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Animals evolved in seas teeming with bacteria, yet the influences of bacteria on animal
origins are poorly understood. Comparisons among modern animals and their closest
living relatives, the choanoflagellates, suggest that the first animals used flagellated collar
cells to capture bacterial prey. The cell biology of prey capture, such as cell adhesion
between predator and prey, involves mechanisms that may have been co-opted to mediate
intercellular interactions during the evolution of animal multicellularity. Moreover, a history
of bacterivory may have influenced the evolution of animal genomes by driving the evolution
of genetic pathways for immunity and facilitating lateral gene transfer. Understanding the
interactions between bacteria and the progenitors of animals may help to explain the myriad
ways in which bacteria shape the biology of modern animals, including ourselves.

The first bacteria evolved more than 3 billion
years ago and dominated the biosphere

continually thereafter, shaping the environment
in which animals would eventually evolve more
than 2 billion years later (Narbonne 2005; Knoll
2011). Because animals evolved in seas filled
with bacteria and have lived in close associa-
tion with bacteria throughout their evolution-
ary history, it is likely that diverse interactions
with bacteria (including predation on bacteria,
harboring bacterial commensals, and infec-
tion with bacterial pathogens) influenced ani-
mal origins. Nonetheless, although the po-
tential contributions of global environmental
change and genome evolution to animal origins
have received a fair amount of attention (Hoff-
man et al. 1998; Knoll and Carroll 1999; Knoll
2003; King 2004; Canfield et al. 2007; Shen et al.

2008; Srivastava et al. 2008, 2010; Richter and
King 2013), relatively little is known about how
the interactions of animal progenitors with
the abundant bacteria in their environment
may have influenced the evolution of animals
(McFall-Ngai 1999; Moran 2007; Hughes and
Sperandio 2008; McFall-Ngai et al. 2013). We
review here the current state of knowledge about
ancient bacterial interactions and consider how
these associations may have shaped the biology
and evolution of the earliest animals.

BACTERIA AND THE WORLD BEFORE
ANIMALS

The earliest fossil evidence for life on Earth is
bacterial (Fig. 1). Layered macroscopic sedi-
mentary structures known as “stromatolites” re-
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cord the existence of bacteria (and possibly ar-
chaea) dating back 3.45 billion years (Walter
et al. 1980; Mojzsis et al. 1996; Grotzinger and
Knoll 1999; Rosing 1999; Kaiser 2001; Allwood
et al. 2007). Over the succeeding 2 billion years,
bacteria and archaea infiltrated almost every
available ecological niche and played key roles
in one of life’s major evolutionary transitions
(Szathmáry and Smith 1995): the origin of eu-
karyotes. There is debate as to whether the pri-
mordial nucleus-bearing (but amitochondri-
ate) eukaryote arose autogenously or through
the fusion of a eubacterium and an archeon
because genes thought to be derived from
both lineages have been observed in the nuclear

genomes of modern eukaryotes (Margulis
1996; Rivera and Lake 2004; Cox et al. 2008;
Embley and Martin 2006; Keeling 2014; Koonin
and Yutin 2014). In either event, an ancestor of
all modern eukaryotes engulfed an a-proteo-
bacterium (Sagan 1967; Cavalier-Smith 2009),
leading to the establishment of a stable endo-
symbiotic relationship that gave rise to the mi-
tochondrion. Thus, the cell biology and ge-
nomes of all modern eukaryotes were built on
a bacterial foundation.

Although the exact timing of eukaryotic or-
igins is unknown, macroscopic structures found
in Gabon, West Africa have been interpreted
as eukaryotic fossils that are at least 2.1 billion

Endosymbiosis(es) of cyanobacteria led to
evolution of photosynthetic eukaryotes

Engulfment of α-proteobacterium
led to origin of mitochondria

Origin of innate
immunity

Origin of animals

Progenitors of
animals grazed on

bacteria

 First geochemical evidence
of photosynthetic bacteria

Origin of life

Accumulation of atmospheric O2
because of bacterial photosynthesis

Photosynthetically derived
O2 increases episodically

Archaean Proterozoic Phan.

