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ABSTRACT OF THE DISSERTATION

Essays on Inference and Strategic Modeling

by

Benjamin Joseph Gillen

Doctor of Philosophy in Economics

University of California, San Diego, 2010

Professor Allan Timmermann, Chair

This dissertation presents three stand-alone contributions to econometric

inference and the analysis of strategic behavior.

Chapter 1 develops a structural econometric framework for first-price auc-

tions that generalizes the assumption of Bayesian Nash Equilibrium within the

context of a level-k behavioral model. The level-k model nests equilibrium by al-

lowing bidders to best respond to heterogeneous beliefs about opponents’ bidding

strategies. I characterize conditions for identification of the distribution over val-

uations and bidder-types in populations with heterogeneous behavioral strategies.

I propose a semi-nonparametric maximum likelihood estimator, establishing non-

parametric consistency with an upper-semicontinuous population likelihood func-

tion, which I compute using a generalized expectation maximization algorithm.

xi



Presenting evidence from a pilot study of vintage computer auctions, I find a high

level of bidder sophistication in the field. I also characterize expected revenues

in first price auctions with level-k bidders, establishing a partial identification re-

sult for expected revenues in unidentified behavioral models. Empirical evidence

suggests a misspecified equilibrium optimal reserve price could reduce expected

revenues 30% relative to an unbinding reserve price.

Chapter 2 introduces new Bayesian methods adapted to estimating a large-

dimensional covariance matrix. I analyze the return generating process using an

unrestricted factor model of covariance, imposing structure on the covariance ma-

trix through prior beliefs on the parameters governing this process. I use these

methods to provide an empirical Bayesian foundation for a general class of shrink-

age estimators and use the shrinkage interpretation to characterize prior beliefs

that optimize a posterior objective function. This estimation strategy delivers

lower finite-sample loss than existing estimators in Monte Carlo simulations and

performs well in minimum variance portfolio selection exercises.

Chapter 3 analyzes conformist tendencies for a population in which indi-

viduals gain utility by mimicking the average behavior, characterizing norms by

the mean behavior, thus introducing an endogenous mechanism for establishing so-

cial norms. Under this specification, social preferences generally give rise to more

concentrated behavior and a conformist pool forms when social preferences are

sufficiently prominent. In addition to illustrating the determinants of conformist

behavior with an endogenous reference point, these findings support applied work

inferring social norms from average behavior.

xii



Chapter 1

Identification and Estimation of

Level-k Auctions

I develop a structural econometric framework for first-price auctions by

generalizing the assumption of Bayesian Nash Equilibrium within the context of

a level-k behavioral model, which nests equilibrium by allowing bidders to hold

heterogeneous beliefs about opponents’ bidding strategies. While behavioral het-

erogeneity causes identification to fail under benchmark equilibrium conditions,

independence and exclusion restrictions recover identification of the joint distri-

bution over valuations and bidder-types in heterogeneous populations. Establish-

ing consistent maximum likelihood sieve estimation with an upper semicontinuous

population log-likelihood function leads to a natural semi-nonparametric maximum

likelihood estimator based on Legendre polynomials. The level-k model introduces

a mixture structure to the estimation problem, requiring a generalized expecta-

tion maximization algorithm. Presenting evidence from a pilot study of vintage

computer auctions, I find a high level of bidder sophistication in the field. To

further apply the econometric framework, I characterize expected revenues in first

price auctions with level-k bidders, establishing a partial identification result for

expected revenues in unidentified models. An empirical analysis of USFS timber

auctions finds that a misspecified equilibrium optimal reserve price could reduce

expected revenues up to 30% relative to an unbinding reserve price.

1
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1.1 Introduction

Empirical studies of auctions focus on estimating the distribution over val-

uations held by a representative bidder for the item being sold at auction. This

distribution plays a key role in counterfactual analysis and in characterizing the

effect of policy (for example, the auction’s reserve price) on the expected revenue

generated by the sale. In the estimation problem, an econometrician interprets

data on bidders’ characteristics, the object for sale, and the bids themselves, us-

ing a structural econometric model to infer the population distribution over latent

values. The model links an individual bidder’s unobserved valuation to their ob-

served bid by imposing structure on the dependence in valuations across bidders,

individual risk preferences, and the strategic beliefs bidders hold when choosing

their optimal bid. A substantial literature leverages the Bayesian Nash Equilib-

rium (BNE) model of behavior to simultaneously impose structure on behavior

and beliefs that allows for the unique identification and optimal estimation of the

distribution of latent bidder valuations from the observed distribution over bids.

Seminal contributions driving this line of research are due to Laffont and Vuong

(1993), Donald and Paarsch (1996), Guerre, Perrigne, and Vuong (2000), and

Athey and Haile (2002), with broad surveys presented in Athey and Haile (2005)

and in Paarsch and Hong (2006)’s textbook.

In this paper, I generalize the empirical analysis of auctions by nesting

Bayesian Nash Equilibrium behavior within the level-k behavioral model proposed

by Crawford and Iriberri (2007a) based on the theoretical development of level-

k cognitive hierarchy models developed by Costa-Gomes, Crawford, and Broseta

(2001) and Camerer, Ho, and Chong (2004). The level-k model retains the ratio-

nality assumption that players best respond to beliefs about opponents’ strategies

but allows these beliefs to be heterogeneous and drawn from a structured hierar-

chy that gives rise to a mixture of behavioral types in the population. Beyond

rationalizability, the level-k model restricts a player’s bidding strategy to a set of

decision rules, or types, defined through an iterated belief hierarchy anchored in

an uninformative Level-0 (L0) model of opponents’ behavior. The Level-1 (L1)

player-type bids optimally based on the belief that all their opponents follow the
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L0 strategy, the Level-2 (L2) player best responds to the belief that all their op-

ponents follow the L1 strategy, and so on. By nesting the BNE behavioral model

within its hierarchy, the more general level-k framework provides a robust founda-

tion for inference on the distribution over valuations. Further, the generalization

facilitates studying the distribution over bidder-types and characterizes the level

of strategic sophistication in the population using field data. Incorporating the

additional dimension to the model allows equilibrium to be tested against the di-

rected alternative of a level-k behavioral model, providing external validation of

the evidence accumulated in lab settings.

When Bayesian Nash Equilibrium is augmented with a level-k model of be-

havior, existing identification arguments no longer apply and identification gener-

ally fails in benchmark settings. In the BNE behavioral model, all individuals best

respond to beliefs consistent with the observable distribution over bids, providing

a key to the BNE identification argument that is not available in the level-k iden-

tification argument. The identification analysis begins by considering the setting

in which the econometrician has sufficient information to identify the population

distribution over bids in a homogenous population of known bidder-types. This set-

ting highlights the link between bids and valuations conditional on the behavioral

type, while controlling for potential issues related to identifying the distribution

over bidder-types. Having established identification in a homogeneous population

of bidders, identification fails in heterogeneous populations due to the need to

identify both the distribution over valuations and the distribution over behavioral

types. This expanded model has a dimensionality that exceeds the dimensional-

ity of the information set, resulting in an incompletely identified model under the

benchmark specification where the econometrician observes only the distribution

over bids. As a consequence, for any distribution over bidder-types, there exists a

distribution over latent valuations consistent with the observed distribution over

bids.

While the seminal identification argument in Guerre, Perrigne, and Vuong

(2000) leads to the natural derivation of an optimal indirect estimator, my identifi-

cation results do not yield a clear estimation strategy for the level-k auction model
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outside of trivial settings. To address estimation of the model, I propose a con-

sistent Semi-Nonparametric Maximum Likelihood (SNP-ML) estimator based on

the Legendre polynomial sieve proposed by Bierens (2006) and adapted to a Simu-

lated Nonlinear Least Squares (SNLS) estimator for equilibrium auction models by

Bierens and Song (2007). The mixture of bidder-types in level-k auctions gives rise

to an upper semicontinuous likelihood criterion function, requiring a more general

uniform strong law of large numbers than applied by Bierens (2006) and by Bierens

and Song (2007). I adopt a specialized version of the uniform strong law of large

numbers developed in Artstein and Wets (1995), which is closely related to Hess

(1996)’s results, using techniques based on epiconvergence that have proven par-

ticularly useful in the nascent study of set estimators for partially identified mod-

els.1 Consistency of the SNP-ML estimator with upper semicontinuous likelihood

functions also allows the econometrician to flexibly control for observed auction

heterogeneity in the model, formally extending Donald and Paarsch (1996)’s max-

imum likelihood consistency argument to infinite dimensional semi-nonparametric

auction problems. As Donald and Paarsch (1996) show, this flexibility comes

at the expense of non-standard asymptotic analysis that hinders characterizing

the distribution of test statistics based on the SNP-ML estimator. In computa-

tion, the heterogeneous behavioral model results in a mixture structure for the log

likelihood criterion function so that a direct likelihood maximization exercise is

computationally infeasible. To address this complication, a generalized expecta-

tion maximization algorithm partitions parameter space into a set of parameters

for which closed-form solutions are readily available and another set requiring nu-

merical methods for optimization. Partially maximizing over those parameters for

which closed-form solutions are available before maximizing over the full set of pa-

rameters greatly reduces computation time, rendering calculation of the estimator

feasible.

1The analysis in Kaido (2009) uses weak epiconvergence arguments in deriving a set of distribu-
tional results that unify set estimation techniques based on vector support functions developed by
Beresteanu and Molinari (2008) and approximate minimizers to criterion functions developed by
Chernozhukov, Hong, and Tamer (2007). Other recent works in econometrics utilizing weak epi-
convergence to develop point estimation results in non-standard problems include Chernozhukov
and Hong (2004) and Han and Phillips (2006).
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In an application of the econometric model, I consider the mechanism design

problem of selecting the reserve price to maximize expected revenues in a level-k

model. This analysis extends the level-k bidding model for auctions with a reserve

price developed in Crawford, Kugler, Neeman, and Pauzner (2009) to a general

distribution over valuations with more than two bidders participating. I also ad-

dress the cases where the mechanism designer does not know the composition of

the bidding population and, even worse, when the distribution over bidder-types

is unidentified. Solving for the expected revenue to the seller at a fixed reserve

price, I present first order conditions for the optimal reserve price similar to those

developed by Myerson (1981). In the setting where the distribution over bidder-

types is not identified, the seller’s expected revenues are only partially identified.

As such, identification of the optimal reserve price is similar to the result in Haile

and Tamer (2003)’s study of jump bidding in English auctions. Specifically, the

optimal reserve price under the unidentified behavioral model belongs to a closed,

bounded set. To close the mechanism designer’s decision problem and to prescribe

a unique, robust optimal reserve price, I introduce min-max preferences over the

ambiguity generated by the lack of a fully identified model. These preferences

adapt naturally to the level-k model as the minimum conditional expected rev-

enue can be calculated by only considering the expected revenues in a homogenous

population of bidder-types.

I estimate the model using data from USFS timber auctions, with empiri-

cal results that contradict the equilibrium stylized fact that expected revenues in

US Forestry Service timber auctions could be increased by introducing a binding

reserve price. In particular, given a sufficiently large population of unsophisticated

bidders, expected revenues are maximized by setting the reserve price equal to the

government’s appraised value for the tract. This result rationalizes the current

USFS policy of implementing non-binding reserve prices without having to appeal

to non-revenue motives.

I then turn to an empirical study of bidder sophistication in the field. Given

the robust experimental analysis of bidder behavior in the lab, the goal of this

application is to provide evidence testing the external validity of these results. To
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this ends, I present results from a pilot study of bidding behavior observed in a

series of sealed-bid, first-price, auctions for vintage computer equipment from the

Alameda County Computer Resource Center. While estimated results from this

sample support the equilibrium bidding model, additional data points are required

to generate more robust findings. As such, the sample size is quite limited and

so the findings are best considered the pilot for a broader field study on auction

behavior.

After a brief review of related literature in the next section, section 1.3

introduces the auction model and identification problem, illustrating the effect of

behavioral misspecification on inference in a simple parametric example. Section

1.4 addresses the question of identification in homogeneous populations, stepping

through the proposed hierarchy of behavioral types to progressively develop the

intuition underlying the general identification argument. I extend these results to

heterogeneous populations in section 1.5, beginning with the setting where each

individual’s type is observed by the econometrician and exploring exclusion restric-

tions that identify the distribution over types. Section 1.6 discusses estimation of

the model in a semi-nonparametric framework, presenting the data generating pro-

cess for bids and establishing consistency for the estimator. Section 1.7 addresses

the mechanism design problem, with section 1.8 presenting estimates for optimal

reserve pricing from USFS timber auctions. Section 1.9 discusses the pilot field

study of bidding behavior before concluding.

1.2 Related Literature

The level-k model’s mixture-of-types framework is rooted in earlier work

by a number of researchers, including Stahl and Wilson (1995), Nagel (1995), and

El Gamal and Grether (1995) with additional theoretical development by Costa-

Gomes, Crawford, and Broseta (2001) and Camerer, Ho, and Chong (2004). Ho,

Camerer, and Weigelt (1998) and Bosch-Domenech, Montalvo, Nagel, and Satorra

(2002) apply the model to analyzing behavior in beauty contest games, present-

ing some of the first evidence that players rarely reach beyond the second level
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of the strategic hierarchy. Crawford (2003), Costa-Gomes and Crawford (2006),

and Crawford and Iriberri (2007b) explore a number of applications for the model

relating to information transmission. Ivanov, Levin, and Niederle (2008) present

experimental evidence using common value auctions that questions whether indi-

viduals best respond to beliefs, illustrating the difficulty in advancing individuals

to higher levels of the hierarchy.

The problem I consider is closest to an application considered by Aradillas-

Lopez and Tamer (2008), who present general results for identification in strategic

models under level-k rationalizability, as defined by Bernheim (1984) and Pearce

(1984). Aguirreagabiria and Magesan (2009) extend Aradillas-Lopez and Tamer

(2008) by evaluating identification when agents best respond to non-equilibrium

beliefs about their opponents’ strategies in dynamic games. Aradillas-Lopez &

Tamer’s set identification result provides an upper bound on the cumulative distri-

bution function for the distribution over valuations (since no one would rationally

choose to bid more than they thought the item was worth), but they go on to

show that the identified set also includes any sufficiently regular distribution that

first order stochastically dominates this bound. The additional structure of Craw-

ford and Iriberri (2007a)’s level-k auction model provides significant identification

restrictions beyond those of rationalizability by placing an upper bound on an in-

dividual’s bid shade and, consequently, a lower bound for the cumulative density

function over valuations. By exploiting this additional structure, the level-k model

generally provides a much tighter identified set than is available in Aradillas-Lopez

& Tamer’s model, and admits point-identification for both the distribution over

valuations and the distribution over bidder types under viable information speci-

fications.

This paper contributes to the growing literature analyzing the econometrics

of strategic models with non-equilibrium behavior. Among the first statistical

models of non-eqilibrium behavior, the Quantal Response Equilibrium (QRE) due

to McKelvey and Palfrey (1995, 1998) provides a mechanism for incorporating

statistical noise into individual behavior at games. Haile, Hortacsu, and Kosenok

(2008) and Goeree, Holt, and Palfrey (2005) illustrate the need for structure on
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that noise to obtain empirical restrictions, but by exploting the model’s generality,

Rogers, Palfrey, and Camerer (2009) introduce a heterogeneous model of QRE

with a structured error term that nests cognitive hierarchy behavior. Goeree,

Holt, and Palfrey (2002) solve the QRE for auction models, illustrating QRE’s

ability to generate overbidding in the presence of asymmetric distribution over

valuations. Bajari and Hortacsu (2005) develop a structural econometric model

for interpreting experimental auction data based on the QRE solution and also

introduce an alterative non-equilibrium approach based on modeling behavior as an

adaptive learning strategy.2 In analyzing behavior at English auctions with jump

bidding, Haile and Tamer (2003) develop a model that only imposes individual

behavior be rationalizable, which results in a partially identified distribution over

valuations. Haile and Tamer (2003) derive tight bounds for this identified set

and present empirical estimates for the set-identified optimal reserve price in US

Forestry Service timber auctions.

The identification results for auctions with an unknown distribution over

non-equilibrium strategic beliefs are analogous to the results when equilibrium

behavior is subject to unknown risk aversion. In the equilibrium identification

analysis, risk neutrality or risk aversion of known form provides a key identi-

fying assumption. Campo, Guerre, Perrigne, and Vuong (2000) present the non-

identification result for the benchmark equilibrium model under parametric HARA

utility specification with an unknown risk aversion coefficient. In this case, it is

possible to identify an observationally equivalent distribution over valuations from

the observed distribution over bids for any value of the risk aversion coefficient,

resulting ina paritally identified model. This partial identification result requires

additional information to identify risk aversion and is closely related to the need for

additional information to identify the distribution over types in a level-k auction

model. As such, I follow the approach proposed in Lu (2004), Bajari and Hortacsu

(2005), Perrigne and Vuong (2007), and Guerre, Perrigne, and Vuong (2009), who

recover identification of the bidder’s utility function and the distribution over val-

2While not the central focus of the analysis, Appendix 1.A.3 briefly discusses identification
under the Goeree, Holt, and Palfrey (2002) QRE auction model, deriving similar identification
conditions to those in the Level-k behavioral model.
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uations by exploiting testable restrictions originally proposed by Athey and Haile

(2002). Since strategic uncertainty changes with the level of competition, testable

restrictions generated by exogenous variation in the number of bidders participat-

ing in each auction provide information about an individual’s joint risk preferences

and strategic beliefs.

Maximum likelihood estimation of auction models is well known to present

a computational burden. These challenges have motivated researchers to explore

alternative estimation techniques such as simulated nonlinear least squares, orig-

inally developed by Laffont, Ossard, and Vuong (1995) and extended by Bierens

and Song (2007), and simulated method of moments, applied in studies by Laffont

and Vuong (1993) and Li (2005). The simulated nonlinear least squares methods

are not available for estimating the level-k auction model due to their reliance

on revenue equivalence for equilibrium behavior across auction mechanisms, which

Crawford, Kugler, Neeman, and Pauzner (2009) show fails in the level-k behavioral

setting. Similarly, the moment conditions derived from individual rationality used

in simulated method of moments estimation can’t be immediately adapted to the

mixture of behaviors observed in the level-k model.

1.3 The Auction Model and Identification

This section formally defines the auction model, characterizes the identifi-

cation objective, and reviews the level-k behavioral model. In reviewing Guerre,

Perrigne, and Vuong (2000)’s non-parametric identification result, I focus on bid-

ders’ strategic beliefs, proposing a slightly abbreviated proof technique. I then

describe Crawford and Iriberri (2007a)’s level-k behavioral model in greater de-

tail and state regularity conditions to ensure the level-k behavioral model results

in continuous, monotonic bidding behavior. The section closes with an example

illustrating the incorrect inference that results in a mis-specified behavioral model.
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1.3.1 The Auction Model and Equilibrium Identification

I consider identification in the risk neutral symmetric Independent Private

Values (IPV) specification of the general Milgrom and Weber (1982) first price

auction model.3 In the period t IPV auction, each player i ∈ Nt ∈ N ⊂ Z observes

Nt and the realization of a random variable, Xit, which has a commonly known

distribution, FX (x), that is absolutly continuous over [x, x] ⊂ R+ with a strictly

positive pdf fX (x). The variable Xi,t specifies bidder i’s latent valuation for the

good being sold at auction t. Bidder i then chooses his bid, sit, conditional on this

valuation and pays the value of his bid in exchange for the good if he submits the

highest bid in the auction. Given that f is continuously differentiable and bounded

away from zero, Maskin and Riley (1984) show that there exists an equilibrium in

strictly monotonic and continuously differentiable bidding strategies.

