
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Graph Algorithms in the Internet Age

Permalink
https://escholarship.org/uc/item/4t0614cr

Author
Stanton, Isabelle Lesley

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4t0614cr
https://escholarship.org
http://www.cdlib.org/

Graph Algorithms in the Internet Age

by

Isabelle Lesley Stanton

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Satish Rao, Chair
Professor Elchanan Mossel
Professor Dorit Hochbaum

Fall 2012

Graph Algorithms in the Internet Age

Copyright 2012
by

Isabelle Lesley Stanton

1

Abstract

Graph Algorithms in the Internet Age

by

Isabelle Lesley Stanton

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Satish Rao, Chair

This dissertation addresses a series of graph problems inspired by the computational issues
with face with the Internet, a massive distributed network of autonomous agents. There
are several levels to this problem. From a systems perspective, what can we do to facilitate
computation over massive graphs? From a modeling perspective, what do natural graphs
look like and what features are useful? From a game theoretic perspective, the graphs often
represent individuals or systems with their own goals and agendas. Can we understand how
these systems compete and when these competitions are fair or can be manipulated?

These questions are addressed. For the first, we consider the problem of streaming graph
partitioning and show it is feasible. For the second, we study the joint degree distribution
of a graph and show it is combinatorially easy to work with. Finally, we address questions
about tournament design and manipulation.

i

For Dad, who struggled for so long and made great sacrifices for all of his childrens’
education. He would have been ‘insufferably’ proud to see this document.

ii

iii

Contents

Contents iii

List of Figures v

List of Tables viii

Acknowledgments x

1 Introduction 1

I New Approaches to Graph Partitioning Problems 5

2 An Introduction to Streaming Graph Partitioning 6
2.1 Applications . 7
2.2 Theoretical Difficulties - Lower Bounds . 8
2.3 The Streaming Model . 9
2.4 Related Work . 10
2.5 The Challenges of One-Pass Streaming Partitioning 11

3 Experiments on Streaming Graph Partitioning 13
3.1 Introduction . 13
3.2 Heuristics and Stream Orders . 14
3.3 Evaluation Setup . 17
3.4 Evaluation Results . 18
3.5 Results on a Real System . 25
3.6 Conclusions . 28

4 Theoretical Results on Streaming Graph Partitioning 29
4.1 Notation and Definitions . 30
4.2 Lower Bounds . 32
4.3 Analysis of Algorithms on Random Graphs 32
4.4 Experimental Evaluation . 44

iv

4.5 Conclusions and Future Work . 48
4.6 Appendix . 50

II The Use of Matchings in Solving Graph Problems 53

5 An Introduction to Matching Algorithms 54
5.1 Introduction . 54
5.2 Classic Matching Algorithms . 56

6 The Joint Degree Distribution 62
6.1 Introduction . 62
6.2 Related Work . 64
6.3 Notation and Definitions . 66
6.4 Constructing Graphs with a Given Joint Degree Matrix 68
6.5 Uniformly Sampling Graphs with Monte Carlo Markov Chain (MCMC) Methods 70
6.6 Estimating the Mixing Time of the Markov Chain 75
6.7 Conclusions . 86

7 An Introduction to Tournaments 91
7.1 The Tournament Graph . 92
7.2 Types of Tournaments . 92
7.3 The Gibbard-Satterthwaite Theorem and Tournaments 94

8 Rigging a Tournament 97
8.1 Motivation and Counterexamples . 99
8.2 Main Results . 104
8.3 The Full Proof . 111

9 Double-Elimination Tournaments 120
9.1 Introduction . 120
9.2 Formal Definition of Double-Elimination Tournaments 123
9.3 Manipulation in Double-Elimination Tournaments 130
9.4 Efficacy of DETs at Selecting Strong Players 132
9.5 Conclusions and Open Problems . 135

Bibliography 137

v

List of Figures

3.1 PL1000 results. The top line is the cost of a random cut and the bottom line is
METIS. The best heuristic is Linear Deterministic Greedy. The figures are best
viewed in color. 21

3.2 Marvel results. The top line is the cost of a random cut and the bottom line is
METIS. The best heuristic is Linear Deterministic Greedy. 22

3.3 4elt results. The top line is a random cut and the bottom line is METIS (0.7%
edges cut). 23

3.4 BFS with 4 partitions. Each line is a heuristics performance over 7 sizes of WS
graph. The bottom line is METIS. The bottom purple line is Linear Deterministic
Greedy. Best viewed in color. 25

3.5 BFS with 2-64 partitions. Each line connects a heuristics performance over the
6 partition sizes. The bottom line is METIS. The bottom purple line is Linear
Deterministic Greedy. 26

4.1 Load balancing is not a function of the size of the graph 45
4.2 Increasing the number of components improves the load balancing. 46
4.3 q does not play a large role in load balancing. Note that q = 0.0005 is above the

threshold required by the Theorems. 46
4.4 For fixed q, k, l values, as p increases, the error in the partitioning generated drops

to 0. The vertical bar marks the value required by the theorems. 47
4.5 For fixed p, k, l values, as q increases, the error in the partitioning increases from

0 to maximum error. The leftmost vertical bar (at 0.00026) marks the value
required by the theorems, while the second (at 0.0021) is q = p/6l. 48

4.6 For fixed p, k, l, q values, as the size of the graph increases, the error in the
partitioning generated drops to 0. 49

5.1 Three copies of the same graph. The middle graph with the red edges represents
a maximal matching - no other edge can be color red without neighboring an
already red edge. The right most graph is a perfect (and maximum) matching. . 55

vi

6.1 On the left, we see an example of the configuration model of the degree distribu-
tion of the graph on the right. The edges corresponding to that graph are bold.
Each vertex is split into a number of mini-vertices equal to its degree, and then
all mini-vertices are connected. Not all edges are shown for clarity. 65

6.2 The joint degree matrix configuration model. Each vertex is colored according
to its degree. On the left is the full model, with the left side consisting of the
mini-vertices and the right side of the mini-endpoints. All edges are included,
with each of the 3 sets of color vertices forming a complete bipartite graph. The
middle and right figures are two realizations of the model, with only the matched
edges remaining. 67

6.3 The four potential joint degree distributions when n = 3. 72
6.4 The dotted edges represent the troublesome edges that we may need to swap out

before we can swap v1 and vc. 72
6.5 The disk is v1. The crosses are the end points correctly neighbored, e1 · · · ed1 . . . 72
6.6 The two parts of Case (1). 73
6.7 The two parts of Case (2) . 73
6.8 A graphical representation of the situations discussed in Case (2a). 74
6.9 A graphical representation of the situations discussed in Case (2b) 75
6.10 The time for an edge’s estimated autocorrelation function to pass under the

threshold of 0.001 versus µe for that edge for LesMis and AdjNoun from top
to bottom. 79

6.11 The time for an edge’s estimated autocorrelation function to pass under the
threshold of 0.001 versus µe for that edge for Karate and the synthetic dataset.
The synthetic dataset has a larger range of µe values than the real datasets and
a significant number of edges for each value. 81

6.12 The exponential drop-off for Karate appears to end after 400 iterations. 82
6.13 The exponential drop-off for Dolphins appears to end after 600 iterations. 82
6.14 The max, median and min values over the edges for the estimated integrated

autocorrelation times in a log-log plot. L to R in order of size: Karate, Dolphins,
LesMis, AdjNoun, Football, celegans, netscience, power, hep-th, as-22july and
astro-ph . 85

6.15 The ratio of the max, median and min values over the edges to the number of
edges for the estimated integrated autocorrelation times. L to R in order of
size: Karate, Dolphins, LesMis, AdjNoun, Football, celegans, netscience, power,
hep-th, as-22july and astro-ph . 86

6.16 The Dolphin Dataset with 5,000 to 40,000 samples 87
6.17 The Karate Dataset with 5,000 to 40,000 samples 87
6.18 The AdjNoun Dataset with 10,000 and 20,000 samples 87
6.19 The AS-22July06 Dataset with 20,000 samples 87
6.20 The Astro-PH Dataset with 20,000 samples . 88
6.21 The Celegans Dataset with 20,000 samples . 88
6.22 The Football Dataset with 10,000 and 20,000 samples 88

vii

6.23 The Hep-TH Dataset with 20,000 samples . 88
6.24 The LesMis Dataset with 10,000 and 20,000 samples 89
6.25 The Netscience Dataset with 20,000 samples . 89
6.26 The Power Dataset with 20,000 samples . 89

8.1 pi only loses to mi and pj for j < i. No matter how the other edges of the
tournament graph are placed, since the pi beat everyone else and the mi lose to
everyone else, all SE tournament winners are in S. 100

8.2 Example in which the two highest outdegree nodes, k1 and k2, have a matching
into them but A cannot win an SE tournament. 100

8.3 Example where there is a matching from N out(A) onto the k highest degree nodes
but A can’t win an SE tournament. 100

8.4 The three cases for the second strongest player, a where m is the strongest player. 101
8.5 An example where an arbitrary matching of N out(P2) is likely to fail. 106
8.6 The construction of the sets Si and Bi in Theorem 17. 106
8.7 Situation in Theorem 16 when Z = ∅. 116
8.8 Situation in Theorem 16 when Z 6= ∅. 116

9.1 DET structure for 16 players: The left is a balanced SET giving the winner
bracket, while the right is the loser bracket in which the round i winner bracket
losers are seeded at round 2i− 2. The loser bracket rounds are labeled Li while
the winner bracket rounds are labeled Wi. The rightmost tree represents the
link function in this example using the notation Tf discussed in Section 2.1. The
labels are not given in binary for space reasons. 124

9.2 The distributions over first, second and third place for the 2 tournament con-
structions for 16 players with CR-Log noise. 134

9.3 The distribution over players of first place with the link function in practice for
the 3 noise models . 134

viii

List of Tables

3.1 Graph datasets summary . 19
3.2 The average gain of each heuristic over all of our datasets and partitions sizes. . 24
3.3 Timing data (mean and standard deviation) for 5 iterations of PageRank com-

putation on Spark for LiveJournal and Twitter graphs, Hashing vs. Linear Deter-
ministic Greedy. 27

6.1 Details about the datasets, |V | is the number of nodes, |E| is the number of edges
and |J | is the number of unique entries in the J 78

6.2 Mean refers to taking the mean autocorrelation time for each edge, and then the
mean, min and max of these values over all measured edges. Similarly, the next
set of results is the median for each edge, with the min, mean and max reported.
Finally, maximum is the max for each edge, again with the mean, min and max
reported. 84

6.3 The values are the Maximum Estimated Integrated Autocorrelation time (Max
EI, the third column of Table 6.6.5), the Sample Mean Convergence iteration
number, and the time to drop under the Autocorrelation Threshold. The Auto-
correlation threshold was calculated as when the average absolute value of the
autocorrelation was less than 0.0001 . 90

8.1 Notation . 99
8.2 A summary of the notation used in this chapter. 99

9.1 Average total variation distance for the two link functions for each model 133
9.2 Percentage of simulations where the players ranked {1, 2, 3} placed correctly . . 135

ix

x

Acknowledgments

I have received significant technical advice and assistance in all of this work, first and foremost
from my advisor, Satish Rao, and from Virginia Vassilevska Williams. Beyond that, I have
been fortunate that many people have been willing to discuss my projects with me. In
particular, for each chapter, I would like to acknowledge the input of:

Chapter 3 Gabriel Kliot first brought this problem to my attention and assisted greatly
in developing a model for the experiments that matched reality. In addition, I’d like to
acknowledge the many conversations with Microsoft researchers that inspired this work,
in particular those with Nikhil Devanur, Sameh Elkinety, Sreenivas Gollapudi, Yuxiong
He, Nina Mishra, Rina Panigrahy, Yuval Peres, Burton Smith and David B. Wecker. The
paper would never have been published if Matei Zaharia had not selflessly run my Spark
experiments.

Chapter 4 This chapter is the direct outcome of Satish pestering me about why the greedy
algorithms worked (and behaved so differently) in the previous chapter. Conversations with
Miklos Racz, Alexandre Stauffer and Ngoc Mai Tran helped me work out the exact details
of the coupling argument.

Chapter 6 I am deeply grateful to Alistair Sinclair for directing me towards autocorrela-
tion as a method of evaluation mixing time. Also, David Gleich was a great help in finding
related work.

Chapters 8 and 9 I was introduced to the problem of fixing tournaments by Virginia
who patiently spent many hours finding and fixing the holes in my proofs.

Berkeley and the Theory group I have had a rich and satisfying experience as a grad-
uate student at Berkeley, in large part due to the diversity and strength of the students,
particularly those in the RadLab, AmpLab and ParLab. The Theory group itself is ex-
tremely diverse and the exposure to all of these ideas has been wonderful. Thanks to my
office mates, Raf and Anindya, for answering all my questions whenever they dared enter
the office. Thanks to Yaron for being a good first year mentor and pointing out that Theory
really can matter in practice. Thanks to Greg for making sure that there was sufficient coffee
available to power the rest of the group. Thanks to Alex for teaching me how to surf and
rock climb and reminding me there is more to life than writing research papers.

Funding. I have been fortunate to have ample funding for my graduate career including the
NSF Graduate Fellowship, NDSEG Graduate Fellowship, and NPSC Graduate Fellowship.
Additional funding came from scholarships including the Google Anita Borg and Yahoo!

xi

Key Scientific Challenges, NSF grants CCF-0830797 and CCF-1118083, and an uncountable
number of travel grants.

Finally, I’d like to thank both of my parents, not for encouraging me, but for never having
a doubt that completing this degree was something I could, would, and should do.

1

Chapter 1

Introduction

Arguably, one of the most culturally interesting artifacts of computing is the Internet. Its
existence and spread has had a vast impact on society globally, from the advant of online
social networking and smart phones to relatively more important historical events like the
Arab Spring. Its ubiquity has had a dramatic impact on all areas of Computer Science, from
networking, to the entire paradigm shift in Systems to cloud computing, all the way through
to Theoretical Computer Science where we are beginning to understand and rediscover the
importance of streaming, distributed and parallel algorithms.

The advances in storage technology, combined with the networked nature of the applica-
tions, have generated a vast array of massive, heterogeneous datasets (an interesting problem
for the Databases community). These new applications emphasize the importance of a series
of interesting algorithmic questions:

• How can we effectively design distributed or parallel algorithms?

• Given the massive size of the data, sometimes ranging into Petabyes, can we design
algorithms to compute solutions without the traditional random access assumption?

• The sheer size of the data can make computing a solution a daunting task. When this
data changes slightly, how can we effectively reuse the previous computation time to
find the new answer? What if the data is being changed adversarially?

• Each part of the network is an autonomous agent, with its own goals and desires. How
can we employ game theory to design algorithms that align the incentives of these
agents so that they work together towards the same goal?

• Often, as we develop algorithms for large data problems, we would like to evaluate their
performance. Waiting for them to run on the full data set can take a prohibitively long
time to be used in a test and debug cycle. Can we develop models to generate synthetic
data sets with the same important features?

2

• Graph data is notoriously difficult to optimize, due to its quadratic size and non-linear
nature. Given the massive amount of graph data we are collecting, what can we do to
ease this problem?

• How does the above question change when we change the graph type from the tradi-
tional scientific computing finite element mesh to the friend graph of a social network?

Perhaps the most important question is whether we can use existing algorithmic tools to
solve these problems. This thesis will primarily focus on answering a selection of the above
questions as applied to graph algorithm problems.

Part I The first part of this thesis focuses on the question of streaming graph partitioning.
Graph partitioning has been studied by theoretical computer scientists for decades and its
variants form one of the most fundamental algorithm questions. The most general way to
describe all of these variants is that they concern themselves with cutting a graph into two
or more pieces while minimizing the number of edges cut between the pieces. With no
additional constraints, this is the classic MIN-CUT problem, solved in 1954 by Ford and
Fulkerson’s maximum flow algorithm [57].

The many variants come from the vast array of applications. For example, MAX-
FLOW/MIN-CUT was studied because it modeled a military application - what are the
weak links in an enemy’s rail system so that you can efficiently cut off their supply lines?
The variant I consider arises from considering the communication patterns of a distributed
computation. If we must split this computation over many machines, each should have an
equal load and we would like to minimize the communication needed between each machine.

This problem is known as k-balanced partitioning and has nearly as long of a history, both
in the Theory community and Scientific Computing community, as all of graph partitioning.
In this work, we consider what happens when the communication graph is too large to fit in
one machine’s memory. This becomes a catch-22 - in order to efficiently partition the data,
we must first partition the communication graph of the partitioning algorithm. This new
graph may closely match the original graph in size.

We instead consider a streaming approach. Rather than assuming we can fit the entire
graph into main memory, we attempt to partition it vertex by vertex as it arrives from a
generating source, perhaps a web crawler or perhaps from a file on disk. The first chapter
focuses on experimentally evaluating various algorithms for this problem with the goal of
demonstrating that good algorithms for this problem do exist. The chapter explores sixteen
different streaming partitioning heuristics and evaluates their performance on twenty-two
graphs of varying sizes. The second chapter provides a theoretical analysis of the best
performing algorithm and a very closely related variant. This analysis is completed by
coupling the algorithms to finite Polya Urn processes. The proof clearly demonstrates the
differences in performance observed in the first chapter between the two variants.

3

Part II The second part of the thesis rather than focusing on a set of related problems,
focuses on using a specific technique, finding a matching in a graph, to solve a variety of
problems.

The first problem is to study a graph feature, the joint degree distribution. One of the
most fundamental results in the study of social and information networks is that the degree
distribution, a histogram of how many people have 1, 5, 100, or 1000 friends, follows a
power law distribution where the fraction of the people with k friends is proportional to
k−α for some α. This result is fundamentally surprising because it means this quantity in
these networks does not follow the Central Limit Theorem and become normal. The joint
degree distribution measures not how many friends a person has but the distribution over
the edges - does this network tend to have low degree nodes connecting to other low degree
nodes or high degree nodes? Many existing models of social and information networks fail
to adequately match reality, and one reason may be that the joint degree distribution can be
wildly different for different types of graphs, yet all are supposed to fit into the same model.
In Chapter 4, I address the feasibility of using the joint degree distribution within these
models. Given a joint degree distribution, can we decide if it matches a real graph, or do
some of the constraints conflict? If it does match, can we reconstruct this graph? Finally, if
we can reconstruct it, can we sample a graph uniformly at random that does? This question
about uniform sampling allows us to measure which other features are correlated with this
one, as well as run unbiased experiments.

The second problem appeals to the problem of understanding how selfish agents act when
asked to participate in a protocol, in particular, a voting or election protocol. Gibbard and
Satterthwaite [61, 128] independently showed that any reasonable social choice function is
susceptible to tactical voting where an individual voter can change their vote to obtain a
better result for themselves. The existence of tactical voting is fundamentally troubling from
two standpoints. The first is that the ideal goal of a social choice function is to produce
an outcome that is optimal in terms of social welfare. Tactical voting undermines this goal
by forcing less optimal solutions be selected. The second is that the existence of tactical
voting makes the mechanism extremely difficult to use ‘If I know that you will vote this way,
then I should vote that way. However, you also know that I will vote that way, so then you
will vote a third way.’ and no resolution can be reached. Fortunately, Bartholdi, Tovey and
Trick [25] introduced the idea of using computational complexity to sidestep tactical voting.
If, given knowledge of everyone else’s votes, it is computationally hard for me to compute if
there exists a better vote for me then I will just vote with my true preferences.

This observation has spawned an entire field of study, computational social choice. While
much of the work has focused on proving that existing voting rules are NP-hard, this chapter
focuses on the binary cup voting rule (or single-elimination tournaments). Some hardness
results are known for variants, but we look at a realistic case and study how much power
the election organized has over manipulating the outcome of the mechanism. We show that
for candidates satisfying reasonable conditions the organizer can find a manipulation very
quickly. We view this result as showing that average case hardness is the ideal measure
for computational social choice, as NP-hardness is not enough to protect voters in most

4

reasonable settings.
The final chapter was inspired by trying to answer the above manipulation questions

about double-elimination tournaments instead of single-elimination. Despite the widespread
use of double-elimination tournaments in a variety of applications from, obviously, compe-
titions, to, less obviously, medical experiment design and hearing aid fitting, there is no
existing definition of their structure in the literature. To address this, we consider several
simple tournament design goals - that they should be fair, balanced, and avoid unnecessary
repeated matches - and formalize what each of goals means in a mathematical sense. While
there is no single definition, there is a similar family of double-elimination structures used
in practice, and we show that these are not optimal with respect to avoiding repeats. We
suggest a minor change that does make them optimal, and show that this change does not
negatively impact the tournaments ability to select strong players as the winner.

5

Part I

New Approaches to Graph
Partitioning Problems

6

Chapter 2

An Introduction to Streaming Graph
Partitioning

Modern graph datasets are huge. The clearest example is the World Wide Web where crawls
by large search engines currently consist of over one trillion links and are expected to exceed
ten trillion within the year. Individual websites also contain enormous graph data. In Jan
2012, Facebook consisted of over 800 million active users, with hundreds of billions friend
links [2]. There are over 900 million additional objects (communities, pages, events, etc.)
that interact with the user nodes. In July 2009, Twitter had over 41.7 million users with
over 1.47 billion social relations [83]. Since then, it has been estimated that Twitter has
grown to over 200 million users. Examples of large graph datasets are not limited to the
Internet and social networks - biological networks, like protein interaction networks, are of
a similar size. Despite the size of these graphs, it is still necessary to perform computations
over the data, such as calculating PageRank, broadcasting Twitter updates, identify protein
associations [21], as well as many other applications.

The graphs consist of terabytes of compressed data when stored on disks and are all
far too large for a single commodity type machine to efficiently perform computations. A
standard solution is to split the data across a large cluster of commodity machines and use
parallel, distributed algorithms for the computation. This approach introduces a host of
systems engineering problems of which we focus only on the problem of data layout. For
graph data, this is called balanced graph partitioning. The goal is to minimize the number
of cross partition edges, while keeping the number of nodes (or edges) in every partition
approximately even.

Good graph partitioning algorithms are very useful for many reasons. First, graphs that
we encounter and care about in practice are not random. The edges display a great deal of
locality, whether due to the vertices being geographically close in social networks, or related
by topic or domain on the web. This locality gives us hope that good partitions, or at least
partitions that are significantly better than random cuts, exist in real graphs. Next, inter-
machine communication, even on the same local network, is substantially more expensive
than inter-processor communication. Network latency is measured in microseconds while

7

inter-process communication is measured in nanoseconds. This disparity substantially slows
down processing when the network must be used. For large graphs, the data to be moved
may border on gigabytes, causing network links to become saturated.

The primary problem with partitioning complicated graph data is that it is difficult to
create a linear ordering of the data that maintains locality of the edges i.e. if it is possible to
embed the vertices of a graph into a line such that none of the edges are ‘too long’, then a
good balanced cut exists in the graph. Such an ordering may not even exist at all. There is
a strong connection between graph partitioning and the eigenvectors and eigenvalues of the
corresponding Laplacian matrix of the graph via the Cheeger bound. This connection has
inspired many spectral solutions to the problem, including ARV [18] and the many works
that followed.

However, spectral methods do not scale to big data. This is in part due to the running
time and in part because current formulations require full graph information. When a graph
does not physically fit on one machine, maintaining a coherent view of the entire state
is impossible. This has led to local spectral partitioning methods, like EvoCut [15], but
local methods still require access to large portions of the graph, rely on complex distributed
coordination and large computation after the data has been loaded. Thus, we look for a new
type of solution. A graph loader is a program that reads serial graph data from a disk onto a
cluster. It must make a decision about the location of each node as it is loaded. The goal is
to find a close to optimal balanced partitioning with as little computation as possible. This
problem is also called streaming graph partitioning.

For some graphs, partitioning can be entirely bypassed by using meta data associated
with the vertices, e.g. clustering web pages by URL produces a good partitioning for the
web. In social networks, people tend to be friends with people who are geographically nearby.
When such data is available, this produces an improved cut over a node ID hashing approach.
Unfortunately, this data is not always be available, and even if it is, it is not always clear
which features are useful for partitioning. Our goal in this work is to find a general streaming
algorithm that relies only on the graph structure and works regardless of the meta data.

2.1 Applications

Our motivating example for studying this problem is a large distributed graph computation
system. All distributed computation frameworks, like MapReduce, Hadoop, Orleans [34]
and Spark [153] have methods for handling the distribution of data across the cluster. Un-
fortunately, for graphs, these methods are not tuned to minimize communication complexity,
and saturating the network becomes a significant barrier to scaling the system up.

The interest in building distributed systems for graph computation has recently exploded,
especially within the database community. Examples of these systems include Pregel [99],
GraphLab [94], InfiniteGraph, HyperGraphDB, Ne04j, and Microsoft’s Trinity [4] and Hor-
ton [3], to name but a few. Even for these graph specific systems, the graphs are laid out
using a hash of the node ID to select a partition. If a good pseudorandom hash function

8

is chosen, this is equivalent to using a random cut as graph partitioning and will result in
approximately balanced partitions. However, computations on the graph run more slowly
when a hash partitioning is used instead of a better partitioning, due to the high communica-
tion cost. Fortunately, these systems tend to support custom partitioning, so it is relatively
easy to substitute a more sophisticated method, provided it scales to the size of the graph.
As our experiments show, even using our simple streaming partitioning techniques can allow
systems of this type to complete computations at least 20-40% faster.

2.2 Theoretical Difficulties - Lower Bounds

Theoretically, a good streaming partitioning algorithm is impossible. It is easy to create
graphs and orderings for any algorithm that will cause it to perform poorly. A simple
example of this lower bound is a cycle. The optimal balanced 2-partition cuts only 2 edges.
However, if the vertices are given in an order of ‘all even nodes then all odd nodes’, we
won’t observe any edges until the odd nodes arrive. Without any information, the best
an algorithm could is to try and balance the number of vertices it has seen across the 2
partitions. This leads to an expected cut of n

4
edges. The worst algorithm might put all

even nodes in one partition leading to all edges being cut!
We can partially bypass this problem by picking the input ordering. The three popular

orderings considered in the literature are adversarial, random, and stochastic. The above
cycle example is an adversarial order and demonstrates that the streaming graph partitioning
problem may have arbitrarily bad solutions under that input model. Given that adversarial
input is unrealistic in our setting - we have control over the data - we focus on input that
results from either a random ordering, or the output of a graph search algorithm. The second
option is a simplification of the ordering returned by a graph crawler.

Theorem 1. One-pass streaming balanced graph partitioning with an adversarial stream
order can not be approximated within o(n).

Proof. Without loss of generality, we seek a balanced 2 partitioning. Consider a graph that
is a cycle over n vertices with edges such that (i, i + 1) mod n ∈ E for 1 ≤ i ≤ n. Let the
ordering be all odd nodes, then all even, i.e. 1, 3, 5 . . . n − 1, 2, 4, 6 . . . n. Assume that n is
even. The optimal balanced partitioning cuts 2 edges. However, the given ordering reveals
no edges until n

2
vertices arrive. Until the edges arrive, we have no way of distinguishing

which vertices are ‘near’ each other. In particular, note that this ordering is indistinguishable
from one where the odd vertices are given in a random order, or one where the odd nodes are
interspersed with unconnected even nodes, i.e. 1, n−2, 3, n−4, 5, n−6 Thus, no algorithm
can do better than cutting n

2
edges in expectation. This generalizes to k partitions.

Theorem 2. One-pass streaming balanced graph partitioning with a random stream order
can not be approximated within o(n).

9

Proof. Again, we seek a balanced 2 partition for a cycle graph with a random ordering.
Consider the tth vertex to arrive in this ordering.

Pr[t arrives with no edges] = Pr[both neighbors arrive after t] =
n− t
n

n− t− 1

n− 1

so the number of vertices that we expect to arrive with no edges is

E[# with no edge] =
n∑
t=1

t

n

t+ 1

n− 1

≈ 1

n2

n∑
t=1

t2 − t =
1

n2
(
n3

3
+
n2

2
+
n

6
+
n(n+ 1)

2
)

Therefore, asymptotically, we expect n
3

vertices to arrive with no edges. As before, when a
vertex arrives with no edges, we are not able to determine which other vertices it is ‘near’.
For each of these, we can expect to cut 1 edge, providing us with our lower bound.

We leave open the problem of providing lower bounds for other stream orderings. While
there are current approaches to analyzing streaming algorithms, our use of breadth-first and
depth-first stream orders is novel and previous approaches can not be applied. Theorem 5
shows we should not hope to analyze any algorithm with an adversarial order, while a
random ordering will always hide edges in sparse graphs until O(

√
n) vertices arrive, making

competitive analysis difficult.

2.3 The Streaming Model

We consider a simple streaming graph model. We have a cluster of k machines, each with
memory capacity C, such that the total capacity, kC, is large enough to hold the whole
graph. The graph is G = (V,E) where V is the vertices, and E the edges. The graph
may be either directed or undirected. The vertices arrive in a stream with the set of edges
where it is a member so for undirected graphs, each edge appears twice in the stream. We
consider three orders: random, breadth-first search and depth-first search. As vertices arrive,
a partitioner decides to place the vertex on one of the k machines. A vertex is never moved
after it has been placed. In order to give the heuristics maximal flexibility, we allow the
partitioning algorithm access to the entire subgraph defined by all vertices previously seen.
This is a strong assumption, but the heuristics studied in this thesis use only local (depth
1) information about this subgraph. We extend the model by allowing a buffer of size C so
that the partitioning algorithm may decide to place any node in the buffer, rather than the
one at the front of the stream.

Our model assumes serial input and a single loader. This is somewhat unrealistic for a real
system where there may be many graph loaders working in parallel on independent portions

10

of the stream. While we will not explore this option, the heuristics we investigate can be
easily adapted to a parallel setting where each loads its portion of the graph independently
from the others, sharing information only through a distributed lookup table of vertices to
partition IDs.

2.4 Related Work

Graph partitioning has a rich history. It encompasses many problems and has many proposed
solutions, from the very simple to the very sophisticated. We cannot hope to cover the
whole field and will only focus on the most relevant formulation - balanced k-partitioning.
The goal is, given a graph G as input and a number k, to cut G into k balanced pieces
while minimizing the number of edges cut. This problem is known to be NP-Hard, even if
one relaxes the balanced constraint to ‘approximately’ balanced [16]. Andreev and Racke
give an LP-based solution that obtains a O(log n) approximation [16]. Even et al. [54]
provide another LP formulation based on spreading metrics that also obtains an O(log n)
approximation. f one ignores the balance constraint, a popular approach is to use the top
k eigenvectors [115]. Recently, this approach was theoretically validated as an extension of
Cheeger’s inequality [88, 93]. Both require full information about the graph.

There are many heuristics that solve this problem with an unknown performance guar-
antee, like METIS [77], PMRSB [23], and Chaco [70]. In practice, these heuristics are quite
effective, but many are intended for scientific computing purposes. One can recursively use
any balanced 2-partitioning algorithm to approximate a balanced k-partitioning when k is a
power of 2 [18].

Another approach, relevant for our limited information setting, is local partitioning al-
gorithms. The goal here is not to obtain a balanced cut but given a starting node to find
a good cut around that node. Spielman and Teng were the first to develop this style of
algorithm [135]. Anderson, Chung and Lang improved upon Spielman and Teng’s work by
using personalized PageRank vectors to find a good local cut [14]. Addressing the same
problem, Anderson and Peres use the evolving graph process to obtain similar results [15].
While local partitioning is similar in spirit, using local partitioning to find a balanced cut is
unsolved.

While we are unaware of any previous work on the exact problem statement that we study
- one pass balanced k partitioning - there has been much work on many related streaming
problems, primarily graph sparsification in the semi-streaming model, cut projections in the
streaming model as well as online algorithms in general, like online bipartite matching. This
work includes both algorithms and lower bounds on space requirements.

The work on streaming graph problems where multiple passes on the stream are allowed
includes estimating PageRank [127] and cut projections [126]. While PageRank has been
used for local partitioning [14], the approach in [14] uses personalized PageRank vectors
which does not easily generalize the approach in [127]. Additionally, cut projections do not
maintain our balanced criterion.

11

The main focus of the next few chapters is on streaming algorithms and there is significant
related work in this area as well. First, noting the connection between graph partitioning
and PageRank is Das Sarma et al.’s work on computing the PageRank of a graph with
multiple passes [127]. Closer to our setting, Bahmani et al. incrementally compute an
approximation of the PageRank vector with only one pass [20]. However, just computing
the final PageRank vector is not sufficient for finding a graph partitioning. Das Sarma et al.
extend their techniques to find sparse cut projections within subgraphs, again using multiple
passes over the stream [126]. Cut projections are not the same as finding balanced cuts.

An alternate model, semi-streaming, assumes that all vertices are known from the begin-
ning but the edges arrive in an adversarial order. In this setting, Ahn and Guha [6] give a one
pass Õ(n/ε2) space algorithm that sparsifies a graph such that each cut is approximated to
within a (1+ε) factor. Kelner and Levin [78] produce a spectral sparsifier with O(n log n/ε2)
edges in Õ(m) time. While sparsifiers are a great way of reducing the size of the data, this
reduction would then require an additional pass over the data to compute a partitioning
which is out of the scope of the problem at hand. Finally, lower bounds are known with
regards to the space complexity of both the problem of finding a minimum and maximum
cut. Zelke [154] has shown that this cannot be computed in one pass with o(n2) space.

Finally, analyzing algorithms on random graph models has a long history. In particular,
it is quite common to analyze graph partitionings on random graphs [103, 35, 98]. This is
done because it is easier to analyze the performance of a partitioning algorithm when we
have a clear idea of the ‘right’ answer.

2.5 The Challenges of One-Pass Streaming

Partitioning

The fundamental challenge faced by one-pass streaming algorithms (which are effectively
online algorithms) is that they have no idea of what the input behind them looks like.
Thus, an early mistake can drastically affect the entire algorithmic input. A clear and
understandable example of this is auctioning hotel rooms - if the first person who shows
up will pay $100 for either room A or B and you allocate A, then the next person may be
willing to pay $500, but only for A. This means, generally, the strategy that these kinds of
algorithms employ balances maximizing the pay off today with making sure that each of the
possible options is kept available for as long as possible.

Concretely, for streaming partitioning, the problem is even more difficult than the hotel
allocation problem. There, when a person arrives, you get to see their entire preference
profile. For the graph problem, only part of the preferences are revealed when a vertex
arrives, namely we don’t see any edges to vertices we haven’t already seen in the stream. It
is exactly this hiding of information that leads to the lower bounds discussed earlier in the
chapter.

The fact that information is hidden by the ordering of the vertices leads to load balancing

12

problems when considering the balanced partitioning problem. First, if there are strict
capacity constraints, i.e. the partitions hold exactly the graph with no slack, then an early
mistake can become a big problem later in the process. We are guaranteed to make these
early mistakes because of the lack of information, so this justifies the requirement that each
partition hold (1+ε)n/k of the graph, even if a perfectly balanced partitioning exists. Second,
again, because of the lack of coordination in these types of algorithms, we are guaranteed
to make mistakes without enough slack. More precisely, consider a graph that consists of k
disconnected equally sized cliques. If this is presented in a random ordering and we try to
obtain a k partitioning, we will inevitably try to put two (or more!) of the cliques into the
same partitioning initially. As we observe more of the graph, we are able to identify that
these are cliques, but since we are trying to grow two or more in the same partition, we will
quickly hit the capacity constraint and be forced to partition these cliques.

With strict capacity constraints, 1 mistake early can be a big problem.
Load balancing is hard since it isn’t clear what the components are. With k partitions

and k components, you run into problems of it tries to concentrate 2 components into 1
partition.

13

Chapter 3

Experiments on Streaming Graph
Partitioning

3.1 Introduction

Given all of the challenges discussed in Chapter 2, the first reasonable approach to the
problem of streaming balanced graph partitioning is an experimental one. Does there exist
any algorithm that can do well on this problem? A priori, the bounds we can prove on a
greedy algorithm only show that it will do no worse than the simple random cut approach.
If it is the case that it never does any better, then the correct approach to this problem
really is to use the random cut/hashing approach.

In this chapter, we provide a rigorous, empirical study of a set of natural heuristics for
streaming balanced graph partitioning. We evaluate these heuristics on a large collection
of graph datasets, from various domains: the World Wide Web, social networks, finite-
element meshes and synthetic datasets from some popular generative models - preferential-
attachment [22], RMAT [90] and Watts-Strogatz [148]. We compare the results of our stream-
ing heuristics to both the hash based partitioning, and METIS [77], a well-regarded, fast,
offline partitioning heuristic.

Our results show that some of the heuristics are good and some are surprisingly bad. Our
best performing heuristic is a weighted variant of the greedy algorithm. It has a significant
improvement over the hashing approach without significantly increasing the computational
overhead and obtains an average gain of 76% of the possible improvement in the number
of edges cut. On some graphs, with some orderings, a variety of heuristics obtain results
which are very close to the offline METIS result. By using the synthetic datasets, we are
also able to show that our heuristics scale with the size of the graph and the number of
partitions. We demonstrate the value of the best heuristic by using it to partition both
the LiveJournal and the Twitter graph for PageRank computation using the Spark cluster
system [153]. These are large crawls of real social networks, and we are able to improve
the running time of the PageRank algorithm by 18% to 39% by changing the data layout

14

alone. Our experimental results motivate us to recommend that this is an interesting problem
worthy of future research and is a viable preprocessing step for graph computation systems.

Our streaming partitioning is not intended to substitute for a full information graph
partitioning. Certain systems or applications that need as good a partitioning as possible
will still want to repartition the graph after it has been fully loaded onto the cluster. These
systems can still greatly benefit from our optimization as a distributed offline partitioning
algorithm started from an already reasonably partitioned graph will require less commu-
nication and may need to move fewer vertices, causing it to run faster. Our streaming
partitioning algorithms can be viewed as a preprocessing optimization step that cannot hurt
in exchange for a very small additional computation cost for every loaded vertex.

3.2 Heuristics and Stream Orders

In this chapter, we examine multiple heuristics and stream orders. We now formally define
each one.

3.2.1 Heuristics

The notation P t refers to the set of partitions at time t. Each individual partition is referred
to by its index P t(i) so ∪ki=1P

t(i) is equal to all of the vertices placed so far. Let v denote
the vertex that arrives at time t in the stream, Γ(v) refers to the set of vertices that v
neighbors and |S| refers to the number of elements in a set S. C is the capacity constraint
on each partition. Each of the heuristics gives an algorithm for selecting the index ind of
the partition where v is assigned. The first seven heuristics do not use a buffer, while the
last three do.

1. Balanced - Assign v to a partition of minimal size, breaking ties randomly:

ind = arg min
i∈[k]
{|P t(i)|}

2. Chunking - Divide the stream into chunks of size C and fill the partitions completely
in order:

ind = dt/Ce

3. Hashing - Given a hash function H : V → {1 · · · k}, assign v to ind = H(v). We use:

H(v) = (v mod k) + 1

4. (Weighted) Deterministic Greedy - Assign v to the partition where it has the most edges.
Weight this by a penalty function based on the capacity of the partition, penalizing
larger partitions. Break ties using Balanced.

ind = arg max
i∈[k]
{|P t(i) ∩ Γ(v)|w(t, i)}

15

where w(t, i) is a weighted penalty function:

w(t, i) = 1 for unweighted greedy

w(t, i) = 1− |P t(i)|
C

for linear weighted
w(t, i) = 1− exp{|P t(i)| − C} for exponentially weighted

5. (Weighted) Randomized Greedy - Assign v according to the distribution defined by

Pr(i) = |P t(i) ∩ Γ(v)|w(t, i)/Z

where Z is the normalizing constant and w(t, i) is the above 3 penalty functions.