4 3 2 1 Gya

Figure 1. Major events in life’s history influenced by bacteria. Bacteria have exerted critical influences on the
evolution of eukaryotes and, ultimately, the origin and evolution of animals (processes indicated in gray
bubbles). Bacteria and archaea contributed to the cellular and genetic building blocks for the first eukaryotic
cells, and bacteria formed stable associations with early eukaryotes in the form of mitochondria and plastids.
Moreover, bacteria were likely an important source of food for the progenitors of animals, as well as the first
animals themselves. Finally, photosynthetic bacteria were critical for shaping the environment in which animals
would evolve. The Great Oxygenation Event, estimated to have occurred 2.3 billion years ago, is likely to have
been fueled by photosynthetic cyanobacteria. Moreover, photosynthetically derived oxygen, coupled with un-
derlying geochemical processes, lead to episodic increases in oxygen levels starting in the Proterozoic. The
timeline (rectangle) depicts the predominant redox state of the oceans. Anoxic surface and deep ocean waters
(black) dominated the Archean Eon. During the Proterozoic Eon, surface waters became oxygenated because of
mixing; however, the deep oceans remained anoxic (green). Isotopic measurements of sediments suggest that the
chemistry of the ocean between �1.8 Gya and 1 Gya was sulfidic and ferruginous (red). This period also marked
the height of stromatolite abundance and diversity before their decline in the Neoproterozoic period. The
Neoproterozoic is marked by the appearance of Ediacaran biota and periods of glaciation. During the Phan-
erozoic, more widespread oxygenation of surface and deep waters (blue) was roughly concomitant with the
emergence of animals around 635 million years ago. Phan., Phanerozoic.
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years old (El Albani et al. 2010). Undisputed
multicellular eukaryotes did not appear in the
fossil record until �1.2 billion years ago (But-
terfield 2000). Animals apparently lagged even
further behind and were not preserved in the
fossil record until �635 million years ago (Nar-
bonne 2005; Love et al. 2009; Maloof et al.
2010; Knoll 2011), although animals may have
evolved as early as 800 million years ago (Knoll
and Carroll 1999; Douzery et al. 2004; Hedges
et al. 2004; Peterson 2004; Erwin et al. 2011;
Parfrey et al. 2011).

What caused the delay? One hypothesis pos-
its that high levels of oxygen were a prerequisite
for the evolution of multicellularity, in part,
because of the limits of diffusion. Before mech-
anisms for active transport of oxygen evolved,
an organism’s size was limited by the efficiency
of oxygen diffusion to inner cell layers (Erwin
1993). In addition, high levels of oxygen may
have been required for the structure and func-
tion of certain classes of animal proteins that are
required for multicellularity, including colla-
gen, a key component of animal extracellular
matrix (Towe 1970). Although the reasons un-
derlying the protracted interval between the
origin of eukaryotes and evolution of multicel-
lular eukaryotes (including animals) may never
be fully understood, the low concentration of
oxygen in oceans and atmosphere throughout
much of the Proterozoic may have suppressed
the proliferation of large multicellular life (Nur-
sall 1959; Knoll and Carroll 1999).

As a result of the photosynthetic activity of
marine cyanobacteria, atmospheric oxygen lev-
els reached what is thought to be the minimum
concentration supportive of animal life, �1%
of present atmospheric levels, at least 2.3 billion
years ago (Budd and Jensen 2000; Kasting
and Siefert 2002; Newman and Banfield 2002;
Canfield et al. 2013). The emergence of the Edi-
acara biota �580 million years ago, including
stem animals and other multicellular eukary-
otes, coincided with the oxygenation of the
deep oceans, providing circumstantial evidence
linking pO2 levels to the evolution of animal
multicellularity (Knoll and Carroll 1999; Knoll
2003; Canfield et al. 2008; 2007). Thus, by con-
tributing to the establishment of a prolonged

stable oxic environment, bacteria inadvertently
helped set the stage for animal origins.

RECONSTRUCTING THE BIOLOGY
OF THE FIRST ANIMALS

The fossil record is silent when it comes to the
cell and organismal biology of the last common
ancestor of animals, also known as the Urmeta-
zoan (Fig. 2) (Haeckel 1874). Nevertheless, as-
pects of stem animal biology can be inferred by
identifying those features that are conserved
among nearly all extant animals. For example,
because all animals are multicellular and pro-
duce differentiated cell types, including eggs
and sperm, the Urmetazoan likely also had these
character traits (Nielsen 2008; Richter and King
2013). Proteins and domains required for im-
mune defense against pathogens, including the
Toll/Interleukin 1 receptor/resistance domain
(TIR), the interleukin-1 receptor-like domain,
and interferon regulatory factor-like proteins
(required for antiviral defense), are also univer-
sal among animals and likely evolved before an-
imal origins (Srivastava et al. 2010). Moreover,
several animal developmental signaling path-
ways (Wnt, TGF-b, RTK, Notch, Hedgehog,
and Jak-STAT) were present in the last common
ancestor of animals, suggesting that the poten-
tial for elaborate developmental programs may
have evolved early (Pires-daSilva and Sommer
2003; Nichols et al. 2006; Adamska et al. 2007;
Manning et al. 2008; Pincus et al. 2008; Srivas-
tava et al. 2010).