As is standard in auction identification problems, the econometrician’s

benchmark information set consists of the empirical distribution over bids, de-

noted FS (s). When the inverse bidding function exists, this distribution over bids

is generated by the true distribution over valuations and the equilibrium bidding

function, σEqm,X (x), when FS (s) = FX
(
σ−1
Eqm,X (s)

)
. The econometric model un-

der equilibrium then is defined entirely by the distribution over valuations, which

is identified if it is the unique distribution that generates the observed distribution

over bids. This definition of observational equivalence is standard in the non-

parametric identification literature from Brown (1983) and Roehrig (1988)’s early

3In the second-price auction format with Independent Private Values, equilibrium is in weakly
dominant strategies so that, for any belief of opponent’s behavior, selecting a bid equal to the
agent’s valuation is a best response. Since the level-k bidding behavior is identical to the equi-
librium weakly-dominant strategy in this setting, identification is inherited from existing results
and the distribution over bidder-types is trivially non-identified. Maintaining the independence
and private valuation assumption avoids known challenges to identification presented in Athey
and Haile (2002) in Common Values and Affiliated Private Values models from benchmark anal-
ysis, leaving these problems for future work. Addressing the class of pure common values models
that Fevrier (2008) studies under the equilibrium behavioral model would be particularly inter-
esting given the relationship between level-k behavioral model in these settings and the notion
of “cursedness” as developed by Eyster and Rabin (2005). The symmetry assumption is made
largely for the purposes of tractability and can be relaxed in an extension of Brendstrup and
Paarsch (2006). Common knowledge of the number of bidders in each auction provides a key
to identification by evaluating the strategic trade-offs an individual makes when confronted with
different levels of competition.



11

contributions to Manski (1995)’s Survey and the more recent work by Benkard

and Berry (2006) and by Matzkin (2008). Given this definition, identification

fails if there exists an alternative distribution over valuations, F ∗ 6= FX , that is

observationally equivalent to FX , defined as follows.

Definition 1.1 (Equilibrium Observational Equivalence) .

A structure, (FX), coupled with the equilibrium bidding rule σEqm,X (x) is observa-

tionally equivalent to the structure (F∗) coupled with the corresponding equilibrium

bidding rule σEqm,∗ (x) if:

FX
(
σ−1
Eqm,X (s)

)
= FS (s) = F∗

(
σ−1
Eqm,∗ (s)

)
Now consider the identification argument in the equilibrium behavioral

model. Dropping the t subscript unless needed for clarity, individual i’s payoff

is:

Ui (Xi, s1, . . . , sN) = (Xi − si) 1{si>maxj 6=i sj}

Conditional on Xi, the independence of valuations (and, consequently, of bids)

implies player i’s expected utility from the bid si is:

E [Ui (Xi, s1, . . . , sN) |Xi] = (Xi − si)Pr{si > max
j 6=i

sj} (1.1)

Equilibrium analysis typically begins by hypothesizing a behavior for other

players, solving for player i’s best response to this behavior, and then finding

a fixed point where everyone’s behavior is consistent with rational beliefs. This

analysis ensures that, first, all players are best responding to beliefs and, second,

that those beliefs reflect the true joint distribution of behavior and valuations.

While the first feature links the individuals’ bids to bidder valuations, it is the

second feature of equilibrium that links the econometrician’s information set to

the player’s information set, providing the key to establishing identification. Given

the empirical distribution over bids, symmetry and independence imply the true

probability that player i will win the auction with a bid of si is given by the

cumulative distribution of the highest bid among N − 1 independent competing
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bidders: Pr{si > maxj 6=i sj} = FS (si)
N−1. Since equilibrium requires player i’s

beliefs to match this empirical distribution over bids, the expected utility that

player i seeks to maximize in equilibirum is:

E [Ui (Xi, s1, . . . , sN) |Xi] = (Xi − si)FS (s)N−1 (1.2)

The first order conditions for optimal behavior establish identification of

the IPV auction model by recovering the true valuation for any bid directly from

the bid’s value and the distribution over bids, FS. These first order conditions give

the inverse bidding function:

xi = si +
FS (si)

(N − 1) fS (si)
(1.3)

This identification argument is more direct than the seminal argument in

Guerre, Perrigne, and Vuong (2000), which analyzes the bid function transforming

valuations into bids to illustrate the role of the Jacobian of the transformation in

establishing identification. By focusing on beliefs, the proof highlights a key equi-

librium feature: player i’s expected utility depends only on their own independent

private valuation and other player’s actions, which are i.i.d. with a distribution

contained in the econometrician’s information set. Many existing results regarding

the identification of auctions, notably those that incorporate parametric risk aver-

sion (such as Campo, Guerre, Perrigne, and Vuong (2000) and Lu (2004)) as well

as the asymmetric bidder model studied by Brendstrup and Paarsch (2006), can

be similarly proved directly by exploiting this property. This more direct proof

technique could be extended to state a set of sufficient conditions that can be ap-

plied to establish identification in a range of games with incomplete information,

including principal-agent problems, coordination and search games.

The remainder of the paper assumes these following relevant properties of

the IPV auction model:

Assumption 1.1 (IPV Auction Model) Unless explicitly stated otherwise,

a. Ui (Xit, s1t, . . . , sNt) = (Xit − sit) 1{sit>maxj 6=i sjt}
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b. Xit ∼iid FX which is absolutly continuous over X = [x, x] ⊂ R+ with strictly

positive pdf fX (x)

c. Nt and FX are common knowledge.

1.3.2 The Level-k Behavioral Model

In Crawford and Iriberri (2007a)’s level-k auction model, a player draws

their beliefs about other players’ actions from a cognitive hierarchy and best re-

sponds to those beliefs, giving rise to a mixture of heterogeneous behavioral types in

the population. The level-k behavioral model provides a parsimonious framework

for modeling how people approach decision making in novel strategic by imposing

structure on the set of possible beliefs governing individual behavior. Crawford &

Iriberri consider two possible specifications for anchoring level zero (L0) beliefs and

characterize the strategies for L1 and L2 players based on these anchoring beliefs.

Players with higher levels of sophistication are not observed in the lab and, as such,

are treated as effectively non-existent. A Random L0 player (L0R) bids uniformly

over the set of possible valuations and a Truthful L0 player (L0T ) truthfully reveals

their expected valuation for the object on auction. These two anchoring beliefs

each give rise to two belief hierarchies and behavioral types, with level-type Lkτ

best responding to the belief that everyone plays the L(k − 1)τ strategy. When

coupled with the equilibrium strategy behavior (corresponding to a level-∞ bid-

der type), this cognitive hierarchy allows for seven potentially different behavioral

types with two of those types assumed to exist only in the imagination of other

players. To summarize the behavioral assumptions:

Assumption 1.2 (Level-k Behavioral Model) In the level-k behavioral model

of auctions,

a. a player observes their valuation, the number of bidders participating in the

auction, and is assigned to a bidder-type k,

b. the player of type k’s strategy best responds to the belief that every other player

plays according to the type k − 1 strategy
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c. the level-0 bidder-types’ behavior is governed by an uninformative strategy: the

L0R bidder-type bids uniformly over the set of valuations and the L0T bidder-

type bids their valuation, and,

d. the level-∞ bidder-type bids in accordance with the BNE strategy.

A similar approach to modeling strategic behavior is proposed by Camerer,

Ho, and Chong (2004), who develop a cognitive hierarchy model for one-shot games

rooted on an uninformative level-0 behavioral model. In contrast to Costa-Gomes,

Crawford, and Broseta (2001)’s level-k behavioral model, players at the k-th level

in the cognitive hierarchy do not believe that every other player follows the level

k − 1 strategy, but rather believes that there is a mixture of players following the

level-0 through the level k − 1 strategy. As such, while the k-th level behavioral

type in the cognitive hierarchy is oblivious to the notion that people are playing

at their own or higher levels of sophistication, they recognize heterogeneity among

lower bidder-types and know the relative proportion of the lower-level bidding

types. In a model that assumes no level-0 types exist in the population, the

level-1 and level-2 cognitive hierarchy behavioral types are identical to the L1R

and L2R bidder types defined above, with the only difference between the models

realized at higher levels of sophistication. Experimental evidence for the IPV

setting presented in Crawford and Iriberri (2007a)’s online appendix suggests the

truthful hierarchy of types are not as prominent under the IPV model as in common

values settings. For this reason, the application only considers estimating the

hierarchy based on the Random Level-0 bidder-type. As such, the only applied

difference in the two modeling approaches arises for the level-∞ bidder-type, who

follows the BNE strategy in the level-k model but best responds to the empirical

distribution over bids in the cognitive hierarchy model.4

4In their development, Camerer, Ho, & Chong introduce additional structure to the model
by assuming the sophistication of a bidder as being drawn from a Poisson distribution, which
captures the intuition of the cognitive hierarchy as arising from an iterative reasoning proce-
dure. Given the identification results, this Poisson Cognitive Hierarchy model can be modeled
as a restricted version of an unrestricted distribution over bidder-types. From a computational
perspective, the level-∞ bidder-type under the cognitive hierarchy is easier to accommodate as
their beliefs can be calculated directly from the empirical distribution over bids using a strategy
similar to that proposed in Guerre, Perrigne, and Vuong (2000). Finding the fixed point where
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1.3.3 Regularity Conditions

Regularity conditions on the distribution over valuations ensure the agents’

bidding functions are strictly monotonic so as to preclude pooling behavior that

would stymie identification and introduce atoms to the estimation problem. These

conditions are similar to Myerson (1981)’s regularity condition that ensures the

mechanism designer’s revenue optimizing problem is well defined:

1− d

dx

1− FX (x)

fX (x)
> 0 (1.4)

Myerson’s regularity condition presents a restriction on the inverse hazard

rate for the event that one bidder will have a valuation exceeding a reservation

price. Ensuring the level-k bidding strategy is continuously differentiable and

strictly monotonic requires a restriction on the inverse hazard rate for the event

that the player would win the auction. These conditions strengthen regularity

conditions in standard auction theory, with assumption L1.1.3 representing the

level-k analog to the Myerson’s regularity condition. For purposes of generality,

the lemma places conditions on the level (k − 1) bidding strategy, though it is

straight-forward to verify these conditions hold inductively as a condition on the

primitive distribution over valuations.

Lemma 1.1 (Level-k Regularity Conditions) Suppose:

L1.1.1 The level-(k − 1) bidding strategy is a twice continuously differentiable,

strictly monotonic function of their valuations.

L1.1.2 FX has k continuous, bounded derivatives over support [x, x], and

L1.1.3 ∃ξ > 0 such that, for all possible valuations x ∈ X ,

1− d

dx

FX
(
σ−1
k−1 (x)

)
fX
(
σ−1
k−1 (x)

)
d
ds
σ−1
k−1 (s) |s=x

> ξ (1.5)

the beliefs for the equilibrium bidder-type are consistent with the empirical distribution over bids
in the level-k model presents the central computational challenge in the empirical analysis.
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Then the level-k bidding strategy, σk (x) is a bounded, strictly monotonic, and

continuously differentiable function of the bidder’s valuation.

The proof of Lemma 1.1 consists of implicitly differentiating the first order

conditions of the level-k bidder-type’s optimization problem. The regularity con-

dition in equation 1.5 ensures the derivative of the bidding function is continuous

and bounded away from zero by ξ.

1.3.4 Example: Log-Normally Distributed Valuations

To illustrate the implications of the behavioral differences between the level-

k and equilibrium auction models for inference, consider an auction with N = 4

players where valuations are log-normally distributed with mean parameter 0 and

variance parameter 1. Each player first observes their valuations and is then inde-

pendently assigned to one of five behavioral types: Random Level-1 (L1R), Ran-

dom Level-2 (L2R), Truthful Level-1 (L1T ), Truthful Level-2 (L2T ), or Equilibrium

(Eqm). Figure 1.1 plots the behavioral strategies for each of the behavioral types,

all of which are strictly monotonic in the valuations and continuous over their

range.

Figure 1.2 plots the distribution of bids for the different bidder types, illus-

trating that each of the types can be differentiated from one another using a series

of stochastic dominance relationships inherited from the underlying bid functions.

These relationships imply that, given the bidding distributions for every agent,

the econometrician would have sufficient information to sort each agent into their

respective bidder-type. In addition, figure 1.2 includes the unconditional bid dis-

tribution for a sample population where a bidder is assigned to bidder-types L1T ,

L2T , L1R, L2R, and Eqm with probabilities 60%, 5%, 15%, 5%, and 15%, respec-

tively. The distribution over bids generated by this sample population corresponds

to the econometrician’s ex post information set from the auction in the benchmark

informational setting.

What if the econometrician ignored the heterogeneous behavior, and instead

estimated the distribution over valuations using a mis-specified equilibrium model

of behavior? In Figure 1.2, the equilibrium bidder-type’s distribution over bids has
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significantly thinner tails than the mixed-population distribution over bids, so the

estimated distribution over valuations would have much fatter tails than the true

distribution over valuations. Figure 1.3 illustrates the magnitude of this misspeci-

fication effect in the estimated distribution of valuations. The dashed line presents

the true distribution of valuations, the solid green line presents the distribution

of the winning bid, and the solid red line presents the estimated distribution of

valuations under the BNE assumption. The bias in inference is severe: the true

95th quantile valuation is only 5 but the estimated 95th quantile is an order of

magnitude larger, extending way off the boundary of the graph to nearly 50. This

bias is driven by overbidding from lower-level types that, under the equilibrium

model, can only be justified by exceedingly large valuations.

1.4 Identification in Homogeneous Populations

Characterizing non-parametric identification in the level-k auction model

requires first establishing identification when all players behave homogeneously,

following the strategy of a single bidder-type. This section analyzes each of the

level-k bidder types separately, presenting the behavioral strategies and establish-

ing conditions for identification to obtain in homogeneous populations. These re-

sults all for identification when the econometrician observes sufficient information

to characterize each individual’s distribution over bids, for example, by following

the history of a given bidder in a large number of independent auctions. While

this setting is unlikely to arise outside of a laboratory environment, it provides

a basic set of results that applies in more realistic application where the econo-

metrician can observe only the unconditional distribution over bids within the

auction. As a preview of the results in this section, the following theorem, proved

in the appendix, generally characterizes identification of a level-k bidder-type in

homogeneous populations.

Theorem 1.1 (Identification in Homogeneous Populations) .

Assume the conditions of Assumptions 1.1 and 1.2 and Lemma 1.1. Suppose

the econometrician observes the distribution over bids, FSN ,k, for a homogeneous



18

population of level-k bidders with N bidders participating in each auction, then the

distribution FX is uniquely identified.

Suppose further that the econometrician observes the distribution over bids,

FSN∗ ,k, for a homogeneous population of level-k bidders with N∗ 6= N bidders

participating in each auction, then the level-k behavioral model is testable through

overidentifying restrictions.

The proof of theorem 1.1 follows from continuity of bidding behavior and

non-negativity of the bid shade in the level-k behavioral model. The remainder of

this section applies theorem 1.1 to the level-k bidding model proposed by Crawford

and Iriberri (2007a), illustrating the intuition behind the identification argument

while formally reviewing the behavioral model in progressively more complex set-

tings.

1.4.1 Trivial Identification & Non-Identification Results

For several of the behavioral types, in particular the level-0 player-types,

identification is either trivial or impossible. Whenever there is a single truthful bid-

der, that bidder’s distribution over bids will stochastically dominate all other bid-

ders’ distributions over bids. Consequently, if the econometrician observes enough

information to identify each individual bidder’s distribution over bids, the distri-

bution over valuations is trivially identified by the distribution over bids. On the

other hand, if the population consists entirely of purely random bidders, whose

behavior is independent of their latent valuations, then identification is obviously

impossible regardless of the information obtained about the distribution of bids.

Lemma 1.2 (Level-0 Trivial Identification & Non-Identification) a

A Suppose there is at least one L0T bidder-type in the population and the econo-

metrician observes the distribution over bids for each individual, then the

distribution over valuations is identified.

B Suppose all bidders in the population are L0R bidder-types, then even if the

econometrician observes the distribution of bids for each individual, the dis-

tribution over valuations is unidentified.
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In the example from section 1.3.4, the Random Level 1 (L1R) bidder-type’s

strategy is linear in his valuation, presenting a setting where identification is only

slightly more complicated than the truthful level zero bidder-type. Since his beliefs,

and consequently his behavior, are invariant to changes in the distribution over

valuations, the L1R bidder-type provides a simple context for formalizing the level-

k behavioral model free of identification problems. Following Crawford and Iriberri

(2007a) in adopting Krishna (2002)’s notation, denote the maximum bid submitted

by players other than player i by the random variable Yi. The L1R bidding function

solves:

σL1R (x) = argmax
σ:X→S

(Xi − σ (Xi))FYi (σ (Xi))

This maximization problem yields first order conditions given in Crawford

and Iriberri (2007a)’s, Equation 14:

(Xi − σ (Xi)) fYi (σ (Xi))− FYi (σ (Xi)) = 0 (1.6)

The L1R bidder believes Yi to be the maximum of (N − 1) uniformly dis-

tributed random variables, behaving as if Yi has cdf and pdf FYi (s) = (s−x)N−1

(x−x)N−1

and fYi (s) = (N−1)(s−x)N−2

(x−x)N−1 , respectively. These beliefs yield the best responding

bidding function:

σL1R (Xi) =
N − 1

N
Xi −

x

N

Since the L1R bidding function is a linear transformation of the valuation,

identification is immediate. Given the distribution over bids, with cdf denoted

FS,L1R , the cdf and pdf for valuations are:

FX (x) = FS,L1R (σL1R (x)) = FS,L1R

(
N − 1

N
Xi −

x

N

)
(1.7)

fX (x) = fS,L1R (σL1R (x))
N − 1

N
= fS,L1R

(
N − 1

N
Xi −

x

N

)
N − 1

N

Hence, a single-step estimation procedure can infer the distribution over valuations

by shifting and schaling the estimated disttribution over bids.5

5While this result does not follow directly from Theorem 1.1, it is stated as a corollary since
the L1R bidder type can be modeled as if he believes his opponents’ bidding functions are given
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Corollary 1.1 (Identification of L1R Bidder-Type Valuations) .

Suppose that an econometrician observes the distribution over bids, FS,L1R, from a

homogeneous population of L1R bidder-types, then the distribution over valuations,

FX , is identified.

1.4.2 Identification of Higher-Order Bidder-Types

The higher-order bidder-types best respond to beliefs that their opponents

take into account the distribution over valuations in choosing their bid. These

bidder-types follow more sophisticated strategies than described in the previous

section, with the distinction becoming particularly salient when reserve prices are

considered in section 1.7. For notational convenience, now add the assumption

that the lower support of the distribution over valuations is zero.

Truthful Level 1 (L1T )

The Truthful Level 1 (L1T ) bidder-type best responds to the belief that

other players submit bids exactly equal to their valuations. As such, in equation

1.6, the L1T bidder behaves as if Yi is the maximum of (N − 1) random variables

drawn from the distribution for valuations, with cdf and pdf FYi (s) = FX (s)N−1,

and, fYi (s) = 1
N−1

FX (s)N−2 fX (s), respectively. Crawford and Iriberri (2007a)

show these beliefs yield first order conditions:

Xi = σL1T (Xi) +
FX (σL1T (Xi))

(N − 1) fX (σL1T (Xi))
(1.8)

Here, the conditions on FX in Theorem 1.1 ensure that the implicitly-defined bid-

ding function, σL1T (Xi), is well-defined, uniformly continuous, and strictly increas-

ing in Xi.

Identification in this setting presents the first challenging result in the pa-

per. The inverse bidding function in equation 1.8 characterizes the identified set

by: σL0R
(x) = x ∗ F−1

X (x). Note that, while applying kernel methods to the nonparametric
estimation strategy would achieve the optimal rate of convergence in a homogeneous population,
the technique cannot be transferred to the settings with more complicated bidding behavior.
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as containing any distribution over valuations consistent with the observed distri-

bution over bids. However, the inverse bidding function itself depends on the true

FX . For any distribution over valuations, F ∗, subject to the regularity conditions

in Theorem 1.1, define:

σ−1
∗,L1T

(s) = s+
F ∗ (s)

(N − 1) f ∗ (s)

The observational equivalence of FX and F∗ under the L1T behavioral model

then requires:

FX
(
σ−1
L1T

(s)
)

= Fs (s) = F ∗
(
σ−1
∗,L1T

(s)
)

(1.9)

The identification argument establishes that any distribution F ∗ satisfying this

relationship must be identical to FX almost everywhere through a pair of con-

tradictions. These contradictions provide the template for the general proof of

theorem 1.1, exploiting the regularity conditions and the implied properties of the

bid-shading behavior for any bidder.

