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ABSTRACT OF DISSERTATION 

 

Numerical Study of Freestream Waves Receptivity and Nonlinear Breakdown 

 in Hypersonic Boundary Layer 

by 

 

Jia Lei 

Doctor of Philosophy in Aerospace Engineering 

University of California, Los Angeles, 2013 

Professor Xiaolin Zhong, Chair 

 

 

Laminar-turbulent transition prediction in hypersonic boundary layer remains one of 

the most challenging topics in the design of hypervelocity vehicle. It requires thorough 

understanding of the physical mechanisms underlay freestream wave receptivity and 

nonlinear breakdown process. Freestream wave receptivity concerns the evolution of 

freestream disturbance passing through the shock and exciting the boundary layer normal 

modes that eventually become unstable. Nonlinear breakdown focuses on the study of the 

relevant mechanisms in the secondary instability region that leads to laminar-turbulent 

transition. These two topics have been extensively studied separately for decades. 

Significant progress has been made in terms of understanding how the instability waves 

form and develop in the early region as well as what are the viable paths from breakdown 

to turbulent. However, the linkage between receptivity and breakdown is still not well 
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understood. The nature transition process commonly observed in hypersonic boundary layer 

consists of the following ingredients: freestream wave receptivity, linear growth, secondary 

instability and breakdown to turbulent. The transition location highly depends on the 

freestream wave disturbance profile. In order to attain a better understanding of the 

natural transition process, it is necessary to conduct a complete simulation from freestream 

wave receptivity all the way to nonlinear breakdown. This kind of simulation is considered 

beyond the capability of current computer power. The objective of current research is to 

devise a new three-step approach to simulate the flow from receptivity process to 

breakdown. In order to achieve the goal, direct numerical simulations (DNS) are performed 

over various freestream conditions and cone geometries to investigate the hypersonic 

boundary layer stability, freestream wave receptivity and nonlinear breakdown. In the 

study of nose bluntness effect on hypersonic boundary layer stability, three cone models 

with different nose radii are investigated by linear stability theory (LST). It is found that, if 

only considering the second-mode instabilities, the onset of instability is always delayed as 

the nose bluntness increases. In the effort to simulate the entire process from freestream 

wave receptivity to nonlinear breakdown, a new approach is applied to break the 

simulation into three steps: meanflow calculation, linear receptivity simulation and 

nonlinear breakdown simulation. Extensive case studies demonstrate that it is feasible to 

simulate the flow from receptivity to breakdown using our new simulation approach. From 

the breakdown simulations, it is found that the breakdown is the result of fundamental 

resonance that occurs between the two-dimensional second-mode wave and their three-

dimensional modes. In the secondary instability growth region, the two-dimensional and 

three-dimensional modes need to attain the same amplitude level for the breakdown to take 

place.  
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 1.  Introduction 

1.1. Historical Background 

A reliable prediction of laminar-turbulent transition of hypersonic boundary layers is 

critically important to the development of hypersonic vehicles that are to be used for rapid 

global access[1]. Boundary layer transition has first-order impact to aerodynamic heating, 

drag and control of hypersonic vehicles. Extreme heat transfer from flow to body structure 

is arguably the prime constraint in the design of hypersonic aircraft. Great success has 

been achieved in predicting heating rates in laminar and fully turbulent flow region, but 

accurate prediction in a transitional region remains elusive. Uncertainty in heat transfer 

rate requires large factors of safety to be used in current vehicle designs. Improved 

computational accuracy could lead to significant improvements in hypersonic vehicle 

performance by allowing the removal of unnecessary weight in the thermal protection 

system.  

The success of transition and related heating prediction relies on the good 

understanding of the relevant physical mechanisms leading to transition. In spite of 

considerable efforts in experimental, theoretical, and numerical studies, many critical 
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physical mechanisms underlying hypersonic boundary-layer transition are still poorly 

understood. Engineering design of hypersonic vehicles has mainly been based on transition 

criteria obtained by empirical correlations of experimental data. The ne  method, which 

predicts boundary layer transition based solely on linear stability theory, is by far the most 

successful physics-based prediction method for transition prediction. Nevertheless, the n
e  

method suffers from a major drawback that it does not consider the effects of receptivity of 

the boundary layer to freestream disturbances, surface roughness, or other perturbation 

sources. In reality, the transition location is very sensitive to the level of forcing 

disturbances [2].  

Receptivity of low-speed incompressible boundary layer flows has been extensively 

studied in the last three decades[2]. However, there have been only a limited number of 

theoretical [3-9], experimental[10-12], and computational [13-24] studies on the receptivity 

of compressible boundary layers. The different paths from receptivity to transition of 

boundary layer flow are shown in Fig. 1. Path A is considered the most common path to 

transition; and it is the path that we consider in the current study. This path consists of 

receptivity of linear freestream wave disturbance, unstable normal-mode growth and 

secondary instability, and nonlinear breakdown to transition. Fedorov et al. [3-6, 25, 26] 

showed that the receptivity mechanisms of supersonic and hypersonic boundary-layer flows 

are essentially different from those of subsonic and relatively low supersonic flows. 

Specifically, they found that two boundary-layer wave modes, which were termed mode F 

(mode 1) and mode S (mode 2), can be synchronized with the fast and slow acoustic waves 

in the leading edge region, respectively. Note that the mode F and mode S were adopted in 

more recent year to standardize the terminology. Mode 1 and Mode 2 were used in Ma’s 
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original paper. Secondly, Mode F can be synchronized with external entropy/vorticity waves 

with a phase speed equal to free-stream velocity.  Third, there is a synchronization point 

between Mode F and S near the Branch I of the second-mode neutral stability point.  

 

 

 

Fig. 1. Paths to boundary layer transition in terms of freestream wave disturbance 

amplitude [27]. 

 

The main features of the supersonic boundary-layer normal modes analyzed by Fedorov 

et al. were in qualitative agreement with Zhong’s numerical simulation [13, 14, 16]. It was 
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shown that both Mode F and the first Mack mode can convert to the unstable second Mack 

mode in numerical simulations. It was also shown that the receptivity leads to the 

excitation of both Mack modes and a family of stable modes, i.e., mode I, mode II, etc. The 

forcing fast acoustic waves do not interact directly with the unstable second Mack mode. 

Instead, the stable mode I waves interact with both the fast acoustic waves near the leading 

edge and the unstable Mack-mode waves downstream. Through this two-step interaction 

process, the stable mode I waves transfer wave energy from the forcing fast acoustic waves 

to the second Mack-mode waves inside the boundary layer. These receptivity studies have 

led to a better understanding of the hypersonic boundary receptivity mechanisms for 

instability modes. The receptivity results can be coupled with a nonlinear breakdown in the 

DNS of hypersonic boundary layer transition. 

 Since 1990s, significant progress has been made by several research groups in DNS 

studies of fundamental mechanisms leading to nonlinear breakdown and transition in 

supersonic and hypersonic boundary layers [28-32]. In DNS studies, the full 3-D Navier-

Stokes equations are applied to simulate the development and nonlinear interaction of the 

disturbances waves. A number of transition related mechanisms have been identified and 

studied. In some cases, flow field was simulated up to the beginning of turbulence. Detailed 

information on the formation and evolution of transitional flow structures, as well as 

average heating rates and skin friction, could be obtained by the simulation. It was found 

that the transition mechanisms for supersonic boundary layers include secondary 

instability of either sub-harmonic or fundamental resonances [33]. By using DNS, Thumm 

[34] and Fasel et al. [35] discovered a new breakdown mechanism for a boundary layer at 

Mach 1.6, which they termed oblique breakdown. This breakdown to turbulence is initiated 
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by the nonlinear wave interaction of two oblique instability waves with equal but opposite 

wave angles. The mechanisms have also been confirmed by many researchers, including 

Chang and Malik [36]. For supersonic flows, it was shown that oblique breakdown leads to 

a more rapid transition than other secondary instability mechanisms. It also requires much 

lower threshold disturbance amplitudes for the nonlinear development [37]. For these 

reasons, oblique breakdown has been suggested to be of practical importance for supersonic 

transition in low-disturbance environments [38, 39].  

Husmeier and Fasel [40] did DNS studies of secondary instability mechanisms of 

hypersonic boundary layers over cones with a circular cross section. The computational 

domain is a cut-out section of the whole flow field (Fig.2). Though hypersonic boundary 

layer is most unstable to second-mode two-dimensional waves, their investigations 

indicated that secondary instability mechanisms involving two-dimensional waves appear 

to be of lesser importance in the nonlinear stages of breakdown. Instead, second-mode 

oblique waves at small wave angles, which are almost as amplified as second-mode two-

dimensional waves, were found to dominate the nonlinear behavior. It seems that further 

studies are necessary in order to confirm this conclusions because extensive experimental 

results have pointed to the dominant of 2-D second mode before transition in hypersonic 

boundary layers [41, 42]. 

 

Fig.2. Computational domain used in Husmeier and Fasel’s DNS simulation [40]. 



- 6 - 

 

 

For hypersonic boundary layer transition, Pruett and his colleges did spatial DNS of 

hypersonic boundary layers of Mach 8 flow over a cone of eight-degree half angle [28, 29, 

43]. The transitional state was triggered by a symmetric pair of oblique second-mode 

disturbances whose nonlinear interactions generate strong streamwise vorticity, which 

leads severe spanwise variations in the flow and eventual laminar breakdown. In their 

simulations, the PSE method was used to compute the weakly and moderately nonlinear 

initial stages of the transition process and, thereby, to derive a harmonically rich inflow 

condition for the DNS. The strongly nonlinear and laminar-breakdown stages of transition 

were subsequently computed by well-resolved DNS.  

  

1.2. Current Challenges in Hypersonic Transition Simulation 

Because of the difficulties in conducting hypersonic experiments and the complexity of 

hypersonic flows, fundamental hypersonic studies have been increasingly relied on the use 

of direct numerical simulations (DNS). In order for a DNS technique to perform reliable 

“numerical experiments”, it is necessary to develop and validate high-order accurate 

numerical algorithms suitable for highly accurate simulation of transient high-speed flows. 

So far, Zhong’s hypersonic CFD group at UCLA have developed and validated a high order 

DNS method and computer code for the DNS studies of hypersonic boundary layer stability 

and receptivity over various body geometries [44-47]. They have done many successful 

studies on the receptivity and stability for a number of 2-D and 3-D hypersonic flows over 

blunt bodies and flat plates [13-21]. These numerical simulations have led to a better 

understanding of hypersonic boundary layer receptivity and stability physics. 
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As mentioned in section 1.1, most of the previous hypersonic boundary layer transition 

simulation studies were not linked to practical disturbance environment. Only theoretical 

or artificial forcing waves were used primarily by means of blowing and suction hole to 

study the transition mechanisms. To date, with the exception of Rai and Moin [48], almost 

all other numerical experiments have simulated controlled rather than natural occurring 

instability processes. In a controlled experiment, instability waves of a particular 

wavelength or frequency are excited by imposed forcing. In contrast, in natural transition, 

the input contains a continued frequency and wave number spectra, and the flow selects the 

preferred instability modes. A few of the cited simulations are hybrid in the sense that the 

primary instability wave is imposed, whereas secondary instability is triggered by low-level 

noise [49, 50]. 

Due to the enormous requirements on computation resources, full scale DNS studies of 

boundary layer transition from the leading edge receptivity process to the breakdown in 

transition are impossible to accomplish.   All the current DNS works have been limited to 

idealized cases of boundary layer response to artificial imposed forcing waves. So far, the 

complete process of laminar-turbulent transition from leading edge to the beginning of 

transition has not been computed by direct numerical simulation. Such a task has been 

commonly regarded as beyond the capability of currently available computer powers. On 

the other hand, if possible, such simulation can make a significant impact on the state on 

current transition research because the effects of freestream disturbance on transition can 

be analyzed. It is realized that an innovative approach is required to tackle this challenge. 

Therefore, the purpose of current research is to develop, demonstrate, and validate a new 

approach to numerically simulate the complete process of hypersonic boundary layer 
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transition. Such simulation tool can be valuable in the prediction of surface heat transfer 

rates in transitional hypersonic boundary layers.  

 

1.3. Research Objectives and Plan 

Since the transition in hypersonic boundary layer flow highly depends on the 

freestream wave disturbance profile in both the amplitude level and spectrum, it is 

necessary to link the freestream wave receptivity to breakdown study so that the complete 

transition picture can be better understood.  Therefore, the objective of current research is 

to devise a new three-step approach to simulate hypersonic boundary layer flow from 

freestream wave receptivity process to nonlinear breakdown and use this simulation 

framework to study the hypersonic boundary layer transition. It is expected that the 

success of this kind of simulation will help us in understanding the flow physics and 

breakdown mechanisms during the hypersonic boundary layer transition process. Once this 

framework is established successfully, it can be applied to more general transition studies.  

During the framework development of current research, several research topics are 

emphasized.   Nose bluntness effects play important roles in the transition of hypersonic 

boundary layer. But the physics behind it is not well understood. Hence, the nose bluntness 

effects on the flow stability over cone configurations will be studied using the numerical 

and theoretical tools. The purpose is to understand how the nose bluntness of cone changes 

the stability characteristic of boundary layer flow. Subsequently, the linear receptivity to 

freestream wave will be studied by numerical simulations to understand the receptivity 

process in the nose region and how the instability modes excite and develop within the 

hypersonic boundary layer. Lastly, the linear receptivity response library will be used to 
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construct the inflow conditions for the final nonlinear breakdown simulations so that the 

relevant breakdown mechanisms can be investigated. The ultimate goal is to establish a 

framework to simulate the hypersonic boundary layer transition by directly linking the 

freestream receptivity process to the nonlinear breakdown.   
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 2.  Governing Equations and Numerical Methods   

In this chapter, the numerical tools that are utilized for the current study are presented 

in detail. Both the two-dimensional freestream wave receptivity and three-dimensional 

nonlinear breakdown are investigated by numerical simulations. The steady flow solution is 

computed using the same program and setup as the two-dimensional receptivity case with 

the freestream wave disturbance level set to zero.  Grid convergence studies are performed 

to ensure the accuracy of the steady base flow.  The linear stability analysis numerical tool 

is developed based on the classical linear stability theory (LST). The LST analysis uses the 

steady flow result as base flow solution.  The LST decomposes the boundary layer 

perturbation into normal modes so that the stability characteristics of boundary layer flow 

can be identified. It provides theoretical solution to predict the behavior of the disturbance 

within boundary layer and can be use to validate the numerical simulation where the 

development of disturbance are calculated using full governing equations. The unsteady 

flows are simulated numerically using the high-order shock-fitting method coupled with 

high-order finite difference upwind scheme to attain a uniformly high-order and high 

accurate flow solutions. The numerical program has the capability to conduct both two-

dimensional and three-dimensional flow filed simulation. The current numerical program is 
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also capable of performing parallel computation on any super computer that has message 

passing interface (MPI) architecture.   

 2.1. Governing Equations  

The governing equations are the compressible three-dimensional Navier-Stokes 

equations, which can be written in the following conservative variables form: 

   
* **

0
* * *

j vj

j j

F FU

t x x

 
  

  
                                                      

(1)      

 

where 
* * * * * * * *

1 2 3* ( , , , , )U u u u e    , and superscript * represents dimensional 

variables. Cartesian coordinates are denoted by 
* * *

1 2 3
( , , )x x x  in tensor notation. For the 

current simulation study of axisymmetric flow over circular cones, 
*

1
x  is the coordinate 

along the centerline of the cone pointing toward the downstream direction. 
*

2
x  and 

*

3
x  are 

the coordinates perpendicular to each other are along the radius directions of circular cross-

section of cone point outward. The origin of coordinate is co-located with the center of 

spherical nose. In later simulation result coordinates ( , , )x y z  will be used in place of 

* * *

1 2 3
( , , )x x x  for convenience. The F* s are inviscid and viscous flux terms that can be 

expanded as 
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3

*

0

j
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j

jk k

T

x j

F vj

u K














 
 
 
  
 
 
 
 
  

.                                  (2) 

In eq. (2),  is Kronecker delta and only ii  equals to 1. K is the heat conductivity coefficient 

and 
ij

 is the viscous stress tensor that can be expanded as  

2

3

ji n
ij ij

j i n

uu u

x x x
   

  
       

,                                                (3) 

where   is the viscosity coefficient. Where both K and   can be calculated by empirical 

Sutherland’s Law as: 

 

3 2

r s
r

r s

T TT

T T T
 

  
  

 
                                                       (4) 

Pr

pc
K


                                                                  (5) 

K is related to   by eq. (5) with an assumed constant Prandtl number, Pr, of 0.72; and  pc  

is the specific heat at constant pressure. In eq. (2) the e is the specific total energy that can 

be written as 
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2 2 2

1 2 3( )
2

ve c T u u u


                                                        (6) 

where  vc  is the specific heat at constant volume.  