In eumetazoans, early embryogenesis is
marked by a process of invagination called “gas-
trulation” in which an infolding of the blasto-
derm leads to the development of new tissue
layers, including mesoderm. Like eumetazoans,
some sponges produce hollow larvae that in-
vaginate (Byrum and Martindale 2004; Leys
and Eerkes-Medrano 2005; Leys and Ereskovsky
2006; Leys et al. 2009), raising the possibil-
ity that development in the Urmetazoan in-
volved a gastrulation-like infolding of cell layers.
Sponges also form epithelia that display several
hallmarks of eumetazoan epithelia, including
an underlying basement membrane and, in
some species, proteinaceous intercellular junc-
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tions (Haeckel 1872; Falk et al. 1998; Leys and
Degnan 2002; Maldonado and Bergquist 2002;
Degnan et al. 2005; Nichols et al. 2009). Impor-
tantly, epithelia are essential for mediating in-
teractions between modern animals and bacte-
ria (e.g., by lining the gut and thereby forming a
barrier to gut bacteria) (Fraune and Bosch 2010;
McFall-Ngai et al. 2013). The phylogenetic dis-
tribution of epithelia and their conserved roles
in regulating interactions between animals and
bacteria suggests that epithelia were present and
may have served similar roles in the Urmetazoan
(Tyler 2003; Nielsen 2008; Nichols et al. 2009;
Gilbert et al. 2012; Richter and King 2013).

Comparisons among animals and their
closest relatives, the choanoflagellates, reveal
additional features of Urmetazoan organismal

biology (Medina et al. 2003; Philippe et al. 2004;
Steenkamp et al. 2006; Carr et al. 2008; King
et al. 2008; Ruiz-Trillo et al. 2008). Choanofla-
gellates are unicellular and colony-forming fla-
gellates that resemble the feeding cells of spong-
es, called “collar cells” or choanocytes (Figs.
3A,B) (James-Clark 1868; Fjerdingstad 1961;
Leys and Degnan 2002; Gonobobleva and Mal-
donado 2009). Each sponge collar cell and choa-
noflagellate cell has an ovoid cell body and sin-
gle apical flagellum that is surrounded by a
feeding collar of rigid, actin-filled microvilli
(Karpov and Leadbeater 1997, 1998). The si-
nusoidal beat of the flagellum generates water
currents that trap bacterial prey and organic de-
tritus against the surface of the collar before
engulfment (Lapage 1925; Pettitt et al. 2002).

Fu
ng

i

Ich
thy

os
po

re
a

Fila
ste

re
a

Cho
an

of
lag

ell
at

es

Spo
ng

es

Cnid
ar

ia

Bilateria

P
ha

go
cy

to
si

s

of
 b

ac
te

ria
C

ol
la

r c
el

ls
E

pi
th

el
iu

m
G

ut
 c

av
ity

In
na

te
 im

m
un

ity
TI

R
/lg

 d
om

ai
ns

C
-ty

pe
 le

ct
in

s

Choano/Animal clade

Animals (Metazoa)

Eumetazoa

Urbilaterian + ?

?

+

+

+

+

+

+

+

+

+

+

+ +

? +

+

+

+

+

+

+

+

Ureumetazoan

Urmetazoan

Choano/Animal LCA

Figure 2. Ancestry and evolution of animal–bacterial interactions. Bacterial influences on the origin and
evolution of animals can be inferred by comparing the organismal biology and genome content of extant
choanoflagellates and diverse animals within a robust phylogenetic framework (upper left). Features shared
among choanoflagellates and diverse animals were likely present in their last common ancestor (Choano/
Animal LCA, blue square; bottom right). Likewise, the biology of the Urmetazoan (purple square), Ureumeta-
zoan (green square), and Urbilaterian (black square) can be reconstructed from features that are shared among
diverse animals, eumetazoans (i.e., tissue-grade animals), and bilaterians, respectively. The conservation of
collar cells in choanoflagellates, sponges, and diverse eumetazoa suggests that the progenitors of choanoflagel-
lates and animals likely used collar cells to capture bacteria. Epithelia, an animal cell type that may be derived
from an ancestral collar cell, are found in diverse animals and were likely present in the Urmetazoan. Pattern
recognition protein domains, including TIR/Ig domains and C-type lectins, are expressed by diverse animals
and likely evolved in stem animals, if not earlier. Interactions with bacteria were mediated solely at the cellular
level in the Choano/Animal LCA and the Urmetazoan, whereas eumetazoans have evolved specialized tissue and
organ systems, including the gut cavity, to harbor bacteria and regulate interactions with bacteria. Question
marks indicate uncertainty about the presence or absence of a character for a given ancestor.
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The conserved structure and function of collar
cells in choanoflagellates and sponges suggest
that collar cells were present in the Urmetazoan
and last common ancestor of choanoflagellates
and animals (Brusca and Brusca 2002; Knoll
2011; McFall-Ngai et al. 2013; Richter and
King 2013). Moreover, it suggests that at least
some modern animal cell types evolved from an
ancestral collar cell that phagocytosed bacteria.