First, suppose that ε1 ≡ inf {x : FX (x) 6= F ∗ (x)} > 0 and also suppose that

ε2 ≡ inf {x > ε1 : FX (x) = F ∗ (x)} > ε1 so that for y ∈ [0, ε1), FX (y) = F ∗ (y) and,

as such, the inverse bidding functions are identical to one another in this region, i.e.,

σ−1 (y) = σ−1
∗ (y). Note that σ−1 (y) is strictly greater than y away from the origin,

continuous, and strictly increasing, so there is some ỹ < ε1 with σ−1 (ỹ) ∈ (ε1, ε2).

Then, FX (σ−1 (ỹ)) 6= F ∗ (σ−1
∗ (ỹ)), contradicting 1.9. As such, since the bid-shade

is non-negative, continuous, and zero at the origin, any candidate distribution

over valuations satisfying the condition 1.9 must either be identical to the true

distribution or differ from the true distribution starting at the origin.

Now, suppose the distributions FX and F ∗ diverge immediately from the

origin and, wlog, that FX (x) > F ∗ (x), for all x ∈ (0, ε), with the definition that

ε ≡ sup {x : FX (x) > F ∗ (x)}. In this case, the condition in equation 1.9 demands

that σ−1 (x) < σ−1
∗ (x). However, there must come a point in (0, ε) where the

distribution F ∗ begins “catching up” with FX , i.e., where fX (x) < f ∗ (x). But

since FX (x) > F ∗ (x), these inequalities imply FX(x)
fX(x)

> F ∗(x)
f∗(x)

, contradicting the

requirement that σ−1 (x) < σ−1
∗ (x). Here, monotonicity of bidding couples with
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the definition of FX and F ∗ as the integral of fX and f ∗, respectively, to establish

that any two distributions that diverge immediately from the origin cannot be

observationally equivalent.

The following corollary summarizes the main identification result of this

subsection:

Corollary 1.2 (Identification of L1T Bidder-Type) Suppose that

an econometrician observes the distribution over bids, FS,L1T , from a homogeneous

population of L1T bidder-types, then the distribution over valuations, FX , is iden-

tified.

Random Level 2 (L2R)

The identification argument for the Random Level 2 bidder-type closely

mirrors the analysis of the Truthful Level 1 bidder-type since the Random Level 2

bidder-type best responds to the belief that other players’ bids are a linear trans-

formation of their valuation. Incorporating the known constant Jacobian term,

Crawford and Iriberri (2007a) show the first order condition 1.8 above becomes:

Xi = σL2R (Xi) +
FX
(

N
N−1

σL2R (Xi)
)

NfX
(

N
N−1

σL2R (Xi)
)

The identification proof from the L1T bidder-type generalizes immediately,

establishing identification:

Corollary 1.3 (Identification of L2R Bidder-Type) Suppose that an econo-

metrician observes sufficient data from a homogeneous population of L2R bidder-

types to identify the distribution over bids, FS,L2R, then the distribution over valu-

ations, FX , is identified.

Truthful Level 2 (L2T )

Identification in the L2T case is complicated by the lack of a closed-form

solution for the L1T bidding strategy. Crawford and Iriberri (2007a) characterize
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the first order condition 1.6 for the L2T bidder-type as:

(X − σL2T (X)) fX
(
σ−1
L1T

(σL2T (X))
) dσ−1

L1T
(s)

ds
|s=σL2T

(X) (1.10)

−FX
(
σ−1
L1T

(σL2T (X))
)

= 0

While no closed-form solution exists for the L1T bidding function, equation

1.8 gives the inverse of the L1T bidding function, with corresponding derivative:

dσ−1
L1T

(s)

ds
= 1 +

fx (s)2 − FX (s) f ′X (s)

(N − 1) fX (s)2 =
N

N − 1
− FX (s) f ′X (s)

(N − 1) fX (s)2

Substitute this identity into equation 1.10 and rearranging gives the L2T

inverse bidding function:

Xi =σL2T (Xi) (1.11)

+

FX

(
σL2T (Xi) +

FX(σL2T
(Xi))

(N−1)fx(σL2T
(Xi))

)
fX

(
σL2T (Xi) +

FX(σL2T
(Xi))

(N−1)fx(σL2T
(Xi))

)(
N − FX(σL2T

(Xi))f ′X(σL2T
(Xi))

fX(σL2T
(Xi))

2

)
Here, the distribution over bids for the L2T bidder-type also depends on

the derivative of the pdf for true valuations, introducing a new potential source

for confounding identification. However, given condition 4 in Theorem 1.1, the

bracketed expression in the denominator of equation 1.11 is positive and bounded

away from zero, with implicit differentiation establishing the bidding equation

σL2T (Xi) as monotonic in valuation Xi.

The identified set is characterized by the consistency requirement in equa-

tion 1.9 from section 1.4.2 applied to the first order conditions in 1.11. Here the

argument for identification has little structural difference, except the requisite con-

tinuity conditions apply to the higher order derivatives of the L1T bidder-type’s

strategy. Nonetheless, the approach of establishing contradictions through analyz-

ing the bid shade is effectively unchanged.

Corollary 1.4 (Identification of L2T Bidder-Type) Suppose that an
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econometrician observes distribution over bids, FS,L2T , from a homogeneous popu-

lation of L2T bidder-types, then the distribution over valuations, FX , is identified.

General Level-k

The general level-(k − 1) bidding strategy is a continuous function of the

bidder’s signal and (k − 1) derivatives of the pdf over valuations, hence each it-

eration of the cognitive hierarchy requires another continuous derivative of the

distribution over valuations as indicated in assumption L1.1.3 in lemma 1.1. The

regularity conditions in lemma 1.1 ensure this bidding strategy has derivatives that

exist, are bounded, and continuous, giving rise to a continuous, monotonic level-k

bidding function. The general level-k first order conditions from Crawford and

Iriberri (2007a) are:

(X − σLkτ (X)) (N − 1) fX

(
σ−1
L(k−1)τ

(σLkτ (X))
) dσ−1

L(k−1)τ
(s)

ds
|s=σLkτ (X)

=FX

(
σ−1
L(k−1)τ

(σLkτ (X))
)

Rearranging this equation gives the inverse bidding function that charac-

terizes consistency required for the distribution over bids to be generated by the

distribution over valuations:

X = σLkτ (X) +
FX

(
σ−1
L(k−1)τ

(σLkτ (X))
)

(N − 1) fX

(
σ−1
L(k−1)τ

(σLkτ (X))
)
dσ−1
L(k−1)τ

(s)

ds
|s=σLkτ (X)

(1.12)

The observational equivalence arguments developed in previous sections are

applied to the relationship in equation 1.12 in the proof in the appendix.

1.4.3 Testability of the Level-k Behavioral Model

Given identification, the next step is to characterize overidentifying restric-

tions that could reject the level-k behavioral model as mis-specified. As is the case

with the equilibrium behavioral model, if the econometrician always observes auc-

tions with a fixed number of participating bidders (for example, if every auction has
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exactly 5 bidders), the level-k behavioral model imposes no testable restrictions on

the data beyond those implied by independence of individual bidding decisions and

those required for identification. That is, for any distribution over bids, F̂S, there

exists a corresponding distribution over valuations, F̂X,Lkτ , admitting a strictly

monotonic inverse bidding function that is consistent with the hypothesis that the

entire population of bidders is of type Lkτ . This result follows from the identifi-

cation results above, each of which hold independently for any distribution over

bids.

Again in parallel to equilibrium results, the level-k model is testable if the

number of participating bidders in the auction varies exogenously, (for example,

if half of the auctions in the sample have 5 competing bidders and half have 20

bidders). The level-k behavioral model defines precisely how a bidder’s strategy

reacts to changes in the number of bidders participating in an auction, imposing a

continuum of over-identifying restrictions, one for each quantile of the distribution

over valuations. Suppose the econometrician observes just two distributions over

bids corresponding to two different levels of competition in the auction, F̂SN1
and

F̂SN2
and wishes to test the hypothesis that the entire population of bidders is of

type Lkτ . The econometrician can then use the two distributions over bids to re-

cover two distribution over valuations, F̂X,Lkτ ,N1 and F̂X,Lkτ ,N2 . If the hypothesized

behavioral model is true, these two recovered distributions must be equal, that is,

F̂X,Lkτ ,N1 (x) = F̂X,Lkτ ,N2 (x), for all x. If any of the quantiles from the two dis-

tributions disagree, then the hypothesized behavioral model can be rejected. This

testability result applies not only to hypotheses that the population is homoge-

neous, but can also be used to test hypotheses about mixtures of the populations,

providing the basis for the identification argument in heterogeneous populations.

In another parallel to results from Athey and Haile (2002) and Haile, Hong,

and Shum (2003), given observation of more than one bid from each auction, these

different order statistics from the distribution over bids can test implications of

the IPV model. For example, given the winning bid, denoted Sw and the second

highest bid Sl, the econometrician could estimate the distribution over valuations

from both samples of data individually and test the hypothesis that the estimated
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distributions are equivalent up to sampling error. However, it is important to note

that this testable implication derives primarily from the independence of private

values and, in particular, of information and beliefs, which implies independence

of observed bids. In this case, the distributions over bids recovered from Sw and

Sl as the first and second order statistics for i.i.d. random variables should be

identical. As such, while the restriction would be violated in the affiliated values

problem or in the presence of unobserved heterogeneity, it has no power against

either behavioral mis-specification.

1.5 Identification in Heterogeneous Populations

In heterogeneous populations, the need to identify the distribution over

bidder-types in addition to the distribution over valuations introduces a free dimen-

sion to the model that requires additional information for identification. One such

information set allowing identification corresponds to cases in which the econome-

trician can estimate each individual’s distribution over bids. While this setting

is unlikely to obtain in application, it illustrates the logic for separating bidder-

types through the relationships among their distributions over bids. When the

econometrician does not repeatedly observe individual bidders, the model is in-

completely identified as the econometrician can construct a distribution over valu-

ations that generates the observed distribution over bids for any fixed distribution

over bidder-types. In this case, identification relies on the testable implications in

the previous section to establish exclusion restrictions that recover identification

when the benchmark informational setting is augmented with exogenous variation

in the number of bidders.

The expanded model with heterogeneous bidder types requires some nota-

tion regarding the population distribution over bidder-types and an independence

assumption for bidder-type assignment. Define the set of K possible bidder-types

by K and denote the distribution over bidder-types, p = [p1, . . . , pK ], so that the

probability that a bidder is of type k is pk. Further, assume the assignment of

bidder-types is independent of that individual’s valuation.
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Assumption 1.3 (Independent Assignment to Bidder-Types) .

Each player i ∈ N is randomly assigned a unique bidder-type τ (i) ∈ K according

to the distribution p = [p1, . . . , pK ] independently of the number of bidders in the

auction and the player’s latent valuation.

The econometric structure now consists of the true distribution over val-

uations, FX , the set of behavioral types, K, and the distribution over behavioral

types, p. Since the set of behavioral types is defined by the economic theory, treat

K as known. The generalized definition of observational equivalence in heteroge-

neous populations becomes:

Definition 1.2 (Level-k Observational Equivalence) .

Given the set of bidder types, a structure (FX ,K, p) is observationally equivalent

to the structure (F∗,K, p∗) if:

K∑
k=1

pX,k (s)FX
(
σ−1
k,X (s)

)
= FS (s) =

K∑
k=1

p∗,k (s)F∗
(
σ−1
k,∗ (s)

)

where, p·,k (s) =
p·,kF·(σ−1

k,· (s))∑K
κ=1 p·,κF·(σ

−1
κ,· (s))

1.5.1 Identification from Repeated Individual Observation

Suppose the population of bidder-types is constant in each auction and the

econometrician observes each individual’s bidding behavior across a large num-

ber of independent auctions. This information is sufficient to characterize each

individual’s distribution over bids and, consequently, separate all bidders into K

groups of bidder-types. All that remains to establish identification in this setting

is to uniquely sort each of the observed bidder-types to a position in the behavioral

hierarchy.

In the case K = {L0T , L1T , L2T , L0R, L1R, L2R, Eqm}, analyzed in Craw-

ford and Iriberri (2007a), the L0T bidder-type as the bidder with the distribution

over bids that first-order stochastically dominates all other bidder types’ distri-

butions. This information is sufficient to identify the distribution over valuations,
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which in turn identify the bidder-types corresponding to each of the other distribu-

tions over bids by computing the implied distribution over bids for each bidder-type

and matching it to the population distribution over bids. If there are no truthful

bidders, the L1R bidder type’s linear strategy identifies this bidder-type’s distri-

bution as the bidder with the thinnest right tail. This result is due to Battigalli

and Siniscalchi (2003), who show that best responding to iteratively rationalizable

bidding functions yields bidding functions that are generally concave and weakly

decreasing in the iterations.6 Once a single distribution over bids is assigned to

the bidder-type generating that distribution, the distribution over valuations is

identified based on this association, an algorithm that applies due to the finite

number of bidder-types that is not available to Aradillas-Lopez and Tamer (2008).

This result is summarized in the next theorem:

Theorem 1.2 (Identification with Repeated Individual Observation) .

Suppose:

1. The econometrician observes distribution over bids for each individual in a

heterogeneous population of level-k bidders responding to a total population

of N possible bidders, and

2. The distribution over valuations is identified for each bidder-type k ∈ K from

the distribution over bids, FS,k, observed in homogeneous populations,

then the distribution FX is uniquely identified.

Suppose further that:

3. The econometrician observes bidding behavior for a homogeneous population of

level-k bidders responding to a total population of N∗ 6= N possible bidders

in each auction

then the level-k behavioral model and the distribution over bidder-types are jointly

testable.

6In models with a unique Level-0 bidder-type, the set of recovered distributions over bids
can be sorted into bidder-types based on their upper support. In particular, if the level k − 1
bidder-type never bids above sk−1, then the level k bidder’s support will be weakly smaller than
sk−1.
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Proof. The information set for the econometrician consists of the K distributions

over bids, FS,τ1 , . . . , FS,τK . The identification task is then to assign these types

(τ1, . . . , τK) to one of the K! possible permutations of true types. The restrictions

that accomplish this task are generated by the fact that each of the behavioral

types draw their valuations from the same distribution over valuations.

Suppose τ1 is known, then the distribution over valuations FXτ1 is identified

from FS,τ1 . For the true value of τ2 and any bid value s:

FS,τ2 (s) = FXτ1
(
σ−1
τ2

(s)
)

= FS,τ1
(
στ1
(
σ−1
τ2

(s)
))

(1.13)

Identification would fail if there were two values of τ2 that could satisfy

equation 1.13. However, if this condition were satisfied by two different types, it

would imply their distribution over bids were the same so that their bidding func-

tions are identical, in which case one of the two types is redundant in the behavioral

specification. It may also be the case that there does not exist a compatible sort,

which would reject the level-k model as mis-specified.

The testable implications for the cognitive hierarchy model with variation

in the number of bidders are analogous to those established in Athey and Haile

(2002) and discussed in section 1.4.3. As the number of bidders changes, the bidder-

type’s strategies change deterministically as a function of the distribution over bids

and the number of bidders. As such, having estimated FX in a setting with N1

bidders with distribution over bids the distribution over bids for N2 bidders, FS,N2 ,

is completely determined as long as FX itself doesn’t depend on the number of

bidders (which commonly obtains in practice). Every quantile of FS,N2 provides a

testable restriction of the level-k model.

1.5.2 Identification under Pooled Bidding Behavior

The econometrician rarely observes the information set studied in the pre-

vious subsection. In the rare cases that individual bidding data is obtainable (for

example, in sealed-bid auctions), anonymity concerns typically prevent tracking

an individual bidder across auctions and the repeated interactions among bidders
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is likely to warrant additional strategic analysis. More commonly, the econometri-

cian is capable of observing the bids of all individuals in the population without

being able to follow them from one auction to the other. In this benchmark infor-

mational setting, where the econometrician only observes sufficient information to

identify the population distribution over bids, the model is incompletely identified.

For example, the econometrician generally does not have sufficient information to

differentiate whether that distribution over bids was generated by a population

consisting entirely of truthful bidder-types or entirely of L1R bidder-types. The

next theorem establishes the incomplete identification result as even more severe

in that, for any given distribution over bids and any given distribution over types,

there exists a distribution over valuations that generates the observed distribution

over bids.

Theorem 1.3 (Partial Identification in Heterogeneous Populations) .

Suppose the econometrician observes the distribution over bids in a fixed popula-

tion of N bidders is FSN (x) and, further, that the distribution over valuations is

identified for each bidder-type k ∈ K from the distribution over bids, FSN in ho-

mogeneous populations. In this case, for any distribution over behavioral types,

[p1, . . . , pK ], there exists a distribution FX (x) generating FSN (x).

The proof in the appendix exploits the structure imposed by equation 1.13

to separate the mixture distribution FSN (x) into its component distributions over

bids for homogeneous populations. Having recovered the implied distributions of

bids from homogeneous bidder-types, Theorem 1.2 proves that there exists a unique

distribution over valuations that generates the recovered distributions over bids.

The requirement that the distribution over valuations is constant across bidder-

types is enforced through the decomposition of the mixture distribution over bids

in the first step. The unique distribution over latent valuations for any and every

hypothesized mixture of bidder-types establishes the partial identification result.

Figure 1.4 illustrates this result in the simple setting with K = {L0T , L1R},
pL0T = 0.7, and pL1R = 0.3 when the true valuations are exponentially distributed.

Without knowing p, the true distribution of valuations could correspond to any one

of the cdf’s in the figure, with the z-axis providing depth to indicate the mixture
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of bidder-types that generates the distribution over bids from the hypothesized

distribution over valuations. While using the correct distribution of bidder-types

recovers the true distribution of valuations, other distributions of bidder-types are

estimated under mis-specified behavioral models, leading to incorrect inference.

Since the true distribution over behavioral bidder-types is unidentified, the be-

havioral model only characterizes the identified set of observationally equivalent

distributions over valuations, which maps into the unit symplex defined by the set

of distributions over types.

To recover identification, suppose the econometrician observes bidding dis-

tributions when either 5 or 20 bidders participate in the auction, where all bidder-

types are drawn from a constant distribution over bidder-types, p. In this case,

only the true distribution over bidder-types will identify the same distribution over

valuations almost everywhere from both of the distributions over bids observed in

the two different population sizes. further, in settings where the level-k behav-

ioral model does not hold, the continuum of testable restrictions due to variation

in the number of bidders provides enough information to reject the model if the

intersection of the identified sets for the distribution over valuations in the two

populations is empty.

Figure 1.5 presents the examples from Figure 1.4 when the distribution over

bids is created under the same true distribution of valuations but with N = 20

bidders. As illustrated in Figure 1.6, the intersection of the identified set for

N = 5 with the identified set for N = 20 occurs at the true distribution over bidder

types, selecting a unique estimated distribution over valuations that remains stable

with changes in the number of bidders. If, however, variation in the number of

bidders also results in variation in the distribution over bidder-types or shifts in the

distribution over valuations, then the partial identification result from Theorem

1.3 applies. The following theorem summarizes this result:

Theorem 1.4 (Identification with Variation in Number of Bidders) .

Suppose:

1. The econometrician observes the distributions over bids, FSN1
and FSN2

, for a

heterogeneous population of level-k bidders responding to a total population
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of N1 and N2 possible bidders, with N1 6= N2,

2. The distribution over valuations is identified for each bidder-type k ∈ K from

the distribution over bids in homogeneous populations, and

3. For any k1, k2 ∈ K with k1 6= k2, the set:

{x ∈ [x, x] |σk1,N1 (x)− σk1,N2 (x) 6= σk2,N1 (x)− σk2,N2}
has nonzero Lebesgue measure whenever i 6= j.

then both the distribution over valuations, FX , and the distribution over behavioral

types, p, are uniquely identified. Further, the level-k behavioral model is testable

through overidentifying restrictions.

1.6 Maximum Likelihood Estimation

To begin, assume the distribution over valuations is drawn from a compact

family of distributions indexed by the infinite-dimensional parameter vector θ.