6. (Weighted) Triangles - Assign v according to

arg max
i∈[k]
{|E(P t(i) ∩ Γ(v), P t(i) ∩ Γ(v))|(|P t(i)∩Γ(v)|

2

) w(t, i)}

where w(t, i) is the above 3 penalty functions and E(S, T) is the set of edges between
the nodes in S and T .

7. Balance Big - Given a way of differentiating high and low degree nodes, if v is high-
degree, use Balanced. If it is low-degree, use Deterministic Greedy.

The following heuristics all use a buffer.

8. Prefer Big - Maintain a buffer of size C. Assign all high degree nodes with Balanced,
and then stream in more nodes. If the buffer is entirely low degree nodes, then use
Deterministic Greedy to clear the buffer.

9. Avoid Big - Maintain a buffer of size C and a threshold on large nodes. Greedily assign
all small nodes in the buffer. When the buffer is entirely large nodes, use Deterministic
Greedy to clear the buffer.

10. Greedy EvoCut - Use EvoCut [15] on the buffer to find small Nibbles with good con-
ductance. Select a partition for each Nibble using Deterministic Greedy.

Each of these heuristics has a different motivation with some arguably more natural than
others. Balanced and Chunking are simple ways of load balancing while ignoring the graph
structure.

Hashing is currently used by many real systems [99]. The benefit of Hashing is that
every vertex can be quickly found, from any machine in the cluster, without the need to
maintain a distributed mapping table. If the IDs of the nodes are consecutive, the hash
function H(v) = (v mod k) + 1 makes Balanced and Hashing equivalent. More generally, a
pseudorandom hash function should be used, making Hashing equivalent to a random cut.

16

The greedy approach is standard, although the weighted penalty is inspired by analysis of
other online algorithms. The randomized versions of these algorithms were explored because
adding randomness can often be shown to theoretically improve the worst-case performance.

The (Weighted) Triangles heuristic exploits work showing that social networks have high
clustering coefficients by finding completed triangles among the vertices neighbors in a par-
tition and overweighting their importance.

Heuristics Balance Big, Prefer Big, and Avoid Big assume we have a way to differentiate
high and low degree nodes. This assumption is based on the fact that many graphs have
power law degree distributions. These three heuristics propose different treatments for the
small number of high degree nodes and the large number of low degree nodes.

Balance Big uses the high degree nodes as seeds for the partitions to ‘attract’ the low
degree nodes. The buffered version, Prefer Big, allows the algorithm more choice in finding
these seeds. Avoid Big explores the idea that the high degree nodes form the expander portion
of the graph, so perhaps the low degrees nodes can be partitioned after the high degree nodes
have been removed.

The final heuristic, Greedy EvoCut, uses EvoCut [15], a local partitioning algorithm, on
the buffer. This algorithm has very good theoretical guarantees with regards to the found
cuts, and the amount of work spent to find them, but the guarantees do not apply to the
way we use it.

Edge Balancing While our experiments focus on partitions that are node balanced, in
part because this is what our comparator algorithm METIS produces, there is nothing that
prevents these heuristics from being used to produce edge-balanced partitions instead, i.e.
each partition holds at most C = (1 + ε)|E|/k edges. An edge-balanced partition may
be preferable for power-law distributed graphs when the computation to be performed has
complexity in terms of the number of edges and not the number of vertices. In fact, in
our second set of experiments with the PageRank algorithm in Section 3.5 we used the
edge-balanced versions of the algorithms instead, for the above reason.

3.2.2 Stream Orders

In a sense, the stream ordering is the key to having a heuristic perform well. A simple
example is Chunking, where, if we had an optimal partitioning, and then created an ordering
consisting of all nodes in partition 1, then all nodes in partition 2 and so on, Chunking would
also return an optimal partition. For each heuristic, we can define optimal orderings, but,
unfortunately, actually generating them reduces to solving balanced graph partitioning so
we must settle for orderings that are easy to compute.

We consider the following three stream orderings:

• Random - This is a standard ordering in streaming literature and assumes that the
vertices arrive in an order given by a random permutation of the vertices.

17

• BFS - This ordering is generated by selecting a starting node from each connected com-
ponent of the graph uniformly at random and is the result of a breadth-first search that
starts at the given node. If there are multiple connected components, the component
ordering is done at random.

• DFS - This ordering is identical to the BFS ordering except that depth-first search is
used.

Each of these stream orderings has a different justification. The random ordering is a
standard assumption when theoretically analyzing streaming algorithms. While we generate
these orderings by selecting a random permutation of the vertices, one could view this as
a special case of a generic ordering that does not respect connectivity of the graph. The
benefit of a random ordering is that it avoids adversarially bad orderings. The downside is
that it does not preserve any locality in the edges so we expect it to do poorly for statistical
reasons like the Birthday paradox. Via the Birthday paradox, we can argue that for sparse
graphs, we expect to go through O(

√
n) of the vertices before we find a first edge.

Both BFS and DFS are natural ways of linearizing graphs and are highly simplified mod-
els of a web crawler. In practice, web crawlers are a combination of local search approaches
- they follow links, but fully explore domains and sub-domains before moving on. This is
breadth-first search between domains, and depth-first search within. The main benefit of
both orderings is that they guarantee that the partitioner sees edges in the stream immedi-
ately. Additionally, they maintain some locality. Each has their drawbacks, but it should be
noted that BFS is a subroutine that is often used in partitioning algorithms to find a good
cut, particularly for rounding fractional solutions to LPs [54].

3.3 Evaluation Setup

We conducted extensive experimental evaluation to discover the performance and trends of
stream partitioning heuristics on a variety of graphs. The questions we ask are: Which of
these heuristics are reasonable? Can we recommend a best heuristic, restricted to graph
type? Do these heuristics scale to larger graphs? Our intent is to use this style of solution
for graphs that include trillions of edges, yet in our initial experiments our largest graph
has 1.4 million edges. We address this last question by using synthetic datasets to show
that the heuristics scale and in Section 3.5 use our heuristics on two larger social networks
successfully.

3.3.1 Datasets

We used several sources to collect multiple datasets for our experiments. From the SNAP [89]
archive, we used soc-Slashdot0811, wiki-Vote and web-NotreDame. From the Graph Par-
titioning Archive [147] we used : 3elt, 4elt, and vibrobox. We also used: Astrophysics

18

collaborations (astro-ph) [110], C. Elegans Neural Network (celegans) [148], and the Mar-
vel Comics social network [9]. We used two large social networks (LiveJournal [105] and
Twitter [83]) to evaluate our heuristics in a real system in Section 3.5.

We created synthetic datasets using popular generative models, preferential attachment
(BA) [22], Watts-Strogatz (WS) [148], the RMAT generator [90], and a power-law graph
generator with clustering (PL) [71]. Three of the synthetic datasets, BA, WS, and PL were
created with the NetworkX python package. For each model, we created a degree distribution
with average degree O(log n) (average degree of 10 edges for 1,000 nodes, 13 for 10,000, and
25 for 50,000). This fully specifies the BA model. For WS and PL we used .1 as the rewiring
probability. The RMAT datasets were created with the Python Web Graph Generator,
a variant of the RMAT generator [1]. The RMAT or Kronecker parameters used by this
implementation are [0.45,0.15;0.15,0.25].

The datasets were chosen to balance both size and variety. All are small enough so that
we can find offline solutions with METIS so that our results are reproducable, while still big
enough to capture the asymptotic behavior of these graph types. The collection captures
a variety of real graphs, focusing on finite-element meshes (FEM) and power-law graphs.
FEMs are used for scientific computing purposes to model simulations like the flow over
a wing, while power-law (and other heavy-tailed) distributions capture nearly all ‘natural’
graphs, like the World Wide Web, social networks, and protein networks. In general, it is
known that FEMs have good partitions because their edges are highly local, while natural
graphs are more difficult to partition because they have high expansion and low diameter.
The basic statistics about each graph, as well as its type and source are in Table 3.1.

3.3.2 Methodology

We examined all the combinations of datasets, heuristics and stream orders and ran each
experiment 5 times on each combination. The Random ordering is a random permutation of
the vertices, while BFS and DFS were created by sampling a random vertex to be the root
of the BFS or DFS algorithm. Each of the heuristics was run on the same ordering. We ran
each experiment on 2, 4, 8, and 16 partitions and fixed the imbalance such that no partition
held more than 5% more vertices than its share. The imbalance was chosen as a reasonable
setting of this parameter in practice.

3.4 Evaluation Results

In all of the following figures, the y-axis has been scaled to zoom in on the data. The ordering
of the heuristics in the figures is the one given in Table 3.2.

19

Name |V | |E| Type Source
3elt 4720 13,722 FEM [147]
4elt 15606 45,878 FEM [147]

vibrobox 12,328 165,250 FEM [147]
celegans 297 2,148 Protein [148]
astro-ph 18,772 396,160 Citation [110]

Slashdot0811 77,360 504,230 Social [89]
wiki-Vote 7,115 99,291 Social [89]
Marvel 6,486 427,018 Social [9]
web-ND 325,729 1,497,134 Web [89]

BA 1,000 9,900 Synthetic [22]
BA 10,000 129,831 Synthetic [22]
BA 50,000 1,249,375 Synthetic [22]

RMAT 1,000 9,175 Synthetic [90]
RMAT 10,000 129,015 Synthetic [90]
RMAT 50,000 1,231,907 Synthetic [90]

WS 1,000 5,000 Synthetic [148]
WS 10,000 120,000 Synthetic [148]
WS 50,000 3,400,000 Synthetic [148]
PL 1,000 9,878 Synthetic [71]
PL 10,000 129,763 Synthetic [71]
PL 50,000 1,249,044 Synthetic [71]

LiveJournal 4.6*106 77.4*106 Social [105]
Twitter 41.7*106 1.468*109 Social [83]

Table 3.1: Graph datasets summary

3.4.1 Upper and lower bounds

In order to evaluate the quality of our heuristics, we must establish good upper and lower
bounds for the performance. A natural upper bound is the approach currently used in prac-
tice - hashing the node ID and mapping it to a partition. This approach completely ignores
the edges so its expected performance is cutting a k−1

k
fraction of edges for k partitions. This

bound is marked by the upper black line in our figures. We expect Balanced and Hashing to
always perform at this level, as well as Chunking on a random order.

The lower bound can be picked in many more ways. Finding an optimal lower bound
is NP-hard, so we focus on more realistic approaches. We compare against a practical and
fast approach, the partition produced by METIS v4.0.3. While METIS has no theoretical
guarantees, it is widely respected and produces good cuts in practice, and is thus a good
offline comparison for our empirical work. This METIS value is marked as the lower black line
in our figures. Note that METIS is given significantly more information than the streaming
heuristics, so we would not expect them to produce partitioning of the same quality. Any

20

heuristic between these two lines is an improvement.

3.4.2 Performance on three graph types

We have included figures of the results for three of the graphs, a synthetic graph, a social
network graph and a FEM with the goal of covering all three major types of graphs.

Figure 3.1 depicts the performance on the PowerLaw Clustered graph [71] of size 1,000
with 4 partitions. This is one of our synthetic graphs where the model is intended to capture
power law graphs observed in nature. The lower bound provided by METIS is 58.9% of the
edges cut, while the upper bound for 4 partitions is 75%. The first heuristic, Avoid Big, is
worse than a random cut. Linear Deterministic Greedy and Balance Big both perform very
well for all 3 stream orderings. These each had a best average performance of 61.7% and
63.2% of the edges cut respectively, corresponding to 82% and 73% of the possible gain in
performance. This gain was calculated as the fraction of edges cut by the random minus the
fraction cut by the heuristic, divided by the fraction cut by a random cut minus the fraction

cut by METIS (random−heuristic
random−METIS

).

Figure 3.2 is our results for a social network, the Marvel Comics network [9], with 8
partitions. The Marvel network is synthetic, as it is the result of character interactions in
books, but studies have shown it is similar to real social networks. The lower bound from
METIS cuts only 32.2% of edges. The upper bound is 7/8 = 87.5% cut. The two heuristics
at the upper bound level are Balanced and Hashing, with Chunking on the random order also
performing poorly, as expected. Again, the best heuristic is Linear Deterministic Greedy, with
48%, 48.7% and 50.8% edges cut for the BFS, DFS and Random orderings respectively. This
constitutes a gain of 71.3%, 70% and 66%.

Figure 3.3 contains the results for a FEM, 4elt [147], with 4 partitions. The change in
graph structure gives us quite different results, not the least of which is that METIS now
cuts only 0.7% of edges. The upper bound remains at 75%, providing a huge range for
improvement. Surprisingly, Chunking performs extremely well here for the BFS and DFS
orders, at 4.7% and 5.7% cut respectively. Translating into gain provides 94.7% and 93.3%
of the optimal improvement. Chunking performs poorly on the Random order as expected.
The other heuristic that performs well is Greedy EvoCut, obtaining 5.1% and 5% cuts for
BFS and DFS respectively. Linear Deterministic Greedy obtains 9.4%, 20.3%, and 30.6%
cuts for BFS, DFS and Random respectively. In fact, all of the heuristics beyond Balanced
and Hashing are vast improvements. The BFS ordering is also a strict improvement for all
approaches over the DFS and Random orderings.

3.4.3 Performance on all graphs: discussion

We present the gain in the performance of each heuristic in Table 3.2, averaged over all
datasets from Table 3.1 (except for LiveJournal and Twitter) and all runs, for each ordering.
The best heuristic is Linear Deterministic Greedy for all orderings, followed by Balance Big.

21

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

AB B PB C DG EDG ERG ET GE H LDG LRG LT RG BB T

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Heuristic

PL1000 results, 4 partitions

BFS
DFS

Random

Figure 3.1: PL1000 results. The top line is the cost of a random cut and the bottom line
is METIS. The best heuristic is Linear Deterministic Greedy. The figures are best viewed in
color.

Greedy EvoCut is also successful on the BFS and DFS orderings, but is computationally much
more expensive than the other two approaches. Note that Balance Big is a combination of
the Greedy and Balanced strategies, assigned based on node degree. There are universally
bad heuristics, namely Prefer Big and Avoid Big. Both of these are significantly worse than
Hashing.

We further restrict the results by type of graphs. As stated earlier, FEMs have good
balanced edge cuts. For these types of graphs, no heuristic performed worse than the Hash-
ing approach, and most did significantly better. For the BFS ordering, Linear Deterministic
Greedy had an average 86.6% gain, with Deterministic Greedy closely behind at 84.2%. For
the DFS ordering, the Greedy EvoCut approach performed best at 78.8%, with all 3 deter-
ministic greedy approaches closely behind at 74.9% (exp), 74.8% (unweighted) and 75.8%
(linear). Finally, as always, the Random ordering was the hardest, but Linear Deterministic
Greedy was also the best with 63% improvement. No other method achieved more than
56%. The surprising result for FEMs is how well the Chunking heuristic performed: an

22

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

AB B PB C DG EDG ERG ET GE H LDG LRG LT RG BB T

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Heuristic

Marvel results, 8 partitions

BFS
DFS

Random

Figure 3.2: Marvel results. The top line is the cost of a random cut and the bottom line is
METIS. The best heuristic is Linear Deterministic Greedy.

80% improvement for BFS and 72% for DFS. This is a huge improvement for such a simple
heuristic, although it is due to the topology of the networks and the fact that BFS is used
in partitioning algorithms to find good cuts. When given a Random ordering, Chunking had
only a 0.2% average improvement.

The social networks results were more varied. Here, the Prefer Big and Avoid Big both
have large negative improvements, meaning both should never be used for power law degree
networks with high expansion. For all three orderings, Linear Deterministic Greedy was clearly
the superior approach with 71% improvement for BFSnd 70% for DFS. The second best
performance was from both Exponential Deterministic Greedy and Deterministic Greedy at
60.5% for BFS and 52.9% for DFS. Finally, for a Random ordering, Linear Deterministic
Greedy achieved a 64% improvement, with the other greedy approaches at only 42%.

Given that the Linear Deterministic Greedy algorithm performed so well, even compared
with the other variants, one may ask why. At a high level, the penalty functions form
a continuum. The unweighted version has a very strict cutoff - the penalty only applies
when the partition is full and gives no indication that this restriction is approaching. The

23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

AB B PB C DG EDG ERG ET GE H LDG LRG LT RG BB T

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Heuristic

4elt results, 4 partitions

BFS
DFS

Random

Figure 3.3: 4elt results. The top line is a random cut and the bottom line is METIS (0.7%
edges cut).

exponential penalty function has similar performance to the unweighted version because
while the exponential function does not indicate that the partition is nearly full until it is
very close to the limit. The linear weighting optimally balances the greedy choices with
preferring less loaded partitions. Since 1−x ≈ e−x when 0 < x < 1, the linear weighting can
be seen as a normalized exponential weighting. This normalization term allows the penalty
to take effect much earlier in the process and smooths the information by preventing the size
of the partition from affecting the prediction. As this is a continuum, this parameter could
be further fine-tuned for different types of graphs. Additionally, the implementation of the
unweighted greedy algorithm in this chapter breaks ties lexicographically. Breaking ties by
load is equivalent to an indicator penalty function and its performance is very close to the
linear penalty function.

24

Heuristic BFS DFS Random
Avoid Big AB -27.3 -38.6 -46.4
Balanced B -1.5 -1.3 -0.2
Prefer Big PB -9.5 -18.6 -23.1
Chunking C 37.6 35.7 0.7

Deterministic Greedy DG 57.7 54.7 45.4
Exp. Det. Greedy EDG 59.4 56.2 47.5
Exp. Rand. Greedy ERG 45.6 45.6 38.8
Exp. Triangles ET 50.7 49.3 41.6
Greedy EvoCut GE 60.3 58.6 43.1

Hashing H -1.9 -2.1 -1.7
Linear Det. Greedy LDG 76 73 75.3
Linear Rand. Greedy LRG 46.4 44.9 39.1
Linear Triangles LT 55.4 54.6 49.3

Randomized Greedy RG 45.5 44.9 38.7
Balance Big BB 67.8 68.5 63.3
Triangles T 49.7 48.4 40.2

Table 3.2: The average gain of each heuristic over all of our datasets and partitions sizes.

3.4.4 Scalability in the graph size

All of our datasets discussed so far are tiny when compared with graphs used in practice.
While the above results are promising, it is important to understand whether the heuristics
scale with the size of the graph. We used the synthetic datasets in order to control for
the variance in different graphs. The key assumption is that using the same generative
model with similar parameter settings will guarantee similar graph statistics while allowing
the number of edges and nodes to vary. We began by looking at the results for the four
generative models, BA, RMAT, WS, and PL. For each of these we had 3 data points: 1,000
vertices, 10,000 vertices, and 50,000 vertices. In order to get a better picture, we created
additional graphs with 20,000, 30,000, 100,000 and 200,000 vertices. We will present only
the results for the Watts-Strogatz graphs, but all other graphs exhibit quite similar results.
Note that these results will scale to any size graph created by the same generative model
because of the statistical properties of the generated graphs.

The labels in Figure 3.4 have been elided for clarity of the image. The bottom black
line is METIS. This shows that our idea that the fraction of edges cut should scale with
the size of the graph holds - it is approximately 12% for each graph. Next, there is clearly
a best heuristic for this type of graph, the purple line. It corresponds to the Linear Deter-
ministic Greedy heuristic. It has an average edge cut of 21% over all sizes of the graphs.
Finally, all of the lines are approximately constant. The noise in the performance of each al-
gorithm is due to the random nature of the orderings, and would decrease with further trials.

25

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1,000 10,000 20,000 30,000 50,000 100,000 200,000

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Dataset size

Heuristic performance over Watts-Strogatz Graphs

Figure 3.4: BFS with 4 partitions. Each line is a heuristics performance over 7 sizes of WS
graph. The bottom line is METIS. The bottom purple line is Linear Deterministic Greedy.
Best viewed in color.

3.4.5 Scalability in the number of partitions

The other question is how the partitioning quality scales with the number of partitions. The
fraction of edges cut must necessarily increase as we increase the number of partitions. Also,
we are not trying to find an optimal number of partitions for the graph. As before, we only
present data on one graph in Figure 3.5, the 50,000 node PowerLaw Clustered graph, but
all graphs have similar characteristics. The heuristics performance closely tracks that of
METIS.

3.5 Results on a Real System

After evaluating the performance of the partitioning algorithms, we naturally ask whether
the improvement in the partitioning makes any measurable difference for real computations.
To evaluate our partitioning scheme in a cluster application, we used an implementation of

26

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Log of Number of Partitions

Heuristic performance over the PL Graph with 50,000 nodes

Figure 3.5: BFS with 2-64 partitions. Each line connects a heuristics performance over the
6 partition sizes. The bottom line is METIS. The bottom purple line is Linear Deterministic
Greedy.

PageRank in Spark [153], a cluster computing framework for iterative applications. Spark
provides the ability to keep the working set of the application (the graph topology and
PageRank values) in memory across iterations, so the algorithm is primarily limited by
communication between nodes. Other recent frameworks for large-scale graph processing,
like Pregel [99] and GraphLab [94], also keep data in memory and are expected to exhibit
similar performance characteristics.

There are many graph algorithms implemented for the Spark system, but we chose PageR-
ank for two reasons. One is the popularity of this specific algorithm, and the other is its
generality. PageRank is a specialized matrix multiplication, and many graph algorithms
can be expressed similarly. Additionally, Spark has two implementations of PageRank: a
näıve version that sends a message on the network for each edge, and a more sophisticated
combiner version that aggregates all messages between each partition [152].

We used Linear Deterministic Greedy, as it performed best in our previous experiments.
We tried both a vertex balanced version and an edge-balanced version. However, our datasets

27

LJ Hash LJ Streamed Twitter Hash Twitter Streamed
Näıve PR Mean 296.2s 181.5s 1199.4 s 969.3 s
Näıve PR STD 5.5 s 2.2 s 81.2 s 16.9 s

Combiner PR Mean 155.1 s 110.4 s 599.4 s 486.8 s
Combiner PR STD 1.5 s 0.8 s 14.4 s 5.9 s

Table 3.3: Timing data (mean and standard deviation) for 5 iterations of PageRank com-
putation on Spark for LiveJournal and Twitter graphs, Hashing vs. Linear Deterministic
Greedy.

are social networks and follow a power-law degree distribution. For PageRank, the quantity
that should be balanced is the number of edges in each partition as this controls the amount
of computation performed in sparse matrix multiplication and we want this to be equal for all
partitions. The existence of very high degree nodes means that some partitions contain many
more edges than others, resulting in unbalanced computation times between the different
cluster machines. We therefore modified Linear Deterministic Greedy to use the number of
edges in a partition for the weight penalty. We used two datasets, LiveJournal [105] with
4.6 million nodes and 77.4 million edges, and Twitter [83] with 41.7 million nodes and 1.468
billion edges. While neither are Internet scale, they are both realistic for medium sized web
systems and large enough to show the effects of reduced communication on a distributed
computation.

LiveJournal We used 100 partitions, with imbalance of 2% and the stream order pro-
vided by the authors of the dataset which is an unknown ordering. Linear Deterministic
Greedy reduced the number of edges cut to 47,361,254 edges compared with 76,234,872 for
Hashing. We ran 5 iterations of both versions of PageRank, and repeated this experiment 5
times. With the improved partitioning, näıve PageRank was 38.7% faster than the hashed
partitioning version.The timing information, along with standard deviations, is summarized
in Table 3.3. We used 10 “large” machines (7.5GB memory and 2 CPUs) on Amazon’s
EC2. The combiner version with our partitioning was 28.8% faster than the hashed version.
This reduction in computation time is obtained entirely by laying out the data in a slightly
smarter way.

Twitter We repeated the experiment for Twitter [83]. This graph is one of the largest
publicly available datasets. Twitter was partitioned into 400 pieces with a maximum im-
balance of 2%. Linear Deterministic Greedy cut 1.341 billion edges, while Hashing cut 1.464
billion. We used 50 “large” machines with 100 cores. The total computation time is much
longer due to the increase in size. The näıve PageRank was 19.1% faster with our parti-
tioning while the combiner version was 18.8% faster. For both graphs, there was additional
time associated with loading the graph, about 200 seconds for Twitter and 80 seconds for
LiveJournal, but this was not affected by the partitioning method.

28

These results show that with very little engineering effort, a simple preprocessing step
that considers the graph edges can yield a large improvement in the running time. The
best heuristic can be computed for each arriving node in time that is linear in the number
of edges, given access to the distributed lookup table for the cluster and knowledge of the
current loads of the machines. The improvement in running time is entirely due to the
reduced network communication.

3.6 Conclusions

This chapter has demonstrated that simple, one-pass streaming graph partitioning heuristics
can dramatically improve the edge-cut in distributed graphs. Our best performing heuristic
is the linear weighted variant of the greedy algorithm. This is a simple and effective pre-
processing step for large graph computation systems, as the data must be loaded onto the
cluster any way. One might need to perform a full graph partitioning once the graph has
been fully loaded, however, as it will be re-partitioning an already partitioned graph, there
will be less communication cost and it potentially may need to move fewer vertices, and will
be faster. Using our approach as preprocessing step can only benefit any future computation
while incurring only small cost.

In the next chapter, we will provide a theoretical analysis of both Linear Deterministic
Greedy and Randomized Deterministic Greedy. This analysis will clearly show why the
performance differences happen.

29

Chapter 4

Theoretical Results on Streaming
Graph Partitioning

Chapter 3 addresses the problem of streaming balanced graph partitioning from an exper-
imental perspectiveand evaluates 16 different partitioning heuristics on 21 different graphs to
find how well each performs when compared with an offline partitioning heuristic (METIS [77]).
The surprising result was that one of the quite simple heuristics, Linear Deterministic
Greedy, performed the best, even beating an adaptation of a local partitioning algorithm,
EvoCut [15]. Additionally, adding randomization into the algorithm caused it to perform
significantly worse. This is surprising because the addition of randomness often allows us
to design more efficient algorithms, not less. In this chapter, we explain theoretically why
Linear Deterministic Greedy performed so well and what causes the difference between its
performance and that of the randomized variant.

This Chapter focuses on much more stylized algorithms and maps them to random pro-
cesses. As a result, to separate the two chapters, we will call Linear Deterministic Greedy
the arg max Greedy algorithm in this chapter, and Linear Randomized Greedy will be the
Proportional Greedy algorithm.

Contributions This chapter focuses on developing a rigorous understanding of two greedy
streaming balanced graph partitioning algorithms. We first give lower bounds on the ap-
proximation ratio that any streaming algorithm for balanced graph partitioning can obtain
on both a random and adversarial ordering of the graph. In response to this lower bound,
we focus our attention on a class of random graphs with embedded balanced k cuts. We
analyze our greedy algorithms by using a novel coupling to finite Polya Urn processes. This
is very elucidating connection gives clear intuition as to why one algorithm performs well
while the other does not.

30

4.1 Notation and Definitions

We now introduce the notation and definitions used throughout the rest of the paper. The
balanced graph partitioning problem takes as input a graph G, an integer k and an allowed
imbalance parameter of ε. The goal is to partition the vertices of G into k sets, each no
larger than (1 + ε)n

k
vertices, while minimizing the number of edges cut.

Graph Models A graph G = (V,E) consists of n = |V | vertices and m = |E| edges.
Γ(v) is the set of vertices that a vertex v neighbors. We consider graphs generated by two
random models. The first, G(n, p) is the traditional Erdös-Renyi model with n vertices. The
traditional definition is that each of the possible

(
n
2

)
edges is included independently with

probability p. At certain points in the proofs in Section 5, we modify this definition to make
it better match our streaming model. In particular, we allow multiple edges in order to
maintain independence in our analysis.

G(Ψ, P) is a generalization of G(n, p), due to McSherry [103], that allows the graph to
have l different Erdös-Renyi components, each with different parameters. Again, we have
n vertices. Ψ : {1, 2, . . . n} → {1, 2, . . . l} is a function mapping the vertices into l disjoint
clusters. Let Ci refer to the set of vertices mapped to i, i.e. Ψ−1(i) = Ci. P is a l × l
matrix where edges between vertices in Ci are included independently with probability Pi,i
and edges between vertices in Ci and Cj are included with probability Pi,j. There are many
ways for G(Ψ, P) to generate graphs in G(n, p) - Ψ could map all vertices into the same
cluster or we could have Pi,i = Pi,j = p for all i, j. We make the same modification to the
generative process as in G(n, p) and allow multiple edges for clarity of the analysis.

Probability Distributions We only use variables drawn from a binomial distribution,
where X ∼ B(n, p) is a random variable representing n independent trials, each with prob-
ability p of success.

4.1.1 Polya Urn Processes

The classical Polya Urn problem is: Given finitely many initial bins, each containing one
ball, let additional balls arrive one at a time. For each new ball with probability p create a
new bin and put the ball in it. With probability 1− p, place the ball in an existing bin with
probability proportional to mγ where m is the number of balls currently in that bin.

Many variants of the above process have been analyzed. In particular, Chung, Handjani,
and Jungreis [38] analyze the finite Polya urn process where p = 0. The exponent γ plays
an important role in the behavior of this process. With k bins, when γ < 1, in the limit, the
load of each bin is uniformly distributed and each contains a 1

k
fraction of the balls. When

γ > 1, in the limit, the fractional load of one bin is 1. When γ = 1, the limit of the fractional
loads exists but is distributed uniformly on the simplex.

31

Our proof technique will focus on connecting the streaming graph partitioning algorithms
with the finite Polya urn process and use many of the results from [38]. We restate the results
used here:

Theorem 3 (Theorem 2.1 from [38]). Consider a finite Polya process with exponent γ = 1,
k bins and let xti denote the fraction of balls in the ith bin at time t. Then almost surely for
each i, the limit Xi = limt→∞ x

t
i exists. Furthermore these limits are distributed uniformly

on the simplex {(X1, X2, . . . Xk) : Xi > 0, X1 +X2 + . . .+Xk = 1}.

Theorem 4 (Theorem 2.2 from [38]). Consider a finite k-bin Polya process with exponent γ
and let xti denote the fraction of the balls in bin i at time t. Then a.s. the limit Xi = limt→∞ x

t
i

exists for each i. If γ > 1 then Xi = 1 for one bin, and Xi = 0 for all others. If γ < 1 then
Xi = 1

k
for all bins.

Lemma 1 (Lemma 2.3 from [38]). Given a finite or infinite Polya process with exponent
γ and an arbitrary initial configuration (i.e. finitely many balls arranged in finitely many
bins), suppose we restrict attention to any particular subset of the bins and ignore any balls
that are placed in the other bins. Then the process behaves exactly like a finite Polya process
with exponent γ on this subset of bins, though the process may terminate after finitely many
balls.

Lemma 1 is particularly important to our analysis as it forms the basis of an inductive
argument to extend the analysis in [38] to k bins from 2 bins. We also use the claim that a
finite, arbitrary initial configuration does not affect the distribution in the limit.

4.1.2 The Streaming Model

We consider a streaming graph model where the vertices arrive in some order. The two stream
orderings we consider are adversarial and random. For n vertices, the set of permutations Sn
defines all possible orderings. For a random ordering, each permutation is picked with equal
probability. An adversarial ordering is any probability distribution over the permutations,
including one that picks the worst possible ordering for the algorithm.

When a vertex arrives so do all of its incident edges. Our goal is to generate a balanced
vertex partitioning of the graph with k partitions. The capacity of each partition, C, is
enough to hold all the vertices, i.e. kC = (1+ ε)n. We assume an undirected graph since our
evaluation metric, the number of edges cut, is not affected by the directionality of an edge.

We chose this model because we are concerned with the problem of loading data onto a
cluster and partitioning at the same time. We assume that only one pass can be made over
the data and the algorithm has access to the current load of each machine on the cluster
and the location of each vertex that has been previously seen. A vertex is not moved after
it has been placed into some partition.

32

4.2 Lower Bounds

Given our streaming model, the first important question is whether any algorithm can do
well on all graphs. The unfortunate answer is no. Intuitively, with only one pass, important
edges may be hidden either intentionally by an adversary or unintentionally by randomness.

Theorem 5. One-pass streaming balanced graph partitioning with an adversarial stream
order can not be approximated within o(n).

Proof. Without loss of generality, we seek a balanced 2 partitioning. Consider a graph that
is a cycle over n vertices with edges such that (i, i + 1) mod n ∈ E for 1 ≤ i ≤ n. Let the
ordering be all odd nodes, then all even, i.e. 1, 3, 5 . . . n − 1, 2, 4, 6 . . . n. Assume that n is
even. The optimal balanced partitioning cuts 2 edges. However, the given ordering reveals
no edges until n

2
vertices arrive. Until the edges arrive, we have no way of distinguishing

which vertices are ‘near’ each other. In particular, note that this ordering is indistinguishable
from one where the odd vertices are given in a random order, or one where the odd nodes are
interspersed with unconnected even nodes, i.e. 1, n−2, 3, n−4, 5, n−6 Thus, no algorithm
can do better than cutting n

2
edges in expectation. This generalizes to k partitions.

Theorem 6. One-pass streaming balanced graph partitioning with a random stream order
can not be approximated within o(n).

Proof. Again, we seek a balanced 2 partition for a cycle graph with a random ordering.
Consider the tth vertex to arrive in this ordering.

Pr t arrives with no edges =
Pr both neighbors arrive after t = n−t

n
n−t−1
n−1

so the number of vertices that we expect to arrive with no edges is

E[# with no edge] =
∑n

t=1
t
n
t+1
n−1
≈ 1

n2

∑n
t=1 t

2 − t = 1
n2 (n

3

3
+ n2

2
+ n

6
+ n(n+1)

2
)

Therefore, asymptotically, we expect n
3

vertices to arrive with no edges. As before, when a
vertex arrives with no edges, we are not able to determine which other vertices it is ‘near’.
For each of these, we expect to cut 1 edge, providing us with our lower bound.

In the following sections, we only analyze the algorithms for random orderings. In par-
ticular, we will show that for random graphs with higher degree and a planted partition, arg
max Greedycan recover the partitioning.

4.3 Analysis of Algorithms on Random Graphs

The experiments in [136] showed that one heuristic studied in the paper, Linear Deterministic
Greedy (LDG), was clearly the best tried. However, another heuristic, Linear Randomized
Greedy(LRG), differs only in that it selects a partition proportionally to the distribution

33

Algorithm 1 arg max Greedy
Input: G, k, C, π

P1, · · · , Pk = ∅
for t = 1, 2, . . . n do

for i = 1, 2, . . . k do
Si = |Γ(π(t)) ∩ Pi|
if |Pi| = C then
Si = 0

if all Si = 0 then
Pick i from arg minj∈[k]{|Pj|} u.a.r.

else
Pick i from arg maxj∈[k]{Sj} u.a.r.

Pi = Pi ∪ π(t)

Algorithm 2 Proportional Greedy
Input: G, k, C, π

P1, · · · , Pk = ∅
for t = 1, 2, . . . n do

for i = 1, 2, . . . k do
Si = |Γ(π(t)) ∩ Pi|
if |Pi| = C then
Si = 0

if all Si = 0 then
Pick i from arg minj∈[k]{|Pj|} u.a.r.

else
Pick i proportional to Si

Pi = Pi ∪ π(t)

of edges instead of from the maxima. In the experiments, LDG performed significantly
better than LRG. This raises the question - can we theoretically explain the difference in
performance? In this section, we will introduce slightly simpler variants, arg max Greedy (cor-
responding to LDG) and Proportional Greedy(corresponding to LRG), and analyze their per-
formance on McSherry’s random graph model. Our analysis will clearly demonstrate the
difference observed in the experiments.

4.3.1 Algorithms

The two algorithms studied in this paper are very similar: when a vertex v arrives, a score
for each partition Pi of the number of edges from v to Pi, Si = |Γ(v) ∩ Pi|, is calculated. If
the partition is full, its score is set to 0. If all scores are 0, then the vertex is assigned to some

34

Algorithm 3 arg max Greedy Process on G(n, p)

Input: p

Set P1, P2, . . . Pk = ∅
for t = 1, 2, . . . n do

For 1 ≤ i ≤ k, draw E
(t)
i ∼ B(|Pi|, p)

if
∑k

i=1E
(t)
i = 0 then

Assign t to arg minj∈[k]{|Pj|}
else

Assign t to arg maxj∈[k]{E(t)
j }

partition with minimal load. If a score is non-zero, then the arg max Greedy Algorithm assigns
the vertex uniformly at random to a partition in arg maxSi. By contrast, the Proportional
Greedy Algorithm uses the scores as a distribution, assigning the vertex to partition i with
probability Si/

∑
Sj.

The versions of these algorithms from [136] differ only in that the score for each partition

is weighted by the current load of the partition, i.e. Si(1− |Pi|C). In practice, the algorithms
keep the partitions nearly balanced, meaning this tiebreaker is only used in cases of tied
number of edges and when there are no edges where [136] prefers the least-loaded partitions.

One of the key insights of this paper is that when these algorithms are used on random
graphs, we can write both down as random processes. In particular, we can let the random
process generate the graph while also partitioning it at the same time. This reduction will
be discussed in Section 4.3.3. The proof proceeds by analyzing the random process versions
of the algorithms, rather than those given in Algorithms 1 and 2.

The random processes generate a multi-edge G(n, p) graph. For the extended G(Ψ, P)
analysis, we will only consider Algorithm 1 and the correctly modified version of Algorithm 3.
The modification is only with the generation of the E

(t)
i and will be discussed later.

4.3.2 Result and Proof Outline

The rest of the paper will focus on proving the following two statements. The first is that the
Proportional Greedy Algorithm can not recover an embedded partition in a G(Ψ, P) graph,
no matter what the parameters are or how big the graph is. By contrast, the second result
is that the arg max Greedy Algorithm can recover the embedded partition, provided the
components are dense enough, the cut between them is sparse enough, and there are enough
components.

Theorem 7. Let p be the probability of edges within components and q be the probability of
edges between components. Given a G(Ψ, P) graph with l > k log k equally sized components
where p > 2 logn

|C| , p > 3(k +
√
k + 1)lq, and q = O((k2.4 log l)−1), arg max Greedy Algorithm

will recover an embedded partition from a random stream ordering.

35

Algorithm 4 Proportional Greedy Process on G(n, p)

Input: p

Set P1, P2, . . . Pk = ∅
for t = 1, 2, . . . n do

For 1 ≤ i ≤ k, draw E
(t)
i ∼ B(|Pi|, p)

if
∑k

i=1E
(t)
i = 0 then

Assign t to arg minj∈[k]{|Pj|}
else

Assign t to Pi with probability E
(t)
i /
∑k

j=1E
(t)
j

The proof proceeds in several stages. First, we ignore the capacity constraint and consider
Algorithms 3 and 4 on a single G(n, p) component. Does the algorithm eventually learn it is
a component and place it in the same partition? We show that Algorithm 4 is equivalent to
a finite Polya urn process with γ = 1 and distributes the component over all the partitions.
By contrast, Algorithm 3 can be coupled to a finite Polya urn process with γ > 1. It will
asymptotically place the entire G(n, p) component in one partition. This argument starts
with 2 partitions and is extended to k bins using an induction argument.