The notion that the first animals used a
filter-feeding collar cell to capture bacteria pro-
vides a useful starting point for reconstructing
bacterial influences on animal origins. Although
collar cells were once thought to be restricted
to choanoflagellates and sponges, collar cells
have now been documented in cnidarians (Ly-
ons 1973; Goldberg and Taylor 1989b; Peter-
son 2004), echinoderms (Nerrevang and Wing-
strand 1970; Walker 1979; Martinez et al. 1991),
ascidians (Milanesi 1971), and hemichordates
(Norrevang 1964). In cnidarians, some pre-
sumptive collar cells act as phagocytic feeding
cells in the gastrodermis (Lyons 1973). Other
cnidarian collar cells function as sensory cells

in the tentacles of adults and serve unknown
functions on the outer surfaces of motile larvae
(Goldberg and Taylor 1989a). Epithelial cells,
which are conserved in all animal lineages, may
also be related to the ancient bacteria-eating
collar cells of the Urmetazoan. The apical-basal
polarity of epithelial cells, their possession of
an apical primary cilium surrounded by micro-
villi, and phagocytic activity provide parallels
to some of the most diagnostic features of col-
lar cells (Norrevang 1964; Nerrevang and Wing-
strand 1970; Walker 1979; Martinez et al. 1991;
Singla and Reiter 2006).

Previous analyses of the paleontological re-
cord provide independent support for the idea
that bacterivory was important during the origin
and early evolution of animals (Stanley 1973).
For example, Cambrian trace fossils hint that
early bilaterians grazed on dense microbial as-
semblages growing on hard substrates (Dorn-
bos et al. 2004; Bottjer 2005; Gaidos et al.
2007). The emergence and diversification of
animals coincided with a rapid decline in the
abundance of stromatolites leading some to hy-

A B C

mv

F

C

EB

MU

PV

DP

B
TB

PV

SJ

MC

CR

2

G

M
1 μm

mu

V

ttwv

p
r

t
gr

go

nu

m

D E F

Figure 3. Variations on a collar cell theme in choanoflagellates and animals. Collar cells are typified by the
presence of a single apical flagellum (indicated with an arrow) surrounded by a collar of actin-filled microvilli
(indicated with a bracket). (A) Choanoflagellates are heterotrophic microeukaryotes that undulate their apical
flagellum to generate water currents that draw bacteria against their actin-filled collar before phagocytosis
(image of Salpingoeca rosetta courtesy of Mark Dayel. (B) Like choanoflagellates, sponge collar cells also have
a single apical flagellum and collar of microvilli that they use to capture bacterial prey (image of choanocyte
chamber from Oscarella carmela courtesy of Scott Nichols). (C,D) Collar cells have also been observed in
cnidarians (adapted from data in Lyons 1973) and (E,F) echinoderms (adapted from data in Nerrevang and
Wingstrand 1970). Original labels for C : go, Golgi body; gr, granules; l, lipid; m, mucus; mv, collar microvilli; nu,
nucleus; p, plaque, r, ciliary rootlet; t, cylindrical thickening; tw, terminal web; v, vacuole. Original labels for
D: mu, mucus coat; v, vacuole. Original labels for E: B, basal bodies; C, collar; DP, dense plasma; EB, external
branch of microvillus; F, flagellum; G, Golgi apparatus; MC, medium-contrast clumps without membrane; M,
mitochondria; PV, phagocytic vacuole; TB, terminal bar; SJ septate junction. Original labels for F : MU, mucus;
PV, phagocytic vacuole.
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pothesize that bacteria involved in stromatolite
formation were also prey targets of early ani-
mals (Garrett 1970; Awramik 1971; Walter and
Heys 1985). Thus, the phylogenetic distribution
of phagocytic collar cells coupled with analyses
of the fossil record suggest that bacteria may
have served as important food sources for early
animals.

