microscale models, also referred to as continuous or instantaneous models, address 

emissions at the shortest time scales, typically second-by-second. Unlike macroscale 

models, microscale models lend themselves well to analyzing the emission effects of 

changes in vehicle driving patterns on a small scale. Due to the similar resolution of 

timescales, microscale emission models are also useful for emission analysis with 

microscale traffic simulation software. The following subsections describe three 

microscale models and microscale modeling is discussed in further detail in Section 3.4. 

2.5.1 Comprehensive Modal Emission Model (CMEM) 

The Comprehensive Modal Emissions Model (CMEM) is a microscopic 

emissions model initially developed in the late 1990’s by the College of Engineering 

Center for Environmental Research and Technology (CE-CERT) at the University of 

California Riverside. CMEM predicts fuel consumption and emissions from CO2, CO, 

HC and NOx on a second-by-second time scale given vehicle parameters and second-by-

second vehicle activity information.  

CMEM uses a physical, power-demand approach in which the fuel consumption 

and emissions process is broken down into general components that correspond to 

physical phenomena associated with vehicle operation and emissions production. Each 

component is modeled as an analytical representation consisting of various parameters 

that are characteristic of the process. These parameters vary according to vehicle type, 

engine technology, emission technology, and level of deterioration. One distinct 

advantage of this approach is that it is possible to adjust many of these physical 
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parameters to predict energy consumption and emissions of future vehicle models and 

applications of new technology (e.g., after-treatment devices).  

The current version of CMEM (version 3.2) includes 28 light-duty 

vehicle/technology categories and 3 heavy-duty vehicle/technology categories (An F. , 

Barth, Scora, & Ross, 1998) (An F. , Barth, Scora, & Ross, 1999) (Barth M. , et al., 2000) 

(Barth, Scora, & Younglove, 2004). An HDD emission model for particulate matter 

(PM), one of the primary diesel emissions of concern, has been developed as part of this 

dissertation and is currently being incorporated into the CMEM modeling effort.   

Model Background 

The effort to develop CMEM began in 1996 with the four-year National 

Cooperative Highway Research Program (NCHRP, Project 25-11) for the development of 

a modal model for light duty vehicles. Over the years, CMEM has been maintained and 

updated with support from the U.S. EPA.  

Initial development of the model was focused on emission from light-duty 

vehicles and the first version of CMEM contained 26 light-duty gasoline 

vehicle/technology categories characterized by emission control technologies, emission 

certification standards, mileage, power-to-weight ratios, and high emitting characteristics. 

These vehicle categories were developed based on dynamometer test data collected at 

CE-CERT for over 300 vehicles and three drive cycles. The model framework was 

extended later to include HDD trucks since emissions from HDD vehicles were attracting 

more and more attention and it is generally believed that transit buses and heavy trucks 
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will offer some of the earliest opportunities for public implementation of automated 

operations. With the combination of the light-duty and heavy-duty vehicle emission 

models, it is possible to estimate the total fuel consumption and emissions impact from 

ITS technologies and strategies on a systems-wide basis and allow for a more complete 

fleet emission inventory to be estimated.  

In the past decade, there has been much interest in Intelligent Transportation 

Systems (ITS) and their potential to improve certain aspects of transportation.  In order to 

evaluate these potential benefits, there arose a need for emission models that operate at a 

finer scale. This was a major impetus for the development of CE-CERT’s Comprehensive 

Modal Emissions Model (CMEM) (Barth M. , An, Norbeck, & Ross, 1996). To facilitate 

the evaluation of the environmental impacts of ITS technologies and strategies, CMEM 

has been integrated with various ITS simulation models and analytical techniques (Barth, 

Malcolm, & Scora, 2001). 

Model Structure 

During the initial CMEM development, 26 different vehicle/technology 

categories, shown in Table 2-1, were developed from test data of an assortment of over 

300 light duty vehicles. The various vehicle/technology categories were defined to serve 

as the basis for the model, as well as to guide the vehicle recruitment and testing 

performed. Vehicle/technology categories and the sampling proportions of each were 

chosen based on the emissions contribution of each group, as opposed to a group’s actual 

population in the national fleet. This resulted in several distinct high-emitting 
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vehicle/technology categories; the remainder of the categories being based on vehicle 

class (e.g., car, truck), emission technology (e.g., no catalyst, catalyst, etc…), emission 

certification standard (e.g., Tier 0, etc…), power-to-weight ratio, and mileage.  

Each of the test vehicles was recruited randomly within a category, tested on a 

dynamometer under the standard FTP test, the high-speed US06 cycle and the in-house 

developed Modal Emission Cycle, MEC. The MEC was designed to cover a wide range 

of operating conditions. More details on the dynamometer testing procedure can be found 

in (Barth, Wenzel, Scora, An, Ross, & Norbeck, 1997). 
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Table 2-1 Vehicle/technology modeled categories in CMEM. 

Category # Vehicle Technology Category 

 Normal Emitting Cars 

1 No Catalyst 

2 2-way Catalyst 

3 3-way Catalyst, Carbureted 

4 3-way Catalyst, FI, >50K miles, low power/weight 

5 3-way Catalyst, FI, >50K miles, high power/weight 

6 3-way Catalyst, FI, <50K miles, low power/weight 

7 3-way Catalyst, FI, <50K miles, high power/weight 

8 Tier 1, >50K miles, low power/weight 

9 Tier 1, >50K miles, high power/weight 

10 Tier 1, <50K miles, low power/weight 

11 Tier 1, <50K miles, high power/weight 

24 Tier 1, >100K miles 

 Normal Emitting Trucks 

12 Pre-1979 (<=8500 GVW) 

13 1979 to 1983 (<=8500 GVW) 

14 1984 to 1987 (<=8500 GVW) 

15 1988 to 1993, <=3750 LVW 

16 1988 to 1993, >3750 LVW 

17 Tier 1 LDT2/3 (3751-5750 LVW or Alt. LVW) 

18 Tier 1 LDT4 (6001-8500 GVW, >5750 Alt. LVW) 

25 Gasoline-powered, LDT (> 8500 GVW) 

40 Diesel-powered, LDT (> 8500 GVW) 

          High Emitting Vehicles 

19 Runs lean 

20 Runs rich 

21 Misfire 

22 Bad catalyst 

23 Runs very rich 

 

The generalized CMEM model is shown in Figure 2-6 and consists of six distinct 

modules that individually predict: 1) engine power; 2) engine speed; 3) air/fuel ratio; 4) 
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fuel-use; 5) engine-out emissions; and 6) catalyst pass fraction. The core of the CMEM 

model is fuel use which is determined based on engine power and engine speed. The 

modeling inputs include operating parameters such as vehicle trajectory and test 

conditions (e.g., temperature, soak time, etc…), and vehicle parameters both generally 

available and calibrated. Generally available parameters are those that typically define 

some physical characteristic of the car such as weight or engine power. These parameters 

are usually readily available.  Calibrated parameters on the other hand are obtained from 

optimization procedures to calibrate these parameters from the second-by-second test 

data. Details of the model structure are given in (An F. , Barth, Norbeck, & Ross, 1997). 
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Figure 2-6 Generic CMEM model structure. 

The CMEM model currently exists in several different formats. During 

development, the model was carried out in a research environment, using MATLAB 

(MathWorks, 2009) modeling/analysis tools and was subsequently coded in other formats 



26 

 

so that the model could be used outside of the MATLAB environment. For this a 

command line user interface was developed for the UNIX and PC environments. Since 

this time, a JAVA based Graphical User Interface has been added. Effort was also put 

into the integration of CMEM with transportation software.  Further background on 

modal emission modeling and the NCHRP project is given in (An F. , Barth, Norbeck, & 

Ross, 1997) (An F. , Barth, Scora, & Ross, 1998) (Barth M. , et al., 2000) (Barth M. , An, 

Norbeck, & Ross, 1996). 

2.5.2 VT-Micro 

The Virginia Tech Microscopic (VT-Micro) model is a statistically based model, 

which uses a combination of speed and acceleration levels implemented in a dual-regime 

model to estimate fuel consumption and emission rates for light-duty vehicles. The 

modeling equation is presented as 

 

2.4 

Where measure of effectiveness (MOE) is fuel consumption or emission rates 

including CO, HC, NOX, and CO2. The coefficients L
e
i,j and M

e
i,j are given for each 

MOE, s
i
 is speed at speed exponent i, and a

j
 is acceleration at acceleration exponent j 

(Ahn, Rakha, Trani, Aerde, & M., 2002) (Rakha, Van Aerde, Ahn, & Tran, 2000) 

(Rakha, Ahn, & Trani, 2004). 
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The model is based on chassis dynamometer data for 101 LD vehicles. A subset 

of test data for 60-vehicles classified as normal was grouped homogeneously using 

Classification and Regression Tree (CART) analysis. CART analysis uses a regression 

tree method to search for patterns and relationships in data sets and identify classifiers. A 

tree of classifiers is built by continually splitting at active nodes based on split criterion 

until minimum split criteria are met. Calibration of the VT-Micro model involves the 

estimation of 32 parameters for each MOE. 

2.5.3 PHEM 

The Passenger Car and Heavy Duty Emission Model (PHEM) is an instantaneous 

emission model developed by TU Graz starting in 1999 under several international and 

national projects including the EU 5
th

 research program ARTEMIS (Assessment and 

Reliability of Transport Emission Models and Inventory Systems) Work Project 400, the 

COST (European COoperation in the field of Scientific and Technical Research) 346 

initiative and the German-Austrian-Swiss cooperation on the HandBook of Emission 

FActors for Road Transport (HBEFA) (Hausberger, Rodler, Sturm, & Rexeis, 2003). The 

model uses second-by-second vehicle speed, acceleration and grade as well as specific 

vehicle parameters to calculate driving resistance, transmission losses and engine speed 

which it then relates to fuel consumption and emissions through interpolation of steady 

state engine fuel consumption and emission maps.  Emissions taken from engine maps 

are then adjusted with transient corrections to adapt the values to the actual driving cycle.  
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The diagram in Figure 2-7 shows the general process of the PHEM model (TU Graz, 

2009).    

 

Figure 2-7 PHEM - Passenger car and heavy duty emission model (TU Graz, 

2009) 

2.5.4 Additional Modeling Efforts for Heavy-Duty Diesel 

There are several notable modeling efforts specific to diesel vehicles. Two of 

these are presented here. Researchers from the University of California, Davis have 

developed a model that applies operational correction factors to emission rates from a 

mixed linear regression model. Model inputs include factors such as the measure of high 

power transient driving, idle time, and average speed. The test data set for this project 

was chassis dynamometer test data for HDD vehicles from the Coordinating Research 

Council’s E55/E59 research project (Kear & Niemeier, 2006).   
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Researchers at Tsinghua University have investigated the development of an 

HDD specific emission model for China. This modeling effort analyzed test data from 

several HDD trucks and buses and compared emission rates on various external 

parameters.  In this work a multivariable linear regression model based on vehicle 

specific power (VSP), CO2 and a calculated variable called engine stress used for 

clustering was developed. Vehicle specific power is discussed in further detail in Section 

3.5.2. Results show PM prediction results with a correlation of 0.73 and error of 29 % 

(Liu, He, Lents, & Wang, 2008). 

2.6 Multi-scale Emission Models 

Multi-scale emission models are flexible emission models that can estimate 

emissions at the microscale to the macroscale level. In general, results from microscale 

emission modeling can be aggregated spatially and temporally to produce mesoscale or 

macroscale emission estimates, making microscale modeling an important foundation for 

a multi-scale vehicle emission model structure. Depending on the available inputs, and 

the data demand and processing requirements of the microscale model, it is not always 

practical to aggregate microscale emissions to produce mesoscale or macroscale emission 

results.    
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2.6.1 MOVES 

The Motor Vehicle Emission Simulator (MOVES), developed by the U.S. EPA’s 

Office of Transportation and Air Quality (OTAQ), is the EPA’s newest vehicle emission 

model.  MOVES replaces MOBILE6.2, the latest version of MOBILE released in 2004, 

and is a multi-scale model lending itself to analysis at the microscopic level as well as at 

the regional and national level (Koupal, Cumberworth, Michaels, Beardsley, & 

Brzezinski, 2002) (Koupal, 2001). The MOVES model is based on emission factors 

binned by operating mode which is defined by vehicle-specific power (VSP) and speed 

range. Vehicle specific power is discussed in further detail in Section 3.5.2 and the 

operating mode bins used by the MOVES model are presented in Figure 2-8. The speed 

bin ranges help account for speed anomalies which were discovered by EPA during 

MOVES development (Nam, Giannelli, & Koupal, 2003).  
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Figure 2-8 Overview of MOVES VSP based operating mode bins (Warila, 

Nam, Landman, & Kahan, 2011) 

MOVES is supported by VSP binned tailpipe emission data from various sources 

including dynamometer data, remote sensing and PEMS measurement units. The model 

is primarily data driven and vehicle emission rates are generated from VSP based look-up 

tables organized by various parameters such as vehicle type, vehicle year, pollutant type, 

and fuel type. 

The MOVES modeling methodology applies the VSP binned emission factor 

approach to multiple modeling scales from project level scale analysis to national 

inventory estimation. Some of the limitations to the binning approach are the need for 

large amounts of data, the difficulty in filling data gaps, and the difficulty in extrapolating 

beyond the collected set. 
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2.7 Environmentally-Friendly Navigation 

Transportation is essential for work and commerce; however, it does have 

negative effects, most notably on the environment. Two of the primary areas of concern 

are energy consumption and emissions.  Although energy consumption is a requirement 

for transportation, a certain amount of energy is wasted due to inefficiencies in the 

transportation process.  Environmentally friendly navigation addresses some of these 

inefficiencies with improvements in trip scheduling, route choices and operating 

parameters such as vehicle weigh and speed. The key objective of EFNav is to optimize 

routing and driving behavior to minimize a vehicle’s fuel consumption, emission 

production, contribution to human emission exposure, or other negative environmental 

effects.     

Many businesses transport goods between a set of locations. It is important to 

manage these operations efficiently, both to reduce operating costs and to ensure that the 

pickups and deliveries meet certain criteria such as time and capacity constraints of 

clients and the company. In the U.S., a significant portion of goods is transported by 

heavy-duty trucks. These trucks consume a large amount of fuel each year, primarily due 

to the quantity of goods they transport and their high annual mileage. Fuel costs are one 

of the major cost components of total truck operating costs. The trucking industry has 

continued to look for ways to improve operations and reduce the amount of fuel 

consumption of their truck fleets.  
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One way of reducing fuel consumption from trucking operations is to perform the 

routing and scheduling efficiently. There are several commercially available software 

packages that allow truck routes to be predetermined, taking into account numerous 

variables including the driver hours-of-service rules, pick-up and delivery windows, 

vehicle size constraints, vehicle-product compatibility, vehicle-loading dock 

compatibility, vehicle route restrictions, and many others (e.g., (Rand McNally, 2011) 

(ORTEC, 2011) (TeleType Co, 2010) (ALK Technologies Inc., 2011) (ArcLogistics, 

2009)). These software packages use sophisticated optimization models to solve this so 

called vehicle routing problem (VRP) (ArcLogistics, 2009). The key objective of these 

optimization models is to minimize the mileages traveled by trucks. 

It is important to note that any measures that reduce fuel consumption will also 

reduce criteria pollutants such as NOx and PM as well as the GHG emission CO2 and 

thus, benefit the environment. In many cases, a shortest-distance route will also minimize 

fuel consumption and emissions (e.g. when all routes have similar conditions). However, 

in many other cases, this is not the case. A shortest-distance route may include roadway 

sections with steep grades, requiring more energy for the truck to climb the hills while 

producing more emissions in the process. The route may also have a truck travel through 

heavily congested roadways, resulting in longer time spent and higher fuel consumed. 

Similarly, a shortest-time route does not ensure the minimum fuel consumption or 

emissions (a shortest-time route is usually calculated based on typical vehicle speeds on 

different roadway types, for example, 60 mph for freeways, 35 mph for arterials, etc.). A 
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shortest-time route may have a truck travel longer distances, albeit on less congested 

roadways. Traveling at high speeds for longer distances will result in higher fuel 

consumption (and emissions) compared to a more direct route at lower speeds. This is 

especially true for heavy duty trucks whose power-to-weight ratio is low. A shortest 

distant route may also be less desirable when considering pollutant exposure and an 

EFNav application with emission estimation can also be used to optimize least exposure 

routing. 

Researchers at CE-CERT have developed new navigation techniques that focus 

on minimizing energy consumption and pollutant emissions for light duty vehicles. These 

methods combine mobile-source energy and emission models with route minimization 

algorithms that are used for navigational purposes (Barth, Boriboonsomsin, & Vu, 2007). 

Most of the work in the area of EFNav deals with Advanced Driving Assistance Systems 

(ADAS) such as when to shift gears in order to optimize fuel economy (Huang, Bevly, & 

Li, 2007). Due to the scale of emission production, the number of Vehicle Miles Traveled 

(VMT) and the sensitivity to operational parameters, HDD trucks are well positioned to 

take advantages of EFNav.  
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3.0 Development of a Microscale HDD PM Model  

The objective of this portion of work is to develop a microscale HDD Energy and 

Emission Model (HDDEM) with the ability to estimate second-by-second PM emissions 

based on real-time data. This builds on the author’s previous emission modeling work in 

which a microscale HDD emission model was developed for the gaseous pollutants CO, 

HC and NOx based on an initial data set of 11 HDD vehicles (Scora, 2007). This portion 

of work focuses on modeling PM emissions as a function of fuel use and readily available 

vehicle parameters.       

3.1 Review of Microscale Emission Modeling Approaches 

There are various approaches to modeling emissions at the microscale level which 

can be characterized generally as statistical or physically based approaches. Statistically 

based approaches relate explanatory variables to emissions using statistical techniques 

such as data binning, regression analysis, classification and regression trees or neural 

networks. In pure statistical modeling approaches, the parameters generated for the 

models often have little if any physical meaning and it is difficult to generalize the trend 

between emissions and vehicle characteristics.  