That Algorithm 3 will correctly (not) partition a connected component forms the basis
of our argument that it can be extended to the G(Ψ, P) model. Intuitively, with the correct
parameters, each component of G(Ψ, P) will be placed in a single partition. The primary
technical difficulties faced are the inclusion of the capacity constraint, requiring bounds on
the component sizes, and the addition of intra-cluster edges, which serve to ‘confuse’ the
algorithm about to which component a vertex belongs. By setting the parameters of the
model correctly, we can overcome these challenges.

4.3.3 Analysis on a Single G(n, p) Component

We now analyze Algorithms 3 and 4. These are obtained from Algorithms 1 and 2 by
considering the process in terms of Polya urns. As a reminder, the finite Polya urn process
has k bins and the tth ball is assigned to bin i with probability proportional to (m

(t)
i)γ where

m
(t)
i is the load of the ith bin at time t.

Translating Algorithm 1 and 2 to Polya Urn processes involves identifying each ball with
a vertex and each bin with a partition. There are two primary differences from the standard
Polya Urn process. First, with probability (1− p)t, the tth vertex (ball) does not have edges
to vertices already seen and it is placed in the least loaded partition (urn). The second is
that we do not assign the vertex (ball) based on the load of the partition (urn) but instead on

a binomial random variable based on the load. Specifically, let E
(t)
1 , . . . E

(t)
k be the random

variables representing the number of edges to each of the k partitions. Each E
(t)
i is drawn

from B(m
(t)
i , p). The following connection is how we created Algorithms 3 and 4.

36

• Algorithm 1 assigns the vertex to a partition in arg maxj∈[k]{E(t)
j }, breaking ties at

random.

• Algorithm 2 assigns it to bin i proportional to E
(t)
i

Algorithm 4 Analysis. Consider the total number of edges from vertex t as a random

variable E(t) ∼ B(t, p). Each edge is distributed according to m
(t)
i i.e. with probability

m
(t)
i

t

it connects to the ith bin. Each of the E(t) edges are distributed i.i.d. and are given equal

weight so Algorithm 2 assigns balls proportional to (m
(t)
i)γ where γ = 1.

Theorem 8. Algorithm 4 on G(n, p) Let 0 ≤ p < 1. Let xti be the fractional load of
partition i at time t of Algorithm 4. Then almost surely limt→∞ x

t
i = Xi exists and for all i,

Xi > 0.

Proof. We show that when there are edges, this process is exactly a finite Polya urn process
with γ = 1. The result then follows directly from Theorem 3. Let there be k bins. At time
t, each has load m

(t)
i . Let E(t) be the total number of edges drawn by the process. Assume

E(t) > 0 as E
()

t = 0 will be dealt with later. Recall that we allow multiple edges in our model,
so consider the edges being distributed to the k partitions with replacement, i.e. each of

the E(t) edges goes to partition i with probability
m

(t)
i

t−1
. Let E

(t)
i be the number to partition

i. Note that
∑k

i=1E
(t)
i = E(t). Now Pr Algorithm 4 picks bin i = E

(t)
i /E

(t). However,

E
(t)
i ∼ B(E(t),

m
(t)
i

t−1
), showing that this assignment is proportional to m

(t)
i as desired. This is

exactly a finite Polya urn process with γ = 1.
The remaining details concern the modification of the process when E(t) = 0. In this

case, the algorithm will assign the vertex to the least loaded bin. If this situation has a
constant probability throughout the process, then it is making the distribution of the balls
more uniform, and satisfy the theorem statement that all bins contain a non-zero fraction of
the balls. If it is the case that this becomes unlikely as the process progresses, i.e. p > logn

n
,

then we can apply Theorem 3 and Lemma 1 from [38] to say that after O(logn
p

) vertices have
arrived, we begin the γ = 1 Polya Urn process with an arbitrary finite initial configuration.
From Theorem 3, we get that Xi > 0 for all i.

We conclude that the randomized algorithm does not have a concentration result. No
matter the value of p or the size of the graph, for a G(n, p) component, the Proportional
Greedy algorithm will not learn that it is a component and instead distributes it over all
partitions.

Corollary 1. Given a single isolated G(n, p) component, for any value p, Algorithm 2 will
distribute this component over all k partitions.

Algorithm 3 Analysis. The key insight about why Algorithm 3 provides a concentration
result is that by preferring the arg max of the distribution of edges, once some partition has

37

a slightly higher load than the other it is very likely to be assigned the next vertex. As the
gap in the loads grow, the larger partition becomes increasingly more likely to receive the
next vertex until it is impossible for the smaller partition to compete. However, there are a
few challenges.

The first is that with probability (1 − p)t the t + 1th vertex will not have any edges to
previously seen vertices. In this case, it is automatically placed in the least loaded bin. When
this happens, it decreases the gap in the loads. If it happens too often, the gap will not grow.
Since (1−p)t ≈ e−pt, once t = O(logn

p
), this does not happen with high probability, provided

p > logn
n

. We only expect 1
p

vertices to arrive with no edges and they are concentrated at

the beginning of the process when t < 1
p
.

The second challenge is that when the vertex has 1 edge, the arg max distribution is the
same as Algorithm 4. However, this can be dealt with in the same manner as having no
edges. Again, we expect 1

p
vertices to have only 1 edge and primarily when 1

p
≤ t ≤ 2

p
.

Therefore, we need p > 2 logn
n

.
The final challenge is that we are not be able to couple Algorithm 3 to a finite Polya urn

process with γ > 1 until 2
p

vertices have arrived, meaning we do not start with a uniform load
distribution. Lemma 1 shows that we can start with an arbitrary finite initial configuration
and obtain the same concentration results.

Theorem 9. Let p be any value between 2 logn
n

and 1. Let xti be the fractional load of partition
i at time t of Algorithm 3. Then almost surely limt→∞ x

t
i = Xi exists and one Xj = 1, while

all others are 0.

This statement follows from Theorem 4. Our analysis for Algorithm 3 relies on the
probability that bin i will receive a ball at time t or

PrE
(t)
i = arg max

j∈[k]
{E(t)

j }

for E
(t)
i ∼ B(m

(t)
i , p). It is intuitive that bins with a higher load should have a much

higher probability of being the arg max, yet the binomial distribution does not have a nice
closed form expression for PrX ≥ k. Even if we condition on E(t) =

∑k
i=1E

(t)
i = x so we

can express the E
(t)
i as a multinomial distribution, a nice closed form solution eludes us.

Therefore, our proof consists of several lemmas.

Lemma 2. Given a G(n, p) graph with p > 2 logn
n

, after O(logn
p

) steps, Algorithm 3 with 2
partitions can be coupled to a finite Polya urn process with γ > 1.

Proof. Let A = E
(t)
1 and B = E

(t)
2 and Aj, Bj be the loads conditioned on the fact that

E(t) = j i.e. Aj +Bj = j. Let δ be the comparative advantage of A over B, i.e. 1
2

+ δ =
m

(t)
1

t

and 1
2
− δ =

m
(t)
2

t
. We want to analyze PrAj > Bj.

38

PrAj > Bj =

j∑
i=bj/2c+1

(
j

i

)
(
1

2
+ δ)i(

1

2
− δ)j−i

= (
1

2
+ δ)bj/2c+1

j∑
i=bj/2c+1

(
j

i

)
(
1

2
+ δ)i−bj/2c−1(

1

2
− δ)j−i

= (
1

2
+ δ)bj/2c+1

bj/2c∑
i=0

(
j

i− bj/2c

)
(
1

2
+ δ)i(

1

2
− δ)j−bj/2c−1−i

= (
1

2
+ δ)bj/2c+1

bj/2c∑
i=0

(
j

i

)
(
1

2
+ δ)bj/2c−i(

1

2
− δ)i

We similarly express PrBj > Aj as follows.

PrBj > Aj =

j∑
i=bj/2c+1

(
j

i

)
(
1

2
− δ)i(1

2
+ δ)j−i

= (
1

2
− δ)bj/2c+1

bj/2c∑
i=0

(
j

i

)
(
1

2
− δ)bj/2c−i(1

2
+ δ)i

Because 1
2

+ δ > 1
2
− δ, we have that

∑bj/2c
i=0

(
j
i

)
(1

2
+ δ)bj/2c−i(1

2
− δ)i >

∑bj/2c
i=0

(
j
i

)
(1

2
−

δ)bj/2c−i(1
2

+ δ)i. Therefore,

PrAj > Bj >
(1

2
+ δ)bj/2c+1

(1
2
− δ)bj/2c+1

PrBj > Aj.

From this, and the fact that these two quantities sum to 1, we conclude that

PrAj > Bj >
(1

2
+ δ)bj/2c+1

(1
2

+ δ)bj/2c+1 + (1
2
− δ)bj/2c+1

This lower bound is the probability that the ball goes in urn 1 in a Polya process with
γ = bj/2c+ 1. When j ≥ 2, we can couple our process to a finite Polya urn process with a
desirable concentration result. We remove the conditioning on E(t) = j to get PrA > B

PrA > B =
t∑

j=1

(
t

j

)
pj(1− p)t−j PrAj > Bj (4.1)

The only case where we are mixing in a process that has an undesirable exponent (γ = 1)
is when j = 0 or 1. The probability of this case is less than 1

n
when t > 2 logn

p
. According to

Lemma 1, this constitutes a finite arbitrary configuration and the concentration results hold
after t > 2 logn

p
.

39

The above proof shows that, at some point, the algorithm can be coupled with a finite
Polya urn process with γ > 1. However, we need Lemma 1 from [38] to show that the initial
configuration when the process takes off does not affect the concentration results. Moreover,
we bound the total expected number of vertices to arrive with j = 0 or 1 by

1− (1− p)n + 1− p
p

≈ 2− e−pn − p
p

≤ 2

p
.

Combining Lemma 1 and 2 shows that for 2 partitions Algorithm 3 will concentrate the
process into 1 bin. In order to extend the process to k partitions, we present the following
Lemma. It follows the proof technique of Theorem 4 in [38] and utilizes Lemma 1

Lemma 3. Consider Algorithm 3 with k partitions on a G(n, p) graph with p > 2 logn
n

. Let
xti be the fractional load of the ith partition at time t. Then a.s. the limit Xi = limn,t→∞ x

t
i

exists for each i. For exactly one i, Xi = 1.

Proof. To extend the analysis of Lemma 2 from 2 partitions to k, we use induction and
condition on each pair of bins. Of the k bins, select 2 and call them A and B. We modify
Lemma 2’s Equation 4.1 by substituting

PrE(t) = j =

(
t

j

)
pj(1− p)j

with
PrE(t) = j|A or B is in the argmax.

Given that our coupling to the Polya Urn process is unaffected, we just must show that

PrE(t) = 0, 1 > PrE(t) = 0, 1|A or B is in the argmax.

The E(t) = 0 case is simple since

PrE(t) = 0|A or B is the max = 0

since we only use the argmax process when E(t) ≥ 1 (otherwise we would have assigned the
vertex to the least loaded partition). When E(t) = 1, this is equivalent to exactly 1 edge
being placed and the probability that, of the k bins, it selects an endpoint in A or B is

exactly
m

(t)
A +m

(t)
B

t
. Thus

PrE(t) = 1|A or B is the max =

m
(t)
A +m

(t)
B

t

(
t

1

)
p(1− p)t−1 ≤(

t

1

)
p(1− p)t−1 = PrE(t) = 1

The result now follows from Theorem 4.

40

Proof of Theorem 9: Combining Lemmas 2, 1, and 3, we conclude that Algorithm 3, with
k partitions, will asymptotically approach a fractional load of 1 in one partition when run
with p > 2 logn

n
.

Corollary 2. Given a single G(n, p) component, for any value p > 2 logn
n

, Algorithm 1 will
eventually concentrate this component into 1 partition as n→∞.

This analysis leaves open the question of how long the process must run before one par-
tition dominates the others. This question has been studied by Drinea, Frieze and Mitzen-
macher [46]. While they analyze the convergence rates for 2 bins, the proofs can be extended
to k bins via the union bound. In the theorem B0 is the name for one of the two bins and
all-but-δ dominant means that B0 contains at least a 1 − δ fraction of the balls thrown.
ε0 is the initial amount that the two bins are separated by after n balls and is a constant
depending on λ, say 1

100λ
.

Theorem 10 (Theorem 2.4 from [46]). Assume that we throw balls into the system until B0 is
all-but-δ dominant for some δ > 0. Then, if λ > 1, with probability 1− eΩ(n0), B0 is all-but-δ
dominant when the system has 2x+zn0 balls, where x = log1+ λ−1

5+4(λ−1)

0.4
ε0

and z = log 2λ
λ+1

0.1
δ

.

Lemma 4 extends this theorem to k bins.

Lemma 4 (Lemma 4.1 from [46]). Suppose that when n balls are thrown into a pair of
bins, the probability that neither is all-but-δ dominant is upper-bounded by p(n, δ). Here, we
assume p(n, δ) is non-increasing in n. Then when 1 + kn/2 balls are thrown into k bins, the
probability that none is all-but-γ dominant is at most

(
k
2

)
p(n, δ) for γ = δ/(δ+(1−δ)/(k−1))

To summarize these results on the convergence rate, we find that the attachment process
starts in earnest after 1

p
vertices have arrived. After 2

p
vertices have arrived, we claim the

exponent in the process is greater than 1. From Lemma 4 the probability we do not get
an all-but-ε domination is inversely polynomial in the number of partitions, 1/ε and the
number of vertices. The bound given by Theorem 10 holds for λ = 2 but is loose since λ
value increases every after every round of 1

p
vertices.

Comparisons. From these results, we conclude that the reason that Algorithm 2 fails to
concentrate the component is the strict proportionality of its assignments. If instead it used
any exponent greater than 1 on its scores, i.e. assign to i proportional to Sγi , the concentration
result would hold. In particular, there is a huge spectrum of greedy algorithms of the style
of arg max Greedy and Proportional Greedy. Amongst these, arg max Greedy provides the
strongest possible preference towards concentration.

4.3.4 Extending to G(Ψ, P) graphs and capacity constraints

We showed that with no capacity constraints the arg max Greedy approach is able to asymp-
totically place a single G(n, p) component into one partition. Specifically, while it will ini-
tially place vertices in all partitions, once we begin to see edges, the algorithm concentrates

41

the component into one partition. By contrasts, the Proportional Greedy approach always
cuts the component into k pieces. We would like to extend this analysis for arg max Greedy to
graphs that consist of many good clusters but face two challenges - the capacity constraints
and the ‘bad’ inter-cluster edges.

These two challenges motivate our restrictions to both Ψ and P . The capacity constraint
can be violated if clusters are of size c and the capacity is C and more than C

c
communities

chose a specific bin to form their large component. From the traditional analysis of throwing
m balls into n bins, we know that the expected maximum load (with high probability) is

logn
log logn

when m = n and O(m
n

) when m > n log n [119]. If we can argue that for each cluster
the location of its large component is chosen uniformly at random from the bins, then we can
use the balls and bins maximum load analysis to argue that if each cluster is small enough,
the slack required, C = (1 + ε)n

k
, is also small. We also require a small amount of slack in

the capacities to account for initial mistakes. These mistakes are the result of not seeing
edges at the beginning of the process.

For simplicity, our proof will proceed by first assuming that all of the clusters, Ci, are of
the same size and that q, the probability of inter-cluster edges, is 0. This will allow us to
deal with running l finite Polya Urn processes simultaneously and independently. After this,
we show a non-zero bound on q that will bound the probability of the process failing to find
a cut on the inter-cluster edges small. Finally, the assumption that the Ci are of equal size
can be relaxed by adjusting the parameters in P appropriately.

Lemma 5. Given a G(Ψ, P) graph where Pi,j = 0, and ∀i, |Pi,i| > 2 log n/|Ci|, let x
(i)(t)
j be

the fraction of Ci that partition j holds at time t. With no capacity constraints, Theorem 9
will guarantee that, as n grows, for each cluster i, if limt→∞ x

(i)(t)
j = X

(i)
j , then for some j,

X
(i)
j = 1 while all others are 0.

Proof. This follows directly from Theorem 9 and the fact that when Pi,j = 0, the individual
components can not interact with one another.

Next, we relax the constraint that there are no edges between components to obtain a
bound that still does not necessarily respect capacity constraints.

Lemma 6. Given a G(Ψ, P) graph with Pi,i = p, Pi,j = q, and all l clusters of equal size

|Ci| = |Cj| and p > 2 logn
|Ci| . Let x

(i)(t)
j be the fraction of Ci that partition j holds at time t.

With no capacity constraints and k partitions, if p > 3(k +
√
k + 1)lq then for each cluster

i, if limt→∞ x
(i)(t)
j = X

(i)
j , then for some j, X

(i)
j = 1 while all others are 0.

Our goal is to bound the number of ‘bad’ inter-cluster edges away from the number of
’good’ intra-cluster edges. We assume worst case distributions so these bounds can safely be
relaxed in practice.

Consider component Ci. A natural condition is that there are more expected intra-cluster
edges than inter-cluster so p|Ci| > q(n− |Ci|). We require a few more properties. The first
is that the inequality holds with reasonable probability so p|Ci| −

√
p|Ci| > q(n − |Ci|) +

42

√
q(n− |Ci|). The second is that we maintain the separation at every step of the execution

of the process so p|Ci| tn−
√
p|Ci| tn > q(n−|Ci|) tn+

√
q(n− |Ci|) tn . Finally, we also need that

the total number of bad edges should be no more than the arg max of the good edges as this
guarantees that the bad edges will not affect the concentration results for each component.
This adds a factor of k to the bound so we must always guarantee there are at least k ‘good’
edges for each ‘bad’ edge.

Proof of Lemma 6: Let the edges from a vertex to its own component be ‘good’ edges
and its external edges be ‘bad’. The separation between the good edges and bad edges can
be achieved through the use of Chernoff bounds. In particular, at time t, we expect that
|Ci| tn vertices in Ci will have arrived already. Using a Chernoff bound to justify using the
expectation, we claim that with probability at least 1− δ. Let the next vertex, v, be from Ci
. Let E

(t)
i be the total number of edges from v to the Ci vertices that have already arrived.

E
(t)
i > p|Ci|

t

n
−
√

log(1/δ)p|Ci|
t

n
.

The bad edges, Bt, are drawn from B(q, (n−|Ci|) tn). For clarity, we approximate n−|Ci|
as l|Ci|. Again, with probability at least 1− δ, we claim that

Bt < ql|Ci|
t

n
+

√
log(1/δ)ql|Ci|

t

n
.

We set δ = 1/e to obtain constant probability at least 1/2. This assumption is supported
by the experimental results in the next Section. We include bounds that hold with high
probability in the Appendix.

To add the constraint that the bad edges are less than the arg max{E(t)
i (j)}, we note

that the worst case is that all of the bad edges connect to one partition. This can happen if
the rest of the graph may not be evenly distributed over the partitions, or we are observing
a deviation in the distribution of bad edges. Given this it is sufficient that the number of
bad edges is bounded away from the average number of good edges, so we use the condition
that

p|Ci|
t

n
−
√
p|Ci|

t

n
> k[ql|Ci|

t

n
+

√
ql|Ci|

t

n
]

To extract meaningful restrictions on p and q from this equation, we note that p|Ci| tn −√
p|Ci| tn > k when t > (k+

√
k+1)n

p|Ci| . Similarly, ql|Ci| tn +
√
ql|Ci| tn < 1 when t < (1/2(3−

√
5)n

ql|Ci| .

We find that (k+
√
k+1)n

p|Ci| < (1/2(3−
√

5)n
ql|Ci| exactly when p > (k +

√
k + 1)lq/(1

2
(3 −

√
5)). Sim-

plifying, p > 3(k +
√

(k) + 1)lq is sufficient. The gap between the left and right hand sides
is monotonically increasing after this point, guaranteeing that all decisions will be made
correctly with constant probability.

43

Provided k > 2, k +
√
k + 1 < 2k so this bound is more simply p > 3 ∗ 2klq = 6klq. If

we make stronger assumptions about the distribution of the vertices within the bins at any
finite time, i.e. that they are approximately balanced, then we can drop the (k +

√
k + 1)

factor and obtain that p > 3lq is sufficient.
The remaining technical point is the capacity constraints. Given that no aspect of the

algorithm is dedicated towards load balancing when edges exist, our only hope can be that
the components concentration points are distributed uniformly over the partitions. If this
is the case then a standard balls-and-bins analysis will tell us how many components are
assigned to each partition. In particular, if n balls are thrown into n bins, we expect the
max load to be log n balls. However, if n log n balls are thrown into n bins, we expect the
max load to be O(log n). With more than n log n balls, the maximum load approaches the
average.

This approach requires that we be able to argue that the inter-component edges have no
affect on the concentration location for each component. This is clear when q = 0 and there
are no ‘bad’ edges, the location of the concentration of each component is uniform because
of the random ordering of the stream. Similarly, if p = 1 then the component is located
exactly where the first vertex in the component is placed.

For other values of p and q we must use a more sophisticated argument. In particular,
we can exploit the gap between p and q to argue that many intra-component edges are
seen before any inter-component edges. If the process has run long enough that we can use
Lemma 4 to argue that for each component, one partition contains a bit more than half of
the vertices that have arrived, then we can argue that the arg max is never changed by the
presence of ‘bad’ edges and that the processes do not affect each other.

Lemma 7. Given a G(Ψ, P) graph with Pi,i = p, Pi,j = q satisfying both Lemma 6 and
q = O((k2.4 log l)−1), with the number of clusters l > k log k and all clusters of equal size
|Ci|, with high probability the maximum load of the partitions is bounded by (1 + ε)n

k
, where

ε is a function of p, l and k.

Proof. We first establish that the locations of the concentration for each component is uni-
formly distributed. This can be done by arguing that the partition that contains the maxi-
mum for each component is all-but-δ dominant and applying Theorem 10 and Lemma 4 to
obtain that q = O((k2.4 log l)−1). The exact calculation is included in the Appendix.

Given the components are uniformly distributed over the partitions, this is a ‘balls-and-
bins’ process with l balls and k bins. If l = ck log k then with high probability the maximum
load is dc log k where dc is a constant depending on c [119]. When l >> k log k with high

probability the maximum load is at most l
k

+
√

2 l
k

log k. From these results, we conclude

that the clusters will be nearly evenly distributed amongst the bins.
Finally, ε needs to be set so that the capacity constraints will not be violated by either

of the two sources. The first is the distribution of vertices before any edges appear. This is
in expectation 1

p
vertices, and each partition will hold 1

pk
of them. The other source of slack

44

required is the exact maximum load. This constant depends on l’s relationship to k and can
be obtained from [119].

The number of vertices required for the above argument to always hold is quite high in
the analysis.

Contrast to McSherry’s Bounds The same paper that introduces the G(Ψ, P) model
also gives algorithms for recovering the cuts in these graphs using spectral methods [103]. In
particular, the paper gives bounds for when the spectral algorithm can recover an instance
of a planted multisection, a generalization of the balanced partitioning problem we consider.

For p and q used as in this paper, if p−q
p
> c
√

logn/δ
pn

, for some large enough constant c, then

with probability 1− δ, the cut can be recovered. This can be most easily compared with our
bound when written as p− q > c

√
p
√

log n/δ where it becomes clear it is an additive bound,
whereas ours is multiplicative. However, the spectral algorithm has access to significantly
more information so an improved bound is to be expected.

4.4 Experimental Evaluation

The proofs in the previous sections show that for a certain range of parameters and size graph,
the algorithm succeeds in recovering a good partitioning. It leaves open some interesting
questions that can be experimentally evaluated:

• What is the relationship between ε, the load balancing factor in Lemma 7 and k, the
number of partitions, and l, the number of components?

• How tight are the bounds? It is necessary that the density of edges within compo-
nents is p > 2 logn

|Ci| or that the gap between p and q, the probability of edges between
components is at least p > 6klq?

• Are the convergence rates tight? For what size graph do we begin to recover the
partitioning?

• When we are asymptotically recovering the partitioning, can we quantify how many
mistakes we are making, i.e. how many vertices are separated from their components
at the end of the process?

These questions are ideals candidate for experimental simulation. In fact, experimental
results here can lead to a much better understanding of the algorithm than theoretical worst
case bounds. In the following, using values that satisfy Lemma 6, we generate G(Ψ, P)
graphs and see how well arg max Greedy recovers the embedded cut.

Evaluation. Given a setting of the parameters, we generate a random G(Ψ, P) graph
and run the algorithm 25 times, each with a different random ordering. After each run, for

45

each component in the G(Ψ, P) graph, we its largest part in the partitioning i.e. if Ci is the
component, and P1, P2, · · ·Pk the final partitioning, we calculate maxj∈k |Ci ∩ Pj|/|Ci|. The
theorems predicts that for all components, this value approaches 1 as the graph grows. Note
that it can never be worse than 1

k
for k partitions.

4.4.1 Load Balancing Factor

Understanding the load balancing factor required is the first step to understanding the other
constraints. This is because if the load balancing factor is set too low, we will see this in
the error calculations. To understand the slack required, we explore two settings of p and
q, p = 1 and q = 0 or q = p

6kl
where l, the number of components is larger than k log k.

Now, for each size graph, we run the algorithm 20 times and record the number of partitions
that hit their capacity constraints. We also vary l to understand how its relationship with k
affects the required slack. We include 3 figures to demonstrate the relationship. The first,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

F
ra

ct
io

n

Load Balancing Factor

Fraction of Full Partitions for 8 partitions, 25 components, p=1, q=0

4000 vertices
8000 vertices

16000 vertices

Figure 4.1: Load balancing is not a function of the size of the graph

Figure 4.4.1 shows the fraction of full partitions when ε is allowed to range from 0.01 to
0.5 for graphs of size 4,000, 8,000 and 16,000. There is no difference between the threshold
point in these graphs. The second, Figure 4.2 shows that fixing p, q and k but increasing
l, the number of components, yields significantly better load balancing factors. The third
Figure 4.3 shows that whether q = 0 or q = 0.002 = p/6kl, the load balancing appears the
same.

46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

F
ra

ct
io

n

Load Balancing Factor

Fraction of Full Partitions for 8 partitions, p=1, q=0

25 Components
50 Components
80 Components

160 Components

Figure 4.2: Increasing the number of components improves the load balancing.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

F
ra

ct
io

n
fu

ll

Load balancing factor

Fraction of Full Partitions for 8 partitions, p=1, 8000 vertices, 80 components

q=0
q=0.0002
q=0.0005

Figure 4.3: q does not play a large role in load balancing. Note that q = 0.0005 is above the
threshold required by the Theorems.

47

4.4.2 Density Requirement

Lemma 6 requires that each component have edge density at least p > 2 logn
|Ci| . To explore

whether this is necessary, we can fix values for q, k and l and let p range above and below
2 logn
|Ci| . For each run, we measure the error from the perfect solution by looking at the

Euclidean distance between the length-l vector of the values of maxj∈k |Ci∩Pj|/|Ci| and the
all-ones vector.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

E
uc

lid
ea

n
D

is
ta

nc
e

value of p

Euclidean Distance for q=0, p=0 to 1, 4000 vertices, 8 partitions

Quartiles

Figure 4.4: For fixed q, k, l values, as p increases, the error in the partitioning generated
drops to 0. The vertical bar marks the value required by the theorems.

Though not pictured in Figure 4.4, the graph size shifts the ‘elbow’ of the graph to the
left with a sharper transition, matching the bound of the theorem.

4.4.3 Constraints on q

As in the experiments to understand the density factor, we can also fix values for p, k and l
and let q range above and below p

6kl
. Is the factor of k necessary? We measure the error by

Euclidean distance as above.
We clearly see the effect that increasing q has on the algorithm’s ability to recover the

partitioning in Figure 4.5. While the value required by the theorems seems unnecessarily
small (and can only be seen by zooming in on this page), dropping the required factor of k
and using q = 0.02 obtains an average error of only 0.07 over 25 runs when the maximum
error is 7.

48

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

E
uc

lid
ea

n
D

is
ta

nc
e

q value

Euclidean Distance for p=1, q=0 to q=0.07, 4000 vertices, 8 partitions

Quartiles

Figure 4.5: For fixed p, k, l values, as q increases, the error in the partitioning increases from
0 to maximum error. The leftmost vertical bar (at 0.00026) marks the value required by the
theorems, while the second (at 0.0021) is q = p/6l.

4.4.4 Convergence Rate

The values given by the Theorems in [46] about the rate of convergence imply a somewhat
pessimistic bound - q = O((k2.4 log l)−1). We can evaluate this bound by fixing p, q, k and l
and letting the size of the graph grow. As it grows, we can measure the Euclidean distance
to find how quickly it is able to obtain good results in terms of recovering the partitioning.

The settings for the algorithm in Figure 4.6 were p = 0.75, q = p
6kl
, k = 8, l = 100. The

graph size range from 400 to 51,200 vertices. We see that as the size of the graph increases,
the euclidean distance from the optimal partitioning solution quickly drops. For 51,200
vertices, the median error for 25 runs is only 0.04. This is despite the fact that the theorem
required that q < 0.000013 whereas we used q = 0.00015625.

4.5 Conclusions and Future Work

We have studied two simple greedy algorithms for streaming balanced graph partitioning.
We first showed lower bounds on the possible approximation ratio obtainable by any algo-
rithm and then analyzed two variants of a randomized greedy algorithm on a random graph
model with embedded balanced k-cuts. On these graphs we were able to explain previous
experimental results showing that the arg max Greedy algorithm is able to recover a good
partitioning while the Proportional Greedy variant is not. Our proof connects the greedy

49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 9 10 11 12 13 14 15 16

E
uc

lid
ea

n
D

is
ta

nc
e

log_2 of the number of vertices

Convergence of Euclidean Error for 8 partitions, p=0.75, p=p/6kl, 400 to 51,200 vertices

Quartiles
Average error

Figure 4.6: For fixed p, k, l, q values, as the size of the graph increases, the error in the
partitioning generated drops to 0.

algorithms with finite Polya urn processes and exploits concentration results about those
processes.

There are several interesting future directions. The first is to improve the parameters of
the analysis presented in this paper. The experiments show that the deterministic greedy
algorithm continues to work with larger amounts of noise than that allowed by our theorems.
Also, our analysis depends heavily on the assumption of independence between the vertices
and the edges. Again, the experiments in [136] show that the deterministic greedy algorithm
performs well on other random graph models, like Watts-Strogatz, although it may not obtain
a provably good result there. Explaining this and proving results about the approximation
ratio is an interesting question.

Perhaps most important future direction for other streaming algorithms is that in [136],
additional stream orderings were studied, namely a breadth-first search ordering, and a
depth-first search ordering. Experimentally, the algorithms tested all performed better on
both of these orderings than the random ordering. An interesting open question is to develop
techniques for analyzing streaming graph algorithms on these orders, and whether lower
bounds can be developed.

50

4.6 Appendix

4.6.1 High Probability Bounds for Lemma 6

The experiments justify the assumption that we only need the following two statements to
hold with constant probability:

E
(t)
i > p|Ci|

t

n
−
√
p|Ci|

t

n

Bt < ql|Ci|
t

n
+

√
ql|Ci|

t

n

Requiring each to hold with probability 1− δ increases the gap required from p > 3(k +√
k + 1)kql by adding a dependency on δ. In particular, redoing the calculations, we have

that

p|Ci|
t

n
−
√

log(1/δ)p|Ci|
t

n
> k

exactly when

t >
n

p|Ci|
(k + log(1/δ)/2 +

√
k log(1/δ) + (log(1/δ)2/4)

Similarly,

ql|Ci|
t

n
+

√
log(1/δ)ql|Ci|

t

n
< 1

exactly when

t <
n

ql|Ci|
(1 + log(1/δ)/2−

√
log(1/δ) + (log(1/δ)2/4)

Solving these two equations as in Lemma 7 gives us a similar relationship that p >
f(δ)kql.

4.6.2 Calculation of q for Lemma 7

In order to prove Lemma 7 we need to understand for a given setting of p and q how much
interaction between the components there is at the tth vertex. In particular, for the tth

vertex, we expect that there will be p t
l

edges from that vertex to its own component (good

edges) and q (l−1)t
l

edges to other components (bad edges). Provided t < l
q(l−1)

, we do not
expect any bad edges so the components do not interact at all.

When we do begin to see bad edges, we can appeal to Lemma 4. If it is the case that
for the given component, one partition contains a 1/2 + x fraction of the component that

51

has arrived to this point, and all other partitions split the remaining 1/2 − x fraction then
we can argue that the bad edges do not affect the concentration of the process provided the
arg max for the good edges is not changed by the addition of the bad edges. Specifically, we
are concerned with t = l

q(l−1)
> 1

q
so we can find x by solving:

(1/2 + x)p
t

l
−
√

(1/2 + x)p
t

l
> ((1/2− x)p

t

l
+

√
(1/2− x)p

t

l

The above equation gives the distribution of the good edges at time t. Substituting that
t = 1

q
and there is only one bad edge, we need that

(1/2 + x)
p

ql
−
√

(1/2 + x)
p

ql
> ((1/2− x)

p

ql
+

√
(1/2− x)

p

ql

This results in

x = ±
√

2(p/ql)3 − (p/ql)4

4(p/ql)4

From this, we can gather that a sufficient γ value required for Lemma 4 is γ = 1
2
−√

1/2(p/ql). Lemma 4 gives a formula for translating this γ into a δ value for Theorem 10.
Solving for δ we get that

δ =
γ

k − 1− (k − 2)γ
.

Plugging in our γ value, we obtain that

δ =
1/2−

√
1/2(p/ql)

k − 1− (k − 2)(1/2−
√

1/2(p/ql))
.

We can simplify this by claiming that δ < 1
k

is sufficient.
The failure probability that we need to obtain from Theorem 10 for Lemma 4 is at most

c
k2l

to use a union bound and still obtain a constant probability of success for the whole
process. Therefore, we need to set n′0 = n0 + 2 log k + log l.

From here, we can obtain a number of balls thrown before we can obtain this level of
concentration. In particular, we need 2x+zn0 balls, where x = log1+ λ−1

5+4(λ−1)

0.4
ε0

and z =

log 2λ
λ+1

0.1
δ

. The x term allows us to obtain up to all-but-0.1 dominance, while the second

improves the result to all-but-δ dominance. Therefore, if k ≤ 10, then we only need n02x

balls. More generally, substituting that ε0 = 1/5λ and δ = 1
k
, this value becomes:

(2λ)1/ log2(5λ/(1+4λ))(0.1k)1/ log2(2λ/(λ+1))n′0

The interesting thing about the process is that as more vertices arrive, the λ value in-
creases. From this, we can immediately claim that this equation dramatically over-estimates
the number of vertices needed before 2 bins would obtain a state with all-but- 1

k
dominance.

52

In particular, for the p and q values required by Lemma 6, we have p = 6klq so λ reaches
a value of 3k before we expect to see bad edges. Unfortunately, the best we can assume is
that λ = 2 obtaining the following value:

46.578(0.1k)2.4n′0 ≈ 9127n′0(0.1k)2.4

It is certainly possible to set q to 1/9127n′0(0.1k)2.4 but it is a significantly different bound
from p > 6klq.

53

Part II

The Use of Matchings in Solving
Graph Problems

54

Chapter 5

An Introduction to Matching
Algorithms

5.1 Introduction

A matching in a graph is one of the most basic concepts in graph theory. Simply put, a
matching is a set of edges such that no vertex is matched more than once. More formally,
given a graph G = (V,E), a matching M is a set of edges E such that for all v ∈ V , the set
of edges of M that contain v has size at most 1. If all vertices are matched, this is called a
perfect matching. If no more edges can be added to M without violating the constraint, this
is called a maximal matching.

For clarity, consider Figure 5.1. A simple graph is given with 6 vertices and 7 edges. The
left most graph has no matching marked. The middle graph’s red edges form a maximal
matching since no other edge can be colored red without neighboring an already red edge.
However, the right most graph has the edges of a perfect matching colored blue. Every
vertex is a member of exactly one blue edge.

Where are matchings used? Matchings form a fundamental algorithmic building block
for graph algorithms. Aside from the uses we will see in the following chapters, they are
used in a vast array of applications from matching medical residents with hospitals to data
layout for optimizing communication in distributed systems.

The wide spread usage of matchings has lead to the study of a seemingly endless number
of variants. Let M be the set of edges of G included in the matching.

Maximum cardinality: The goal of this version of the problem is to maximize the size
of M subject to the constraints.

Maximum weight: The goal of this version is not to maximize the size of M but to
maximize the sum of the weights of the edges included in M . If the graph is unweighted,
this is equivalent to maximum cardinality.

55

Figure 5.1: Three copies of the same graph. The middle graph with the red edges represents
a maximal matching - no other edge can be color red without neighboring an already red
edge. The right most graph is a perfect (and maximum) matching.

Minimum weight maximum cardinality: The goal of this version is to find a set M
of maximal size that has the smallest sum of edge weights possible. Without the
constraint that M be of a certain size this version is trivially solved by the empty set.

Bipartite versions: The above problems are often significantly simplified if we can assume
the graph is bipartite.

b-matchings: It is often the case that we don’t want to have a strict one-to-one matching.
For example, if we are matching bid slots to advertisers we may wish to allow each
advertiser to be matched to multiple ads. This is a generalization of standard matching
and all of the above variants can apply to b-matching.

Randomly generated: It is often the case that there are many matchings the satisfy a
given variant. For example, a complete bipartite graph with n vertices on each side has
n! distinct perfect matchings. It is often the case that we would like to select a random
matching satisfying the given goal. This variant will be used in depth in Chapter 6.

Stable matchings: The classic stable marriage problem is an example of a matching
problem. Given two sets of vertices, U and V , with each vertex in U having a ranking
over V (and vice versa), the goal is to match the vertices of U to V so that no pair of
matched vertices (u1, v1) and (u2, v2) prefers the other to their partners, i.e. u1 ranks
v2 above v1 and v2 ranks u1 above u2.

There also exist a multitude of algorithms for solving the matching problem, from ap-
proximation algorithms for max-weight matchings to parallel, distributed, and streaming
algorithms for the traditional maximum cardinality problem. We will briefly outline some
of the approaches now.

One of the most interesting complexity results about matchings is that finding a single
maximum matching can be solved very efficiently in polynomial time. However, counting how

56

many distinct maximum matchings a graph has is equivalent to computing the permanent
of its adjacency matrix. This problem one of the earliest #P-Complete problems.

5.2 Classic Matching Algorithms

There are many different styles of algorithms for solving the problem of finding a matching
in a graph. These are usually separated by whether they are intended for bipartite graphs
or general graphs. We will begin by reviewing the classical approaches for finding matchings
sequentially and then move to newer algorithms for finding matchings using parallel and
distributed algorithms.

5.2.1 Integer and Linear Programming

The use of various forms of convex programming has been a boon to algorithm design ever
since Dantzig designed the simplex algorithm. The matching problem has an exceedingly
simple polytope. We have m variables, one for each edge, xe and n constraints, one for each
vertex.