Characterizing the expected log-likelihood criteria function begins by analyzing

the data generating process, stating the likelihood of the data in cases where the

econometrician observes all bids or possibly only observes the winning bid in an

auction. Here the heterogeneous behavioral types within the structural model

gives these likelihoods a non-standard mixture structure. Consistent estimation

follows upon adopting the sieve space proposed by Bierens (2006) and Bierens and

Song (2007) using a strong uniform law of large numbers due to Artstein and Wets

(1995) to address discontinuities in the upper semicontinuous criterion function.

1.6.1 Parametric Likelihood Functions

Suppose bidder i is of the kth bidder-type, so the observed bid, si = σk (xi)

and, equivalently, xi = σ−1
k (si). Then the cumulative likelihood of having observed

a bid less than si, conditional on the true parameter vector θ is:

FS,k (si; θ) = FX
(
σ−1
k (si; θ) ; θ

)
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Differentiating with respect to si and applying the Jacobian of the inverse bidding

function, the likelihood of observing a bid equal to si for bidder-type k is:

fS,k (si; θ) =
fX
(
σ−1
k (si; θ) ; θ

)
σ′k
(
σ−1
k (si; θ) ; θ

)
To characterize this mixture structure, define an indicator that the ith bid

was chosen by a k-type bidder by dik = 1{τ(i)=k}, which can be stacked into the

vector di = (di1, . . . , diK)′. The likelihood for the ith observation conditional on

the ith bidder’s type can then be stated in either of two forms:

f (si; di, θ) =
K∑
k=1

dikfS,k (si; θ) =
K∏
k=1

fS,k (si; θ)
dik

Since the bidder’s type is independent of their valuation, the distribution for

the type generating the ith bid is a multinomial random variable with distribution:

pk (θ) = Pr (τ (i) = k) =
K∏
k=1

pdikk

Combining these two results gives the distribution of the ith bid conditional on

the distribution over valuations:

f (si; θ) =
K∏
k=1

pdikk fS,k (si; θ)
dik (1.14)

The unconditional likelihood of observing all bids then provides the basis for the

expected log likelihood that serves as the criterion function for maximum likelihood

estimation:

LT (θ; s1, . . . , sT ) =
T∏
i=1

K∏
k=1

pdikk fS,k (si; θ)
dik (1.15)

Ψ̂T (θ; s1, . . . , sT ) =
T∑
i=1

K∑
k=1

dik ln pk + dik ln fS,k (si; θ) (1.16)

In a panel sample with repeated observations of an individual following a
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constant bidding strategy, the likelihood has additional structure reflecting the

additional information about that bidder’s type. Denoting the sample of Ti bids

for individual i by Si = {Si,1, . . . , Si,Ti}, the probability of observing a sample of

bids si = {si,1, . . . , si,Ti} given τ (i) = k is:

fS,k (si; θ) =

Ti∏
t=1

fX
(
σ−1
k (si; θ) ; θ

)
σ′k
(
σ−1
k (si; θ) ; θ

)
Since this is the only basic definition that changes, the likelihood for the full bidding

sample remains as stated in equation 1.15.

In the benchmark setting, the econometrician only observes the winning

bid, as in a Dutch descending auction where the auction ends once the winning

bidder claims the object at the announced price. The distribution of winning bids

is given by the distribution for the maximum bid, which will depend on the actual

mixture of types in each round. As such, computing the unconditional distribution

for winning bids requires summing over all possible mixtures of the K bidder-types.

Defining FSN ,k as the distribution over bids for the k-th bidder-type in an auction

with N participating bidders, the resulting distribution is most readily stated in

terms of cumulative densities:

FWN
(w; θ) = (1.17)

N∑
n1=0

N−n1∑
n2=0

· · ·
N−

∑K−2
k=1 nk∑

nK−1=0

(
N

n1

)(
N − n1

n2

)
· · ·
(
N −

∑K−2
k=1 nk

nK−1

) K∏
k=1

pnkk FSN ,k (w; θ)nk

Note that the distribution over winning bids is a continuous polynomial in

the distribution over bidder-types implying the expected value of the winning bid,

or the expected revenue from the auction, is also continuous in the distribution

over bidder-types. The distribution in 1.17 plays a central role in characterizing

how the optimal reserve price is affected by the distribution over bidder-types.
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1.6.2 Semi-Nonparametric Consistent Estimation

The parametric distributional analysis defines a semi-nonparametric maxi-

mum likelihood (SNP-ML) sieve-based estimator, with consistency following from

techniques surveyed in Chen (2007). Consistency requires four key conditions:

Identification, Compact Parameter Space, A Uniform Strong Law of Large Num-

bers (USLLN) for the finite-sample Criterion function, and a truncation algorithm.

Sections 1.4 and 1.5 establish identification, so there is a unique maximum (θ0, p0)

to the population criterion function:

Ψ (p, θ) = E [dk ln pk + dk ln fS,k (S; θ)| p, θ] (1.18)

This subsection begins with a review the Legendre polynomial sieve space

and compactness results from Bierens (2006) before introducing the USLLN for

the criterion function in equation 1.18 and verifying consistency for SNP-ML es-

timator. The consistency argument closely follows Bierens (2006)’s analysis of

interval-censored mixed proportional hazard models, but is complicated by the

upper semicontinuous log-likelihood objective function. As such, neither the US-

LLN in Bierens (2006)’s initial treatment nor that in Bierens and Song (2007)’s

generalization of Jennrich’s USLLN apply. However, adapting the USLLN from

Artstein and Wets (1995), who use the notion of weak epi-convergence to establish

uniform convergence of functions, is a straightforward exercise.

Legendre Polynomial Sieve Space

Consistency for extremum estimators typically requires the parameter space

to be a compact metric space to avoid measurability problems. Further, sieve

spaces require a set of orthogonal basis functions that avoid the ill-posedness prob-

lem in which a single function may have multiple (almost sure) equivalent repre-

sentations within a truncated set of basis functions. Bierens (2006) and Bierens

and Song (2007) present such a space based on the Legendre polynomials, which

represent an orthonormal basis for the set of functions on the unit interval. To

address the range of the sieve space, Bierens and Song (2007) map the support of
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the distribution over valuations to the unit interval using an absolutely continu-

ous distribution function such as the exponential cumulative density function with

unbounded support. Embedding the support for valuations in the unit interval

addresses measurability for the polynomial sieve by bounding the arguments of

the density function. Given the invertible mapping G : [0,∞] → [0, 1], there is

some distribution H over the unit interval so that the cumulative distribution and

probability density functions for valuations as:

FX (x) = H (G (x)) (1.19)

fX (x) = h (G (x)) g (x)

For computational purposes, instead of using a non-linear transformation

of the valuations, the following assumption embeds the set of possible valuations

in the unit interval using a linear transformation:

Assumption 1.4 (A Priori Bounded Support) There exists upper and lower

bounds for valuations M > x > x > M known to the econometrician a priori. The

support for valuations is mapped onto the unit interval using the linear transfor-

mation:

G (x) =
x−M
M −M

g (x) =
1

M −M

In practice, these bounds have little effect on the estimation process, though

M should be less than the minimum observed bid. Having mapped the support

for valuations into the unit interval, Bierens’ and Bierens & Song’s sieve space

based on constrained Legendre polynomials can approximate the distribution H.

The linear mapping into the unit interval coupled with the Legendre polynomial

sieve facilitates computation of the maximum likelihood estimator by admitting

analytical solutions for a number of the formula that enter into calculations of the

equilibrium bidding function. The detailed representation of the sieve space and

results establishing compactness appear in Appendix 1.A.2 for interested readers.
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Maximum Likelihood Estimator Consistency

Consistency requires verifying three key convergence properties for finite-

sample criterion functions. The uniform strong law of large numbers for the crite-

rion function is a special case of the general uniform strong law of large numbers

in Artstein and Wets (1995). Convergence of the criterion function at its optimum

follows from the USLLN and continuity of the criterion function at the optimum.

Lastly, Bierens and Song (2007) show that the criteria function’s optimum over a

sequence of constrained sieve spaces converges to the the global optimum of the

unconstrained sieve space. These results are summarized in the following lemma.

Lemma 1.3 (Upper Semicontinuous Random Function Convergence) .

a. Let Θ be a compact metric space with metric ρ (θ1, θ2), and let Ψt (θ) , t =

1, 2, . . . , T, . . . be a sequence of i.i.d. random, real valued, upper semicontin-

uous functions on Θ. If, in addition, for each θ0 ∈ Θ, there exists an open

set Q0 ⊂ Θ and a constant ξ0 <∞ such that

sup
θ∈Q0

Ψ1 (θ) < ξ0 a.s.

then

sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
j=1

Ψj (θ)−Ψ (θ)

∣∣∣∣∣→ 0 a.s.

b. Suppose further that Ψ (θ) is an upper semicontinuous real function on Θ, de-

fine Ψ̂N (θ) = 1
N

∑N
j=1 Ψj (θ), and let θ̂N = arg maxθ∈Θ Ψ̂N (θ) and θ0 =

arg maxθ∈Θ Ψ (θ). Then for N →∞,

Ψ
(
θ̂N

)
→ Ψ (θ0) a.s.

If θ0 is unique, then ρ
(
θ̂N , θ0

)
→ 0 a.s.

c. Let {Θn}∞n=0 be an increasing sequence of compact subspaces of Θ for which the

computation of

θ̂n,N = arg max
θ∈Θn

Ψ̂N (θ) (1.20)
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is feasible. Suppose that for each θ ∈ Θ there exists a sequence θn ∈ Θn such

that limN→∞ nN =∞, and denote the sieve estimator involved by θ̃N = θ̂n,N .

Then ρ
(
θ̃N , θ0

)
→ 0 a.s.

Proof. The conditions in statement (a) are strictly stronger than the sufficient

conditions for the uniform strong law of large numbers in Artstein and Wets (1995)

Theorem 2.3 but are easily verified to apply to the level-k model. The remaining

results follow immediately from combining this strong law of large numbers with

the arguments in Bierens and Song (2007), Theorems (1) - (3).

These convergence results provide the basis for SNP-consistent estimation of

the level-k auction model. Given compactness results for the Legendre polynomial

sieves in lemma 1.4, let the distribution over valuations be indexed by H, the

equivalent distribution over the unit interval from equation 1.19 that admits a

Legendre polynomial representation. Redefine θ = [p′, H]′ to join the distribution

over types and distribution over valuations into a single parameter vector belonging

to a metric space, Θ, with the metric:

ρ (θ1, θ2) = max

[
max |p1 − p2| , sup

0≤u≤1
|H1 (u)−H2 (u)|

]
(1.21)

The population criterion function is given by Ψ (θ) from equation 1.18, with the

sample counterpart Ψ̂T (θ) from equation 1.16.

Since the valuations are bounded above and all players follow continuously

differentiable, strictly monotonic strategies, there are no atoms in the distribution

over bids and the criterion function satisfies the local uniform bound required for

the uniform strong law of large numbers in lemma 1.3, part a. The upper semi-

continuity in lemma 1.3, part b, follows by similar logic, with discontinuities due to

bidder-types having different supports for their distributions over bids. Finally, the

convergence properties required for lemma 1.3, part c, are satisfied given the condi-

tions for lemma 1.4 in Appendix 1.A.2 where ΘN = {θ ∈ Θ|δN+j = 0, j = 1, 2, . . .}.
The identification results of the previous sections establish the uniqueness of the

optimum to the population criterion function, giving the following consistency

result:
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Theorem 1.5 (Consistency of SNP-ML Estimator) .

Suppose Assumptions 1.1 - 1.4 hold, Theorems 1.1, 1.2, or 1.4 apply so that the

level-k auction model is identifed, and Lemma 1.4 applies. Let nN be an arbitrary

subsequence of n such that limN→∞ nN =∞, then for the estimator θ̃N defined in

equation 1.20, ρ
(
θ̃N , θ0

)
→ 0 a.s.

1.6.3 Introducing Auction-Specific Covariates

The experimental ideal informational setting for estimating the auction

model would be to observe bidding behavior in a series of identical auctions. While

these settings do not obtain in empirical work, a common practice controls for

auction-specific heterogeneity by allowing the distribution over valuations to de-

pend upon a set of observable auction-specific covariates. In fact, the link between

observable features of the object at sale and the distribution over valuations is fre-

quently the primary concern of the empirical exercise.7 For additional tractability,

assume a separable structure for individual valuations so that:8

Assumption 1.5 (Separable Auction-Specific Heterogeneity) Given a set

of auction-specific covariates, Zt, bidder i’s valuation for the object at auction, Xit

is given by:

log ((Xit) = γ′Zt + Uit

where Uit|Zt ⊥⊥ Ujt|Zt,∀i 6= j.

The linear separable form of auction-specific heterogeneity can be relaxed

and is made here for numerical and notational parsimony that allows simply ap-

pending γ to the parameter vector θ. However, the introduction of covariates does

7Note that I do not address unobserved heterogeneity across auctions here. A great deal
of research had focused on developing strategies for addressing auction-specific heterogeneity
in estimating auctions. A number of works, including Bajari and Ye (2003) and Hong and
Shum (2002) link unobserved heterogeneity tot he number of bidders in the auction. Haile,
Hong, and Shum (2003) use multiple bids observed in each auction to control for auction specific
heterogeneity, a strategy further developed by Krasnokutskaya (Forthcoming - 2009), An, Hu,
and Shum (2009), and Hu, McAdams, and Shum (2009). It is likely that a similar technique
could be adapted to level-k auctions but such an analysis is beyond the scope the current work.

8While this is a relatively restrictive assumption, some novel tests have recently been developed
by Lu (2009) using generic characteristic revealing functions associated with tests for conditional
independence that allow for testing this restriction.
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slightly affect consistenty since the support for the distribution over bids now de-

pends on the parameters themselves, introducing a discontinuity at the optimum

of the finite-sample objective function. The approach from Donald and Paarsch

(1996) addresses this issue by modeling the relationship between the support for

bids and parameters of interest through a set of additional constraints that adapt

naturally to the sieve specification. For exposition, assume the lower support of

the distribution over bids is zero and define the upper support for the distribution

over bids conditional on covariates Zt = z ∈ Z and parameter vector θ:

s (θ, z) = max
k∈K

σk (x; θ, z)

To ensure all observed bids fall in the support of the distribution over bids

conditional on auction covariates and the parameter vector, restrict the finite-

sample parameter space to:

ΘN,T = {θ ∈ ΘN |0 ≤ St ≤ s (θ0, z) t = 1, 2, . . . , N} (1.22)

Lastly, additional assumptions ensure that the convergence result from

Lemma 1.3, part c, apply and the retrictions in equation 1.22 are not binding

asymptotically. As in Donald & Paarsch’s analysis, these assumptions take the

form of a continuity condition on the upper support of bids and a restriction of

the behavior for the distribution over bids near its upper support. From Paarsch

and Hong (2006):

Assumption 1.6 (Restriction on Bid Distribution Upper Support) .

a. For any θ ∈ Θ, s (θ, z) is continuous in z on Z, and,

x < inf
z∈Z

s (θ, z) < sup
z∈Z

s (θ, z) <∞

b. For any ε > 0,

inf
z∈Z

Pr [S > s (θ0, z)− ε] = η (ε) > 0
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Combining Paarsch and Hong (2006)’s Theorem 4.3.1 with Bierens and

Song (2007)’s Theorem 3 establishes the convergence of the truncated sieve space

to the limiting sieve space, with the proof of theorem 1.5 following immediately.

1.6.4 Addressing Computational Challenges

The level-k auction model model results in two key computational chal-

lenges. First, simply computing the likelihood requires solving for extremely

non-linear bidding functions and inverse bidding functions that preclude analyti-

cal solutions. Second, the mixture-of-types structure of the problem requires an

expectation-maximization (EM) algorithm to maximize the likelihood. The stan-

dard EM algorithm is computationally infeasible given the challenges associated

with maximizing the expected likelihood and so I propose a feasible generalized

EM algorithm with much faster convergence properties.

The primary computational challenge in implementing maximum likelihood

methods for the equilibrium auction model is computing the equilibrium bidding

and inverse bidding function. While the earlier equilibrium identification analysis

worked directly with first-order conditions, it is well known that the equilibrium

bidding function takes the form:

σ (x) = x−
∫ x
x
FX (u)N−1 du

FX (x)N−1
(1.23)

The integral here presents the crux of the computational challenge, particularly

when inverting the equilibrium bidding function. For instance, if FX is a 5-th

order polynomial and N = 11, the analytical solution to the integral would re-

quire computing an 510-th order polynomial. As such, even though the analytical

solution exists, numerical stability precludes its calculation in the presence of a

large number of bidders or when the order of the polynomial sieve becomes large.

Further, as the order of the polynomial grows, the number of terms in the analyt-

ical solution grows to the point where calculation becomes infeasible. Numerical

stability requires limiting the data sample to focus on auctions with a relatively

small number of bidders, as there is simply no other way to limit the maximal order
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of the polynomial. Once the order of the polynomial becomes sufficiently large,

then computing the integral using quadrature provides a faster computation while

retaining remarkable precision. Quadrature is especially appealing when there is

a large number of bids that need to be inverted, as this allows partitioning the

integral into very small segments.

Due to the latent mixture model in level-k auctions, the log-likelihood ob-

jective function is not directly observable. In standard mixture models, the expec-

tation maximization (EM) algorithm addresses this nonobservability by treating

the latent type-class as an unobserved variable, maximizing the expected likelihood

through a series of improved approximations to the unobserved likelihood. This

algorithm is computationally demanding even in settings where the arguments that

maximize the likelihood can be calculated through closed form solutions. In the

present application, analytical solutions exist for the distribution over types that

optimizes the expected likelihood conditional on the distribution over valuations,

but no analytical solutions exist for for the likelihood-maximizing distributional

parameters, requiring a cumbersome numerical optimization procedure.

To address this issue, I propose a generalized expectation maximization

(GEM) algorithm that partitions the likelihood maximization problem into two

sub-problems: one for which quickly computable analytical solutions for the optima

are available and one that requires a very slow numerical optimization step. This

novel GEM algorithm maintains convergence to the optimum of the expected log

likelihood, but by invoking the optimization step only after all other parameters

have converged, greatly increases the computational efficiency of the algorithm.

Beyond the present auction model, this GEM algorithm could be applied to any

setting where the parameters to be estimated can be partitioned into a set for

which analytical solutions are available and a set for which numerical methods are

required to compute. The technical details for implementing the algorithm are

discussed in detail in Appendix 1.A.4.
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1.6.5 Monte Carlo Simulations

Two Monte Carlo Simulation exercises evaluate the performance of maxi-

mum likelihood estimation in the level-k model. The first exercise draws valuations

from a log-normal distribution with mean parameter, µ = 0 and standard error

parameter σ = 0.5 truncated at the 99.99th percentile to ensure bounded support.

Estimating the level-k auction model uses a correctly-specified parametric model

having observed 60, 120, or 300 bids from simulated bidders competing in auc-

tions with N ∈ {3, 4, 5, 6, 12} for total sample sizes of 300, 600, and 1,500 bids.

The second exercise draws valuations from a Legendre Sieve distribution with unit

support and parameter vector θ = (−0.25,−0.05) to test the sieve estimator in a

properly specified model with N ∈ {2, 3, 4} for a total sample of 600 bids. Both

simulations implement a model with three behavioral types: Equilibrium, Random

Level-1, and Random Level-2 representing 20%, 60%, and 20% of the population,

respectively.

Table 1 presents the estimation results from a set of 100 simulations under

the log-normal specification. The estimator retains consistency with the MSE di-

minishing at roughly the expected rate as the number of observations increases.

However, it is worth noting that, while estimates are very precise relating to the

parameters governing the distribution over valuations, the estimates for the dis-

tribution over types are still quite noisy, maintaining a standard deviation around

10% even with 1,500 observations. The convergence properties of the Legendre

sieve estimator are quite similar.