CHOANOFLAGELLATE COLONY
DEVELOPMENT AS A MODEL
FOR ANIMAL ORIGINS

The evolution of animals from their single-
celled ancestors is hypothesized to have in-
volved a transition through a hollow, spheri-
cal colony of undifferentiated cells (Fig. 4A)
(Haeckel 1874; Buss 1987; Grosberg and Strath-
mann 2007; Mikhailov et al. 2009; Knoll 2011).
Many choanoflagellate species can transition be-
tween unicellular and simple multicellular (i.e.,
“colonial”) morphologies, recapitulating the
evolutionary transition that likely occurred
in the animal stem lineage. Indeed, colonies
formed by some choanoflagellate species resem-
ble morula stage embryos (Fig. 4B). Moreover,
just as animal embryos develop from a zygote
through repeated rounds of cell division, choa-
noflagellate colonies develop from a single foun-
der cell when daughter cells from each round of
cell division remain attached (Fairclough et al.
2010). In diverse species of choanoflagellates,
neighboring cells within colonies remain physi-
cally linked by intercellular bridges (Hibberd
1975; Karpov and Coupe 1998; Fairclough et al.
2010; Dayel et al. 2011) that leave the colony
resembling the coenocytic syncytia formed
by diverse invertebrates during embryogenesis
(Foe and Alberts 1983; Carlson and Handel
1988; Kojima 1992; Leys 2006; Greenbaum
et al. 2007; Ong and Tan 2010). The morpholog-
ical parallels with animal development and the
prevalence of colony formation among diverse
choanoflagellates have raised the possibility that
the last common ancestor of choanoflagellates
and animals may have been capable of forming
simple colonies (Carr et al. 2008). Thus, the last
common ancestor of animals and choanoflagel-
lates may have displayed many features of mod-
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Figure 4. Choanoflagellate colony development as a
model for animal origins. (A) The evolution of ani-
mals from their single-celled ancestors is hypothe-
sized to have involved a transition through a simple,
flagellated colonial form termed the Blastaea by Ernst
Haeckel (1874). (B) S. rosetta produces rosette-
shaped colonies that resemble Haeckel’s hypothe-
sized Blastaea (Dayel et al. 2011). (C) S. rosetta un-
dergoes transient differentiation into slow swimming
cells (1), attached “thecate” cells (4), fast swimmer
cells (5), rosette colonies (2), and chain colonies (3)
(adapted from data in Dayel et al. 2011). Arrows in-
dicate differentiation events that have been observed
under laboratory conditions. (D) A prey bacterium,
Algoriphagus machipongonensis, produces a bioactive
sulfonolipid, rosette-inducing factor-1 (RIF-1), that
is sufficient to stimulate rosette colony development
in S. rosetta (Alegado et al. 2012). (E) RIF-1 is com-
posed of a fatty acid chain (black), capnoid base
(red), and sulfonic acid head group (gray circle).
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ern choanoflagellate biology including collar
cells, nutrient acquisition through filter feeding
on bacteria, and the ability to form stable cell–
cell or cell–surface contacts (Steenkamp et al.
2006; Carr et al. 2008; Nielsen 2008; Richter
and King 2013).

The regulation of cell differentiation during
animal development may have evolved from
preexisting mechanisms for regulating tran-
sient cell differentiation during the life cycles
of the single-celled ancestors of animals (Bon-
ner 1998; King 2004; Nielsen 2008). A modern
example of transient cell differentiation can be
found in the choanoflagellate S. rosetta, which
produces diverse unicellular and colonial mor-
photypes in response to a variety of environ-
mental cues (Fig. 4C) (Dayel et al. 2011; Ale-
gado et al. 2012; Levin and King 2013). One
of the colonial morphotypes, the rosette colo-
ny, has been shown to undergo development
involving multiple layers of regulation. The first
committed step toward a multicellular state
occurs when a subset of solitary swimming cells
differentiates, becoming competent to form a
rosette colony. Rosette-competent solitary swim-
mers can be distinguished from morphologi-
cally identical (but rosette-incompetent) cells
by the fact that they can be specifically stained
by wheat germ agglutinin (WGA) lectin (Dayel
et al. 2011), a commonly used marker of cell
differentiation in animals (Falk et al. 1994).
Although the molecular basis of the change in
WGA staining is not clear, competence to form
rosette colonies may be influenced by bacteria;
the abundance of WGAþ solitary cells increases
in rapidly growing cultures that have ample bac-
terial prey (Dayel et al. 2011).

The second step in rosette colony develop-
ment involves a developmental switch in which
WGAþ solitary cells undergo incomplete cyto-
kinesis along the apical-basal axis and subse-
quently remain attached in a radial orientation
that leads to the formation of a compact rosette
colony. Transcriptome sequencing has revealed
that solitary cells and colonies have distinct ex-
pression profiles and the initiation of colony
development preferentially involves the up-reg-
ulation of genes that are exclusively shared by
choanoflagellates and animals (Fairclough et al.

2013). Thus, rosette colonies show a number
of hallmarks of animal development, including
clonal multicellularity, the expression of con-
served sets of regulatory genes, and morpho-
logical similarity to early animal embryos. Giv-
en the parallels between choanoflagellate rosette
colony formation and animal development,
elucidating the molecular mechanisms of S. ro-
setta rosette colony development may provide a
window into the biology of the earliest animals.

BACTERIAL CUES REGULATE A
DEVELOPMENTAL SWITCH IN THE
CLOSEST RELATIVES OF ANIMALS

Despite being isolated from the environment as
a rosette colony more than a decade ago (King
et al. 2003), the triggers of rosette colony devel-
opment in S. rosetta were, until recently, un-
known. Early efforts to investigate the phenom-
enon of rosette formation were stymied by
severe overgrowth of coisolated environmental
bacteria and seemingly stochastic shifts in the
relative abundances of different choanoflagel-
late cell types in laboratory cultures. This all
changed serendipitously when it was discovered
that serial rounds of antibiotic treatment, in-
tended to decrease the diversity of cocultured
prey bacteria, also resulted in an irreversible
loss of rosette colony development in choano-
flagellate cultures. Subsequent investigation re-
vealed that rosette colony development in S.
rosetta is regulated extrinsically by coisolated
environmental bacteria (Dayel et al. 2011; Ale-
gado et al. 2012). Thus, environmental bacteria
are not just a food source for S. rosetta, but also
regulators of its life cycle.