The simplest integer program is that for maximum cardinality matching and is:

max
∑

eXe

subject to ∀v ∈ V,∑e3vXe ≤ 1

∀e,Xe ∈ {0, 1}

If we wished to instead solve maximum weight matching, we could simply change this
integer program to include the weights on the edges, we:

max
∑

eweXe

subject to ∀v ∈ V,∑e3vXe ≤ 1

∀e,Xe ∈ {0, 1}

Given that solving integer programs is NP-hard, the standard approach is to relax the
integer constraints and obtain a linear program. In this case, we find that the linear program
for maximum cardinality matching is

max
∑

eXe

subject to ∀v ∈ V,∑e3vXe ≤ 1

∀e,Xe ≥ 0

We can now solve this program using any LP solving algorithm. The interior point
algorithm guarantees that this can be solved in time polynomial in the number of constraints.
The general approach at this point would then involve trying to round a fractional solution

57

into an integer solution and obtaining an approximation algorithm. However, this particular
linear program consists of a unimodular matrix meaning that its inverse consists only of
integers. Because of this, when we find a vector of assignments that maximizes

∑
eXe, it

will be the case that despite relaxing the integer constraints, all entries are either 0 or 1.
This shows that maximum cardinality matching can be solved exactly in polynomial time.

Maximum weight matching In 1965, Edmonds also showed that maximum weight
matchings can be found in polynomial time [49] precisely because the corners of the matching
polyhedra occur at integer points. The original implementation of this algorithm required
O(n3) time. Others worked on improving the running time of this algorithm until Tarjan and
Gabow achieved an O(m

√
n) algorithm [59]. Relying on a matrix multiplication approach,

Sankowski was able to remove the dependence on m, the number of edges, and gave an
O(Nnω) algorithm, where N is the maximum edge weight and nω is matrix multiplication
time, currently at ω < 2.3727 [150]. The next approach is to investigate approximation
algorithms with the goal of developing a near linear in m algorithm. Duan and Pettie do so
and give a (1− ε) approximation algorithm in O(mε−2 log3 n) time [47].

5.2.2 Bipartite Flow Gadget

When G = (U, V,E) is a bipartite graph, the question of finding a matching takes on a much
more obvious meaning, with examples including the stable marriage problem. Additionally,
from an algorithmic perspective, it admits a new approach to the problem by exploiting a
connection with the maximum flow problem.

The maximum flow problem for a graph has many variants. The simplest is known as
single-source, single-sink flow. We are given a directed graph with edge capacities. Two
vertices are labeled the source s, and the sink t. The goal is to route as much flow as
possible from s to t without violating the capacity constraints. As with matching, this is
a classic graph problem in computer science and a vast literature exists studying it and
variants. However, the first algorithm to solve this problem in polynomial time was devel-
oped in 1954 by Ford and Fulkerson in O(Ef) time [58]. Various improvements have been
developed over the years, including the Edmonds-Karp algorithm [51], Dinitz’s blocking
flow algorithm, Goldberg and Tarjan’s push-relabel algorithm [66] and, the current fastest,
Goldberg-Rao [65].

The gadget construct consists of adding a source s and a sink t to the graph. The sink
s is connected with all of the vertices in U and the edges are given capacity 1. All of the
edges in E are directed from U to V , and all of the vertices in V are connected with the sink
t with capacity 1. We can now use any maximum flow algorithm and the edges used by the
flow will exactly correspond to a maximum cardinality matching.

58

5.2.3 Augmenting Paths and Edmonds Algorithm

We can also design algorithms specifically for solving the maximum cardinality matching
problem without using machinery designed for other problems. To do so, we must first
introduce the idea of an augmenting path. In the context of a graph G = (V,E) and a
current matching M , an augmenting path P consists of edges (v1, v2), (v2, v3), . . . (vk−1, vk)
where the edges alternately belong to M and E \M . If it is the case that v1 and vk are
not currently matched by M , then we can augment M to M ′ by M ′ = M \ P ∪ P \M . It
remains to discuss how we can find augmenting paths and how can we do so efficiently.

Bipartite graphs When G = (U, V,E) is bipartite, finding augmenting paths becomes
straightforward. We begin by making all edges directed from the vertices in U to the vertices
in V . As we build M , we change the direction of the edges in M to point from V to U . Call a
vertex ‘free’ if it is not included in M right now. The problem of finding an augmenting path
is now exactly the same a connectivity problem of finding a path from the free vertices of U to
the free vertices of V . Naively, this problem can be solved using nothing more sophisticated
than breadth-first search in time O(V E). This running time is improved by the Hopcroft-
Karp algorithm to O(

√
V E) by utilizing each breadth-first search path to match more than

1 free vertex if possible.

Non-bipartite graphs For non-bipartite graphs, we run into the problem that we can’t
use breadth-first search because we don’t necessarily know which end of the path a vertex
belongs on. Specifically, we can have situations where we have an augmenting cycle of odd
length so that going around it one way can result in an edge from M being used, while using
the other direction will result in an edge from E \M being needed to continue the path.

This problem was first solved by Edmonds‘ algorithm [50], discovered in 1961. Edmonds‘
called these augmenting cycles blossoms and the key insight of the algorithm is that these
can be contracted in a way that allows us to preserve the leveled structure of the search
style algorithm. This algorithm runs in O(|V |4) time, but variants have been improved to
O(|E||V |1/2) matching the running time for exact bipartite matching.

5.2.4 Finding Matchings In Parallel

A classic result in randomized algorithms is the Mulmuley, Vazirani, Vazirani PRAM per-
fect matching algorithm. To explain it, we must first draw connections between the perma-
nent/determinant of a matrix and perfect matchings.

Recall that the definition of the determinant of an n× n matrix A is

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

59

The permanent of the same matrix differs only in that the sign of the permutation is not
included.

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

This subtle difference turns out to have vast implications in computation time. While we
can calculate a determinant in polynomial time (at worst O(n3) with Gaussian elimination),
the permanent is a classic #-P problem.

However, if we consider A to be an adjacency matrix with 0 in the entries with no
edge and 1 for edges, then the permutations are exactly all possible perfect matchings in
the graph. The permanent of the graph is exactly equal to the total number of perfect
matchings. We can use this fact to develop matrix based perfect matching algorithms (as
well as approximation algorithms for the permanent).

To develop the MVV algorithm, we first must introduce the Tutte matrix. Rather than
considering the 0-1 adjacency matrix, if the (i, j) entry of A is 1, replace it with a variable
xi,j if i < j and −xi,j if i > j. Call this matrix M(G). The first result that we need is:

Lemma 8. The determinant of M(G) is non-zero if and only if G has a perfect matching.

The above lemma means that when we take the polynomial that results from det(M(G)),
it is identically equal to 0 whenever there is not a perfect matching. This observation connects
finding a perfect matching with identity testing and the Schwartz-Zippel test. Given that
this is a n degree polynomial, it can have at most n roots if it is non-zero. If we sample a
number between 0 and 2n, the probability that we sample a root is at most 1/2. This gives
us a randomized algorithm for deciding if a polynomial is identically 0.

However, simplifying applying the Schwartz-Zippel test to the determinant of M(G) only
gives us a randomized polynomial time sequential algorithm. In order to create a PRAM
algorithm, we must introduce the isolating lemma.

Lemma 9. (Isolating Lemma) Let n and N be positive integers and let F be an arbitrary
family of subsets of the universe {1, · · · , n}. Suppose each element x ∈ {1, · · · , n} in the
universe receives an integer weight w(x), each chosen uniformly at random from {1, · · · , N}.
The weight of a subset S ∈ F is w(S) =

∑
x∈S w(x). Then with probability at least 1−n/N ,

there is a unique subset in F with minimum weight.

How is the above lemma useful? If we assign random values between 1 and N to the
variables in M(G) then it states that with probability 1−n/N , there exists a unique perfect
matching with minimum weight. This will allow us to break ties in parallel (by always
preferring the minimum weight) and allow us to find all of the edges in the matching at
once.

Specifically for the MVV algorithm, we let N be at least 2n so there is probability at
least 1/2 of there being a unique minimum weight perfect matching. One additional trick
is that the isolating lemma discusses the sum of the weights while the permanent computes

60

the products. To handle this, if wi,j is the randomly selected value for the (i, j) edge, then
Let B be the matrix M(G) with Xi,j replaced by 2wi,j . Now,

Algorithm 5 The Mulmuley, Vazirani, Vazirani matching algorithm

calculate 2w, the largest power of w that divides det(B)
for each edge (i, j) in parallel do

compute ti,j = det(Bi,j)
2wi,j

2w
, where Bi,j is B with the i and j columns and rows removed

place (i, j) in the matching M iff ti,j is an odd integer

If there is a unique minimum weight perfect matching, this algorithm will produce it. If
one does not exist, we have no guarantees about the output.

5.2.5 Finding Matchings in a Map Reduce Framework

In 2004, the MapReduce computing platform was officially announced [45]. This model for
distributed computing differs from previous theoretical models, including Turing Machines,
the PRAM model, and the BSP model. As a result, new models of computation on MapRe-
duce systems have been developed.

A MapReduce system consists of some cluster of machines [87]. The data is available on
the system in the form of ¡key,value¿ pairs. There are two phases of computation. The first
is map. During a map phase all of the data is processed on tuple at a time. All pairs with
the same key value are mapped and sent to the same machine. The second phase reduce
takes all of the pairs sent to each machine and performs some transformation. Commonly,
the data is aggregated or summed. New ¡key,value¿ pairs are produced and the procedure
can repeat if desired.

Communication between machines in MapReduce can only happen by exchanging key-
value pairs during the map phase. This makes it similar to the PRAM model in terms of
communication. The primary constraint applies to the amount of memory available. For
a problem of size N , we assume that there are N1−ε machines and no machine has more
than O(N1−ε) memory available. This means the total memory available in the system is
O(N2−2ε). In practice, the map phase can be very slow so the goal is to minimize the number
of rounds of communication needed.

We present the filtering method for finding a maximal matching first. The maximal
matching problem is relatively simple as it does not require a great amount of synchroniza-
tion. Begin by distributing the edges of the graph uniformly at random across the machines.
To find a maximal matching, we begin by sampling the edges with the goal of generating a
small set of edges that can fit in one machine. We can then find a maximal matching on
that sample, remove all of the incident edges from the graph and then repeat. Provided the
sample is large enough, you can argue that the graph is reduced in size fast enough that only
O(log n) rounds are required [87].

61

The above approach can be improved from O(log n) rounds to 3 when enough memory
is available. Specifically, if each machine holds N1−ε memory and η, the expected size of the
sample, is n1+2c/3 then we only require 3 rounds.

Unfortunately, the above algorithm can not be easily extended to one that finds a max-
imum cardinality matching. It can be the case that only one augmenting path exists and
it uses the entire graph (envision a path graph where the two end points are unmatched).
Finding the path requires a global view of the data.

We can, however, extend the algorithm to an approximation algorithm for finding a
maximum weighted matching. This problem can be solved exactly with full information,
but approximation algorithms are a popular way to improve the running time. The most
common technique for this is to let W denote the maximum weight edge in the graph. We
can now separate the edges of the graph into classes based on W , i.e. logW classes of weight
between 1 and 2, 2 and 4, 4 and 8, on through W

2
and W . From here, we can now use

the maximal matching algorithm as a blackbox on each of the classes. Beginning with the
W
2

to W class, find a maximal matching on just these edges. We could sequentially apply
the algorithm, each time removing the edges that had been matched in the previous round.
However, assuming enough edges, this would require 3 logW rounds. To fix this, we can find
maximal matchings on all of the weight classes simultaneously. We can stitch these together
sequentially by considering the heaviest edges first and only adding an edge if it is a valid
addition. It can be proved that this method obtains an 8-approximation the the maximum
weight matching using 4 MapReduce rounds [87].

62

Chapter 6

The Joint Degree Distribution

6.1 Introduction

Graphs are widely recognized as the standard modeling language for many complex systems,
including physical infrastructure (e.g., Internet, electric power, water, and gas networks),
scientific processes (e.g., chemical kinetics, protein interactions, and regulatory networks in
biology starting at the gene levels through ecological systems), and relational networks (e.g.,
citation networks, hyperlinks on the web, and social networks). The broader adoption of the
graph models over the last decade, along with the growing importance of associated applica-
tions, calls for descriptive and generative models for real networks. What is common among
these networks? How do they differ statistically? Can we quantify the differences among
these networks? Answering these questions requires understanding the topological properties
of these graphs, which have lead to numerous studies on many “real-world” networks from
the Internet to social, biological and technological networks [55].

Perhaps the most prominent theme in these studies is the skewed degree distribution;
real-world graphs have a few vertices with very high degree and many vertices with small
degree. There is some dispute as to the exact distribution, some have called it power-
law [22, 55], some log-normal [13, 117, 106, 28], and but all agree that it is ‘heavy-tailed’ [43,
125]. The ubiquity of this distribution has been a motivator for many different generative
models and is often used as a metric for the quality of the model. Models like preferential
attachment [22], the copying model [82], the Barabasi hierarchical model [121], forest-fire
model, the Kronecker graph model [90], geometric preferential attachment [56] and many
more [91, 141, 31] study the expected degree distribution and use the results to argue for the
strength of their method. Many of these models also match other observed features, such as
small diameter or densification [80].

The degree distribution alone does not define a graph. McKay’s estimate [102] shows
that there may be exponentially many graphs with the same degree distribution. However,
models based on degree distribution are commonly used to compute statistically significant
structures in a graph. For example, the modularity metric for community detection in

63

graphs [109, 108] assumes a null hypothesis for the structure of a graph based on its degree
distribution, namely that probability of an edge between vertex vi and vj is proportional to
didj, where di and dj represent the degrees of vertices vi and vj. The modularity of a group
of vertices is defined by how much their structure deviates from the null hypothesis, and a
higher modularity signifies a better community. The key point is that the null hypothesis is
solely based on its degree distribution and therefore might be incorrect. Degree distribution
based models are also used to predict graph properties [104, 8, 41, 40, 42].

These studies improve our understanding of the relationship between the degree distribu-
tion and the structure of a graph. The shortcomings of these studies give insight into what
other features besides the degree distribution would give us a better grasp of a graph’s struc-
ture. For example, the degree assortativity of a network measure whether nodes attach to
other similar or dissimilar vertices. This is not specified by the degree distribution, yet stud-
ies have shown that social networks tend to be assortative, while biological and technological
networks tend to be dissortative [112, 111]. An example of recent work using assortativity
is [130]. In this study, a high assortativity is assumed for connections that generate high
clustering coefficients, and this, in addition to preserving the degree distribution, results in
very realistic instances of real-world graphs. Another study that has looked at the joint
degree distribution is dK-graphs [97]. They propose modeling a graph by looking at the
distribution of the structure of all sized k subsets of vertices, where d = 1 are vertex degrees,
d = 2 are edge degrees (the joint degree distribution), d = 3 is the degree distribution of
triangles and wedges, and so on. It is an interesting idea, as clearly the nK distribution
contains all information about the graph, but it is far too detailed as a model. At what d
value does the additional information become less useful?

One way to enhance the results based on degree distribution is to use a more restrictive
feature such as the joint degree distribution. Intuitively, if degree distribution of a graph
describes the probability that a vertex selected uniformly at random will be of degree k then
its joint degree distribution describes the probability that a randomly selected edge will be
between nodes of degree k and l. We will use a slightly different concept, the joint degree
matrix, where the total number of nodes and edges is specified, and the numbers of edges
between each set of degrees is counted. Note that while the joint degree distribution uniquely
defines the degree distribution of a graph up to isolated nodes, graphs with the same degree
distribution may have very different joint degree distributions. We are not proposing that the
joint degree distribution be used as a stand alone descriptive model for generating networks.
We believe that understanding the relationship between the joint degree distribution and the
network structure is important, and that having the capability to generate random instances
of graphs with the same joint degree distribution will help enable this goal. Experiments on
real data are valuable, but also drawing conclusions only based on a limited data may be
misleading, as the graphs may all be biased the same way. For a more rigorous study, we
need a sampling algorithm that can generate random instances in a reasonable time, which
is the motivation of this work.

The primary questions investigated by this chapter are: Given a joint degree distribution
and an integer n, does the joint degree distribution correspond to a real labeled graph? If

64

so, can one construct a graph of size n with that joint degree distribution? Is it possible to
construct or generate a uniformly random graph with that same joint degree distribution?
We address these problems from both a theoretical and from an empirical perspective. In
particular, being able to uniformly sample graphs allows one to empirically evaluate which
other graph features, like diameter, or eigenvalues, are correlated with the joint degree
distribution.

Contributions We make several contributions to this problem, both theoretically and
experimentally. First, we discuss the necessary and sufficient conditions for a given joint
degree vector to be graphical. We prove that these conditions are sufficient by providing
a new constructive algorithm. Next, we introduce a new configuration model for the joint
degree matrix problem which is a natural extension of the configuration model for the degree
sequence problem. Finally, using this configuration model, we develop Markov Chains for
sampling both pseudographs and simple graphs with a fixed joint degree matrix. A pseudo-
graph allows multiple edges between two nodes and self-loops. We prove the correctness of
both chains and mixing time for the pseudograph chain by using previous work. The mixing
time of the simple graph chain is experimentally evaluated using autocorrelation.

In practice, Monte Carlo Markov Chains are a very popular method for sampling from
difficult distributions. However, it is often very difficult to theoretically evaluate the mixing
time of the chain, and many practitioners simply stop the chain after 5,000, 10,000 or 20,000
iterations without much justification. Our experimental design with autocorrelation provides
a set of statistics that can be used as a justification for choosing a stopping point. Further,
we show one way that the autocorrelation technique can be adapted from real-valued samples
to combinatorial samples.

6.2 Related Work

The related work can be roughly divided into two categories: constructing and sampling
graphs with a fixed degree distribution using sequential importance sampling or Monte Carlo
Markov Chain methods, and experimental work on heuristics for generating random graphs
with a fixed joint degree distribution.

The methods for constructing graphs with a given degree distribution are primarily ei-
ther reductions to perfect matchings or sequential sampling methods. There are two popular
perfect matching methods. The first is the configuration model [30, 7]: k mini-vertices are
created for each degree k vertex, and all the mini-vertices are connected. Any perfect match-
ing in the configuration graph corresponds to a graph with the correct degree distribution by
merging all of the identified mini-vertices. This allows multiple edges and self-loops, which
are often undesirable. See Figure 6.1. The second approach, the gadget configuration model,
prevents multi-edges and self-loops by creating a gadget for each vertex. If vi has degree
di, then it is replaced with a complete bipartite graph (Ui, Vi) with |Ui| = n − 1 − di and
|Vi| = n − 1. Exactly one node in each Vi is connected to each other Vj, representing edge

65

(i, j) [76]. Any perfect matching in this model corresponds exactly to a simple graph by
using the edges in the matching that correspond with edges connecting any Vi to any Vj.
We use a natural extension of the first configuration model to the joint degree distribution
problem.

a

b

c d

e

a

bd

e c

Figure 6.1: On the left, we see an example of the configuration model of the degree distri-
bution of the graph on the right. The edges corresponding to that graph are bold. Each
vertex is split into a number of mini-vertices equal to its degree, and then all mini-vertices
are connected. Not all edges are shown for clarity.

There are also sequential sampling methods that will construct a graph with a given
degree distribution. Some of these are based on the necessary and sufficient Erdős-Gallai
conditions for a degree sequence to be graphical [29], while others follow the method of
Steger and Wormald [27, 139, 132, 74, 79]. These combine the construction and sampling
parts of the problem and can be quite fast. The current best work can sample graphs where
dmax = O(m1/4−τ) in O(mdmax) time [27].

Another approach for sampling graphs with a given degree distribution is to use a Monte
Carlo Markov Chain method. There is significant work on sampling perfect matchings [75,
33]. There has also been work specifically targeted at the degree distribution problem.
Kannan, Tetali and Vempala [76] analyze the mixing time of a Markov Chain that mixes on
the configuration model, and another for the gadget configuration model. Gkantsidis, Mihail
and Zegura [63] use a Markov Chain on the configuration model, but reject any transition
that creates a self-loop, multiple edge or disconnects the graph. Both of these chains use the
work of Taylor [140] to argue that the state space is connected.

Amanatidis, Green and Mihail study the problems of when a given joint degree matrix has
graphical representation and, further, when it has connected graphical representation [12].
They give necessary and sufficient conditions for both of these problems, and constructive
algorithms. In Section 2, we give a simpler constructive algorithm for creating a graphical
representation that is based on solving the degree sequence problem instead of alternating
structures.

66

Another vein of related work is that of Mahadevan et al. who introduce the concept of
dK-series [97, 96]. In this model, d refers to the dimension of the distribution and 2K is the
joint degree distribution. They propose a heuristic for generating random 2K-graphs for a
fixed 2K distribution via edge rewirings. However, their method can get stuck if there exists
a degree in the graph for which there is only 1 node with that degree. This is because the
state space is not connected. We provide a theoretically sound method of doing this.

Finally, Newman also studies the problem of fixing an assortativity value, finding a joint
remaining degree distribution with that value, and then sampling a random graph with that
distribution using Markov Chains [112, 111]. His Markov Chain starts at any graph with the
correct degree distribution and converges to a pseudograph with the correct joint remaining
degree distribution. By contrast, our work provides a theoretically sound way of constructing
a simple graph with a given joint degree distribution first, and our Markov Chain only has
simple graphs with the same joint degree distribution as its state space.

6.3 Notation and Definitions

Formally, a degree distribution of a graph is the probability that a node chosen at random
will be of degree k. Similarly, the joint degree distribution is the probability that a randomly
selected edge will have end points of degree k and l. In this chapter, we are concerned with
constructing graphs that exactly match these distributions, so rather than probabilities, we
will use a counting definition below and call it the joint degree matrix. In particular, we will
be concerned with generating simple graphs that do not contain multiple edges or self-loops.
Any graph that may have multiple edges or self loops will be referred to as a pseudograph.

Definition 1. The degree vector (DV) d(G) of a graph G is a vector where d(G)k is the
number of nodes of degree k in G.

A generic degree vector will be denoted by D.

Definition 2. The joint degree matrix (JDM) J (G) of a graph G is a matrix where J (G)k,l
is exactly the number of edges between nodes of degree k and degree l in G.

A generic joint degree matrix will be denoted by J . Given a joint degree matrix, J , we
can recover the number of edges in the graph as m =

∑∞
k=1

∑∞
l=k Jk,l. We can also recover

the degree vector as Dk = 1
k
(Jk,k +

∑∞
l=1 Jk,l). The term Jk,k is added twice because kDk is

the number of end points of degree k and the edges in Jk,k contribute two end points.
The number of nodes, n is then

∑∞
k=1Dk. This count does not include any degree 0

vertices, as these have no edges in the joint degree matrix. Given n and m, we can easily
get the degree distribution and joint degree distribution. They are P (k) = 1

n
Dk while

P (k, l) = 1
m
Jk,l. Note that P (k) is not quite the marginal of P (k, l) although it is closely

related.

67

The Joint Degree Matrix Configuration Model We propose a new configuration
model for the joint degree distribution problem. Given J and its corresponding D we create
k labeled mini-vertices for every vertex of degree k. In addition, for every edge with end
points of degree k and l we create two labeled mini-end points, one of class k and one of
class l. We connect all degree k mini-vertices to the class k mini-end points. This forms a
complete bipartite graph for each degree, and each of these forms a connected component
that is disconnected from all other components. We will call each of these components the “k-
neighborhood”. Notice that there are kDk mini-vertices of degree k, and kDk = Jk,k+

∑
l Jk,l

corresponding mini-end points in each k-neighborhood. This is pictured in Figure 6.2. Take
any perfect matching in this graph. If we merge each pair of mini-end points that correspond
to the same edge, we will have some pseudograph that has exactly the desired joint degree
matrix. This observation forms the basis of our sampling method.

JDM =

0 0 2
0 1 2
2 2 1

DV =

(
2, 2, 2

)

6
e

5
e

4
e

3
e

2
e

1
e

6
v

5
v

4
v

3
v

2
v

1
v

3
v

2
v

1
v

3
e

6
e

6
v

5
e

4
e

5
v

4
v

2
e

1
e

6
v

6
e

5
v

5
e

4
v

4
e

3
e

2
e

1
e

3
v

2
v

1
v

6
e

6
v

5
e

4
e

5
v

4
v

3
v

2
e

1
e

2
v

1
v

3
e

1
v

2
v

3
v

1
e

2
e

3
e

4
e

4
v

5
e

5
v

6
e

6
v

Figure 6.2: The joint degree matrix configuration model. Each vertex is colored according
to its degree. On the left is the full model, with the left side consisting of the mini-vertices
and the right side of the mini-endpoints. All edges are included, with each of the 3 sets
of color vertices forming a complete bipartite graph. The middle and right figures are two
realizations of the model, with only the matched edges remaining.

68

6.4 Constructing Graphs with a Given Joint Degree

Matrix

The Erdős-Gallai condition is a necessary and sufficient condition for a degree sequence to
be realizable as a simple graph.

Theorem 11. Erdős-Gallai A degree sequence d = {d1, d2, · · · dn} sorted in non-increasing
order is graphical if and only if for every k ≤ n,

∑k
i=1 di ≤ k(k − 1) +

∑n
i=k+1 min(di, k).

The necessity of this condition comes from noting that in a set of vertices of size k, there
can be at most

(
k
2

)
internal edges, and for each vertex v not in the subset, there can be at

most min{d(v), k} edges entering. The condition considers each subset of decreasing degree
vertices and looks at the degree requirements of those nodes. If the requirement is more
than the available edges, the sequence cannot be graphical. The sufficiency is shown via the
constructive Havel-Hakimi algorithm [68, 67].

The existence of the Erdős-Gallai condition inspires us to ask whether similar necessary
and sufficient conditions exist for a joint degree matrix to be graphical. The following
necessary and sufficient conditions were independently studied by Amanatidis et al. [12].

Theorem 12. Let J be given and D be the associated degree distribution. J can be realized
as a simple graph if and only if (1) Dk is integer-valued for all k and (2) ∀k, l, if k 6= l then
Jk,l ≤ DkDl. For each k, Jk,k ≤

(Dk
2

)
.

The necessity of these conditions is clear. The first condition requires that there are an
integer number of nodes of each degree value. The next two are that the number of edges
between nodes of degree k and l (or k and k) are not more than the total possible number
of k to l edges in a simple graph defined by the marginal degree sequences. Amanatidis et
al. show the sufficiency through a constructive algorithm. We will now introduce a new
algorithm that runs in O(m) time.

The algorithm proceeds by building a nearly regular graph for each class of edges, Jk,l.
Assume that k 6= l for simplicity. Each of the Dk nodes of degree k receives bJk,l/Dkc edges,
while Jk,l mod Dk each have an extra edge. Similarly, the l degree nodes have bJk,l/Dlc
edges, with Jk,l mod Dl having 1 extra. We can then construct a simple bipartite graph
with this degree sequence. This can be done in linear time in the number of edges using
queues as is discussed after Lemma 10. If k = l, the only differences are that the graph is no
longer bipartite and there are 2Jk,k end points to be distributed among Dk nodes. To find
a simple nearly regular graph, one can use the Havel-Hakimi [67, 68] algorithm in O(Jk,k)
time by using the degree sequence of the graph as input to the algorithm.

We must show that there is a way to combine all of these nearly-regular graphs together
without violating any degree constraints. Let d = 〈d1, d2, · · · dn〉 be the sorted non-increasing
order degree sequence from D. Let d̂v denote the residual degree sequence where the residual
degree of a vertex v is dv minus the number of edges that currently neighbor v. Also,

69

let D̂k denote the number of nodes of degree k that have non-zero residual degree, i.e.
D̂k =

∑
dj=k

1(d̂j 6= 0).

Algorithm 6 Greedy Graph Construction with a Fixed JDM

1: for k = n · · · 1 and l = k · · · 1 do
2: if k 6= l then
3: Let a = Jk,l mod Dk and b = Jk,l mod Dl
4: Let x1 · · ·xa = bJk,lDk c+1, xa+1 · · ·xDk = bJk,lDk c and y1 · · · yb = bJk,lDl c+1, yb+1 · · · yDl =

bJk,lDl c
5: Construct a simple bipartite graph B with degree sequence x1 · · ·xDk , y1 · · · yDl
6: else
7: Let c = 2Jk,k mod Dk
8: Let x1 · · ·xc = b2Jk,k

Dk
c+ 1 and xc+1 · · ·xDk = b2Jk,k

Dk
c

9: Construct a simple graph B with the degree sequence x1 · · ·xDk
10: Place B into G by matching the nodes of degree k with higher residual degree with

x1 · · ·xa and those of degree l with higher residual degree with y1 · · · yb. The other
vertices in B can be matched in any way with those in G of degree k and l

11: Update the residual degrees of each k and l degree node.

To combine the nearly uni
To combine the nearly uniform subgraphs, we start with the largest degree nodes, and

the corresponding largest degree classes. It is not necessary to start with the largest, but it
simplifies the proof. First, we note that after every iteration, the joint degree sequence is

still feasible if ∀k, l, k 6= l Ĵk,l ≤ D̂kD̂l and ∀k Ĵk,k ≤
(D̂k

2

)
.

We will prove that Algorithm 6.4 can always satisfy the feasibility conditions. First, we
note a fact.

Observation 1. For all k,
∑

l Ĵk,l + Ĵk,k =
∑

dj=k
d̂j

This follows directly from the fact that the left hand side is summing over all of the k
end points needed by Ĵ while the right hand side is summing up the available residual end
points from the degree distribution. Next, we note that if all residual degrees for degree k
nodes are either 0 or 1, then:

Observation 2. If, for all j such that dj = k, d̂j = 0 or 1 then∑
dj=k

d̂j =
∑

dj=k
1(d̂j 6= 0) = D̂k.

Lemma 10. After every iteration, for every pair of vertices u, v of any degree k,
|d̂u − d̂v| ≤ 1.

Amanatidis et al. refer to Lemma 10 as the balanced degree invariant. This is most easily
proven by considering the vertices of degree k as a queue. If there are x edges to be assigned,
we can consider the process of deciding how many edges to assign each vertex as being one

70

of popping vertices from the top of the queue and reinserting them at the end x times. Each
vertex is assigned edges equal to the number of times it was popped. The next time we
assign edges with end points of degree k, we start with the queue at the same position as
where we ended previously. It is clear that no vertex can be popped twice without all other
vertices being popped at least once.

Lemma 11. The above algorithm can always greedily produce a graph that satisfies J , pro-
vided J satisfies the initial necessary conditions.

Proof. There is one key observation about this algorithm - it maximizes D̂kD̂l by ensuring
that the residual degrees of any two vertices of the same degree never differ by more than
1. By maximizing the number of available vertices, we can not get stuck adding a self-loop
or multiple edge. From this, we gather that if, for some degree k, there exists a vertex j
such that d̂j = 0, then for all vertices of degree k, their residuals must be either 0 or 1. This

means that
∑

dj=k
d̂j = D̂k ≥ Ĵk,l for every other l from Observation 2.

From the initial conditions, we have that for every k, l Jk,l ≤ DkDl. Dk = D̂k provided
that all degree k vertices have non-zero residuals. Otherwise, for any unprocessed pair,

Jk,l ≤ min{D̂k, D̂l} ≤ D̂kD̂l. For the k, k case, it is clear that Jk,k ≤ D̂k ≤
(D̂k

2

)
. Therefore,

the residual joint degree matrix and degree sequence will always be feasible, and the algorithm
can always continue.

A natural question is that since the joint degree distribution contains all of the informa-
tion in the degree distribution, do the joint degree distribution necessary conditions easily
imply the Erdős-Gallai condition? This can easily be shown to be true.

Corollary 1. The necessary conditions for a joint degree matrix to be graphical imply that
the associated degree vector satisfies the Erdős-Gallai condition.

6.5 Uniformly Sampling Graphs with Monte Carlo

Markov Chain (MCMC) Methods

We now turn our attention to uniformly sampling graphs with a given graphical joint degree
matrix using MCMC methods. We return to the joint degree matrix configuration model.
We can obtain a starting configuration for any graphical joint degree matrix by using Al-
gorithm 1. This configuration consists of one complete bipartite component for each degree
with a perfect matching selected. The transitions we use select any end point uniformly at
random, then select any other end point in its degree neighborhood and swap the two edges
that these neighbor. In Figure 6.2, this is equivalent to selecting one of the square end-
points uniformly at random and then selecting another uniformly at random from the same
connected component and then swapping the edges. A more complex version of this chain
checks that this swap does not create a multiple edge or self-loop. Formally, the transition
function is a randomized algorithm given by Algorithm 7.

71

Algorithm 7 Markov Chain Transition Function

1: With probability 0.5, stay at configuration C. Else:
2: Select any endpoint e1 uniformly at random. It neighbors a vertex v1 in configuration C
3: Select any e2 u.a.r from e1’s degree neighborhood. It neighbors v2

4: (Optional: If the graph obtained from the configuration with edges E∪{(e1, v2), (e2, v1)}\
{(e1, v1), (e2, v2)} contains a multi-edge or self-loop, reject)

5: E ← E ∪ {(e1, v2), (e2, v1)} \ {(e1, v1), (e2, v2)}

There are two chains described by Algorithm 7. The first, A doesn’t have the optional
step and its state space is all pseudographs with the desired joint degree matrix. The second,
B includes the optional step and only transitions to and from simple graphs with the correct
joint degree matrix.

We remind the reader of the standard result that any irreducible, aperiodic Markov Chain
with symmetric transitions converges to the uniform distribution over its state space. For
details, see Chapter 7 of [107]. Both A and B are aperiodic, due to the self-loop to each
state. From the description of the transition function, we can see that A is symmetric. This
is less clear for the transition function of B. Is it possible for two connected configurations
to have a different number of feasible transitions in a given degree neighborhood? We show
that it is not the case in the following lemma.

Lemma 12. The transition function of B is symmetric.

Proof. Let C1 and C2 be two neighboring configurations in B. This means that they differ
by exactly 4 edges in exactly 1 degree neighborhood. Let this degree be k and let these edges
be e1v1 and e2v2 in C1 whereas they are e1v2 and e2v1 in C2. We want to show that C1 and
C2 have exactly the same number of feasible k-degree swaps.

Without loss of generality, let ex, ey be a swap that is prevented by e1 in C1 but allowed
in C2. This must mean that ex neighbors v1 and ey neighbors some vy 6= v1, v2. Notice that
the swap e1ex is currently feasible. However, in C2, it is now infeasible to swap e1, ex, even
though ex and ey are now possible.

If we consider the other cases, like ex, ey is prevented by both e1 and e2, then after
swapping e1 and e2, ex, ey is still infeasible. If swapping e1 and e2 makes something feasible
in C1 infeasible in C2, then we can use the above argument in reverse. This means that the
number of feasible swaps in a k-neighborhood is invariant under k-degree swaps.

The remaining important question is the connectivity of the state space over these chains.
It is simple to show that the state space ofA is connected. We note that it is a standard result
that all perfect matchings in a complete bipartite graph are connected via edge swaps [140].
Moreover, the space of pseudographs can be seen exactly as the set of all perfect matchings
over the disconnected complete bipartite degree neighborhoods in the joint degree matrix
configuration model. The connectivity result is much less obvious for B. In particular, the
difficulty lies in the fact that transitions like those in Figure 6.4 can not be made without

72

going through a state that results in a pseudograph. We adapt a result of Taylor [140] that
all graphs with a given degree sequence are connected via edge swaps in order to prove this.
The proof is inductive and follows the structure of Taylor’s proof.

Theorem 13. Given two simple graphs, G1 and G2 of the same size with the same joint
degree matrix, there exists a series of end point rewirings to transform G1 into G2 (and vice
versa) where every intermediate graph is also simple.

Proof. This proof will proceed by induction on the number of nodes in the graph. The base
case is when there are 3 nodes. There are 3 realizable JDMs. Each is uniquely realizable, so
there are no switchings available.

Figure 6.3: The four potential joint degree distributions when n = 3.

Assume that this is true for n = k. Let G1 and G2 have k + 1 vertices. Label the nodes
of G1 and G2 v1 · · · vk+1 such that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vk+1). Our goal will be to
show that both graphs can be transformed in G′1 and G′2 respectively such that v1 neighbors
the same nodes in each graph, and the transitions are all through simple graphs. Now we
can remove v1 to create G′′1 and G′′2, each with n − 1 nodes and identical JDMs. By the
inductive hypothesis, these can be transformed into one other and the result follows.

We will break the analysis into two cases. For both cases, we will have a set of target
edges, e1, e2 · · · ed1 that we want v1 to be connected to. Without loss of generality, we let this
set be the edges that v1 currently neighbors in G2. We assume that the edges are ordered in
reverse lexicographic order by the degrees of their end points. This will guarantee that the
resulting construction for v1 is graphical and that we have a non-increasing ordering on the
requisite end points. Now, let ki denote the end point in G2 for edge ei that isn’t v1.

v1

uf

f

vc

ei+1

ui+1

Figure 6.4: The dotted edges represent the
troublesome edges that we may need to swap
out before we can swap v1 and vc.

e1 ed1

e3
e2

v1

ed1−1

ed1−2
k1

k2

k3

ud1

ud1−1

ud1−2

Figure 6.5: The disk is v1. The crosses
are the end points correctly neighbored,
e1 · · · ed1 .

73

v1 x

v1

fei fei
or

v1 x

v1

fei fei
or

ui ki

ui
ki

ki

kiui

ui

Figure 6.6: The two parts of Case (1).

v1 x

uf
ux

v1 x

ux

f ei f ei

or

v1 x

uf
ux

v1 x

ux

f ei f ei

or

Figure 6.7: The two parts of Case (2)

Case 1) For the first case, we will assume that v1 is already the end point of all edges
e1, e2 · · · ed1 but that all of the ki may not be assigned correctly as in Figure 6.5. Assume
that e1, e2 · · · ei−1 are all edges (v1, k1) · · · (v1, ki−1) and that ei is the first that isn’t matched
to its appropriate ki.

Call the current end point of the other end point of ei ui. We know that deg(ki) = deg(ui)
and that ki currently neighbors deg(ki) other nodes, Γ(ki). We have two cases here. One is
that v1 ∈ Γ(ki) but via edge f instead of ei. Here, we can swap v1 on the end points of f
and ei so that the edge v1 − ei − ki is in the graph. f can not be an ej where j < i because
those edges have their correct end points, kj assigned. This is demonstrated in Figure 6.6.

The other case is that v1 6∈ Γ(ki). If this is the case, then there must exist some x ∈
Γ(ki) \ Γ(ui) because d(ui) = d(ki) and ui neighbors v1 while ki doesn’t. Therefore, we can
swap the edges v1 − ei − ui and x − f − ki to v1 − ei − ki and x − f − ui without creating
any self-loops or multiple edges. This is demonstrated in Figure 6.6.

Therefore, we can swap all of the correct end points onto the correct edges.
Case 2) For the second case, we assume that the edges e1, · · · ed1 are distributed over l

nodes of degree d1. We want to show that we can move all of the edges e1 · · · ed1 so that v1

is an end point. If this is achievable, we have exactly Case 1.
Let e1, · · · ei−1 be currently matched to vi and let ei be matched to some x such that

deg(x) = d1. Let f be an edge currently matched to v1 that is not part of e1 · · · ed1 and let
its other end point be uf . Let the other end point of ei be ux as in Figure 6.7.