These simulations indicate that, while estimates the distribution over val-

uations have reasonable accuracy and precision, it is difficult to get statistically

significant findings differentiating the distribution for models of bidders that are

more sophisticated than the L1R bidder type. The weak estimation highlights

the importance of allowing for partial identification for the model, motivating the

focus in the next section on developing applied mechanism design strategies that

are robust to unidentified distributions over bidder-types. Also, the weak separa-

tion among higher-order types indicates the most relevant empirical distinction is

between higher-order bidding behavior where individuals account for others’ bid
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shading and lower-order bidding behavior responding to uninformative model of

others.

1.7 Expected Revenue & Optimal Reserve Price

One of the primary applications in analyzing auction data is to facilitate

mechanism design decisions such as optimally setting the reserve price or choosing

between a first and second price auction. Crawford, Kugler, Neeman, and Pauzner

(2009) extend the Crawford and Iriberri (2007a) model to auctions with a reserve

price. Their analysis illustrates the effects of behavioral agents on optimal auction

design with representative examples by focusing on simple settings with two bidders

when the mechanism designer knows these bidders’ types. Appendix 1.A.5 develops

this analysis further, characterizing expected revenues in auctions with more than

two bidders under a general distribution over valuations where the composition of

bidder-types in the population is unknown and may be unidentified.

The application here simply identifies the optimal reserve price in a first-

price auction, which is quite narrow in scope relative to designing the revenue-

maximizing mechanism. Since revenue equivalence fails in the presence of level-

k bidders, Myerson (1981)’s optimal auction result does not apply so there is

no reason to expect a first-price auction with reserve prices to be an optimal

mechanism. To illustrate this, Crawford, Kugler, Neeman, and Pauzner (2009)

present an exotic mechanism that generates greater expected revenues than is

attainable in the first price auction with reserve price. Focusing on a relatively

simple deviation from the original mechanism used to estimate the model provides

greater confidence in the counterfactual analysis, in particular regarding bidders’

response to changes in the reserve price. Implementing dramatic changes in the

structure of bidding and allocation rules could affect players’ participation decisions

as well as their position in the behavioral hierarchy. In this case, counterfactual

analysis would be misleading if it were based on the distribution over valuations

and bidder-types compatible with a non-binding reserve price.

This section uses the data generating process for the winning bid from
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equation 1.17, treating the reserve price as a parameter in this distribution, to

analyze the problem of setting a minimum reserve price for a risk-neutral seller

that maximizes expected revenues when the number of participating bidders and

the distribution over bidder-types is known. When the distribution over types is

unidentified, the expected revenue at a given reserve price is partially identified,

belonging to a compact, convex set, so that the optimal reserve price belongs to a

compact identified set.

1.7.1 Calculating the Optimal Reserve Price

Given the analysis in Crawford, Kugler, Neeman, and Pauzner (2009) and

in Appendix 1.A.5 defining the behavioral model, simply rewrite equation 1.17

with the reserve price, denoted r, as an additional parameter in the distribution

for the value of the winning bid as fW (w; p, θ, r).

The expected utility to a seller who attaches the value vs to the object at

auction is given by:

E [Us|r] = vsFX (r; θ)N +

∫ x

r

wfW (w; p, θ, r) dw (1.24)

Then first order conditions for maximizing the seller’s welfare are:

vsNFX (r; θ)N−1 fX (r; θ) +

∫ x

r

w
δfW (w; p, θ, r)

δr
dw − rfW (r; p, θ, r) = 0

which, similar to the Myerson (1981) analysis gives an optimal reserve price as the

solution to a fixed point problem:

r = vs
NFX (r; θ)N−1 fX (r; θ)

fW (r; p, θ, r)
+

∫ x
r
w δfW (w;p,θ,r)

δr
dw

fW (r; p, θ, r)
(1.25)

Equation 1.25 provides an implicit solution for the optimal reserve price

given the distribution of bids in 1.17. However, in practice simulation methods that

choose the optimal reserve price to maximize the conditional expected revenues in

1.24 are well-adapted to the problem.
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1.7.2 The Optimal Reserve Price with Non-Identification

When there is no variation in the number of bidders or when that variation

is endogeneous, the exclusion restrictions establishing identification no longer ap-

ply. To address reserve pricing in this setting, first assume that the seller knows

the unconditional distribution over bidder-types with certainty, as in the previous

section. This exercise can be repeated for any distribution over bidder-types with

the optimal reserve prices for every such distribution characterizing the identified

set for the optimal reserve price given the available information.

To establish compactness of the identified set for the optimal reserve price,

note that the right hand side of equation 1.25 is continuous in changes to the

distribution over bidder-types and bounded away from zero due to the regularity

conditions that ensure continuously differentiable bidding strategies for all bidder-

types. First, as can be verified by observing that all elements in equation 1.17

are continuous polynomials in pk, fW (r; θ, r) is continuous in the distribution over

bidder-types. Similarly, as is shown in Crawford, Kugler, Neeman, and Pauzner

(2009), each of the level-k bidder-types behavioral strategies are continuous in the

reserve price. As such, δfW (w;θ,r)
δr

is continuous in pk. Finally, searching over the set

of bidder-types reveals the maximum and minimum reserve price that characterize

the identified set.

Theorem 1.6 (Optimal Reserve Price with Non-Identification) o

In the level-k auction model where the distribution over bidder-types is not identi-

fied, the optimal reserve price characterized by equation 1.25 belongs to a partially

identified compact set.

1.7.3 The Ambiguity Robust Optimal Reserve Price

The selection of an optimal reserve price in a partially- or incompletely-

identified model can be viewed as an exercise in decision making under ambiguity.

The axiomatic choice framework introduced by Gilboa and Schmeidler (1989) ra-

tionalizes a robust decision rule that maximizes expected utility generated from

the state in the identified set that minimizes expected utility conditional on the



47

chosen action.9

r∗A = arg max
r

{
min
p
vsFW (r; p, θ, r) +

∫ x

r

wfW (w; p, θ, r) dw

}
(1.26)

These preferences are readily applied to estimating the ambiguity-robust

optimal reserve price in incompletely-identified models. For a given reserve price,

the distribution over bidder-types generating the minimum expected utility to the

seller will be degenerate, placing all mass on the single bidder-type that minimizes

the seller’s expected revenue at that reserve price. As illustrated in Crawford, Ku-

gler, Neeman, and Pauzner (2009), while the bidder-type generating the minimum

expected revenue may depend on the distribution over valuations, this regularity

feature facilitates computing the min-max utility. Further, the optimal reserve

price in heterogeneous populations corresponds to the optimal reserve price for

the homogeneous population that minimizes the expected revenue, as in the next

theorem.

Theorem 1.7 (Ambiguity Robust Optimal Reserve Price) .

Suppose the distribution over bidder-types is not identified in the level-k auction

model. The unique ambiguity-robust optimal reserve price maximizes the seller’s

expected revenue when bidders are drawn from a homogeneous population of the

bidder-type k ∈ K that minimizes the seller’s revenue.

While beyond the scope of the current exercise, this result can be readily

extended to other incompletely identified models of auction behavior. In particu-

lar, a direct corollary of theorem 1.7 applies to setting optimal reserve prices using

the risk-neutral model of bidding behavior. For example, under the HARA utility

specification with non-risk loving preferences, the risk-neutral model gives rise to

the most aggressive bid-shading in equilibrium, effectively minimizing the expected

9Axiomatic treatments of decision in the presence of ambiguity date to Savage (1954), coming
into stark focus with the Ellsberg (1961) paradox. Recent advances, in this area, including
Klibanoff et al. (2005), Maccheroni, Marinacci, and Rustichini (2006), and Klibanoff, Marinacci,
and Mukerji (2009) have extended Gilboa and Schmeidler (1989)’s results to allow for smooth
preferences over ambiguity. These more complicated preferences are not as easily adapted to the
current exercise, which is greatly simplified by the corner solutions imposed within the objective
function by minmax preferences.
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revenue over possible bidder utility-types. This result indicates that optimal re-

serve pricing strategies based on risk neutral-bidding behavior satisfy a robustness

property even though the risk-preferences may be misspecified in the population.

1.8 Optimal Reserve Pricing in USFS Timber

Auctions

With well established publicly available data, timber auctions sponsored by

the US Forestry Service have received a great deal of attention in the literature

on empirical methods for optimal mechanism design. This setting, then, provides

an ideal environment to compare the mechanism design implications of a level-k

behavioral model for IPV first price auctions with equilibrium results.

I use data provided by Philip Haile that has been used extensively in em-

pirical studies of auctions. Early studies looking at this data include Baldwin,

Marshall, and Richard (1997), who provide a detailed institutional analysis of the

auctions in testing for collusion among bidders. More recent studies in empiri-

cal industrial organization by Athey and Levin (2001), Athey, Levin, and Seira

(2008), and Haile and Tamer (2003) have focused on mechanism design issues in

USFS timber auctions. Haile (2001) looks at the role of resale in affecting valua-

tions for timber auctions and Haile, Hong, and Shum (2003) use USFS data to test

for common value components in bidder valuations. Campo, Guerre, Perrigne, and

Vuong (2000) and Lu and Perrigne (2008) use USFS auction data to characterize

risk aversion within the bidding population.

The data treatment is based on the results from Haile, Hong, and Shum

(2003), whose findings support the IPV model for sealed-bid timber auctions of

scaled sale contracts. In these contracts, logging companies pay a price for timber

harvesting rights based on the actual timber harvested, greatly reducing common-

and affiliated-value components in determining the individual firm’s valuation.

The sample focuses on sealed bid sales from 1982-1996 that had between two and

four bidders, excluding salvage sales, tracts set aside for sale to small businesses,

and auctions that had more than 4 bidders. Bids from auctions in the highest
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and lowest 1% quantiles of appraised values are trimmed from the sample, though

this had little impact on the results. For completeness, Table 1.2 presents sum-

mary statistics characterizing the entire sample of bids, though only 744 of these

observations are selected after trimming.

Figure 1.7 presents the estimated distributions over valuations under homo-

geneous bidder-type specifications. Panels A and B present the estimation results

for the level-k bidder-types estimated using several different specifications for the

polynomial order of the SNP-ML Estimator. The patterns across estimation mod-

els are largely as expected. The L1R bidder-type’s distribution over valuations in

Panel A is scaled and left-shifted relative to the distribution over bids, with the

SNP-ML estimator converging quickly to the kernel based estimator based on 1.7.

The Equilibrium bidder-type’s distribution over valuations in Panel C is estimated

using the Guerre et al. (2000) estimator, with a substantially fatter tail than ei-

ther of the distributions recovered from a model that assumes Level-k bidder-types.

This fatter tail is consistent with the implication that less sophisticated bidders

would be over-bidding relative to the equilibrium bidder-types.

The L2R bidder-type’s distribution displays an interesting feature related

to the potential for overfitting the model that is not be captured directly through

the likelihood ratio. In particular, the L2R bidder model fits the data by making

the derivative of the bidding function as small as possible near the mode of the

distribution over valuations, creating a spike in the likelihood. This spike is miti-

gated by the assumption that bidding behavior is strictly monotonic, as formalized

in Lemma 1.1, though explicitly incorporating this restriction into the estimation

procedure is not entirely trivial. Henderson et al. (2008) look at ways to enforce

monotonicity in the estimation process for auctions under the equilibrium behav-

ioral model based on kernel density estimation methods, though these are not

immediately applicable to the sieve estimation strategy. Another approach would

be to implement a constrained sieve estimator or to use a penalized likelihood

criterion function as the basis for estimation.

The last panel plots the identified set implied by the observed distribution

over bids. This panel illustrates the result that, even when the distribution over
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valuations is not identified, the bounds on the distribution over valuations are quite

informative. This finding is consistent with simulation evidence that the ability

to empirically separate types is relatively weak while not necessarily hindering

meaningful inference on the primitives of the auction model.

Turning towards the optimal reserve price begins by briefly addressing the

specification of the truncation algorightm for the SNP-ML. Model Selection Statis-

tics for the SNP-ML estimator of the distribution over bids in homogeneous popu-

lations are presented in Table 1.3. Likelihood statistics generally favor the Level-2

Random bidder model with a very flexible distribution over bids. However, the

visual evidence of over-fitting for this model is too great to ignore, so the analysis

proceeds with the distribution over valuations estimated from the Level-2 Random

bidder-type truncating to a 5th order Legendre polynomial.

Figure 1.8 presents counterfactual evidence on the effect of changing the

reserve price for a population of N = 4 bidders. First, note that the bidder

bidding strategies separate as expected, with more aggressive bid shading by the

higher-level types. The Level-1 Random bidder type is particularly insensitive

to the reserve price, which is consistent with that bidder-type’s insensitivity to

the distribution over valuations in choosing their bid shade. The Level-2 and

Equilibrium bidder-types show significant strategic responses to the reserve price,

as they no longer account for bid shading behavior below the reserve price.

The effect of the reserve price on the revenue from the auction is depicted

in Figure 1.9, which plots the expected revenue from the auction at various levels

of the reserve price. As is evident in Figure 1.9, the identified set for the optimal

reserve price is quite large, driven mainly by the Level-1 Random bidder type’s lack

of sensitivity to the reserve price. Indeed, the optimal reserve price in an auction

with a population entirely formed of Level-1 Random bidder-types would be equal

to the seller’s own valuation for the good. This feature helps to rationalize the

fact that observed reserve prices in practice seem “too low” and non-binding in

empirical analysis, as the cautionary reserve price could reflect skepticism on the

part of the seller that higher-order bidder types dominate the population.

As discussed in the previous section, the homogeneous population consisting
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entirely of bidder-types who follow the most aggressive bid shading strategy also

minimize expected revenues. To this ends, the ambiguity robust optimal reserve

price remains the optimal reserve price estimated under the equilibrium bidding

model. Worth noting, however, is that the optimal reserve price is quite far out

in the tail, resulting in a nearly 70% chance that the auction will close without

a buyer. For this reason, previous researchers have argued that the non-binding

reserve price is likely due to non-revenue motives related to forest management

and resource development. The analysis here implies uncertainty regarding the

bidders’ strategic response to the reserve price also rationalizes this policy.

1.9 Evaluating Bidding Behavior in the Field

Within a controlled experimental setting, the questions of identification

and estimation are moot given that the distribution over valuations is controlled

by design and does not need to be inferred from the bidding behavior. However,

incorporating behavioral models as the basis of the econometric model not only in-

sures against model-misspecification, but also provides a mechanism for evaluating

the external validity of behavioral patterns observed in the laboratory.

As Levitt and List (2007) argue, field studies provide valuable external

validation for experimental findings that characterize the economic impact of non-

equilibrium behavior outside of highly controlled settings. While existing empirical

studies fail to reject the BNE behavioral model, these results lack power against

unstructured alternatives and can be enhanced by directing power toward behav-

ioral alternatives. To test the equilibrium behavioral hypothesis using auctions in

the field, I introduce a novel set of data representing bidding behavior in sealed bid,

first price auctions for vintage computers held over the internet by the Alameda

County Computer Resource Center (ACCRC) and administered by Sellam Ismail.

These auctions are presently ongoing and so I hope to expand the data set beyond

the very small sample of 186 bids for 55 items from 53 different bidders. As such,

it is best to interpret this exercise as a pilot for a more involved field experiment

evaluating individual sophistication in the field.
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By tracking individual bidders across auctions, the structure of the ACCRC

data greatly aids the strength of identification. The most interesting problem to

study here is the behavioral patterns within this population relative to other eco-

nomic settings such as timber auctions. While many of the bidders are intimately

familiar with the goods at auction, they are not professionals with a great deal of

experience in auctions. As such, bidder sophistication in this setting could differ

substantially from the timber auction setting where bids are chosen by professionals

with experience both with the auction and other bidders.

As with collectible antiques, there may be some common value component

to the bidding based on the potential resale value of the vintage computers. To

control for this common value component, the analysis incorporates the estimated

market values calculated prior to the auction and made publicly available to all

bidders by Mr. Ismail. As such, while a more robust treatment of the issue is

warranted, individual valuations can be defended as independent conditional on

this public information.

Table 1.4 reports summary statistics for the ACCRC bidding data sample.

Fitting the sample with the Legendre sieve estimator results in recovering the dis-

tribution over valuations displayed in Figure 1.10 for the 3rd through 7th order

sieve polynomial. Table 1.5 reports the estimated distribution over bidder-types

along with the expected log likelihood value and the Bayesian Information Criteria

(BIC) for each of these distributional specifications. These pilot results are some-

what surprising, especially considering the relatively inexperienced bidders in the

auctions. Under each specification, the level-k behavior model shows the equilib-

rium bidder-types represent almost the entire population of bidders, with a simple

BIC test selecting for the polynomial order of fit selects a 6th order polynomial.

This pilot study could be extended into a broader field experiment testing

behavior in auctions in the spirit of Lucking-Reiley (1999) or List and Lucking-

Reiley (2000) using online auctions. Given an appropriate market, such as that for

baseball cards or other collectibles when a secondary market provides information

to control for potential resale values, one could test a variety of auction formats

and quickly accumulate a large amount of data on how individuals in the field play
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auctions. With a slightly more structured market, this setting could controlling

for challenges to identification such as endogenous participation.

1.10 Conclusion

This paper proposes a structural econometric model for analyzing auction

data when bidder behavior is governed by a level-k behavioral model, establishing

identification conditions for the model and developing a nonparametric consistent

estimation strategy. I apply the model to field studies evaluating the level of so-

phistication by bidders in various settings and to the applied mechanism design

problem of finding the optimal reserve price in first price auctions with hetero-

geneous non-equilibrium behavior. These results underscore the degree to which

behavioral misspecification can affect counterfactual analysis.

A possible extension of these results could address heterogeneity in both

strategic beliefs and risk aversion by combining information from multiple auction

mechanisms. For example, Lu and Perrigne (2008) leverage a second-price auction

where an individual’s decision is free of strategic and risk considerations to identify

the distribution over valuations and a first-price auction to identify the bidder’s

utility functions. Another approach might be to analyze a model similar to Campo,

Guerre, Perrigne, and Vuong (2000) and exploiting random variation in the reserve

price to pin down sufficient quantiles of the distribution over bids to identify the

distribution over bidder-types. Li (2005) and Li and Perrigne (2003) consider the

identification problem with random reserve prices, though since the reserve prices

are hidden, Li (2005) and Li and Perrigne (2003) show the uncertainty introduced

to the bidding problem complicates identification rather than generating additional

information on bidding characteristics in the population.

The mechanics underlying the SNP-ML consistency proof invoke distribu-

tional epiconvergence, which can generate asymptotic distributional results includ-

ing central limit theorems. Delving deeper into the weak epiconvergence results

may characterize the distribution for estimated parameters and statistics to test

the behavioral models. Further, these results could hold under relaxed assump-
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tions, in particular relating to assumption 1.6. Further, these results would not

rely on discretizing the support for auction-specific covariates, providing general

asymptotic distributional results that would also be useful in addressing finite-

dimensional problems as well.

Adopting non-equilibrium behavioral economic model for structural econo-

metric analysis could yield interesting insights in other strategic environments,

such as the estimation of static and dynamic games often studied in empirical

industrial organization. One such application could develop a level-k behavioral

econometric model for static entry games in markets, such as those pioneered by

Bresnahan and Reiss (1991) and Berry (1992). Ciliberto and Tamer (Forthcoming

2009) analyze this problem for airlines when the equilibrium is partially identi-

fied, finding that the equilibrium prediction underestimated coordination among

airlines in reaction to a change in regulatory policy. Several authors, including

Rapoport, Seale, and Winter (2002) and Camerer, Ho, and Chong (2004) show

that players in the lab often achieve better ex-post coordination than equilibrium

predicts and that this coordination is consistent with a cognitive hierarchy model.