In current study, even the freestream flow Mach numbers of study cases are around 6, 

the freestream temperature and pressure are relatively low. Even the temperature of the 

flow the shock jumps substantial but is still well below 1000K. Therefore, the thermal and 

chemical effects are not very significant. To simplify the gas model and place our focus only 

on the receptivity and transition mechanisms, we assume the air gas is thermally and 

calorically perfect such that the following ideal gas model in eq. (7) can be applied. 

p RT                                                                    (7) 

To make the problem well-posed, the appropriated boundary conditions are needed. At 

the cone body and flow interface, the non-slip conditions are enforced for velocity. Either 

isothermal or adiabatic wall condition is used for temperature at the cone surface. At the 

shock, since the shock-fitting method used for current simulation study, the shock boundary 

conditions are determined by Rakine-Hugoniot relation and characteristic compatibility 

relation. The detail on how the flow variables attain will be explain in section 2.3. The 

inflow conditions for flow over cone can be the same as shock boundary conditions or 

specified by the flow conditions at the exit of the preceding computational domain. For the 

outflow, a high-order extrapolation is deployed to attain the flow variables at the last grid 

points across the exit of computational domain.  
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 2.2. Coordinate Transformation 

For the circular cone geometry in the test cases use for current study, the curvilinear 

body fitted grids are used.  The curvilinear coordinate system is denoted by  , ,   .  is 

the coordinate along the cone surface in the streamwise direction.   is the coordinate in 

the wall-normal direction pointing away from boundary layer.   is the coordinate in the 

spanwise direction of the cone.  The Cartesian coordinates and curvilinear coordinates are 

illustrated in Fig. 3 using two-dimensional grid over a blunt cone as example. 

 

Fig. 3. Schematic of 2D grid near the leading edge of a blunt circular cone. 

 

 

  

  
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In order to make the numerical method formulations independent of grid, a coordinate 

transformation is needed to connect the Cartesian coordinates and curvilinear coordinates. 

To completely distinguish these two coordinate systems in formulations, a temporal 

coordination is also included denoted by   . The coordinate transformation relations can be 

expressed as the following:  

 

 

 

 

 

 

, , , , ,

, , , , , ,

, , , , ,

x y z x x

x y z t y y

x y z z z

t t

     

     

     

 

   
 

  
 

  
   

                                           (8) 

Due to the nature of shock fitting method, the girds in   coordinate is adjusted in each 

time based on the shock height, therefore,   is a time dependent function.  With the 

transformation relation established, their derivatives can be worked out using the chain 

rule of derivative. 

0 0
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







                      (9) 

For convenience, we further define the Jacobian of the transformation metrics as  

 

     
1

B x y z y z x y z y z x y z y z
J

                     .                    (10) 

 

With the coordinate transformation in place, the governing equations can be rewritten 

in  , , ,     coordinate system into the following format: 
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 1

31 2
ˆˆ ˆ1

0
JFF FU

U
J     

 
    

    
.                                          (11) 

And, the flux terms, F̂ , are related to the flux terms in Cartesian system, F , by 

 

1 1ˆ i i
i j

j

F F U
J x J t

  
 

 
,                                                      (12) 

where the  i

jx




 terms are calculated using the Jacobian in the following equations. 

 

 

 
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  

       
  
  
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                  (13) 

The i

t




terms are all zero except for t , which changes as the shock moves. 

yx z
t J x y z

J J J
  

 


     
        

     

                                      (14) 

These coordinate transformation formulas are generally applicable to any computations 

using shock-fitting method. It can be easily adapted to any flow geometry like flat plate, 

wedge or airplane wing. The advantage is to reduce the complexity to modify the numerical 

scheme formulations for a specific grid setup. With the coordinate transformations, we can 

apply non-uniform grids to increase the resolution in the area where the flow physics is 

critical to current research without a whole lot of efforts in code modification. 
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 2.3. Shock-fitting Method  

The high-order shock-fitting scheme is modified from the one originally developed by 

Zhong [45] to accommodate a newly developed fresstream pulse model used for the 

receptivity simulation of freestream wave disturbance in current study. The advantage of 

this method as compared to traditional shock capturing method is that, it can achieve 

uniform high-order, so that the shock location can be accurately located. The shock-fitting 

method treats the shock as the boundary of numerical simulation domain so that the 

discontinuity across the shock is avoided.  The shock variables, namely shock height and 

shock speed, coupled with flow variables behind the shock are solved by Rakine-Hugoniot 

relation and the characteristic compatibility relation.  

The Rakine-Hugoniot relation in the direction normal to the shock boundary can be 

written as:  

   

 , ,

0 where

x y z

s

s s s t

t
t

l
JF F l U U l

l
J

  


 


 


     





                              (15) 

s denotes the quantity behind shock and ∞ denotes the quantity in front of shock. F is the 

flux vector along the   grid line. The jump conditions across the shock can be computed by 

the following equations: 

 22
1 1

1
s np p M




 

 
   

 
,                                                  (16) 
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( )ns n n n

s

u v u v





   ,                                                 (18) 

( )s ns nu u u u n    ,                                                  (19) 

ts nu u u n   .                                                       (20) 

In the above equations, if the shock speed, nv , is given, the other flow variables behind the 

shock can be computed. The shock normal velocity, nv , can be obtained from the 

characteristic compatibility relation behind the shock. Apply compatibility relation to eq. 

(11), we get 
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31 2
ˆˆ ˆ
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 

,                                  (21) 

where L  is the left eigenvector for the corresponding eigenvalue gnvnu c    of Jacobian 

matrix B F U   right behind the shock.  
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By taking the derivative of Rakine-Hugoniot relation and apply the compatibility relation, 

the equation becomes: 

gn
( v )) (t s

n s
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Where  sA  can be expanded into 
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In eq. (22), 
gn

v  is the velocity for the grid point at the shock in the shock normal 

direction. t
l






 can be related to the shock acceleration, H , by t

l
aH b






  , where a and b 

can be computed from grid metrics. And, sU






 can be calculated from eq. (11) in section 2.2. 

Finally, at the shock boundary point, the following system of ODEs is solved 

simultaneously at each simulation time step. 
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                                 (24) 

In eq. (24), the H is the shock height measured normal to the cone surface. The first 

equation in the system of ODEs is the symbolic representation of another system of 

equations that are used to solve for the flow variables in the interior grid points.   
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 2.4. High-order Finite Difference Method 

In order to achieve high accuracy results in steady base flow solution and receptivity 

simulation, low dissipation numerical scheme is required. Especially for the receptivity 

simulation, the wave perturbation is usually very small. Low-order finite difference scheme 

is so dissipative that the perturbation could be damped out numerical. Therefore, in solving 

the governing equations, the spatial derivative terms are treated using high-order finite 

difference scheme with the exception in the spanwise direction. The derivatives in spanwise 

direction of the cone are calculated using Fourier spectral method due to its periodic nature. 

In our program, we use fifth-order upwind scheme on the inviscid flux terms and sixth-

order central difference scheme on the viscous flux terms. 

To calculate the spatial derivatives of inviscid flux, 
ˆ
i

j

F






 in the governing equations, the 

Lax-Friedrichs flux splitting scheme is utilized. This flux split scheme splits the flux term 

into two terms corresponding to its positive and negative eigenvalues. Hence, the inviscid 

flux can be written into 

F F F   .                                                           (25) 

For simplicity, the eigenvalue is chosen so that it is always equal or greater than its local 

maximum eigenvalue of F  as shown below: 

 

  2 2c u c
J


 


                                              (26) 
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The parameter  is inserted to ensure the smoothness of the flux splitting. c is the speed of 

sound at the grid point; and u can be computed using the following equation: 

x y z tu v w
u

   



  



.                                                (27) 

Once the   is determined, the inviscid flux can be split as 

 
1

2
F F U                                                      (28) 

 
1

2
F F U                                                      (29) 

So that the F  flux vector only contains positive eigenvalue and F term only contain 

negative eigenvalue. After the flux is split, the derivative is taken on each term 

individually. The 
ˆ

i

j

F





is approximated using 7 points upwind stencil finite difference 

formula and similarly, the 
ˆ

i

j

F





is approximated using 7 points downwind stencil finite 

difference formula. The explicit equation is provided as following: 

3

3

1
H.O.Ti j i j

ji i

q
a q

hb
 




 


 ,                                             (30) 

 

Where the coefficients for finite difference scheme are provided as: 
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
 

.                                                           (31) 

 h is the spatial grid size, which is always 1 in transformed coordinate. H.O.T is the 

acronym for higher order terms, which is ignored without affecting the order of accuracy of 

numerical scheme.    is a free parameter used to control the weight of the upwind scheme. 

The optimal value of   is determined experimentally so that the solution is less dissipative 

but at the same time numerically stable enough.   needs to be a negative number to make  

eq. (30) a upwind scheme.  

The viscous flux terms contain second order derivative and the following six-order 

central difference scheme is deployed: 

2 3

2 2
3

1
H.O.Ti j i j

ji

q
b q

ch
 




 


 ,                                      (32) 

Where  

3

2

1

1

17

2

135

245

90

i

i

i

i

b

b

b

b

c









  

 

  




.                                                             (33) 
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With this high-order finite difference scheme for all the interior grid points and the high-

order shock-fitting scheme for the points along the shock boundary, a unified high-order 

numerical simulation code is set up.   

The time advancement is calculated by Runge-Kutta method. Both RK-1 and RK-3 are 

implemented in current program. Further investigation reveals minimal accuracy 

improvement using RK-3 over RK-1 mainly because the flow stability requirement 

overwhelms the numerical stability requirement for time step. Therefore, only RK-1 is used 

for all the simulations.  This high-order simulation program serves as the cornerstone for a 

series of receptivity and stability simulation studies over variety of test cases with different 

geometries and flow conditions; and has been proven successfully and accurately on those 

studies [13, 14, 16, 17, 19, 20, 51-57]. 

 2.5. Linear Stability Theory 

The linear stability theory (LST) is used to perform theoretical study of the instability 

modes in the boundary layer of hypersonic flow over blunt cones in this paper.  The linear 

stability equations used to solve for the theoretical stability mode solutions are derived 

from the full Navier-stoke equations as presented in eq. (1). Further, we represented the 

flow solutions by their mean value and perturbations as shown below: 

( , , ) ( , , , )q q x y z q x y z t  .                                                   (34) 

Where , , , , , , ,q u v w p T K  . q is the steady base flow value of flow filed and q is the 

linear perturbation of flow variable which is time dependent. If eq. (34) is substituted into 
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eq. (1), the mean flow solution can be cancelled out. The remaining terms in the equations 

can be linearized by dropping the higher order perturbation terms and written into: 

2 2 2

2 12

2 2

2 2

2 2

2 2

( ) /
Re

1

1 1

u u dU u p u v w
U v W T l l

t x dy z x x x y x z

u u d dT u v

y z dT dy y x

d U dU T d dT dU
T T

dT y dy y dT dy dy







 

 

        
         

         

    
    
    

   
    

   

            (35) 
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    

                  ( 36) 
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    
    

   
    

   

        (37) 
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          ( 39)                                          

Where il i 


  . To apply the LST, the perturbation amplitudes are assumed to be small 

so that they do not interact non-linearly with each other. The normal mode of a disturbance 

is assumed to have the following form: 

( )ˆ( ) i t s

nq q y e                                                               (40)   

                                                            

where q  can be any dimensionless flow variable such as velocities, temperature, density 

and pressure, all of which are normalized by the freestream quantities.  q̂  is the mode 

structure representing the complex amplitude of the disturbance. The eigenfunction is 

considered a function of y only because for the boundary layer flow, the wavelength in 

streamwise direction is much shorter that in wall-normal direction so that the variations in 

streamwise direction is ignored. In the spatial stability theory,  , the dimensionless 

angular frequency of a normal disturbance mode, is set to be a real number.  r ii     is 

the stream-wise complex wave number non-dimensionalized by L* . The imaginary part of 
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wave number represents the spatial growth rate of a specific disturbance mode. When i  is 

negative, the disturbance becomes unstable. The real part of wave number r  is the spatial 

wave number. By substituting eq. (40) into eq. (35)-(39), the system of equations can be 

reduced into a matrix form: 

2( ) 0AD BD C                                                        (41) 

And ˆˆ ˆ ˆ ˆ[ , , , , ]u v p T w  . Also, in the matrix notation D=d/dy. A, B and C are matrices that 

turn the system of equations into an eigenvalue problem. In our LST code, we use a multi-

domain spectral method that was originally derived by Malik [58] to solve for the 

eigenvalue and its corresponding eigenvector.  

An important quantity that can be extracted from r  is the non-dimensional phase 

velocity, which is defined as 

                                                              
r r

FR
a



 
                                                               (42) 

 

In the above equation, the dimensionless phase velocity, a , is normalized by the free-stream 

velocity. F is the dimensionless frequency that is related to the dimensional angular 

frequency by, 

                                                                

* *

* 2
F

u

 



                                                                (43) 

 

R is local Reynolds number based on the length scale of boundary layer thickness and *s is 

the curvilinear coordinate along the cone surface as measured from the nose. 
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                                                                (44) 
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s
L

U






 

                                                               (45) 

 

One of the most common applications of LST analysis in predicting the laminar-

turbulent transition is to calculate the N factor based on a semi-empirical method called the 

Ne method.  According to the theory, when the amplification of the disturbances reaches 

certain levels, transition will occur. The ratio of the amplitude of disturbance waves with a 

fixed frequency can be calculated as they travel downstream. Since the growth rate varies 

from location to location, the amplitude ratio between two locations can be expressed as the 

following integral:  

 

*

*
0

*

0

1
exp

s

N

s

A dA
e ds

A A ds
                                                     (46) 

or, just for the N factor, 

*

*
0

* *

s

i

s

N ds                                                          (47) 

In eq. (46), 
*

0s corresponds to the location that the disturbance just becomes neutrally 

stable (also called branch I instability point). By computing this integral, we know how 

much the amplitude for a specific disturbance changes as it moves downstream. On the 

other hand, the N factor leading to transition is correlated to the experimental 

measurement. The N factor is not unique for all the cases: it depends on the flow conditions, 

object geometry, amplitude of freestream disturbance and other unknown parameters.  
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Even in one single case, the N factor differs when different unstable modes are considered. 

Here, the different unstable modes refer to the first mode and the second mode introduced 

by Mack [59]. In general, the N factor for the first mode is smaller than the one for the 

second mode. It should be noted the main focus of the paper is on the stability and N-factor 

calculations of the two-dimensional (axisymmetric) second mode for the current test case. 

Even though the three-dimensional first-mode instability is responsible for the transition at 

a lower Mach number flow, extensive theoretical analysis, numerical simulations and 

experiments have shown that, for higher Mach number flows (M > 4), the axisymmetric 

second-mode instability is the most dominant unstable mechanism in the hypersonic 

boundary layer [23, 60]. The current paper only focuses on the second-mode instability, 

which is most amplified when the disturbance is axisymmetric [59, 61]. 

 2.6. New Three-Step Approach to Link Receptivity and Breakdown Simulations 

Currently, a complete direct numerical simulation that computes hypersonic boundary 

layer flow from freestream wave receptivity all the way to transition is considered 

impossible due to the limitation on computation power.   We propose to tackle this problem 

by using an innovative approach that separates the linear receptivity simulation from the 

nonlinear breakdown simulation. By this way, we are able to make the computational cost 

manageable through breaking the whole simulation study into three steps. The schematic 

of the simulation procedure is presented in Fig. 4 shown below. 
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Fig. 4. Schematic of proposed simulation procedures to non-linear breakdown.  

 

 Step I: Meanflow Calculation. The high accuracy mean flow solution without any 

freestream disturbance is obtained using our high-order shock-fitting code. This 

is done with multiple zone approach that partitions the whole computational 

domain into many subzones along the cone surface into shorter subzones and 

marching the solution downstream as long as we needed. Once the meanflow 

solution is obtained, we can apply linear stability theory to study the stability 

property of flow and determine the relevant frequency range of the unstable 

modes that need to be captured in the subsequent linear receptivity simulations. 