We now have several initial cases that are all easy to handle. First, if v, x, ux, uf are all
distinct and (v, ux) and (x, uf) are not edges then we can easily swap v and x such that the
edges go from v − f − uf and x − ei − ux to v − ei − ux and x − f − uf . Next, if uf = ux
then we can simply swap v1 onto ei and x onto f and, again, v1 will neighbor ei. This will
not create any self-loops or multiple edges because the graph itself will be isomorphic. This
situations are both shown in Figure 6.7.

The next case is that x = uf . If we try to swap v1 onto ei then we create a self-loop
from x to x via f . Instead, we note that since the JDM is graphical, there must exist a
third vertex y of the same degree as v1 and x that does not neighbor x. Now, y neighbors
an edge g, and we can swap x− f and y − g to x− g and y − f . The edges are v1 − f − y
and x− ei − ui and ei can be swapped onto v1 without conflict.

The cases left to analyze are those where the nodes are all distinct and (v1, ux) or (x, uf)
are edges in the graph. We will analyze these separately.

74

v1 x

uf
ux

f ei
g

v1 x

uf
ux

f ei
g

v1 x

uf

f ei h

ki

y v1 x

uf

f ei h

ki

y

ej

kj

ej

kj

v1 x

uf

f ei h

ki

y

ej

kj

v1 x

uf

f ei h

ki

ej

kj

v1 x

uf

f eih

ki

ej

kj

x

uf

f ei h

ki

ej

kj

v1 x

uf

f ei h

ki

ej

kj

v1

v1 x

uf

f eih

ki

ej

kj

v1 x

uf

f eih

ki

ej

kj

v1 x

uf

f eih

ki

ej

kj

Figure 6.8: A graphical representation of the situations discussed in Case (2a).

Case 2a) If (v1, ux) is an edge in the graph, then it must be so through some edge
named g. Note that this means we have v1 − g − ux and x − ei − ux. We can swap this to
v1 − ei − ux and x − g − ux and have an isomorphic graph provided that g is not some ej
where j < i. This is the top case in Figure 6.8.

If g is some ej then it must be that ux = kj. This is distinct from ki. deg(kj) = deg(ki)
so there must exist some edge h that ki neighbors with its other end point being y. There
are again three cases, when y 6= x, v1 y = x and when y = v1. These are the bottom three
rows illustrated in Figure 6.8. The first is the simplest. Here, we can assume that kj does
not neighbor y (because it neighbors v1 and x that ki does not) so we can swap kj onto h
and ki onto e1. This has removed the offending edge, and we can now swap v1 onto e1 and
x onto f .

When y = x, we first swap ki onto ej and kj onto h. Next, we swap v onto ei and x onto
f as they no longer share an offending edge.

Finally, when y = v1, we use a sequence of three swaps. The first is ki onto ej and kj
onto h. The next is v1 onto e1 and x onto h. Finally, we swap kj back onto ej and ki onto
ei.

Case 2b) If (x, uf) is an edge in the graph, then it must be through some edge g such
that x− g − uf and x− ei − ux. Without loss of generality, assume that f is the only edge

75

v1 x

uf
ux

f ei
g

w

y

h

v1 x

uf
ux

f ei
g

w

y

h

v1 x

uf
ux

f ei
g

w

y

h

v1 x

uf
ux

f ei
g

h

vs

us

v1 x

uf
ux

f ei
g

h

vs

us

v1 x

uf
ux

f eig
h

vs

us

Figure 6.9: A graphical representation of the situations discussed in Case (2b)

neighboring v1 that isn’t an ej. Since f doesn’t neighbor v1 in G2, there must either exist a
w with deg(w) = deg(uf) or vs with deg(vs) = d(v1). This relies critically upon the fact that
f and g are the same class edge. If there is a w, then it doesn’t neighbor v1 (or we can apply
the above argument to find a w′) and it must have some neighbor y ∈ Γ(w) \ Γ(u) through
edge h. Therefore, we can swap uf onto h and w onto f . This removes the offending edge,
and we can now swap v1 onto ei and x onto f .

If vs exists instead, then by the same argument, there exists some edge h with end point
us such that vs /∈ Γ(uf) and us /∈ Γ(x). Therefore, we can swap vs − h and x − g to vs − g
and x− h. This again removes the troublesome edge and allows us to swap v1 onto ei.

Therefore, given any node, a precise set of edges that it should neighbor, and a set of
vertices that are the end points of those edges, we can use half-edge-rewirings to transform
any graph G to G′ that has this property, provided the set of edges is graphical.

Now that we have shown that both A and B converge to the uniform distribution over
their respective state spaces, the next question is how quickly this happens. Note that from
the proof that the state space of B is connected, we can upper bound the diameter of the
state space by 3m. The diameter provides a lower bound on the mixing time. In the next
section, we will empirically estimate the mixing time to be also linear in m.

6.6 Estimating the Mixing Time of the Markov Chain

The Markov chain A is very similar to one analyzed by Kannan, Tetali and Vempala [76].
We can exactly use their canonical paths and analysis to show that the mixing time is
polynomial. This result follows directly from Theorem 3.2 and Corollary 3.2 (or Theorem
3 and Corollary 4 or Theorem 4.2 and Corollary 4.2) of [76] for chain A. This is because
the joint degree matrix configuration model can be viewed as |D| complete, bipartite, and
disjoint components. These components should remain disjoint, so the Markov Chain can be
viewed as a ‘meta-chain’ which samples a component and then runs one step of the Kannan,

76

Tetali and Vempala chain on that component. Even though the mixing time for this chain
is provably polynomial, this upper bound is too large to be useful in practice.

The analysis to bound the mixing time for chain B is significantly more complicated.
One approach is to use the canonical path method to bound the congestion of this chain.
The standard trick is to define a path from G1 to G2 that fixes the misplaced edges identified
by G1 ⊕ G2, the symmetric difference between the two graphs, in a globally ordered way.
However, this is difficult to apply to chain B because fixing a specific edge may not be atomic,
i.e. from the proof of Theorem 13 it may take up to 4 swaps to correctly connect a vertex
with an end point if there are conflicts with the other degree neighborhoods. These swaps
take place in other degree neighborhoods and are not local moves. Therefore, this introduces
new errors that must be fixed, but can not be incorporated into G1 ⊕G2. In addition, step
(4) also prevents us from using path coupling as a proof of the mixing time.

Given that bounding the mixing time of this chain seems to be difficult without new
techniques or ideas, we use a series of experiments that substitute the autocorrelation time
for the mixing time.

6.6.1 Autocorrelation Time

Autocorrelation time is a quantity that is related to the mixing time and is popular among
physicists. We will give a brief introduction to this concept, and refer the reader to Sokal’s
lecture notes for further details and discussion [134].

The autocorrelation of a signal is the cross-correlation of the signal with itself given a lag t.
More formally, given a series of data 〈Xi〉 where each Xi is a drawn from the same distribution

X with mean µ and variance σ, the autocorrelation function is RX(t) = E[(Xi−µ)(Xi−t−µ)]
σ2 .

Intuitively, the inherent problem with using a Markov Chain sampling method is that
successive states generated by the chain may be highly correlated. If we were able to draw
independent samples from the stationary distribution, then the autocorrelation of that set of
samples with itself would go to 0 as the number of samples increased. The autocorrelation
time is capturing the size of the gaps between sampled states of the chain needed before the
autocorrelation of this ‘thinned’ chain is very small. If the thinned chain has 0 autocorre-
lation, then it must be exactly sampled from the stationary distribution. In practice, when
estimating the autocorrelation from a finite number of samples, we do not expect it to go to
exactly 0, but we do expect it to ‘die away’ as the number of samples and gap increases.

Definition 3. The exponential autocorrelation time is τexp,X = lim supt→∞
t

− log |RX(t)| [134].

Definition 4. The integrated autocorrelation time is τint,X = 1
2

∑∞
t=−∞RX(t) = 1

2
+
∑∞

t=1RX(t) [134].

The difference between the exponential autocorrelation time and the integrated autocor-
relation time is that the exponential autocorrelation time measures the time it takes for the
chain to reach equilibrium after a cold start, or ‘burn-in’ time. The integrated autocorrela-
tion time is related to the increase in the variance over the samples from the Markov Chain

77

as opposed to samples that are truly independent. Often, these measurements are the same,
although this is not necessarily true.

We can substitute the autocorrelation time for the mixing time because they are mea-
suring very similar things - the number of iterations that the Markov Chain needs to run
for before the difference between the current distribution and the stationary distribution
is small. However, it is impossible to actually measure the mixing time. We will use the
integrated autocorrelation time estimate.

6.6.2 Experimental Design

We used the Markov Chain B in two different ways. First, for each of the smaller datasets,
we ran the chain for 50,000 iterations 15 times. We used this to calculate the autocorrelation
values for each edge for each lag between 100 and 15,000 in multiples of 100. From this, we
calculated the estimated integrated autocorrelation time, as well as the iteration time for
the autocorrelation of each edge to drop under a threshold of 0.001. This is discussed in
Section 6.6.4.

We also replicated the experimental design of Raftery and Lewis [120]. Given our esti-
mates of the autocorrelation time for each size graph in Section 6.6.4, we ran the chain again
for long enough to capture 10,000 samples where each sample had x iterations of the chain
between them. x was chosen to vary from much smaller than the estimated autocorrelation
time, to much larger. From these samples, we calculated the sample mean for each edge,
and compared it with the actual mean from the joint degree matrix. We looked at the total
variational distance between the sample means and actual means and showed that the dif-
ference appears to be converging to 0. We chose the mean as an evaluation metric because
we were able to calculate the true means theoretically. We are unaware of another similarly
simple metric.

We used the formulas for empirical evaluation of mixing time from page 14 of Sokal’s
survey [134]. In particular, we used the following:

• The sample mean is µ = 1
n

∑n
i=1 xi.

• The sample unnormalized autocorrelation function is Ĉ(t) = 1
n−t
∑n−t

i=1 (xi−µ)(xi+t−µ).

• The natural estimator of RX(t) is ρ̂(t) = Ĉ(t)/Ĉ(0)

• The estimator for τint,X is τ̂int = 1
2

∑n−1
t=−(n−1) λ(t)ρ̂(t) where λ is a ‘suitable’ cutoff

function.

Data Sets We have used several publicly available datasets, Word Adjacencies [113], Les
Miserables [81], American College Football [62], the Karate Club [151], the Dolphin Social
Network [95], C. Elegans Neural Network (celegans) [148, 149], Power grid (power) [148], As-
trophysics collaborations (astro-ph) [110], High-Energy Theory collaborations (hep-th) [110],
Coauthorships in network science (netscience) [113], and a snapshot of the Internet from 2006

78

(as-22july) [114]. In the following |V | is the number of nodes, |E| is the number of edges
and |J | is the number of non-zero entries in the joint degree matrix.

Dataset |E| |V | |J |
AdjNoun 425 112 159
as-22july 48,436 22,962 5,496
astro-ph 121,251 16,705 11,360
celegans 2,359 296 642
Dolphins 159 62 61
Football 616 115 18
hep-th 15,751 8,360 629
Karate 78 34 40
LesMis 254 77 99

netscience 2,742 1,588 184
power 6,594 4,940 108

Table 6.1: Details about the datasets, |V | is the number of nodes, |E| is the number of edges
and |J | is the number of unique entries in the J .

6.6.3 Relationship Between Mean of an Edge and
Autocorrelation

For each of the smaller graphs, AdjNoun, Dolphins, Football, Karate and LesMis, we ran
the Markov Chain 10 times for 50,000 iterations and collected an indicator variable for each
potential edge. For each of these edges, and each run, we calculated the autocorrelation
function for values of t between 100 and 15,000 in multiples of 100. For each edge, and
each run, we looked at the t value where the autocorrelation function first dropped below
the threshold of 0.001. We then plotted the mean of these values against the mean of the
edge, i.e. if it connects vertices of degree di and dj (where di 6= dj) then µe = Jdi,dj/didj or

µe = Jdi,di/
(
di
2

)
otherwise. The three most useful plots are given in Figures 6.10 and 6.11 as

the other graphs did not contain a large range of mean values.
From these results, we identified a potential relationship between µe and the time to

pass under a threshold. Unfortunately, none of our datasets contained a significant number
of edges with larger µe values, i.e. between 0.5 and 1. In order to test this hypothesis,
we designed a synthetic dataset that contained the many edges with values of µe at i

20
for

i = 1, · · · 20.

Designing Synthetic Data Our goal was to represent all of the potential means for i
20

for 0 < i ≤ 20. We note that 20 factors into 4 and 5, so we want to first fix some degrees

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
he

or
et

ic
al

 M
ea

n
of

 E
dg

e

Number of Iterations

Les Miserables

Mean Iteration for the Edge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
he

or
et

ic
al

 M
ea

n
of

 E
dg

e

Number of Iterations

Word Adjacencies

Mean Iteration for the Edge

Figure 6.10: The time for an edge’s estimated autocorrelation function to pass under the
threshold of 0.001 versus µe for that edge for LesMis and AdjNoun from top to bottom.

80

such that Dk = 4 and Dl = 5. For convenience, because the maximum number of edges we
will be assigning is 20, we will pick these degrees to be K = {20, 21, 22, 23, 24} for Dk = 4
and L = {25, 26, 27, 28} for Dl = 5. The number of each we picked was to guarantee that
there were at least 20 combinations of edge types. We can now assign the values 1 − 20
arbitrarily to JK×L. This assignment clearly satisfies that Jk,l ≤ DkDl so far.

Now, we must fill in the rest of J so that D is integer valued for degrees. One way is
to note that we should have 4 × 20 degree 20 edges. We can sum the number of currently
allocated edges with one end point of degree 20, call this x and set J1,20 = 80−x. There are
many other ways of consistently completing J , such as assigning as many edges as possible
to the K×K and L×L entries, like J20,21. This results in a denser graph. For the synthetic
graph used in this chapter, we completed J by adding all edges as (1, 20), (1, 21) etc edges.
We chose this because it was simple to verify and it also made it easy to ignore the edges
that were not of interest.

The final dataset we created had 326 edges, 194 vertices and 21 distinct J entries. We
ran the Markov Chain 200 times for this synthetic graph. For each run, we calculated the
threshold value for each edge. Figure 6.11 shows the edges’ mean vs its mean time for the
autocorrelation value to pass under 0.001. We see that there is a roughly symmetric curve
that obtains its maximum at µe = 0.5.

This result suggests a way to estimate the autocorrelation time for larger graphs without
repeating the entire experiment for every edge that could possibly appear. One can calculate
µe for each edge from the JDM and sample edges with µe around 0.5. We use this method
for selecting our subset of edges to analyze. In particular, we sampled about 300 edges from
each of the larger graphs. For all of these except for power, the µe values were between 0.4
and 0.6. For power, the maximum µe value is about 0.15, so we selected edges with the
largest µ values.

6.6.4 Autocorrelation Values

For each dataset and each run we calculated the unnormalized autocorrelation values. For the
smaller graphs, this entailed setting t to every value between 100 and 15,000 in multiples of
100. We randomly selected 1 run for each dataset and graphed the autocorrelation values for
each of the edges. We present the data for the Karate and Dolphins datasets in Figures 6.12
and 6.13. For the larger graphs, we changed the starting and ending points, based on the
graph size. For example, for Netscience was analyzed from 2,000 to 15,000 in multiples of
100, while as-22july was analyzed from 1,000 to 500,000 in multiples of 1,000.

All of the graphs exhibit the same behavior. We see an exponential drop off initially,
and then the autocorrelation values oscillate around 0. This behavior is due to the limited
number of samples, and a bias due to using the sample mean for each edge. If we ignore
the noisy tail, then we estimate that the autocorrelation ‘dies off’ at the point where the
mean absolute value of the autocorrelation approximately converges, then we can locate the
‘elbow’ in the graphs. This estimate for all graphs is given in Table 6.6.7 at the end of this
Section.

81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

T
he

or
et

ic
al

 M
ea

n
of

 E
dg

e

Number of Iterations

Zachary’s Karate Club

Mean Iteration for the Edge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

T
he

or
et

ic
al

 M
ea

n
of

 E
dg

e

Number of Iterations

Synthetic 1

Mean Iteration for the Edge

Figure 6.11: The time for an edge’s estimated autocorrelation function to pass under the
threshold of 0.001 versus µe for that edge for Karate and the synthetic dataset. The synthetic
dataset has a larger range of µe values than the real datasets and a significant number of
edges for each value.

82

0 5000 10000 15000
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Iterations

A
ut

oc
or

re
la

tio
n

va
lu

e

Autocorrelation vs Iterations for Karate

Figure 6.12: The exponential drop-off for Karate appears to end after 400 iterations.

0 5000 10000 15000
−0.05

0

0.05

0.1

0.15

Number of Iterations

A
ut

oc
or

re
la

tio
n

va
lu

e

Autocorrelation vs Iterations for Dolphins

Figure 6.13: The exponential drop-off for Dolphins appears to end after 600 iterations.

83

6.6.5 Estimated Integrated Autocorrelation Time

For each dataset and run, we calculated the estimated integrated autocorrelation time. For
the datasets with fewer than 1,000 edges, we calculated the autocorrelation in lags of 100
from 100 to 15,000 for each dataset. For the larger ones, we used intervals that depended on
the total size of the graph. We estimate ρ̂(t) as the size of the intervals times the sum of the
values. The cut-off function we used for the smaller graphs was λ(t) = 1 if 0 < t < 15, 000
and 0 otherwise. This value was calculated for each edge. In Table 6.6.5 we present the
mean, maximum and minimum estimated integrated autocorrelation time for each dataset
over the runs of the Markov Chain using three different methods. For each of the edges, we
first calculated the mean, median and max estimated integrated autocorrelation value over
the various runs. Then, for each of these three values for each edge, we calculated the max,
mean and min over all edges. For each of the graphs, the data series representing the median
and max have each had their x-values perturbed slightly for clarity.

These values are graphed on a log-log scale plot. Further, we also present a graph showing
the ratio of these values to the number of edges. The ratio plot, Figure 6.15, suggests that the
autocorrelation time may be a linear function of the number of edges in the graph, however
the estimates are noisy due to the limited number of runs.

All three metrics give roughly the same picture. We note that there is much higher
variance in estimated autocorrelation time for the larger graphs. If we consider the evidence
of the log-log plot and the ratio plot, we suspect that the autocorrelation time of this Markov
Chain is linear in the number of edges.

6.6.6 The Sample Mean Approaches the Real Mean for Each
Edge

Given the results of the previous experiment estimating the integrated autocorrelation time,
we next executed an experiment suggested by Raftery and Lewis [120]. First we note that

for each edge e, we know the true value of P (e ∈ G|G has J) is exactly
Jk,l
DkDl

or
Jk,k
(Dk2)

if e is

an edge between degrees k and l. This is because there are DkDl potential (k, l) edges that
show up in any graph with a fixed J , and each graph has Jk,l of them. If we consider the
graphs as being labeled, then we can see that each edge has an equal probability of showing
up when we consider permutations of the orderings.

Thus, our experiment was to take samples at varying intervals, and consider how the sam-
ple mean of each edge compared with our known theoretical mean. For the smaller graphs,
we took 10,000 samples at varying gaps depending on our estimated integrated autocorrela-
tion time and repeated this 10 times. Additionally, we saw that the total variational distance
quickly converged to a small, but non-zero value. We repeated this experiment with 20,000
samples and, for the two smallest graphs, Karate and Dolphins, we repeated the experiment
with 5,000 and 40,000 samples. These results show that this error is due to the number of
samples and not the sampler. For the graphs with more than 1,000 edges, each run resulted

84

A summary of the Estimate Integrated Autocorrelation Times
Dataset |E| mean: mean max min
Karate 78 288.92 444.1 221.13

Dolphins 159 383.21 553.84 256.13
LesMis 254 559.77 931.35 129.45

AdjNoun 425 688.71 1154.9 156.49
Football 616 962.42 2016.9 404.77
celegans 2,359 3340.2 4851.4 2458.8

netscience 2,742 1791.4 3147.2 1087.7
power 6,594 6624.5 17933 2166.9
hep-th 15,751 26552 36816 14976

as-22july 48,436 89637 139280 60627
astro-ph 121,251 121860 298970 37706

median: mean max min
Karate 78 288.31 443 217.63

Dolphins 159 377.4 550.99 211.44
LesMis 254 542.43 895.57 57.492

AdjNoun 425 659.06 1160.3 66.851
Football 616 925.97 1646.9 349.12
celegans 2,359 3235.7 4861.4 2323.6

netscience 2,742 1658.3 3033.2 937.8382
power 6,594 4768.8 16901 250.6012
hep-th 15,751 25608 37004 14130

as-22july 48,436 87190 152490 58493
astro-ph 121,251 119900 321730 46830

maximum: mean max min
Karate 78 382.59 608.06 268.95

Dolphins 159 528.86 1134.1 397.35
LesMis 254 894.08 2598.6 342.76

AdjNoun 425 1186.1 4083.6 350.97
Football 616 1546.4 7514.3 967
celegans 2,359 4844.6 7836.9 3065.5

netscience 2,742 3401 7404 1894.7
power 6,594 20599 54814 7074.7
hep-th 15,751 46309 64936 25753

as-22july 48,436 121930 256520 76214
astro-ph 121,251 152930 408000 84498

Table 6.2: Mean refers to taking the mean autocorrelation time for each edge, and then the
mean, min and max of these values over all measured edges. Similarly, the next set of results
is the median for each edge, with the min, mean and max reported. Finally, maximum is
the max for each edge, again with the mean, min and max reported.

85

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Lo
g(

E
st

. I
nt

. A
ut

oc
or

re
la

tio
n

T
im

e)

Log(Number of Edges)

Log-Log Plot of Estimated Integrated Autocorrelation Time

Mean
Median

Max

Figure 6.14: The max, median and min values over the edges for the estimated integrated
autocorrelation times in a log-log plot. L to R in order of size: Karate, Dolphins, LesMis,
AdjNoun, Football, celegans, netscience, power, hep-th, as-22july and astro-ph

in 20,000 samples at varying gaps, and this was repeated 5 times. We present these results
in Figures 18 through 28. If Se,g is the sample mean for edge e and gap g, and µe is the true
mean, then the graphed value is

∑
e |Se,g − µe|/

∑
e µe.

In all of the figures, the line runs through the median error for the runs and the error
bars are the maximum and minimum values. We note that the maximum and minimum are
very close to the median as they are within 0.05% for most intervals. These graphs imply
that we are sampling uniformly after a gap of 175 for the Karate graph. For the dolphin
graph, we see very similar results, and note that the error becomes constant after a sampling
gap of 400 iterations.

For the larger graphs, we varied the gaps based on the graph size, and then focused on the
area where the error appeared to be decreasing. Again, we see consistent results, although
the residual error is higher. This is to be expected because there are more potential edges
in these graphs, so we took relatively fewer samples per edge. A summary of the results can
be found in Table 6.6.7.

86

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

R
at

io

Number Identifying Dataset

Ratio of Estimated Integrated Autocorrelation Time to Number of Edges

Mean
Median

Max

Figure 6.15: The ratio of the max, median and min values over the edges to the number of
edges for the estimated integrated autocorrelation times. L to R in order of size: Karate,
Dolphins, LesMis, AdjNoun, Football, celegans, netscience, power, hep-th, as-22july and
astro-ph

6.6.7 Summary of Experiments

Based on the results in this table, our recommendation would be that running the Markov
Chain for 5m steps would satisfy all running time estimates except for Power’s results for the
Maximum Estimated Integrated Autocorrelation time. This estimate is significantly lower
than the result for Chain A that was obtained using the standard theoretical technique of
canonical paths.

6.7 Conclusions

This chapter makes two primary contributions. The first is the investigation of Markov Chain
methods for uniformly sampling graphs with a fixed joint degree distribution. Previous work
shows that the mixing time of A is polynomial, while our experiments suggest that the

87

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300 350 400 450 500

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Dolphins

40000 samples
20000 samples
10000 samples
5000 samples

Figure 6.16: The Dolphin Dataset with 5,000
to 40,000 samples

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300 350 400 450 500

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Karate

40000 samples
20000 samples
10000 samples
5000 samples

Figure 6.17: The Karate Dataset with 5,000
to 40,000 samples

 0

 1

 2

 3

 4

 5

 6

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Adjnoun

20000 samples
10000 samples

Figure 6.18: The AdjNoun Dataset with
10,000 and 20,000 samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, AS-22July06

20000 samples

Figure 6.19: The AS-22July06 Dataset with
20,000 samples

88

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, astro-ph

20000 samples

Figure 6.20: The Astro-PH Dataset with
20,000 samples

 0

 0.5

 1

 1.5

 2

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Celegans

20000 samples

Figure 6.21: The Celegans Dataset with
20,000 samples

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800 1000 1200

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Football

20000 samples
10000 samples

Figure 6.22: The Football Dataset with
10,000 and 20,000 samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10000 15000 20000 25000 30000 35000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, HEP-th

20000 samples

Figure 6.23: The Hep-TH Dataset with
20,000 samples

89

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200 1400 1600

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Lesmis

20000 samples
10000 samples

Figure 6.24: The LesMis Dataset with
10,000 and 20,000 samples

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 500 1000 1500 2000 2500 3000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Netscience

20000 samples

Figure 6.25: The Netscience Dataset with
20,000 samples

 0

 1

 2

 3

 4

 5

 6

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Power

20000 samples

Figure 6.26: The Power Dataset with 20,000
samples

90

Summary of Estimates
|E| Max EI Mean Conv. Thresh.

AdjNoun 425 1,186 900 700
AS-22July 48,436 256,520 95,000 156,744
Astro-PH 121,251 408,000 120,000 343,154
Celegans 2,359 7,836.9 3,750 7,691
Dolphins 159 528 400 600
Football 616 1,546 1,000 900
Hep-TH 15,751 64,936 28,000 22,397
Karate 78 382 175 400
LesMis 254 894 800 1,000

Netscience 2,742 7,404 2,000 7,017
Power 6,594 54,814 8,000 7,270

Table 6.3: The values are the Maximum Estimated Integrated Autocorrelation time (Max
EI, the third column of Table 6.6.5), the Sample Mean Convergence iteration number, and
the time to drop under the Autocorrelation Threshold. The Autocorrelation threshold was
calculated as when the average absolute value of the autocorrelation was less than 0.0001

mixing time of B is also polynomial. The relationship between the mean of an edge and the
autocorrelation values can be used to efficiently experiment with larger graphs by sampling
edges with mean between 0.4 and 0.6 and repeating the analysis for just those edges. This
was used to repeat the experiments for larger graphs and to provide further convincing
evidence of polynomial mixing time.

Our second contribution is in the design of the experiments to evaluate the mixing time
of the Markov Chain. In practice, it seems the stopping time for sampling is often chosen
without justification. Autocorrelation is a simple metric to use, and can be strong evidence
that a chain is close to the stationary distribution when used correctly.

91

Chapter 7

An Introduction to Tournaments

As a natural way to select a leader, competition is at the heart of life. It is intriguing, both
for its participants, and its spectators. Society is riddled with organized competitions called
tournaments with well-defined rules to select a winner from a pool of candidate players.
Sports tournaments such as the FIFA World Cup and Wimbledon are immensely popular
and generate huge amounts of revenue. Elections are another important type of tournaments:
a leading party is selected according to some rules using votes from the population.

Sports tournaments and voting mechanisms share the same primary goal - to identify a
socially optimal or ‘best’ candidate. They also share many of the same constraints, both in
terms of being designed so that incentives are aligned correctly, and in terms of execution
time and complexity. The primary difference between tournaments and elections is that in a
tournament all of the candidates exactly coincide with the voters, and the outcome of each
match is determined only by the players involved, not by all of the voters. Because of this, the
question of whether the tournament is designed in a way that aligns the incentives of players
with the goal of the mechanism is a bit easier to quantify - is it ever in a players’ interest to
lie about the outcome of a match, i.e. intentionally lose? When this happens in professional
sporting events, as it did in the 2012 Olympics Badminton tournament, spectators become
extremely upset even if the players’ goal is just to eventually win.

Another feature that makes tournaments quite different from the standard voting mecha-
nism setting is noise. It would be very unusual to assume that the votes themselves are noisy
representations of the ordering of a voters’ opinion of the candidates. However, we observe
noisy outcomes in sports matches all the time from stories of the underdog football team
winning against the state champions one time in twenty years, to the design of the Major
League Baseball World Series where the first team to win the majority of seven games is
declared the victor. Thus, tournaments must fundamentally deal with minimizing the effect
of noisy outcomes in addition to identifying a strong player with the minimum number of
games.

92

7.1 The Tournament Graph

Using slightly overloaded terminology, the tournament graph represents the outcomes of all
possible matches between players. More specifically, it is a complete directed graph over all
n players in the tournament. The edge directed from u to v exists if u would beat v in a
match, and (v, u) exists otherwise. The edges of the tournament graph can be weighted,
usually with the probability of u winning against v if they were to face each other.

The tournament graph has several interesting features. The first is the existence of kings.
A player v is a kind in a tournament graph G = (V,E) if it is the case that for all other
players u ∈ V , it is either the case that v beats u, i.e. (v, u) ∈ E, or v beats a player y who
beats u, i.e. (v, y), (y, u) ∈ E. Every tournament graph has at least one king as the player
with the highest outdegree.

Outside of the study of tournament competitions, tournament graphs have been widely
analyzed. It is much more difficult to prove NP -hardness for these types of graphs for many
problems because of the volume of edges involved. Conversely, it is often the case that easy
approximation algorithms exist specifically for tournament graphs. For example, feedback
arc set has a 3 approximation in tournament graphs by using the ordering resulting from the
outdegree of the nodes [44].

7.2 Types of Tournaments

In this section, we will formally introduce several popular tournament designs and discuss
their advantages and drawbacks.

Round-Robin A round-robin tournament, also known as an ‘all-play-all’ tournament, is
one where every player meets every other player. Each team may play each other exactly
once or, rarely, exactly twice. For the single match setting, the outcome of the tournament
can exactly be represented by the tournament graph. If there is exactly one player with the
most number of wins, they are declared the victor. If not, a tie-breaking method must be
used.

There are several advantages to the round-robin format. The first is that it addresses the
problem of noisy outcomes by allowing each player to play n−1 (or 2(n−1)) total matches so
one bad performance need not eliminate a strong player. Additionally, it allows every player
to continuing participating for the entirety of the tournament. This is not done to improve
the selection aspect of the mechanism but instead to encourage people to participate when
considerable expense and time has been invested in attending the tournament.

By the same token, the fact that every player must face every other player can also be
viewed as a disadvantage. This format require

(
n
2

)
games and enough space for n

2
matches to

occur simultaneously for n−1 rounds. Space can be traded in exchange for taking more time.
Additionally, for any player who is not competitive for the top spot, playing all of the extra
games is unnecessary in order to determine this. Round-robin is often used in tournaments

93

as a qualifying round with the top k finishers moving on to the finals. Unfortunately, when
a particular team knows they have already placed within the top k, the format no longer
encourages them to play hard and win their final matches. This can occur even when not
used in a qualifying round - if a match occurring late in the tournament occurs between a
team that still has a chance of winning and one who does not, then the second team has no
incentive to try as well.

Swiss-system Tournaments The Swiss-system tournament design addresses the problem
of the time required to play a round-robin tournament. Again, all players play for the entirety
of the tournament, but the tournament consists of pre-determined number of rounds. After
each round, each player is awarded 1 point for winning a match (and possibly 0.5 for tying).
The matches for the next round are determined by matching players against others with the
same score (or closest score if that is not possible) subject to constraints like no two players
should play twice. After the pre-determined number of rounds, if there is a player with a
unique highest score, they are declared the winner. If not, some tie-breaking procedure must
be used. There are many different systems used to determine the matches at each round.

The Swiss-system has the same advantage as round-robin of guaranteeing that all players
play all rounds while requiring many fewer games (approximately n log n) to find the result.
Additionally, it avoids the problems of pitting strong players against weak players in the
final rounds of the tournament where the matches are both uninteresting to the spectators
and demoralizing for the weaker team. It is also able to generate an approximate ranking
of the strength of all of the players based on their final score. This ranking is generally
most meaningful for the top and bottom players, but not those in the middle. This helps to
motivate all players to play well, even when it is clear they can not become the final winner.
Unfortunately, this can also be counted as a disadvantage - the strongest player may have
built up a 2-point lead entering the final round, guaranteeing them a win despite the outcome
of this round. This is significantly less exciting for spectators when the strongest player is
not motivated to try their best.

Knock-out Tournaments The primary focus of the next two chapters, a knock-out tour-
nament allows some number of players to be eliminated after each round. The most common
of these tournaments is known as the single-elimination tournament where a player is elim-
inated after a single loss. Also used is a double-elimination tournament where each player is
allowed two losses before being eliminated.

There are two major aspects of these types of tournaments, the bracket which is the
ordering for which players meet each other when depending on the previous outcomes, and
the existence of byes. A bye grants a player an automatic win in a round and is needed
when there is an uneven number of players in the round. Often, byes will be granted to an
appropriate number of players in the first round to make the number of players in the second
round a power of 2. Several of the rounds have distinctive names - when 8 players remain,
the round is the Quarter-Finals, 4 players participate in the Semi-Finals and 2 players reach

94

the Final.
Knock-out Tournaments take significantly fewer rounds and matches than round-robin

tournaments for a total of log n rounds for single-elimination and 2 log n for double-elimination.
By contrast, the Swiss system usually requires at least log n rounds as well. As the number
of players shrinks dramatically after each round (half of all players are eliminated after the
first round in single-elimination) it can solve space constraints nicely. Unfortunately, the
main disadvantage is that it is very susceptible to noisy outcomes. If a very strong player
has a bad game in the first round, this can totally remove them from the competition. Addi-
tionally, single-elimination can be a very frustrating format for amateur competitors as they
do not participate for very long. The double-elimination tournament addresses this slightly
by allowing ever player to participate in at least two games.

There are many ways to seed the initial bracket for knock-out tournaments. The most
popular when a previous ranking is known is to seed the strongest player against the weakest,
the second strongest against the second weakest etc. Round-robin tournaments are often
used during the season to compete for these seeding positions, leading to strange behavior
as teams jockey over seeding positions for the playoffs.

7.2.1 Tournaments as represented in the tournament graph

As previously mentioned, the outcomes of the round-robin tournament as exactly represented
by a tournament graph. Similarly, if given a tournament graph representing the match out-
comes and a seeding of a single-elimination tournament, the single-elimination tournament
can be represented as a spanning binomial arborescence in the tournament graph, rooted at
the winner of the tournament.

A spanning binomial arborescence is defined recursively. A binomial arboresence of size
2 is exactly 1 directed edge between two vertices. The root of the tree is the source of the
edge. A binomial arboresence of size n consists of 2 binomial arboresences of size n

2
with

a directed edge between the roots of the two sub-arboresences. This connection is the key
feature of the work in the following chapters.

7.3 The Gibbard-Satterthwaite Theorem and

Tournaments

One of the most celebrated results in social choice theory is Arrow’s Impossibility Theo-
rem [19] which can be summarized as “there is no good voting mechanism”. More precisely,
it assumes axioms that any good voting mechanism must satisfy:

• Non-dictatorship: The social welfare function should not be the function of a single
voter’s preferences.

• Universality: For any set of voter preferences, the social choice function should yield a
single complete ranking of the candidates deterministically.

95

• Independence of Irrelevant Alternatives: The social choice function’s ranking of x and
y should depend solely on the individual voter’s rankings of x and y.

• Monotonicity: If any individual changes their ranking to place x above y, then the
social choice function should not change the outcome to now place y above x.

• Non-imposition: Every possible ranking should be achievable as the result of some set
of input preferences.

Arrow’s Theorem shows that no voting mechanism can satisfy all axioms. While this
result can be taken in a negative light, it also has allowed us to develop a rich theory
containing a diversity of voting mechanisms, each appropriate for a different setting.

An extension of Arrow’s theorem, discovered by Allan Gibbard [61] and Mark Satterth-
waite [128], states that for three or more candidates, it is necessarily true that any voting
mechanism is either:

• The mechanism is dictatorial

• There is some candidate who can never win

• The rule is susceptible to tactical voting or manipulation

By manipulation, the authors mean a situation where one voter can submit a false prefer-
ence profile and the voting mechanism will now generate an outcome that is more preferable
to that user. As a concrete example, consider 3 people, Alice, Bob and Charlie, who are
voting on how to spend an afternoon - watching a movie, going sailing, or going to an art
museum. Alice’s vote is sailing > movie > art museum, Bob prefers movie > art museum >
sailing and Charlie prefers art museum > sailing > movie. If we use a Borda count scheme
where 2 points is awarded for each first preference and 1 for the second, each alternative
receives a total of 3 points. If the mechanisms tie break scheme is to prefer Alice’s vote, then
the outcome is sailing > movie > art museum. If, on the other hand, Bob submits a false
vote of art museum > movie > sailing, then the final scores are sailing - 3 points, movie -
2 points and art museum - 4 points and a final ranking of art museum > sailing > movie.
This is a better outcome for both Bob and Charlie but worse for Alice.

While the above example is somewhat contrived because of the tie-breaking scheme used,
the result of the theorem is that such an example can be constructed for every ‘reasonable’
voting mechanism. In fact, this is exactly the dilemma faced by American voters when
choosing to vote for a third party candidate - it may be the case that by not voting for their
second choice candidate, their third choice wins, as notably happened in the Florida vote
totals for the 2000 Presidential Election. Note that the Gibbard-Satterthwaite Theorem does
not claim that all outcomes can be manipulated, just that there exists situations where the
preferences are such that they can be.

In 1989, Bartholdi, Tovey and Trick [24] introduced the idea of quantifying the difficulty
of manipulation using the framework of computational complexity. While it is always the

96

case that manipulation can exist, if it is the case that even when it does it is computational
intractable for an adversary to compute a manipulation, then maybe a mechanism isn’t really
susceptible. This observation began the entire subarea of computational social choice. To
date, we have a multitude of results of the form “manipulating mechanism x is NP-hard” as
well as algorithms for finding manipulations when they exist in polynomial time.

Manipulation in Tournaments The Gibbard-Satterthwaite Theorem, as stated, only
applies to a single voter changing their vote. In the context of tournaments, this corresponds
to a player choosing to lose a game they otherwise would win. It seems that this would mean
that tournaments are safe from manipulation, provided the only preferences are that each
player prefers they win and doesn’t care who else does, and also that the tournament is
designed so that no player can do better by losing a match. Unfortunately, this is not true
as tournaments allow many other kinds of manipulation.

The first type of manipulation is by a coalition of players. While it may be true that no
single player would prefer to lose a match, for a coalition, the goal is to guarantee that one
of their members wins. To this end, they may be able to strategically select a set of matches
to lose in order to propel their preferred candidate forward.

Another type of manipulation is agenda control. Here, the manipulation is performed
by the tournament organizer. The organizer has the power to select the seeding of the
players and the ordering of the matches. This does not affect the outcome in a round-robin
tournament, but it certainly can for a Swiss-style or knockout tournament where a players
path is heavily influenced by an early win or loss.

A third type of manipulation is destructive manipulation. Previously, we have only
mentioned cases where the goal is to make a candidate a winner. It is also possible to
manipulate in order to prevent a certain player from becoming the winner.