Physically based modeling approaches focus on modeling various aspects of 

vehicle dynamics and the vehicle emission process. Although physically based modeling 

approaches may use statistical methods in some parts, such as regressions, the overall 

structure of these approaches is focused around general physical principles and the 

mathematical equations for these principles. Unlike in statistical modeling, many of the 
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parameters for physically based models have physical meanings and their effect in the 

model is often well understood and can be modified to accommodate new vehicle types 

or operating conditions.  The number of inputs to physically based models is typically 

more than with statistical models due to the number of processes being modeled and it is 

also easy to add additional components to the model when the data to support them is 

available. For some applications, physically based models may be too data or 

computationally intensive, but this is becoming less so as computational power becomes 

greater.   

3.1.1 Lookup Table Models    

One of the most basic microscale modeling approaches is a multidimensional 

lookup table which stores emission values corresponding to a set of predictor variables 

typically speed and acceleration. The advantage of this type of emission modeling 

approach is that it is easy to implement, not computationally intensive, and consequently 

can generate results quickly. One of the major drawbacks of lookup table based models is 

that adding a new variable such as vehicle weight, road-grade or accessory load requires 

a new table or at least a set of correction factors. Emission lookup tables also cannot 

explicitly account for the emission effects of vehicle operating history such as the vehicle 

activity leading up to a particular moment. 
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3.1.2 Classification and Regression Tree Models 

One statistical approach to microscale emission modeling is the use of a 

classification and regression tree (CART) model. This statistical technique creates a 

binary recursive decision tree that splits data into partitions based on conditional 

statements and uses regression analysis to relate explanatory variables to emission results 

within partitions. The CART algorithm decides how to partition data at each step, when 

to stop partitioning data and how to predict data within partitions (Razi & Athappilly, 

2005). The CART approach requires an extensive amount of data to train the model, but 

the results are generally easy to interpret.     

3.1.3 Artificial Neural Network Models 

Another statistical approach used for microscale emission modeling is the use of 

artificial neural networks which are statistical modeling techniques, inspired by the 

function of the human brain, that identify non-linear function mapping between the 

independent input variables and the dependent output variables (Razi & Athappilly, 

2005). Although this modeling technique has the potential to provide acceptable results, it 

also has several drawbacks.  Much like many of the other more complicated statistical 

modeling methods, the primary drawbacks for neural network models are that the entire 

process is essentially a “black box” making it difficult to determine the influence of 

parameters on emissions.   
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3.1.4 Engine Emission Models               

Another type of physical model worth noting is the detailed three-dimensional 

engine and emission model based on combustion theory and computational fluid 

dynamics (CFD), such as the modeling work that is done with the popular KIVA set of 

code developed by the Los Alamos National Laboratory.  This type of modeling 

considers the detailed chemistry, chemical kinetics, thermodynamics and fluid dynamics 

of the engine and emission process to model details such as flame propagation, 

combustion chamber temperatures and emission production (Amsden, 1999).  This level 

of modeling is important for engine research and design, but its application as a 

transportation emission model is highly impractical since it is computationally intensive 

and relies on a large number of detailed engine, fuel and environmental data which are 

not generally available even from traffic micro simulation software.       

3.2 PM Emission Model Structure      

The modeling approach used for the PM model is a combination approach that 

models the physical phenomena associated with vehicle operation leading up to fuel use 

and then relates the modeled fuel use and other predictor values to emissions primarily 

through multiple linear regression.  The parameters required for this modeling consist of 

both, readily available parameters such as vehicle mass, engine size and aerodynamic 

drag coefficients, as well as parameters than can be determined based on the calibration 

of measured second-by-second emission data. There are several key advantages to a 

physically based modeling approach. One of these advantages is that the physical 
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modeling component can readily account for the effects of additional load producing 

inputs such as road grade, accessory power or vehicle weight. Another key advantage of 

this approach is that it is well suited to incorporate the emission effects of vehicle 

operation history.  

3.2.1 The Physical Model 

The general structure of the model is presented in Figure 3-1. The inputs to the 

emission model are of two general types: second-by-second operating parameters and 

vehicle parameters. Operating parameters describe the activity of the vehicle such as 

speed, acceleration and accessory usage as well as running conditions such as road grade, 

headwind or crosswind. A greater level of detail can be utilized here when available with 

the inclusion of second-by-second information for things such as road surface type, 

temperature, altitude, humidity and compression release braking activity discussed in 

Section 3.8.1. Vehicle parameters include all the parameters that characterize the vehicle 

itself such as weight, horsepower, and engine idle speed, as well as calibrated parameters 

for the emission behavior of the vehicle.  
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Figure 3-1 General HDD emission model structure 

The subcomponents of the model calculate various intermediate variables such as 

tractive road load demand, gear selection and engine speed, which are used in subsequent 

submodels to determine fuel use and finally emissions. For information on the submodels, 

please refer to the author’s previous emission modeling work (Scora, 2007).  

3.2.2 Regression Based PM Submodel 

The foundation of the HDD PM model developed for this research is a physical 

model that estimates data for several dynamic vehicle parameters such as fuel rate, engine 

speed and engine torque as discussed in Section 3.2. These dynamic parameters are then 

related to PM emissions through Multiple Linear Regression (MLR) modeling discussed 

in this section. 

MLR is a statistical modeling method that is used to relate a dependent variable to 

one or more independent explanatory variables using a linear function. For a simple 
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linear regression between a dependent variable and a single predictor value, the fit 

between the variables is described by equation 3.1.  

 Y = b0 + b1x1 + ε 3.1 

where: 

Y   = dependent variable 

x1   = independent value 

b0, b1  = regression coefficients 

ε  = error term 

Equation 2 can be extended to describe a MLR model. The format for a MLR 

model is the expression of a dependent or predicted variable as a linear function of one or 

more predictor variables and an error term as presented in equation 3.2.  

 Y= b0 + b1x1 +b2x2 + b3x3+ … + bnxn + ε 3.2 

where: 

Y   = dependent variable (PM) 

x1,…, xn  = independent variables (explanatory values) 

b1,…, bn = regression coefficients 

ε  = error term 

 

Although the format of the MLR model is a linear combination of predictor 

variables, the predictor variables may be non-linear. Examples of nonlinear terms are 

second and third order variables. The predictor values may also contain cross product or 
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interaction terms. In this case, the response of the dependent variable to a predictor value 

is scaled based on another predictor variable.  The format for a MLR model with an 

interaction term would follow the format similar to equation 3.3.  

 Y= b0 + b1x1 + b2x2 + b4x4x5 +  ε 3.3 

where: 

Y   = dependent variable (PM) 

x1,…, x5  = independent variables (explanatory values) 

b1,…, b4 = regression coefficients 

ε  = error term 

The regression coefficients are determined by minimizing the sum of the squared 

residuals, ordinary least squares analysis. The resulting equation is an empirical equation 

and may not have any understandable physical meaning.  To minimize this, the analysis 

is constrained in part to variables which are more easily conceptualized such as fuel rate, 

the change in fuel rate and engine speed.  Higher order terms such as fuel rate to the 

fourth order are not considered in the microscale model because they have little physical 

meaning. The development of the PM submodel is described in further detail in Sections 

3.7 and 3.8.  

3.3 Heavy Duty Diesel Data Collection  

The microscale PM model is developed and calibrated from a unique set of 

measured second-by-second on-road test data. In the past, HDD emissions model 

development on a second-by-second basis was restricted by the lack of appropriate real-
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world data. HDD engines are used in a variety of applications and for this reason are 

certified based on testing separate from the truck chassis and under laboratory conditions 

which may or may not be representative of the “real-world” conditions in which the 

engines will operate.  Much of the data available for HDD engines has been engine 

certification data from laboratory test stands. The use of this data for the estimation of 

actual vehicle emissions under real-world driving conditions has its uncertainties. 

In an attempt to address these uncertainties, the U.S. EPA and other research 

organizations have to develop systems for measuring emissions from HDD vehicles 

under real-world driving conditions, or conditions representative of real-world driving. 

These systems fall into the following categories: Heavy-duty chassis dynamometers, 

Portable Emission Systems (PEMS) (EPA, 2010), and trailer-based emission laboratories; 

the latter category being the source of data for this work. 

3.3.1 CE-CERT’s Mobile Emission Lab  

CE-CERT’s Mobile Emissions Laboratory (MEL) is a 53-foot class 8 trailer with 

the ability to measure instantaneous (i.e., modal) CO2, CO, HC, NOx and PM emissions 

in-situ.  The trailer contains a full-scale dilution tunnel and analyzers for gaseous 

pollutants. Figure 3-2 shows a basic schematic of the MEL trailer. The various 

instruments are powered by an on-board generator making the entire lab mobile. The 

laboratory can measure emissions in a stationary position, such as is required when 

sampling from a back-up generator or engine dynamometer, or it can be towed by a class 

8 tractor, measuring the tractor’s emissions in traffic under real-world operating 
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conditions. In the latter setup, the truck’s exhaust system is connected to the dilution 

system and the entire exhaust stream is captured. The laboratory is based on Code of 

Federal Regulations (CFR) standards for emissions certification measurement. Validation 

was performed by comparing MEL emission results with data from CARB’s HDD test 

facility (Cocker, Shah, Johnson, Miller, & Norbeck, 2004).   

Data collected by MEL also includes information from the vehicle’s Engine 

Control Unit (ECU) as well as additional sensors.  These data are very valuable for 

modeling purposes. The ECU provides, among other things, engine speed, percent engine 

load and fuel rate which are variables that are calculated or can be related to variables 

that are calculated in the modeling effort.  This provides for an excellent intermediate 

validation of the modeling results.  

In addition to this, a driver’s aid was developed, which allows the truck operator 

to follow a standardized cycle if the road conditions permit.  More information regarding 

MEL can be found in (Cocker, Shah, Johnson, Miller, & Norbeck, 2004) (Cocker, Shah, 

Johnson, Zhu, Miller, & Norbeck, 2004). 
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Figure 3-2 Schematic of CE-CERT’s Mobile Emission Research Lab (After: 

Cocker, Shah, Johnson, Miller, & Norbeck, 2004) 

3.3.2 Measuring PM 

Real time emission data is crucial to the development of a microscale emission 

model.  Second-by-second PM modeling has long been limited by a general lack of real-

time emission data. Over the last several years however, real-time PM emission data is 

becoming more available making microscale PM modeling efforts possible.     

CE-CERT’s MEL provides three sets of PM data: gravimetric PM filter data and 

real-time PM data from a DustTrak® analyzer and a Dekati Mass Monitor analyzer 

(Cocker, Shah, Johnson, Zhu, Miller, & Norbeck, 2004).  All three of these data sets are 

based on differing measurement principals and are discussed briefly below. 
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Gravimetric PM 

Gravimetric PM measurements are obtained by weighing the mass of PM 

deposited on filters and are the classical method of obtaining integrated PM emissions for 

a given sampling period. During MEL testing, PM mass is collected on Teflon filters fed 

from the secondary dilution stream. The filters are loaded for the duration of a phase or 

cycle which is either preprogrammed or selected in real time.  MEL has the ability to 

switch filter loading on and off during operation allowing for multiple measurements of 

selected driving sections on a single filter.  The loaded PM filters are then weighed and 

the measurement is considered the “gold standard” which is used to calibrate and validate 

other PM measurements. The PM filter numbers provide integrated PM mass emission 

number for selected portions or phases of testing.  

TSI DustTrak® 

The DustTrak® is a real-time laser photometer from TSI Inc. (TSI, 2011), which 

is capable of recording in the range of 0.001 to 100 mg/m3. In this measuring device, 

shown in Figure 3-3, the diluted exhaust sample is drawn into the instrument 

continuously and separated into two streams, one of which is filtered and used as 

sheathing flow. The sample flow is illuminated by a sheet of laser light emitted from a 

laser diode and conditioned by a shaping lens.  The scattered light is collected by a 

spherical mirror and focused onto a photodetector to produce a voltage that is 

proportional to the mass concentration of PM2.5. This voltage response is then adjusted by 

a calibration constant to match with a known PM2.5 concentration, typically Arizona Test 
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Dust (TSI, 2006) (TSI, 2009). Comparisons of the DustTrak test data from the MEL data 

set used in this work are presented in this section.   

 

Figure 3-3 TSI DustTrak analyzer 

 Dekati Mass Monitor 230 

The Dekati Mass Monitor model 230 or DMM-230, shown in Figure 3-4, is a 

real-time PM mass emission monitoring device that measures PM in the size range of 0-

1.5 m.  The device operates on the principles of particle charging, density measurement, 

particle size classification with inertial impaction and electrical detection of charged 

particles. In this measuring device, the incoming sample flow is charged with a high 

voltage corona charger to give the particles a known charge.  Following the charging 

region, a static electrical field deflects the smaller particles onto an electrode based on 

their electric mobility producing a measurable current.  The larger remaining particles 

enter a 6-stage inertial impactor with electrical detection where they are separated based 

on their aerodynamic size. Mass number as well as number concentration can then be 

calculated based on information from the electric mobility of the smaller particles and the 

aerodynamic size of the larger particles (Dekati Ltd., 2010). Comparisons of the DMM 

test data from the MEL data set used in this work are presented in Section 3.3.3.     
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Figure 3-4 DMM 230 PM analyzer 

Comparison of Real-time PM Measurements 

For the selected data set, the MEL lab provides real-time PM data from the 

DustTrak and DMM-230 analyzers described in this section. In this section the real-time 

PM measurements from these two instruments are compared. Since these two analyzers 

operate on different measurement principles, their sensitivity to PM measurement varies.  

The DustTrak, like all aerosol photometers, detects PM by measuring the amount of light 

scattered by particles. The amount of light scattered by particles in the sample stream is a 

function of particle properties such as size, shape and the refraction index.  Particles of 

different sizes scatter light disproportionately and there is an optimal size range of 

roughly 0.1 to 10 microns in which particles scatter significantly more light relative to 

their mass. Below 0.1 microns, the light scattering abilities of particles relative to their 

mass decreases sharply and for this reason, the DustTrak analyzer is not expected to 

capture PM mass in this size range (TSI, 2006).   

In contrast to the DustTrak, the DMM-230 is expected to capture particles below 

0.1 microns because of its ability to measure particles in part by their electric mobility. 

The agreement between the real-time PM mass measurements from the DustTrak and 
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DMM-230 will depend on the size distribution of PM in the sample stream and the 

amount of PM mass contributed by the smaller particles.  

A comparison of typical real-time data from the Dustrak and DMM-230 is 

presented in Figure 3-5 for over 13000 data points. This data set is the calibration data set 

described in Section 3.3.3.  In this figure, the data from the DustTrak has been aligned 

and scaled so that its integrated value matches that of the DMM-230.  This figure shows 

that visually, the general agreement between the two analyzers can be relatively good for 

diesel exhaust.  Figure 3-6 shows a smaller section of the same data set which illustrates 

that although the two analyzers do follow the same trend, they are not capturing the PM 

emission events in the same way.  In this example, the DustTrak seems to over-estimate 

the larger emission event and under-estimate some of the lower emission events.   

 

Figure 3-5 Comparison of DMM-230 and Dustrak real-time PM 

measurements  
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Figure 3-6 Comparison of DMM-230 and DustTrak real-time PM 

measurements  

The plot in Figure 3-7 shows the correlation between the adjusted DustTrak PM 

data and that of the DMM-230. In this figure, as in the previous two, the data has been 

aligned for maximum correlation to the nearest second and shows the linear fit between 

the two data sets in relation to the line of parity with a coefficient of determination of 0.6 

and slope near 0.7. A similar result is presented in a later discussion in Figure 3-25. 
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Figure 3-7 Correlation between adjusted and aligned DustTrak and DMM-

230 real-time PM data 

For the PM modeling work presented here, the DMM-230 data was chosen as a 

source of PM data over the DustTrak since the DMM-230 encompasses a greater range of 

particle sizes.  

3.3.3 PM Data Set Description 

Emission testing performed by MEL is ongoing and includes on-road testing as 

well as engine dynamometer and chassis dynamometer testing of vehicles and engines 

ranging in model years from 1989 to 2011.  This breadth in range of HDD model years 

allows for the comparison of performance between new and old trucks and helps in the 
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evaluation of the newest after-treatment technologies such as diesel particulate filters 

(DPF).  

Emission data collected from MEL is the foundation for the development and 

calibration of the PM modeling efforts in this work. For model development, the focus 

was narrowed down to a single vehicle, although the model applies to most HDD 

vehicles. The selected vehicle is a 1995 model year Class 8 tractor with a 12.7 L series-60 

Detroit Diesel Corp. (DDC) engine. Selected information for the test vehicle and testing 

is presented in Table 3-1 followed by an image of the vehicle in Figure 3-8. 

Table 3-1 Model development test vehicle details 

Engine 

Make 

Engine 

Model 

Engine 

Displace

ment 

Rated 

Power 

Engine 

Year 
Odometer 

PM 

Control 

Device 

Real-time 

PM 

Test 

Location 

Hours 

Tested 

- - liters hp@RPM year miles  yes/no  hours 

Detroit 

Diesel 
Series60 12.7 500 1995 342,907 none YES on-road 7.45 

 

 

Figure 3-8 HDD test vehicle used for microscale PM model development 
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The selected data set includes PM emissions from two instruments discussed in 

Section 3.3.2, and encompasses a wide range of on-road driving activity within the span 

of couple of days.  The short time frame helps to reduce various sources of testing 

variability such as those related to environmental conditions, vehicle conditions and lab 

conditions.  In data sets that span greater lengths of time such as those that combine data 

from repeat testing of the same vehicle, ambient temperatures and humidities may differ, 

the vehicle may have deteriorated or malfunctioned, or the analyzer setup may have 

changed. All of these variables have the potential to influence the compatibility of the 

combined data set and for these reasons a shorter testing period is preferred. 

For the purposes of this work, the data set was divided into two separate data sets: 

one for calibration and the other for validation.  The routes for both data sets were similar 

and included roughly 80 miles of driving in the high desert of southern California 

between the Cajon junction on the I-15 and Newberry Springs on the I-40, a steep decent 

or ascent through the Cajon pass on the I-15, and roughly 70 miles of driving along the I-

15, I-215, SR 91 and SR 60 freeways as well as the Van Buren arterial through 

Woodcrest, Riverside and Mira Loma.  The test location for the calibration and validation 

data sets is shown in Figure 3-9.        
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Figure 3-9 Test location for calibration and validation data runs in Southern 

California 

Since vehicle activity has a significant influence on the relationship between PM 

emissions, it is important to develop a model based on a wide range of activity.  