 

 Step II: Linear Receptivity Simulation. In step two, the linear receptivity 

simulations are carried out using different types of freestream disturbances: fast 

acoustic wave, slow acoustic wave, entropy wave, or vorticity wave. The 

disturbance waves are imposed into the freestream flow in front of the shock. In 

the receptivity simulation of each type of freestream wave disturbance, multiple 
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frequencies are imposed to cover the complete freestream wave disturbance 

spectrum. Depending on what model is used, the disturbance spectrum can be 

either discrete or continued. More detail will be provided when the freestream 

wave models are introduced in next chapter. Because different type of 

freestream wave behaves differently during the receptivity process. It is 

recommended to just use one type of disturbance in each receptivity simulation. 

Since the imposed wave is linear, the receptivity results can always be 

superimposed later to represent the aggregated response of all types of 

disturbance waves imposed simultaneously.  

The receptivity simulation will be carried all the way to the end of the linear 

growth region, where substantial second-mode instability can be observed. This 

flow unstable location can be estimated by LST analysis or by investigation of 

simulation result. From the linear theory, it has been proven that the most 

dominant unstable second modes are two-dimensional wave in nature. That 

means the unstable modes potentially responsible for flow transition can be 

captured using 2-D receptivity simulation. Ideally, the 3-D receptivity 

simulation should be more appropriated. But the 2-D linear receptivity 

simulation is computationally much less expensive than the full scale 3-D linear 

simulation due to the fact that disturbance wave in the simulation is axis-

symmetric. So, a 2-D simulation with significant less number of grid points is 

sufficient. At the exit of receptivity simulation, the receptivity response is 

collected. This information will be used as inflow conditions for the nonlinear 

breakdown simulation in step III.   
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 Step III: Nonlinear Breakdown Simulation. The goal of nonlinear breakdown 

simulation is to understand how the real freestream disturbance wave leads to 

the breakdown in transition. Therefore, upon completion of the receptivity 

simulation, the inflow disturbance for the 3-D nonlinear simulation is re-

constructed based on the receptivity response library obtained from the linear 

simulation to represent the actual freestream disturbance spectrum. The inflow 

boundary condition is obtained from the preceding linear receptivity simulations. 

Fourier decomposition is applied to decompose the disturbance waves into 

frequency spectrum. The inflow disturbance can be from freestream fast/slow 

acoustic wave, entropy waves or combination of all.  The detail formulations are 

presented here to illustrate how this inflow profile reconstruction is performed 

on a 2-D receptivity simulation. The formulations can be easily extended to 3-D 

case as well.  

At the exit of receptivity simulation, the flow quantity time histories are 

recorded at N uniformly spaced sampling times at the last grid points in the 

streamwise direction. At each grid point, any flow quantity can be represented 

by 

,( , ) ( )exit exit kq x y t q t .                                                (48) 

 

Discrete time Fourier decomposition is applied to transform the time 

signal into frequency domain. The transform frequency spectrum can be 

represented by  
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In the above equation,   is the time step and n  is the angular frequency of the 

disturbance wave. The amplitude and phase angle of each n  can be obtained: 

2 2( ( )) Re( ( )) Im( ( ))n n n nQ abs Q Q Q    
                         (50) 
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                                          (51) 

 

The inflow profile can be reconstructed using the ( )nQ   information from the exit 

of previous computation domain. If the desired spectrum is given as ( )D nQ  and 

the actual spectrum is given as ( )a nQ 
  

, define 
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for n=0, N/2. So that, 
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Using these formulations, a more realistic disturbance profile can be constructed 

to represent those from typical experiments. Since the Fourier transform in time 

can be applied to decompose the receptivity response in linear region into 

frequency components, we can re-scale the magnitude of wave disturbance for 

each frequency to match the freestream wave disturbance spectrum in a typical 



- 33 - 

 

experiment. Therefore, the complete transition process due to different 

freestream disturbance profiles can be simulated by using single receptivity 

simulation results. Therefore, we just need to do the receptivity simulation in 

step II once for different freestream spectra and different disturbance amplitudes. 

As a result, for various freestream disturbance profiles, step III is repeated to 

investigate the effects of freestream disturbance levels on the location of 

boundary layer transition.  
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 3.  Computation Cases and Setup  

In this chapter, the detail of flow conditions used in present study and the computation 

implementations for each research topics are provided. As the first simulation case, the flow 

conditions from Stetson’s Mach 5.5 transition experiment conducted in 1967 is utilized.  In 

this experiment, the transition locations were measured on a series of cone models with a 

wide range of nose bluntness, which make this case a good candidate for nose bluntness 

effects study. Cone models with 3 different nose radii are computed. However, this 

experiment lacked of detail stability measurement therefore it is hard to correlate with the 

current numerical results. Because of this shortfall, we decide to adopt flow conditions from 

more recent experiments that are actively studied by other research groups. The TAMU 

Mach 6 quiet tunnel experiment is the best fit because many numerical and theoretical 

studies have been performed based on these flow conditions and test models.  Two cone 

models are computed with two different nose radii and cone shapes. 

For the receptivity and breakdown simulation studies, two different freestream wave 

models are deployed. The first one is a discrete-frequency model that superimposes the 

simple harmonic waves from freestream at selected wave frequencies. This model is very 

effective in the receptivity and stability study, but fails to provide the continued frequency 
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response information that is needed for subsequent breakdown study. Therefore, a 

Gaussian pulse model is devised to account for the need to capture the continued frequency 

response during the freestream receptivity process. Due to difference in the two freestream 

wave models, the computation setups for both receptivity and breakdown simulation are 

adjusted accordingly to complete the numerical studies. The implementations are entailed 

in subsequent sections. 

 3.1. Flow Conditions of Stetson’s Mach 5.5 Case 

In this paper, we use the flow conditions from Stetson’s Mach 5.5 experiment [62] to 

study the nose bluntness effects on hypersonic boundary layer transition. LST analysis has 

been performed on circular blunt cones of three different nose radii [63]. The specific flow 

conditions are: 

 5.468M

  

 
*

7756.56P Pa

 , 

* 174.46T K   

 Wall temperature:    296
w

T K  

 1.4  , Pr 0.72 , 
*

286.94 /R Nm kgK  

 Freestream unit Reynolds number: 
* 6 1

Re 18.95 10 m



   

 Blunt cone half angle: 8  , the freestream flow has a zero angle of attack 

 Parameters in Sutherland's viscosity law: 
*

288
r

T K ,  
*

110.33
s

T K , 
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* 4

0.17894 10 /
r

kg ms


   

In this paper, we simulate both the steady meanflow and the receptivity due to 

freestream wave on cone models with nose radii of 0.156, 0.5 and 1.5 inches. We also use 

the cone with nose radius of 0.156 inch for code testing purpose on the 3-D nonlinear 

breakdown simulation. 

 3.2. Flow Conditions of TAMU Mach 6 Case 

In the effort to collaborate with National Center of Hypersonic Laminar-turbulent 

Transition Research at Texas A&M university, we continue our numerical studies using the 

flow conditions and cone models that the experimental team at TAMU used to develop their 

Mach 6 quiet tunnel, such that the experiment and simulation can assist each other on 

their way to attain a better understanding of the hypersonic boundary layer transition. Fig. 

5 shows the drawing of the flared cone model used by TAMU team on its Mach 6 quiet 

tunnel.  The nominal flow conditions are listed below: 

 5.91M

  

 
*

622.84P Pa

 , 

* 56.35T K   

 Wall temperature:    adibatic wall
w

T   

 1.4  , Pr 0.72 , 
*

286.94 /R Nm kgK  

 Freestream unit Reynolds number: 
* 6 1

Re 9.25 10 m



   

 Blunt cone half angle: 5  , the freestream flow has a zero angle of attack 
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 Parameters in Sutherland's viscosity law: 
*

288
r

T K ,  
*

110.33
s

T K , 

                                                                          
* 4

0.17894 10 /
r

kg ms


  .
 

Using the cone geometry provided by TAMU quiet tunnel experiment team, we perform 

the meanflow calculations on both a flared cone with 0.125 inch nose radius and a straight 

cone with 0.1mm nose radius. The Flared cone case has the exact geometry as in Fig. 5. The 

straight cone case has a much small nose radius compared to straight cone; and the cone is 

straight all the way to the end of cone model. 

 

 

 

Fig. 5. Schematic of flared cone model for TAMU Mach 6 quiet tunnel. 
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 3.3. Freestream Discrete Frequency Model  

For the Stetson’s Mach 5.5 case, a discrete frequency freestream disturbance model was 

used. In this model, it assumes that a planner wave comes from far away that contains 

finite number of frequency components. The disturbance can be fast acoustic, slow acoustic, 

entropy or vorticity wave in nature. In current receptivity simulation, the fast acoustic 

wave was used mainly because it is more efficient in exciting the boundary layer instability 

from previous study.  

( )

1

( , ) , where , , , ,n n n

N
i k x t

n
n

q x t q e q u v w p
   



                                (54) 

 

1) Fast acoustic wave:             c u a    

0    and     
p

s v w u M M 


 


           

2) Slow acoustic wave:           c u a    

        0    and     
p

s v w u M M 


 


            

3) Entropy wave:      c u        

   0    and     u v w p s M  
             

4) Vorticity wave:           c u   

0    and     u w p s v M M 
          
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In the streamwise direction, wave number and frequency can be related by n nc k  ,  

where c depends on the type of disturbance. For fast acoustic disturbance, c u a   ; for 

slow acoustic , c u a   ; and for entropy/vorticity disturbance, c u  . 

This model is very easy to implement and can be changed to any desired type of 

disturbance wave. However, it is not realistic when there is a need to build a receptivity 

response library that ideally should contain all disturbance frequencies in a freestream. 

This drawback spurs us to develop a new and better freestream wave model for current 

research effort. 

 3.4. Freestream Gaussian Pulse Model  

In the numerical study of hypersonic boundary layer transition from freestream 

receptivity to breakdown, we want to exam the linear receptivity response of freestream 

waves for a wide range of frequencies, so that a data base can be built to capture the 

freestream wave response for entire frequency spectrum. In order to do so, we introduce a 

Gaussian pulse that contains a continued frequency spectrum. Depending on the type of 

disturbance, The Gaussian pulse can be applied to acoustic wave, entropy wave and 

vorticity wave as well. The formula of the pulse is the following: 

 
 

2

0

2
( , ) exp , where , , , ,

X x c t
q x t q q u v w p




  

   
 
 

                        (55) 

5) Fast acoustic wave:             c u a    

0    and     
p

s v w u M M 


 


           
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6) Slow acoustic wave:           c u a    

        0    and     
p

s v w u M M 


 


            

7) Entropy wave:      c u        

   0    and     u v w p s M  
             

8) Vorticity wave:           c u   

0    and     u w p s v M M 
          

 

In the streamwise direction, wave number and frequency can be related by n nc k  . In 

eq.(55),   is the parameter that uses to control the band width of the Gaussian pulse. c   is 

the pulse transport velocity which varies to the type of disturbance. In the case of fast 

acoustic wave pulse, c  equals to )( au  . The advantage of using the Gaussian sharp pulse 

model is that the analytical solution exists; so that the freestream wave frequency band 

width can be decided easily.  With all the freestream parameters given, the freestream 

wave spectrum can be represented by 

2

2

( )

( )

nf

c

n

q
Q f e

c











                                                     (56) 

 

 Fig. 6 shows the pulse as function of time for 0.0005  and its frequency spectrum 

assuming unity wave amplitude. This is exactly the same pulse that is used in our TAMU 

Mach 6 case freestream receptivity simulation. 
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Fig. 6. Gaussian pulse function used for freestream fast acoustic wave and its frequency 

spectrum. 
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 3.5. Computation Implementation of Receptivity Simulations 

Due to the fact that two different freestream models are applied to current receptivity 

study, the numerical implementations are slight different. For receptivity simulations in 

general, the multiple zones matching technique is utilized to partition the entire 

computational domain into subzones, so that the computational cost is more manageable. 

However, for this approach, the wave disturbance data need to be collected completely and 

accurately in order to be applied in the next subzones. Different numerical treatments are 

needed to achieve that. 

For the receptivity simulation utilizing the freestream discrete-frequency model, the 

simulation is run based off the forcing period. The forcing period is determined by the 

lowest frequency imposed in the freestream. Multiple forcing periods will be run to ensure 

the flow reaches to steady state. Once the steady state reaches, the last forcing period will 

be recorded at the interface between current subzone and next subzone. At the inflow of 

next subzone, the disturbance time signal is re-created using Fourier series. 

For the freestream pulse receptivity simulation, only single wave pulse is applied to the 

freestream. Therefore, the flow field is in transient state. In order to capture the pulse 

response, the windowing technique is engaged. As the pulse propagates in the downstream 

direction, the window moves with the pulse with shifted time stamp.  The window is kept 

long enough to capture the pulse including its trailing ripple caused by excitation of 

boundary layer modes. The same Fourier series expansion as the discrete-frequency model 

case is applied to re-create the inflow conditions for the next sub zone. 
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 3.6. Computation Implementation of Nonlinear Breakdown simulations 

The implementation of nonlinear breakdown simulation required some modification of 

the computer program used for receptivity simulation. The original program is capable to 

conduct both 2-D and 3-D simulation. But the 3-D simulation only limits to use one quarter 

of the cone, one half of the cone or the whole cone. This is due to the fact that the program 

is implemented in Cartesian coordinate system. However, for the breakdown simulation 

conducted in present study, it is too expensive computationally to use even one quarter of 

cone as computational domain because it required lot of grid points in spanwise direction to 

resolve the breakdown. In order to be able to compute any arbitrary arc angle in spanwise 

direction, an ad-hoc solution is devised. 

The key issue with arbitrary arc angle computational domain is how to treat the 

periodic boundary conditions in the spanwise direction. This problem can be easily resolved 

by transferring the flow variables from Cartesian coordinates to polar coordinates. The flow 

variables involved in the transforms are the velocities and fluxes in Y and Z directions. 

Hence, the following formulas are applied at each time iteration step to convert these flow 

variables into polar coordinates before the spatial derivatives are calculated. 

cos sin

cos sin

T y z

N z y

q q q

q q q

 

 

 


 
 ,                                                     (57) 

where ,iq u F .   is the angle at each grid point in polar system. After the spatial 

derivative operations completes, the derivatives of the flow variables need to convert back 



- 44 - 

 

to Cartesian coordinates in order to correctly calculate the flux to time advancement. And 

the derivatives can be reverted to original Cartesian coordinates by  

cos sin sin cos

sin cos cos sin

y NT
T N

Nz T
T N

q qq
q q

Z Z Z

qq q
q q

Z Z Z

   

   

    
      

      


                 

 .                             (58) 

By using this ad-hoc solution, we are able to change the arc angle of the computational 

domain to any degree and substantially reduce the computational cost of breakdown 

simulation. Furthermore, this modification allows us to perform parametric study in the 

computational domain arc angle effect to the simulation results.  

 3.7. Sponge Layer at the Exit of Nonlinear Breakdown Simulation 

For the nonlinear portion of the unsteady simulation, a sponge layer needs to be added 

to the outflow to avoid spurious reflection and blowing up. The sponge layer 

implementation is modified from the formula by Bodony [64] so that it can be applied to 

current simulation.  In the sponge layer, an additional term is used to force the solution 

toward target values as shown in eq. (59). U is the place holder for any conservative 

variable. ( )A   is a weight function smoothly increases from 0 to 1. The steady flow values 

are used as the reference values in the equation, so that the flow will be forced back to 

laminar state. Fig. 7 shows the test case which the sponge layer is added at the exit of 

computational domain. It clearly demonstrates that the sponge layer damps out the 

disturbance wave smoothly without any numerical reflection.  
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( ) ref
adj

dU dU
A U U

dt dt
                                                             (59)                         

4 /10 50 41
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ref

A e
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u
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                                                                      (61) 
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x x
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
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Fig. 7. Comparison of solutions before and after the buffer is applied. 
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 4. Nose Bluntness Effects on Stability over Cones 

For hypersonic flow over blunt cones, it has been experimentally observed [65] and 

theoretically explained [61] that the location of laminar-turbulent transition moves 

downstream when the nose radii increase within the small bluntness region. This trend is 

reversed when the nose radii are larger than some certain critical values based on 

experimental observations [62, 66]. This phenomenon is known as the transition reversal 

due to nose bluntness. In other words, increasing the nose radius beyond the critical value 

leads to an upstream movement of the location of transition. The downstream movement of 

transition location at small radii can be explained by the reduction of local Reynolds 

numbers owing to the entropy layer created by the nose bluntness. However, there is still 

no satisfactory explanation for the cause of the transition reversal at large nose bluntness.   