Using the Aradillas-Lopez and Tamer (2008) approach to estimating games based

on rationalizability assumptions, akin to the analysis in Collard-Wexler (2008)

or in a dynamic context following Aguirreagabiria and Magesan (2009) provide

two interesting potential methods for relaxing the equilibrium assumption in this

context.
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Tables and Figures

Figure 1.1: Bidding Functions for Level-k Behavioral Types
Each bidder-type corresponds to a unique, monotonic, continuous bidding
strategy. Further, each pair of bidding strategies satisfies a single-crossing

property that allows the econometrician to separate them.
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Figure 1.2: Distribution over Bids for Level-k Behavioral Types
Each bidder-type corresponds to a unique distribution over bids. The Sample

distribution over bids is the mixture of these distributions that is observed by the
econometrician. Note that the tail of the Sample distribution is substantially

fatter than the tail for the distribution associated with the equilibrium
bidder-type, so we’d expect estimation based on the equilibrium model to recover

a distribution over valuations with substantially fatter tails.
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Figure 1.3: Incorrect Inference Caused by Behavioral Misspecification
Assuming an equilibrium behavioral model in the presence of behavioral bidders

can lead to substantial errors in inference. The estimated distribution
represented by solid lines has a substantially fatter tail than the true distribution

represented by the dashed line.
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Figure 1.4: Identified Set when K = {L0T , L1R}, N = 5
The identified set when N = 5 bidders with an unknown distribution over Level-0

Truthful and Level-1 Random bidder-types includes a unique distribution over
valuations for any mixture of the bidder-types.
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Figure 1.5: Identified Set when K = {L0T , L1R}, N = 20
The identified set when N = 20 bidders with an unknown distribution over

Level-0 Truthful and Level-1 Random bidder-types includes a unique distribution
over valuations for any mixture of the bidder-types. Note that the identified set
has shifted from the N = 5 case and, in particular, every estimated distribution

except the true distribution over valuations, corresponding to the true
distribution over bidder-types, has shifted.
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Table 1.1: Monte Carlo Simulations for Parametric Estimation
This table reports the result of maximum likelihood estimation for a parametric
simulation where individual valuations are drawn from a truncated Lognormal
distribution and individual bids are chosen according to a randomly assigned
behavioral type. These estimator results are generated from 100 simulated

samples and illustrate both the consistency of the estimation strategy and the
need for a robust sample size for precise estimation.

PEqm PL1R PL2R Mean StDev
Population 0.2 0.6 0.2 0 0.5

Log Normal Parametric Estimator
# of Obs Mean Square Error (*100)

300 3.500 2.820 3.940 bc 0.020 0.030
600 2.240 1.030 2.850 0.010 0.010

1,500 2.110 0.580 2.040 - -

# of Obs Standard Deviation
300 0.185 0.168 0.197 0.013 0.018
600 0.132 0.101 0.159 0.008 0.012

1,500 0.109 0.074 0.120 0.005 0.007

Legendre Sieve Estimator
# of Obs Mean Square Error (*100)

600 2.417 0.615 2.449 0.049 0.050
Standard Deviation

600 0.155 0.078 0.155 0.022 0.022

37.9% of simulations resulted in corner solutions
for PEqm or PL2R .
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Table 1.2: Summary Statistics for USFS Timber Auction Data
This table reports summary statistics for USFS Timber Auction Data. The

anlaysis uses only the auctions with 2-4 bidders, which still leaves a sample of
over 744 bids for estimation.

# of # of Mean Appraisal Mean Bid St Dev Bid
Bidders Auctions # of Obs ($000) ($000) ($000)

2 143 286 886 1,215 1,690
3 75 225 810 1,276 1,512
4 68 272 1,401 2,256 3,107
5 57 285 2,480 3,861 6,912
6 26 156 1,719 2,897 3,101
7 23 161 2,518 5,112 9,325
8 6 48 701 1,188 621
9 9 81 3,245 6,585 5,907

10 13 130 4,865 11,748 19,871
Full Sample 1,655 1,892 3,481 7,780
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Table 1.3: Model Selection Statistics for USFS Timber Auction Data
This table reports model selection statistics for USFS Timber Auction Data.
These results are generated from observed bids in 744 auctions and provide

substantial support to the hypothesis that bidders in this setting are sophisticate,
though the BIC selected model appears to substantially overfit the data.

Level 1 Random Level 2 Random
Polynomial Log Log

Order Likelihood BIC Likelihood BIC
3 bc (10,324) 20,674 bc (10,148) 20,322
4 (10,309) 20,652 (9,979) 19,990
5 (10,298) 20,635 (9,775) 19,589
6 (10,295) 20,636 (9,774) 19,594
7 (10,291) 20,635 (9,740) 19,533
8 (10,286) 20,632 (9,660) 19,379
9 (10,284) 20,634 (9,652) 19,369

10 (10,283) 20,638 (9,629) 19,330



68

Table 1.4: Summary Statistics for ACCRC Auction Data
This table reports summary statistics for ACCRC Vintage Computer Auction

Data. The present sample is too small for conclusive findings, so the treatment of
this data is best viewed as part of a pilot for a broader field study in auction

behavior.

# of Bidders # of Auctions # of Obs Mean Bid St Dev Bid
2 6 12 61.92 111.38
3 11 33 30.78 29.00
4 9 36 42.94 48.00
5 3 15 35.99 19.57

12 1 12 135.33 125.65
14 1 14 254.29 196.08
16 1 16 263.67 265.04

Full Sample 138 95.99 150.56

Table 1.5: Distribution over Bidder Types for ACCRC Auction Data
This table reports estimated population characteristics and model selection

statistics for ACCRC Vintage Computer Auction Data. The findings support
equilibrium bidding behavior, though these come with little confidence given the

limited sample size.

Polynomial Order PEqm PL1R PL2R Likelihood BIC
Q = 3 100.0% 0.0% 0.0% 420.52 6.19
Q = 4 90.5% 0.0% 9.5% 305.21 4.54
Q = 5 90.5% 0.0% 9.5% 287.9 4.32
Q = 6 91.0% 0.0% 9.0% 138.24 2.17
Q = 7 91.0% 0.0% 9.0% 139.03 2.21
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Appendix 1.A.1: Proofs

Proof of Theorem 1.1

As in the case of the Truthful Level 1 bidder type, the identification proof

begins by characterizing the identified set as a set of distributions consistent with

the equality:

FX
(
σ−1 (x)

)
= FS (x) = F ∗

(
σ−1
∗ (x)

)
(1.A.1)

The key here is assumption 4, which ensures an individual’s bid is equal

to their valuation minus a non-negative, continuously differentiable bid shade that

is zero for valuations arbitrarily close to zero. These properties establish two

contradictions to complete the proof.

First, suppose that ε1 ≡ inf {x : FX (x) 6= F ∗ (x)} > 0 and go on to define

ε2 ≡ inf {x > ε1 : FX (x) = F ∗ (x)} > ε1 so that for y ∈ [0, ε1), FX (y) = F ∗ (y)

and, as such, the inverse bidding functions are identical to one another in this

region, i.e., σ−1 (y) = σ−1
∗ (y). Note that σ−1 (y) is always greater than y, con-

tinuous, and strictly increasing, so there is some ỹ < ε with σ−1 (ỹ) ∈ (ε1, ε2).

Then, FX (σ−1 (ỹ)) 6= F ∗ (σ−1
∗ (ỹ)), contradicting 1.A.1. As such, any candidate

distribution satisfying the condition 1.A.1 must differ from the true distribution of

valuations starting at the origin.

Now, suppose the distributions FX and F ∗ diverge immediately from the

origin and that FX (x) > F ∗ (x) for x ∈ [0, ε) where ε ≡ sup {x : FX (x) > F ∗ (x)}.
In this case, the condition in equation 1.A.1 demands that σ−1

k (x) < σ−1
k,∗ (x). How-

ever, there must come a point in [0, ε] where the distribution F ∗ begins “catching

up” with FX , i.e., where fX (x) < f ∗ (x). Further, by iterating down the hierar-

chy of bidder-types, these dual inequalities imply the Jacobian terms also satisfy:
dσ−1
k−1(s)

ds
|s=σk(x) <

dσ−1
k−1,∗(s)

ds
|s=σk,∗(x). The three inequalities combined imply:

FX (x)

fX (x)
dσ−1
k−1(s)

ds
|s=σk(x)

>
F ∗ (x)

f ∗ (x)
dσ−1
k−1,∗(s)

ds
|s=σk,∗(x)

(1.A.2)

This result implies the bid shade under the alternative distribution, F ∗ is
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greater than the bid shade under the true distribution, contradicting the require-

ment that σ−1
k (x) < σ−1

k,∗ (x) and proving the result.

Proof of Theorem 1.3

First, suppose K = 2 with known bidding strategies σ1 (x) and σ2 (x), the

first step is to separate the mixture distribution of bids into the distribution over

bids for homogeneous populations and use these components to recover the dis-

tribution over valuations. Here, the mixture distribution over bids can be written

as:

FS,N (x) = α1FX (σ1 (x)) + (1− α1)FX (σ2 (x)) (1.A.3)

Defining σ2→1 (x) ≡ σ−1
1 [σ2 (x)], as the signal bidder-type 1 would need to

observe to choose the same bid as bidder-type 2, rewrite 1.A.3 so as to focus on

the distribution of valuations by:

FS,N
(
σ−1

1 (x)
)

=α1FX (x) + (1− α1)FX
(
σ−1

1 [σ2 (x)]
)

=α1FX (x) + (1− α1)FX (σ2→1 (x))

This expression recovers the distribution over valuations as:

FX (x) =
1

α1

FS,N
(
σ−1

1 (x)
)
− 1− α1

α1

FX (σ2→1 (x)) (1.A.4)

Assume (wlog) that α1 >
1
2
, and use the equation 1.A.4 as the basis for

iteratively defining the distribution over valuations as a function of the bidding

distributions and strategies, since:

FX (σ2→1 (x)) =
1

α1

FS,N
(
σ−1

1 (σ2→1 (x))
)
− 1− α1

α1

FX (σ2→1 (σ2→1 (x)))

≡ 1

α1

FS,N
(
σ−1

1 (σ2→1 (x))
)
− 1− α1

α1

FX

(
σ

(2)
2→1 (x)

)
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Then write the distribution over valuations as the infinite sum:

FX (x) =
1

α1

FS,N
(
σ−1

1 (x)
)
− 1− α1

α2
1

FS,N
(
σ−1

1 (σ2→1 (x))
)

+
(1− α1)2

α2
1

FX

(
σ

(2)
2→1 (x)

)
=

1

α1

FS,N
(
σ−1

1 (x)
)

+
∞∑
i=1

(−1)i
(1− α1)i

αi+1
1

FS,N

(
σ−1

1

(
σ

(i)
2→1

))
(1.A.5)

Since
∑T

t=1
(1−α1)t

αt+1
1

→T→∞ C < ∞ and 0 ≤ FS,N

(
σ−1

1

(
σ

(i)
2→1

))
≤ 1, This

last sum converges. Extending the argument to a general number of bidder-types

is straightforward (though it requires somewhat cumbersome notation) when there

is a dominant bidder-type, with the only challenge being to prove that the sum in

equation 1.A.5 converges. When there is not a dominant bidder-type, one can be

constructed as a mixed-strategy of K − 1 bidder-types’ level-k strategies and the

argument proceeds inductively.

Appendix 1.A.2: Legendre Sieve Space

This appendix provides background on the Legendre Polynomial sieve and

basic results due to Bierens (2006) and Bierens and Song (2007) establishing the

sieve space as a compact metric space. Note that computation using these distri-

butions is numerically challenging that is greatly aided by some clever algorithms

described in Bierens (2006). These techniques are not reproduced here but read-

ers are referred to Bierens (2006) for implementation guidance when using these

procedures.

Definition 1.3 (Legendre Polynomials) Legendre polynomials ρn (x) with or-

der

n ≥ 2 are defined recursively by the formula:

ρn (u) =

√
2n− 1

√
2n+ 1

n
(2u− 1) ρn−1 (u)− (n− 1)

√
2n+ 1

n
√

2n− 3
ρn−2 (u)

with ρ0 (u) = 1, ρ1 (u) =
√

3 (2u− 1)
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To adapt the Legendre polynomials to density estimation, Bierens (2006)

shows that any density function h (u) on [0, 1] can be represented as:

h (u) =

(
1 +

∑∞
j=1 δjρj (u)

)2

1 +
∑∞

j=1 δ
2
k

, where,
∞∑
j=1

δ2
k <∞ (1.A.6)

While the unit-interval support addresses measurability issues regarding

the arguments of equation 1.A.6, some additional constraints are needed to ensure

the parameters δj are well-behaved to ensure compactness for the space of density

functions. This constraint takes the following form:

Lemma 1.4 (Legendre Polynomial Sieve Space (Bierens & Song)) .

Let D be the space of density functions h (u) of the form 1.A.6 where, for some a

priori chosen constant c > 0, the parameters δj satisfy:

|δj| ≤ c
(

1 +
√
j ln j

)−1

, j = 1, 2, 3, . . .

Then with the L1 metric, D is a compact metric space. Also, letting G (v) and

g (v) be as in Assumption 1.4, the space

D (G) = {f (v) = h (G (v)) g (v) , h ∈ D}

of densities on
[
M,M

]
with the L1 metric is also a compact metric space. Further,

the corresponding spaces of absolutely continuous distribution functions on [0, 1]

and
[
M,M

]
, respectively,

H =

{
H (u) =

∫ u

0

h (z) dz, h ∈ D
}
F =

{
F (v) =

∫ v

0

f (z) dz, f ∈ D (G)

}
with the L1 metric are compact metric spaces.

Proof. Bierens (2006) Theorems (8) and (9) and Bierens and Song (2007), Lemmas

(5), (6), and (7).
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Appendix 1.A.3: Identification and Estimation of

QRE Auctions

Kagel and Roth (1997) survey much of the early experimental evidence

testing equilibrium behavioral models, presenting the stylized fact that individuals

tend to over-bid relative to the equilibrium prediction in IPV auctions. To address

this issue, several papers have proposed behavioral models for decision making that

better fit behavior in experiments, including models based on the “Joy of Winning”

(proposed by Cox, Smith, and Walker (1992))10, quantal response equilibrium play

analyzed by Goeree, Holt, and Palfrey (2002), and the cognitive hierarchy approach

studied here.

A leading alternative to a cognitive-based strategic model of bidding is due

to Goeree, Holt, and Palfrey (2002), who present experimental evidence that a

Quantal Response Equilibrium allowing for individuals to noisily perceive payoffs

in responding to equilibrium behavior fits bidding behavior observed in the lab

well. In the QRE framework, individual payoffs are augmented to include a noisy

error term with a logistic distribution, leading to equilibrium behavior in which in-

dividuals’ bids are governed by mixed strategies, distributed so that the probability

weight of choosing a given bid is proportional to a transformation of the expected

utility from choosing that bid. Bajari and Hortacsu (2005) exploit this property

to derive an estimation strategy for the logit QRE in empirical settings but fail

to address identification beyond the attainment of a global maximum for their

parametric likelihood function. I provide a more formal identification argument

here, using a discrete analog to Fredholm theory commonly applied in analyzing

identification of games studied by researchers in empirical industrial organization.

Similar to the identification results for the cognitive hierarchy under a constant

level of competition, these arguments recover a distribution over valuations con-

sistent with a given distribution of bids for any value of the parameter governing

10In the absence of risk aversion, the joy of winning component for an individual’s valuation
is integrated with the latent valuation and, as such, not independently identifiable. This model
may be identifiable with parametric risk aversion and exclusion restrictions, but given the focus
on risk neutrality, it falls beyond the scope of current work.
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the distribution for the error term.

The approach to analyzing the logit QRE model is similar to the strategy

followed in the paper. I begin by presenting a semi-parametric incomplete identi-

fication result: conditional on the parameter governing the distribution of errors,

the distribution over valuations is uniquely identified even if the econometrician

observes only settings with no variation in the number of bidders. Leaving aside

the “rounding” issues raised by discretizing the space of bids and valuations, I show

that the QRE model is uniquely identified and testable given exogenous variation

in the number of bidders. This result provides a more precise characterization of

the statement by Bajari and Hortacsu (2005) that “nonparametric identification

of the QRE specification may not be possible in this setting if one abandons the iid

assumption and allows for enough flexibility in the distribution of the idiosyncratic

shock term.” The positive identification result illustrates the structure needed to

address the Haile, Hortacsu, and Kosenok (2008) finding that unrestricted QRE

models place no empirical restrictions on observed behavior by using an error spec-

ification consistent with the Regular QRE models proposed in Goeree, Holt, and

Palfrey (2005).

The QRE model for auctions and the noisy equilibrium bidding function

adopts a discretized space of bids (s ∈ S) and valuations (X ∈ V). In practice,

bids in most auctions cannot be made for fractions of pennies so this discretization

provides measurability without affecting the empirical results. Whereas the utility

for a player in a BNE is given by the equation 1.1 that E [Ui (Xi, s1, . . . , sN) |Xi] =

(Xi − si)Pr{si > maxj 6=i sj}, in the QRE, this expected utility is perturbed by a

noise term:

EQRE [Ui (Xi, s1, . . . , sN) |Xi] = (Xi − si)Pr{si > max
j 6=i

sj}+ ε (si, Xi) (1.A.7)

Following the analysis of Goeree, Holt, and Palfrey (2002), assume that

ε (si, Xi) is independent of si and Xi and identically distributed according to

the Type-II Extreme Value distribution with cumulative distribution function

F (ε) = exp (− exp (−λε)) where the mean and variance of the error term are

both decreasing in the value of the parameter λ. From the Bajari & Hortascu
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analysis, the probability that a player i chooses a bid value of si conditional on

the QRE distribution over bids, denoted σi (si;Xi, FS (s)) can be stated up to a

constant of proportionality as:

σi (si;Xi, FS (s)) =
exp

(
λ (Xi − si)FS (si)

N−1
)

∑
s∈S exp

(
λ (Xi − s)FS (s)N−1

) (1.A.8)

The key identifying feature that the QRE behavioral model that shares with

BNE is the equilibrium requirement that individuals best respond (albeit noisily)

to the empirical distribution of bids observed by the econometrician. This feature

greatly aids in identification analysis as it avoids the computationally demanding

exercise of calculating a fixed point that would have been required without observ-

ing the empirical distribution of bids. The unconditional probability of observing

a given bid s for a representative bidder can then be computed by integrating over

the possible valuations that could generate that bid (following Bajari and Hortacsu

(2005)), to show that:

FS (s) =

∫ ∑
τ≤s exp

(
λ (x− τ)FS (τ)N−1

)
∑

τ≤x exp
(
λ (x− τ)FS (τ)N−1

)fX (x) dx (1.A.9)

To establish identification, note that this equation is a discretization of

a Fredholm integral equation of the first kind, since the ratio in the integral is

a probability density and, as such, also an integral kernel. While the kernel is

discontinuous, these discontinuities can be made arbitrarily small through the par-

titioning of the bid and valuation space. As is common in identification proofs

from dynamic games with incomplete information (see, for instance, Bajari, Cher-

nozhukov, Hong, and Nekipelov (2008)), the identification result for a fixed value

of λ and discretization of the bid space follows immediately by observing that Fred-

holm Integral Equations of the first kind have a unique solution. This observation

effectively completes the proof of the incomplete identification result that paral-

lels the result of theorem 1.3. Extending the identification result to incorporate

the variation in the number of bidders is also very straightforward, as the integral
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kernel in 1.A.9 and, as such, the solution to the integral equation itself depends

deterministically on the number of bidders and the error parameter λ. This result

allows consistent estimation of the distribution over values for a fixed value of λ

and two different levels of competition, N1 and N2 to test the hypothesis that the

QRE is properly specified with that level of variance in the error term.

Theorem 1.8 (Identification of Quantal Response Equilibrium) .

1. Suppose the econometrician observes the distribution over bids in a fixed popula-

tion of N bidders is FS,N (x), then for any fixed value of the error distribution,

λ, there exists a unique distribution FX (x) generating FS,N (x) in a Quantal

Response Equilibrium behavioral model.

2. Suppose the econometrician observes the distribution over bids in a variable

population of N1, . . . NK for K ≥ 2 bidders is FS,Nk (x), then the parameter

governing the error distribution, λ and the distribution FX (x) generating

FS,N1 (x) , . . . , FS,NK (x) in a Quantal Response Equilibrium behavioral model

are identified. Further, if K ≥ 3, then the QRE behavioral model and error

specification impose testable overidentifying restrictions on the data.