Modeling work developed based on limited range of vehicle driving may not hold up 

outside of the range of vehicle activity it was developed on.  Extrapolating beyond the 

test data range may produce unexpected results. 

The vehicle activity distributions for the calibration and validation data sets are 

presented in the histograms in Figure 3-10 and Figure 3-11. The activity distributions are 

split into two ranges to accommodate the scales since they include a substantial amount 
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of driving at freeway speeds. The calibration data set contains 3.72 hours of test data and 

the validation data set contains 3.74 hours of test data. 

 

Figure 3-10 Activity distribution for calibration dataset excluding zero speed. 

 

Figure 3-11 Activity distribution for validation dataset excluding zero speed. 
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3.3.4 Data Processing 

The various sources of data collected from the MEL are processed in several ways 

before they are used for data analysis.  Data processing helps to consolidate the data into 

one coherent data set, translate the data into a usable working environment and generally 

clean the data. Some of the data processing steps are reviewed below. 

Data Storage 

As part of the operation of MEL, raw second-by-second data from the vehicle’s 

ECM and the various instruments and analyzers are processed to some extent and 

presented in separate comma delimited text files. In addition to the instantaneous data, 

scalar test values and test summary information are stored in a single database file. In 

order to further process the data and perform analysis and modeling, the data is translated 

into Matlab (discussed in Section 3.4) workspaces.  Much of the data cleaning occurs 

during this conversion step. The resulting Matlab workspaces contain renamed vector 

variables for the cleaned second-by-second data as well as variables of type cell that 

contain all the scalar values for the cross-referenced summary data and test data. This 

makes all of the test information conveniently accessible.  The entire conversion process 

is scripted into functions and can be rerun as needed to make corrections or additions to 

the data set.        

Cleaning Data 

Data obtained for each test comes from a variety of sources.  In some cases this 

data may contain bad values. These values are either removed or replaced depending on 
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the situation.  In most cases a script is written to identify these values and then either 

extrapolate between neighboring points or replace with the last correct value. In certain 

instances, where the use of filters is not practical, manual corrections are recorded in a 

script and are applied early in the processing step. Sometimes replacement of values was 

possible. In the data set described in Section 3.3.3 for example, some of the measured 

fuel data was missing or stuck on preceding values creating sections of flat or missing 

fuel data. This was probably a characteristic of the ECM connection or ECM itself, 

perhaps due to the age of the vehicle.  In this case, fuel rate calculated from measured 

CO2, which matches very well with the ECM broadcast fuel rate, was used to clean up the 

ECM fuel value.  

Other data cleaning steps include the smoothing of rough data.  Data smoothing 

may be applied to values that show a stepwise behavior or are somewhat noisy. This is 

especially helpful if the values are used to calculate difference values such as speed to 

calculate acceleration or elevation to calculate the second-by-second change in elevation 

and road grade.    

Some commonly needed parameters are added to the basic Matlab workspaces 

during the conversion process such as acceleration and grade, as well as aligned, 

normalized, unit converted, or otherwise processed versions of certain parameters.  This 

increases the workspace size, but eliminates the need for recalculating these values 

repeatedly. A rough grade value, for example, is calculated as the change in elevation in 
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meters over the distance traveled in meters. The distance traveled is calculated using the 

great-circle distance calculation from latitude and longitude values.        

Data Alignment 

Data alignment is an important aspect of processing data obtained from two 

separate systems. The primary concern for the MEL data set is aligning 1 Hz data that is 

broadcast from the ECM with mass emission data from the MEL facility. This is done in 

post processing using cross correlation functions in Matlab that analyze the correlation 

between two variables at various offsets. Data analysis and modeling is performed with 1 

Hz data. In order to find the proper shift for time alignment at intervals less than 1 Hz, 

ECM and emission data are resampled at a rate of 10 Hz using interpolation prior to 

correlation.  The resampled data is aligned based on the lag that produces the maximum 

correlation and the resulting data set is subsampled back to 1 Hz.  In order to help 

minimize false correlations based on missing or bad data, a maximum lag was set up 

which defined the range of shifts the correlations were evaluated over.  

True alignment of measured tailpipe mass emissions with ECM parameters 

depends in part on variances in the exhaust flow rate since the exhaust flow rate will 

dictate the time it takes for emissions to travel from the engine to the analyzer.  At higher 

exhaust flow rates, emissions will take less time to reach the analyzers and have a shorter 

time shift relative to lower exhaust flow rates. Time alignment using the cross correlation 

method described above will be dominated by the larger emission events which are 

typically correlated to increased fuel combustion and consequently vehicle activity under 
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higher load and generally higher exhaust flows. Discrepancies in time alignment will be 

more noticeable at the lower emission levels. For this reason, constant time alignment 

using the cross correlation method described above is generally acceptable based on 

visual inspection of the data.  A more sophisticated time resolution correction for 

emission measurement data which accounts for variances in exhaust flow rate would have 

to be applied to the concentration values prior to the conversion of the data to mass 

emission rates and was not employed for this analysis.      

3.4 Data Analysis Software and Programming 

The data collection, data analysis, model development and model calibration 

presented here was performed using various software programs; however, the majority of 

the work utilized the Matlab technical computing environment. Matlab is a high-level 

interactive object-oriented programming environment with strong graphing capabilities 

and is widely used in academia and industry. Matlab code is compiled during runtime and 

commands can be issued either line-by-line at the command prompt or from scripts 

(MathWorks, 2009). Data sets developed for this research are maintained in Matlab 

workspaces, comma separated text files or in R data files.  

Following the research and development of algorithms for the emission model in 

Matlab, the C++ programming language is used to create a command line executable of 

the model for use in analysis work.  Matlab provides a user friendly programming 

environment for model development; however, this level of simplicity comes at the 

expense of run-time performance.  The C++ version of the model can be compiled into a 
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Windows Application Programming Interface (API) or an executable for the Linux kernel 

with improved run-time performance. Either of these command line executables can be 

called from the Matlab prompt, allowing for the creation of a Matlab wrapper program 

which executes the command line version of the model from within the Matlab 

environment.   

3.5 Explanatory Variables for PM Modeling 

The estimation of emissions for transportation applications is constrained by the 

availability of variables for emission modeling. For microscale applications in which 

specific vehicle behavior is of interest, second-by-second vehicle trajectory data are 

typically the basis for the analysis. This level of trajectory information can be obtained 

from measured or simulated vehicle activity. Second-by-second simulated vehicle 

activity and related parameters can come from a microscale traffic simulation model, a 

useful tool when integrated with an emission model for the evaluation of transportation 

related emissions (Scora, 2007). The following subsections discuss some of the basic 

parameters, apart from inputs to the physical core model, which were considered for PM 

modeling purposes at the microscale level. Some variables are included in both the core 

model and as potential explanatory values in the regression portion of the model. 

Additional parameters were also evaluated.   
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3.5.1 Velocity and Acceleration 

Velocity is an important variable since it is the most basic characteristic of vehicle 

movement and it is the basis for the calculation of related parameters such as 

acceleration, vehicle specific power (VSP) and fuel consumption. Velocity is also 

relatively easy to obtain since it is generally broadcast from the engine control module 

(ECM) of a vehicle. Under real-world driving conditions it can also be calculated from 

GPS data and with chassis dynamometer testing it can be calculated from the 

dynamometer’s roller speed. Simulated velocity is often available from microscale traffic 

simulation models. Velocity itself is positively correlated with emission production since 

an increase in velocity generally indicates an increase in fuel consumption and 

consequently emissions.  

The second-by-second change in velocity is defined as acceleration which is also 

positively correlated with emission production.  The rate at which a vehicle can 

accelerate decreases with increased speed as the resistive forces on the vehicle increase 

and the power required to overcome those forces increases. The third derivative of 

position or the rate of change of acceleration is known as jerk and is also considered as an 

explanatory variable. 

The product of velocity and acceleration is also meaningful since it is 

proportional, by a factor equal to vehicle mass, to the power required to overcome the 

inertia of vehicle mass and accelerate the vehicle. A more detailed discussion on the 

forces acting on the vehicle and the modeled power demand is presented in (Scora, 2007).  
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3.5.2 Vehicle Specific Power 

Vehicle Specific Power (VSP) is a value representing the road load on a vehicle. 

The application of VSP as an explanatory value for vehicle emissions has appeared in the 

literature for several years, highlighted in Jimenez-Palacios (Palacios, 1999).  VSP is 

defined as the instantaneous power to move a vehicle per the mass of the vehicle. The 

calculation for VSP in kW/metric tons is based on the following equation, simplified 

from the power demand terms for a moving vehicle: 

        (            ( )       )  
       

 

  
 3.4 

where  

  =  vehicle speed in m/s 

  =  vehicle acceleration in m/s
2
 

g =  gravity (m/s
2
) 

  =  grade 

   =  coefficient of rolling resistance 

   =  density of air (kg/m
3
)   (~1.2 kg/m

3
 at sea level and 20 °C) 

   =  coefficient of aerodynamic drag 

   =  frontal area of vehicle (m
2
) 

M =  mass of vehicle (kg)  

3.5.3 Fuel Use 

The core of the PM model described in Section 3.4 is based on fuel consumption 

as the primary explanatory variable. In previous work, calculated fuel consumption was 
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used as the foundation for NOx emission estimation due to the strong linear relationship 

that exists between the two parameters (Scora, 2007).  Figure 3-12 shows NOx versus fuel 

over a 1000 second drive cycle with two apparent driving regimes represented by the two 

regression lines in the second subplot.  In this figure the same color points in each subplot 

represent the same points in both plots. It is evident that the vehicle is switching between 

two different engine regimes and that regardless of the engine regime; NOx emissions 

maintain a strong linear relationship with fuel. 

 

Figure 3-12 a) Velocity (mph) vs. Time (seconds) and b) NOx (grams) vs. fuel 

use rate (grams) with corresponding colors and associated regression lines. 
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The formation of NOx emissions in diesel engines is well understood and is 

dependent mainly on the presence of sufficient oxygen and high temperatures. NOx 

emissions may be reduced by decreasing in-cylinder temperatures which can be 

accomplished with retarded fuel injection timing at the expense of increased particulate 

emissions and reduced fuel economy.  This relationship between NOx, PM and fuel is 

commonly referred to as the NOx, PM, fuel “trade-off”. For this reason fuel injection 

timing strategies have a great impact on the formation of NOx and PM emissions 

(Heywood, 1988). 

Fuel injection timing refers to the point during the combustion process in which 

fuel is injected into the combustion chamber and it is usually measured in degrees of 

crank angle before top dead center (TDC). Retarding this timing lowers NOx and 

promotes incomplete combustion, which leads to increased PM.  There is also a fuel 

penalty associated with retarded ignition timing. Advancing the fuel injection timing 

lowers the PM produced.  Advanced fuel injection creates higher in-cylinder pressures 

and higher fuel efficiency, but it increases combustion temperatures and as a result 

increases NOx emissions and decrease PM emissions (Heywood, 1988).  

As discussed, there are several factors that can influence PM emissions. The 

primary source of PM emissions, however, is from the combustion and incomplete 

combustion of fuel and for this reason fuel use and fuel related parameters are expected 

to be strong predictors of PM emissions.  Figure 3-13 and Figure 3-14 show 300 seconds 

of MEL test data that exhibit a strong linear relationship between fuel use and PM 
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emissions.  The coefficient of determination for this data set is roughly 0.7 as seen in 

Figure 3-14. 

 

Figure 3-13 Sample data showing strong linear relationship between fuel rate 

in g/s and PM mass emission rate from the Dekati analyzer. 

 

Figure 3-14 Sample data regression showing strong linear relationship 

between PM from the Dekati analyzer vs. fuel rate in g/s 

In the data that were analyzed, fuel use did not always share the same linear 

relationship with PM that was observed for NOx emissions or in Figure 3-14.  Figure 3-15 

and Figure 3-16 show sample test data which exhibits a weak fuel use vs. PM 

relationship.  In Figure 3-15, the basic correlation between the fuel use and PM profile is 
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evident, as are certain deviations from this correlation. In the data presented in Figure 

3-15, PM emissions spike with fuel use, but fall off rapidly.  In the case that the fuel use 

event is shorter, the fuel use event and the PM event fall off together after the initial PM 

“puff”.  For some of the longer fuel use events the corresponding emissions profiles are 

somewhat different, such as the event near second 150 in Figure 3-15.  The start of this 

event shows a similar PM puff which then falls off to a steady PM value at roughly one 

fifth of the PM spike for the remainder of the fuel use event. This seems to indicate that 

the change in fuel rate likely has an influence on PM emissions.            

 

Figure 3-15 Sample data showing deviations from a linear relationship 

between fuel rate in g/s and PM mass emission rate from the Dekati analyzer. 

Figure 3-16 shows the regression of PM versus fuel use for the data presented in 

Figure 3-15. The data for these two figures has been shifted by a precision of one tenth of 

a second for optimal time alignment based on a cross correlation function implemented in 

Matlab.  
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Figure 3-16 Sample data regression showing weak linear relationship 

between fuel rate in g/s and PM from the Dekati analyzer. 

In order to improve the predictive power of fuel use for PM emission, other forms 

of the fuel use variable were included in the analysis such as the second and third order 

fuel use terms as well as the change in fuel rate and the second order of the change in fuel 

rate. The results of this analysis are discussed in Section 3.6. 

3.5.4 Engine Speed 

The speed of the engine is a parameter of interest in modeling PM emissions.  It is 

easily obtained from the ECU data and is also part of the modeling output from previous 

modeling work (Scora, 2007). Since the displacement of the engine is a fixed quantity, 

the speed at which the engine crank rotates is an indicator of the exhaust flow rate 

through the engine.  Engine speed is included in the analysis of explanatory variables 

below.  
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3.6 Explanatory Variable Correlations 

The correlation coefficient (r) is a measure of the degree of association between 

two variables (Stone, 1996). The correlation coefficient provides a measure of how well 

explanatory values are associated with a target parameter, whether the relationship 

between the explanatory variable is positive or negative and also the degree of correlation 

between the explanatory variables themselves. Explanatory variables may be highly 

correlated if, for example, they are related to the same physical phenomenon. An example 

of this would be fuel rate and VSP, since both of these variables are closely related to 

engine load. Including highly correlated variables in the model does not take away from 

model performance, but it does increase model complexity, usually without adding 

significant explanatory value. It also makes it difficult to interpret the significance of 

individual parameters.   

A correlation matrix for various parameters, summarized in Table 3-2, is 

presented in Table 3-3 through Table 3-7. The correlations were calculated based on the 

calibration data set defined in Section 3.3.3. For this analysis, “Fuel” is the truck’s fuel 

use rate as determined from the ECU. The variable “dFdt” is the change in fuel use rate 

with time and is partitioned into two parameters: “dFdt-” and “dFdt+”. The variable 

“dFdt-” represents the negative portions of the change in fuel rate with the positive values 

set to zero and the variable “dFdt+” represents the positive portions of the change in fuel 

rate with the negative values set to zero. In each of these lines, the excluded information 

is set to zero. The “dFdt” variable was partitioned into negative and positive values 
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because PM shows much higher correlation with the positive portion of the change in fuel 

rate than with the negative or combined portions. This is evident from the data in Table 

3-3. The last column in the table shows the correlation of PM emissions with the 

explanatory values.  

Table 3-2 Summary of explanatory values used in correlation matrices 

Explanatory Value Definition 

vel velocity 

acc acceleration 

acc- negative accelerations only 

acc+ positive accelerations only 

jerk jerk value (da/dt) 

jerk+ positive jerk values 

grade grade 

fuel fuel rate 

fuel2 fuel rate2 

fuel3 fuel rate3 

VSP vehicle specific power 

dFdt change in fuel rate (df/dt) 

dFdt+ positive change in fuel rate 

dFdt- negative change in fuel rate 

RPM engine speed 

load_1 VSP * RPM  

load_2 cumulative VSP*RPM over last 2 seconds 

fuel_s2 cumulative fuel use over last 2 seconds 

fuel_s3 cumulative fuel use over last 3 seconds 

fuel_s5 cumulative fuel use over last 5 seconds 

PM particulate matter 

 

This data shows that across the data set PM shows the strongest correlation with 

the positive change in fuel rate (r = 0.75) and then with positive accelerations (r = 0.52) 

followed closely by the fuel rate itself (r = 0.48). From a physical perspective, a positive 

change in fuel rate would likely result in positive acceleration in many cases and so the 

variance explained by both of these parameters may overlap significantly. The correlation 

coefficient between these two parameters is 0.32. It is important to note that the values of 
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the correlation coefficients between these predictors (which range from r = 0.22 to 0.36) 

are less than those between the predictor values and PM. 

Table 3-3 Matrix of coefficients of correlation for explanatory values. 