Most of the previous studies of bluntness effects on transition were based on linear 

stability analysis, performed on Stetson’s stability experiments of an axisymmetric blunt 

cone in a Mach 7.99 flow [42]. In these experiments, detailed fluctuation spectra were 

documented for disturbance waves developing along the body surface. The freestream unit 

Reynolds number per foot was 62.68 10 . The experimental results showed the disturbances 

in the boundary layer were dominated by the second-mode instability. Significant super 
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harmonic components of the second mode were also observed after the second mode became 

dominant. The cone models used in the experiments were not long enough for transition to 

occur in the boundary layer. As a result, transition reversal phenomenon was not observed 

in these experiments. Compared with hypersonic flow over a sharp cone, second-mode 

instability of the blunt cones appeared at much further downstream locations, indicating a 

stabilization of the boundary layer by small nose bluntness.  

Linear stability characteristics of the boundary layer flow over the same blunt cone 

used in Stetson’s Mach 7.99 experiments have been studied by a number of researchers [61, 

67-70]. Malik et al. [61] computed the neutral stability curve and compared the growth 

rates obtained from linear stability theory (LST) with the experimental results. The steady 

base flow solution was computed using the parabolized Navier-Stokes equations. The 

results showed that the nose blunting effect stabilizes the boundary layer. The linear 

stability analyses predicted a slightly lower frequency for the dominant second mode, but 

much higher amplification rates than the experimental results. Rosenboom et al. [70] did a 

further linear stability study on the effect of nose bluntness on hypersonic boundary-layer 

stability. In their calculations, the cone geometry and flow conditions were the same as 

those used in the Stetson's Mach 7.99 experiments. Three cases of blunt cones with 

different nose radii covering both “small” and “large” bluntness were considered. The 

purpose was to investigate the transition reversal phenomenon at “large” bluntness. By a 

linear stability analysis, Rosenboom et al. confirmed a monotonic downstream movement of 

the second-mode critical Reynolds number as the nose radius increases. Their LST results 

did not show the transition reversal phenomenon observed in experiments at “large” 

bluntness.   
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Extensive experimental data on transition and transition reversal were reported by 

Stetson for Mach 5.5 flow over sharp and blunt cones [62]. Blunt cones, with nose radii 

ranging from 
1

32  to 
1

21  in., were tested; and the transition locations were measured. 

Transition data obtained in these test models is re-plotted in Fig. 8, which shows the 

transitional Reynolds numbers vs. free stream Reynolds numbers based on nose radii, nRe . 

The figure shows a clear transition reversal as nRe increases, with 5
2 10 as the dividing 

line between “large” and “small” nose radii for nRe . These results have a very similar trend 

to the transition reversal results of Softley [66] collected from Mach 10–12 flows over a set 

of “small” and “large” blunt cones as shown in Fig. 8. These surprisingly consistent results 

from two separate experiments motivate us investigate the reversal mechanisms behind it.  

Stetson’s Mach 5.5  case [62] is the primary case of investigation on this topic. This case 

is especially interesting because it was one of a few experiments that revealed a 

phenomenon called transition reversal, which referred to the observation that when the 

nose bluntness reaches a critical value the downward movement of transition location 

reverses abruptly. Cones with three nose radii of 0.156 inch, 0.5 inch and 1.5 inch are 

considered in the current study.  The result in this chapter has also been published in 

Journal of Spacecraft and Rockets in 2011 [63] . 
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Fig. 8. Transition Reynolds number vs. Reynolds number based on nose radius reported by 

Stetson (top) re-plotted from [62] and Softley (bottom). 
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 4.1. Meanflow Calculations 

The steady base flows are computed using a fifth-order shock-fitting scheme with a 

multiple zones approach. In the computational domain, the wall normal direction is 

resolved using 240 grid points with stretching toward the cone surface to ensure that there 

is approximately 100 grid points within the boundary layer. The simulations are carried out 

up to 0.8m, 1.8m and 3.2 m along the cone surfaces for the cases with nose radii of 0.156, 

0.5 and 1.5 inch respectively.  

 In Fig. 9, the Mach number contours for blunt cones with different nose radii are 

shown. As the nose radius increases, the shock layer becomes thicker and a stronger 

entropy layer effect can be observed in the region near the leading nose for the blunter 

cases. The entropy layer gradually merges into the boundary layer further downstream and 

is eventually “swallowed” by the boundary layer. The appearance of an entropy layer is one 

of the characteristics of hypersonic flow over blunt cone. Some studies hypothesized that 

the entropy layer effect would introduce new instability mechanism into boundary layer 

transition [71]. However, this new instability mechanism cannot be identified based on 

current LST study in this region. 

The contours of local unit Reynolds number for the three cases are shown in Fig. 10.  

As the nose becomes blunter, the local Reynolds number within the boundary layer is 

substantially reduced. As found in many previous studies, this unique pattern causes a 

delay in the onset of second-mode instabilities and hence moves the transition location 

further downstream. This theory has been verified experimentally on small bluntness cones 
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[65]. However, it cannot be used to explain the transition reversal for cones with large nose 

bluntness. 

The pressure along the cone surfaces are presented in Fig. 11 for cones with different 

nose radii. The pressure distributions show that all three cones reach very high pressure at 

the nose tip. As moving away from the nose tip, the pressure on cone with the smallest nose 

drop most rapidly due to the expansion effect near the nose and frustum interface.  Once 

the pressure reaches the lowest point, it quickly recovers and gradually approaches a 

relatively constant level. This pressure recovery is the signature of blunt cone, because for 

the ideal sharp cone, there is no pressure recovery and the pressure reaches frustum 

pressure immediately. As observed on the blunter nose cone models, as the nose radius 

increases, the pressure recovery takes longer disturbance. For the nose with 1.5 inch nose, 

the pressure never recovers to the sharp cone level up to the end of simulation domain. This 

slow pressure recovery somewhat delays the growth of instability as argued by some 

researchers. 
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(c) 

Fig. 9. Mach number contours of the three test cases of different nose radii. 

 

 

Case 2:  0.5nr in  

Case 1: 1.5nr in                                                      



- 56 - 

 

 

 

 

 

(a) 

 

 

 

 
Case 3: 0.156nr in                                                       

 



- 57 - 

 

 

 

 

 

(b) 
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(c) 

Fig. 10. Contours of the local unit Reynolds numbers for the base flows with different nose 

radii.  
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Fig. 11. Pressure distributions along the cone surfaces for the three sets steady base flows 

of different nose bluntness. 
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 4.2. Linear Stability Analysis 

From the mean flow data obtained by the numerical simulation, the instability waves 

for all three cones are calculated using LST. For the base flows calculations, the cone 

surface temperature is set at constant room temperature creating a cooling effect to the 

flow at the cone surface. According to the theoretical study [59], the wall cooling effect 

stabilizes the first mode instability and destabilizes the second mode. In the current study, 

no first mode instability is found for axisymmetric waves in all three test cases. Therefore, 

only the second-mode instability is calculated. The LST results presented are calculated by 

re-stretching the base flow profile with 121 points in the wall normal direction. The current 

LST code applies multi-domain approach so that we can cluster more grid points to the 

location where the flow variables’ gradients are high. This approach substantially reduces 

the number of grid points needed in the LST calculation. To check the numerical accuracy 

of the LST results, a comparison is made on the growth rates at a fixed frequency of 656.8 

kHz in case 3 for two sets of grid points in Fig. 12.  The comparison shows that the growth 

rates from the current grid and the refined grid are completely identical, which implies the 

current grid is adequate to obtain credible LST results. 

Fig. 13 shows the second-mode neutral stability curves on each case. The neutral curve 

of 1.5 inch case looks less smooth compared to the other two cases. This is due to the fact 

that less data points (frequencies) are taken for this particular case. However, the general 

shape will not change with more points added. In this figure, it is observed that the 

unstable second-mode spectrum falls into very different frequency ranges for cones of 
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different nose bluntness. Also, as the nose bluntness increases, the onset of second-mode 

instabilities moves downstream accordingly. In the actual experiments, the locations of the 

onset of instability were not reported; therefore it is hard to confirm if the transition is 

triggered by the same instability mechanism as predicted by the LST. But as shown in the 

figure, no reversal is found on the onset of instability locations. In the authors’ opinion, in 

order to have a reversal in transition, a similar pattern in the onset of instability should be 

observed.   

To validate the current LST results, unsteady simulations are carried out by imposing 

a wall blowing and suction perturbation at the surface of the cone with the LST predicted 

unstable frequencies. This method has been used by many researchers to generate a 

vorticity disturbance without introducing extra mass flux into the flow [51, 72]. The surface 

blowing and suction is applied by specifying the perturbations to the wall normal velocities 

in the following form 

  , 0 0 1

1

( , ) sin ( ) cos( )               ( )
N

n wall w n n n

n

v x t x x A t x x x   


           (63) 

 

In order to make comparisons with the linear stability results, the disturbance amplitude is 

set small enough to ensure the growth of instabilities is within the linear regime. For the 

current simulation, ε is set to 51 10 . The blowing and suction simulation is performed on 

the case of 0.156 inch nose radius cone. Instead of using a single unstable frequency, 15 

equally distributed frequencies ranging from 52.55 kHz to 797.05 kHz are imposed 

encompassing the unstable second-mode frequencies predicted by LST calculation. Since 

the perturbation amplitude is linear, multiple frequencies can be easily separated by 

Fourier decomposition. The blowing and suction slot is placed at s= 0.33 m. The disturbance 
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waves are introduced into the steady mean flow downstream of the blowing and suction 

slot. Fig. 14 presents the contours of the tangential velocity disturbance wave at 744.5 kHz 

after the Fourier decomposition. A clear periodic wave pattern can be observed in these 

contours as the wave propagates downstream.  

 

 

 

Fig. 12. Dimensional growth rates at F = 656.8 kHz calculated with different numbers of 

grid points. 
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Fig. 13.  Second-mode neutral stability curve for cones with three different nose radii.  
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Fig. 14. Contours of tangential velocity disturbance in the unsteady simulation with 

frequency of 744.5 kHz for the case Rn = 0.156 in. 
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From the flow field decomposed by temporal Fourier analysis, each fixed-frequency 

disturbance can be represented by eq. (64) where 'q  is the placeholder of any flow 

disturbance quantity;   is the angular frequency of the disturbance; and  is the phase 

angle of the disturbance. Also, the disturbance growth rate and wave number can be 

derived from eq. (65) and (66) respectively. In the results presented later on, the 

disturbance growth rate and wave number are calculated based on the pressure 

disturbance along the cone surface. The non-dimensional phase speed is obtained using eq. 

(42) while the wave number was also obtained from the pressure disturbance along the cone 

surface. 

 '( , , ) Re '( , ) exp( [ ( , )])q x y t q x y i t x y                                              (64) 

 

'1

'
i

d q

q ds
                                                                    (65) 

 

r

d

ds


                                                                         (66) 

 

If the flow perturbations of the simulation results in a local region of the boundary 

layer are dominated by a single wave mode, the growth rate ( i ), the wave number ( r ), 

and wave speed ( a ) computed by eq. (65), (66), and (42) are smooth functions of s. On the 

other hand, if the simulation results contain simultaneously multiple wave modes in a local 

region of the boundary layer, the results do not represent the wave number, growth rate, 

and wave speed of a single wave mode. Instead, these parameters represent a modulation of 
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two or more wave modes. As a result, the wave number, growth rate, and wave speed along 

the surface direction will be oscillatory. In this case, further decomposition of different wave 

components is required in order to obtain the growth rates and wave numbers of the 

individual wave modes. 

In Fig. 15, the non-dimensional wave speed along the cone surface obtained from both 

the unsteady numerical simulation and the mode F from LST analysis at the same 

frequency of 774.5 kHz are shown. The early portion of the wave speed curve matches up 

with the LST prediction very well. However, the oscillation started around s = 0.45 m 

indicates that this mode has not become dominant and subsequently jumps to another 

mode further downstream. At s = 0.55 m, a new mode becomes dominant with a 

substantially higher wave speed. This mode is also identified by Zhong et al. [52] in their 

LST analysis of a different test case. They named this the mode II, which is another stable 

mode excited inside the boundary layer in the later region. In addition, this figure implies 

that the partially excited mode in the early region is the fast mode (or mode F). Even 

though the LST predicts that, at this particular frequency, the unstable second mode 

should appear at this location, the excited wave mode appears to be stable due to the strong 

influence of the forcing blowing-suction mechanism and the existence of multiple stable 

modes that have not been damped out [73]. Details on mode analysis will be discussed in 

the next section. Here, the comparison is sorely to demonstrate how the LST result can be 

correlated to the unsteady numerical simulation. 

The mode structures from the simulation and LST are also compared to verify that the 

LST predicted mode is captured by the numerical simulation.  Fig. 16 shows the excited 

mode in the blowing-suction simulation in comparison with the normal modes, both fast 
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and slow, from the LST analysis at the location s = 0.44 m. The excited mode in simulation 

agrees well with the mode F from LST.  It also further-justifies the statement made earlier 

that the dominant mode excited inside the boundary layer is mode F. 

 

 

 

 

Fig. 15. Comparison of non-dimensional wave numbers from DNS and LST with the 

disturbance frequency of 744.5 kHz for the case Rn = 0.156 in. 
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Fig. 16. Comparison of mode structures between DNS and LST at the disturbance 

frequency of 744.5 kHz for the case Rn = 0.156 inch at s = 0.44 m. 
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To further verify how well the LST calculations predict the unstable second mode 

inside the boundary layer, another blowing and suction simulation is conducted further 

downstream to avoid the strong influence from the blowing and suction slot. In the blowing 

and suction simulation further downstream with a slightly different set of frequencies, 

substantial growths of disturbance waves at certain frequencies are clearly observed. Fig. 

17 shows the growths of amplitude of the pressure disturbances along the cone surface, 

which are set to 51 10 in the magnitude initially, for the highest five frequencies imposed 

in the simulation. It can be seen that the disturbance wave at 656.8 kHz is growing 

exponentially at this location. A similar behavior is found for the disturbance wave at 606.4 

kHz. For other frequencies, the wave amplitudes either grow slowly or decay rapidly. For 

the other 10 waves at lower frequency, the disturbance amplitudes are all decaying.  

Fig. 18 shows the wave structure of a single wave frequency from the simulation in 

comparison to the mode S and mode F structures from LST calculation at the location s = 

0.57 m. The mode shapes of mode F and mode S look very similar in the location close to the 

surface, but gradually deviate from each other as they move toward the edge of boundary 

layer. In the figure, the edge of the boundary layer locates around Yn = 0.006. Similar to the 

previous discussion, the excited mode in the simulation is consistent with the mode F wave 

structure from the LST. The only difference here is that, at the specific frequency 

presented, the mode F is actually the unstable second mode. The magnitude of mode S is 

scaled up for comparison purposes. In the simulation, the magnitude of mode S is several 

orders smaller than the one of mode F and continues to decrease as it propagates 

downstream. 
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Fig. 17. Pressure disturbance amplitudes (in log-scale) along the surface for five selected 

frequencies. 
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Fig. 18. Comparison of mode structures between DNS and LST at the disturbance 

frequency of 656.8 kHz for the case Rn = 0.156 inch at s = 0.57 m. 
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Fig. 19 shows that, for the disturbance wave at the frequency of 656.8 kHz, the wave 

speed from simulation and LST agree very well. However, the LST predicted growth rate is 

about 10% lower than as observed from simulation. In most cases, it is hard to match the 

result of simulation and the LST exactly because the simulation result contains multiple 

excited modes. The only condition for which those two results can be well compared is when 

the instability completely dominates other stable modes. This condition typically occurs at 

the location where the instability is sufficiently far away from the forcing waves. In such 

cases, the stable modes will more likely decay to negligible levels compared to unstable 

mode.  In addition,  the discrepancy in growth rates can probably be attributed to the non-

parallel effect of the flow within the boundary layer which is not accounted for in the 

current LST model [74]. Overall, the LST analysis is proven to be a reliable tool in the 

calculation of small amplitude instabilities in the hypersonic boundary layers. Also, the 

LST analysis and blowing-suction simulation show consistent results in predicting the 

unstable second-mode behavior.  