With the identification result now firmly established, the estimation strat-

egy presented by Bajari and Hortacsu (2005) estimate the QRE model with exo-

geneous variation in the number of bidders. Absent exogeneous variation in the

number of bidders participating in an auction, though, it is important to remember

the lack of identification power for the error parameter. Further, the identification

result is highly dependent upon the Type-II Extreme Value distribution and it

is likely that, for any specific distribution over error terms, there exists a unique

distribution over valuations consistent with observed bidding behavior.

Appendix 1.A.4: A Generalized EM Algorithm

Given the types generating each bid, dik, the log likelihood function 1.15 is:

lnL
(
θ; {si}Ti=1 , {dik}

T
i=1
′K
k=1

)
=

T∑
i=1

K∑
k=1

dik ln fS,k (si; θ) +
T∑
i=1

K∑
k=1

dik ln pk
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Though this likelihood function is not directly observable, it can be approximated

by taking the expectation over the unobservable dik parameters to get an expected

log likelihood:

E
[
lnL

(
θ; {si}Ti=1 , {dik}

T
i=1
′K
k=1

)]
=

T∑
i=1

K∑
k=1

E [dik] ln fS,k (si; θ) +
T∑
i=1

K∑
k=1

E [dik] ln pk

To compute this expected likelihood, initialize the process with an a priori

guess for the distributional parameters θ0 and the distribution over types p0. Then

estimate ẑik,0 = E0 [dik], which is the probability that bid si is drawn from the

distribution of bids for the kth bidder-type. This probability is a straightforward

application of Bayes’ rule given by a formula from the mixture-of-types models of

Stahl and Wilson (1994), Stahl and Wilson (1995) and Costa-Gomes, Crawford,

and Broseta (2001):

ẑik,0 = pk (si; θ, p) =
pk (θ) fS,k (si; θ)∑
κ∈K pκ (θ) fS,κ (si; θ)

(1.A.10)

The Expectation step in the Expectation Maximization (EM) algorithm

then approximates the above log likelihood by:

E0

[
lnL

(
θ; {si}Ti=1 , {dik}

T
i=1
′K
k=1

)]
=

T∑
i=1

K∑
k=1

ẑik ln fS,k (si; θ) +
T∑
i=1

K∑
k=1

ẑik ln pk

The Maximization step in the EM algorithm then chooses the parameter

vector θ1 and distribution over types p1 to maximize this expected log likelihood

and proceeds to iterate between the Expectation and Maximization steps until

these distributional estimates converge. Since the parameters governing the dis-

tribution over bids for fixed bidder-type does not depend on p, the maximization

problem can be separated into two pieces. First, the updated distribution over

types must be the average probability that a bidder is drawn from that type. That
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is:

pk,1 =
1

T

T∑
i=1

ẑik,0 (1.A.11)

θ1 =arg max
θ

T∑
i=1

K∑
k=1

ẑik ln fS,k (si; θ) (1.A.12)

Computationally, the Expectation step and the first piece of the Maximiza-

tion step in the EM algorithm is quite fast, even when numerical methods are

used to compute the equilibrium bidding and inverse bidding functions and their

associated derivatives. However, the Maximization step that requires generating

new estimates for θ is quite cumbersome due to its role in computing equilib-

rium bidding functions. As such, repeated application of the EM algorithm until

the algorithm converges is computationally infeasible and requires a great deal

of redundant calculations. Further, the convergence for the parameter estimates

occcurs much more quickly than convergence for the distribution over behavioral

types.

To address this issue, I introduce a Generalized EM algorithm that proceeds

as follows:

Algorithm 1 Generalized Expectation Maximization Algorithm

Step 0: Initiate model with a priori guesses for p0 and θ0, choose tolerance δ, set

p0a = p0.

Step 1: Expectation Step: Use equation 1.A.10 to compute ẑik,0.

Step 2: Partial Maximization Step:

Step 2a: Use equation 1.A.11 to compute p1.

Step 2b: If ||p0 − p1|| > δ, set p0 = p1 and return to Step 1.

Step 3: Complete Maximization Step:

Step 3a: Choose θ1 to maximize the expected log likelihood formula in equa-

tion 1.A.12.
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Step 3b: Use equation 1.A.11 to compute p1

Step 3c: If ||p0a − p1|| + ||θ0 − θ1|| > δ, set p0 = p1, p0a = p1, θ0 = θ1 and

return to Step 1.

Generalized EM (GEM) algorithms are well-known tools for addressing

maximum likelihood estimation problems. Instead of completely maximizing the

likelihood function in each of the iterations of the GEM algorithm, the algorithm

chooses a set of parameters that ensures the likelihood’s value increases with each

iteration. As such, the GEM algorithm satisfies the key condition for convergence

to the optimum presented in Casella and Berger (2001), Theorem 7.2.20. However,

it is possible for the GEM algorithm to fail to converge, as I do not establish formal

almost sure convergence results for the algorithm as presented for a class of general

stochastic optimizaiton procedures in Biscarat (1994), Chan and Ledolter (1995)

and Sherman, Dalal, and Ho (1999).

Appendix 1.A.5: Level-k Bidding with Reserve

Prices

This appendix develops two key result regarding level-k bidding with re-

serve prices that closely parallel existing results for equilibrium behavior. First,

it presents the general level-k bidding strategy when there is a reserve price in

the auction. Second, it characterizes the effect of uncertain competition on level-k

bidding behavior. The appendix closes with a result characterizing the expected

revenue in a level-k auction as a weighted average of the expected revenues condi-

tional on the composition of the bidding population.

1.A.5.1 Certain Competition

When bidders know the number of participating bidders in the auction,

counterfactual bidding behavior treats the distribution over valuations for partic-

ipating bidders conditions on the valuation being greater than the reserve price.

As such, denoting the level (k − 1) bidding strategy when the reserve price is r
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by σL(k−1)τ ,r
(X) the inverse bidding function from equation 1.12 in section 1.4.2

incorporates this information:

X = σLkτ (X) +
FX

(
σ−1
L(k−1)τ

(σLkτ (X))
)
− FX (r)

fX

(
σ−1
L(k−1)τ

(σLkτ (X))
)
dσ−1
L(k−1)τ

(s)

ds
|s=σLkτ (X)

(1.A.13)

As in equilibrium, the effect of the reserve price on level-k bidding behavior

is to shift the differential equation defining bid shades to initialize at the reserve

price rather than the minimum valuation (which is here set to zero for exposition).

This effect is apparent in the estimated bidding strategies displayed in figure 8’s

depiction based on estimates from the USFS timber auction data.

1.A.5.2 Uncertain Competition

When bidders know only the number of potentially participating bidders,

N , but not the actual number of potential bidders with valuations that exceed

the reserve price, N , they face an uncertain amount of competition in the auction.

In another parallel to a well-known equilibrium result stated in Krishna (2002),

the bidding strategy for level-k bidders with uncertain competition is a weighted

average of the bidding strategies with a fixed number of participating bidders.

To establish this result, first suppose the number of bidders varies exogenously

and denote Pr {N = n} = qn. Then given the level (k − 1) bidding strategy, the

expected utility from the level-k bidder-type’s bid is:

E [U (Xi, s1, . . . , sN) |Xi] =
N∑
n=1

(Xi − si) qnPr {si > s−i}n−1

Substituting Pr {si > s−i} = FX

(
σ−1
L(k−1)τ

(si)
)

and taking first order con-



81

ditions gives the inverse bidding function as:

X =
N∑
n=1

(n− 1) qnFX

(
σ−1
L(k−1)τ

(si)
)

∑N
m=1 (m− 1) qmFX

(
σ−1
L(k−1)τ

(si)
) ·

si +
FX

(
σ−1
L(k−1)τ

(si)
)

(n− 1) fX

(
σ−1
L(k−1)τ

(si)
)
dσ−1
L(k−1)τ

(ξ)

dξ
|ξ=si


=

N∑
n=1

ωn (si)σ
−1
kn

(si) (1.A.14)

In the case of a binding reserve price, qn is the probability that n bidders

will have a valuation exceeding the reserve price given that player i’s valuation is

above the reserve price, which is given by:

qn =

(
N − 1

n− 1

)
FX (r)N−n (1− FX (r))n−1

So the inverse bidding function with endogenous participation is:

X =
N∑
n=1

ωn,r (si)σ
−1
kn,r

(si)

1.A.5.3 Expected Revenues

First, consider the seller’s expected revenue when participating bidders

know the number of bidders participating in each auction. In this case, the cdf

for the winning bid is given by FWN
in equation 1.17. Ex ante, the seller does

not know the number of bidders whose valuations will exceed the reserve price but

only the number of potential bidders, N . Accounting for this uncertainty, the cdf

for the seller’s revenue is then:

FWN
(w; θ) =

N∑
N=0

(
N

N

)
FX (r)N−N (1− FX (r))N FWN

(w; θ) (1.A.15)

The key feature of this formula for analyzing expected revenues is that,
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since FWN
is a continuous polynomial in the distribution over types, the expected

revenue to the seller is continuous in the distribution over types. Further, be-

cause the behavior of each bidder and bidder-type is independent of one another,

the distribution over bidder-types that maximizes and minimizes these expected

revenues corresponds to the homogeneous populations of bidder-types that indi-

vidually maximize and minimze the sellers’ expected revenue, respectively. This

result is stated in the following theorem:

Theorem 1.9 (Identified Set for Expected Revenues) .

Suppose the distribution over bidder-types is not identified in the level-k auction

model. The seller’s expected revenue at a given reserve price belongs to a closed,

convex identified set. Further, this identified set is bounded above and below by the

expected revenues generated by the homogeneous population of bidder-types that

maximize and minimize expected revenues, respectively.
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Chapter 2

Bayesian Methods for Covariance

Matrix Estimation

This paper proposes Bayesian methods adapted to estimating a covariance

matrix for a large number of random variables. The analysis models the return

generating process with an unrestricted factor model of covariance, imposing struc-

ture on the covariance matrix through prior beliefs on the parameters governing

this unrestricted return generating process. By nesting many popular shrinkage

estimators for covariance matrices, these results provide an Empirical Bayesian

foundation for a general class of shrinkage estimators and use the shrinkage inter-

pretation to characterize prior beliefs that optimize a posterior objective function.

The consistent estimator coupled with economically motivated priors delivers lower

finite-sample loss than existing estimators in Monte Carlo simulations and performs

well in applied settings, as illustrated in a minimum variance portfolio selection

exercise.

2.1 Introduction

A variety of financial and economic problems focusing on variance reduction

require analyzing a large covariance matrix that may be difficult to estimate with

precision. The curse of dimensionality presents the key challenge to this estimation

problem as the covariance matrix for N random variables representing asset re-
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turns has N(N−1)
2

free parameters that must be estimated with only T observations

where T is often less than N . The unbiased sample covariance matrix estima-

tor in this setting is extremely noisy and necessarily has N − T zero eigenvalues

and a zero determinant, rendering the estimated covariance matrix non-invertible

and, consequently, yielding non-unique and highly unstable solutions to variance

minimization problems.

Traditional approaches to this problem assume a risk-factor model to the

covariances between assets to impose structure for the covariance matrix by isolat-

ing the sources of systematic risk without restricting the variances of each random

variable. While these models greatly improve the precision of the estimated co-

variance matrix, this increased precision comes at the cost of a misspecified model

and an inconsistent estimator. Further, this approach requires a model selection

exercise to identify the risk factors that characterize systematic risk and leaves still

the problem of estimating the covariance matrix for these systematic risk factors.

In order to smooth the trade-off between bias and variance in traditional

models, pseudo-Bayesian shrinkage methods treat the factor-based model as if it

were an investor’s prior belief for the covariance matrix. The main tool in this

nascent literature is presented in a series of papers by Ledoit and Wolf (2004a,b),

who propose a James-Stein shrinkage estimator corresponding to a weighted av-

erage of the sample covariance matrix and the risk-factor model of covariance. In

their analysis, Ledoit & Wolf characterize the optimal weights that minimize the

finite-sample mean squared error of the estimator. In this way, the Ledoit & Wolf

shrinkage estimator is, by definition, admissible (under the specified loss function)

in the set of shrinkage estimators for any fixed set of risk factors. While their

estimator works well in application, Ledoit & Wolf don’t present a formal analysis

of the distributions relating to prior beliefs and the likelihood of the data to give

their shrinkage estimator a formal grounding in Bayesian estimation.

In this paper, I present a truly Bayesian approach to this problem that

incorporates the investor’s belief in a risk-factor model as a prior distribution over

factor loadings in a Bayesian regression framework. This approach is similar to

Bayesian methods for incorporating theoretical pricing models as a prior belief
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when estimating expected returns, characterizing the prior belief as a restricted

model nested within a larger regression framework. The key methodological in-

novation augments the K risk factors with a set of (N −K) derived factors that

allow for unmodelled sources of covariance across the random variables. In the

augmented regression context, traditional risk-factor models of covariance can be

thought of as the posterior covariance matrix in a Bayesian model where the prior

specifies that factor loadings on the derived factors augmenting the original K fac-

tors are believed to be zero with certainty. In another departure from most of the

Bayesian asset pricing literature, these informative priors are not solely related to

the “alpha” in the return generating process, but also the “betas” themselves. In

this sense, the model incorporates beliefs relating to the covariances across returns.

The Bayesian analysis yields an intuitive estimator for covariance matrices

that can be readily coupled with Bayesian methods for estimating means, provid-

ing a unified Bayesian framework for jointly analyzing expectations, variances, and

covariances. Under a conjugate prior specification, I present a closed-form solution

for the posterior factor loadings that is the usual matrix-weighted average of prior

expected factor loadings and the ordinarly least squares-estimated factor loadings.

The closed form solution avoids challenges in sampling from the extremely high-

dimensional space of covariances under more general distributional assumptions,

presenting an easily computable posterior covariance matrix with attractive ana-

lytical properties. Further separability conditions on the factors and prior beliefs

admit a represention of the posterior covariance matrix as a multi-factor shrinkage

estimator, providing an empirical Bayesian foundation for a very broad class of

shrinkage estimators for covariance matrices, including Ledoit & Wolf’s approach.

Bayesian methods for estimating covariance matrices provide a flexible

means of introducing structure to covariance matrix estimation that admits eco-

nomically motivated priors based on empirical regularities in analyzing equity data.

I evaluate the empirical value of these methods using three separate prior specifica-

tions. The first specification of prior beliefs naturally represents the belief in a sin-

gle factor model of covariance, introducing informative beliefs that factor loadings

on any other factors are zero. The second specification of prior beliefs represents
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the empirical regularity that estimated factor loadings tend to be mean-reverting.

In this specification, prior beliefs for the factor loadings of a given security are

centered at the grand average of factor loadings taken across all securities. Lastly,

I follow Ledoit & Wolf’s analysis to introduce a set of “optimal” prior beliefs

that minimize a finite sample expected loss for the posterior estimated covariance

matrix.

The empirical evidence suggests that these Bayesian techniques are ex-

tremely useful directly in estimating covariance matrices as well as in applied

portfolio selection exercises. In Monte Carlo simulations, the Bayesian covariance

matrices deliver lower finite sample expected loss than existing estimation tech-

niques, especially in settings where the number of observations is small relative

to the dimension of the covariance matrix. Similarly, when applied to estimat-

ing minimum variance portfolios, backtest and simulation tests illustrate that the

Bayesian estimation strategy delivers portfolios that generate lower variance than

existing techniques. Beyond providing the theoretical basis for shrinkage estima-

tors, a main contribution of this work is to introduce estimators providing even

better performance than these techniques.

The paper proceeds by discussing the analytical properties of the posterior

covariance matrix in section 2.2, which formally describes the statistical model,

presents the closed form posterior covariance matrix in the natural-conjugate set-

ting, and establishes some analytical properties of the posterior covariance matrix,

including consistency for the true covariance matrix and a shrinkage decomposition

of the posterior covariance matrix under an orthogonal factor structure. Section 2.3

characterizes the finite-sample loss measures and solves for optimal priors before

section 2.4 reviews more economically motivated candidate priors. I analyze the

finite-sample performance of the estimator using Monte Carlo simulation evidence

in section 2.5, illustrating that the bayesian approach is empirically valuable and

presents an improvement over existing estimators in many settings. Section 2.6 il-

lustrates the utility of the posterior covariance matrix in portfolio selection, where

the minimum variance porfolios estimated using the Bayesian Factor Covariance

estimator provide dramatic improvements over alterative sample and shrinkage-
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based estimators. Section 2.7 concludes by discussing additional applications and

potential extensions to the current work.

2.2 Bayesian Estimator for Covariance Matrices

This section develops the statistical model and derive the posterior expec-

tations for covariance matrices in a natural conjugate setting. The key to the

Bayesian analysis of the covariance matrix lies in representing the unrestricted

covariance matrix as an unrestricted N -factor model of covariance. This repre-

sentation allows for structure in the posterior covariance matrix by imposing the

restrictions from a structured factor model through prior beliefs. Further, the

structure of the posterior covariance matrix provides the key to characterizing

prior beliefs consistent with existing shrinkage estimators.

2.2.1 Statistical Model

The objective is to estimate the covariance matrix for the returns on N

securities, r1, . . . , rN , each of which are normally distributed with known means

µ = [µ1, . . . , µN ]′ and an unknown covariance matrix Σ. Assume that there are K

benchmarks and economic factors F1, . . . , FK that represent systematic sources of

variance across the securities, and that these factors have known covariance matrix

ΓF . Using principal components analysis, the residuals from the regression of secu-

rity returns on the systematic factors can be transformed into N −K augmenting

factors, FK+1, . . . , FN with diagonal covariance matrix ΓR. The present analysis

ignores any estimation error in deriving these factors or recovering their covariance

matrix ΓR.

Denoting the full set of N factors driving covariance by F = [F1, . . . , FN ],

represent the return generating process for asset i in period t without loss of
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generality as:

ri,t =αi +
N∑
k=1

βi,kFi,t + εi,t (2.1)

=αi + β′iFt + εi,t

In this return generating process, the vector βi = [βi,1, . . . , βi,N ]′ represents

the factor loadings for asset i and the error term εi represents idiosyncratic noise in

asset i’s return that is uncorrelated with any of the N factors and uncorrelated with

other assets’ idiosyncratic noise. Since the returns for asset i are fully explained

by the set of factors, there is no idiosyncratic variation and εi = 0. However, this

analysis treats εi as having a non-degenerate normal distribution with variance

σ2
ε,i, as though white noise were added to asset i’s return series after the factors

have been extracted. As is described in greater detail below, the magnitude of this

variance can then be interpreted as a bandwidth parameter for the estimator.

The unrestricted covariance matrix implied by equation 2.1’s return gen-

erating process takes the usual diagonalizable form with B denoting a matrix

containing the factor loadings for all securities, Γ denoting the covariance matrix

for the factors, and Λ denoting the diagonal matrix of idiosyncratic variances:

Σ = BΓB′ + Λ, (2.2)

where, B =


β′1

β′2
...

β′N

 ,Γ =

[
ΓF 0

0 ΓR

]
, and, Λ =


σ2
ε,1 0 · · · 0

0 σ2
ε,2 · · · 0

0 0
. . . 0

0 0 · · · σ2
ε,N

 .
Factor models impose structure on the covariance matrix by implicitly re-

stricting a subset of the factor loadings (typically those associated with the N −K
derived factors) in the return generating process from equation 2.1 to equal zero.

The alternative to this threshold-type restriction frames the factor model as the

prior belief within a Bayesian regression framework. The next section will discuss

specific priors in greater detail, but for now it suffices to represent the investor’s
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prior beliefs about as:

βi, σ
2
ε,i ∼prior NG

(
βi,0,Ωi,0, vi,0, s

2
i,0

)
(2.3)

Here “NG” represents the normal-gamma distribution so βi has a Normal prior

distribution with mean βi,0 and covariance matrix Ω and the idiosyncratic vari-

ance σ2
ε,i has an independent Gamma distribution with vi,0 degrees of freedom and

location parameter s2
i,0.