Inclusion of microbial cues into the regu-
lation of development is hardly a new theme
(McFall-Ngai et al. 2013). Larvae produced
by diverse basal animals, including sponges
(Woollacott and Hadfield 1996), cnidarians
(Webster et al. 2004), bryozoans in the Bugula
genus (Bertrand and Woollacott 2003; Dobret-
sov and Qian 2006), the ascidian Ciona intesti-
nalis (Wieczorek and Todd 1997; Webster et al.
2004), and the polychaete Hydroides elegans
(Hadfield 2011), all settle in response to un-
characterized compounds released by environ-

Bacteria and Animal Origins

Cite this article as Cold Spring Harb Perspect Biol 2014;6:a016162 7



mental bacteria. In addition, commensal bacte-
ria can regulate animal development, as in the
case of the light organ in the squid Euprymna
scolopes (Montgomery and McFall-Ngai 1994;
McFall-Ngai and Ruby 2000), and gut morpho-
genesis in mammals (Mazmanian et al. 2005;
Bates et al. 2006). In fact, nearly all animals
have stable associations with bacteria, but in-
vestigating how these interactions have shaped
animal evolution has been difficult, in part, be-
cause of a dearth of tractable and phylogeneti-
cally relevant model systems.

Rosette colony development in S. rosetta
is triggered by a chemical cue that originates
from the bacterium A. machipongonensis, a
member of the Bacteroidetes phylum (Alegado
et al. 2012, 2013). Notably, Bacteroidetes bac-
teria regulate development and cell differentia-
tion in at least three independent multicellular
lineages: red algae, green algae, and mammals
(Table 1). Thus, identifying and characterizing
signaling molecules produced by A. machipon-
gonensis may help to reveal mechanisms by
which Bacteroidetes influence the development
and evolution of multicellular organisms.

A bioassay based on rosette colony devel-
opment revealed that a signaling molecule pro-
duced by A. machipongonensis, the previously
undescribed sulfonolipid RIF-1, was sufficient
to trigger rosette colony development by S. ro-
setta (Alegado et al. 2012). Sulfonolipids are
structurally similar to sphingolipids, a group
of bioactive molecules that regulate cell growth,

apoptosis, adhesion, cell migration, and inter-
cellular trafficking in diverse eukaryotes (Han-
nun and Obeid 2008). Sphingolipids, although
best understood as eukaryotic signaling mol-
ecules, are also synthesized by bacteria in the
Bacteroidetes phylum (Kunsman and Caldwell
1974; Lev 1979; Miyagawa et al. 1979; Yano et al.
1982; Nichols 1998; Batrakov et al. 1999), mem-
bers of genus Sphingomonas (Batrakov et al.
1998; Naka et al. 2000), and Bdellovibrio genera
(Steiner et al. 1973), but their presence in oth-
er bacterial groups is unknown. Sphingolipids
make up a significant portion of total lipids
(40%–70%) in several Bacteroidetes species (Ol-
sen and Jantzen 2001) and can even replace lipo-
polysaccharide in the membrane of Sphingomo-
nas paucimobilis (Kawasaki et al. 1994), leading
to the hypothesis that bacterial sphingolipids
play integral roles in the cell envelope. Bacterial
sphingolipids have also been documented to af-
fect eukaryotic signaling pathways, for example,
by inducing apoptosis (Minamino et al. 2003)
or activating Toll-like receptor 4 (Fujiwara et al.
2013). Sulfonolipids are distinguished from
sphingolipids by their sulfonic acid head group
and have thus far only been isolated from bac-
teria (Godchaux and Leadbetter 1984; Drijber
and McGill 1994; Baronio et al. 2010). The roles
of sulfonolipids in bacterial physiology are un-
known, but the discovery that a sulfonolipid
can signal to S. rosetta raises the possibility that
these molecules may mediate other signaling in-
teractions between bacteria and eukaryotes.

Table 1. Signaling by Bacteroidetes bacteria influences the biology of diverse eukaryotes

Eukaryote Lineage Bacteria/um Signaling outcome Molecule References

Human Mammal Bacteroides Obesity Unknown Turnbaugh et al. 2009
Mouse Mammal Bacteroides Gut maturation PSA Mazmanian et al. 2005
Zebrafish Bony fish Consortia Gut maturation Unknown Bates et al. 2006
Ciona intestinalis

(sea squirt)
Ascidian Bacteroidetes

consortia
Larval settlement/

metamorphosis
Unknown Wieczorek and Todd

1997
Acropora micro-

pthalma (coral)
Cnidarian Bacteroidetes

consortia
Larval settlement/

metamorphosis
Unknown Webster et al. 2004

Salpingoeca
rosetta

Choanoflagellate Algoriphagus
spp.