The second-mode dimensional growth rates versus the distance along the surface of the 

blunt cone are presented in Fig. 20 for the three cases with different nose radii. Some 

common characteristics are observed in all these cases.  First, the disturbances at higher 

frequencies become unstable at locations closer to the nose. Second, as the frequency 

decreases, the maximum second-mode growth rate becomes higher. Some trends are also 

found among these three cases. As the nose bluntness increases, the onset of the second-

mode instability moves downstream. The range of unstable mode frequency keeps shifting 

to the lower end and becomes narrower as the nose becomes blunter. The frequency ranges 

shifting to lower value can be explained by the increase of boundary layer thickness due to 
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blunting the nose, which causes the wave lengths of unstable modes to become longer. The 

growth rates for the blunter cone are substantially lower than those of the sharper cone. 

Also, for the blunter case, the instability of a fixed frequency tends to grow for a longer 

distance to compensate the lower growth rate it has. 

With the second-mode growth rates calculated, the N factors can be obtained by 

integrating the dimensional growth rates along the cone surface. In Fig. 21, the second-

mode N factors for the three cases of different nose bluntness are presented. The N factors 

calculations show that the shaper cone actually has much higher N factors than the blunter 

cones. In the current study, the N factors of the 0.156 inch blunt cone reach 16 at s = 0.8 m, 

while,  to the other end, the 1.5 inch blunt cone only has a N factor about 3 at s = 3.2 m. 
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Fig. 19. Comparison of second-mode growth rate and wave speed at F = 656.8 kHz. 
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Fig. 20. Second-mode dimensional growth rates for the three cases with different nose radii. 
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Fig. 21. Second-mode N factors for the three cases with different nose radii. 
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By comparing the current LST results to the experimental transition data reported by 

Stetson, disagreements are found between LST predicted transition locations and 

experimentally observed transition locations. For the two cases of 0.5 inch and 1.5 inch nose 

radius, the experiment showed transitions occurred at 0.421m and 0.243m, while no 

second-mode instabilities were found at these locations according to the LST analysis. 

Traditionally, the N factor for transition is between 5 and 10. If taking N factor equals to 10 

as the transition prediction criteria, LST predicts that the transitions occur at 0.7 m and 

1.9 m for case 3 and case 2 respectively. For case 1, the N factors calculation does not show 

a substantially large growth up to 3.2 m from the nose, which is not likely to become 

transition unless the initial disturbance level is very high. In Table 1, the experimental 

measurements and LST results are summarized.   

 

Table 1. Comparison of LST and experimental results. 

Nose 

radius 

Freestream Re 

based on  nose 

radius 

Experimental 

transition location 

N factor  

based on transition 

data 

Instability onset 

location based on 

LST 

0.156 in 75,213 0.406 m 2.3 0.3 m 

0.5 in 240,665 0.421 m N/A 0.8 m 

1.5 in 721,995 0.243 m N/A 1.7 m 
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Stetson’s Mach 5.5 experiment conducted in 1967, in which the actual reversals in transition 

were reported, is investigated using LST technique and the results are verified by unsteady blowing 

and suction simulations. The ranges of second-mode instability frequency for blunt cones with nose 

radii of 0.156, 0.5 and 1.5 inch are identified by LST. Due to the “cool wall” temperature condition 

being used to simulate the steady mean flows, the mode F becomes the unstable second mode in the 

current study which is different from some previous studies.  The growth rates and N factors are 

computed for each case on selected unstable frequencies. According to the LST calculations, no 

reversal in the onset of the second-mode instability is observed. Because the onset locations of 

instability waves were not measured in the experiment, no comparisons can be made to verify the 

reversal in experiments were caused by the second-mode instability waves. Since the experiments 

were conducted in a noisy tunnel environment, there is likelihood that the reversal is caused by some 

uncontrollable noises with the amplitude large enough that the growths of disturbances bypass the 

linear region and force the transition to occur earlier. However, this hypothesis cannot be justified 

based on the LST analysis. Hence, it is necessary to further study the nonlinear effect (finite 

disturbance amplitude effect) on transition to gain a more complete understanding of transition 

reversal.  
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 5.  Freestream Wave Linear Receptivity 

The linear receptivity simulations are conducted to study the receptivity and stability 

characteristic of hypersonic boundary layer to the freestream wave disturbance over cone 

configurations. The simulation results are also used to build up the receptivity response 

library for subsequent nonlinear breakdown simulations. Two different freestream models 

are implemented on the receptivity simulations. The discrete freestream model is applied to 

the Stetson’s Mach 5.5 case. And the newly developed Gaussian pulse model is used on the 

TAMU Mach 6 case.  

 5.1. Linear Receptivity Simulation of Stetson Mach 5.5 Case 

The meanflow calculations of Stetson Mach 5.5 Case have been presented in section 

4.1. From the LST calculations of Stetson’s Mach 5.5 cases presented in section 4.2, only the 

case with 0.156 inch nose radius has substantial second-mode growth to possibly reach 

transition. For the other two cases, even the second-mode instabilities are found, the N 

factor are too weak to lead to transition. Therefore, the receptivity simulation is only 

performed on the cone with 0.156 inch nose radius.  The result of receptivity simulation is 

presented in this section. Only fast acoustic type of freestream wave disturbance is 
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considered for the current study. The discrete-frequency fast acoustic wave model that 

contains only 15 frequency components is introduced into the freestream of receptivity 

simulation.   

The evolutions of surface pressure perturbations in the streamwise direction along the 

cone surface are shown in Fig. 22. Each line represents the amplitude of pressure 

disturbance along the cone surface for one of the 15 frequencies ranging from 52.5 kHz for 

n=1 to 788.3 kHz for n=15 imposed in the freestream. Dimensional surface location in 

curved-linear coordinate *s is used in the plots so that the results can be correlated with the 

LST calculations. This figure shows that the freestream wave receptivity process leads to 

complex wave responses inside the boundary layer. At a location that the given frequency is 

not dominantly unstable, the amplitude response represents a combination of all stable and 

unstable mode as well as forcing wave that penetrates through shock and enters into 

boundary layer. Strong wave modulation is found when the boundary layer unstable mode 

develops but not yet reaches very high amplitude. When the second-mode instability grows 

to dominant level, it overwhelms the others stable modes and forcing. Therefore, the 

moderation gradually diminishes. A clean exponential growth in pressure disturbance 

amplitude is observed.  For perturbation wave at a fixed frequency, the wave structures 

change dramatically as it enters the second-mode region. It also clearly show that, the 

waves at frequency between n=10 to n=15 are growing in the later region of simulation 

domain. However, a shift of pattern is visible for disturbance waves at frequencies n=12 to 

n=14.  Strong modulations are found on these waves during unstable growth region. 

Further investigation reveals that these modulations are due to presences of higher 

harmonic wave at twice the frequency. Higher harmonic wave is an indication that the flow 
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disturbance becomes nonlinear so that wave interaction leads to growth of wave at higher 

frequency. General speaking, these results show good agreements with the LST predictions 

especially in the linear growth region of simulation domain as the unstable second modes 

become dominant.  

In summary, the linear receptivity responses due to freestream fast acoustic wave at 

discrete number of frequencies are capture by simulation. And the results are validated by 

comparing with LST analysis. Good agreement is attained in the region where second 

modes become overly dominant. However, some drawbacks are also realized during 

framework development using the discrete-frequency freestream wave model. First of all, 

the finite number of freestream wave frequencies cannot fully represent the freestream 

disturbance environment which embraces a much boarder frequency spectrum. The discrete 

frequency approach is very effective in studying the linear receptivity process but may not 

be realistic when it reaches the breakdown stage. In addition, The Stetson’s Mach 5.5 

experiment, which was conducted more than 30 years ago, does not have stability 

measurements. This makes it difficult when trying to correlate simulation results with 

transition mechanisms. However, this simulation results provide the ingredients sufficient 

for code development purpose. 
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(c) 

 

Fig. 22. Amplitude profiles of surface pressure perturbations along the cone surface. 
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 5.2. Freestream Receptivity of TAMU Mach 6 Case 

The TAMU Mach 6 quiet tunnel flow conditions are utilized for further study in current 

research effort. In addition to the ongoing experiments at TAMU, this flow conditions with 

various cone models has been numerically and theoretical studied by many other research 

groups, so it is easier to compare the simulation results with. Due to the drawback on 

discrete-frequency freestream wave model discussed in previous section, a new freestream 

Gaussian pulse model is developed to introduce freestream wave containing a continued 

frequency spectrum into the flow field. With this newly developed pulse model, it is possible 

to replicate any freestream disturbance wave profile from experimental data so that the 

simulation and experiment can better correlate. 

 5.2.1. Meanflow Calculations  

The meanflows are computed for two different cone models with the same freestream 

conditions. The first cone model has nose radius of 0.125 inch.  The first half of cone is 

straight from the nose up to x=0.254 m with 5 degree half angle and flared for the second 

half as shown in Fig. 5. This design is adapted purposely to expedite the transition process 

as the adverse pressure gradient facilitates the growth of instability. The second cone model 

is a modified version of the first cone model with a much smaller nose radius. The first half 

of the cone is exactly the same as previous cone with the exception that the radius of nose is 

0.1 mm. On the second half of the cone, instead of using a flared geometry, we keep the cone 

body straight all the way till the end of computational domain. These two different cone 
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models are chosen with the purpose to study both the nose bluntness effects on the 

freestream wave receptivity and flared cone compression effects on the flow stability.  

The meanflow of flared cone is computed from nose tip all the way to X=0.6 m. it has 

the grid resolution of 4800 × 240 in streamwise and wall-normal directions respectively. 

The grid in streamwise direction is uniformly distributed; and the grid in wall-normal 

direction is highly stretched toward the cone surface so that the boundary layer profile can 

be well resolved. The meanflow of straight cone model has grid resolution of 5760 × 240 in 

streamwise and wall-normal directions. The meanflow calculation is carried out up to 

X=0.75 m. The grid stretching is similar to the flared cone case. 

For the flared cone model, a clear compression effect in the flared section of cone is 

observed from the computed pressure contour in Fig. 23. Comparing the surface pressures 

of these two cone models as shown in Fig. 25, a strong pressure recovery effect is found in 

the blunt cone near the nose region. On the other hand, no pressure recovery is observed in 

the sharp nose cone model. And the surface pressure gradually decreases in the 

downstream direction.  

As shown in Fig. 24, the straight cone has constantly thickening shock layer as well as 

boundary layer; and the surface pressure keeps decreasing along the downstream direction. 

In addition, because of the nose bluntness difference, the flare cone with blunter nose shows 

strong entropy layer swallowing near the nose region in the Mach number contour.  
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Fig. 23. Mach number contour and pressure contour for flare cone with 0.125 inch nose 

bluntness. 
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Fig. 24. Mach number contour and pressure contour for straight cone with 0.1 mm nose 

bluntness. 
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Fig. 25. Pressure along the cone surface normalized by freestream pressure for two 

different cone models. 
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 5.2.2. Linear Stability Analysis 

The LST calculations are performed using the meanflow simulation results from 

section 5.2.1 as the base flow solutions. The N factors are calculated to compare the linear 

stability characteristics of flow fields over two different cone models.  Fig. 26 shows the N 

factor calculations of both cones for selected unstable frequencies. Due to the nose 

bluntness effect, the second-mode instability of the flared cone case is substantially delayed. 

The instability appears only on the flared portion of the cone thanks to the compression 

effect. The instability of the “shape” straight cone appears much earlier. In addition, a very 

interesting trend is observed on the flared cone model. For the “blunter” flared cone, the 

higher frequency wave becomes unstable at location further downstream, while the trend is 

opposite for the straight cone. This phenomenon can be explained by the compression effect 

on the flared cone that causes reduction of boundary layer thickness at further downstream 

location. And it is known that the unstable frequency is proportional to the boundary layer 

thickness. In other words, thicker the boundary layer is, the lower the unstable frequency 

will be. 

 Based on the LST calculations, the sharp straight cone has a slight higher overall N 

factor than the blunt flare cone; and the instability appears earlier in the flow field. In 

addition, the unstable frequency range for the “sharp” straight cone model is also slight 

toward the lower end compared to the flared cone. This observation is also consistent with 

the fact that the boundary layer of straight cone is constantly thickening in downstream 

direction. 
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In addition, the non-dimensional wave speeds of selected frequencies are presented in 

Fig. 27.  The wave speeds are non-dimensionalized by the freestream quantity so that, the 

wave speed of 1 means the wave is traveling as the same speed as freestream flow. From 

the plots, all the wave speeds are below 1. From LST, that means all the unstable modes 

are from Mode S, the slow mode. The slow mode comes from the slow acoustic wave that 

travels with the speed low than flow speed. Also, the wave speeds of unstable modes are 

decreasing in the downstream direction for the flared cone model versus increasing for the 

straight cone model. This might be due to adverse pressure gradient that slowing down the 

traveling wave in the flared cone case. 

Furthermore, the wave numbers of unstable modes are plotted in Fig. 28 for selected 

frequencies. These plots show that the wave number is generally higher for higher 

frequency. Unlike in the non-dimensional wave speed plots, the values of wave numbers 

remain quiet constant even the normal modes change from stable to unstable.  

The LST analysis provides us the overall stability properties of flows over two different 

cone models. Moreover, it also assists in determining which case to focus on in the 

subsequent receptivity and breakdown simulations. Once the receptivity simulation is 

conducted, it can be also used to validate the simulation results in the linear growth region. 
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Fig. 26. N  Factor for selected frequencies: (top) 0.125 inch flare cone, (bottom) 0.1 mm 

straight cone. 
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Fig. 27. Non-dimensional wave speed for selected frequencies: (top) 0.125 inch flare cone, 

(bottom) 0.1 mm straight cone. 
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Fig. 28. Wave number for selected frequencies: (top) 0.125 inch flare cone, (bottom) 0.1 mm 

straight cone. 
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 5.2.3. Linear Receptivity Simulation 

As shown in Fig. 4, the second step of current numerical study is to conduct the linear 

receptivity simulation that captures the mechanism of freestream disturbance entering the 

bow shock and interacting with boundary layer. In the current study case, the newly 

developed Gaussian pulse model is utilized, so that the freestream disturbance that 

contains a wide range of continued frequency spectrum can be studied. By comparing the 

LST calculations of the two cones we used for this study, it is found that the sharp cone 

case has a higher overall N factor. So, it will make the simulation easier to reach the 

breakdown stage. Hence, for the receptivity simulation, we focus primarily on the sharp 

straight cone case. Since we have the meanflow for both cases, we decide to also use this 

opportunity to study the nose bluntness effects to the freestream receptivity. Therefore, the 

receptivity simulations in the nose region are conducted for both blunt and sharp nose 

cases. We consider using only one type of disturbance in this simulation to make the 

analysis easier. While, in reality, a combination of acoustic, entropy, and vorticity 

disturbance exists in the freestream.   

In current receptivity simulation, only the fast acoustic freestream wave is considered. 

Fig. 30  shows the snapshots of pressure contour of the receptivity simulation at the nose 

region of the 0.125 inch nose radius. At the nose region, the freestream acoustic pulse 

passed the bow shock and hit the cone surface then bounces off. As the wave reflected back 

from shock and hit the cone surface again later at further downstream, the wave amplitude 
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drops quickly and significantly during the wave reflection. During this entire process, the 

boundary layer modes are not yet excited within the nose region. 

Nose region receptivity simulations are performed on both the cases with blunt (0.125 

inch) and sharp (0.1 mm) nose radii.  Fig. 31 shows the pressure disturbance amplitude 

spectrum at the nose tip. The pressure disturbance is normalized by the freestream wave 

spectrum. Therefore, the line in each plot represents the amplification ratios of pressure 

disturbance of the entire frequency range after the freestream wave passing the bow shock. 

The peak ratio of the blunt cone case is about 0.035 compared to the shape cone that has a 

max ratio about 0.085. It manifests that the freestream wave decays more on the blunter 

nose compared to sharper nose. This comparison also demonstrates the importance of 

freestream wave receptivity. Although the freestream amplitude is the same, the actual 

wave amplitude inside the boundary layer can be different depending on the nose radius of 

the cone leading edge.  