Stronger positive correlations have darker shading. 

 
vel acc acc- acc+ jerk jerk+ grade fuel fuel

2
 fuel

3
 VSP dfdt dfdt+ dfdt- RPM PM 

vel 1 0.01 0.1 -0.14 -0.11 -0.13 -0.09 0.36 0.3 0.25 -0.04 -0.05 -0.01 -0.07 0.79 0.01 

acc 0.01 1 0.89 0.67 0.13 -0.05 -0.14 0.38 0.33 0.3 -0.11 0.1 0.24 -0.07 0.28 0.38 

acc- 0.1 0.89 1 0.25 0.11 -0.13 -0.11 0.27 0.22 0.2 -0.07 0.05 0.11 -0.02 0.22 0.18 

acc+ -0.14 0.67 0.25 1 0.09 0.11 -0.12 0.36 0.33 0.31 -0.12 0.13 0.32 -0.1 0.24 0.52 

jerk -0.11 0.13 0.11 0.09 1 0.8 0 0.03 0.04 0.04 -0.01 0.41 0.27 0.34 -0.18 0.14 

jerk+ -0.13 -0.05 -0.13 0.11 0.8 1 -0.03 -0.06 -0.06 -0.06 -0.03 0.27 0.27 0.14 -0.13 0.15 

grade -0.09 -0.14 -0.11 -0.12 0 -0.03 1 0.49 0.46 0.44 0.69 0 0.08 -0.07 -0.12 0.21 

fuel 0.36 0.38 0.27 0.36 0.03 -0.06 0.49 1 0.97 0.92 0.5 0.11 0.22 -0.03 0.4 0.48 

fuel
2
 0.3 0.33 0.22 0.33 0.04 -0.06 0.46 0.97 1 0.99 0.5 0.13 0.14 0.06 0.32 0.4 

fuel
3
 0.25 0.3 0.2 0.31 0.04 -0.06 0.44 0.92 0.99 1 0.48 0.12 0.09 0.1 0.28 0.35 

VSP -0.04 -0.11 -0.07 -0.12 -0.01 -0.03 0.69 0.5 0.5 0.48 1 0 0.03 -0.03 -0.05 0.17 

dfdt -0.05 0.1 0.05 0.13 0.41 0.27 0 0.11 0.13 0.12 0 1 0.73 0.79 -0.1 0.45 

dfdt+ -0.01 0.24 0.11 0.32 0.27 0.27 0.08 0.22 0.14 0.09 0.03 0.73 1 0.16 0.09 0.75 

dfdt- -0.07 -0.07 -0.02 -0.1 0.34 0.14 -0.07 -0.03 0.06 0.1 -0.03 0.79 0.16 1 -0.22 -0.01 

RPM 0.79 0.28 0.22 0.24 -0.18 -0.13 -0.12 0.4 0.32 0.28 -0.05 -0.1 0.09 -0.22 1 0.21 

PM 0.01 0.38 0.18 0.52 0.14 0.15 0.21 0.48 0.4 0.35 0.17 0.45 0.75 -0.01 0.21 1 

 

The correlation matrices in Figure 3-5 through Figure 3-7 present selected 

variable correlations separated into three velocity ranges in much the same way that 

MOVES operating mode bins are separated into speed ranges described in Section 2.6.1. 

Correlations between variables for these same speed ranges were tested (Figure 3-5 

through Figure 3-7) and show that variable correlations differ between ranges.  The data 

indicate that there is generally a stronger correlation for most parameters with PM in the 

0-25 mph speed range than in the others with the exception of road grade which increases 

significantly in the higher speed range. Fuel and the positive portion of acceleration are 
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significantly higher in the low speed range. It is interesting to note that vehicle speed 

shows a positive correlation with PM in the low speed range and then a negative 

correlation in the higher speed ranges.          

Table 3-4 Correlation matrix for selected explanatory values for velocity 

between 0-25 mph. Stronger positive correlations have darker shading. 

 

Table 3-5 Correlation matrix for selected explanatory values for velocity 

between 25-50 mph. Stronger positive correlations have darker shading. 

 

 
vel acc acc- acc+ grade fuel vsp dfdt dfdt+ eng pm 

vel 1 0.06 0.02 0.12 -0.02 0.43 0.08 0.05 0.21 0.4 0.34 

acc 0.06 1 0.95 0.74 -0.06 0.6 0.01 0.18 0.42 0.62 0.52 

acc- 0.02 0.95 1 0.49 -0.05 0.41 -0.01 0.08 0.27 0.53 0.36 

acc+ 0.12 0.74 0.49 1 -0.04 0.76 0.07 0.31 0.57 0.58 0.68 

grade -0.02 -0.06 -0.05 -0.04 1 0.15 0.62 0.04 0.08 -0.1 0.12 

fuel 0.43 0.6 0.41 0.76 0.15 1 0.28 0.37 0.64 0.63 0.83 

vsp 0.08 0.01 -0.01 0.07 0.62 0.28 1 0.06 0.15 -0.04 0.22 

dfdt 0.05 0.18 0.08 0.31 0.04 0.37 0.06 1 0.83 0 0.45 

dfdt+ 0.21 0.42 0.27 0.57 0.08 0.64 0.15 0.83 1 0.31 0.73 

eng 0.4 0.62 0.53 0.58 -0.1 0.63 -0.04 0 0.31 1 0.59 

pm 0.34 0.52 0.36 0.68 0.12 0.83 0.22 0.45 0.73 0.59 1 

 
vel acc acc- acc+ grade fuel vsp dfdt dfdt+ eng pm 

vel 1 -0.02 0.08 -0.2 -0.04 0.08 0.15 0 -0.13 0.08 -0.16 

acc -0.02 1 0.92 0.68 -0.12 0.59 -0.02 0.09 0.21 0.46 0.41 

acc- 0.08 0.92 1 0.33 0.06 0.49 0.09 0.06 0.14 0.43 0.28 

acc+ -0.2 0.68 0.33 1 -0.41 0.48 -0.22 0.11 0.25 0.29 0.46 

grade -0.04 -0.12 0.06 -0.41 1 0.44 0.55 0.02 -0.12 0.05 0 

fuel 0.08 0.59 0.49 0.48 0.44 1 0.31 0.16 0.09 0.39 0.39 

vsp 0.15 -0.02 0.09 -0.22 0.55 0.31 1 -0.02 -0.05 0.1 0.03 

dfdt 0 0.09 0.06 0.11 0.02 0.16 -0.02 1 0.7 -0.24 0.45 

dfdt+ -0.13 0.21 0.14 0.25 -0.12 0.09 -0.05 0.7 1 -0.09 0.73 

eng 0.08 0.46 0.43 0.29 0.05 0.39 0.1 -0.24 -0.09 1 0.03 

pm -0.16 0.41 0.28 0.46 0 0.39 0.03 0.45 0.73 0.03 1 
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Table 3-6 Correlation matrix for selected explanatory values for velocity 

greater than 50 mph. Stronger positive correlations have darker shading. 

 

Table 3-7 shows correlation coefficients for several additional parameters that 

were evaluated as potential predictors for PM. In this table fuel is included for reference.  

The parameter “load_1” and “load_2” are an attempt to represent the level of load on an 

engine leading up to an emission event in order to account for any influence this may 

have on emission production. The concept of “engine stress” is used in the IVE emission 

model to help partition VSP based emission bins (ISSRC, 2008). The parameter “load_1” 

is the product of engine speed and VSP and the parameter “load_2” is the cumulative 

value of the product of engine speed and VSP over the last two seconds. The cumulative 

value of this parameter for 5 second and 10 second ranges prior was also evaluated and 

showed no improvement.  These values are not presented in Table 3-7.   

 

 

 
vel acc acc- acc+ grade fuel vsp dfdt dfdt+ eng pm 

vel 1 0.02 0.1 -0.14 -0.23 -0.14 -0.21 -0.1 -0.11 0.77 -0.23 

acc 0.02 1 0.91 0.64 -0.22 0.31 -0.18 0.11 0.08 -0.02 0.22 

acc- 0.1 0.91 1 0.27 -0.1 0.22 -0.07 0.09 0.04 0.05 0.11 

acc+ -0.14 0.64 0.27 1 -0.32 0.32 -0.28 0.09 0.11 -0.13 0.31 

grade -0.23 -0.22 -0.1 -0.32 1 0.68 0.94 0.01 0.02 -0.3 0.27 

fuel -0.14 0.31 0.22 0.32 0.68 1 0.69 0.09 0.07 -0.22 0.48 

vsp -0.21 -0.18 -0.07 -0.28 0.94 0.69 1 0 0.01 -0.26 0.27 

dfdt -0.1 0.11 0.09 0.09 0.01 0.09 0 1 0.69 -0.13 0.42 

dfdt+ -0.11 0.08 0.04 0.11 0.02 0.07 0.01 0.69 1 -0.13 0.64 

eng 0.77 -0.02 0.05 -0.13 -0.3 -0.22 -0.26 -0.13 -0.13 1 -0.26 

pm -0.23 0.22 0.11 0.31 0.27 0.48 0.27 0.42 0.64 -0.26 1 
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Table 3-7 Correlation matrix for additional parameters. Stronger positive 

correlations have darker shading. 

 
fuel load_1 load_2 fuel_s2 fuel_s3 fuel_s5 PM 

fuel 1 0.49 0.5 0.99 0.97 0.93 0.48 

load_1 0.49 1 0.99 0.49 0.49 0.49 0.17 

load_2 0.5 0.99 1 0.5 0.5 0.51 0.16 

fuel_s2 0.99 0.49 0.5 1 0.99 0.96 0.43 

fuel_s3 0.97 0.49 0.5 0.99 1 0.98 0.38 

fuel_s5 0.93 0.49 0.51 0.96 0.98 1 0.33 

PM 0.48 0.17 0.16 0.43 0.38 0.33 1 

 

In addition to the engine load parameter, cumulative fuel use over the previous 2, 

3 and 5 second range was evaluated with the parameters “fuel_s2”, “fuel_s3”, and 

“fuel_s5”. These values are calculated from the fuel rate and are highly correlated with 

the fuel rate. Unlike the change in fuel rate, which is also calculated from the fuel rate, 

the “fuel_s2”, ”fuel_s3” and “fuel_s5” parameters do not show any increased correlation 

with PM over the fuel rate itself.    

3.7 Regression Model Descriptions 

This section describes three general proposed emission models that were 

developed and evaluated for predicting PM at the microscale level. Each of these models 

were developed based in part on observations from the correlation matrix in Table 3-3 

and have increasing complexity.   The strongest predictor variables, as determined by the 

correlation coefficients and as discussed in Section 3.6, are the positive portion of the 

change in fuel rate, positive acceleration, and fuel rate. The fuel rate and the change in 

fuel rate are modeled using the physical approach presented in Section 3.4 and form the 
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basis for the regression component of the models developed in this section. The values of 

second-by-second velocity and acceleration are standard inputs to the microscale model 

and are used for partitioning regions in the PM models. The criteria for model 

development are model simplicity, intuitiveness and performance. The three proposed 

submodels are described in the following sections. Model A is the base model, model B 

is the base model applied to two separate acceleration regions and model C is the base 

model applied in three separate speed regions. Calibration and validation results are 

presented in Section 3.8. 

3.7.1 Model A 

The basic PM model developed in this research is presented in equation 3.5 and 

3.6.  Equation 3.6 is the main equation for all three models and was developed from the 

core parameter fuel and the positive change in fuel rate which showed the most predictive 

power for PM. This equation also seems to make sense conceptually since it incorporates 

fuel and the change in fuel rate which would be associated with transients and PM events. 

In this model, as well as the models following, the idle mode is separated out and 

modeled with a constant value, PMidle.    

PM = PMidle for v = 0 mph 3.5 

PM = b1F + b2(dF/dt+) + ε for v > 0 mph 3.6 

where: 

PM   = HDD PM, g/s 
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PMidle   = HDD PM at velocity equal to zero, g/s 

F  = fuel use rate, g/s 

dF/dt+  = positive portion of the change in fuel rate, g/s
2
  

b1,b2  = regression coefficients 

ε  = constant term 

v  = velocity, mph 

3.7.2 Model B 

The correlation matrices presented in Section 3.6 indicate that acceleration and 

the positive component of acceleration exhibit some of the higher correlations, among the 

variables tested, with PM.  Model B, the second model that was developed and evaluated, 

is the basic model, Model A, separated into acceleration modes. Model B is presented in 

equations 3.7, 3.8 and 3.9. 

PM = PMidle for v = 0 mph 3.7 

PM = b1F + b2(dF/dt+) + ε for a <= 0 mph/s 3.8 

PM = b3F + b4(dF/dt+) + ε for a > 0 mph/s 3.9 

where: 

PM   = HDD PM, g/s 

PMidle   = HDD PM at velocity equal to zero, g/s 

F  = fuel use rate, g/s 

dF/dt+  = positive portion of the change in fuel rate, g/s
2
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b1,b2, b3 ,b4 = regression coefficients 

ε  = constant term 

v  = velocity, mph 

3.7.3 Model C 

The third model that was developed and evaluated is the basic PM model, Model 

A, separated into three velocity ranges in much the same way that the MOVES operating 

mode bins are separated into speed ranges as described in Section 2.6.1 and discussed in 

Section 3.6. Model C is presented in equations 3.10 through 3.13.   

PM = PMidle for v = 0 mph 3.10 

PM = b1F + b2(dF/dt+) + ε for v > 0 & v <= 25 mph 3.11 

PM = b3F + b4(dF/dt+) + ε for v > 25 & v <= 50 mph 3.12 

PM = b5F + b6(dF/dt+) + ε for v > 50 mph 3.13 

where: 

PM   = HDD PM, g/s 

PMidle   = HDD PM at velocity equal to zero, g/s 

F  = fuel use rate, g/s 

dF/dt+  = positive portion of the change in fuel rate, g/s
2
  

b1,b2  = regression coefficients 

v  = velocity, mph 

ε  = constant term 
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3.8 Model Calibration and Validation 

In practice, model calibration, data analysis and algorithm development are, to a 

large extent, performed together in an iterative fashion. During the calibration step, a 

subset of second-by-second data, described in Section 3.3.3 as the calibration data set, is 

used to determine model coefficients in both the physically based and the regression 

based portions of the model. The MEL data set contains continuous data for several 

intermediate variables such as engine speed, percent engine load and fuel use. These 

intermediated variables are used to help verify key modules in the physical model. The 

final PM model is developed and calibrated using ECM broadcast fuel and measured 

emissions from the calibration data set.  Validation is performed in a second step using 

the validation data set described in Section 3.3.3. 

Model validation is the assessment of how a model performs independent of input 

data and is an essential part in the model development process. It provides a better 

understanding of the capabilities of the model and also its limitations. The validation 

process is complicated by the fact that the data being used is real-world data and is 

subject to external forces which are often hard to quantify, such as wind speed, 

temperature, pressure and to some extent road grade.   

The following sections discuss the model calibration and validation process in 

more detail. The measures of goodness-of-fit which are used are the coefficient of 

determination (R
2
), the slope and intercept of the linear regression line between the 

modeled and measured data, and root-mean-square error (RMSE). The R
2
 value is an 
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indicator of the precision of the model prediction while the slope of the linear regression 

line between the measured and modeled data is an indicator of the accuracy of the 

prediction. The RMSE value is also a common measure of accuracy and has the 

characteristic of having the same units of measure as the predicted and modeled values. 

Many of the measures of fit are based on comparisons at the second-by-second level and 

are very sensitive to time alignment issues discussed in Section 3.3.4. 

3.8.1 Fuel Rate Model 

Fuel rate and the change in fuel rate are the basis for the PM model and are the 

first step in the modeling process. The basic equation for the prediction of fuel rate from 

vehicle activity has been discussed previously (An & Ross, 1993) (An F. , Barth, 

Norbeck, & Ross, 1997) and a general overview of the physical model is presented in 

Section 3.2. Additional information on the HDD fuel model as well as the supporting 

models used in this work can be found in the author’s previous work (Scora, 2007). Since 

measured fuel is one of the variables available from the ECU, the fuel rate model can be 

calibrated to the measured data. Many of the parameters associated with the fuel rate 

calculation are fixed based on the physical characteristics of the vehicle and the engine.  

Some parameters are not readily available for the particular test vehicle and can be 

adjusted within a known range of practical values to calibrate the model.  Examples of 

adjustable parameters include engine friction terms, rolling resistance coefficients and to 

some extent the coefficient of aerodynamic drag.      
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The fuel model is calibrated to a 3% error over the calibration data set as 

presented in Figure 3-17. The resulting R
2
 of 0.95 and the regression line slope of 1 

indicate that the model does a very good job of explaining the variance in fuel rate 

especially considering the various sources of unexplained error which exist in on-road 

driving data set.   

 

Figure 3-17 Comparison of modeled versus measured fuel use for the 

calibration data set, top: scatter plot showing regression statistics and one-to-one 

line, bottom: second-by-second time series of measured and modeled fuel.   

Validation of the fuel rate model was performed using the validation data set and 

the calibrated parameters determined in the calibration step.  The results of the validation 

step are presented in Figure 3-18 and indicate that the fuel rate model’s performance hold 

up well to this independent data set with an R
2
 value of 0.92 and a regression line slope 

near 0.98. Improvements in the testing parameters such as more precise grade and wind 
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information would likely reduce the model error further. At this point, grade information 

is obtained from GPS data and has limited accuracy, and wind data, obtained from local 

weather stations when available, is limited and very general. 

 

 

Figure 3-18 Comparison of modeled versus measured fuel use for the 

validation data set, top: scatter plot showing regression statistics and one-to-one 

line, bottom: second-by-second time series of measured and modeled fuel.   

3.8.2 PM Model  

In Section 3.7, three PM models were developed and presented; these models are 

evaluated in the following section.  The three models are a variation of the base case 

model, Model A. Model B is differentiated by its use of an acceleration and deceleration 

regime while Model C is differentiated by its use of three speed regimes.  The models are 

calibrated using a regression function using the standard least squares method.  For the 
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regression analysis and calibration process, a matrix of explanatory variables is created as 

discussed in Section 3.5. In the case of Model B which consists of two acceleration 

regimes or Model C which consists of three speed regimes, a set of binary dummy 

variables was created for each regime to isolate the effects of coefficients to those 

regimes.  The velocity equal to zero regimes, which exists in all three models, was also 

handled by a binary dummy variable. In all cases where model calibration and validation 

are concerned, the measured PM value used is from the Dekati analyzer.          

Model A 

Model A was calibrated using the calibration data set with measured predictor 

values and the results are presented in Figure 3-19. The R
2
 for the basic regression is 0.6 

with a RMSE of 0.0013 g/s. The calibration process includes a constant term which 

eliminates the total predicted error. 
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Figure 3-19 “Model A” predicted PM based on measured predictor values 

and the calibration data set. 

The calibrated model was then applied to the validation data using only modeled 

predictor values and the comparison is presented in Figure 3-20. This step introduces 

additional error based on the variability between the calibration and validation data set as 

well as that between the measured and modeled predictor values. The R
2
 value has 

dropped from 0.6 in the calibration step to 0.35 in the independent validation step and the 

RMSE has increased by roughly 65%. The total error is around -18%. 
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Figure 3-20 “Model A” predicted PM based on modeled predictor values and 

the validation data set. 

Model B 

The calibration process for Model B was the same as that for Model A and the 

results are presented in Figure 3-21. The R
2
 for the basic regression is 0.62 with a RMSE 

of 0.0013 g/s. The results are similar to Model A. 
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Figure 3-21 “Model B” predicted PM based on measured predictor values 

and the calibration data set. 