Colony formation RIF-1 Alegado et al. 2012

Ulva pertusa
(sea lettuce)

Green alga Zobellia
uglinosa

Thallus
differentiation

Thallusin Matsuo et al. 2005

PSA, polysaccharide A; RIF-1, rosette-inducing factor-1.
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It is unknown why S. rosetta colony devel-
opment is regulated extrinsically by environ-
mental bacteria rather than intrinsically. In the
coastal estuarine environment in which S. roset-
ta was isolated, the distribution of prey bacteria
within the water column fluctuates dramati-
cally. It is possible that S. rosetta uses the pres-
ence or absence of distinct bacterial cues to
govern cell differentiation pathways (e.g., the-
cate cell vs. fast swimmer vs. rosette colony)
(Fig. 4C). The case of RIF-1 provides an example
of how this might work in a dynamic environ-
ment with variable concentrations of a changing
cast of bacteria. The initiation of rosette devel-
opment in S. rosetta does not require direct
cell contact with A. machipongonensis. Instead,
RIF-1 is released into the aquatic environment
where it can trigger rosette colony development
over a broad range of concentrations, from 1022

to 107 fM. At these concentrations, RIF-1 is
seemingly as potent as or more potent than oth-
er marine-signaling molecules (Schaefer et al.
1996; Ziegler and Forward 2007). Importantly,
RIF-1 is constitutively synthesized whether or
not the choanoflagellate predator is present,
suggesting that its production is likely intrinsic
to the biology of A. machipongonensis rather
than a response to predation. But why would a
bacterial signal induce the formation of rosette
colonies? A hint comes from the fact that fluid
flow around rosette colonies is higher than that
around solitary cells, leading to increased con-
tact rates with bacterial prey (Orme et al. 2001;
Roper et al. 2013). Thus, the connection be-
tween bacterial signals and rosette colony devel-
opment may stem from enhanced prey capture
by rosette colonies under certain environmental
conditions. Investigating whether bacterial sig-
nals also regulate colony development in other
choanoflagellate species may provide further in-
sight into the biology of the last common an-
cestor of choanoflagellates and animals.

IMPLICATIONS OF A HISTORY OF
BACTERIVORY ON THE GENETIC TOOLKIT
FOR ANIMAL MULTICELLULARITY

The composition of the first animal genomes
was the product of both gene co-option and

innovation (Rokas et al. 2003; Putnam et al.
2007; King et al. 2008; Rokas 2008; Srivastava
et al. 2008; 2010; Richter and King 2013). Com-
paring features of animal genomes with those
of choanoflagellates has to reveal the identity of
those genes that arose on the stem lineage lead-
ing to animals. For example, comparisons of
genomes from animals, choanoflagellates, and
other relatives of animals and fungi has revealed
that much of the molecular toolkit for animal
development originated in the premetazoan era
(Lang et al. 2002; King et al. 2003, 2008; Ruiz-
Trillo et al. 2004; Ruiz-Trillo et al. 2006; Steen-
kamp et al. 2006; Abedin and King 2008; Li et al.
2008; Shalchian-Tabrizi et al. 2008; Liu et al.
2009; de Mendoza et al. 2010; Sebé-Pedrós et
al. 2010; Young et al. 2011; Nichols et al. 2012;
Fairclough et al. 2013; Paps et al. 2013; Sebé-
Pedrós et al. 2013; Suga et al. 2013).

Because the progenitors of animals were
likely bacterivores, bacterivory may have im-
pacted genome evolution on the cusp of animal
origins. For example, lateral gene transfer (LGT)
from ingested prey may have provided one
source of new genetic material in the progeni-
tors of animals. As put forth by W. Ford Doo-
little, the “you are what you eat” hypothesis
proposes that because phagotrophy is an an-
cient means of obtaining nutrients and com-
mon among free-living heterotrophic protists,
gene acquisition from food sources might have
been a frequent basis for LGT (Doolittle 1998).
Acquiring genes from the environment in this
manner would require that intact DNA from
donor species not only be integrated into the
nucleus of a host eukaryote, but also appropri-
ately expressed.

Choanoflagellate genomes show evidence of
rampant gene acquisition through LGT. Yue
et al. (2013) have calculated that �4.4% of the
Monosiga brevicollis genome derives from LGT,
one of the highest rates reported for unicellular
eukaryotes to date. The phosphofructokinase
gene from Monosiga ovata may have originated
in spirochetes (Bapteste et al. 2003) and path-
ways for amino acid biosynthesis in M. brevicol-
lis also seem to have been acquired from bacteria
(Torruella et al. 2009; Sun and Huang 2011).
Intriguingly, M. brevicollis also appears to carry
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a significant number of genes of algal origin
(Nedelcu et al. 2008; Sun et al. 2010), and stra-
menopiles may have contributed biosilicifica-
tion genes found in the genome of a loricate
choanoflagellate (Marron et al. 2013) suggest-
ing that an ancestor of extant choanoflagellates
may have used both bacteria and other protists
as food sources. The frequency of LGT in choa-
noflagellates suggests that LGT may also have
been common in the phagocytic progenitors
of animals.