97

Chapter 8

Rigging a Tournament

Two of the most common tournament formats employed in both sports and voting are
round-robin and single-elimination. In the former, every pair of players are matched up, and
a player’s score is how many matches they won. If some player has beaten everyone else, then
they are the clear (Condorcet) winner. Otherwise, the winner is not well-defined. However,
given the outcomes of a round-robin tournament, there are various methods of producing
rankings of the players. The most common definition of the optimal ranking is that it
minimizes the number of wins of a lower-ranked player over a higher-ranked player [133].
Although finding such a ranking for a round-robin tournament is NP-hard [11], sorting
the players according to their number of wins is a good approximation to the optimum
ranking [44].

Single-elimination (SE) tournaments are played as follows. First, a permutation of the
players, called the bracket or schedule is given. According to the bracket, the first two players
are matched up, then the second pair of players etc. The winners of the matches move on to
the next round. The bracket for this round is obtained by pairing up the remaining players
according to the original bracket. If the number of players is a power of 2, the tournament is
balanced. Otherwise, it is unbalanced and some players advance to the next round without
playing a match. In practice, these byes are usually granted in the first round. Although
the winner of an SE tournament is always well-defined, the chance of a particular player
winning the tournament can vary immensely depending on the bracket. Arguably, this gives
the tournament organizer a lot of power. The study of how much control an organizer has
over the outcome of a tournament is called agenda control [25].

The most studied agenda control problem for balanced SE tournaments is to find a
bracket which maximizes the probability that a given player will win the tournament. The
tournament organizer is given the probability that i will beat j for every pair of players i, j.
A major focus is to maximize the winning probability of the strongest player under some
assumptions1 (e.g., [17, 72, 146, 145]). Without assumptions on the probabilities, the agenda
control problem for an arbitrary given player is NP-hard [86, 69], even when the probabilities

1A common assumption is monotonicity: the probability of beating a weaker player is at least as high
as that of beating a stronger one.

98

are in {0, 1, 1/2} [144]. Moreover, the maximum probability that a given player wins cannot
be approximated within any constant factor unless P=NP [144]. When the probabilities are
all either 0 or 1, the agenda control problem, then called the tournament fixing problem
(TFP), is not well understood. One of the interesting open problems in computational social
choice is whether a tournament fixing bracket can be efficiently found. Several variants of
the problem are NP-hard – when some pairs of players cannot be matched [143], when some
players must appear in given rounds [144], or when the most “interesting” tournament is to
be computed [86].

Besides its natural connection to tournament manipulation, TFP studies the relationship
between round-robin and single-elimination tournaments. The decision version of TFP asks,
given the results of a round-robin tournament and a playerA, isA also the winner of some SE
tournament, given the same match outcomes? In the area of voting, suppose all votes are in,
can we simulate a win for a particular candidate, using single-elimination rules (binary cup)?
In this work, we investigate the following question: if we consider a round-robin tournament
and a ranking produced from it by sorting the players according to their number of wins,
how many of the top players can actually win some SE tournament, given the same match
outcomes? What conditions on the round-robin tournament suffice so that one can efficiently
rig the SE tournament outcome for many of the top players?

Prior work has shown several intuitive results. For instance, if A is any player with the
maximum number of wins in a round-robin tournament, then one can efficiently construct
a winning (balanced) SE bracket for A [143]. We extend and strengthen many of the prior
results.
Contributions. Let Π be an ordering of the players in nonincreasing order of their number

of wins in the given round-robin tournament. We consider conditions under which, for large
K, the SE tournament can be fixed efficiently for any of the first K players in Π. We are
interested in natural and not too restrictive conditions under which a constant fraction of
the players can be made to win. If the first player p1 in Π beats everyone else, then p1

wins all SE tournaments. We show that if any player can beat p1, then we can also fix the
tournament for the second player p2. We show that for large enough tournaments, if there
is a matching onto the top K − 1 players {p1, . . . , pK−1} in Π from the rest of the players,
then we can efficiently find a bracket for which pK wins, where K is as large as 19% of the
players.
Graph representation. The outcome of a round-robin tournament has a natural graph

representation as a tournament graph: a directed graph in which for every pair of nodes
a, b, there is an edge either from a to b, or from b to a. The nodes of a tournament graph
represent the players in a round-robin tournament, and an edge (a, b) represents a win of a
over b.
Notation and Definitions. Unless noted otherwise, all graphs in the chapter are tourna-

ment graphs over n vertices, where n is a power of 2, and all SE tournaments are balanced.
In Table 8.2, we define the notation that will be used in the rest of this chapter. For the
definitions, let A ∈ V be any node, let X, Y ⊆ V be such that X ∩ Y = ∅.

Consider a tournament graph G = (V,E). We say that A ∈ V is a king over another

99

Table 8.1: Notation

N out(A) = {v|(A, v) ∈ E}
N out
X (A) = N out(A) ∩X

N in(A) = {v|(v,A) ∈ E}
N in
X (A) = N in(A) ∩X
out(A) = |N out(A)|
outX(A) = |N out

X (A)|
in(A) = |N in(A)|
inX(A) = |N in

X (A)|
Hin(A) = {v|v ∈ N in(A), out(v) > out(A)}
Hout(A) = {v|v ∈ N out(A), out(v) > out(A)}

H(A) = Hin(A) ∪Hout(A)
E(X, Y) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ Y }
M(X, Y) is a maximal matching from X to Y

CM(X, Y) is the canonical matching (Section 8.3.1.1)

Table 8.2: A summary of the notation used in this chapter.

node x ∈ V if either (A, x) ∈ E or there exists y ∈ V such that (A, y), (y, x) ∈ E. A king
in G is a node A which is a king over all x ∈ V \ {A}. We say that set S covers a set T if
for every t ∈ T there is some s ∈ S so that (s, t) ∈ E. Thus N out(A) covers the graph if and
only if A is a king.

If one can efficiently construct a winning SE tournament bracket for a player A, we say
that A is an SE winner. We use the ranking Π formed by sorting the players in nondecreasing
order of their outdegree.

We will construct SE tournaments as a series of matchings where each successive one will
be over the winners of the previous one. A matching is defined as a set of pairs of vertices
where each vertex appears in at most one pair. In our setting, these pairs are directed, so a
matching from X to Y will consist only of edges that are directed from X to Y . If an edge
is directed from x to y, then we refer to x as a source. Further, given a matching M from
the sets X to Y , we will use the notation X \M to refer to the vertices in X that are not
contained in the matching. A perfect matching from X to Y is one where every vertex of
X is matched with a vertex of Y and |X| = |Y |. A perfect matching in a set S is a perfect
matching from some S ′ ⊆ S to S \ S ′.

8.1 Motivation and Counterexamples

We will now discuss the motivation for our assumptions on the graph. We will look at some
necessary and sufficient conditions for the top K players to win an SE tournament. We begin
with an example.

100

p1 p2 pr pr+1

m1 m2 mr

S

W
V \ {W ∪ S}

Figure 8.1: pi only loses to mi

and pj for j < i. No matter how
the other edges of the tournament
graph are placed, since the pi beat
everyone else and the mi lose to ev-
eryone else, all SE tournament win-
ners are in S.

A

a1

a2

a3

b1

b2

k1

k2

Figure 8.2: Example in
which the two highest
outdegree nodes, k1 and
k2, have a matching into
them but A cannot win
an SE tournament.

A

h1 h2 h3 hk

b1 b2 b3 bkc

. . .

. . .

Figure 8.3: Example where
there is a matching from
N out(A) onto the k highest
degree nodes but A can’t
win an SE tournament.

Consider the transitive tournament graph G with nodes v1, . . . , vn, where vi beats all
nodes vj for j > i. Then v1 is the winner of all SE tournaments on G. Now, take any perfect
matching from {v1, . . . , vn/2} to {vn/2+1, . . . , vn} and reverse these edges to create a back-
matching. This gives each node from the weaker half of G a win against some node from the
stronger half. The new outdegree ranking only swaps vn/2 and vn/2+1, however now the top
n/2−1 players are SE winners: each of these nodes still beats at least n/2 other players, and
the back-edges of the matching also make each one also a king. Prior work showed that this
condition is sufficient for these players to be an SE tournament winner [143]. Thus, adding a
back-matching to a transitive tournament can dramatically increase the set of winners. Our
goal is to understand the impact of such back-edge matchings in general tournaments. As
a warm-up, we consider the nodes of second and third highest outdegree. By case analysis,
one can show the following theorems.

Theorem 14. Let G = (V,E) be a tournament graph and let a be the node of second highest
outdegree. Then a single-elimination tournament bracket can be fixed for a if and only if
there is no Condorcet winner in G.

Proof sketch. Let m be the node with the highest outdegree, a the second highest, and x is
a node that beats m. The proof proceeds in 3 cases as demonstrated by Figure 8.4.

The first is that x = a. Here, a is a king that beats all nodes of higher outdegree.
By [143], a can win a single-elimination tournament. The second case is that a beats x.
Here, a is also a king. It can be shown that there exists a perfect matching that includes
(x,m), a is among the sources of the matching and a has a maximal outdegree among the
sources. Again, by [143], a can win a single-elimination tournament. The final case is that x
beats a. Here, we note that since x’s outdegree is no greater than a and beats both m and
a, it must be beaten by two nodes, v1 and v2, that a also beats. In this case, there always
exists a matching such that v1 or v2 is a source, a is a king over the sources, and a beats at
least n/4 of the sources.

101

a a a

x

m

m a′ a′ v1 v2

x m

Nout(a)

Nin(a)

Nout(a) Nout(a)

Nin(a) Nin(a)

Figure 8.4: The three cases for the second strongest player, a where m is the strongest player.

We can generalize this theorem into the following result that for the top 3 nodes in the
graph.

Theorem 15. (Top first, second and third node) Let a be such that |H(a)| = K in a
tournament G = (V,E). Suppose there is a matching from V \ H(a) onto H(a). If K ≤ 1,
then for all n, a can win a single-elimination tournament. If K = 2, then for all n ≥ 16, a
can win a single-elimination tournament.

The proof of this theorem is very similar to that of Theorem 14. The only change is that
for the case of the third largest node, the two largest, m1 and m2 are beaten by some nodes
a1 and a2. Since there is an edge between them (assume a1a2 without loss of generality), a1

must be either in N out(a) or beaten by 3 nodes in that set. Similarly, a2 must be in N out(a)
or beaten by 2 not necessarily distinct nodes. Simple case analysis shows that no matter the
overlap of these extra nodes, there exists a matching that ensures a is a king over a1 and a2

(and all other nodes) in round 2 of the tournament.

Proof. The cases where K = 0 and K = 1 are covered by Theorem 14 so we will focus only
on the case where K = 2, i.e. H(a) = {m1,m2}. If m1 ∈ N out(a), or m2 ∈ N out(a) then the
proof when K = 1 works. Therefore, we will assume that both m1 and m2 are in N in(a).
By the Theorem statement, let the matching be {(x1,m1), (x2,m2)}.

Suppose first that x1, x2 ∈ N out(a). The obvious thing to do is to match x1 to m1 and x2

to m2 and then complete the matching as in the canonical matching. This works provided
out(a) > 2 so that a can be matched to some node that isn’t x1 or x2. This case can be
avoided if n ≥ 8 and in(a) ≥ 5. This guarantees that there are at least 3 nodes other than
m1,m2 in N in(a). The number of edges into those two nodes from {x1, x2} is at least 3 and
so one of x1 or x2 must have outdegree at least 3. 3 would be larger than out(a) which is a
contradiction to x1 and x2 not being m1 or m2.

Now consider the case when x1 ∈ N out(a) and x2 ∈ N in(a). Since x2 is of lower outdegree
than a, x2 must have indegree at least 2 since it beats a and m2. Let z1, z2 ∈ N out(a) both
beat x2. Let M ′ be a maximal matching from N out(a) \ {x1} into N in(a) \ {m1, x2,m2}.
If M ′ ∪ {x1} contains either zi for one of i ∈ {1, 2}, then we can pick any a′ 6= zi, x1 to
match to a. Just as in the canonical matching, if we unmatch a′ from M ′, then the number
of unmatched nodes from N in(a) is even. Therefore, the survivors both lose at most one

102

inneighbor from N out(a) and at least one outneighbor from N in(a). If neither z1 ∈M ′∪{x1},
nor z2 ∈ M ′ ∪ {x1}, then match them to each other. In this case there is a counterexample
on 8 nodes:

• a : x1, z1, z2,

• x1 : m1, x2, y,

• z1 : z2, x2, x1,

• z2 : x1, x2,

• y : z1, a,

• x2 : y,m2, a,

• m1 : y, x2, z1, z2, a,

• m2 : m1, y, x1, z1, z2, a.

In order for a to win in this counterexample, x2 must be matched to some node of N out(a)
but then m2 cannot lose.

Given that n = 8 doesn’t necessarily work, assume n ≥ 16. Now, out(a) ≥ d(n− 3)/2e =
(n − 2)/2 ≥ 7. We can extend M ′ ∪ {(x1,m1), (x2,m2)} just as in the canonical matching
- since the outdegree of a is high enough, there is at least one node to match a′ to. If
out(a) = l + n/2− 1, then

in(a)− 3 = n− 1− 3− (l + n/2− 1) = n/2− l − 3 ≥ 5− l.

If 5 − l ≥ 2, then |M ′| ≥ 1, and the number of nodes remaining after the first round is
at least b((n − 2)/2 − 1 + 2)/2c = n/4. Otherwise, l ≥ 4, and out(a) ≥ n/2 + 3. Then the
number of nodes remaining after the first round is at least b(n/2 + 3 − 1 + 1)/2c ≥ n/4.
Since a is a king it can win the tournament.

The final case is when x1, x2 ∈ N in(a). Without loss of generality, also let x1 beat x2.
Here there is a counterexample for n = 8 as demonstrated in Figure 8.2.

Let n ≥ 16, which implies that out(a) ≥ (n− 2)/2 ≥ (16− 2)/2 = 7. There are at least
3 inneighbors of x1 and at least two inneighbors of x2 in N out(a). We create a maximal
matching M ′ from N out(a) into N in(a) \ {x1, x2,m1,m2}. If for either x1 or x2 none of their
inneighbors are sources of M ′ then there is a matching on their inneighbors in N out(a) so
that the matching sources contain at least one inneighbor for each xi. One can finish the
matching just as in the canonical case. a can be matched since out(a) > 4. a will be a king
in the remaining tournament. It remains to show that it has outdegree at least n/4. Let
out(a) = l + (n− 2)/2 = n/2 + l − 1. Then

|N in(a) \ {x1, x2,m1,m2}| = n− 5− n/2− l + 1 = n/2− 4− l,

103

and
|M ′| ≥ n/4− 2− l/2.

The number of surviving outneighbors of a is

b(n/2 + l − 1− 1 + n/2− 2− l/2)/2c ≥ n/2− 2 ≥ n/4

as desired.

In Figure 8.1 we give an example of a tournament and a subset S consisting of the top
r+1 outdegree nodes such that there is a matching of size r from a subset W = {m1, . . . ,mr}
of V \S into S, but no matching of size r+ 1 from V \S into S. Figure 8.1 only shows some
of the graph edges. The edges within V \ (W ∪S) are arbitrary, all nodes of S beat all nodes
of V \ (W ∪ S), and all nodes of W lose to all nodes of V \ (W ∪ S). We can show that any
node A /∈ S cannot be an SE winner. p1 only loses to m1 and m1 loses to everyone else so
p1 must be matched with m1 in the first round if it is to ever be eliminated. Similarly, for
any i ≤ r, each pi must be matched with mi in the first round. Since all of the nodes that
could possibly beat pr+1 lose in the first round, no one is left to beat pr+1 and A cannot win.
Therefore, the only possible SE winners are contained in S. We have shown that for any r
there exists a graph in which there is no matching onto the top r outdegree nodes and the
(r+ 1)st outdegree node is not an SE winner. From this, we can conclude that the existence
of a perfect matching from V \H(A) into H(A) is, in a sense, necessary, in order for a node
A to be an SE winner.

Now suppose that there is a perfect matching in G from V \ H(A) onto H(A). Can
we conclude that the bracket can be fixed for A? This turns out not to be true. Consider
Figure 8.2. Here H(A) consists only of k1 and k2. These nodes are only beaten by b1 and
b2 respectively, who lose to every other player except A, so bi and ki must be matched in
round 1. The ai are symmetric, so without loss of generality we can match A to a1 in round
1. The two remaining nodes, a2 and a3, must also be matched. After round 1 the nodes that
survive are A, a3, b1, b2. However, A needs to have outdegree at least 2 to survive the next
two rounds. As it only has outdegree 1, A cannot win an SE tournament.

A similar problem can arise when the matching comes from N out(A) instead of N in(A).
Figure 8.3 gives an example of a graph construction for any n ≥ 8 for which the node ranked
n/2 cannot win any SE tournament even though there is a matching onto H(A) = ∪ki=1hi.
Each hi only loses to bi and ∪j>ihj. Each bi only beats ∪j>ibj, except for b1 who also beats c.
The problem arises with who to match A to in the first round so that it can win the match.
By induction, one can argue that every hi for i > 1 must be matched to bi in round 1. A
must be matched to some node in N out(A), but only b1 remains unmatched. This leaves h1

and c who must be matched as well. However, in round 2, all nodes that beat h1 have been
eliminated and it is now a Condorcet winner in the induced subgraph. Therefore, it must
be the winner of any SE tournament.

A common issue in the above counterexamples is that H(A) is too large while out(A) is
too small. Another commonality is that H(A) = Hin(A). Hence a better condition to look
for is a matching from V \ Hin(A) onto Hin(A), and not necessarily onto H(A).

104

Finally, a natural question is, how reasonable is the assumption of the existence of a
matching from lower ranked players to higher ranked players? Consider the Braverman-
Mossel model [32] for generating tournament graphs. In this model, one assumes an un-
derlying ranking v1 · · · vn of the players according to skill. The tournament is generated by
adding an edge (vi, vj) with probability p if j < i and 1 − p if j > i for p < 1

2
. This model

can be viewed as a transitive tournament with each edge reversed with probability p. A
classic result of [53] is that a bipartite graph with n nodes on each side with 2n lnn edges
selected uniformly at random contains a perfect matching with high probability. If a graph
is generated by the Braverman-Mossel model with p > 4 lnn

n
, then we expect there to be

n lnn back edges from vn/2 · · · vn to v1 · · · vn/2−1. Therefore, in almost all such tournaments,
a backedge matching exists.

8.2 Main Results

We are now ready to introduce our main result. As the proof is quite technical, we will first
provide an intuitive sketch, some of the necessary Lemmas, and a more detailed account of
the key part of our proof. All full proofs are included in the Appendix.

We present two main results. The first generalizes the idea of a king, and shows that if
a node A is a king except for some subset and A beats many nodes that beat a king of that
subset, then A is an SE winner.

Lemma 13 (Kings Except for a T subset). Let A be a node in a tournament G and let
T be a subset of N in(A) of size |T | = 2k for some k. Suppose that A is a king in G \ T and
|N out(A)| ≥ |N in(A)|. Let t be a king in T with outdegree in T at least b|T |/2c. Suppose
that |N in(t) ∩N out(A)| ≥ |T |. Then A is an SE winner.

The key observation in proving Lemma 13 is that t can win an SE tournament over just
the subgraph consisting of T in log |T | rounds. At the same time, there are at least |T | nodes
in N out(A) that beat t. In the worst case, these cannot eliminate any other nodes in N in(A)
so they must be matched against each other for log |T | rounds as well. However, given the
size, we are guaranteed that at least 1 will survive to eliminate t. At this point, A will be a
king of high outdegree over the induced subgraph. The technical details of the proof proceed
by induction on the size of T . Lemma 13 is used in the proof of our main theorem below.
We highlight its use in the intuitive sketch.

We now address the main question of this chapter - what can we show when a matching
from V \ Hin(A) to Hin(A) exists?

Theorem 16 (Not a King but Matching into Hin(A)). There exists a constant n0

such that for all n ≥ n0 the following holds. Let G = (V,E) be a tournament graph on n
nodes, A ∈ V . Suppose there is a matching M from V \ Hin(A) onto Hin(A) of size K. If
K ≤ (n− 6)/7, then A is an SE winner.

105

The key restriction in this Theorem concerns the number of higher ranked players who
beat a player, not the actual rank of that player. However, we are able to apply the fact that
a player of rank k has outdegree at least (n − k − 1)/2 to obtain a nice corollary for large
tournament graphs: Any one of the top 19% of the nodes are SE winners, provided there is
a matching onto the nodes of higher outdegree.

Corollary 3. There exists a constant n0 so that for all tournaments G on n > n0 nodes the
following holds. Let A be among the top (6n+7)/31 ≥ .19n highest outdegree nodes. If there
is a matching from V \ Hin(A) onto Hin(A), then A is an SE winner.

8.2.1 Intuition

We now give an intuitive sketch about how one might go about proving Theorem 16. The
overall strategy of our proof is to set up the first round of the SE tournament, so that all of
the high outdegree nodes that beat A are eliminated, and in the remaining tournament, A
is a king over almost the entire graph, so that Lemma 13 can be applied.

At first glance, one might try to build the first round by using the existing matching, M ,
from V \Hin(A) to Hin(A) and then finding some maximal matching M ′ from N out(A) \M
to N in(A) \ M . The matching M ′ will guarantee that as many elements as possible of
N out(A) will survive to compete in the second round. To complete round 1, the potentially
remaining nodes in N out(A) \ (M ∪M ′) should be matched amongst themselves, and the
same for N in(A) \ (M ∪M ′) in a matching called M ′′.
A is initially a king in G over any node with no larger outdegree than it (i.e. V \Hin(A)).

However, if we do not create the matching M ′′ above carefully A may no longer be a king
over the sources of M . Even worse, some source of M may lose all of the nodes that can
potentially beat, and might become a Condorcet winner in the graph induced by the winners
of round 1. This is demonstrated in Figure 8.5. In this example, we would like to fix the
bracket for P2, the second strongest player. P3 can beat P1, but only Pn−1 and Pn beat P3. If
we use any matching of N out(P2) that does not match Pn with Pn−1, P3 will be a Condorcet
winner in round 2, and P2 cannot win.

The failure of this example motivates our approach. We begin our construction of round
1 as before. We use the perfect matching M from V \Hin(A) to Hin(A) and M ′, a maximal
matching M ′ from N out(A) \M to N in(A) \M . At this point, we want to guarantee that
as many of the sources of M as possible are still covered by winners of round 1. We start by
finding the set T of sources of M that are not currently beaten by some source in M ′, or by
A. Because these nodes are all of lower outdegree than A, we can argue that there is some
subset S which is a subset of N out(A) \ (M ∪M ′) that covers T . We use a greedy approach
(Algorithm 8) to match up the nodes of S in round 1 so that the winners of this matching
cover as many nodes of T as possible. We are able to show (in Lemma 14) that the set U of
nodes of T that are not covered by the first round winners from S is very small: it has size
at most O(

√
|T |). This will allow us to show that we can eliminate U in later rounds.

106

P4, . . . , Pn−2

P1
P2

P3
Pn−1

Pn

Nout(P2)

Figure 8.5: An example where an arbitrary
matching of N out(P2) is likely to fail.

S1

S2S3SJ−1
SJ

B1

B2B3
BJ−1

BJ

S ′

B′

Figure 8.6: The construction of the sets Si
and Bi in Theorem 17.

We design the next rounds using Lemma 13. To do this, we use the largest outdegree
node t in T and find a set P , the size of which is a power of 2, that contains both t and U .
The final requirements of Lemma 13 are that A beats at least as many first round winners
outside P as it loses to (which we show using Theorem 17) and that the number of nodes from
N out(A) that beat t and survive round 1 is at least |P |. To fulfill this last requirement, we
add an extra iteration (for q = 1) in Algorithm 8 which constructs the first round matching
of S so that enough nodes that beat t survive round 1.

Summary. We create the first round of the tournament by using M , a maximal matching
M ′ from the remaining nodes of N out(A) to the remaining nodes of N in(A), and a greedily
selected perfect matching M ′′ on S. Many sources of M ′′ beat t, and almost all of T is
covered by the sources of M ′′. This does not fully specify the first round matching. A few
nodes may remain unmatched, specifically N in(A) \ (M ∪M ′), N out(A) \ (M ∪M ′ ∪M ′′)
and A itself. The final details are included in the proof sketch at the end of this section.
The goal of the first round matching is to ensure that the requirements of Lemma 13 are
met and the remaining rounds of the tournament can be completed so that A wins.

8.2.2 Technical details.

With the above overview of the proof technique, we now introduce the necessary lemmas.
As an SE tournament is a series of log n matchings, these lemmas are about the existence of
matchings with desirable properties. The first is a very general result that can be specifically
applied to lower-bound how large a matching can be found from N out(A) to N in(A)\Hin(A).

Theorem 17 (Large Matching). Let h ∈ Z, possibly negative. Let S and B be disjoint
sets such that ∀X ⊂ B, |E(S,X)| ≥

(|X|
2

)
− h|X|. Then there exists a matching between S

and B of size at least |B|−2h−1
2

.

Proof. Recall that M is a maximal matching from a set S to a set B if and only if there are
no augmenting paths from the unmatched elements of S to the unmatched element of B.

107

Algorithm 8 Greedy Matching

1: Input: G = (V,E) a tournament and S, T ⊂ V , t ∈ V ; Output: Matching M
2: Let A1 = N in

S (t), U1 = T , i = 1, L0 = ∅, M = ∅.
3: for q = 1, 2 do
4: while |Ai| ≥ 2 do
5: Let xi, yi ∈ Ai have larger outdegree to Ui than all the other elements in Ai; xi beats

yi.
6: M ←M ∪ {(xi, yi)}
7: Li ← Li−1 ∪ {yi}
8: Ui+1 ← Ui \N out(xi)
9: Ai+1 = ∪v∈Ui+1

N in
Ai

(v) \ Li
10: i← i+ 1
11: Ai = ∪v∈UiN in

S (Ui)

Our proof will proceed by using the large number of edges from S to any subset X of B to
lower-bound the size of the matching.

Let M be a maximal matching from S to B. We refer to the sources of M as S ′ and the
sinks as B′. We iteratively build up a family of sets Sj and Bj that consist of augmenting
paths from the unmatched nodes in B.

Let S1 be the subset of S ′ which contains all nodes with edges to B \ B′. Let B1 be the
nodes matched to S1 by M . Now, we inductively define Sj as the nodes in S ′ \ ∪j−1

i=1Si that
have edges to Bj−1, where Bj−1 are the nodes matched to Sj−1 by M .

This process can be repeated up to some index J + 1 such that there are no more nodes
in S ′ \ ∪Ji=1Si with edges to BJ . Let S̄ = ∪i≤JSi and B̄ = (B \B′) ∪ (∪i≤JBi).

First, note that there are no edges from S \ S ′ to B̄ since M is maximal. If there were,
we would have an augmenting path. Therefore, all edges into B̄ come from S̄. The number
of edges from S̄ into B̄ is at most |B̄||S̄| (the number of edges in a complete bipartite graph)
and at least |B̄|(|B̄| − 1− 2h)/2 by the Theorem statement. Thus, we can conclude that

|M | = |B \ B̄|+ |S̄| ≥

(|B| − |B̄|) +
(|B̄| − 1− 2h)

2
≥ (|B| − 1− 2h)

2
.

Theorem 17 is used in the proof of Theorem 16 to argue about a lower bound on the
size of N out(A) after the first round. An example application of this theorem is to set S to
N out(A) and B to N in(A)\ (M ∪Hin(A)). Here, the conditions of the Theorem are met: we
can show that for every subset X, E(S,X) ≥

(|X|
2

)
+ |X| because every vertex in B beats A

and is of lower outdegree than A.
The other very important part of our proof is Algorithm 8. As mentioned earlier, it is a

greedy way of creating a matching in a set S such that the sources cover many elements in a

108

set T . It iteratively finds the source in S that covers the most uncovered elements of T and
matches it with a vertex that it beats. The first iteration of the loop deals with an element
t that is a king over T . This loop only considers the subset of S that beats t and guarantees
that at least half of the nodes that beat t in S are preserved as sources. At any time in the
algorithm, Ui is the set of the nodes that are currently not covered by the sources of the
matching M , Ai is the set of sources that beat any element in Ui, and Li is the set of nodes
that lose in M and are excluded from Ai.

We want to lower-bound the size of the generated cover. The main idea of the proof
is that we initially have many edges from S to T , and specifically at least

(|X|+1
2

)
to each

X ⊆ T . If we consider the first pair (x1, y1) added to M , then we can say x1 covers k
elements of T . Therefore, we now need to cover only a subset of size |T | − k which has at
least

(|T |−k
2

)
edges into it. However, this may include edges from y1. When we remove y1,

we may lose up to |T | edges. The key observation is that for the pair (x2, y2), y2’s outdegree
is upper-bounded by x1 so we are able to bound the number of edges lost by the matching
as the number of vertices currently covered plus |T |. We then show that there will always
be enough edges and sources to increase the size of the matching until at most 2

√
|T | + 1

nodes remain uncovered.

Lemma 14. Let G = (V,E) be a tournament graph. Let S ⊆ V and T ⊆ V be disjoint sets
such that for all X ⊆ T , the number of edges from S to X is at least

(|X|+1
2

)
. Let t ∈ V be

given. Algorithm 8 generates a matching, M , in S such that at least |T | − 1− 2
√
|T | nodes

in T are beaten by at least one source in M and at least (inS(t) − 2)/2 of the sources also
beat t.

Proof. We need to define some additional concepts for the proof. The first is the set of
covered nodes at iteration i, Ci, where C1 = ∅. Ci is exactly T \ Ui (so |T | = |Ci| + |Ui|).
Let di = |Ci+1| − |Ci| be the number of new nodes covered by iteration i. Our goal is to
lower-bound the size of |Ci| when the algorithm quits.

Consider the first execution of the WHILE loop. Let i0 be the iteration at which the
loop exits. This loop greedily covered T but only used vertices that also beat t. We will
lower-bound the number of edges that remain from all unmatched sources in S (the set
Ai0) to Ui0 . At this point, |Ci0| =

∑i0
j=1 dj. The number of edges from Li0 to Ui0 is at most

|T |−|Ci0|+
∑i0−1

j=1 dj ≤ |T | since we picked the nodes so that outUi(yi) ≤ outUi−1
(xi−1) = di−1,

and outUi0 (y1) ≤ |Ui0|. Thus we can obtain a lower bound on the number of edges between

Ai0 and Ui0 : |E(Ai0 , Ui0)| ≥
(|Ui0 |+1

2

)
− |T |.

Let j > i0 be any round in the second WHILE loop. As above, |Cj| = |Ci0|+
∑j

k=i0+1 dk
and the number of edges from Lj to Uj is at most

|Uj|+ |T |+
j−1∑

k=i0+1

dk = 2|T | − |Cj|+ |Cj| − |Ci0| ≤ 2|T |.

109

We can lower-bound the number of usable edges from Aj to Uj as

|E(Aj, Uj)| ≥
(|Uj|+ 1

2

)
− 2|T | ≥

(|T |2 + |Cj|2 − (2|T |+ 1)|Cj| − 3|T |)/2.
The second WHILE loop exits when |Aj| ≤ 1. Therefore, when the algorithm finishes,
|Aj| ≤ 1 and |E(Aj, Uj)| ≤ |Uj| = |T | − |Cj|. We have:

(|T |2 + |Cj|2 − (2|T |+ 1)|Cj| − 3|T |)/2 ≤ |T | − |Cj|,

This can be simplified as follows.

|Cj|2 − (2|T | − 1)|Cj| − 5|T |+ |T |2 ≤ 0.

|Cj| ≥ |T | − 1/2−
√
|T |2 − |T |+ 1/4 + 5|T | − |T |2 =

|T | − 1/2−
√

4|T |+ 1/4 ≥ |T | − 1− 2
√
|T |.

That is, the number of covered nodes is at least |T | − 1 − 2
√
|T |. After round i0 we have

at least i0 sources in M covering t and at least inS(t) − 2i0 − 1 nodes of N in
S (t) that were

not used in creating the rest of the matching because they did not cover any element of Ui0 .
Match these among themselves to obtain at least i0 + b(inS(t)− 1− 2i0)/2c ≥ (inS(t)− 2)/2
sources of the matching that are inneighbors of t. Complete the matching M from S to S
by matching the rest of the nodes of S arbitrarily.

The bounds on the greedy matching algorithm are only positive if |T | > 5. We don’t
want our bounds in Theorem 16 to depend on the size of the matching into Hin(A). We
now present a sketch of the proof that ignores this difficulty. The full proof contained in
the Appendix fixes this problem through the introduction of a technical Lemma, Lemma 18.
This lemma allows one to artificially boost the size of T to guarantee that the above process
will always work. Additionally, this proof sketch assumes that that the indegree of node
A coming from the sources of M is large enough. This assumption is also lifted in the
Appendix.

Proof sketch of Theorem 16: This proof proceeds by constructing the first round matching
in stages. First, we will use M , the matching given by the theorem statement, and construct
M ′, a maximal matching. Next, we show how to match A and construct the covering of the
sources of M using Algorithm 8. Finally, we argue that the constructed first round matching
satisfies the requirements of Lemma 13.

For simplicity, let A = N out(A) and B = N in(A). We divide the sources of M onto
Hin(A) into two sets, AT and BT , where AT are the sources of M in A while BT are the
sources in B. We can also divide Hin(A) into two sets, H1 and H2, where H1 are the nodes
matched to AT and H2 are matched to BT by M . In order to later argue about the size of

110

matchings, let |AT | = |H1| = h and |BT | = |H2| = k. This means that K, the size of M is
exactly k + h.

Let Brest = B \ (BT ∪Hin(A)) be the nodes who beat A and are not part of M . Take M ′

to be any maximal matching from A \ AT to Brest. We want to argue about the size of M ′

by using Theorem 17. First, note that |Brest| = |B| − k −K. Now, since we removed AT , of
size h, we can only say that every node b in Brest has at least outB(b) + 1 − h inneighbors
from A \ AT . Therefore, by Theorem 17,

|M ′| ≥ (|B| −K − k − 2h+ 2− 1)/2 = (|B| − 2K − h+ 1)/2.

We will use this fact later when arguing about the outdegree of A after the first round.
Finally, note that Brest consists only of lower ranked nodes than A, so every node in Brest

has some source of M ′ or AT as an inneighbor.
(Matching A to some node.) Consider the currently unmatched portion of A. Call

this Arest = A \ (AT ∪M ′). If there is some a′ ∈ Arest, then match A to a′. If Arest is empty,
then we can argue that |M ′| > 1 since

|A \ AT | = |A| − h ≥ (n−K)/3− h ≥ (n− 4K)/3 > 1.

Since M ′ > 1, we can dislodge any edge (a′, b′) from M ′ and match A to a′. After removing
a′, the lower bound for |M ′| goes down by 1: |M ′| ≥ (|B| − 2K − h− 1)/2.

(Creating a matching of Arest \ {a′}).) We now use Algorithm 8 to cover BT . Let
S = Arest\{a′} and T be the subset of BT consisting of the nodes that do not have inneighbors
among the sources of M ′ and AT . For simplicity in this proof we assume that |T | and hence
|BT | is large enough.

Every subset X of the nodes of T has at least
(|X|

2

)
+2|X|− |X| =

(|X|
2

)
+ |X| inneighbors

in S since each node in X can have lost at most one inneighbor, a′. Let t ∈ BT be the node
with highest outdegree in BT . Run Algorithm 8 on S, T, t. This outputs a matching M ′′

on the nodes of S that covers all of T except for a subset, U , of size at most 1 + 2
√
|T |.

There are also at least inS(t)/2−1 sources of M ′′ that beat t. This completes the first round
matching. Let G′ be the graph induced by the surviving nodes.

(Handling U .) We will construct P , a subset of T , such that P contains U , and t is a
king over P who beats at least half of P .

We selected t so that it is a king in T . Therefore, there is a subset of at most |U | nodes
in its outneighborhood in T that cover U . We can add these nodes together with enough
other nodes of N out

T (t) to P so that |P | is a power of 2 and t is a king in P that beats at
least half of P . This is possible since U is very small compared to T .

We can assume that the size of P is 2c where 2c is the closest power of 2 greater than
3+4

√
|T |, as we may need as many as |U | ≤ 1+2

√
|T | extra nodes added to P to guarantee

that t is a king over P . We can further conclude that |P | ≤ 5 + 8
√
|T | since we can at most

double 3 + 4
√
|T | to make |P | be a power of 2.

From Algorithm 8 we know that at least

inS(t)/2− 1 ≥ (|BT | − 1)/4− 1

111

inneighbors of t from S are in G′. Since we assumed that BT is large enough, we have

(|BT | − 1)/4− 1 ≥ 5 + 8
√
|T |.

Hence there exists a subset of the surviving nodes of N in
S (t) of size at least |P |. The

requirements of Lemma 13 are satisfied if outG′(A) ≥ inG′(A). We prove this below and
thus show that A is an SE winner.

(Showing that outG′(A) ≥ inG′(A).) The number of nodes of N out(A) that survive the
first round is at least

b(|A|+ |M ′|+ |AT | − 1)/2c.
The number of nodes of N in(A) that survive is at most d(|B| − |AT | − |M ′|)/2e. It suffices
to show that

|A|+ |M ′|+ |AT | − 1 ≥ |B| − |AT | − |M ′|.
Recall that |M ′| ≥ (|B| − 2K − h − 1)/2 so we must only show that |A| + |B| − 2K − h +
2h− 2 ≥ |B|, or that |A| − 2K + h− 2 ≥ 0. Since |A| ≥ (n−K)/3 it suffices to show that
(n−K) ≥ 6K + 6, or that K ≤ (n− 6)/7, which is true by assumption.

8.3 The Full Proof

8.3.1 Additional Tools

For the full proofs of the main results, we rely on a few constructions and facts that were not
mentioned in the main part of the chapter. The first of these is the canonical matching. This
is a generic matching construction that maximizes the surviving sources while minimizing
the surviving sinks.

8.3.1.1 Canonical matching.

Let G be a tournament graph and let A,B ⊂ V such that |A| + |B| is even. A canonical
matching, CM(A,B) is formed as follows: create a maximal matching M ′ from A to B.
Match all of the nodes in A that are not in M ′ against each other, and all of the unmatched
nodes in B against each other. If |M ′| is odd, then match the leftover node in A with the
leftover node in B.

We now describe a canonical matching for a given king node A. Let G be a tournament
graph over an even number of nodes and A be a king in G with out(A) ≥ in(A). In the
following construction CM(A) we include A by modifying CM(N out(A), N in(A)). Since
out(A) ≥ in(A) and n is even, out(A) and in(A) have different parity, and out(A) ≥
1 + in(A). Thus |N out(A) \M ′| ≥ 1 and we can pick any node a′ ∈ N out(A) \M ′ to match
with A. Match the nodes of N out(A) \M ′ \ {a′} amongst themselves. At most one node a′′

is left over. Match the nodes of N in(A) \M ′ amongst themselves. At most one node b′′ is
left over, and it is left over iff a′′ is. Match a′′ and b′′, completing CM(A). The proof of the
following lemma follows from the maximality of M ′.