More interestingly, two different responses are observed for the cones with different 

nose radii. For the 0.125 inch case, there are two peaks in the frequency spectrum at 190 

kHz and 590 kHz respectively, while the sharp cone response shows no peak in the range of 

frequency showed. These peaks shown in the blunt nose case is believed to be caused by the 

resonance effect due to the bow shock stand-off distances. The resonance occurs when the 

forward traveling wave and the reflected wave bouncing back from stagnation point happen 

to be in phase. The resonance peak at 195 kHz matches with a simple calculation provided 

by Professor Hans Hornung from Caltech in our private communications. In his argument, 

along the stagnation line, the weak shock catching up with the strong shock is reflected as 

expansion wave. The frequency of which this could happen can be estimated by  
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1

2
sf


 ,                                                                   (67) 

Where sf  is resonance frequency and   is the transverse time of acoustic wave from shock 

to body and back; and the transverse time can be estimated by 

0

0
0 0

ds ds

u c u c





 

   .                                                       (68) 

In eq. (68),   denotes the shock stand-off distance. u and 0c  are assumed constant and 

linearly decreased from shock to body respectively. These assumptions are very consistent 

with the actual simulation results as demonstrated in Fig. 29.  

 

Fig. 29. Sonic speed (green) and flow velocity (red) along stagnation line of nose on TAMU 

0.156 inch case. 
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Using these simplified models, the transverse time for current conditions can be estimated 

to be  
0

2.1

c



 . Plugging this back into eq. (67), we get 

0 430
200 kHz

4.2 4.2 0.000495
s

c
f  

 
                                            (69) 

This result is in good agreement with what we observed in the simulation. It suggests that, 

the resonance could occur in nose region that alters the wave disturbance response 

significantly. 

Now, we know that the resonance frequency is sensitive to the shock stand-off distance.  

Looking at Fig. 32 , the shock stand-off distance of the 0.125 inch nose radius case is about 

0.5 mm, but it is only about 0.02 mm for the 0.1 mm nose radius cone case. Therefore, for 

the blunter nose, there is a resonance in the frequency range of interest. For the sharp 

cone, the resonance only occurs at frequency 25 times higher which is about 5 MHz 

according to previous estimation. That is totally out of the frequency range we imposed in 

this freestream wave model. It explains why the resonance can only be observed on 

relatively sharp nose. 

As the wave keeps propagating down into the straight cone portion, the boundary layer 

modes start to emerge as shown in Fig. 33. However, the amplitude of boundary layer 

modes sustains in the same order of magnitude as it moves further downstream indicating 

these modes are still stable. When the disturbances reach the unstable region as predicted 

by LST calculation, they quickly amplify. Fig. 34 shows the development of second mode 

instabilities in terms of time signals along the cone surface in more downstream locations.  
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From frequency spectrum, we can better track the evolution of wave disturbance as it 

propagates downstream along the cone surface. The disturbance wave amplitudes decay 

quickly in the nose region after passing through the bow shock. At the region after the nose, 

the wave spectrum keeps oscillating while remained at comparable level. In the surface 

locations between x=0.115 m and x=0.252 m, there is a weak growing first mode region at 

frequency below 200 kHz. The unstable frequencies quickly shift toward the lower end as 

they move downstream. The growth of first mode is very moderate.  At further downstream 

location, as predicted by LST calculation, the second mode instability emerged. As shown in 

Fig. 35, starting from location X=0.185 m, a spike is observed around 300 kHz. The second-

mode instability grows exponentially as it propagates in the downstream direction. Fig. 36 

shows how the phase angles look across different frequencies before and after the 

instability wave becomes dominated. At the early region along the cone surface, an 

organized repeating pattern is observed across all frequencies indicated that the freestream 

forcing wave is the most dominant wave inside boundary layer at that location.  However, 

in the lower figure, there is clearly a narrower pattern in the spectrum that distinguishes 

itself from other frequencies. This pattern falls into the second mode instability range. 

The freestream wave receptivity simulation is carried up to x=0.57 m, where the most 

amplified wave reach an N factor about 6 according to the LST calculation. Fig. 37 shows 

the growths of disturbance waves for selected frequencies in the second mode frequency 

range. The general trends are qualitatively consistent to the LST calculations shown in Fig. 

26.   

To further validate current linear receptivity simulation, the simulation result is 

compared with the LST calculations of the sharp straight cone. Fig. 38 shows the DNS and 
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LST comparison of both growth rate and streamwise wave number of the disturbance wave 

at 150 kHz. Both mode F and mode S are calculation for this particular frequency. Since the 

disturbance wave is fast acoustic wave in nature, the mode F should be excited in the early 

stage of simulation where forcing wave is still dominant. According to LST prediction, the 

mode S becomes unstable second mode after the synchronization process that occur at 

around X=0.58 m. The simulation shows strong wave modulation before the 

synchronization point. However, once the unstable second mode appears, the modulation 

quickly diminishes; and the DNS result gradually converges to LST mode S result. Good 

agreement is obtained in the wave speed comparison between DNS and LST in the second 

mode region. However, the growth rate comparison is a bit difficult because the instability 

wave is modulated with the relatively strong freestream forcing waves that pass through 

the shock. As the instability wave becomes more and more dominated further downstream, 

the DNS growth rate tends to converge with the LST calculation.  In addition, from the LST 

and DNS comparison, it is found that even the forcing wave is fast acoustic wave; the 

excited second mode instability is mode S which is from slow acoustic continued spectrum 

originally.   

In summary, the freestream wave pulse model is successfully integrated into the 

receptivity simulation. The receptivity response of continued frequency spectrum is 

captured with the second-mode instability identified. The simulation result can be used to 

build the receptivity data base for future breakdown simulation. The simulation result is in 

agreement with the LST analysis from previous chapter. In addition, the receptivity in nose 

region reveals a resonance phenomenon that is sensitive to shock stand-off distance.  
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Fig. 30. Snapshots of pressure disturbance contour at the nose region of 0.1mm nose 

straight cone. 
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Fig. 31. Pressure disturbance spectrum normalized by the freestream: 0.125 inch nose (top), 

0.1 mm nose (bottom). 
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Fig. 32. Pressure contours of nose regions: 0.125 inch nose (top), 0.1mm nose (bottom). 
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Fig. 33. Snap shot of pressure disturbance contours in the frustum of 0.1mm nose straight 

cone. 
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Fig. 34. Pressure disturbances time trace at different surface stations. 
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 (c) 

Fig. 35. Pressure Disturbances spectrum at different stations along the surface. 
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Fig. 36. Phase angles spectra on cone surface before and after the unstable modes become 

dominant. 
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Fig. 37. Pressure disturbance along the surface at selected frequencies. 
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Fig. 38. Comparisons of DNS “—” and LST “o” results at 150 kHz for the 0.1mm nose 

bluntness case. 
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 6.  Nonlinear Breakdown Simulations  

Nonlinear breakdown simulations are carried on both Stetson’s Mach 5.5 case and 

TAMU Mach 6 case. Because of the nature of breakdown, the simulation needs to be 

performed on a three-dimensional computational domain. In order to conserve 

computational cost, only a small angle of arc in the spanwise direction of cone is simulated 

with periodic boundary conditions enforced. Since the effect of using only a small section of 

arc instead of the entire cone in the computation domain is not clear, parametric study is 

performed to investigate the simulation results with different spanwise arc angles and grid 

resolutions. The inflow conditions of nonlinear simulation are constructed using the 

receptivity response library obtained from preceding freestream wave receptivity 

simulation. Since the receptivity simulation is two-dimensional, it is necessary to enrich the 

spanwise wave number spectrum. This is achieved by adding low amplitude random noise 

at the inflow of computation domain. The simulation is carried until the flow reaches the 

breakdown stage. A buffer zone is used in computational domain to damp out the strong 

reflection wave near the exit of computational domain. Fig. 39 shows the schematic of the 

three-dimensional computational domain.   
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Due the limitation of discrete-frequency freestream wave model, the Stetson’s Mach 5.5 

case is used primarily for code development and validation purpose. Two study cases were 

conducted on Stetson’s Mach 5.5 case on the cone with 0.156 inch nose radius. The first case 

used a blowing and suction hole on the surface near inlet to add disturbance into flow field. 

The second case utilized the freestream fast acoustic wave receptivity simulation result of 

the 0.156 inch nose case as source to disturbance. Table 2 lists all the study cases with 

detail parameters for each simulation.  

The TAMU Mach 6 case is the primary investigation case used to study the nonlinear 

breakdown mechanisms. Parametric case studies are carried out to understand how the 

breakdown occurs and what wave modes is most relevant leading the flow from laminar to 

turbulent.    

 

Table 2. Summary of study cases for Stetson’s cone with 0.156 inch nose radius. 

 

Case Forcing type Forcing amp. Arc angle Spanwise grid 

BS1 Blowing-suction 0.05% of  U∞ 6 degree 64 

BS2 Blowing-suction 1% of  U∞ 12 degree 128 

FS1 Freestream + noise 5% of  P∞ 6 degree 64 
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Fig. 39. Sample grid (side, perspective, and front view) of the breakdown simulation with 

sponge layer indicated in red. 

X
100 125 150 175 200



- 115 - 

 

 

 6.1. Blowing and Suction Induced Breakdown 

To validate the computation code changed mentioned in section 3.6 to accommodate the 

current research need, 3-D simulations using blowing and suction as source of disturbance 

are conducted. The grid sizes of these two cases were 1920x480 in stream-wise and wall-

normal direction respectively. A blowing and suction hole is used to introduce the 

disturbance into flow filed so that the disturbance includes both two-dimensional and 

oblique angle wave components. The blowing and suction model is slightly modified from 

the one in previous two dimensional simulations using eq. (63). The blowing-suction hole is 

placed in the middle of computational domain near the inlet. 15 discrete frequency wave 

components range from 52.5 kHz to 788.26 kHz are imposed in this simulation.  

In a cone configuration, the spanwise wave number is always an integer due to 

periodicity. For a fixed spanwise wave mode, the spanwise wave length is constantly 

increased as it travels downstream. For convenience, we define the span wise wave mode 

number as: 

( )

( )

d x
K

x




                                                               (70) 

 

K has the unit of [1/rev] instead of [1/m]. For example, K=100 represents a spanwise wave 

mode that repeats 100 periods in the spanwise direction at a given x location. 

The BS1 case is the first three-dimensional test case used for code validation. Hence, 

we choose to perform a linear blowing-suction simulation to see if the linear wave behavior 
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predicted by linear theory can be observed. The instantaneous pressure disturbance contour 

along the cone surface is presented in Fig. 40. The contour shows a localized two 

dimensional and periodic wave pattern until it reaches X=0.8 m, where the localized 2-D 

wave pattern suddenly fills out the entire computational domain in azimuth direction. This 

is the indication that the 2-D second modes become globally dominant.    

The development of all wave modes can be visualized by the pressure disturbance 

amplitudes plotted in the spanwise wave mode number vs. frequency plane in Fig. 41. From 

the wave mode amplitudes plots, we can tell that the disturbance waves remain linear up to 

X=0.7 m; and the simulation results match the linear theory in that the 2-D second modes 

grow most rapidly and the growth of 3-D second modes decrease as the spanwise wave 

number becomes higher. At X=0.75 m, the higher harmonic wave appears which leads to 

rapidly development of high spanwise wave number modes within second-mode frequency 

range.  Fig. 42 shows the phase angle evolutions of all wave modes from location to location 

along the downstream direction. 

The growth of dominant wave modes within the second-mode frequency range are 

plotted in Fig. 43 for selected spanwise wave mode numbers. The amplitudes of pressure 

disturbance along the cone surface are plotted in log scales which clearly demonstrate the 

exponential growth of second mode instabilities at frequency f = 525.5 and 578.0 kHz. More 

attention should be paid to the wave modes at 630 kHz and 683 kHz. These two modes, 

according to LST calculations, should be decaying in the current computational domain. 

The wave modes follow the LST prediction until X=0.72 m, from where they start to 

amplify.  The growths of wave modes at these two frequencies are an indication of nonlinear 

effect that essentially leads to secondary wave instability.  
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Fig. 40. Pressure disturbance contour along the cone surface. 



- 118 - 

 

a)   

b)  
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c)  

d)  
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e)   

f)   

Fig. 41. Frequency vs. azimuth wave number at different surface locations: a) X=0.6m, b) 

X=0.65m, c) X=0.7m, d) X=0.75m, e) X=0.8m, f) X=0.85m. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 42. Spanwise wave number vs. Frequency of phase for all wave modes: a) X=0.6m, b) 

X=0.65m, c) X=0.7m, d) X=0.75m, e) X=0.8m, f) X=0.85m. 
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a)  

b)  
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c)  

d)  

Fig. 43. Selected frequency modes at different spanwise wave numbers: a) K=0, b) K=300, c) 

K=600, d) K=900 
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From the BS1 test case, we demonstrate that the modified 3-D simulation program is 

capable of capturing the linear growth of second-mode instability. BS2 case is the nonlinear 

version of BS1 case to further test the nonlinear capability of program. In this simulation, 

the forcing amplitude is increased by 20 times relative to BS1. The pressure disturbance 

contour along the cone surface as shown in Fig. 44 is significantly different from the linear 

case (Fig. 40). The localized two-dimensional wave patterns are not observable in this case 

in the entire computational domain. At the region near exit of computational domain, three 

dimensional wave patterns develop at the center of flow filed indicating the flow is 

undergoing breakdown process.  

From the pressure disturbance amplitude spectrum plots in Fig. 45, the higher 

harmonic waves show up as early as at X=0.65 m. This is an indication that the flow is 

entering nonlinear stage. The strong nonlinear interactions between wave modes lead to 

energy spreading from high amplitude second modes toward the near-by frequency modes 

at the same spanwise wave number. The more thorough breakdown occurs at X=0.83m. The 

phase angle plots are also provided in Fig. 46 to compare with the linear case. 

The pressure disturbance amplitudes of dominate wave modes are presented in Fig. 47. 

There is no clear exponential growth region in the current test case as compared to the 

linear case. Instead, the growths of dominant wave modes become very oscillatory. This 

modulation manifests strong nonlinear interactions between wave modes. Another obvious 

difference between the linear and non-linear case is that in the linear case, waves at 630 

kHz and 683 kHz are decaying near the inlet of computation domain. They only start to 

grow when the disturbance wave reach saturation level which is around X=0.72 m in BS1 
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case. For the non-linear case, they are growing from the very beginning of the simulation 

domain due to highly nonlinear forcing wave amplitude.  

In summary, the 3-D simulations are conducted successfully using blowing and suction 

hole as source of disturbance. The simulation results validate the code development and 

provide some understanding the both linear and nonlinear growth behaviors of hypersonic 

boundary layer unstable modes.  
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Fig. 44. Pressure disturbance along the surface and the blow-up view of the breakdown 

region. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 45. Frequency vs. azimuth wave number at different surface locations: a) X=0.6m, b) 

X=0.65m, c) X=0.7m, d) X=0.75m, e) X=0.8m, f) X=0.85m. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 46. Spanwise wave number vs. Frequency of phase for all wave modes: a) X=0.6m, b) 

X=0.65m, c) X=0.7m, d) X=0.75m, e) X=0.8m, f) X=0.85m. 
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a)  

b)  
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c)  

d)  

Fig. 47. Selected frequency modes at different spanwise wave numbers: a) K=0, b) K=300, c) 

K=600, d) K=900. 
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 6.2. Freestream Discrete-frequency Wave Induced Breakdown 

Once the 3-D simulation code is validated standing alone with the blowing and suction 

test cases, the next step is to link the receptivity simulation result to the 3-D breakdown 

simulation. As the first trial on testing the capability of current computation approach, the 

fast acoustic wave receptivity results from section 5.1 are used at the inlet of simulation 

domain. The receptivity results include 15 discrete wave frequencies uniformly distributed 

between 52.55 kHz and 788.26 kHz. To investigate the non-linear growth in the unsteady 

simulation, the amplitude level at the inlet of computation domain is scaled up from the 

original linear receptivity simulation to shorten the linear growth region. The disturbance 

level at the entrance is scaled up to equivalent to impose the disturbance of 5% of the 

freestream value from the leading edge. Waves contained 15 discrete frequencies are 

imposed at the inlet of the computation domain. In addition, to enrich the spanwise wave 

spectrum to mimic a true three dimensional case, a low magnitude random noise were 

applied on top of the two dimensional primary waves. The max amplitude of random noise 

was set to be 5% of instantaneous primary wave amplitude.  In Fig. 48, the pressure 

disturbance contour on the surface of cone body is shown. It can be clearly seen that, the 

waves are dominantly two dimensional at the area close to the inlet. Immediately, it 

entered the linear growth region between x=0.6 and 0.7 m. After x=0.75 m, the disturbance 

reached the saturation level. The breakdown process started at around x=0.82 m.  