The evolutionary history of tenuerin, a
neuronal membrane protein that regulates
gene transcription during development, pro-
vides one example of a gene potentially acquired
through bacterivory that persists in the ani-
mal lineage (Tucker et al. 2012). The extracellu-
lar domains of teneurins mediate homotypic
cell–cell adhesion and are most similar to YD-
repeat proteins, adhesins found in the cell enve-
lopes of several bacterial groups. Acquisition
of such a bacterial protein may have facilitated
heterotypic interactions between ancient prey
bacteria and their animal predators.

The constant exposure of the first animals
to environmental bacteria likely provided op-
portunities for new interactions, both benefi-
cial and antagonistic. Mediating these different
kinds of interactions may have required ani-
mal progenitors to evolve mechanisms for dis-
tinguishing between different types of bacteria
(e.g., prey vs. pathogen). Moreover, the process
of phagotrophy involves processes—including
cell adhesion, incorporation, and interpreta-
tion of cues and signals from the extracellular
environment, and intercellular communica-
tion—that are also fundamental requirements
for multicellularity (King 2004; Grosberg and
Strathmann 2007). For example, phagocytosis
is initiated by contact between prey and pre-
dator cells. Animal receptors that recognize bac-
terial molecules include C-type lectin receptors
and Toll-like receptors (Beutler 2004), some
of which contain immunoglobulin domains.
Choanoflagellate genomes encode C-type lec-
tins and immunoglobulin domains (King et al.
2003, 2008; Fairclough et al. 2013) suggesting
that the last common ancestor of choanoflagel-
lates and animals also may have used these do-

mains for recognition of nonself/prey ligands.
C-type lectins mediate cell adhesion in animals
(Weis et al. 1998), therefore, it is also conceiv-
able that mechanisms for predator–bacteria ad-
hesion were co-opted for intercellular adhesion
during the evolution of multicellularity.

Associations between animals and bacte-
ria also may have provided adaptive advantages
during mass extinctions, such as those occur-
ring during the Phanerozoic (McFall-Ngai et al.
2013). By extending the nutritional capacity of
their hosts, commensal bacteria may have al-
lowed animals to adapt to changing environ-
ments and expand into new ecological niches.
Bacteria enhance the biology of their animal
hosts in a number of ways. In sap-sucking in-
sects, gut bacteria synthesize essential amino ac-
ids (Baumann 2005). Gut bacteria also increase
the bioavailability of nutrients, such as com-
plex carbohydrates, in some mammals (Ley
et al. 2008), and microbial consortia are essen-
tial for the proper maturation of the vertebrate
immune system (Mazmanian et al. 2005; Bates
et al. 2006). Bacteria also exert heritable ef-
fects on host gene function by affecting epige-
netic factors such as histone modification, DNA
methylation, noncoding RNA, and RNA splic-
ing (Bierne et al. 2012). Thus, bacteria likely
contributed to the evolution of the Urmetazoan
genome at many levels.

CONCLUDING REMARKS

As the earliest organisms that evolved on Earth,
bacteria and archaea laid the biological and
ecological foundations for eukaryotic origins.
Evidence of our bacterial past persists today in
modern eukaryotes in the form of mitochon-
dria, plastids, membrane composition, and cer-
tain classes of nuclear genes. Moreover, the
earliest animals evolved in an environment al-
ready occupied by abundant and diverse bacte-
ria. Bacteria likely had diverse ecological inter-
actions with the first animals, including acting
as pathogens, food sources, and purveyors of
chemical signals that potentially influenced
the physiology and morphology of eukaryotes,
including the Urmetazoan. Animals are the
only obligate multicellular organisms capable
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of phagotrophy, and the bacterivorous lifestyle
of the first animals potentially influenced ani-
mal genome evolution both directly through
LGT and indirectly through the co-option of
proteins required for prey capture into roles
(e.g., intercellular adhesion and signaling) that
were required for multicellularity.

The study of extant early-branching ani-
mals and their unicellular relatives promises to
help illuminate the contributions of bacteria to
animal origins. The conservation of collar cells
in choanoflagellates and sponges suggests that
bacterivory was important to the organismal
biology of the first animals. Future studies of
the mechanisms by which filter-feeding choa-
noflagellates and animals capture prey bacte-
ria will help to explain the potential connections
between bacterivory and evolution of ani-
mal multicellularity. Moreover, identifying the
genes in choanoflagellates, sponges, and other
early-branching animals that mediate interac-
tions with bacteria may help to reveal the ances-
try of development and innate immunity in an-
imals. Finally, studying mechanisms by which
environmental bacteria regulate the life cycles
of choanoflagellates and diverse animals may
begin to explain why stable associations with
bacteria, once considered anathema to human
health, are actually essential for the biology of
most animals.
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The evolutionary history of lysine biosynthesis pathways
within eukaryotes. J Mol Evol 69: 240–248.

Towe KM. 1970. Oxygen-collagen priority and the early
metazoan fossil record. Proc Natl Acad Sci 65: 781.

Tucker RP, Beckmann J, Leachman NT, Schöler J, Chiquet-
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