112

Lemma 15. Let A be a king such that out(A) ≥ in(A). Let G′ be the subtournament graph
over the sources of CM(A). Then

• A is a king in G′,

• outG′(A) = b(out(A) + |M ′| − 1)/2c,
• inG′(A) = b(in(A)− |M ′|+ 1)/2c,
• outG′(A) ≥ inG′(A).

Proof. 1) follows since M ′ was maximal, and so any node in N in(a) that is not in M ′

must have some source of M ′ as an inneighbor. 2) follows since |M ′| of the nodes in N out(a)
survive the matching M ′, one node is removed, and the rest are matched amongst themselves,
possibly one losing to a node of N in(a). Hence, outG′(a) = |M ′|+ b(out(a)− 1− |M ′|)/2c =
b(out(a)− 1 + |M ′|)/2.

3) follows since |M ′| nodes of N in(a) are eliminated by M ′, and the rest are matched
amongst themselves, possibly one beating a node of N out(a). Hence

inG′(a) = d(in(a)− |M ′|)/2e = b(in(a)− |M ′|+ 1)/2c.
4) If |M ′| ≥ 1, inG′(a) ≤ bin(a)/2c ≤ outG′(a). Otherwise, since a was a king and M ′

was maximal, N in(a) = ∅. Then outG′(a) ≥ 0 = inG′(a).

8.3.1.2 Bounds on out(A).

We often need to argue about the size of a given set, given some constraints on the number
of higher degree nodes that exist, or that a player beats. The following are useful facts of
this type.

Fact 1. For any tournament graph of size k, there exists a vertex with outdegree at least
bk

2
c.

This follows directly from the fact that a tournament of size k has
(
k
2

)
edges.

Lemma 16. Let A be a node in a tournament graph G = (V,E) with |H(A)| = k. Then

out(A) ≥ b (n−k)
2
c.

Proof. Let |Hout(a)| = k1, |Hin(a)| = k2 = k−k1, and out(a) = d. Let R = V \{a}\H. Then
|R∩N in(a)| = n−d−k2−1 and |R| = n−k−1. Since for every b ∈ R, out(b) ≤ out(a) = d,
d is at least the average of the outdegrees of R ∪ {a} in G. The sum of these outdegrees is

d+
(
n−k−1

2

)
+ (n− d− k2 − 1) + outH(R)

≥ (n− k − 1)(n− k − 2)/2 + (n− k)− 1

= (n− k)(1 + (n− k − 1)/2− 1) + 1− 1

= (n− k)(n− k − 1)/2

113

Since |R ∪ {a}| = n− k and d is integral, d ≥ b(n− k)/2c.

Lemma 17. Let A be a node in a tournament graph such that |Hin(A)| = k. Then out(A) ≥
(n− k)/3.

Proof. Let A = N out(a) and B = N in(a). The number of edges from A to B \ Hin(a) is
at most |A|(|B| − k) and least

(|B|−k
2

)
+ |B| − k = (|B| − k)(|B| − k + 1)/2 since for every

b ∈ B \ Hin(a), 1 + outB(b) ≤ inA(b). Hence,

|A| ≥ (|B| − k + 1)/2 = (n− 1− |A| − k + 1)/2 =⇒ |A| ≥ (n− k)/3.

Fact 2. Let x and y be nodes in a tournament graph such that out(x) ≥ out(y). Then the
distance between x and y is at most 2. If A is a node such that for all x 6= A, out(A) ≥
out(x), then A is a king.

8.3.1.3 Boosting set sizes

Our final additional tool is the technical lemma mentioned before the proof sketch of Theo-
rem 16. Its application relies heavily on the greedy matching algorithm, Algorithm 8.

The bounds on the greedy matching algorithm given by Lemma 14 are only positive if
|T | > 5. However, the way we will apply Lemma 14 in Theorem 16 will require that T be
significantly larger than 5. We don’t want our bounds in Theorem 16 to depend on the size
of the matching into Hin(A), so we present the next lemma as a way of artificially boosting
the size of T in order to guarantee that the above process will always work.

The intuition for the following technical lemma is that it is a method of picking a subset
of nodes in N out(A), T , so that the requisite edges for the previous algorithm have no needed
sources in T , and that ∀X ⊂ T , |E(N out(A) \ T,X)| ≥

(|X|
2

)
+ 2|X|.

Lemma 18. Let C be a given constant. Let S and T be disjoint node sets of a tournament
graph such that for every t ∈ T , inS(t) ≥ outT (t) + 2, and |T | < C. Let M ⊆ S such that
|S\M | ≥ (5C2+17C+4)/2. Then there exists a subset Z ⊂ S\M such that |Z| = 2(C−|T |)
and ∀Q ⊆ (Z ∪ T), |E(S \ Z,Q)| ≥

(|Q|
2

)
+ 2|Q|.

Proof. Form a subset Y ⊂ S by including for every t ∈ T exactly outT (t)+2 of its inneighbors
from S. We can lower bound the size of Y as |Y | ≤

(|T |
2

)
+ 2|T | ≤ C(C + 3)/2. These are

the sources needed to apply Lemma 14 to the set T . Let R = S \ (M ∪ Y). Hence

|R| ≥ (5C2 + 17C + 4)/2− C(C + 3)/2 = 2C2 + 7C + 2.

Now we can create the set Z. While |Z| < 2(C − |T |): pick z ∈ R of largest indegree
and add z to Z while removing it from R. Additionally, remove from R exactly C + 2 of the
inneighbors of z.

114

We now want to bound the number of edges removed from R. Notice that

|R| − (2C − 2|T | − 1)(C + 3) ≥ 2C2 + 7C + 2 + 2|T |(C + 3)− (2C2 + 5C − 3) ≥ 1 + 2(C + 2).

Since we have removed at most (2C − 2|T | − 1)(C + 3) nodes from R, at each step the
indegree of z is at least (|R| − (2C − 2|T | − 1)(C + 3)− 1)/2 ≥ C + 2 by Fact 1.

Now consider T ∪ Z. We will prove that ∀Q ⊆ T ∪ Z, |E(S \ Z,Q)| ≥
(|Q|

2

)
+ 2|Q|

by induction on the number p of elements of Z contained in the subset Q ⊆ T ∪ Z. The
statement is clearly true when p = 0. Suppose it is true for all subsets with at most p − 1
elements of Z. Consider a subset Q with p elements of Z and let z ∈ Q ∩ Z. Then we
know by the induction hypothesis that |E(S \ Z,Q \ {z})| ≥

(|Q\{z}|
2

)
+ 2|Q \ {z}|. Since

inS\Z(z) ≥ C + 2 ≥ |Q|+ 2, we can conclude that

|E(S \ Z,Q)| ≥
(|Q| − 1

2

)
+ 2(|Q| − 1) + |Q|+ 2 =

(|Q|
2

)
+ 2|Q|.

8.3.2 Full Proofs of Main Results

Reminder of Lemma 13 [Kings Except for a T subset] Let A be a node in a
tournament G and let T be a subset of N in(A) of size |T | = 2k for some k. Suppose that A
is a king in G \ T and |N out(A)| ≥ |N in(A)|. Let t be a king in T with outdegree in T at
least b|T |/2c. Suppose that |N in(t) ∩N out(A)| ≥ |T |. Then A is an SE winner.

Proof of Lemma 13: This proof will proceed by induction on the size of T . As such, we
establish the base case when |T | = 1. Here, T = {t} and A is actually a king in G with
outdegree at least half the graph. By [143] A can win a single-elimination tournament.

Now consider when |T | > 1. Our induction proceeds by assuming that A can win if
|T | < p for some p, provided that |N out(A)| ≥ |N in(A)|, t is a king of outdegree at least
|T |/2 in T , |T | is a power of 2 and |N in(t) ∩ N out(A)| ≥ |T |. Now given a graph with
|T | = p, we will give a perfect matching MG of the graph such that the following is true of
the tournament G′ induced by the sources of MG:

1. if Tr are the surviving nodes of T , then t ∈ Tr and t is a king in Tr of outdegree at
least |Tr|/2 and |Tr| = |T |/2 is a power of 2,

2. if Ar are the surviving nodes of N out(A), then inAr(t) ≥ |Tr|,

3. A is a king in G′ \ Tr, and

4. if Br are the surviving nodes of N in(A), then |Ar| ≥ |Br|.

In order to create the necessary matching MG, first create a canonical matching CM(t) for
t in T . Let Tr be the sources of CM(t). Then by Lemma 15, Condition 1 follows.

115

Now, let S be a subset of N in
Nout(A)(t) of size |T |. CreateM(N out(A), N in(A) \ T). Since

|N out(A) \S| ≥ 1 + |N in(A) \T |, there exists an unmatched node a′ in N out(A) \S. We can
match A to a′.

Next, match any unmatched nodes of S, N out(A) \ (M ′ ∪ S) or N in(A) amongst their
respective sets. Call this matching M ′′. The number of nodes of S that survive is at least
b(|S| + |M ′′ ∩ S|)/2c ≥ |S|/2 = |Tr|. This satisfies Condition 2. Since M ′′ was maximal,
all nodes of N in(A) \ Tr have surviving inneighbors in Ar. This shows that A is a king in
G′ \ Tr, or Condition 3.

It remains to show that |Ar| ≥ |Br|. We know that

|Ar| ≥ b(|N out(A)|+ |M ′′| − 1)/2c
and that

|Br| ≤ d(|N in(A)| − |T | − |M ′′|)/2e+ |T |/2 = b(|N in(A)|+ 1− |M ′′|)/2c.
Now, since |N out(A)| ≥ |N in(A)| by the induction hypothesis

|Ar| ≥ b(|N in(A)|+ |M ′′| − 1)/2c.
If |M ′′| ≥ 1, we immediately get |Ar| ≥ |Br|. If M ′′ = ∅, then N in(A) = T . But then both
|N in(A)| and |N out(A) \ {a′}| are even. Furthermore, |N out(A) \ {a′}| ≥ |T | = |N in(A)|.
Hence, |Ar| = |N out(A) \ {a′}|/2 ≥ |N in(A)|/2 = |Br|. This proves Condition 4 and con-
cludes the proof of the lemma.

Reminder of Theorem 16 [Not a King but Matching into Hin(A)] There exists a
constant n0 such that for all n ≥ n0 the following holds. Let G = (V,E) be a tournament
graph on n nodes, A ∈ V . Suppose there is a matching M from V \ Hin(A) onto Hin(A) of
size K. If K ≤ (n− 6)/7, then A is an SE winner.

Proof of Theorem 16: This proof fleshes out the details that were ignored by the proof
sketch given previously in the chapter but follows the same structure. It will be useful to
refer to Figures 8.7 and 8.8 as we proceed through the construction.

For simplicity, let A = N out(A) and B = N in(A). We divide the sources of M onto
Hin(A) into two sets, M1 and M2, where M1 are the sources of M in A while M2 are the
sources in B. We can also divide Hin(A) into two sets, H1 and H2, where H1 are the nodes
matched to M1 and H2 are matched to M2 by M . In order to later argue about the size of
matchings, let |M1| = |H1| = h and |M2| = |H2| = k. This means that K, the size of M
is exactly k + h. Further, let n0 = 106 although we suspect the theorem is true for much
smaller n0 with more careful analysis. Let C be the constant 529 and c = max{C − k, 0}.

Let M̃ be an arbitrary matching of B \ (M2 ∪H) of size min{c, b|B \ (M2 ∪H)|/2c}. We
will call the set of sources of M2 and M̃ BT . Let Brest = B \ (BT ∪H). Because BT does not
contain any nodes ranked higher than A, for every b ∈ BT we have that outBT + 2 ≤ inA(b).
For our proof we will require that |BT | ≥ C. If |BT | < C, then we will show how to use
nodes from A to artificially boost the size of BT , while still preserving the properties we
need.

116

BrestM̃

H1

H2

M2

M1

M ′

A′
A

BT

B

a

Figure 8.7: Situation in Theorem 16 when Z =
∅.

brest
M̃

H1

H2

M2

M1

M ′

A′
A

BT

B

a

Z

Z1 Z2

Figure 8.8: Situation in Theorem 16 when Z 6=
∅.

(Boosting |BT | when |BT | < C.) If |BT | < C, then M̃ was maximal and |Brest| ≤ 1. We
now show that we can apply Lemma 18.

If Brest = {brest} and some inneighbor arest of brest is in A \M1, then note that

|A \ (M1 ∪ {arest})| ≥
(n− 1)− 2|M1| − 2|BT | − 2 ≥

n− 3− 2h− 2k − 2C ≥
(5C2 + 17C + 4)/2

since n ≥ 106 ≥ 7(10 + 21C + 5C2)/10 and K < n/7. Therefore,

n− 2h− 2k = n− 2K > 5n/7 ≥
(5/7) · 7(10 + 21C + 5C2)/10 =

(5C2 + 17C + 4)/2 + 2C + 3

This satisfies the conditions so that we can apply Lemma 18 to the sets A, (A∩M1)∪{arest},
and BT with the value C. This will give us a set Z ⊂ A \ (M1 ∪ {arest}) of size 2(C − |BT |)
in Z. Let Z1 → Z2 be a (perfect) matching of size C − |BT | in Z. Add Z to B and Z1

to BT . Now we can assume |BT | ≥ C and that for every subset Q ⊆ BT there are at least(|Q|
2

)
+ 2|Q| inedges of Q from A \ Z.

Let Ã = A \ Z, B̃ = (B \ H) ∪ Z ∪M2 and Brest = B \ (M̃ ∪M2 ∪ H). Since we are
defining many sets, refer to Figures 8.7 and 8.8 for clarity. The figures cover the cases where
Z = ∅ and Z 6= ∅ separately.

(Covering some of Brest.) Let M ′ be a maximal matching from Ã \M1 to Brest. There
are several cases for this construction.

• If Z 6= ∅, M ′ is either empty, or only consists of (arest, brest). If k ≥ C, then |M̃ | = 0,
|Brest| = |B| − k −K. Furthermore, since every node b in B \ (H ∪M2) has at least

117

outB(b) + 1− h = outB(b)− (h− 1) inneighbors from A \M1, by Theorem 17 we have
that

|M ′| ≥ (|B| −K − k − 2h+ 2− 1)/2

= (|B| − 2K − h+ 1)/2.

• If Z = ∅ and k < C, then 2(C − k) nodes of B \ H \M2 are matched to each other,
and so by Theorem 17

|M ′| ≥ (|B| − 2C + 2k −K − k − 2h+ 2− 1)/2

= (|B| − 2C − 3h+ 1)/2.

Every node in Brest has some source of M ′ or M1 as an inneighbor.

(Matching A to some node.) Consider A′ = Ã \ (M1 ∪M ′).

• If Z 6= ∅, then

|A′| ≥ n− 1− |B| − |A ∩M1| − 1− |Z|
≥ n− 2− 2h− 2C

≥ n− 2− 2(n− 6)/7− 2C

= (5n− 2− 14C)/7 > 1

Hence when Z 6= ∅, there is some a′ ∈ Ã \ (M1 ∪M ′) that we can match A to.

• If Z = ∅. Then

|Ã \M1| =

|A| − h ≥
(n−K)/3− h ≥

(n− 4K)/3 > 1

If there is some a′ ∈ A′, then match A to a′. Otherwise, |M ′| ≥ 1. Dislodge some
edge (a′, b′) from M ′. Since out(A) and in(A) have different parities and A′ = ∅, the
number of leftover unmatched elements of B after we add b′ to them is even. Hence
any matching we use to complete the first round of the tournament would be perfect
on them. Even after removing a′ from M ′ any surviving element b from the leftover B
elements will have at least outB(b) ≥ 1 surviving inneighbors. The lower bounds we
had computed for |M ′| go down by 1:

– when k < C and Z = ∅, |M ′| ≥ (|B| − 2C − 3h− 1)/2

– when k ≥ C, |M ′| ≥ (|B| − 2K − h− 1)/2 when k ≥ C

118

Now let S = A′ \ {a′} and let T be the subset of BT consisting of the nodes that do not
have inneighbors among the sources of M ′ and M1. Every subset Q of the nodes of T has
at least

(|Q|
2

)
+ 2|Q| − |Q| =

(|Q|
2

)
+ |Q| inneighbors in S since each node in Q can have lost

at most one inneighbor, a′.

(Handling T ′ and completing round 1.) Let t ∈ BT be the node with highest outdegree
in BT . Running Algorithm 8 on S, T, t produces a matching M ′′ on the nodes of S so that
almost all nodes of T are covered by sources S ′ of M ′′ except for a subset T ′ ⊂ T with
|T ′| ≤ 1 + 2

√
|T |. Further, there are at least inS(t)/2− 1 ≥ (|BT | − 1)/4− 1 sources of M ′′

that beat t. The addition of M ′′ to the rest of our construction completes the first round
matching. Call the graph induced by the surviving nodes G′.

Let P be the closest power of 2 greater than 3 + 4
√
|T |. Then P ≤ 5 + 8

√
|T |. Suppose

that |BT | ≥ 5 + 8
√
|T |. This is true whenever |BT | ≥ 81, and since |BT | ≥ C = 529 > 81

the assumption is true. There exists a subtournament Tt of BT such that T ′ ∪ {t} ∈ Tt and
t is a king in Tt of outdegree at least |Tt|/2 and |Tt| = P , a power of 2.

If t ∈ N out(A), then we will not need its surviving inneighbors from S. In the following we
handle the more complicated case when t ∈ N in(A), and so at least inS(t)/2−1 inneighbors
of t from S are in G′. We need that (|BT | − 1)/4 − 1 ≥ 5 + 8

√
|T |. This is true when

|BT | ≥ 529 = C. Then there exists a subset of the surviving nodes of N in
S (t) of size at

least P = |Tt|. Now we can apply Lemma 13 to show that A can win a single-elimination
tournament, provided that outG′(A) ≥ inG′(A).

(Showing outG′(A) ≥ inG′(A).) Recall that |M ′| ≥ (|B| − 2C − 3h − 1)/2 when k < C
but Z = ∅ and |M ′| ≥ (|B| − 2K − h− 1)/2 when k ≥ C. We have three cases.

1. k ≥ C, and so Z = ∅.
Here, the number of nodes of N out(a) that survive is at least b(|A|+|M ′|+|M1|−1)/2c.
Meanwhile, the number of nodes of N in(A) that survive is at most d(|B| − |M1| −
|M ′|)/2e. It suffices to show that

|A|+ |M ′|+ |M1| − 1 ≥ |B| − |M1| − |M ′|.

This happens when |A| + 2|M ′| + 2h − 1 ≥ |B|. By the assumptions of this case
|M ′| ≥ (|B| − 2K − h− 1)/2, so we must show that

|A|+ |B| − 2K − h+ 2h− 2 ≥ |B|,

or that
|A| − 2K + h− 2 ≥ 0.

By Lemma 17, we know that |A| ≥ (n−K)/3 so we just need that (n−K) ≥ 6K + 6.
This simplifies exactly to the assumption of the main theorem that K ≤ (n− 6)/7.

119

2. k < C and Z = ∅.
In this situation, it still suffices to show that |A| + 2|M ′| + 2h − 1 ≥ |B|. However,
now |M ′| ≥ (|B| − 2C − 3h − 1)/2. Combining these, we find we only need that
|A|−2C−3h+2h−2 ≥ 0, or equivalently that n−6C−6 ≥ K+3h. Simplifying this,
we only need that K ≤ (n− 6C− 6)/4, which is true since (n− 6C− 6)/4 > (n− 6)/7.

3. Z 6= ∅.
If Z 6= ∅ then |B| < h + 2C, and at most C nodes of B ∪ Z survive. The number of
nodes of A \ Z that survive is at least

b(|A| − |Z|+ h+ |M ′| − 1)/2c ≥
(|A| − C − 2 +K − C)/2 =

(|A|+K)/2− C − 1.

We need only that (|A|+K)− 2C − 2 ≥ 2C. After applying Lemma 17, this becomes
that (n −K)/3 + K ≥ 4C + 2, and n + 2K ≥ 12C + 6. It is true that n ≥ 12C + 6
since n0 > 12C + 6.

This covers all of the cases and concludes the proof. We have given the construction for
a matching M ∪ M̃ ∪M ′ ∪M ′′ such that the conditions for Lemma 13 apply to the node A
in the subtournament induced over the sources of our matching.

We can state this result in terms of the size of H(A) instead of Hin(A) by applying
Lemma 16 to lower bound the size of the initial set A.

Corollary 4. There exists a constant n0 so that for all tournaments G on n > n0 nodes the
following holds. Let A be among the top (6n+7)/31 ≥ .19n highest outdegree nodes. If there
is a matching from V \ Hin(A) onto Hin(A), then A is an SE winner.

120

Chapter 9

Double-Elimination Tournaments

9.1 Introduction

Voting mechanisms have been studied mathematically for over two hundred years. A com-
bination of impossibility results, including Condorcet’s paradox, Arrow’s Impossibility The-
orem [19] and the Gibbard-Satterthwaite Theorem [61, 128] have shown that there is no one
best voting mechanism for all situations and goals. This has led to the creation of large num-
ber of election protocols, including k-approval, Borda, Buckland, Copeland, Slater, instant
run-off, single-tranferable vote, binary cup, and many many more. The recent interaction
between economics and computer science has led to more computationally focused questions.
Some examples are the following. Can the winner of the protocol be calculated efficiently?
Some protocols require solving NP-complete problems, so efficiency there is unlikely. Can
a manipulation of the protocol be found efficiently? The Gibbard-Satterthwaite theorem
states that all non-trivial voting mechanisms are manipulable, but if it is hard to find the
manipulation, then these mechanisms are perhaps not manipulable in practice.

Any tournament structure can be used as an election protocol if the match outcomes
between each pair of candidates are generated by taking the majority vote. Sports compe-
titions are a special kind of voting mechanism where the votes are generated exogenously,
perhaps by skill differentials between the candidates. In the United States alone, professional
and amateur sports competitions form a multi-billion dollar industry. Their popularity and
ubiquity makes the study of their properties particularly interesting.

While all voting mechanisms share a set of common goals - they should be ‘fair’ and
select the best preferred or strongest candidate, sports tournaments have a few additional
constraints. In particular, each ‘vote’ actually consists of a match. These matches require
some amount of time and have limited parallelizability due to either space limits or depen-
dence on the results of previous rounds. Another constraint is that these match outcomes
are noisy. One traditional solution is to turn a single match into a ‘best-of-k’-series, as in
the Major League Baseball World Series. However, repeating games to reduce noise directly
conflicts with the time constraint. Finally, we require that the mechanisms be equally fair

121

to all players.
Clearly, the time constraint and robustness constraint cannot be simultaneously satis-

fied, leading to a trade-off between the two. At one end of the spectrum is the round-robin
tournament where every player faces every other player. Braverman and Mossel [32] have
shown that a good ranking can be recovered from the results, but at the expense of spending
time that is quadratic in the number of players. At the other end of the spectrum, single-
elimination tournaments (SETs) eliminate any player after a single loss, requiring only a
linear number of games, but are highly susceptible to noisy outcomes. Stanton and Vas-
silevska Williams [137] have shown how to exploit this noise so that almost any player can
be made to win an SET.

Double-elimination tournaments (DETs) occupy a natural middle ground between these
two options. DETs consist of two SETs, the winner bracket and loser bracket, where players
who lose in the winner bracket are mapped to the loser bracket. When players lose in the
loser bracket, they are permanently eliminated. The winner of the tournament is the player
who wins the matchup between the winners of the two brackets. DETs still require only a
linear number of matches, but the second chance given to each player naturally reduces the
noise in the outcome.

DETs are widely used in the real world, albeit unevenly. Their most prominent use in
the United States is as the format for many baseball and softball tournaments, including
by the National Collegiate Athletic Association (NCAA), as well as in numerous amateur
competitions and Olympic sports such as Judo. It is a particularly popular format for
children’s competitions because it allows each team to play more games than in a SET.
Besides their use in sports events, DETs are often used for important applications from
decision making in multi-agent systems to medical trials. For over forty years, DETs have
been used to fit hearing aids [10]. They are also used in experiment design [122] and are
featured in many patents [92, 48]. Given their ubitquity, the study of the structure and
properties of DETs is an important question. To our surprise, we found very little attention
has been paid to DETs by mathematicians, staticians, economists or computer scientists. In
particular, we found that there is not even a standard definition for a DET.

9.1.1 Contributions

We investigate the structure of DETs with respect to several design goals: balance, fairness,
and repeat-avoidance. Balance and fairness are addressed in the same way in all DET designs
used in practice, via the tournament structure. Avoiding repeated matches is a more complex
problem. It is addressed by most DET designs in different ways. We develop an effective
way of analyzing different structures for their repeat-avoidance properties.

We study the link functions used in practice and show that they are all formed with the
same two basic primitives. We show that the link functions based on these primitives used
in practice are not optimal with respect to avoiding repeated matches and propose a related
link function that is optimal. As the full structure of DETs has not been universally defined,
we believe that this work formalizing the definition of the structure of DETs is a crucial first

122

step before we can study computational questions related to DETs.
We initiate the study of the complexity of manipulating DETs for a given structure

(winner and loser bracket structure and a link function). We show that DETs are vulnerable
to manipulation by players who can improve their chance of winning by throwing a match.
We show that coalition manipulation of DETs can be computed in polynomial time for
some link functions. A corollary to this proof gives the first polynomial time algorithm for
calculating the probability of a given player winning a DET for a very specific link function.
We also discuss manipulation by a tournament organizer (agenda control) in two settings.
The first is by changing the player seeding in the winner bracket. This is the same type
of manipulation that can be used against SETs. The second type of manipulation allows
the tournament organizer to pick the link function. We show that with respect to seeding
manipulation, SETs and repeat-avoiding DETs are similar. Additionally, if DETs are not
required to be balanced, then manipulating the outcome by picking the link function is
NP-hard. For each type of manipulation, we formulate interesting open questions.

In the Appendix, we empirically investigate the effect of the link functions on the outcome
of tournaments generated by two natural stochastic models. We determine that using a
repeat-avoiding link function does not negatively affect whether the tournament selects a
good winner, justifying our DET design. We also demonstrate that DETs are much better
at selecting strong players than SETs in our models.

9.1.2 Related Work

SETs are well-studied by both mathematicians and statisticians [17, 39, 36, 73, 100, 101],
and in the area of computational social choice [72, 86, 69, 144, 143, 138, 26]. DETs have
been studied largely by statisticians focusing on their structure [52, 100, 129, 85]. There are
also a number of patents on using DETs for a range of applications from sports competition
design to gambling, to design of drug trials.

With regards to our experimental section in the appendix, [100, 64, 60, 123] concern
themselves with the experimental evaluation of tournaments. With the exception of [60],
these papers are restricted to round-robin and SETs, and evaluate the effectiveness of either
prespecified or random seedings and their effect on the tournament outcome, usually for the
linear stochastic model of match outcomes for tournaments with either 4, 8 or 16 participants.
Our experiments in the appendix focus on random seedings for DETs with multiple stochastic
models and between 8 and 1024 players.

The question of design of knockout tournaments has previously been considered [5]. How-
ever, they consider designing new types of competitions which, unfortunately, are not used
in practice. Instead, we focus on a tournament type that is popularly used and investigate
its efficacy at its stated goal.

123

9.2 Formal Definition of Double-Elimination

Tournaments

The structure of a DET has been previously defined by [52] as any (not necessarily balanced)
SET on N players, the losers of which play in a loser bracket which is any SET on N − 1
players. The winners of the two brackets then play each other in the final to determine first
and second place. Besides the two brackets, there is a mapping, called the link function,
which defines where exactly in the loser bracket the losers of the winner bracket are placed.
In the definition of a DETin [52], neither the bracket structure, nor the link function are
fixed, as the focus of the paper is to count the number of different DETs of a given size.

In this chapter we fix the structure of both the winner and the loser brackets, and we
study several link functions. In order to understand the choice for the DET structure we
first discuss the main design goals.

balance There should not exist seeding positions where it is inherently easier for the seeded
player to win. An interpretation of this goal is that the tournament structure should be such
that no matter where a player is seeded, the number of matches that the player needs to win
in order to win the tournament should be the same. For instance, a SET on N players with
a single match in each round does not obey this goal – the players who play the first match
must win N − 1 matches to emerge victorious, while the last player must only win 1.

This design goal is easy to achieve for a SET: the bracket structure should be a balanced
binary tree. For DETs this goal is not easy to achieve because the number of opponents a
player faces depends on the round where they lose in the winner bracket. One can start by
making the winner bracket balanced, as are all DET designs in practice. However, picking
the structure of the loser bracket and the link function is more complex. We instead focus
on a weaker requirement, round-fairness.

round-fairness Let us assume that the winner bracket is balanced. This is a common
practice as tournaments can be made balanced after the first round through the use of byes,
which grant an automatic advance to the next round for the selected players. Consider two
players who lost in the same round of the winner bracket and have an equal number of wins
in the loser bracket. We would like these players to compete against opponents of similar
quality in their next match. This implies a constraint not only on the loser bracket structure
but also on the link function. We will define a new balance structure for the loser bracket
which is uniformly used in practice. The link function then needs to map players who lose
in the same round of the winner bracket to the same round of the loser bracket.

Suppose for simplicity that the number of players N is a power of 2. The tournament
structure that we will use is that the winner bracket is a balanced SET with n = log(N)
rounds, while the loser bracket has 2n rounds. The tournament starts with Round 1 of the
winner bracket. Round 1 of the loser bracket is played after round 1 of the winner bracket.
During odd rounds of the loser bracket, players in the loser bracket are matched against

124

W1

W2

W3

W4

Final Match

L1

L2

L3

L4

L5

L6 (Semi-Final)

a b c d e f g h i j k l m n o p

a c e g i k m o

a e i m

a i

a

b d f h j l n p

b f j n
o g k c

b f j n

b j
m e

b j

j
i

j

Winner’s Bracket Loser’s Bracket

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

0 1 2 3 4 5 6 7

3 1 2 0

1 0

0

Link Function Representation

Figure 9.1: DET structure for 16 players: The left is a balanced SET giving the winner
bracket, while the right is the loser bracket in which the round i winner bracket losers are
seeded at round 2i − 2. The loser bracket rounds are labeled Li while the winner bracket
rounds are labeled Wi. The rightmost tree represents the link function in this example using
the notation Tf discussed in Section 2.1. The labels are not given in binary for space reasons.

each other, while even rounds 2(i − 1) have the losers from Round i of the winner bracket
matched according to the link function against the loser bracket players who survived round
2(i− 1)− 1. Notice that in round i of the winner bracket, N/2i players are eliminated and
are mapped to round 2i− 2 of the loser bracket. Odd rounds 2(i− 1)− 1 of the loser bracket
contain N/2i−1 players, N/2i of which win their matches and make it to loser bracket round
2i − 2 where they face the N/2i losers from the winner bracket round i. The final match
of the tournament is between the two bracket winners. If the winner bracket loser loses in
the final, a rematch is played until there is only one player left with at most one loss. This
construction satisfies round-fairness and is used in practice. See Figure 9.1 for an example
of this structure. Further examples of the structure can be found at [118].

repeat-avoidance In SETs, no match is ever repeated since losers are always eliminated
from the tournament. Other tournament structures, such as DETs and Swiss tournaments
can contain repeated match-ups. In practice, such repeats are explicitly avoided. One way
to avoid them is for the tournament organizer to reseed teams at each round ‘on-the-fly’ if a
repeat is about to occur. This however gives the tournament organizer an immense amount
of power to change the tournament outcome. This is especially true in later rounds of the
tournament when there are fewer players and brute-force approaches become easier. Because
of this, one would prefer for the tournament structure itself to minimize the possibility of
repeats.

In practice, tournament structures and seedings are explicitly designed so that repeats
are minimized. For example, existing Swiss tournament design software such as SQBS and
tsh [131, 37] devote a significant fraction of their configuration details to avoiding repeated
matches. In tsh [37], one can specify the number of rounds that must pass before any match

125

is repeated. The documentation also notes that repeats become unavoidable at later rounds
of the tournament. Many other sports organizations explicitly mention minimizing repeats
in their tournament rules [116, 84, 142]. Similarly, the strict definition of Swiss Tournaments
in [17] disallows any repeats of games. [17] also discusses DETs under the name ‘draw-and-
process’, and explicitly forbids repeats until the semi-final match.

There are many reasons to avoid repeated matches. Repeats could be beneficial if all
matches are repeated the same number of times, and the repeats confirm that one team is
better than the other. If only certain games are repeated, the tournament is unfair to the
losers of the unrepeated matches, since only some losers have a chance to redeem themselves.
Also, if a match is repeated and the outcome changes, it is not always possible to conclude
much more than ‘these teams are approximately even’. Because of this, repeated matches
can be quite controversial. A recent example is the 2011-2012 BCS National Championship
Game of Alabama versus Louisiana State (LSU). LSU entered with an undefeated record
having previously faced Alabama and won. In the championship game Alabama won, leaving
each with a tied record of a single loss to the other team. Alabama was declared the national
champion, despite the tied record.

Repeats early on in the tournament are most often between unequal teams and such
repeated matches are boring for both the participants and the spectators, as it is not very
interesting to see one team dominate another repeatedly. If repeats are to occur, one would
want them to be in the later stages of the tournament when strong teams play each other.
This motivates the ‘draw-and-process’ discussion in [17] and, as we will see later, this also
motivates our definition of repeat-avoidance. A final reason to avoid repeats is due to time
constraints: DETs only have 2N − 1 matches, and it makes sense to have as many diverse
match-ups as possible in order to learn as much as possible about the underlying total order
of the players.

The goal of round-fairness can be easily satisfied by restricting the link function and
using symmetric and balanced structures for both the winner and loser brackets. The goal
of balance is approximately satisfied since any tournament winner must win between n + 1
and 2n matches. Repeat-avoidance, on the other hand, entirely depends on the link function.

9.2.1 Link Function Notation

To define a link function, we need a standard way of referring to players and their paths
through the winner bracket. We label the players in round ` of the winner bracket from left
to right by 0 to 2n−`+1− 1 in binary. Note that in round ` of the winner bracket, any pair of
players who play each other have identical prefixes of length n− `, e.g. in round 1, 0n plays
0n−11. The player who wins moves up in the winner bracket and adopts the prefix of length
n − `, while the player who loses moves to round 2` − 2 of the loser bracket, also adopting
the prefix as its label.

There are exponentially many valid link functions. With N = 2n players, 2n−` players
lose in round ` of the winner bracket. A link function fn is valid if its restriction to round
(2`− 2) of the loser bracket, fn(`), is any permutation of the numbers 0, · · · 2n−` − 1.

126

There is a natural representation of any link function f into the loser bracket as a labeled
balanced binary tree Tf . The nodes at level ` of Tf represent the losers of the round ` winner
bracket matches and are labeled from left to right by f(`). In this representation, each
subtree is a subtournament of the loser bracket. Any node of Tf plays the winner of the
match between the winners of the subtournaments rooted at its children. See Figure 9.1 for
an example of Tf .

9.2.2 Repeat-Avoidance

Repeat-avoidance is an intuitively clear goal with an unfortunately large number of potential
mathematical definitions. We will assess the repeat-avoidance quality of link functions in
terms of the first round of the loser bracket in which a potential repeat may occur, or
equivalently, according to the number of players that remain in the loser tournament when
the first potential repeat can occur. Our definition was motivated earlier in the introduction.
One can show that one cannot avoid potential repeats, and so we aim to minimize them.
We focus on potential repeats since we do not want to assume anything about the match
outcomes. Additionally, our definition of repeat-avoidance is used implicitly in practice in
the design of tournaments by both [142, 37]. In the tsh documentation, our definition is
referred to as ‘monagony’ [37].

One of the benefits of viewing the link function as a labeled binary tree is that it is
easy to detect repeat matches. In a subtree of height ` of the tree Tf , two players may
have previously played if they have the same n− ` bit prefix. Therefore, without assuming
anything about the underlying match outcomes, we can analyze a link function in terms of
prefix collisions at various tree levels. The later the level where collisions occur, the better
the link function is in terms of repeat-avoidance.
Swaps and reverses. While the link function is not standardized, most real-world tour-
naments (see [118]) use the same two primitives for the construction of the link function,
the functions swap and reverse as given in Definition 5. These definitions are given as a
left-to-right labeling of the nodes in each even level of the loser bracket using the prefix
labels of the winner bracket.

Definition 5. [Link function primitives] Define two functions s and r which each take
a list of k numbers a1, . . . , ak where k is a power of 2 as:

s(a1, . . . , ak) = a k
2

+1, . . . , ak, a1, . . . , a k
2

r(a1, . . . , ak) = a k
2
, . . . , a1, ak, . . . , a k

2
+1

s splits the list in half and swaps the pieces, while r splits the list in half and reverses each
part in place.

We can also define a generic function that uses these primitives recursively. The following
function takes as input a string of instructions, consisting of r’s and s’s, applies the first one,

127

and then recurses on each half of the string after stripping the first character off of its
instruction string.

Definition 6. [Generic link function definition] Given a string l in the regular lan-
guage {(r, s)k|0 ≤ k ≤ log n}, define f̂ as

f̂(a1 . . . an, l) =

{
f̂(an

2
, . . . , a1, l[1 : L(l)])� f̂(an, . . . , an

2
+1, l[1 : L(l)]), if l[0] = r

f̂(an
2

+1, . . . , an, l[1 : L(l)])� f̂(a1, . . . , an
2
, l[1 : L(l)]), if l[0] = s

where l[1 : L(l)] is the string l with its first character removed, L(l) is the length of the string
and � is string concatenation. If l is the empty string, f̂ returns the input unchanged.

Any function that uses s or r exclusively is not ideal i.e. one where swaps are used
every round and never reverses or vice versa. We can see that it avoids repeats until round
n/2 of the loser bracket (or until

√
N players remain) by the following observation. In

each consecutive level of Tf each node differs from all of its descendants in at least one bit.
Meanwhile, the number of bits in the bit representation is reduced by one. Repeat-avoidance
can proceed up to level `, as long as the number of bits in the representation, n − `, is at
least the level number `, and hence only while ` ≤ n/2. One can see that this argument is
tight.

By contrast, the link functions used in practice alternate using exclusively swaps or
reverses for each round. In Theorem 18 below, we show that the most common way to
alternate the two primitives, improves the repeat-avoidance property from

√
N remaining

players to N1/3 remaining players.
The most commonly used link function is below and other functions used in practice

change the ordering of which rounds use the swaps or the reverses. The pattern below is the
one used for instance by [118].

Definition 7. [Link function in Practice] Call this function F . For every k ≤ 2(n −
1)/3, F (k) produces a list that labels the kth level of TF where:

F (1) = 1n−1, . . . , 0n−1

F (2k) = f̂(0n−2k, . . . , 1n−2k, smin{k,n−2k})

F (2k + 1) = f̂(0n−2k−1, . . . , 1n−2k−1, rmin{k,n−2k−1})

Theorem 18. F avoids repeat games until at most N1/3 players remain.