The calibrated model was then applied to the validation data using only modeled 

predictor values and the comparison is presented in Figure 3-22. The R
2
 value has 

dropped from 0.62 in the calibration step to 0.36 in the independent validation step and 

the RMSE has increased by roughly 65%. The total error is around -23%. 
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Figure 3-22 “Model B” predicted PM based on modeled predictor values and 

the validation data set. 

Model C 

Model C was calibrated in the same manner as Model A and B and the results are 

presented in Figure 3-23. The calibration process includes a constant term which 

eliminates the total predicted error. An R
2
 value of 0.72 indicates that the model explains 

roughly 72% of the variance in the measured PM value.  
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Figure 3-23 “Model C” predicted PM based on measured predictor values 

and the calibration data set.  

The calibrated model was applied to the validation dataset and the results are 

presented in Figure 3-24.  With the introduction of error from the modeled fuel step and 

the variability between the calibration and validation data sets, the R
2
 value has dropped 

from 0.72 in the calibration step to 0.46 in the independent validation step. The RMSE 

has decreased by roughly 9% and the total error is around -17%.   
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Figure 3-24 “Model C” predicted PM based on modeled predictor values and 

the validation data set. 

For comparison, Figure 3-25 shows the performance of the DustTrak relative to 

the Dekati analyzer for the validation data set.  The DustTrak data is scaled to match the 

cumulative Dekati data, so the overall error is zero.  It is, however, evident that the 

performance of Model C relative to the Dekati data is not much less than that of the 

DustTrak with a difference in RMSE of less than 15%.  
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Figure 3-25 Comparison of DustTrak PM verses Dekati PM for the 

validation data set. 

3.8.3 Modeling Trade Offs 

Although Model C required the most parameters, the improvement over the base 

case model and the model partitioned by two acceleration regimes was substantial and 

warrants the inclusion of the additional parameters.  The regression results for the 

validation data indicate the difficulty in accurately characterizing PM data on a second-

by-second basis. The performance of the model based on known data from the ECU in 

the calibration data set indicates that the model performance may be greatly improved in 

an onboard vehicle application such as real-time on-board emission predictions.  In the 

calibration step, model performance matches PM emissions from the Dekati far better 

than the scaled DustTrak data; with an improvement in RMSE of nearly 40% and an 

increase in R
2
 from 0.58 to 0.72.          
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3.9 Compression Release Braking and PM in HDD Vehicles  

It was found that compression release braking appears to have a significant effect 

on PM emissions. This section describes the special condition of compression release 

braking encountered in the MEL test data set, initial compression release braking analysis 

and a modeling methodology. A compression release brake is a mechanism common in 

diesel engines which uses the engine’s compression force to aid in decelerating the 

vehicle.  The term “Jake brake” refers to a popular brand of compression release brake 

and is often used to refer to this type of braking. In a diesel engine air is compressed 

during the compression stroke which absorbs energy from the system and if the vehicle is 

in gear this energy is taken from the vehicles forward motion. In an engine without 

compression release braking, this energy in transferred back to the piston during the 

following power stroke when the compressed air expands without the addition of fuel and 

fuel combustion. In this manner, most of the energy it took to compress the air in the 

cylinder is returned to the system and only a small net amount of engine braking force is 

created.   

In an engine equipped with compression release braking, the cylinder valves are 

lifted at the top of the compression stroke which releases the compressed charge of air 

and returns very little energy back to the vehicle through the piston.  This produces a 

much greater engine braking force. The characteristic chatter or popping noise from 

compression release braking is the release of compressed air near the top of the 

compression stroke.  
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3.9.1 Identifying Compression Release Braking Events 

It was determined that during compression release braking there are PM emission 

events not associated with the instantaneous fuel use of the vehicle. This can be seen in 

Figure 3-26 during the deceleration event between seconds 100 and 115. During this 

event the truck is slowing down with no fuel input and producing a significant PM 

emission spike.  At the same moment, the boost pressure is also observed to increase 

which is used as an indication of compression release braking.  

 

Figure 3-26 PM event over compression release braking event. 
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In addition to fuel use and boost pressure, the MEL data set also provides GPS 

location data.  This data can be used to position the vehicle on a roadway network to gain 

additional information about the conditions the vehicle was tested under. Figure 3-27 

shows a truck route for an emission test trace plotted in Google Earth with each data 

point being represented by a ring and scaled based on PM emissions.  This helps visualize 

geospatially where emission spikes are occurring.   

 

Figure 3-27 MEL PM measurement data visualized by location.  Larger rings 

represent greater PM emissions. 

A closer look at the location for the compression release event introduced in 

Figure 3-26 is presented in Figure 3-28. The upper portion of the figure shows increased 

PM emissions during the downhill event while the lower portion of the figure shows the 

elevation profile for the location.  The direction of travel and the start of the compression 

release event are labeled in each portion of the figure.  
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Figure 3-28 Map showing increased PM emissions during downhill event. 

Circles represent PM emissions and are scaled based on magnitude.  

3.9.2 Modeling Compression Release Braking Events 

It was determined that during compression release braking, either unburned fuel 

in the cylinder that has accumulated in the crevices or accumulated PM in the exhaust 

system is forced out during the decompression braking process. The amount of PM 

released at each second is theorized to be dependent on the amount of unburned fuel 

available in the cylinder or the amount of accumulated PM in the exhaust system and is 

modeled based on a first order exponential decay rate according to equation 3.14. The 

amount of PM released is subtracted from the current amount of PM producing material 

to determine the amount of PM producing material left in the system for further release 

according to equation 3.15.   

Direction of travel 

Start of compression release braking event. 

Start of compression release braking event. 

Direction of travel 
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     3.14 

                       3.15 

Where 

PMr,t   = PM released at time t, grams
 

PMc,t   = PM in the system at time t, grams 

k   = release constant in units of 1/second 

Δt   = change in time (1 sec for our modeling purposes) 

PMc,t = 0  = PM in the system at the start of the braking event, grams 

The last subplot in Figure 3-29 compares the measured PM emission profile with 

the PM emission profile for the standard PM model, both with and without the addition of 

compression release braking model. Since the core PM model presented here is based on 

the fuel rate and the change in fuel rate, the core PM model predicts zero PM emissions 

during a compression release braking event in which no fuel is consumed. The practical 

application of a compression release braking model requires a second-by-second 

compression release braking input flag and calibration parameters for the initial PM 

producing potential of the system during a compression release braking event and the 

release constant.  The PM producing material in the system at the beginning of a 

compression release braking event appears to vary greatly and appears to be dependent 

on the vehicle activity leading up to the braking event and how many cylinders the Jake 

brake is being applied to. Typically, the user has multiple switches to select the number 

of active cylinders for braking, for example 2, 4, or 6. 
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Figure 3-29 PM prediction over compression release braking event. 

Further research is needed to determine the relationship of the magnitude of the 

compression release braking events with possible predictor variable such as prior vehicle 

activity, speed, and road grade. For model development work, aside from Section 3.9, the 

compression release braking events were omitted in order to concentrate on modeling the 

basic relationship between fuel and PM. It was estimated that the test truck spent roughly 

1.7 % of its time in compression release braking mode and that this accounted for roughly 

3% of the total PM emissions across 7.5 hours of vehicle activity described in the 

calibration and validation data set in 3.3.3. Although the total contribution of these 

emissions may be low, the nature of the emission event isolates the emissions to specific 
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areas.  This may increase local concentrations of PM emissions and may be important in 

exposure studies, especially where more emission-sensitive areas are located next to 

downhill roadways. 

3.10 Chapter 3 Summary 

This chapter presented the development, calibration and validation of a second-

by-second PM model.  The developed PM model is based primarily on the rate of fuel 

use and parameters related to the rate of fuel use. Measured fuel from CE-CERT’s MEL 

emission lab and calculations from measured fuel were used to calibrate the PM model. 

The data were processed and split into two portions: one for calibration and one for 

validation.  

Correlation coefficients for various potential explanatory variables were 

calculated and evaluated to help identify predictors for PM modeling.  Three variations of 

a PM model based on fuel rate and the positive portions of fuel rate were presented and 

evaluated.  The final model is based on fuel rate and the positive changes in fuel rate 

broken into three speed ranges.   

Intermediate variables from the calibration set were used to calibrate the fuel 

model which fit well with measured fuel in both the calibration and validation data sets. 

These two data sets combined consist of roughly 7 hours of vehicle activity over a wide 

range of driving conditions. The PM portion of the modeling work was developed and 

calibrated based on measured fuel data from the calibration data set.  Once these 

coefficients were determined and following calibration of the fuel rate model, a 
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comparison between modeled PM using modeled fuel was performed on the validation 

data set.  In this comparison, PM is modeled from the driving trace onward without any 

additional measured data.  

Results for the selected PM model, calibrated to zero overall error on measured 

predictor values, shows an R
2
 value of 0.72, a regression slope of 0.7 and an RMSE of 

0.00104 g/s. The results of the selected PM model on the validation data set, using 

modeled predictor values, shows an R
2
 value of 0.46 and an RMSE of 0.00197 g/s.  A 

comparison between the DustTrak and the Dekati analyzers show slightly better R
2
 and 

RMSE values (R
2
 = 0.58, RMSE = 0.00172  g/s).  

Additionally, compression release braking was identified as a significant source 

of PM emissions and the basis for a modeling approach was outlined. The test vehicle 

spent roughly 1.7% of its time in this mode which accounted for roughly 3% of the PM 

emissions. Further research is required for this potentially important area of study to 

quantify these braking events during normal driving, to study their contribution to human 

exposure and to improve the overall PM model.          
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4.0 Development of a Mesoscale HDD Emission Model 

This work focuses on furthering the understanding of the effects of operational 

parameters on HDD emissions and on developing a methodology for mesoscale emission 

predictions using parameters not often incorporated at that level of emission modeling. 

As part of the modeling effort, an emission data set was populated for a broad range of 

conditions using the microscale model developed in previous work (Scora, 2007) and 

refined further in Chapter 0. The developed dataset is the foundation for energy and 

emission modeling work that can be applied in a variety of transportation applications as 

an improvement to traditional emission curves which only account for average speed and 

vehicle type.  In order to demonstrate the effectiveness of the mesoscale model, it has 

been integrated with an EFNav application for route optimization which is discussed in 

Chapter 5.0. 

4.1 Mesoscale Modeling Approaches 

There are various approaches to modeling traffic energy use and emission 

production at the mesoscale level. The focus for mesoscale modeling is at the roadway 

link level and the input parameters used for analysis at this level are summary parameters 

that describe general characteristics such as average speed, number of vehicle stops, 

distance traveled, level of facility, etc.   

A basic mesoscale modeling approach, aside from applying macroscale emission 

factors at the link level, is the use of average speed based emission factors.  In this 

approach, the average traffic speed on a link is used to determine the emission rate on 
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that link. This emission rate can be developed for individual vehicles, for composite 

vehicles or by taking other factors into consideration such as road type or level of facility. 

With each additional consideration, a separate set of average speed based emission 

factors or a correction factor would have to be created. Average speed based factors can 

be applied from a binned lookup table using interpolation or as is commonly done, a 

relationship describing the emission factor as a function of average speed is developed to 

facilitate calculation and to visualize the emission trend with speed.   Figure 4-1 presents 

a typical average speed based energy or emission curve with the characteristic dip at 

moderate speeds indicating the optimal driving range or “sweet spot” for the given 

dependent parameter. The average speed based curve is developed from data points 

representing individual drive cycles, characterized by their average speed and overall fuel 

use or emission production.        

 

Figure 4-1 Example average speed based emission curve. Individual points 

represent separate drive cycles or snippets characterized by their average speed and 

overall fuel use or emission production.  
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There are several advantages to average speed based emission curves, namely that 

they are straightforward to implement and match well with transportation data and 

models. The main drawback, however, is that they cannot readily account for the 

additional effects of important operational parameters, most notably those relating to 

load. Operational parameters are discussed in further detail in the following section.   

4.2 Operational Parameters 

Operational parameters describe the conditions under which a vehicle is operating 

and include variables such as vehicle speed, acceleration, road grade, vehicle weight, 

road type, and congestion level.  Energy and emission modeling in this section is at the 

mesoscale level, so only operational parameters that are mesoscale in nature will be 

available and relevant to the final model. The following subsections discuss several 

potential modeling parameters, their importance as mesoscale modeling inputs and how 

they are treated in the model. 

4.2.1 Vehicle Speed and Acceleration 

Vehicle speed and acceleration are related to fuel consumption and are important 

parameters especially for HDD vehicles. Earlier work has shown that increased vehicle 

speeds and aggressive acceleration are responsible for higher fuel use and consequently 

higher CO2 emissions in light-duty vehicles  (Kean, Harley, & Kendall, 2003) (Andre & 

Pronello, 1997).  A similar, if not more pronounced, trend is expected for HDD vehicles 

since these normally have lower power to weight ratios. For the mesoscale modeling 
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work presented here, only average velocity is considered. Acceleration is often not 

available as a mesoscale modeling parameter and its effects can be subsumed indirectly 

through the road type and congestion level parameters discussed later.    

4.2.2 Road Grade 

Road grade is an important factor to consider when evaluating on-road fuel use 

and emissions (Fernandez & Long, 1995) (Park & Rakha, 2006) however it is not as 

important for light duty vehicles and has not been strongly considered for fuel 

consumption and emission modeling at the mesoscale level. For HDD vehicles, road 

grade is a significant factor (Scora, 2010). For example, sufficient road grade may result 

in a shorter route being less fuel efficient and less environmentally friendly than a flatter 

but longer route. Figure 4-3 presents measured HDD fuel consumption data as a function 

of road grade for vehicle activity greater than 10 mph and with zero acceleration. The 

data shows the strong relationship between fuel efficiency and road grade. The data 

shows that going from a flat road to one at 3 degrees grade results in a tripling of the fuel 

consumption rate. For this reason, it is important to included road grade in a fuel or 

emission analysis, yet it is often not incorporated at the mesoscale level. A recent review 

indicates that the major commercial navigation systems for trucks do not consider slope 

data for routing (Svensk & Sena, 2011).  
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Figure 4-2 HDD fuel consumption as a function of road grade for zero 

acceleration activity at speeds greater than 10 mph. 

Road Grade and Speed 

It is also important to note that truck speed is correlated with grade. An analysis 

of over 57 hours of MEL test data, Figure 4-3, shows that the majority of high speed 

HDD driving in the data set occurs at negative grades. This is an important point to 

consider when limiting high-speed truck driving in order to reduce emissions (Scora, 

2010).  According to the American Trucking Association (ATA), a truck traveling at 75 

mph consumes 27% more fuel than a truck traveling at 65 mph and bringing the speed 

limit for trucks down to 65 mph would save 2.8 billion gallons of diesel fuel over 10 

years (ATA, 2011). The results in Figure 4-3 indicate that fuel savings may be 

significantly less than projected once grade is considered. There may even be a fuel 
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penalty in certain situations if trucks on a downgrade are required to brake to maintain a 

speed limit.    

 

Figure 4-3 HDD vehicle speed activity by grade for over 57 hours of data 

(Scora, 2010). 

To examine the effects of grade on fuel use in HDD further, the HDD microscale 

model was used. Figure 4-4  shows regression lines for simulated CO2 emission results as 

a function of average cycle speed for over 130 highway snippets modeled at various 

grades using the HDD microscale model. The highway snippets used represent more than 

17 hours of test data.  Figure 4-4 shows that the CO2 modeling results at 0% grade have 

the best goodness of fit and that the goodness of fit generally decreases toward extreme 

negative and positive grades. According to Figure 4-4, the modeled CO2 g/m relationship 

with speed also becomes more linear as grade increases. For the HDD vehicle and trailer 

weight used in the modeling scenario shown in Figure 4-4, the minimum gram per mile 

emission rate occurs around 40 mph for 0% grade and closer to 55 mph for -6% grade.  

Figure 4-4  also shows that at larger negative grades, the emission penalty at high speed 
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driving beyond the point of minimum CO2 g/m emissions is generally much less than at 

lower grades.  

 

Figure 4-4 Microscale modeled CO2 emissions as a function of speed for 

various grades 

Road Grade Measurement 

In many cases, road grade can be obtained from a transportation agency or third 

party graphical Information Systems (GIS) provider such as NAVTEQ (NAVTEQ, 

2011). Without access to known road grade, road grade measurements can be performed 

in a number of ways with varying accuracy.  Direct measurement using surveying tools is 

the gold standard, but this method is time consuming and cannot be applied easily or 
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safely especially for congested roadways. Other methods for estimating grade include the 

use of LIDAR (Light Detection and Ranging) data and the use of GPS (Global 

Positioning System) data (Zhang & Frey, 2005). The primary issue when using GPS data 

for road grade estimation is accuracy. Standard GPS receivers available commercially 

generate latitude, longitude and elevation data, but have limited accuracy, especially in 

the vertical direction. This method is not ideal for road grade estimations for emission 

analysis.  Improved accuracy can be accomplished using carrier-phase differential 

techniques which incorporate a base station and position corrections (Farrell, Givargis, & 

Barth, 2000). 

MEL records conventional GPS data along with vehicle and emission data. The 

collected GPS data stream is useful for vehicle positioning within five meters; however, 

relative elevation data from one second to the next is generally much more accurate. 

Separate from the MEL GPS measurements, CE-CERT’s has an instrumented vehicle 

equipped with a carrier-phase differential GPS receiver that has collected data along 

many of the major routes and testing areas in Southern California. This high positioning 

accuracy GPS data (approximately 10 centimeters positioning accuracy) is post processed 

and provides elevation and grade information (Farrell, Givargis, & Barth, 2000). The 

MEL GPS dataset can be matched to the more accurate road grade data collected by 

carrier-phase differential GPS through map matching of the latitude and longitude 

coordinates.  
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4.2.3 Vehicle Weight 

Vehicle weight is another important factor that influences HDD truck fuel 

consumption and emissions. The range of possible truck weights is roughly between 

11,000 lbs. to 80,000 lbs. A truck tractor without a trailer can weigh as little as 11,000 

lbs. depending on the truck and the federal weight limit for on-road HDD trucks is 80,000 

lbs. without special permits. The MEL facility weighs approximately 44,360 lbs. and the 

HDD tractors tested typically weigh between 15,000 to 19,000 lbs. This puts most of the 

on-road MEL test weights between 59,000 and 63,000 lbs. On-road MEL testing is 

therefore limited to weights above 59,000 lbs. due to the weight of the MEL facility. 