Fig. 49 shows the evolution of spanwise vorticity near the wall. A clear “rope-like” 

vorticity wave pattern was observed. Fig. 50 shows the development of streamwise vorticity 
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in the breakdown region. At the early breakdown region, the streamwise vorticity waves 

are very weak and two dimensional. As they progress further downstream, the three 

dimensional feature appeared and the vorticity waves tended to break down to smaller and 

smaller structures.  

From the previous LST analysis (Fig. 21), we predict the dominant second-mode 

unstable frequency in the current simulated region is between 500 and 600 KHz. After the 

FFT decomposition in both spanwise direction and time domain of current result, we can 

identify the wave amplitudes for each frequency and spanwise wave number so that we are 

able to track the evolution of each wave mode. Fig. 51 shows the pressure disturbance 

amplitudes along the cone surface for all wave modes in the frequency versus spanwise 

wave mode number plane. The results look very similar to the nonlinear BS2 case. The 

phase angles of wave modes are provided in Fig. 52 in the same locations as pressure 

disturbance amplitude plots.  

 Fig. 53 shows the pressure disturbance along the cone surface in second-mode range at 

selected spanwise wave numbers. At spanwise wave number k=0, the spectrum represents 

the two-dimensional disturbance waves which are the primary waves from the freestream 

receptivity simulation. The 2-D wave at 525 kHz amplifies more than one order of 

magnitude within the linear growth region which is qualitatively agreed with the LST 

analysis. However, after its amplitude reaches saturation level. It decays a little bit but 

sustains at relative high level. On the other hand, the three-dimensional wave behaves 

quiet differently. They come from the random noise that is introduced at the inlet. They are 

very weak initially and decay during the linear growth region. Nonetheless, once the 2-D 

primary wave reaches nonlinear stage, in this case at X=0.75 m, they start to amplify 
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rapidly.   Also, the waves at higher spanwise wave number grow slight faster and earlier 

than the ones at lower spanwise wave number. 

In this simulation, we successfully demonstrate the feasibility to simulate the 

hypersonic boundary layer flow from freestream wave receptivity to breakdown. From the 

pressure disturbance amplitudes spectra in Fig. 51, the dominant growing waves at all the 

spanwise wave numbers are essentially in the same frequency range which falls inside the 

second mode instability frequency range. According to the breakdown theory, this wave 

mode analysis indicates that the flow was undergoing the so-called fundamental breakdown 

process, which is commonly observed in incompressible flow transition. 
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Fig. 48. Pressure disturbance on the cone surface and the blow-up view of the breakdown 

region. 
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Fig. 49. Spanwise vorticity contours (side view) on the symmetric plane of domain. 
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Fig. 50. Streamwise vorticity contours (cross-section view) at different streamwise 

locations. 

x =0.755 m 

x =0.858 m 

x =0.805 m 

x =0.819 m 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 51. Frequency vs. azimuth wave number at different surface locations: a) X=0.6m, b) 

X=0.65m, c) X=0.7m, d) X=0.75m, e) X=0.8m, f) X=0.85m. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 52. Spanwise wave number vs. Frequency of phase for all wave modes: a) X=0.6m, b) 

X=0.65m, c) X=0.7m, d) X=0.75m, e) X=0.8m, f) X=0.85m. 
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a)  

b)  
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c)  

d)  

Fig. 53. Selected frequency modes at different spanwise wave number: a) K=0, b) K=300, c) 

K=600, d) K=900. 
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 6.3. Freestream Wave Pulse Induced Breakdown 

In section 5.2.3, we demonstrate that with the newly developed freestream pulse model 

linear receptivity simulation successfully captures the receptivity response over a continued 

frequency spectrum. Especially, the unstable second modes are identified and verified with 

LST calculations. In this section, the receptivity data base from section 5.2.3 is used to 

construct the inflow conditions for subsequent nonlinear breakdown simulations. But before 

that, the inflow disturbance profile is re-constructed to match the desired freestream 

spectrum using the formulations provided in section 2.4. Since we only conduct a two-

dimensional receptivity simulation, the receptivity data base is limited to two-dimensional 

as well.  Some three-dimensional wave components need to be introduced at the inflow to 

enrich the wave spectrum.  To achieve that, low amplitude random noise is imposed on top 

of the primary 2-D wave. In addition, a long computational domain is needed to capture the 

flow development from weakly nonlinear stage till the occurrence of breakdown.  A series of 

test cases are carried out to perform a extensive parametric study on the breakdown 

phenomenon.  

The nonlinear simulation is carried on TAMU Mach 6 case over the straight cone with 

0.1 mm nose radius from x=0.47 m to x=0.95 m using 4680 grid points in streamwise 

direction and 240 points in wall normal direction. The grid in streamwise direction is slight 

stretched toward the exit of computational domain so that the breakdown mechanism can 

be resolved with higher resolution. The grid in wall-normal direction is highly stretched 

toward the cone surface with at least 100 points within the boundary layer. In order to 
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ensure the grid convergence of simulation results, 2-D simulations with two set of grids are 

carried out. The standard grid size simulation uses 240 points in the wall-normal direction. 

The finer grid size uses 480 points in the wall-normal direction with the same stretching 

coefficient. The grid refinement is only implemented in the wall-normal direction because 

for boundary layer type of simulation, it is more crucial to ensure the flow field within 

boundary layer is well resolved. The stream-wise direction grid resolution can be checked 

by the wave length to grid size ratio. In the current simulation, that ratio remains greater 

than 10 for the wave frequencies within the unstable second-mode frequency range. In 

other words, the wave in unstable frequency range has minimum of 10 points per wave 

period.  Fig. 54 shows the comparison of the standard and fine grid results that 

demonstrates good grid convergence of current simulation results.  

After the grid convergence is checked, a series of 3-D breakdown simulations are 

carried out to study the breakdown mechanisms. Table 3 summarizes all the test cases 

conducted for the breakdown study. 
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Table 3. Summary of test cases for TAMU nonlinear breakdown simulation. 

 

 

Case Name 
Pri. Wave Amp. Noise Amp. Arc angle Azimuth Grid Size 

TAMU0 
0% 0.05 12 64 

TAMU1 
5% 0.05 2 64 

TAMU2 
5% 0.05 6 64 

TAMU3 
5% 0.05 12 64 

TAMU4 
5% 0.05 12 32 
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Fig. 54. Comparison of unsteady simulation results of two different grid sizes: ‘—‘original 

grid, ‘o’ refined grid. 
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 6.3.1. Reconstruction of Inflow Disturbance Profile 

The ultimate goal of current research is to link the freestream disturbance profile to 

breakdown in transition so that the relevant breakdown mechanisms can be identified. 

With this in mind, the inlet disturbance profile is reconstructed using the receptivity 

results from the linear receptivity simulation. The original imposed profile is a Gaussian-

shaped function, but the freestream wave spectra from typical experiments will be 

different. Since no experimental data is available at the time the breakdown simulations 

are conducted, an analytical function is used as a placeholder. As our first trial, we assume 

a simple exponential function as the freestream wave spectrum. In the future, the more 

reliable experimental data can be applied. Furthermore, the limitation on computational 

grids makes it difficult to resolve high frequency waves in current simulation. Therefore, all 

the higher frequency waves are truncated.  

The original Gaussian pulse in fresstream and the desired freestream spectrum are 

presented in Fig. 55. With the desired freestream spectrum determined, the receptivity 

response at the end the linear receptivity computation domain can be rescaled accordingly. 

Fig. 56 shows the pressure disturbance spectrum of receptivity respond at the end of linear 

receptivity simulation before and after the rescale. Furthermore, the phase angle 

relationship between waves is randomized to mimic a realistic freestream conditions. Fig. 

57 shows the pressure disturbance time trace at the exit of receptivity simulation before 

and after the profile reconstruction. 
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Fig. 55. Original Gaussian spectrum vs. desired freestream spectrum. 

 

Fig. 56. Receptivity response spectrum before and after reconstruction. 
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Fig. 57. Inlet pressure time trace before (top) and after (bottom) reconstruction. 
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 6.3.2. TAMU0: Simulation Using Pure Noise at the Inflow 

 

This test case serves the purpose to understand how the imposed noise behaves alone 

without the influence of strong two-dimensional primary wave. Fig. 58 shows the pressure 

disturbance development on the cone surface, which clearly indicates that the noise is 

initially very weak at the inflow of computational domain and gradually grows as it 

propagates in downstream direction. Some localized two dimensional patterns develop near 

the exit of computational domain. 

The simulation result can be better understood when the inflow noise is decomposed 

into wave modes in terms of frequency and wave number. Fig. 59 provides the pressure 

perturbation amplitude in frequency versus spanwise wave number plot at selected surface 

locations from the beginning to the end of simulation domain. It shows that the imposed 

noise quickly decay rapidly right after it enters the computation domain. At x=0.7 m, some 

wave components around 150 kHz start to grow. The wave at lower spanwise wave number 

grows faster than the one at higher spanwise wave number. This trend remains all the way 

till the end of simulation domain. The amplitudes of unstable modes remain at relatively 

low level. The phase angle spectra are also presented at the same locations as amplitude 

spectrum plots in Fig. 60. Some “phase-locking” feature is observed at the higher end of the 

frequency spectrum where the wave mode amplitude is very low. Therefore, this feature 

does not play a significant role in the linear growth region. 

To obtain more quantitative looks of simulation results, the pressure perturbation 

amplitudes at selected frequencies are plotted along the cone surface location for different 
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spanwise wave numbers in Fig. 61. Clear second mode growths on wave modes with 

frequency higher than 144 kHz are captured in this pure noise case simulation. Both 2-D 

wave modes and 3-D wave modes at relatively low spanwise wave numbers are significantly 

amplified. The wave modes at lower frequency are initially decaying until the unstable 

second modes are excited. The simulation results exactly follow the predication by LST. 

Similarly, the pressure perturbation amplitude frequency spectra at different spanwise 

wave numbers are given in Fig. 62. In this figures, different linear represents spectrum at 

different surface station equally distributed from the beginning to the end of computation 

domain. From these figures, we learn that the noise level drop at least two orders of 

magnitude during its initial adjustment into the flow field. In addition, the random noise 

provides fairly uniform wave mode amplitudes across both spanwise wave number and 

frequency spectra, which are what we intent to do to enrich the 3-D wave spectrum. 
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Fig. 58. Pressure disturbance on the cone surface for TAMU0 and the blow-up view near 

the exit region of the computation domain. 
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a)  

b)  
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c)  

d)  



- 163 - 

 

e)  

 

 f)  

Fig. 59. Frequency vs. azimuth wave number at different surface locations: a) X=0.47m, b) 

X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 60. Spanwise wave number vs. Frequency of phase for all wave modes: a) X=0.47m, b) 

X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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  c)  

d)  

Fig. 61. Selected frequency modes at different spanwise wave numbers: a) K=0, b) K=300, c) 

K=600, d) K=900. 
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a)  

b)  
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c)  

d)  

Fig. 62. Pressure perturbation amplitude spectra at different spanwise wave number: a) 

K=0, b) K=300, c) K=600, d) K=900. 
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 6.3.3. TAMU1: Breakdown Simulation with 2 Degrees Arc in Azimuth Direction  

Test cases TAMU1 to 3 are the primary study cases of current research. They are set 

up to the identical forcing environment and grid resolution with the only exception that the 

spanwise arc angles in azimuth direction of computational domains are different. For 3-D 

breakdown simulation, it is very difficult to obtain grid independence result. However, with 

a parametric study performed to capture different spanwise wave modes, we can better 

understand how wave modes in different spanwise wave number range play roles in the 

process of nonlinear breakdown. 

The test case TAMU1 presented in this section has a spanwise arc angle of 2 degree 

resolved by 64 spanwise grid points. With this computation setup, we are able to capture 32 

uniformly distributed spanwise wave modes from K=0 to K=5760. Fig. 63 is the 

instantaneous pressure disturbance contour at the cone surface. It clearly shows that the 

pressure contour has two dimensional pattern up to x= 0.75 m. The overall disturbance 

amplitude grows as the disturbance wave moves further in the downstream direction. The 

pressure disturbance amplitude rapidly drop at X=0.75 m and some three dimensional 

feature slowly develops. It reaches another peak around X-0.91 m and quickly breaks down 

to a more chaotic and non-uniformed three dimensional wave pattern. 

The evolution of flow structure can be better visualized by looking at the spanwise 

vorticity development within the boundary layer. Fig. 64 shows the side view of spanwise 

vorticity contour at different spanwise stations. There are variations from station to 

station. But it can be observed from the contours that the spanwise vorticity is trapped by 
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the boundary layer and most fluctuated near the edge of boundary layer. The “rope wave” is 

in well organized pattern at the beginning of the breakdown region but become more and 

more in-regular as it travels further downstream. This shift of pattern is most obvious at 

 

Fig. 65 shows the contours of wall-normal density gradient. These plots are converted 

into gray scale to purposely mimic the Schlieren diagrams commonly used in experiment for 

flow visualization. Again, the highest density gradient locates near the edge of boundary 

layer. In the plots, we can also see the Mach waves radiating away from boundary layer 

which is typically found during breakdown process.  

Q criterion is commonly used to visualize the flow structure of turbulence flow. It can 

be computed using the following formula: 

 
1 1 1

,    where  and   
2 2 2

j ji i
ij ij ij ij ij ij

j i j i

u uu u
Q S S S

x x x x

     
                    

              (71) 

The instantaneous Q criterion iso-surface is presented in Fig. 66 for the flow structure in 

the breakdown region. From the iso-surface plot, it is observed that the breakdown is not 

uniformly across the flow field. In the current case, the flow filed near the boundary to the 

right seems more into the breakdown which shows more in-regular   flow structure and 

more red color than the rest of the flow filed.  
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Fig. 63. Pressure disturbance on the cone surface for TAMU1 and the blow-up view of the 

breakdown region. 
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a)  

b)  

c)  

d)  

Fig. 64. Spanwise vorticity contour at different azimuth planes: a =  =  

 = 0.0261. 
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a)  

b)  

c)  

d)  

Fig. 65. Density wall-normal gradient contour at different azimuth planes: a = 0.0  = 

  = 0.0261. 
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Fig. 66. Iso-surface with vortex detection Q-criterion value set to 5000 colored by 

streamwise velocity. 
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To better study the breakdown mechanism of this particular test case, each wave 

mode’s pressure disturbance amplitude is obtained from Fourier decomposition in both time 

and spanwise spatial direction. The results are plotted in wave mode number versus 

frequency plane as shown in Fig. 67 for selected location along the downstream direction. 

At X= 0.47 m, the spectrum shows a strong 2-D second-mode waves between 160 kHz and 

200 kHz  with the low level noise all over the plane. At x=0.6 m, the noise components are 

no longer visible but another peak appears around 330 kHz that represents the higher 

harmonic wave. This is an indication that the disturbance wave amplitudes are large 

enough that the flow enters the nonlinear stage. Once the waves become strongly nonlinear, 

some spanwise wave mode that has the same frequency as the second-mode waves start to 

grow. The growths are stronger at the higher spanwise wave number end. As the 

disturbance moves further downstream, the peaks at both the lower end and higher end of 

spanwise wave mode spectrum tend to move toward the middle range. Once the wave 

modes of entire spanwise wave number spectrum around the second mode frequencies grow 

to certain threshold level, they further spread the growth to the near-by frequencies at the 

same spanwise wave number. At X=0.95 m, all the wave modes around the second-mode 

frequencies and the higher harmonic of second-mode frequencies reach relatively high 

amplitudes and the energy further spread to near-by wave modes.  At X=0.9 m, there is 

another area outside the second mode region that the wave modes are also growing. The 

region is at frequencies lower than second mode and at very high spanwise wave numbers. 