Proof. Let ` be the largest interger such that b`/2c ≤ n− `. Consider level i ≤ ` of TF . By
definition, F (i) is an ordered list of (n − i)-bit binary strings. Because the only operations
used are swaps and reverses, the list is partitioned into consecutive pieces on 2n−i−bi/2c binary
strings which share the same prefix of length bi/2c. This bi/2c-long prefix of a node at level
i ≤ ` of TF differs from the prefixes of all of its descendants: All even levels of TF were
formed by the function r and all odd levels by s, and thus the first bits of the even and odd

128

levels differ; between two even or two odd levels, some other bit must differ because an extra
swap or reverse stage was performed. Therefore, every node in a subtree rooted at level `
has a different prefix of length L = b`/2c from its descendants. This is only possible while
L ≤ n− `, i.e. ` ≤ 2n/3.

To see that at level ` + 2 there will be repeated prefixes, note that in order to get a
difference in the prefixes between a level i and level i− 2, one needs to do at least one more
swap or reverse at level i compared to level i− 2. This is why the number of swap/reverses
is roughly i/2 and no less. At level `+ 2 the number of strings available is 2n−2−` and hence
the number of possible swaps or reverses is at most n − 2 − ` ≤ L, while at level ` there
were L swaps or reverses. Hence each node at level ` + 2 has the same prefix as one of its
descendants.

We give a lower bound for repeat-avoidance:

Claim 1. For any link function f , a repeat will occur at round n− log n+ 1 of Tf , or when
n = logN players remain.

Proof. Notice that each level i of Tf that avoids a repeat must contribute at least one unique
prefix of length n− i to the list of prefixes to avoid in round i. Since there are at most 2n−i

distinct prefixes of length n − i, if i > 2n−i, then there will be repeats. This happens for
i > n− log i, i.e. definitely at round n− log n+ 1.

Given the above limitation of link functions, we show how to construct optimal ones.

Theorem 19 (Optimal Link Functions). One can construct many link functions that avoid
any repeats until logN players remain.

Proof. Let f be a link function. Consider all levels i of Tf for which i ≤ 2n−i. Let ` be the
last such level. Then ` ≥ n− log n.

In order to avoid repeats up to level `, it suffices that no subtree of Tf rooted at a node at
level ` contains repeated prefixes on n− ` bits. Consider an ` by 2n−` matrix such that each
row contains all the numbers from 0 to 2n−`−1, and no column contains a repeated number.
Many matrices of this form exist. For instance, take any permutation π of the numbers from
0 to 2n−` − 1. A matrix can then be formed by taking π and ` − 1 of its rotations by one
element as the rows of A. This is always possible as long as ` ≤ 2n−`.

Each such matrix A can be converted into a link function f for which there are no
repeats before level `+ 1 as follows. For each i ≤ `, let f(i) = A[i, 1]{0, 1}`−i, . . . , A[i, 2n−`−
1]{0, 1}`−i, where A[i, j]{0, 1}`−i is the list

A[i, j]� 0`−i, A[i, j]� 0`−i−11, . . . , A[i, j]� 1`−i

with A[i, j] written in binary. One can pick any setting for f(j) when j > `. Notice that
the descendants of a node x in level i < ` in Tf have completely different prefixes from
x. Because of this, there can be no repeats till level `. At this point there are at most
2 log n = 2 log logN rounds of the loser bracket left.

129

This bound is asymptotically tight and any labeling that consists of permutations of
prefixes of length n − 1 − log n so that no column contains a repeated number, is optimal
with respect to repeat-avoidance.

We can easily create a link function similar to those used in practice that is optimal
with respect to repeat-avoidance by using more distinct patterns and interleaving the swap
and reverse functions. For example, we can now see that the primary issue with ‘swaps-
only-or-reverses-only’ patterns previously shown to only avoid repeats to O(

√
N) rounds

is that there are only 2n = 2 logN distinct possible patterns of length n in the language
{rk|0 < k ≤ n} ∪ {sk|0 < k ≤ n}. If, instead, we use all patterns contained in the regular
language {s, r, ε}n, then we have 2n different patterns for use in defining the link function
rounds. Using this, we now define an optimal link function.

Definition 8. An Optimal Swap-Reverse Link Function. Let the language of strings
P = {s, r, ε}logn be lexicographically sorted such that P [i] refers to the ith string. Now, the
link function, ĝ, for N = 2n players can be defined as:

ĝ(i) =

{
f̂(0n−i, . . . 1n−i, P [i]) i < n− log n

f̂(0n−i, . . . 1n−i, P [n− i]) i ≥ n− log n

In order to establish that this function ĝ is optimal, we need to show that enough distinct
patterns are used, and that none of these patterns generate the same string. The first
observation is easy - the set P has size 2n−logn. The second observation relies on noting that
each operation works on a recursively smaller portion of the sequence. For example, if swap
is the first operation applied, then, regardless of the later operations, only 10n−1 . . . 1n can
appear in the left half of the output, while reverse fixes this half of the output to consist of
0n, 01n−1. Therefore, for any pair of strings s1, s2 ∈ P , let i be the first position where they
differ. If we look at the first n/2i entries of the input string at the ith operation, s1 and s2

will, by the argument above, force the two halves of this portion of the string to differ in
every entry. Applying further operations on each half independently cannot cause these to
collide again. Therefore, their outputs must differ in every position and there are no repeats.

The final link function we will mention is the identity link function. When the match
outcomes are deterministic, the identity link function causes a DET to behave exactly like
an SET.

Definition 9. Identity Link Function Let I denote the identity link function. For every
1 ≤ i ≤ n,

I(i) = 0n−i, 0n−i−11, . . . 1n−i

The identity link function has immediate repeats beginning in round 2 of the loser bracket.

130

9.3 Manipulation in Double-Elimination Tournaments

The manipulation of voting protocols is a major focus of the area of computational so-
cial choice. The fact that any non-trivial voting protocol is manipulable is guaranteed by
the Gibbard-Satterthwaite Theorem [61, 128], although Bartholdi, Tovey and Trick [24] in-
troduced the idea of using computational complexity to categorize how manipulable each
protocol is.

In this section, we initiate the study of the manipulability of DETs and define several open
problems for further study. We consider two types of manipulation, by the players themselves
and by the tournament organizer (agenda control). Both types of manipulation occur in real
tournaments. Most notably, in the 2012 Olympics, four of the top badminton teams were
disqualified for trying to intentionally lose matches, causing an uproar and angering fans.
While the tournament structure used there was not a DET, this example demonstrates that
players really will exploit poor tournament design when possible.

In both types of manipulation, we study the computational problem of determining
whether a manipulation is possible. The input to all versions of the problem includes com-
plete deterministic information about the outcomes of all possible match-ups between pairs
of players, i.e. for every pair u, v one is given whether u would beat v or v would beat u
if they play against each other. A probabilistic version of this information is discussed in
one of our cases. The deterministic match outcome information can be represented as a
tournament graph in which the nodes are the players and a directed edge (u, v) means that
u would beat v.

9.3.1 Manipulation by Players

In SETs it is never in a player’s best interest to intentionally lose a match. In DETs a player
is not eliminated until they lose a second time, so it may be advantageous to lose a match if
the link function maps the player to a more favorable place in the loser bracket. We give a
specific example of this behavior using the link function F defined earlier: Suppose that the
winner bracket seeding is (from right to left), abcdefghijklmnop so that a, c, f, h, j, l, n, p
make it to the second round of the winner bracket, while the initial seeding of the loser
bracket is bdegikmo. Suppose that m beats {o, a, c}, d beats a, a beats c, c beats everyone
else, and everyone else beats m. If c beats d, it will be eliminated by a and m. However, if c
throws the match with d then a will face d and lose, and then face m and be eliminated. In
the next round m will be eliminated and c beats all of the remaining players and wins the
tournament.

A more general case of player manipulation is when there is a coalition C of players that,
given a seeding and full knowledge of the match outcomes, can make a decision about which
matches to lose intentionally with the goal of making a particular player the tournament
winner. The complexity of deciding whether such a manipulation is possible for a given
seeding and a tournament graph describing all pairwise match outcomes has been studied in
the context of both SETs and DETs by [124]. They showed that for SETs the problem can be

131

solved in polynomial time, regardless of the size of the coalition C. Their result for DETs is
weaker. They showed that if |C| is a constant, then the manipulation can be computed in
polynomial time. We give an improvement on the Russell and Walsh argument by showing
that if |C| = O(log n/ log log n), then one can find an optimal manipulation strategy for a
DET with n players in polynomial time.

Theorem 20. There is a 2O(c log logn) time algorithm which solves the coalition manipulation
problem for a DET on n players and coalition of size c.

Proof. Consider any player v in the coalition C. There are at most 2 log n matches that
v can play in a balanced DET: up to log n in the winner bracket and up to 2 log n in the
loser bracket. Since v can only lose twice before v is eliminated, there are at most 2 log2 n
choices of the matches in which v can lose. Now consider the players in C in some order,
p1, . . . , pc. For each i, and every choice of ways to pick matches to intentionally lose for
the first i − 1 players, consider how the tournament would play out if those matches were
actually lost intentionally. There are still at most 2 log2 n choices of matches that player pi
can intentionally lose. Hence, for c players, there are at most O((2 log2 n)c) ≤ 2O(c log logn)

manipulation choices, and each choice can be checked in polynomial time.

This result and the one in [124] do not depend on the link function since the argument is
that for small C there are only a polynomial number of ways the coalition can manipulate the
tournament outcome. It is conceivable that for larger coalitions finding the best manipulation
greatly depends on the link function. We show that for the simplest link function, the
identity link function, coalition manipulation is in polynomial time, regardless of |C|. The
argument breaks down for more complicated link functions and we conjecture that for some
link function the problem is hard.

Theorem 21. Let C be a coalition of players in a DET with the identity link function.
Computing an optimal manipulation strategy for C to pick the winner of the tournament can
be done in polynomial time.

The proof appears in the Appendix. It proceeds by providing an algorithm for manipu-
lation using an intricate dynamic programming approach. The proof technique also implies
the following two corollaries.

Corollary 2. The set of possible winners of a DET with the identity link function can be
computed in polynomial time.

Corollary 3. Given all pairwise probabilities of the outcomes of each match where pxy is the
probability of player x beating player y and pxy + pyx = 1, the probability of a player winning
a DET with the identity link function can be computed in polynomial time.

The argument breaks down for more complicated link functions because the independence
between the subtrees of the loser brackets is lost. We leave two open problems.

132

Open Problem 1. Is the coalition manipulation problem for DETs in polynomial time for
all link functions?

Open Problem 2. Can one compute the winning probability of a player in polynomial time
for any link function?

We conjecture that for some link function either computing the winning probabilities, or
computing coalition manipulation is hard.

9.4 Efficacy of DETs at Selecting Strong Players

Recent results in SET manipulation have shown that tournaments can be manipulated for
very weak players with high probability in random tournament generating models [143, 137].
These results lead us to question the quality of winner selected by SETs and, in turn,
wonder if DETs suffer from similar weaknesses. We will investigate this question from both
a theoretical and empirical viewpoint and show that, empirically, DETs are much more
robust than SETs when faced with noisy comparisons.

In order to investigate this problem, we must establish a ranking. Given a tournament
graph which summarizes the match outcomes, we use the ranking generated by sorting
the players by their number of wins, with ties handled arbitrarily. This ranking is a 5-
approximation of the one generated by solving Feedback Arc Set [44] which, in turn, is
equivalent to Slater Voting. When using this ranking, it is known that the strongest player
can always win an SET, and that the top 19% can if there exists a matching onto the stronger
players [138].

First, consider how weak a player can be and still win a DET. It is necessary that a
player beat at least 1 + logN players because the winner bracket consists of logN rounds,
and then the player must also face the winner of the loser bracket. It is easy to construct
a seeding and match outcomes where the player who wins exactly meets this bound. The
ranking of this player could be as low as N − 2 logN .

Before introducing the next example, we define the identity link function. When the
match outcomes are deterministic, the identity link function causes a DET to behave exactly
like an SET. The identity link function has immediate repeats beginning in round 2 of the
loser bracket.

Definition 10. Identity Link Function Let I denote the identity link function. For every
1 ≤ i ≤ n,

I(i) = 0n−i, 0n−i−11, . . . 1n−i

Now, consider a player at the top of the ranking. As a simple example, let player a beat
everyone except b who beats everyone except c. Let c be beaten by everyone except b. a and
b have identical outdegrees, and both can win SETs. However, a can only win a DET that
uses the identity link function. This is because a can only win if b is eliminated, and only c
can eliminate b. If the link function used has any amount of repeat-avoidance, after c beats

133

b in the first round and then loses in the second, it is seeded far away from b. This shows
that the strongest player may not be able to win a DET.

These simple examples demonstrate that DETs may perform quite poorly. However,
these are very specific counterexamples and are unlikely to occur in practice. As such, we
are also interested in the average case. This question has previously been studied for DETs,
but in the context where the ranking of the players is known in advance. [60] show that
DETs have very good outcomes when the ranking is known. However, we believe that this is
an extremely strong assumption. If the ranking is already known, then do we hope to learn
by running a tournament? Our study is motivated by [100] who studies the probability of
the top player winning an SET when given a random seeding versus the standard seeding.
The standard’ seeding is where in the first round, 1 plays N , 2 plays N − 1 etc.

9.4.1 Experimental Results

Size CR-Log CR-Sqrt Linear Size CR-Log CR-Sqrt Linear
8 0.00548 0.0039 0.00438 128 0.00115 0.00101 0.0042
16 0.00627 0.00502 0.00469 256 0.000668 0.00067 0.00546
32 0.00318 0.0033 0.00564 512 0.000377 0.000515 0.00398
64 0.00192 0.00229 0.00466 1024 0.000325 0.000730 0.00721

Table 9.1: Average total variation distance for the two link functions for each model

In this section, we answer two questions. The first is whether making the tournament
more fair by changing the link function from the one used in practice to the optimal link func-
tion reduces the quality of the outcomes of the tournament. The second is why, if DETs take
twice as long as SETs, and are similarly susceptible to manipulations, one would choose to
use a DET. In short, the answer to the first question is that the empirical distributions
generated by changing the link functions are practically indistinguishable, and the answer
to the second is that DETs significantly boost the probability that the first player will place
first and the second will place second over SETs.

The two stochastic models for tournaments we use are the Condorcet Random (CR)
model [143, 137] where p(i, j) = 1 − p if i < j and p otherwise, and a Linear model where
p(i, j) = 1

2
+ j−i

2(N−1)
. The CR model captures a situation where the comparator is wrong

with some fixed probability, while the Linear model allows for the comparator to do better
when the elements to be compared are significantly different. We used two settings of p for
the CR model, p = logN

N
and p = 1√

N
. Note that p = logN

N
is a lower bound on the noise for

the expected outdegree of the weakest player to be high enough to be able to win an SET.
It has previously been shown that SETs generated with this model can be manipulated for
most players [137].

We used all combinations of link function and model - practice CR, practice Linear,
optimal Linear, optimal CR, SE CR and SE Linear, for all sizes between 8 and 1024 that

134

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 W
in

s

Player Rank

16-Player Tournament Outcomes, Practice Link, Log-CR model

DET First Place
DET Second Place

DET Third Place
SET First Place

SET Second Place

Figure 9.2: The distributions over first, sec-
ond and third place for the 2 tournament
constructions for 16 players with CR-Log
noise.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 W
in

s

Player Rank

64-Player Tournament Outcomes, Practice Link

Log-CR
Sqrt-CR

Linear

Figure 9.3: The distribution over players of
first place with the link function in practice
for the 3 noise models

are a power of 2. We increased the number of samples each time, starting with 50,000 for
size 8, 100,000 for size 16, up to 6,400,000 for size 1024. For each run, we randomly sampled
a seeding and then simulated each of the tournament models with the same seeding. We
recorded the first, second and third place rank for each DE simulation and first and second
for the SE simulations. The lower ranks are not well-defined for the outcome of DETs and
SETs respectively.

Practice versus Optimal Link Function We found no significant difference between
the distributions for first, second and third place between the two link functions. For each
size tournament, we fixed the model and then calculated the total variation distance between
the two distributions of equivalent size. The total variational distance was calculated as one
half times the sum over all players of the absolute value of the probability they placed first
with the practice link function minus the probability the same player placed first with the
optimal link function. All results are reported in Table 9.1. In general, there was slightly
more variation in the Linear model than the CR model, but none exceeded 0.7% change, and
most were significantly smaller. Our conclusion from this is that improving the structure
through using a better link function, for all intents and purposes, does not affect the outcome
of DETs. Therefore, improving the link function by using the optimal link function is a net
gain - it is fairer, more interesting for participants/observers, and just as effective.

Figure 9.3 demonstrates the distribution of players placing first, for the link function
in practice. This shows how the results vary based on the model and noise parameter.
As expected, the CR model with logN

N
noise is more accurate that the one with 1√

N
noise.

Perhaps unexpectedly, the Linear noise model makes it extremely difficult to identify the
top player. This becomes much more pronounced in the larger tournaments as the statistical
advantage that players have over those ranked near them effectively disappears.

135

Rank Model 8 16 32 64 128 256 512 1024
1 CR-Log 28.4 41.02 57.4 72.9 84.7 92.04 96.1 98.2
1 SET CRL 24.8 31.7 42.9 55.4 67.4 77.6 85.2 90.6
1 CR-Sqrt 31.4 40.7 51.1 61.2 70.6 78.6 85.03 89.8
1 SET CRS 26.8 31.4 37.8 44.9 52.3 59.6 66.6 72.8
1 Linear 44.4 27.7 16.5 9.7 5.6 3.1 1.72 0.9
1 SET Lin 39.7 24.1 14.4 8.5 4.9 2.8 1.5 0.8
2 CR-Log 17.1 19.5 29.5 45.6 63.2 77.8 87.7 93.5
2 SET CRL 14.8 13.1 14.9 19.3 25.3 31.6 37.2 41.6
2 CR-Sqrt 18.4 19.5 24.6 32.6 42.8 53.6 64.3 73.4
2 SET CRS 15.2 12.8 13.1 14.6 17.2 20.4 24.1 27.9
2 Linear 24.8 15.9 10.3 6.6 4.0 2.4 1.4 0.7
2 SET Lin 19.3 12.7 8.4 5.4 3.4 2.1 1.2 0.6
3 CR-Log 14.2 12.6 15.7 23.3 34.6 46.5 56.5 63.6
3 CR-Sqrt 14.7 12.5 13.4 16.1 20.7 26.9 34 41.2
3 Linear 18.6 11.4 7.64 5.1 3.2 1.9 1.2 0.6

Table 9.2: Percentage of simulations where the players ranked {1, 2, 3} placed correctly

Improvement over SET results We found a large improvement in the results of DETs ver-
sus SETs, especially for larger sized tournaments and the CR model. In Figure 9.2, we have
charted the distribution over the probability of each player placing first (black lines), second
(blue lines) and third (red line) for both SE (dashed lines) and DETs (solid lines). Observe
that DETs have a higher probability of the first player winning, and of the second player
placing second than SETs. SETs do not have a defined third placed player, but the red line
for DETs does place the most probability on the third and fourth ranked players. While
we have only charted this for 16 players for clarity, the other distributions are all similarly
shaped as can be seen in Table 9.2.

In Table 9.2 we give the the fraction of times the player ranked first, second or third by
the model placed correctly in both DET and SET simulations. Note that the performance
of the linear model decreases as the number of players increases, while we see the opposite
with the CR model. This phenomenon can also be observed in Figure 9.3. While the largest
improvements in performance appear for the second ranked player with 1024 contestants
from 41.6% to 93.5% for log noise, and 27.9% to 73.4% for sqrt noise, there is always a
noticeable difference between the SET and DET results.

9.5 Conclusions and Open Problems

In this chapter, we introduced formal definitions for the structure of double-elimination tour-
naments, following several natural design goals and mimicking the DETs used in practice. We
showed that the link functions in practice are not optimal with respect to repeat-avoidance

136

and provided a constructive proof for creating optimal link functions with respect to repeat-
avoidance.

We also presented several experimental results. We investigated the power of DETs for
picking the winner in several stochastic generative models. The experiments showed that
DETs are much better than SETs at identifying the strongest players in the natural stochastic
tournament generating models that we used. Additionally, to investigate the proposed change
in the link function, we tested whether the quality of the outcome is affected by the change.
We founnd that, using total variational distance, the distributions generated are nearly
identical. Therefore, the new proposed link function is strictly superior over the ones used
in practice.

This work introduces several open questions. In addition to the ones stated in Section
3, another question raised by the identity link function is the relationship between winners
in DETs and SETs. Given the same deterministic match outcomes, one can show that the
set of SET winners is exactly those who can win a DET. What is this relationship for other
link functions?

137

Bibliography

[1] http://pywebgraph.sourceforge.net, 2011.

[2] http://facebook.com/press/info.php?statistics, Jan 2012.

[3] http://research.microsoft.com/ldg, Jan 2012.

[4] http://research.microsoft.com/trinity, Jan 2012.

[5] M. Adler, P. Gemmell, M. Harchol-Balter, R. M. Karp, and C. Kenyon. Selection
in the presence of noise: the design of playoff systems. In Symposium on Discrete
Algorithms, pages 564–572, 1994.

[6] K. Jin Ahn and S. Guha. Graph sparsification in the semi-streaming model. Interna-
tional Colloquium on Automata, Languages and Programming, 2009.

[7] W. Aiello, F. R. K. Chung, and L. Lu. A random graph model for massive graphs.
Symposium on the Theory of Computing, pages 171–180, 2000.

[8] W. Aiello, F. R. K. Chung, and L. Lu. A random graph model for power law graphs.
Experimental Math, 10:53–66, 2000.

[9] R. Alberich, J. Miro-Julia, and F. Rossello. Marvel universe looks almost like a real
social network. arXiv, 2002.

[10] A. Allen, D.M. Schwartz, and J.L. Punch. Tournament strategies in hearing aid selec-
tion. Journal of Speech and Hearing Disorders, 47:363–372, 1997.

[11] N. Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics, 20(1):137–
142, 2006.

[12] Y. Amanatidis, B. Green, and M. Mihail. Flexible models for complex networks. Poster
at Center for Algorithms Randomness and Computation, 2008.

[13] L. A. N. Amaral, A. Scala, M. Barthelemy, and H.E. Stanley. Classes of small-world
networks. Proceedings of the National Academy of Sciences, 97:11149–11152, 2000.

138

[14] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors.
In Foundations of Computer Science, 2006.

[15] R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In Sympo-
sium on Theory of Computing, pages 235–244, 2009.

[16] K. Andreev and H. Racke. Balanced graph partitions. Theory of Computing Systems,
39:929–939, 2006.

[17] D. R. Appleton. May the best man win? The Statistician, 44(4):529–538, 1995.

[18] S. Arora, S. Rao, and U. Vazirani. Expander flows, geo -metric embeddings and graph
partitioning. Journal of the ACM, 2009.

[19] K. Arrow. A difficulty in the concept of social welfare. Journal of Political Economy,
58:328–346, 1950.

[20] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and personalized pagerank.
Proceedings of Very Large Databases, 4(3):173–184, 2010.

[21] M. Bailly-Bechet, C. Borgs, A. Braunstein, J. Chayes, A. Dagkessamanskaia, J.-M.
Francois, and R. Zecchina. Finding undetected protein associations in cell signaling
by belief propagation. arxiv, 2011.

[22] A-L Barabasi and R Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, October 1999.

[23] S. Barnard. PMRSB: Parallel multilevel recursive spectral bisection. In Supercomput-
ing, 1995.

[24] J. Bartholdi, C. Tovey, and M. Trick. The computational difficulty of manipulating an
election. Social Choice Welfare, 6:227–241, 1989.

[25] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to control an election? Mathe-
matical and Computer Modeling, 16(8/9):27–40, 1992.

[26] R. Baumann, V. Matheson, and C. Howe. Anomalies in Tournament Design: The
Madness of March Madness. Journal of Quantitative Analysis in Sports, 6(2):1–9,
2010.

[27] M. Bayati, J. H. Kim, and A. Saberi. A sequential algorithm for generating random
graphs. Algorithmica, 58(4):860–910, 2010.

[28] Z. Bi, C. Faloutsos, and F. Korn. The dgx distribution for mining massive, skewed
data. KDD, pages 17–26, 2001.

139

[29] J. Blitzstein and P. Diaconis. A sequential importance sampling algorithm for gener-
ating random graphs with prescribed degrees, 2006.

[30] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal on Combinatorics, 1:311–316, 1980.

[31] B. Bollobás, O. Riordan, J. Spencer, and G. Tusndy. The degree sequence of a scale-free
random graph process. Random Structures & Algorithms, 18 (3):279–290, 2001.

[32] M. Braverman and E. Mossel. Noisy sorting without resampling. In Symposium on
Discrete Algorithms, pages 268–276, 2008.

[33] A. Z. Broder. How hard is it to marry at random? (on the approximation of the
permanent). Symposium on the Theory of Computing, pages 50–58, 1986.

[34] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin. Orleans: Cloud
computing for everyone. In ACM Symposium on Cloud Computing, 2011.

[35] K. Chaudhuri, E. Halperin, S. Rao, and S. Zhou. A rigorous analysis of population
stratification with limited data. In Symposium on Discrete Algorithms, pages 1046–
1055, 2007.

[36] Robert Chen and F. K. Hwang. Stronger players win more balanced knockout tourna-
ments. Graphs and Combinatorics, 4(1):95–99, 1988.

[37] J. Chew. tsh: tournament shell. http: // www. poslarchive. com/ tsh , 2012.

[38] F. K. Chung, S. Handjani, and D. Jungreis. Generalizations of polya’s urn problem.
Annals of Combinatorics, 2003.

[39] F. K. Chung and F. K. Hwang. Do stronger players win more knockout tournaments?
J. of the Amer. Statistical Assoc., 73:593–596, 1978.

[40] F. R. K. Chung and L. Lu. The average distance in a random graph with given expected
degrees. Internet Mathematics, 1(1), 2003.

[41] Fan Chung, Linyuan Lu, , and Van Vu. Spectra of random graphs with given expected
degrees. Proceedings of the National Academy of Sciences, 100:6313–6318, 2003.

[42] F.R.K. Chung and L. Lu. Connected components in random graphs with given ex-
pected degree sequences. ANNALS OF COMBINATORICS, pages 125–145, 2002.

[43] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical
data. SIAM Review, 51(4):661–703, 2009.

[44] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins
gives a good ranking for weighted tournaments. In Symposium on Discrete Algorithms,
pages 776–782, 2006.

140

[45] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, pages 137–150. USENIX Association, 2004.

[46] E. Drinea, A. Frieze, and M. Mitzenmacher. Balls and bins models with feedback. In
SODA, pages 308–315, 2002.

[47] Ran Duan and Seth Pettie. Approximating maximum weight matching in near-linear
time. In FOCS, pages 673–682, 2010.

[48] E. Durant. Hearing aids and methods and apparatus for audio fitting thereof.
(20100172524A1), July 2010.

[49] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of
Research National Bureau of Standards Section, 69:125–130, 1965.

[50] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[51] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19:248–264, 1972.

[52] C. T. Edwards. Double-elimination tournaments: Counting and calculating. The
American Statistician, 50(1):27–33, 1996.

[53] P. Erdős and A. Rényi. On random matrices. Publications of the Mathematical Institute
of the Hungarian Academy of Science, 8:455–561, 1964.

[54] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning
algorithms. SIAM Journal on Computing, 28(6):2187–2214, 1999.

[55] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. SIGCOMM, pages 251–262, 1999.

[56] A. Flaxman, A. Frieze, and J. Vera. A geometric preferential attachment model of
networks. Workshop on Algorithms for the Webgraph, pages 44–55, 2004.

[57] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[58] L.R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399404, 1956.

[59] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph
matching problems. J. ACM, 38(4):815–853, October 1991.

[60] T. Mc Garry and R.W. Schutz. Efficacy of traditional sport tournaments. J. of Op.
Research Society, 48(1):65–74, 1997.

141

[61] A. Gibbard. Manipulation of voting schemes: a general result. Econometrica, 41, 1973.

[62] M. Girvan and M. E. J. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences, 99:7821–7826, 2002.

[63] C. Gkantsidis, M. Mihail, and E. W. Zegura. The markov chain simulation method for
generating connected power law random graphs. Meeting on Algorimic Engineering
and Experimentation (ALENEX), pages 16–25, 2003.

[64] W. A. Glenn. A comparison of the effectiveness of tournaments. Biometrika, 47:253–
262, 1960.

[65] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the
ACM, 45(5):783–797, 1998.

[66] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35:921–940, 1988.

[67] S. L. Hakimi. On the realizability of a set of integers as degrees of the vertices of a
graph. SIAM Journal on Applied Mathematics, 10:496–506, 1962.

[68] V. Havel. A remark on the existence of finite graphs. Caposis Pest. Mat., 80, 1955.

[69] N. Hazon, P.E. Dunne, S. Kraus, and M. Wooldridge. How to rig elections and com-
petitions. In COMSOC, 2008.

[70] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
Supercomputing, 1995.

[71] P. Holme and B. J. Kim. Growing scale-free networks with tunable clustering. Physical
Review Letters E, 2002.

[72] J. Horen and R. Riezman. Comparing draws for single elimination tournaments. Op-
erations Research, 33(2):249–262, 1985.

[73] F. K. Hwang. New concepts in seeding knockout tournaments. The American Mathe-
matical Monthly, 89(4):235–239, 1982.

[74] M. Jerrum and A. Sinclair. Fast uniform generation of regular graphs. Theor. Comput.
Sci., 73(1):91–100, 1990.

[75] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries. Journal of the ACM, 51(4):671–
697, 2004.

[76] R. Kannan, P. Tetali, and S. Vempala. Simple markov-chain algorithms for generating
bipartite graphs and tournaments. Random Structures and Algorithms, 14(4):293–308,
1999.

142

[77] G. Karypis and V. Kumar. Multilevel graph partitioning schemes. In International
Conference on Parallel Processing, pages 113–122, 1995.

[78] J. Kelner and A. Levin. Spectral sparsification in the semi-streaming setting. Sympo-
sium on Theoretical Aspects of Computer Science, pages 440–451, 2011.

[79] J. H. Kim and V. Vu. Generating random regular graphs. Combinatorica, 26(6):683–
708, 2006.

[80] J. Kleinberg. Small-world phenomena and the dynamics of information. Neural Infor-
mation Processing Systems, pages 431–438, 2001.

[81] D. E. Knuth. The stanford graphbase: A platform for combinatorial computing, 1993.

[82] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.
Random graph models for the web graph. Foundations of Computer Science, pages
57–65, 2000.

[83] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news
media? In World Wide Web (WWW), 2010.

[84] Lacrosse Outreach Foundation. Lacrosse jamboree rules. http: // www.

lacrosseoutreach. org/ Jamboree-Details/ 2011-boys-jamboree-rules. html ,
2012.

[85] J.A. Ladwig and N.C. Schwertman. Using probability and statistics to analyze tour-
nament competitions. Chance, 5:49–53, 1992.

[86] J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Winner determination in
sequential majority voting. In International Joint Conference on Artificial Intelligence,
pages 1372–1377, 2007.

[87] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering:
a method for solving graph problems in mapreduce. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11, pages 85–94,
New York, NY, USA, 2011. ACM.

[88] J. R. Lee, S. O. Gharan, and L. Trevisan. Multi-way spectral partitioning and higher-
order cheeger inequalities. In Symposium on Theory of Computing, pages 1117–1130,
2012.

[89] J. Leskovec. http://snap.stanford.edu/snap, 2012.

[90] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research,
2010.

143

[91] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. KDD, pages 177–187, 2005.

[92] D. Lita. Method and apparatus for managing billiard tournaments. (20080269925),
Oct 2008.

[93] A. Louis, P. Raghavendra, P. Tetali, and S. Vempala. Many sparse cuts via higher
eigenvalues. In Symposium on Theory of Computing, pages 1131–1140, 2012.

[94] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. GraphLab:
A new framework for parallel machine learning. In Uncertainty in Artifical Intelligence,
2010.

[95] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson.
The emergent properties of a dolphin social network, 2003.

[96] P. Mahadevan, C. Hubble, D. V. Krioukov, B. Huffaker, and A. Vahdat. Orbis: rescal-
ing degree correlations to generate annotated internet topologies. SIGCOMM, pages
325–336, 2007.

[97] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topology analysis
and generation using degree correlations. SIGCOMM, pages 135–146, 2006.

[98] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Approximation algorithms
for semi-random partitioning problems. In Symposium on Theory of Computing, pages
367–384, 2012.

[99] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. Principles Of Distributed Comput-
ing, 2009.

[100] E. Marchand. On the comparison between standard and random knockout tourna-
ments. The Statistician, 51:169–178, 2002.

[101] W. Maurer. On most effective tournament plans with fewer games than competitors.
Annals of Statistics, 3:717–727, 1975.

[102] B. McKay. Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars
Combinatoria A, 19:15–25, 1985.

[103] F. McSherry. Spectral partitioning of random graphs. In Foundations of Computer
Science, pages 529–537, 2001.

[104] M. Mihail and C. Papadimitriou. On the eigenvalue power law. In Proceedings of the 6th
International Workshop on Randomization and Approximation Techniques, RANDOM
’02, pages 254–262, London, UK, 2002. Springer-Verlag.

144

[105] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Measure-
ment and analysis of online social networks. In ACM/USENIX Internet Measurement
Conference, 2007.

[106] M. Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Proceedings of the 39th Annual Allerton Conference on Communication,
Control, and Computing, 2001.

[107] M. Mitzenmacher and E. Upfal. Probably and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[108] M. Newman. Analysis of weighted networks. Physical Review Letters E, 70(5):056131,
Nov 2004.

[109] M. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103:8577–82, 2006.

[110] M. E. J. Newman. The structure of scientific collaboration networks. National Academy
of Science, 98:404–9, 2001.

[111] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters, 89:208701,
May 20 2002.

[112] M. E. J. Newman. Mixing patterns in networks. Physical Review Letters E., 67:026126,
February 04 2002.

[113] M. E. J. Newman. Finding community structure in networks using the eigenvectors of
matrices, 036104. Physical Review Letters E, 74, 2006.

[114] M. E. J. Newman. A symmetrized snapshot of the structure of the internet at the
level of autonomous systems, reconstructed from bgp tables posted by the university
of oregon route views project. Unpublished, July 22, 2006.

[115] Andrew Y. Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In T. G. Dietterich, S. Becker, and Zoubin Ghahramani, editors,
Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT
Press.

[116] Northern Virginia Football Club. Northern virginia opens championship tournament.
http: // www. novafc. org/ pdl/ royals_ super_ 20/ index_ E. html , 2012.

[117] D. M. Pennock, G. Flake, S. Lawrence, E. J. Glover, and C.L. Andgiles. Winners
dont take all: Characterizing the competition for links on the web. Proceedings of the
National Academy of Sciences, 99:5207–5211, 2002.

[118] PlayPool.com.

145

[119] M. Raab and A. Steger. “balls into bins” - a simple and tight analysis. In RANDOM,
pages 159–170, 1998.

[120] A. E. Raftery and S. M. Lewis. The number of iterations, convergence diagnostics and
generic metropolis algorithms. Practical Markov Chain Monte Carlo, pages 115–130,
1995.

[121] E. Ravasz and A. L Barabasi. Hierarchical organization in complex networks. Physical
Review Letters E, 67:026112, 2003.

[122] A.E. Rosenberg. Effect of glottal pulse shape on the quality of natural vowels. Journal
of the Acoustical Society of America, 49(2):583–590, 1971.

[123] S. Ross and S. Ghamami. Efficient simulation of a random knockout tournament.
Journal Industrial and Systems Engineering, 2:88–96, 2008.

[124] T. Russell and T. Walsh. Manipulating tournaments in cup and round robin compe-
titions. In ADT, pages 26–37, 2009.

[125] A. Sala, S. Gaito, G. P. Rossi, H. Zheng, and B. Y. Zhao. Revisiting degree distribution
models for social graph analysis. http://arxiv.org/abs/1108.0027, 2011.

[126] A. Das Sarma, S. Gollapudi, and R. Panigrahy. Sparse cut projections in graph streams.
In European Symposium on Algorithms, pages 480–491, 2009.

[127] A. Das Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank on graph streams.
Journal of the ACM, 58(3):13, 2011.

[128] M. A. Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10, 1975.

[129] D. T. Searls. On the probability of winning with different tournament procedures. J.
of the American Statistical Association, 58:1064–1081, 1963.

[130] C. Seshadhri, T.G. Kolda, and A. Pinar. Community structure and scale-free collec-
tions of erdös-rényi graphs. Physical Review Letters E, 85:056109, May 2012.

[131] C. Sewell. SQBS, a quiz bowl statistics program. http: // ai. stanford. edu/

~ csewell/ sqbs/ , 2012.

[132] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Inf. Comput., 82(1):93–133, 1989.

[133] P. Slater. Inconsistencies in a schedule of paired comparisons. Biometrika, 48(3/4):303–
312, 1961.

146

[134] A. Sokal. Monte carlo methods in statistical mechanics: Foundations and new al-
gorithms. Cours de Troisi‘eme Cycle de la Physique en Suisse Romande, Lausanne,
1996.

[135] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly-linear time graph partitioning. 2008.

[136] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In
ACM Symposium on Knowledge Discovery and Data Mining, 2012.

[137] I. Stanton and V. Vassilevska Williams. Manipulating stochastically generated single
elimination tournaments for nearly all players. WINE, pages 326–337, 2011.

[138] I. Stanton and V. Vassilevska Williams. Rigging tournament brackets for weaker play-
ers. IJCAI, pages 357–364, 2011.

[139] A. Steger and N. C. Wormald. Generating random regular graphs quickly. Combina-
torics, Probability & Computing, 8(4), 1999.

[140] R. Taylor. Constrained switching in graphs. SIAM journal on algebraic and discrete
methods, 3, 1:115–121, 1982.

[141] Z. Toroczkai and K.E. Bassler. Network dynamics: Jamming is limited in scale-free
systems. Nature, 428:716, 2004.

[142] United States Croquet Association. Draw and process format. http: // www.

croquetamerica. com/ croquet/ tournaments/ DrawAndProcess. php , 2012.

[143] V. Vassilevska Williams. Fixing a tournament. In AAAI CONFERENCE ON ARTI-
FICIAL INTELLIGENCE, pages 895–900, 2010.

[144] T. Vu, N. Nazon, A. Altman, S. Kraus, Y. Shoham, and M. Wooldridge. On the
complexity of schedule control problems for knock-out tournaments. JAIR, 2010.

[145] T. Vu and Y. Shoham. Fair seedings in knockout tournaments. ACM Transactions on
Intelligent Systems and Technology, 2010.

[146] T. Vu and Y. Shoham. Optimal seeding in knockout tournaments. In AAMAS, pages
1579–1580, 2010.

[147] C. Walshaw. http://staffweb.cms.gre.ac.uk/~wc06/partition, 2011.

[148] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393:440–442, 1998.

[149] J. G. White, E. Southgate, J. N. Thompson, and S. Brenner. The structure of the
nervous system of the nematode caenorhabditis elegans. Phil. Trans. R. Soc. London,
314:1–340, 1986.

147

[150] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In STOC, pages 887–898, 2012.

[151] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977.

[152] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. Technical Report UCB/EECS-2011-82, July 2011.

[153] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
Computing with Working Sets. In HotCloud, 2010.

[154] M. Zelke. Intractability of min- and max-cut in streaming graphs. IPL, 111(3):145 –
150, 2011.