Also, space limitations make adding weight to the MEL facility for on-road testing 

difficult.  Various weight configurations can, however, be tested by MEL using CE-

CERT’s HDD chassis dynamometer. This usually requires on-road coast down testing 

with the test vehicle prior to chassis dynamometer testing in order to calibrate the 

dynamometer to reflect the vehicle’s true road load. The calibration process ensures that 

the dynamometer absorbs the proper load to simulate various real-world power losses 

such as aerodynamic drag, tire rolling resistance, bearing losses, brake drag, transmission 

losses, and losses related to drivetrain inertia. Researchers at West Virginia University 

have demonstrated that dynamometer calibration can also be performed using simulated 

data (Wang, Lyons, Clark, & Luo, 1999). To date, the MEL data set contains limited test 

data to compare vehicle emissions at varying weights and the MEL data set contains no 

data which includes the combined effects of varying weight and grade. To simulate how 
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fuel consumption and emissions vary under various configurations of weight and grade, 

the HDD emission model was utilized and the simulated data is discussed in Section 4.4.  

To examine CO2 emissions variances with weight alone, the HDD microscale 

emission model was run for roughly 130 highway snippet cycles with varying weight and 

the results are presented in Figure 4-5.  The data suggests that the effect of vehicle weight 

is greater at moderate average speeds with the effect decreasing at very low average 

speeds and very high average speeds. This is in line with the idea that at low speeds road 

friction plays a large role and that at higher speeds aerodynamic drag becomes an 

increasingly more important factor. Figure 4-5 also shows that as truck weight increases, 

the range in CO2 emissions across all speeds for that weight decreases and that across all 

weights, CO2 emissions are lowest at moderate average speeds and highest at low and 

high average speeds. The results in Figure 4-5 show that the optimal driving speed, where 

CO2 g/m emissions are minimized, increases with increasing vehicle weight. For the 

modeled vehicle, the traveling speed at which CO2 g/m are minimized is close to 23 mph 

when there is no additional trailer weight and closer to 45 mph with a large trailer weight 

of 64,000 lbs. This information is useful to modify truck driving behavior to maximize 

fuel economy. 



107 

 

 

Figure 4-5  Modeled CO2 emissions as a function of vehicle speed and vehicle 

weight. 

4.2.4 Road Type and Congestion Level 

The effect of congestion level indirectly accounts for the influence of acceleration 

on emissions. Free flow congestion level, for example, is characterized by higher speeds 

and milder acceleration and deceleration events, while higher congestion is characterized 

by lower speeds and more aggressive acceleration and deceleration events. The effect of 

road type is not as clear. 

In order to determine the effect of road type on fuel use, roughly 130 highway 

snippets were identified ranging from a fraction of a mile in length to several miles. The 
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CO2 emission factor versus average speed for these snippets was calculated and is 

presented in Figure 4-6 along with a second order polynomial regression line showing the 

CO2 versus average speed emission curve. This same exercise was done for roughly 50 

arterial snippets and the results are included in Figure 4-6. The results show that the CO2 

versus speed emission relationships look similar; it does, however, appear that at 

moderate speeds the arterial road types may show slightly higher emissions due to 

sharper stop-and-go activity. If this is true, this indicates that it is not enough to define 

CO2 emission factors by average speed alone, but that some measure of driving pattern 

should be used.  Further work is required to determine if CO2 g/m emission rates truly 

differ by road type at comparable average speeds. 

 

Figure 4-6 CO2 emissions for highway and arterial driving snippets 
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4.3 Model Description 

Several factors influence vehicle fuel consumption and emissions such as 

operational parameters, discussed in Section 4.2, and a vehicle’s physical characteristics. 

This relationship is shown in equation 4.1. 

 mmi  α  f (v, w, g, pc ) 4.1 

where:  

 mm  = mesoscale model rate in g/m 

i   = fuel, CO2, CO, HC, NOx, PM 

v    = vehicle velocity 

w   = vehicle load 

g   = road grade 

pc  = physical characteristics of vehicle 

The mesoscale model relates HDD energy and emissions with important 

operational parameters for a given vehicle. The operational parameters included are 

average velocity, road grade and vehicle load. A vehicle’s physical characteristics such as 

aerodynamic shape, frontal area, and tire-road friction affect fuel use and emission 

production. These characteristics determine some of the major frictional forces that a 

vehicle encounters during real-world operation and are accounted for in the development 

of the modeling data set described in Section 4.4.  

The mesoscale model fuel and emission model accounts for the input parameters 

described above, as well as interactions between these parameters. This is important 
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since, as the discussion and figures in Sections 4.2.2 and 4.2.3 indicate, the optimal truck 

speed for fuel consumption is not the same for every road grade or at every vehicle 

weight.  The optimal speed for a truck with an empty container will be different than the 

optimal speed for the truck when it is fully loaded. Based on this, it may be best for this 

truck to use one route when carrying a load to a destination, and to use another route 

when returning empty.  

To account for the interactions of multiple variables, Multiple Linear Regression 

(MLR) modeling is used. MLR modeling is discussed in Section 3.2.2.  In MLR, a linear 

combination of multiple independent variables is used to predict a dependent variable. 

Although the combination of terms is linear, the terms themselves may be non-linear and 

include interaction terms such as equations 4.2 and 4.3. 

 Yi = b0 + b1v + b2v
2
 + b3w

 
+ b4w

2
 +  b5g + b6g

2
+ b7vw + b6vwg … 4.2 

 ln(Yi) = b0 + b1v + b2v
2
 + b3w

 
+ b4w

2
 +  b5g + b6g

2
+ b7vw + b6vwg… 4.3 

where: 

Y   = predicted energy and emission variables 

i   = fuel, CO2, CO, HC, NOx, PM 

v, w, g   = explanatory values such as velocity, weight, grade 

b1, …, bn = regression parameters 

The use of log data transformation, such as equation 4.3, is investigated.  The log 

transformation is useful primarily if the residuals in the modeling results scale with 

increasing dependent variables and also to prevent the prediction of negative values.  
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4.4 Modeling Data Set 

Calibration of the mesoscale model requires a comprehensive database covering 

all combinations of operational parameters. The MEL data set for a given vehicle does 

not provide this coverage and so a modeling data set is generated from on-road vehicle 

activity and the HDD microscale emission model developed in Chapter 0 for the test 

vehicle described in Section 3.3.3.  Numerous vehicle activity snippets are identified 

from the MEL data set and are modeled under varying conditions using the microscale 

HDD emission model. Figure 4-7 presents a schematic for the development of the 

modeling data set.  

 

Figure 4-7 Schematic showing emission modeling data set development based 

on activity, vehicle weight and road grade. 
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The vehicle activity snippets used for the development of the modal data set are 

discussed in Section 4.4.1. The vehicle weight range that was modeled was 20,000 lbs. to 

80,000 lbs. and the road grade range was -8 % to 8 %. Combinations of velocity, road 

grade and mass which exceeded the power threshold for the simulated vehicle were 

omitted from the modeled data set. 

4.4.1 Vehicle Activity  

The vehicle activity snippets used to generate the modeling data set for the 

development of the mesoscale model were taken from real-world truck highway activity 

from the MEL data set. Road type and congestion level were identified for much of the 

MEL data set using Google Earth, a spatial mapping tool. MEL data was processed into 

.kml files which mapped vehicle activity by location and colored vehicle activity by 

speed as illustrated by Figure 4-8 for a typical truck trajectory.  In this figure, blue 

represents fast moving traffic and red represents slow moving traffic.  
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Figure 4-8 Example truck activity plotted in Google Earth. Red indicates 

congestion and blue indicates free flow. 

Each data point in the .kml file, shown in Figure 4-8, contains specific trajectory 

information as well as source information. This allows the truck velocity trajectories to be 

examined and separated into different velocity snippets that represent different regimes of 

driving. The assumption is made that slow vehicle speeds on the freeway are a result of 

congestion. In Figure 4-8, the blue section of the trajectory represents uncongested 

freeway operation based on speed, and the yellow and orange parts of the trajectory 

represents stop-and-go congested highway traffic. Each velocity snippet and its 

associated data can be identified in this manner and separated out as depicted in Figure 

4-9. 



114 

 

 

Figure 4-9 Example truck activity snippet. 

The modeling data set consists of 158 snippets from highway driving under 

various levels of traffic congestion and covers a wide range of average speeds. The 

second-by-second velocity and acceleration distribution of the highway activity snippets 

is presented in Figure 4-10.  Data for arterial roadways was also extracted from the data 

set and is presented in Figure 4-11.   This data is reserved for validation purposes in 

Section 4.6. Data for the average velocities for the snippets is presented in Figure 4-12 

and Figure 4-13. 
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Figure 4-10 Distribution of activity in highway snippets excluding idle. 

 

Figure 4-11 Distribution of activity in arterial snippets excluding idle. 
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Figure 4-12 Average highway velocity snippet histogram. 

 

 

Figure 4-13 Average arterial cycle velocity histogram. 
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4.5 Model Development and Calibration 

The mesoscale model is based on the MLR function presented in equation 4.2 and 

the modeling data set developed in Section 4.4.  The modeling data set contains fuel use 

and PM data for over 3,800 combinations of average snippet velocity, grade and vehicle 

mass. This data is expanded to include all second and third order terms for these 

parameters and all possible interactions.  This step increases the three independent terms 

to 63 terms. Initial analysis including fourth order terms found that they did not improve 

regressions, so fourth order terms were not considered in an effort to limit the complexity 

of the model. 

Parameter fitting and calibration were performed using Matlab, discussed in 

Section 3.4, and R, a powerful and freely available statistical programming environment 

based on the “S” system developed by Bell Laboratories (Chambers, 2001). Regression 

analysis was performed using a stepwise regression method. Stepwise regression begins 

with an initial model and then adds or removes explanatory terms in a systematic way 

based on a measure of significance for that variable in the regression model.  The 

preferred model characteristics were limited number of predictor terms and limited 

complexity. Since there are no constraints on the regression analysis, the resulting terms 

in the model were free to be non-hierarchical.  

Regression results for a best model analysis for fuel and PM are presented in 

Figure 4-14 and Figure 4-15. These figures give the R
2
 and RMSE values for the best 

model by the number of parameters included, not including the intercept.  Figure 4-14 
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shows that roughly 90% of the variance in the fuel value is explained with 6 parameters 

and that improvements in R
2
 and RMSE are slight beyond that.  Figure 4-15 shows that 

with 6 parameters, the PM model has made its greatest gains in explanatory power (R
2
 = 

0.84), however incremental improvements in both R
2
 and especially RMSE can still be 

had up to 9 or 10 parameters.  It is important to note that the best model selection is not 

simply the addition of the next best parameter to the previous parameter set as in the step 

up approach and that higher number of parameter models may not include the same 

parameters used in lower number of parameter models.   

 

Figure 4-14 Regression statistics for best mesoscale fuel model based on 

number of predictor variables. 
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Figure 4-15 Regression statistics for best mesoscale PM model based on 

number of predictor variables. 

Specific results and coefficients for the best fit models can be found in Table 4-1 

through Table 4-4. For modeling work performed here and in Section 5.3, the 6 

parameter fuel model and the 7 parameters PM model were chosen.  

Table 4-1 Fuel models and coefficients for 1 to 6 parameters. 

Number of 
Variables 

1 2 3 4 5 6 

R2 0.516 0.701 0.794 0.856 0.883 0.893 

RMSE 283.18 222.57 184.53 154.22 139.17 133.10 
       

Intercept 638.36 937.74 850.48 457.13 624.90 747.25 

g 9.3574E+01 7.7572E+01 1.2668E+02 
  

3.2093E+01 

g2 
  

9.1316E+00 
   

g2∙m∙ 
   

3.1536E-04 3.0007E-04 2.7834E-04 

g∙m 
   

3.9707E-03 3.8187E-03 2.9933E-03 

m 
   

1.1120E-02 1.0689E-02 7.7958E-03 

v 
 

-8.3763E+00 -7.2986E+00 -6.8820E+00 -2.0064E+01 -2.0383E+01 

v2 
    

1.7500E-01 1.8056E-01 
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Table 4-2 Fuel models and coefficients for 7 to 12 parameters. 

Number of 
Variables 

7 8 9 10 11 12 

R2 0.898 0.902 0.906 0.908 0.909 0.910 

RMSE 130.21 127.71 125.02 123.36 122.57 121.88 
       

Intercept 836.64 865.55 1015.77 931.67 890.49 764.58 

g 3.3553E+01 4.1821E+01 8.5507E+01 5.2914E+01 5.9713E+01 4.5136E+01 

g2∙m∙ 2.7238E-04 2.3751E-04 
  

1.4858E-04 2.5492E-04 

g2∙m2 
  

4.9433E-09 4.5514E-09 2.4535E-09 
 g3∙m2 

  
3.0773E-10 

 
2.6779E-10 

 g3∙m3 
   

4.0000E-15 
  g∙m 2.9051E-03 2.7023E-03 

 
2.1341E-03 1.9504E-03 3.0063E-03 

g∙m2 
  

2.3840E-08 
   m 7.5038E-03 7.5497E-03 4.0617E-03 6.2097E-03 6.3523E-03 1.0214E-02 

v -3.3264E+01 -3.3226E+01 -3.4309E+01 -3.3619E+01 -3.2287E+01 -2.6510E+01 

v2 5.9208E-01 5.7951E-01 5.6989E-01 5.7195E-01 5.5756E-01 5.0073E-01 

v2∙g 
     

2.4531E-02 

v2∙g2 
 

6.8252E-04 
   

3.1429E-03 

v3 -3.5740E-03 -3.6514E-03 -3.4405E-03 -3.4525E-03 -3.3404E-03 -2.7122E-03 

v∙g2 
   

9.4454E-02 
  v∙g2∙m 

     
-5.1466E-06 

v∙g3 
  

-1.1415E-02 
 

-9.5181E-03 
 v∙g∙m 

     
-5.6933E-05 

v∙m 
     

-1.7325E-04 

v∙m2 
   

-5.2266E-10 -4.7786E-10 
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Table 4-3 PM models and coefficients for 1 to 6 parameters. 

Number of 
Variables 

1 2 3 4 5 6 

R2 0.439 0.688 0.782 0.807 0.834 0.842 

RMSE 0.164 0.122 0.102 0.096 0.089 0.087 
       

Intercept 0.323416 0.509514 0.608382 0.264766 0.396507 0.501771 

g 4.636E-02 3.641E-02 6.731E-02 
  

4.120E-02 

g2∙m 
   

1.341E-07 
  

g2∙m2 
    

1.546E-12 1.522E-12 

g∙m 
   

1.826E-06 1.744E-06 
 

g∙m2 
     

1.701E-11 

m 
   

5.874E-06 4.779E-06 
 

m2 
     

4.723E-11 

v 
 

-5.207E-03 -8.804E-03 -4.515E-03 -7.092E-03 -7.422E-03 

v2∙g 
     

-8.818E-06 

v3∙g 
    

-1.115E-07 
 

v∙g 
  

-9.373E-04 
   

Table 4-4 PM models and coefficients for 7 to 12 parameters. 

Number of 
Variables 

7 8 9 10 11 12 

R2 0.854 0.86 0.866 0.87 0.872 0.874 

RMSE 0.084 0.082 0.08 0.079 0.078 0.078 
       

Intercept 0.556381 0.423301 0.34293 0.342284 0.3257 0.341431 

g 4.601E-02 5.346E-02 
 

2.610E-02 3.333E-02 2.903E-02 

g2∙m 
   

1.021E-07 1.084E-07 1.024E-07 

g2∙m2 1.439E-12 1.271E-12 1.700E-12 
   

g∙m 
  

2.075E-06 1.529E-06 1.376E-06 1.491E-06 

g∙m2 1.592E-11 1.292E-11 
    

m 
 

5.414E-06 7.303E-06 6.963E-06 7.085E-06 7.036E-06 

m2 4.399E-11 
     

v -1.267E-02 -1.090E-02 -7.516E-03 -5.112E-03 -2.927E-03 -7.177E-03 

v2 7.616E-05 7.462E-05 
    

v2∙g3 
    

-6.305E-08 
 

v3 
  

5.773E-07 5.424E-07 
 

5.365E-07 

v3∙m 
    

9.009E-12 
 

v∙g -5.672E-04 -6.650E-04 
   

-4.020E-04 

v∙g2∙m 
   

-5.048E-09 -5.914E-09 -3.678E-09 

v∙g2∙m2 
  

-9.200E-14 
  

-6.100E-14 

v∙g3∙m 
  

-2.968E-10 -2.840E-10 -2.744E-10 -4.336E-10 

v∙g∙m 
   

-3.902E-08 -4.135E-08 
 

v∙g∙m2 
  

-7.490E-13 
  

-7.170E-13 

v∙m 
 

-4.514E-08 
 

-1.393E-07 -1.750E-07 
 v∙m2 

  
-1.933E-12 

  
-1.986E-12 
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The final models did not use log data transformation as presented in equation 4.3 

and select cases do result in slight negative predications.  Other than eliminating negative 

values, the log transform resulted in slightly lower regression fits and its use was not 

warrented. To account for negative values, a minimum cutoff point is selected. The cutoff 

point for the fuel model is 20 g/m and the cutoff point for PM is 0.035 g/m. The effect of 

this is negligible on the calibration and validation results. 

Calibration results for the 6 parameter fuel model and 7 parameter PM model are 

presented in Figure 4-16 and Figure 4-17.  The calibration results for the fuel model show 

a good fit with and R
2
 of 0.89 and an RMSE of 133 g/m. The calibration results for PM 

also show a good fit with and R
2
 of 0.85 and an RMSE of 0.08 g/m. 

 

Figure 4-16 Parity plot for 6 parameter fuel model on calibration data set. 

Red line is one-to-one.  
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Figure 4-17 Parity plot for 7 parameter PM model on calibration data set. 

Red line is one-to-one 

It is important to note that the regression results are dependent on the vehicle 

activity snippets used to generate the calibration and validation data set.  The vehicle 

activity snippets for the calibration data set are exensive and range roughly from one 

tenth of a mile to over 30 miles in length. Reducing the vehicle activity snippet lengths 

typically reduces the variability in the vehicle speed distribution and it was found that 

regression results improve for both the fuel and PM model.         
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4.6 Validation 

Validation of the mesoscale model was performed on the arterial data set 

presented in Section 4.4.1 using the 6 parameter fuel model described in Table 4-1 and 

the 7 parameter PM model described in Table 4-4. The arterial data set is independent of 

the highway data set that was used for calibration of the mesoscale model parameters. 