These growing wave modes match the description of sub harmonic resonance. However, the 

growths of these wave modes are so weak that it cannot play a primary role in breakdown 

process. 
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In addition to the disturbance amplitude spectrum, the phase angels are presented in 

Fig. 68. The phase angle spectra show how the wave modes interact during the secondary 

nonlinear growth region as well as the breakdown region. There is clearly a shift of pattern 

from location to location. At the inflow region, the phase angles look completely random. 

When the nonlinear interaction becomes strong, the phase angles of the wave modes with 

the same spanwise wave number tend to line up with each others. This kind of lock-up 

feature seems to help enhancing the growth of wave modes and spreading energy to near-by 

wave modes. 

More quantitative plots to observe wave mode developments are provided in Fig. 69 for 

the wave modes believed to be most relevant to the breakdown process. All the selected 

wave modes are within the second-mode frequency range. The plots show that all wave 

modes are growing but at different rates during the breakdown. And the amplitudes of 

primary 2-D wave modes are at least one order of magnitudes higher than 3-D modes at 

their peaks. However, when they reach saturation level, the amplitudes pull down a bit. 

Meanwhile, the 3-D modes continue their growths trying to catch up to the level of 2-D 

primary wave modes. Furthermore, the primary modes behave very differently than the 

linear case. The 2-D wave modes seem to suppress the growth of each other but at the same 

time relay the growing trend to maintain the overall disturbance amplitude. The growing 

patterns of higher spanwise wave modes follow the growths of their corresponding 2-D 

modes closely but the amplitude is much lower.  
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a)  

b)  



- 180 - 

 

c)  

d)  



- 181 - 

 

e)  

 f)  

Fig. 67 Frequency vs. azimuth wave number at different surface locations: a) X=0.47m, b) 

X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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c)  

f)  
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e)  

f)  

Fig. 68. Spanwise wave number vs. Frequency of phase for all wave modes: a) X=0.47m, b) 

X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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c)  

d)  

Fig. 69. Selected frequency modes at different spanwise wave numbers: a) K=0, b) K=1800, 

c) K=3600, d) K=5400. 
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 6.3.4. TAMU2 and TAMU3: Breakdown Simulations with Larger Arc Angles  

TAMU2 and TAMU3 case are carried out to investigate how different arc angles in 

azimuth direction of computational domain affects the simulation result. TAMU2 and 

TAMU3 cases’ computational domains have the spanwise arc angle of 6 degree and 12 

degree respectively, which can resolve up to the spanwise wave mode number K=1860 and 

K=930. The purpose of these two cases is to understand if different spanwise wave number 

modes will behave differently during the nonlinear interactions within the secondary 

growth region. Surprisingly, even the arc angles in azimuth direction are greater than the 

one of TAMU1 case, by keeping the grid resolutions remain the same, the simulation 

results look very similar to TAMU1 test case. 

Fig. 70 and Fig. 71 show the pressure disturbance contours along the cone surface and 

the blow-up view of the breakdown region. Similar pressure disturbance development 

patterns are found among all three test cases at the surface. Even the locations where the 

breakdowns occur are almost the same. 

To further compare TAMU2 and TAMU3 cases to TAMU1 case, the pressure 

disturbance amplitude spectra are presented in Fig. 72 and Fig. 73. Even the spanwise 

wave number ranges are different; the overall evolutions of wave modes look almost 

identical.  This fact is further manifests by the wave modes development along the 

streamwise direction for selected dominate modes in Fig. 74 and Fig. 75 for comparison 

purpose.  
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General speaking, TAMU2 and TAMU3 simulation results are very similar to TAMU1 

case. However, some subtle difference is observed when we inspect the wave mode phase 

angles spectra development closely from location to location in Fig. 76. The phase locking 

feature revealed in TAMU1 is not presented in this test case. This can be further confirmed 

by the amplitude spectra of both TAMU2 and TAMU3 cases, where the energy spreading 

across wave modes at the same spanwise wave number cannot be seen.  Regardless this 

subtle different, the flows in all these test cases reach the same stage in breakdown, which 

implies the simulation result is not sensitive to the arc angle of computational domain in 

general. At this point, it is worth to mention that, when determining what arc angle to use 

in the break simulation, we calculated that 2 degree arc angle is more than 2 times the 

boundary layer thickness at the inlet of computational domain. 
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Fig. 70. Pressure disturbance on the cone surface for TAMU2 and the blow-up view of the 

breakdown region. 
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Fig. 71. Pressure disturbance contour at the cone surface for TAMU3 and the blow-up view 

of the breakdown region. 
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a)  

b)  
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c)  

d)  
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e)   

f)  

Fig. 72. TAMU2: Frequency vs. azimuth wave number at different surface locations: a) 

X=0.47m, b) X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 73. TAMU3: Frequency vs. azimuth wave number at different surface locations: a) 

X=0.47m, b) X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  



- 198 - 

 

c)  

d)  

 

Fig. 74. TAMU2: Selected frequency modes at different spanwise wave numbers: a) K=0, b) 

K=600, c) K=1200, d) K=1800. 



- 199 - 

 

a)  

b)  
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c)  

d)  

 

Fig. 75. TAMU3: Selected frequency modes at different spanwise wave numbers: a) K=0, b) 

K=300, c) K=600, d) K=900. 
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a)                                                            

b)  



- 202 - 

 

c)   

d)  
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e)   

f)  

Fig. 76. TAMU2: Spanwise wave number vs. Frequency of phase for all wave modes: a) 

X=0.47m, b) X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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 6.3.5. TAMU4: Breakdown Simulation with Reduced Spanwise Grid Resolution 

TAMU4 case is used to study grid resolution effect on simulation result. This test case 

has spanwise are angle of 12 degree resolved by 32 azimuth grid points. The simulation 

result of this case is very different from other cases with more grid points in azimuth 

direction. In the current case, no visible breakdown occurs in the entire flow field.  

Fig. 77 show the pressure disturbance contours along the cone surface. The disturbance 

wave remains two-dimensional until the very end of computational domain where some 

weakly three dimensionalities is observed. From the pressure disturbance amplitude 

spectra in Fig. 78, the primary 2-D modes are still dominated; however, the growths of 3-D 

modes within the second-mode frequency range are very moderate even at the highest 

spanwise wave number. The developments of wave modes believed to be responsible for 

breakdown shows that the all the 3-D modes fail to attain the amplitude level needed for 

breakdown to take place. And their amplitudes are at least one order of magnitude lower 

than the TAMU1, TAMU2 and TAMU3 cases.  

Also, in this test case, no phase-locking feature can be seen in second-mode frequency 

range as shown in Fig. 79. Even some phase-locking feature is observed at frequencies 

higher than 500 kHz, these wave modes are too weak to interact with each other 

nonlinearly. Hence, it is believed that these modes cannot lead the flow to breakdown. 
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Fig. 77. Pressure disturbance on the cone surface for TAMU4 and the blow-up view of the 

downstream region. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 78. Frequency vs. spanwise wave number at different surface locations: a) X=0.47m, b) 

X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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c)  

d)  
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e)  

f)  

Fig. 79. Spanwise wave number vs. Frequency of phase for all wave modes: a) X=0.47m, b) 

X=0.6m, c) X=0.7m, d) X=0.8m, e) X=0.9m, f) X=0.95m. 
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a)  

b)  
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c)  

d)  

 

Fig. 80. Selected frequency modes at different spanwise wave numbers: a) K=0, b) K=150, c) 

K=300, d) K=450. 
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 6.3.6. Summary and Discussion of all Breakdown Simulations  

 

The results from all the test cases are presented in the previous sections. Here are 

some observations from these results. First, from test cases TAMU1 to TAMU3, the results 

show that the breakdown mechanism is independent of the spanwise arc angles of 

computational domains.    

From all the breakdown test cases, the 2-D wave mode at 160 kHz attains the highest 

disturbance amplitude in the simulations. Hence, we use wave modes from this particular 

frequency to make some comparisons in hope of getting a better understanding of the 

breakdown mechanism. The primary 2-D wave modes developments at 160 kHz from all 

TAMU test cases are presented in Fig. 81. We can see from the plot that for all the 

breakdown simulations, the 2-D wave modes at 160 kHz behave very similarly. They only 

start to slightly deviate from each other from location X=0.75 m and on. Nevertheless, the 

growths of higher spanwise wave number modes from these test cases are completely 

different. As shown in Fig. 82 and Fig. 83, the growths of wave modes at spanwise wave 

mode numbers K=180 and K=720 respectively are so random that no trend can be observed. 

Fig. 84, Fig. 85, and Fig. 86 further confirm the observation that, for all the simulations 

that the breakdowns take place, the 2-D mode and 3-D modes need to reach the same level 

in amplitude. And the 3-D modes at higher wave mode numbers grow faster than other 3-D 

modes. TAMU4 test case as shown in Fig. 87 show that even the higher spanwise wave 
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modes attain the level as 2-D mode, as long as the modes from lower spanwise wave 

numbers do not reach the same level, breakdown does not occur. 

Upon finishing all test cases and being able to simulate the flow to breakdown in some 

test cases, there are still a few unsolved problems remain.  The phase-locking feature 

revealed in TAMU1 test case is one of them. Even this feature is not observed in TAMU2 

and TAMU3 cases, the similar features are found in BS2 and FS1 test cases.  And for those 

two cases, the flows are further into breakdown stage than all TAMU test cases.  In the 

recent paper by Sivasubramanian and Fasel [75], they found that oblique breakdown,  

which uses a pair of oblique disturbance waves at opposite but equal angles, is more 

effective in leading hypersonic boundary layer flow to breakdown than conventional 

fundamental breakdown. This mechanism can possibly be used to explain why the phase-

locking can facilitate the breakdown process because a pair of oblique wave is easier to get 

into phase-locking condition than other scenarios.  

Another unanswered question is how realistic to use the current inflow profile setup for 

transition prediction.  From Fig. 88, we see that, in the linear-grow region, even though the 

two-dimensional wave modes are the fastest growing modes within second-mode frequency 

range, the 3-D wave modes are also growing substantially.  But in the current research 

effort, only 2-D receptivity data is used. The random noise is used to replace 3-D modes 

receptivity response in the inflow profile. In reality, the 3-D modes amplitudes will be 

higher than in our simulations which might lead to quicker breakdown and transition.  

Finally, the parametric study shows that the simulation results are insensitive to the 

arc angels chosen for breakdown simulation. But this should not be used to justify the grid 

convergence of current results.  More thorough case study is needed to better understand 
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what the spanwise resolution should be in order to capture the complete physics during 

breakdown.    

 

 

Fig. 81. f=160 kHz, two-dimensional wave modes for different cases. 
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Fig. 82. f=160 kHz, K=180, pressure disturbance amplitude for different test case. 

 

Fig. 83. f=160 kHz, K=720, pressure disturbance amplitude for different test case. 
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Fig. 84. f=160 kHz, TAMU1 case pressure disturbance for selected spanwise wave numbers. 

 

Fig. 85. f=160 kHz, TAMU2 case pressure disturbance for selected spanwise wave numbers. 
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Fig. 86. f=160 kHz, TAMU3 case pressure disturbance for selected spanwise wave numbers. 

 

Fig. 87. f=160 kHz, TAMU4 case pressure disturbance for selected spanwise wave numbers. 
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Fig. 88. f=160 kHz, TAMU0 case pressure disturbance for selected spanwise wave numbers. 
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 7.  Conclusions 

 7.1. Accomplishments 

The feasibility to simulate the hypersonic boundary layer flow from freestream wave 

receptivity to the onset of breakdown stage in transition has been successfully 

demonstrated using the new three-step approach. With this newly developed framework, 

one complete simulation was performed on the TAMU Mach 6 case over a straight cone 

with 0.1 mm nose radius. In step I of proposed approach, the meanflow is calculated using a 

multi-zones technique to reach the flow region where the unstable second-mode instability 

is dominant. In step II, the 2-D receptivity response induced by freestream fast acoustic 

pulse containing continued frequency spectrum was captured. Then, this 2-D receptivity 

data base was used to re-construct the inflow disturbance profile for the nonlinear 

simulation. In step III, the 3-D nonlinear simulation was carried till the onset of breakdown 

stage.   During the simulation framework development, several research topics were 

studied in depth. The nose bluntness effects on the hypersonic boundary layer flow stability 

were investigated on Stetson’s Mach 5.5 case using LST analysis. The LST results were 

validated by comparing with numerical simulations. In the freestream wave receptivity 
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simulation, a new freestream wave pulse model was devised and implemented on TAMU 

Mach 6 case to study the nose bluntness effect on nose region receptivity as well as the flow 

stability within the boundary layer. An extensive parametric study was conducted on the 

breakdown simulations. The simulation results were thoroughly analyzed to understand 

the breakdown mechanisms during hypersonic boundary layer flow transition. 

 7.2. Conclusions 

In the study of nose bluntness effects on flow stability over circular cones, Stetson’s 

Mach 5.5 experiment conducted in 1967, in which the actual reversals in transition were 

reported, is investigated using LST analysis and the results are verified by numerical 

simulations. The second-mode instability for blunt cones with nose radii of 0.156, 0.5 and 

1.5 inches are calculated. According to the LST calculations, no reversal in the onset of the 

second-mode instability is observed. Because the onset locations of instability waves were 

not measured in the experiment, no comparisons can be made to verify the reversal in 

experiments were caused by the second-mode instability waves. For the two blunter cases 

in which the transition reversal were observed experimentally, the N factors based upon 

the second-mode instability are not large enough to initiate the laminar-turbulent 

transition at the locations that the actual transitions were observed experimentally. There 

is likelihood that the reversal is caused by some uncontrollable noises with the amplitude 

large enough that the growths of disturbances bypass the linear region and force the 

transition to occur earlier. However, this hypothesis cannot be justified based on the LST 

analysis.  
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In the effort to simulate hypersonic boundary layer flow from receptivity to breakdown 

using freestream wave, the feasibility of three-step approach has been successfully 

demonstrated in both the Stetson’s test cases and TAMU test cases. A two-dimensional 

linear receptivity simulation utilizing newly developed freestream Gaussian pulse model 

has been conducted on TAMU straight cone with nose bluntness of 0.1 mm over Mach 6 

flow. Upon successfully obtaining the receptivity response at the end of linear receptivity 

simulation, the inflow disturbance profile is re-constructed using a desired freestream 

spectrum and used as inflow for breakdown simulations. Subsequently, a series of test 

cases has been carried out for extensive parametric study. Both the azimuth direction arc 

angles and grid resolution effects on breakdown simulation results are investigated. For 

each test case, the developments of all 2-D and 3-D wave modes are obtained using two-

dimensional FFT decompositions. From the simulation results, we confirm fundamental 

breakdown as the key player in the hypersonic boundary layer breakdown process. From 

the parametric case studies, it is found that breakdown is a localized process. It is not 

affected by the flow field globally. Also, the breakdown only occurs when all the 3-D wave 

modes grow to the same amplitude level as 2-D wave modes. During the phase of secondary 

instability growth, the 3-D modes at higher spanwise wave number tend to grow faster 

than 3-D modes at lower spanwise wave number.  

 7.3. Suggestions for Future Studies 

Even the framework to simulate the complete process from freestream wave receptivity 

to breakdown has been successfully demonstrated using our new three-step approach, there 

are still a few unresolved problems remain for future investigations. First of all, a better 
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inflow disturbance model should be devised so that this new framework can be used for 

more robust transition prediction. In current research, only 2-D receptivity simulation was 

carried for feasibility demonstration. Ideally, three-dimensional linear receptivity 

simulations should be conducted to obtain true 3-D receptivity data base and used to 

construct the inflow conditions for subsequent breakdown simulations. In addition, more 

freestream disturbance types should be included in the receptivity data base instead of 

using fast acoustic wave as the sole source of disturbance. A realistic freestream contains 

not only fast acoustic wave but also slow acoustic wave, entropy wave, and vorticity wave. 

Secondly, the effects of freestream disturbance amplitude and spectrum should be 

investigated to further correlate with the LST analysis so that the freestream disturbance 

amplitude effects can be incorporated with N factor calculation to provide a more reliable 

physic based transition prediction. Lastly, more nonlinear breakdown simulations should 

be conducted to reach further into the breakdown stage or even final transition to turbulent 

so that the breakdown mechanisms can be better understood. In order to do so, the 

spanwise grid resolution need to be further investigated.  Furthermore, the phase-locking 

feature observed in some of the test cases needs to be systematically analyzed to reveal the 

physics beneath it. And the current framework has laid down the corner stone for future 

studies on all these topics. 
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