The results for fuel show no difference in R
2
 (R

2
 = 0.89) and an increase in RMSE from 

133 g/m to 198 g/m.  The results for PM show no significant decrease in R
2 

(R
2
 = 0.85) 

and an increase in RMSE from 0.084 g/m to 0.14 g/m.  

 

Figure 4-18 Parity plot for 6 parameter fuel model on arterial snippets. 
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Figure 4-19 Parity plot for 7 parameter PM model on arterial snippets. 

4.7 Section 4 Summary 

This section presented the development, calibration and validation of the 

mesoscale model for a HDD vehicle. In order to develop the model, a unique modeling 

and validation data set was created based on a broad range of conditions using the 

microscale model and measured vehicle activity.  

The mesoscale model is an MLR model based on average vehicle speed, road 

grade and vehicle load.  These terms were tested in many combinations to account for 

higher order effects and interactions. Stepwise regression methods were used to 

determine several best models by number of parameters. Final models based on 6 terms 

for fuel use and 7 terms for PM were selected and validated.  

The explanatory variables which the mesoscale model is based on are important 

operational parameters that greatly impact fuel use and emissions. Relationships between 

these parameters, fuel use and emissions were demonstrated with simulated data and 
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discussed in this section. The mesoscale model is integrated with an EFNav application 

for route optimization in Chapter 5.0.  

Currently, the model does not account for road type or congestion level directly. 

The road type variable, although available, did not provide a discernible effect in our data 

set. The effects of congestion level are accounted for to a large extent by average speed, 

however if a parameter for congestion level is available, including it as an explanatory 

variable or splitting the model up by congestion level may improve the modeling fits.  

Validation results on the independent set of arterial snippets through a wide range of 

weights and grades show fuel prediction error to within 2% of the target value and PM 

prediction error to within 12% of the target value, with R
2
 values of 0.89 to 0.85 

respectively.    
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5.0 Environmentally Friendly Navigation with Developed 

Mesoscale Model 

Environmentally friendly navigation for heavy-duty trucks (EFNav-HDT) has 

many potential benefits. The key objective of EFNav is to optimize vehicle routing in 

order to minimize vehicle fuel consumption, vehicle emission production, human 

exposure to vehicle emissions, or other negative environmental effects. The purpose of 

this portion of work is to demonstrate the use of the mesoscale HDD emission modeling 

tool in an EFNav system.  

The framework for the EFNav system was developed in previous work with light 

duty vehicles by CE-CERT’s Transportation Systems Research (TSR) group (Barth, 

Boriboonsomsin, & Vu, 2007). The EFNav system performs route selection based on 

algorithms that minimize some type of cost function for a link-node roadway network.  A 

classical solution to the route optimization problem in a link-node network is given by 

Dkjkstra’s algorithm (Chabini & Lan, 2002), however more efficient algorithms exist 

(Ghiani, Guerriero, Laporte, & Musmanno, 2003) (Frazzoli & Bullo, 2004). The work 

presented here does not focus on the improvement of these algorithms, but rather on the 

improvement of the cost functions which are used by these algorithms.  The typical cost 

functions for routing are based on distance or time. In this work the focus is on reducing 

fuel use based on the combination of the operational parameters of weight, grade and the 

average speed on the link (Ahn & Rakha, 2007). The following sections describe the 
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general EFNav methodology, the application of the mesoscale emission model and initial 

in-use test results.  

5.1 EFNav Dynamic Roadway Network 

The EFNav application consists of several components: (1) a digital dynamic 

roadway network with grade and integrated real-time traffic information as available; (2) 

link weighting factors or cost functions; (3) routing and optimization algorithms; and (4) 

a user interface for receiving user defined origin and destination inputs as well as for 

displaying route selection, energy and emission estimates, and various outputs. The basic 

function of the EFNav application is described here briefly.  

EFNav relies on the Dynamic Roadway Network (DynaNet) which was 

developed by CE-CERT for the Bay Area and Southern California (Boriboonsomsin, 

Barth, Zhu, & Vu, 2010). Current research efforts are focused on expanding this network 

to the entire state of California. DynaNet consists of several layers of information that are 

fused together in a MySQL database including roadway characteristics such as link 

length and link grade, as well as real-time or historic data from multiple sources for 

roadway speed, traffic conditions, etc. The primary source for the real-time traffic 

information is from California’s Freeway Performance Measurement System (PEMS, see 

(Chao, Jia, Petty, Shu, Skarbardonis, & Varaiya, 2000)) and the traffic information 

provider, INRIX (INRIX Inc., 2011). Truck speed in the network is estimated as 82% of 

the general traffic speed (Boriboonsomsin, Zhu, & Barth, 2011). Certain parameters that 
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impact fuel use and emissions, such as vehicle acceleration, are not directly available for 

roadway links and cannot be used for fuel or emission estimation directly.  

The network data including real-time roadway information are used to calculate 

cost factors for each link in the network. Based on user defined origin and destination 

points as well as the calculated cost factors applied to each link, the EFNav application 

will calculate the optimal route for minimizing the route cost using existing route 

planning network-wide routing algorithms. The optimized route information, along with 

trip characteristics such as fuel use and estimated emission production are displayed to 

the user through the user interface. 

5.2 EFNav Interface 

CE-CERT’s EFNav application is a research tool that has been developed for 

multiple platforms including the iPhone, the Android operating system and as a web 

application.  For this research, the EFNav web application was configured for HDD 

routing using the mesoscale model fuel equation to update the network link cost factors 

based on real-time traffic velocity information as well as network grade and vehicle 

weight.  The updated weighting factors are then used for route optimization.    

Figure 5-1 shows the EFNav web application interface and route estimation for an 

example route, optimized for minimum fuel use, from the Port of Long Beach to the 

Fontana area in Southern California.  The window frame on the left of the application 

allows the user to input origin and destination points by the latitude and longitude 

coordinates, and to select the criteria for minimization which includes time, distance, and 
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fuel.  In some cases, optimizing by these criteria will route along similar paths since 

minimizing distance tends to minimize fuel and trip length. In cases with heavy 

congestion or steep road grades, the shortest distance path may no longer be the most 

economical.  This is more of an issue as vehicle weight increases. 

 

Figure 5-1 CE-CERT’s EFNav web application interface. 

The window frame on the right of the EFNav screen displays output results for 

route optimization including starting and ending coordinates, route minimization criteria, 

route length, estimated route travel time, estimated fuel consumption and estimated 

emission production, as well as route directions. The EFNav web application is built on 

the Google Maps web service and the user has access to several Google Map overlays 

such as real-time traffic, terrain, satellite and hybrid maps. 

Destination: Fontana 

Origin: Port of Long Beach 
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5.3 EFNav-HDT Application 

This section describes the application of the EFNav-HDT in an example scenario. 

In this exercise, the mesoscale model is calibrated for a test truck, origin and destination 

points are chosen for routing, the EFNav-HDT route choice is calculated and the models 

performance in the EFNav application is evaluated.   

5.3.1 Mesoscale Model Calibration 

The mesoscale model fuel use model developed in Chapter 4.0 was recalibrated 

for the HDD truck used for the EFNav testing scenario. Data for the test truck, shown in 

Figure 5-2, is presented in Table 5-1.   

Table 5-1 EFNav test vehicle details 

Engine Make 
Engine 

Model 

Engine 

Displacement 

Rated 

Power 

Engine 

Year 

Tractor 

Weight 
Odometer 

Test 

Location 

- - liters hp@RPM year lbs. miles  

Caterpillar C15 14.7 500 2,000 15,760 42,963 on-road 

 

 

Figure 5-2 EFNav test vehicle image 
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The calibration of the mesoscale fuel model requires three basic steps outlined in 

Section 0. These steps are the calibration of the microscale model for the test vehicle, the 

development of a mesoscale modeling data set using the microscale model and the 

calibration of the mesoscale model on the modeling data set.  

Microscale Model Calibration 

The HDD microscale emission model was calibrated for nearly 2 hours of on-road test 

data to a total error of less than 1%.  The results of the calibration process are presented 

in Figure 5-3 and show that the microscale model performs well on the calibration data 

with an R
2
 of 0.95 and RMSE of 1.5 g/s.   Figure 5-4 shows the results of the calibrated 

model on an independent data set of nearly 1 hour of on-road activity.  The validation 

results show that model performs just as well on the validation data set. These results do 

not account for errors introduced by unknown conditions such as wind and varying road 

surfaces conditions. 
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Figure 5-3 EFNav vehicle microscale model calibration results. Top plot 

presents scatterplot of modeled vs. measured second-by-second fuel use. Bottom plot 

presents time series of modeled vs. measured second-by-second fuel use.  

 

Figure 5-4 Microscale model validation results for EFNav vehicle. Top plot 

presents scatterplot of modeled vs. measured second-by-second fuel use. Bottom plot 

presents time series of modeled vs. measured second-by-second fuel use. 
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Mesoscale Modeling Data Set and Mesoscale Model Calibration 

Mesoscale model calibration and validation modeling data for the test vehicle was 

created following the methodology presented in Section 0 using the vehicle activity 

snippets discussed in Section 4.4.  Mesoscale model calibration results for the EFNav test 

vehicle are presented in Figure 5-5 which shows that the 6 parameter mesoscale fuel 

model developed in Section 0 predicts nearly 88% of the variance in the target fuel values 

with a RMSE of 155.5 g/m.  Model parameters are presented in Table 5-2.    

 

Figure 5-5 Parity plot of mesoscale model calibration results for EFNav 

vehicle. 

Table 5-2 Mesoscale model coefficients for EFNav vehicle 

Intercept 
Minimum 

Fuel 
m g g∙m g

2∙m v v
2
 

7.14E+02 2.30E+01 9.82E-03 4.34E+00 2.86E-03 2.04E-04 -2.84E+01 2.82E-01 

 

Results of the calibrated mesoscale model on the independent validation data are 

presented in Figure 5-6. The results show that the model performance remains similar to 
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that of the calibration data with an R
2
 of 0.87 and an RMSE of 196.5. The total error 

across the validation data set was 2.02%. 

 

Figure 5-6 Parity plot of the mesoscale model validation results for EFNav 

vehicle. 

As an additional point of comparison, the calibrated mesoscale model was applied 

to the summary parameters of the measured data used to calibrate and validate the 

microscale model. The results in Table 5-3 indicate that the model performs well in this 

exercise with an error of less than 8% for both data sets.  

Table 5-3 The mesoscale model calibration and validation results for EFNav 

vehicle 

 
Length Distance 

Avg. 
Velocity 

Avg. Grade 
Measured 

Fuel 
Mesoscale 
Model Fuel 

Error 

 
seconds miles mph % g/m g/m % 

Calibration 
Data Set 

7012 119.9639 61.5902 0.1521 704.3179 648.35 -7.95 

Validation 
Data Set 

3509 60.8 62.36 0.0489 665.007 634.91 -4.53 

5.3.2 Network Routes 

The origin and destination points that were chosen for the EFNav test scenario 

were near the Port of Long Beach (POLB) by the I-710 and the city of Fontana California 
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on the I-10.  The POLB is the second busiest port in the nation (Port of Long Beach, 

2011) and is situated in close proximity to the Port of Los Angeles (POLA), ranked the 

number one port in the nation for the last 10 years. Combined, the POLB and the POLA 

are the 6
th

 busiest port in the world (The Port of Los Angeles: America's Port, 2011).The 

I-710 highway leading away from the POLB is a major artery for truck traffic. The areas 

in and around Fontana California are home to numerous warehouses, distribution centers 

and small manufacturers, making it a popular HDD truck destination.  There are various 

highway routing options between the ports and the Fontana area which make that 

origin/destination pair useful for EFNav route analysis. 

5.3.3 Test Procedure and Results 

The EFNav mesoscale model application was tested against measured data. A fuel 

minimized route from the POLB to Fontana was determined for a 72,000 lb. test truck 

using the web based EFNav mesoscale model application. The predicted route was based 

on real-time traffic data presented in Figure 5-1. The test truck described in Section 5.3.1 

was weighted with a flatbed trailer loaded with six 7,800 lb. K-rails for a combined 

weight near 72,000 lbs. The test truck was instrumented with a specially developed data 

logger that records selected parameters at a frequency of 1 Hz from the truck’s ECM 

following the J1939 vehicle bus standard. The data logger also collects streaming data 

from an attached GPS unit at each second.  

Testing was performed on a weekday morning at 10:30 am on the predicted route 

from the POLB to Fontana. Comparison data for the test trip with measured data is 
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presented in Figure 5-7. Plot one in Figure 5-7 shows the comparison of the EFNav 

predicted speed and the measured speed for the test route by distance. The blue line in 

Figure 5-7 in the first plot shows the measured speed. The red line shows the general 

traffic speed for the route as available from the DynaNet database at the start of travel 

time and the green line shows the same real-time general traffic speed adjusted by 0.82 to 

estimate truck speeds (Boriboonsomsin, Zhu, & Barth, 2011).  This comparison shows 

that in this case, the given speeds at the start of travel time were a good indicator of trip 

speeds throughout the test run with a few notable deviations. The EFNav application can 

be updated repeatedly to reroute based on more recent data, but for this analysis only the 

initial route was considered.  The second plot from the top in Figure 5-7 shows the travel 

time comparison as a function of distance for the measured data and for the DynaNet data 

for the test route.  This data shows that the time on the network is overestimated by 

almost 11 %.  The rise in both the truck and general traffic travel time around the 30 mile 

mark are a result of the decrease in travel speed at that distance on the route.    
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Figure 5-7 EFNav mesoscale model comparisons against measured data. 1) 

vehicle speed by distance; 2) travel time by distance; 3) road grade by distance; 4) 

fuel consumption by distance 

A comparison of measured grade data and data from the DynaNet network are 

presented in the third plot in Figure 5-7 for reference. The grade data from the DynaNet 

network is the average grade on a link with links being anywhere from 25 feet to 1.2 

miles in length. Measured grade is approximated from GPS data for every second. A 

comparison of predicted cumulative fuel consumption for the entire test route with 

measured data is shown in the fourth plot in Figure 5-7.  This plot indicates that the 

EFNav application overestimates fuel use by about 7.5 % for the test trip in comparison 
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to the fuel calculation from the microscale model.  This plot also shows that EFNav 

cumulative fuel consumption looks very similar in profile to the cumulative measured 

fuel consumption, showing similar sensitivity to grade along the route. The strong 

performance of the EFNav mesoscale model in predicting fuel consumption over a route 

indicates that the EFNav mesoscale model application should do well with comparisons 

of routes based on fuel use.  

A comparison of EFNav mesoscale model fuel predictions along the test route for 

varying conditions, presented in Figure 5-8, demonstrates the sensitivity of the EFNav 

mesoscale model application to the operational parameters of grade and weight. The blue 

line shows the EFNav mesoscale model fuel prediction at a test weight of 72,000 lbs. 

using the link based network grade.  The red line presents the same prediction at a 

minimum test weight of 20,000 lbs. and the green line presents the same prediction at a 

maximum test weight of 80,000 lbs. These values show that the difference in fuel 

prediction due to weight change alone can vary by as much as 240 %.  The magenta line 

presents the same prediction as the base EFNav mesoscale model case with the exception 

of network grade which was set to zero.  The results show that in this case the inclusion 

of network grade decreases the fuel prediction by 13 % and the resulting prediction is 

much more linear with distance.    
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Figure 5-8 Mesoscale model sensitivity to operational parameters of grade 

and weight 

5.4 Chapter 5 Summary 

This chapter presented an example application of the developed mesoscale model 

in an HDD EFNav application. The key objective of EFNav is to optimize vehicle routing 

to minimize some of the negative environmental effects associated with transportation 

such as fuel consumption and GHG emissions. The optimization of routes based on fuel 

use requires the accurate estimation of fuel use across links in a roadway network. The 

mesoscale fuel model was integrated into the EFNav application to provide a more 

accurate projection of fuel use than the standard average speed based estimation by 

accounting for roadway grade and vehicle mass, two important parameters affecting 

engine load and consequently fuel consumption.   
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The mesoscale fuel model was calibrated for a HDD test truck following the steps 

presented in Chapter 4.0. This process involved the calibration of the HDD microscale 

model, the generation of a mesoscale modeling data set and the fitting of the mesoscale 

model to the mesoscale modeling data set.  Calibration and validation results for the 

microscale model were similar with a RMSE error between 1.45 g/s and 1.6 g/s, an R
2
 of 

0.94 and total error of less than 1 %. The mesoscale fuel model was calibrated to zero 

overall error which resulted in an R
2
 of 0.88 and a RMSE of 155.4 g/m.  The mesoscale 

fuel model validation resulted in an R
2
 of 0.87, the RMSE rose to 196.5 g/m, and the total 

error was roughly 2 %. 

Measured vehicle activity and location data were collected for the HDD test truck 

loaded to 72,000 lbs. on a fuel minimized route from the POLB to Fontana. Predicted fuel 

from the EFNav mesoscale model application using average link data was compared to 

calculated fuel from the microscale model using second-by-second vehicle activity. The 

results show that the EFNav mesoscale model application is within 7.5 % of the 

calculated value and that cumulative fuel use tracks very well over the route. This 

demonstrates that the EFNav mesoscale model is an effective tool for fuel based route 

minimization.  

EFNav mesoscale model predictions for the test route at selected weights and with 

road grade and no road grade show that fuel predictions can vary by as much as 240 % 

between a fully loaded truck and an empty truck and that the omission of road grade 

reduces the fuel estimation by as much as 12.7 % for the selected route.   
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6.0 Conclusions and Recommendations for Further Research 

This dissertation consists of major components: 1) the development of an 

advanced microscale HDD PM model derived from unique real-world measured activity 

and emission data sets; 2) the development of a mesoscale fuel and PM model which 

utilizes key operational parameters such as vehicle weight and road grade, and is 

developed from a specially generated comprehensive set of simulated data; and 3) the 

application of the mesoscale model in a unique EFNav application providing robust fuel 

use estimation for route minimization. This chapter discusses key conclusions from this 

work and provides suggestions for possible areas of future research.  

6.1 Conclusions 

Key conclusions from this work are split up under the three components of 

research and are presented here.  

6.1.1 Microscale PM Model Development 

A microscale HDD PM emissions model was developed and calibrated from a 

unique set of measured second-by-second on-road test data. Various explanatory 

variables were evaluated for their predictive power for PM emissions.  PM was found to 

correlate strongly with fuel consumption and the positive change in fuel consumption.  

These two parameters formed the basis of the PM model.   Splitting the model into 

positive and negative acceleration regions was not found to improve PM predictions; 

however, splitting the model into velocity ranges did show a marked improvement in PM 
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predictions decreasing the RMSE by 20% (0.0013303 g/s to 0.0010473 g/s) in the 

calibration data set and by 10% (0.002194 g/s to 0.0019687 g/s) in the validation data set 

with significant improvements in R
2
 as well.    

Results for the selected PM model, calibrated to zero overall error on measured 

predictor values, show an R
2
 value of 0.72 and an RMSE of 0.00104 g/s. The results of 

the selected PM model on the validation data set, using modeled predictor values, shows 

an R
2
 value of 0.46 and an RMSE of 0.00197 g/s.  A comparison between the DustTrak 

and the Dekati analyzers show slightly better R
2
 and RMSE values (R

2
 = 0.58, RMSE = 

0.00172 g/s). The performance of the model based on known data from the ECU in the 

calibration data set indicates that the model performance may be greatly improved in an 

onboard vehicle application such as real-time on-board emission predictions.  In the 

calibration step, model performance matches PM emissions from the Dekati far better 

than the scaled DustTrak data; with an improvement in RMSE of nearly 40% and an 

increase in R
2
 from 0.58 to 0.72. 

Compression release braking was identified as a source of PM emissions. It was 

estimated that the test truck spent roughly 1.7% of its time in compression release 

braking mode and that this accounted for roughly 3% of the total PM emissions across 

7.5 hours of vehicle activity. It was noted that compression release braking is isolated to 

specific areas and may be of particular interest in exposure studies, especially with 

sensitive areas located next to downhill roadways. A PM emission modeling approach 



144 

 

using an exponential decay equation was presented for compression release braking 

events.           

6.1.2 Mesoscale Model Development 

A mesoscale fuel and PM model which utilizes key operational parameters such 

as vehicle weight and road grade was developed for a HDD truck.  The mesoscale model 

was developed and calibrated from a specifically generated set of simulated emission data 

that encompasses a comprehensive range of vehicle speeds, vehicle weights, and road 

grades. 

A 6 parameter MLR fuel model and a 7 parameter MLR PM model were 

developed from the modeled data set. Validation results on the independent set of arterial 

snippets through a wide range of weights and grades show fuel prediction error to within 

2% of the target value and PM prediction error to within 12% of the target value, with R
2
 

values of 0.89 to 0.85 respectively. 

Several operational parameters were considered. Analysis of measured data shows 

that road grade has a strong positive linear relationship with fuel consumption when 

acceleration is near zero. Truck speed was found to be negatively correlated to road 

grade. An analysis of over 57 hours of truck driving data showed that truck speeds above 

60 mph were occurring predominantly at increasingly larger negative grades. This result 

may be important when considering limiting truck speeds to reduce fuel use and 

emissions since it indicates that projected fuel savings may be considerably less than 

expected if the influence of grade is not considered.   
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HDD CO2 emission data was simulated for various average speeds and grades. 

The results show that the optimal vehicle operating speed decreases as road grade 

increases and that the relationship between CO2 emissions and vehicle speed becomes 

linear with increasing road grade. 

Vehicle weight was also examined in detail. Simulated HDD CO2 emission data 

for various average speeds and truck loads indicates that not only do CO2 emissions 

increase with vehicle load as expected, but that the optimal vehicle speed also increases 

with vehicle load.    

6.1.3 EFNav with the Developed Mesoscale Model 

The mesoscale model, developed for a variety of transportation/emission 

analyses, was integrated with an EFNav application and compared against test data. The 

results show that truck speed predictions were very reasonable and that truck travel time 

on the route was overestimated by 11 %.  Fuel estimation from the EFNav mesoscale 

model application for the trip was over estimated by 7.5 % and matches well in profile 

with measured data. Comparison of EFNav mesoscale model predictions for different 

weights showed that cumulative fuel use varied by 240 % between an empty truck and a 

fully loaded truck weight for the examined route. Comparisons of EFNav mesoscale 

model predictions with and without grade information show that grade information 

increased the fuel prediction by 12.7 %. The ability of the EFNav mesoscale model 

application to accurately predict fuel use and the sensitivity of the application to the 
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parameters of grade and vehicle weight show that EFNav mesoscale model is an effective 

tool for evaluating routes based on fuel use.    

6.2 Recommendation for Further Work 

This section presents several areas for future work which are relevant to the topics 

presented in this dissertation. 

Variable Time Alignment – Time alignment of PM emissions to vehicle activity data in 

this research was performed statistically to within fractions of a second using a constant 

time shift. True alignment of measured tailpipe mass emissions depends in part on 

variances in the exhaust flow rate. Data analysis as well as model development may 

benefit significantly from a variable time shift or similar corrections which account for 

these variances.  

Compression Release Braking – Compression release braking was identified as a 

significant source of PM emissions and one which is localized to specific conditions, 

namely on greater or lengthy negative road grades (i.e., downhill). Further research is 

required to determine the occurrence, magnitude and influences of these emissions. 

Compression release braking should be analyzed geospatially and in relation to human 

exposure. Once further refined, the compression release braking module can be integrated 

with the HDT PM emission model. 

Application of On-Board PM Model – Calibration results from the microscale PM model 

using ECM data indicate that the microscale PM model performance based on fuel data 

from the ECM is significantly improved relative to modeled fuel from the physical model. 
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This indicates that the model would lend itself well in an onboard vehicle application 

such as real-time on-board emission predictions. In this application, the fuel parameter is 

unaffected by unknown conditions such as wind, road grade or variances in weight. 

Access to the ECM module would also provide additional parameters that are useful for 

modeling such as an indicator for compression release braking, the number of cylinders 

being used in compression release braking or an indicator for diesel particulate filter 

regeneration.  

Additional Operational Parameter Evaluation – The developed mesoscale model 

accounts for road grade, vehicle weight and vehicle speed which are the driving 

operational parameters in HDD fuel consumption.  Additional research is required to 

identify and incorporate the effects of further operational parameters such as road type, 

congestion level, stop-and-go characteristics, idle time and driver behavior. 

Developed Mesoscale Model Across Vehicle Types – The mesoscale model was 

developed for a single type of vehicle, however it is applicable to a wide-range of 

vehicle. Further research is required to continue to expand this modeling effort to a wider 

variety of vehicle types.  

Link Length Analysis – The mesoscale modeling data set was developed from vehicle 

activity snippets that varied from 0.1 miles to over 40 miles in length.  This results in a 

desired wide range of activity characteristics. For particular applications that require fuel 

or emission estimations over shorter distances or times, such as EFNav whose link 

lengths are predominantly less than 0.2 miles, the development of the mesoscale model 
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from shorter activity cycles may reduce modeling error.  Further research is required to 

characterize the optimal cycle characteristics for the applied application. 
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Appendix A – VSP Equations for Transportation Analysis 

        (            ( )      )  
       

 

  
 A-1 

where  

  =  vehicle speed in m/s 

  =  vehicle acceleration in m/s
2
 

g =  gravity (m/s
2
) 

  =  grade 

   =  coefficient of rolling resistance 

   =  density of air (kg/m
3
)   

(~1.2 kg/m
3
 at sea level and 20 °C) 

   =  coefficient of aerodynamic drag 

   =  frontal area of vehicle (m
2
) 

M =  mass of vehicle (kg)  

Typical values for some of the coefficients can be assumed and the equation can 

be simplified for general use. Some variable approximations are presented in Table A-1 

for seven vehicle classes. 
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Table A-1 Approximation of vehicle category characteristics 

Type Mass (kg) Frontal Area (m
2
) Cr Cd 

Sedan 1360 2.0 0.0135 0.34 

Pickup 2340 3.3 0.0135 0.43 

SUV 3035 3.44 0.0135 0.41 

Van 2270 3.46 0.0135 0.38 

Bike 230 0.65 0.0250 0.9 

Truck 11360 6.6 0.0094 0.7 

Semi 27300 10.0 0.0094 0.85 

 

Using the approximated values from the Table A-1, the terms in equation A-1 can 

be reduced, for ease of use, to the equations found in the Table A-2 (Scora, Morris, Barth, 

& Trivedi, 2011). 

Table A-2. VSP equations for vehicle classes. 

Type VSP Equation (kW/metric ton) 

Sedan        (            ( )         )             

Pickup        (            ( )         )             

SUV        (            ( )         )             

Van        (            ( )         )             

Bike        (            ( )          )             

Truck        (            ( )          )             

Semi        (            ( )          )             
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Appendix B – Correlation Matrices for Calibration Data 

 

The following tables show correlations between some of the explanatory variables 

which were considered for microscale modeling discussed in Chapter 0. The correlation 

tables are split into three speed groups discussed in Sections 2.6.1 and 3.6. 

Table 6-1 Correlation matrix of explanatory variables for speeds between 0 

and 25 mph.  

 vel acc acc- acc+ jerk jerk+ grade fuel fuel
2
 fuel

3
 VSP dfdt dfdt+ dfdt- RPM PM 

vel 1 0.06 0.02 0.12 -0.21 -0.22 -0.02 0.43 0.45 0.41 0.08 0.05 0.21 -0.17 0.4 0.34 

acc 0.06 1 0.95 0.74 -0.06 -0.2 -0.06 0.6 0.43 0.34 0.01 0.18 0.42 -0.2 0.62 0.52 

acc- 0.02 0.95 1 0.49 -0.08 -0.24 -0.05 0.41 0.27 0.2 -0.01 0.08 0.27 -0.19 0.53 0.36 

acc+ 0.12 0.74 0.49 1 0.01 -0.05 -0.04 0.76 0.61 0.5 0.07 0.31 0.57 -0.15 0.58 0.68 

jerk -0.21 -0.06 -0.08 0.01 1 0.92 0.05 -0.04 -0.02 -0.01 0.03 0.28 0.18 0.27 -0.23 -0.03 

jerk+ -0.22 -0.2 -0.24 -0.05 0.92 1 0.06 -0.1 -0.07 -0.05 0.04 0.16 0.1 0.17 -0.24 -0.09 

grade -0.02 -0.06 -0.05 -0.04 0.05 0.06 1 0.15 0.16 0.16 0.62 0.04 0.08 -0.03 -0.1 0.12 

fuel 0.43 0.6 0.41 0.76 -0.04 -0.1 0.15 1 0.94 0.85 0.28 0.37 0.64 -0.14 0.63 0.83 

fuel
2
 0.45 0.43 0.27 0.61 -0.02 -0.07 0.16 0.94 1 0.98 0.31 0.37 0.55 -0.02 0.45 0.71 

fuel
3
 0.41 0.34 0.2 0.5 -0.01 -0.05 0.16 0.85 0.98 1 0.3 0.33 0.45 0.03 0.35 0.58 

VSP 0.08 0.01 -0.01 0.07 0.03 0.04 0.62 0.28 0.31 0.3 1 0.06 0.15 -0.09 -0.04 0.22 

dfdt 0.05 0.18 0.08 0.31 0.28 0.16 0.04 0.37 0.37 0.33 0.06 1 0.83 0.73 0 0.45 

dfdt+ 0.21 0.42 0.27 0.57 0.18 0.1 0.08 0.64 0.55 0.45 0.15 0.83 1 0.23 0.31 0.73 

dfdt- -0.17 -0.2 -0.19 -0.15 0.27 0.17 -0.03 -0.14 -0.02 0.03 -0.09 0.73 0.23 1 -0.39 -0.1 

RPM 0.4 0.62 0.53 0.58 -0.23 -0.24 -0.1 0.63 0.45 0.35 -0.04 0 0.31 -0.39 1 0.59 

PM 0.34 0.52 0.36 0.68 -0.03 -0.09 0.12 0.83 0.71 0.58 0.22 0.45 0.73 -0.1 0.59 1 
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Table 6-2 Correlation matrix of explanatory variables for speeds between 25 

and 50 mph. 

 vel acc acc- acc+ jerk jerk+ grade fuel fuel
2
 fuel

3
 VSP dfdt dfdt+ dfdt- RPM PM 

vel 1 -0.02 0.08 -0.2 0.04 -0.07 -0.04 0.08 0.07 0.05 0.15 0 -0.13 0.09 0.08 -0.16 

acc -0.02 1 0.92 0.68 0.32 -0.15 -0.12 0.59 0.51 0.47 -0.02 0.09 0.21 -0.04 0.46 0.41 

acc- 0.08 0.92 1 0.33 0.38 -0.18 0.06 0.49 0.4 0.35 0.09 0.06 0.14 -0.03 0.43 0.28 

acc+ -0.2 0.68 0.33 1 0.06 -0.03 -0.41 0.48 0.48 0.48 -0.22 0.11 0.25 -0.04 0.29 0.46 

jerk 0.04 0.32 0.38 0.06 1 0.6 0.04 0.13 0.12 0.1 0 0.42 0.29 0.36 -0.14 0.2 

jerk+ -0.07 -0.15 -0.18 -0.03 0.6 1 -0.1 -0.12 -0.12 -0.12 -0.1 0.29 0.32 0.15 -0.25 0.15 

grade -0.04 -0.12 0.06 -0.41 0.04 -0.1 1 0.44 0.42 0.39 0.55 0.02 -0.12 0.12 0.05 0 

fuel 0.08 0.59 0.49 0.48 0.13 -0.12 0.44 1 0.97 0.92 0.31 0.16 0.09 0.15 0.39 0.39 

fuel
2
 0.07 0.51 0.4 0.48 0.12 -0.12 0.42 0.97 1 0.99 0.31 0.17 0.02 0.22 0.36 0.31 

fuel
3
 0.05 0.47 0.35 0.48 0.1 -0.12 0.39 0.92 0.99 1 0.29 0.17 -0.02 0.24 0.35 0.26 

VSP 0.15 -0.02 0.09 -0.22 0 -0.1 0.55 0.31 0.31 0.29 1 -0.02 -0.05 0.01 0.1 0.03 

dfdt 0 0.09 0.06 0.11 0.42 0.29 0.02 0.16 0.17 0.17 -0.02 1 0.7 0.85 -0.24 0.45 

dfdt+ -0.13 0.21 0.14 0.25 0.29 0.32 -0.12 0.09 0.02 -0.02 -0.05 0.7 1 0.21 -0.09 0.73 

dfdt- 0.09 -0.04 -0.03 -0.04 0.36 0.15 0.12 0.15 0.22 0.24 0.01 0.85 0.21 1 -0.26 0.07 

RPM 0.08 0.46 0.43 0.29 -0.14 -0.25 0.05 0.39 0.36 0.35 0.1 -0.24 -0.09 -0.26 1 0.03 

PM -0.16 0.41 0.28 0.46 0.2 0.15 0 0.39 0.31 0.26 0.03 0.45 0.73 0.07 0.03 1 
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Table 6-3 Correlation matrix of explanatory variables for speeds greater 

than 50 mph. 

 vel acc acc- acc+ jerk jerk+ grade fuel fuel
2
 fuel

3
 VSP dfdt dfdt+ dfdt- RPM PM 

vel 1 0.02 0.1 -0.14 -0.04 -0.11 -0.23 -0.14 -0.15 -0.15 -0.21 -0.1 -0.11 -0.05 0.77 -0.23 

acc 0.02 1 0.91 0.64 0.61 0.02 -0.22 0.31 0.27 0.24 -0.18 0.11 0.08 0.09 -0.02 0.22 

acc- 0.1 0.91 1 0.27 0.72 0.02 -0.1 0.22 0.18 0.15 -0.07 0.09 0.04 0.09 0.05 0.11 

acc+ -0.14 0.64 0.27 1 0.09 0.01 -0.32 0.32 0.31 0.29 -0.28 0.09 0.11 0.04 -0.13 0.31 

jerk -0.04 0.61 0.72 0.09 1 0.46 0.01 0.08 0.06 0.05 0.02 0.28 0.19 0.23 -0.13 0.13 

jerk+ -0.11 0.02 0.02 0.01 0.46 1 -0.09 -0.04 -0.05 -0.05 -0.08 0.28 0.3 0.14 -0.12 0.17 

grade -0.23 -0.22 -0.1 -0.32 0.01 -0.09 1 0.68 0.65 0.61 0.94 0.01 0.02 -0.01 -0.3 0.27 

fuel -0.14 0.31 0.22 0.32 0.08 -0.04 0.68 1 0.96 0.91 0.69 0.09 0.07 0.08 -0.22 0.48 

fuel
2
 -0.15 0.27 0.18 0.31 0.06 -0.05 0.65 0.96 1 0.99 0.67 0.09 0 0.13 -0.21 0.45 

fuel
3
 -0.15 0.24 0.15 0.29 0.05 -0.05 0.61 0.91 0.99 1 0.63 0.08 -0.03 0.14 -0.2 0.41 

VSP -0.21 -0.18 -0.07 -0.28 0.02 -0.08 0.94 0.69 0.67 0.63 1 0 0.01 -0.01 -0.26 0.27 

dfdt -0.1 0.11 0.09 0.09 0.28 0.28 0.01 0.09 0.09 0.08 0 1 0.69 0.82 -0.13 0.42 

dfdt+ -0.11 0.08 0.04 0.11 0.19 0.3 0.02 0.07 0 -0.03 0.01 0.69 1 0.17 -0.13 0.64 

dfdt- -0.05 0.09 0.09 0.04 0.23 0.14 -0.01 0.08 0.13 0.14 -0.01 0.82 0.17 1 -0.08 0.07 

RPM 0.77 -0.02 0.05 -0.13 -0.13 -0.12 -0.3 -0.22 -0.21 -0.2 -0.26 -0.13 -0.13 -0.08 1 -0.26 

PM -0.23 0.22 0.11 0.31 0.13 0.17 0.27 0.48 0.45 0.41 0.27 0.42 0.64 0.07 -0.26 1 

 