Given T observations from the normal return generating process in equa-

tion 2.1, the likelihood of the data for specific values of βi and σ2
ε,i is given by a

conditional Normal-Gamma distribution. That is, the likelihood for the true βi

corresponds to a normal distribution with expectation given by the OLS estimates

of factor loadings, β̂, and covariance matrix σ2
ε,iF

′F conditional on σ2
ε,i, which has

an unconditional gamma distribution with T −N degrees of freedom and location

parameter s2, the OLS-computed standard error of residuals.

p̃
(
R|β, σ2

ε,i

)
= N

(
β̂, σ2

ε,iF
′F
)

, and, p̃
(
σ2
ε,i

)
= G

(
T −N, s2

)
(2.4)

Now, since s2 = 0 in the sample, the likelihood above is not well-defined.

This singularity occurs because the data is perfectly described by the model, an

event that also arises in non-parametric regression. To address this overfitting,

introduce additional noise to each security’s return that prevents the factors from

perfectly explaining each asset’s return. The variance of this noise, h2

T
can be

interpreted as the bandwidth of the covariance matrix estimator, which is scaled

by the sample size to ensure estimator consistency. The likelihood for the Bayesian

analysis is then:

p
(
R|β, σ2

ε,i

)
= N

(
β̂, σ2

ε,iF
′F
)

, and, p
(
σ2
ε,i

)
= G

(
T −N, s2 +

h2

T

)
(2.5)

With this likelihood, the prior specification and likelihood correspond to a

natural conjugate setting, yielding analytical posterior expectations for each as-

set’s factor loadings in closed-form. As is established in textbook treatments on
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Bayesian econometrics such as Koop (2003) or Geweke (2005), the posterior ex-

pected factor loadings are the matrix-weighted average of the prior factor loadings

and the OLS estimated factor loadings:

β∗i ≡ Epost [βi] =
(
Σ−1

0 + F ′F
)−1
(

Σ−1
0 βi,0 + F ′Fβ̂i

)
(2.6)

Also, the posterior expected idiosyncratic variance (Epost
[
σ2
ε,i

]
, which is denoted

s∗2i ) is given by a weighted average of the prior expected idiosyncratic variance,

the sample idiosyncratic variance, and a term that captures the disparity between

the prior and OLS factor loadings:

(T + vi,0) s∗2i =vi,0s
2
i,0 + (T −N)

(
s2
i +

h2

T

)
(2.7)

+
(
β̂i − β∗i

)′
F ′F

(
β̂i − β∗i

)
+ (βi,0 − β∗i )

′Ω−1 (βi,0 − β∗i )

Defining the matrices B∗ and Λ∗ as the posterior expectations for the ma-

trices B and Λ defined above, the posterior expectation for the covariance matrix

is:

Σ∗ = B∗ΣFB
∗′ + Λ (2.8)

As is common with Bayesian estimators, as the amount of information in

the data dwarfs the prior belief, the posterior expectation converges to the un-

biased sample estimator. This convergence ensures that the estimator will be

asymptotically consistent for the true covariance matrix.

Theorem 2.1 The posterior covariance matrix estimator is consistent:

p lim
x→∞

Σ∗ = Σ (2.9)

Proof. From equation (4), it’s clear that plimx→∞ β
∗ = plimx→∞ β̂i = βi.

This convergence implies that plimx→∞B
∗ = plimx→∞ B̂ = B and so, since ΣF

and Λ are known (the latter, given B), the result holds.
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2.2.2 Empirical Bayesian Foundations for Shrinkage Esti-

mators

To further characterize the properties of the posterior covariance matrix,

consider the special setting when factors and beliefs are orthogonal. Here Ωi,0 =

σ2
CIN and ΣF is a diagonal matrix with the i-th entry σ2

Fi
. In this case, the posterior

factor loadings for each factor correspond to a weighted average between the prior

expected factor loading and the estimated factor loading where the weight assigned

to the prior expectation is constant across all assets. This feature of the estimator

admits a shrinkage interpretation by writing the posterior covariance matrix as a

weighted sum of 2N single-factor models, providing a common frame with existing

shrinkage estimators. To establish the shrinkage decomposition, denote by δk =
σ2
C

σ2
C+Tσ2

Fk

the weight assigned to the estimated factor k loading, B0,k the N × 1

vector of each asset’s prior expected k factor loadings, and B̂k the vector of each

asset’s estimated k factor loadings. Then the posterior covariance matrix can be

written as:

Σ∗ = B∗ΣFB
∗′ + Λ =

N∑
k=1

δkσ
2
Fk
B̂kB̂

′
k +

N∑
k=1

(1− δk)σ2
Fk
B0,kB

′
0,k + Λ (2.10)

This setting allows a visual presentation of the convergence of the posterior

covariance matrix to the sample covariance matrix by analyzing the weight the

posterior assigns to the prior factor loading for each of the factors based on the

updating formula in equation 2.6. Figure 2.1 illustrates the convergence as data

accumulates for a five asset covariance matrix where all factors are derived using

principal components and the prior is specified with βi,0,k = 0, Ωi,0 = IN , vi,0 =

0, and s2
i,0 = 1,∀i, k. As is immediately apparent, the first factor, with the highest

variance, shrinks towards the sample factor loading quite quickly as the number

of observations increases and the other factors follow in succession. Still, it is

interesting to note that, even in a sample with over 10,000 observations, the prior

factor loading for the last factor still receives over 25% weight in the posterior

weighting, indicating the importance of the prior for reining in factor loadings

that would otherwise be very imprecisely estimated.
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Another benefit of the decomposition in 2.10 is that it facilitates character-

izing prior beliefs consistent with a given posterior expectation. The next section

turns to the analytical exercise of finding prior beliefs consistent with existing

shrinkage estimators, beginning with the Ledoit and Wolf (2004a) estimator. This

analysis illustrates a general algorithm for deriving prior beliefs consistent with

shrinkage of the sample covariance matrix towards any positive-semidefinite prior

covariance matrix, allowing an empirical Bayesian foundation for the shrinkage

technique proposed by Jagannathan and Ma (2003), who represent non-negativity

constraints as arising from a shrinkage of the variance-covariance matrix.

Empirical Bayesian Priors for Ledoit & Wolf Shrinkage

The main result in this section provides an Empirical Bayesian procedure

that leads to the Ledoit & Wolf Single-Factor Shrinkage estimator where the prior

variance around factor loadings will depend on the variance of the factor itself. In

addition to providing a truly Bayesian interpretation of the Ledoit & Wolf shrink-

age estimator, the analysis illustrates the appeal of their model as a particularly

parsimonious specification for prior beliefs. As background, denote the Ledoit &

Wolf shrinkage estimator as:

Σ∗LW = (1− δ) ΣSF = δΣS (2.11)

= (1− δ)
(
BSFσ

2
SFB

′
SF + ΛSF

)
+ δ (BΓB′ + Λ)

Here, BSF denotes the vector of factor loadings for each asset in a restricted single-

factor covariance matrix (ΣSF ) with factor variance σ2
SF and diagonal matrix of

idiosyncratic variances ΛSF and, as before, B, Γ, and Λ represent the corresponding

characteristics of an augmented, N factor covariance matrix, and δ represents the

shrinkage intensity. The relationship between equations 2.11 and 2.10 is the key to

deriving a prior that yields the Ledoit & Wolf estimator as the posterior covariance

matrix.

Theorem 2.2 Suppose the likelihood of the data is given by equation 2.5 and an
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investor’s prior belief is given by equation 2.3 with parameters:

βi,0,k =

β̂SF , if k = 1

0 otherwise
,Ωi,0,{j,k} =


Tδ

1−δ σ̂
2
Fk
, if j = k

0 otherwise

Then the posterior covariance matrix is given by the Ledoit & Wolf estimator in

equation 2.11.

Proof. The proof for off-diagonal entries in the posterior covariance matrix

follows directly from equation 2.10, which simplifies so that the weight assigned to

the prior expected factor loadings is constant across factors and assets:

Σ∗ = δ
N∑
k=1

σ2
Fk
B̂kB̂

′
k + (1− δ)

N∑
k=1

σ2
Fk
B0,kB

′
0,k + Λ

The proper specifications for s0 and v0 will set the matrix Λ = δΛ0 +

(1− δ) Λ̂ where Λ0 is the diagonal matrix with (k, k) entry equal to the idiosyn-

cratic variance estimated in the restricted single factor model and Λ̂ is the idiosyn-

cratic variance in the unrestricted covariance matrix. This can be done by setting

idiosyncratic beliefs so that:

v0 = Tδ, and, s0,i = σ̂ε,i,SF −
1

Tδ

(
β̂i − βi,0

)′ (
Ωi,0 + (F ′F )

−1
)−1 (

β̂i − βi,0
)

This specification establishes the result:

Σ∗LW = (1− δ)
(
σ2
F1
B̂1B̂

′
1 + Λ0

)
+ δ

(
N∑
k=1

σ2
Fk
B̂kB

′
0,k + Λ̂

)
= (1− δ) ΣSF + δΣS

Empirical Bayesian Foundations for General Shrinkage Estimators

The result in the theorem 2.2 immediately extends to shrinkage estimators

with any prior factor specification, but sometimes the structured shrinkage target

lacks an immediate factor representation. To address this setting, the fact that
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derived factors are only defined up to scale allows the required flexibility in es-

tablishing beliefs consistent with a posterior covariance matrix corresponding to a

shrinkage estimator with any positive definite shrinkage target. To begin, denote

the shrinkage target using the eigenvalue/eigenvector decomposition for an arbi-

trary, positive-semidefinite covariance matrix ΣP as BPΓPB
′
P . Then a shrinkage

estimator that shrinks the sample covariance matrix towards ΣP can be represented

as:

Σ∗P = (1− δ) ΣP + δΣS = (1− δ)BPΓPB
′
P + δBSΓPB

′
S + ΛPS (2.12)

Here, the factors are scaled so that the variance of the kth factor is now

equal to the kth eigenvalue of shrinkage target ΣP . This scaling allows for a uniform

shrinkage to apply across all factors.

Theorem 2.3 Suppose the likelihood of the data is given by equation 2.5 and an

investor’s prior belief is given by equation 2.3 with parameters:

βi,0,k = BP{i,k},Ωi,0,{j,k} =


Tδ

1−δ σ̂
2
Fk
, if j = k

0 otherwise

Then the posterior covariance matrix is given by the shrinkage estimator in equa-

tion 2.12.

The proof of theorem 2.3 is almost identical to that for theorem 2.2, and

is omitted for brevity. A direct corollary of the above relates to a shrinkage tech-

nique proposed by Jagannathan and Ma (2003). They show that non-negativity

constraints on the minimum variance portfolio are equivalent to a shrinkage of

the covariance matrix determined by the shadow costs of those constraints. In

particular, they show that, given covariance matrix ΣS, a vector shadow costs for

each asset’s non-negativity constraint λ, and denoting the vector with N ones by

1N , the constrained minimum variance portfolio is equivalent to the unconstrained

minimum variance portfolio for the shrinkage covariance matrix Σ∗C defined as:

Σ∗C = ΣS − 0.5 (λ1′N + 1Nλ
′) = 0.5ΣS + 0.5 (ΣS − λ1′N − 1Nλ

′) (2.13)
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Taking the eigenvalue decomposition, define BCΓCB
′
C = ΣS − λ1′N − 1Nλ

′

and invoking theorem 2.3 immediately proves the following corollary:

Corollary 2.1 Suppose the likelihood of the data is given by equation 2.5 and an

investor’s prior belief is given by equation 2.3 with parameters:

βi,0,k = BC{i,k},Ωi,0,{j,k} =

T σ̂2
Fk
, if j = k

0 otherwise

Then the posterior covariance matrix is given by the Jagannathan & Ma estimator

in equation 2.13.

2.3 Finite Sample Expected Loss and Optimal

Prior Beliefs

As illustrated in the previous section, given a set of orthogonal factors and

a location for prior beliefs about factor loadings, the shrinkage intensity, repre-

sented by the parameters δ1, . . . , δN in equation 2.10, corresponds to a set of free

parameters for tuning the prior beliefs to optimize a finite sample expected loss

function. This section presents the solution to this optimization problem under

two specifications for finite sample loss (up to the bandwidth parameter specified in

the statistical model). The analysis begins by following Ledoit and Wolf (2003) in

presenting optimal priors under the expected Frobenius Norm loss, consistent with

an element-by-element mean square error measure for the covariance matrix. Ex-

tending this work, I then propose a novel alternative expected loss function focused

on addressing covariance matrix estimation for a mean-variance portfolio selection

analysis and solve for optimal prior beliefs under this new loss specification.

2.3.1 Optimal Priors for Frobenius Norm Loss (MSE)

To maintain consistency with the existing literature on shrinkage methods,

first consider optimal prior beliefs under the the expected Frobenius Loss measure,
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which also corresponds to the loss function chosen by Ledoit and Wolf (2004a,b)

in solving for optimal shrinkage intensities:

L =
∥∥∥Σ− Σ̂

∥∥∥2

=
N∑
i=1

N∑
j=1

(σi,j − σ̂i,j)2 (2.14)

The Frobenius loss function is motivated by its relationship to mean-square

error and the L2 norm for matrices, a common loss function for statistical problems.

The optimization problem is then to trade off bias and variance from the shrinkage

estimator in equation 2.10 to minimize the risk function:

R (δ1, δ2, . . . , δN) ≡ (2.15)

E

∥∥∥∥∥Σ−
N∑
k=1

δkσ
2
Fk
B̂kB̂

′
k +

N∑
k=1

(1− δk)σ2
Fk
B0,kB

′
0,k + Λ

∥∥∥∥∥
2


Squared summations quickly become notationally cumbersome, so denote

the total bias and variance for the (i, j) entry of the covariance matrix as:

Bi,j =
N∑
q=1

N∑
r=1

(βq,iβr,i − β0,q,iβ0,r,i) (βq,jβr,j − β0,q,jβ0,r,j)

Vi,j =
N∑
q=1

N∑
r=1

cov
(
β̂q,iβ̂r,i, β̂q,jβ̂r,j

)
This notation compactly expresses the optimal finite-sample shrinkage in-

tensities (and consequently, the optimal empirical prior beliefs) in the following

theorem.

Theorem 2.4 The risk function in equation 2.15 is minimized when δ1, . . . , δN

are chosen to equal the solution to the following set of N linear equations:

Ψδ =ξ (2.16)



105

where:

ξi =
N∑
q=1

σ2
F,qBi,q

Ψ{i,j} =σ2
F,j (Bi,j + Vi,j)

Proof. The mechanical details are somewhat tedious, but they simply involve

taking the derivative of the risk function and quite a bit of rudimentary algebra

pushing around the orders of summation and simplifying.

2.3.2 Optimal Priors for Portfolio Variance Square Error

(PVSE)

The second performance statistic I consider is a novel measure based on

the squared difference between the estimated variance of a portfolio and the true

variance of that portfolio. While this measure is not a common norm for covariance

matrices, it is particularly relevant to financial applications and mean-variance

analysis. Here, take any absolutely continuous measure over portfolio space, Φ(w),

and integrate over portfolios under this measure to compute an integrated squared

difference between the estimated portfolio variance and the true portfolio variance.

If the weights are exchangeable under the measure Φ, it is possible to integrate

out the portfolio weights and the measure itself from the loss function, defining

the loss up to an arbitrary constant of porportionality as:

PV SE
(

Σ, Σ̂
)

=

∫ (
w′Σw − w′Σ̂w

)2

dΦ (w) (2.17)

∝
N∑
k=1

N∑
l=1

N∑
p=1

N∑
q=1

(σk,l − σ̂k,l) (σp,q − σ̂p,q)

The key difference between this loss function and the Frobenius norm-based

loss function studied by Ledoit & Wolf is that the PVSE measure takes the sum

over differences between estimated and true covariances prior to squaring, resulting
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in a 4-fold summation rather than the double-sum in equation 2.14. This feature

captures the tradeoffs in estimating covariances as they relate to the problem

of optimal diversification, accounting for the interactions of covariances, rather

than the more restrictive Frobenius norm, which only accounts for deviations for

individual covariances.

The analysis for deriving optimal priors under the expected PVSE loss is

then very similar to that for expected MSE loss in the previous section. However,

PVSE loss also accounts for the covariance between errors in estimating the {i, j}
and {p, q} entries in the covariance matrix. As such, define:

B∗i,j =
N∑
k=1

N∑
l=1

N∑
p=1

N∑
q=1

(βk,iβl,i − β0,k,iβ0,l,i) (βp,jβq,j − β0,p,jβ0,q,j)

V∗i,j =
N∑
k=1

N∑
l=1

N∑
p=1

N∑
q=1

cov
(
β̂k,iβ̂l,i, β̂p,jβ̂q,j

)
As before, this notation allows the optimal finite-sample shrinkage intensi-

ties (and consequently, the optimal empirical prior beliefs) to be expressed com-

pactly in the following theorem.

Theorem 2.5 The risk function in equation 2.17 is minimized when δ1, . . . , δN

are chosen to equal the solution to the following set of N linear equations:

Ψ∗δ =ξ∗ (2.18)

where:

ξ∗i =
N∑
q=1

σ2
F,qB∗i,q

Ψ∗{i,j} =σ2
F,j

(
B∗i,j + V∗i,j

)
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2.3.3 Feasible Estimation of Optimal Priors

The key to consistently estimating the parameters for optimal priors is to

consistently estimate the biases and covariances that collectively define Bi,j, Vi,j,
B∗i,j, and V∗i,j.

This analysis follows the approach of Ledoit and Wolf (2003), who show

the bias terms can be consistently estimated by replacing the population moments

with unbiased sample moments and taking the difference between the estimated

factor loadings and the prior expected factor loadings as follows:

B̂i,j =
N∑
q=1

N∑
r=1

(
β̂q,iβ̂r,i − β0,q,iβ0,r,i

)(
β̂q,jβ̂r,j − β0,q,jβ0,r,j

)
(2.19)

B̂∗i,j =
N∑
k=1

N∑
l=1

N∑
p=1

N∑
q=1

(
β̂k,iβ̂l,i − β0,k,iβ0,l,i

)(
β̂p,jβ̂q,j − β0,p,jβ0,q,j

)
In analyzing the covariance terms, first observe that the orthogonality of

the factors immediately implies that V∗i,j = Vi,j = 0,∀i 6= j since the covariance

between loadings on two different factors will always be zero regardless of the

assets. The next step is to obtain a closed form solution for Vi,i and V∗i,i in terms

of population moments that admits a consistent plug-in estimation strategy. After

a good deal of algebra to address the N4 terms in the summand:

TVi,i =3σ−4
Fi

N∑
k=1

σ4
ε,k + σ−4

Fi

N∑
k=1

∑
l 6=k

σ2
ε,kσ

2
ε,l (2.20)

TV∗i,i =3σ−4
Fi

N∑
k=1

σ4
ε,k + 3

1

T
σ−4
Fi

N∑
k=1

∑
l 6=k

σ2
ε,kσ

2
ε,l + 3σ−2

Fi

N∑
k=1

∑
p 6=k

∑
q 6=k,q 6=p

σ2
ε,kβp,iβq,i

+ σ−2
Fi

N∑
k=1

∑
p 6=k

∑
l 6=k,l 6=p

σ2
ε,pβk,iβl,i + σ2

ε,lβk,iβp,i

To establish a consistent and feasible estimator of optimal prior beliefs,

then, replace the population moments in the equation above with sample moments.

The consistency of this estimator for the beliefs follows immediately from the

Continuous Mapping Theorem. Consistency of the posterior covariance matrix
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under optimal priors follows from the fact that the optimal shrinkage places all

weight on the sample as the sample estimator becomes arbitrarily precise. The

only free parameter remaining to be chosen is the bandwidth parameter h.

2.3.4 Optimal Empirical Bayesian Priors for Structured

Estimators

When analyzing priors based on stochastic models that do not have an

immediate factor-structure representation, such as the constant-correlation covari-

ance matrix, it would be appropriate to apply the above analysis treating βi,0 as a

random variable. This complication introduces yet another dimension to the opti-

mization problem but does not materially affect the analysis outside of requiring a

host of additional algebraic derivation. The main challenges in this setting arise in

deriving feasible estimators for optimal priors, as the analysis requires character-

izing the covariance of estimators across the models. This exercise is analytically

feasible in special cases (such as those explored by Ledoit & Wolf), but it is im-

possible to derive an analytical result that can be applied to an arbitrary model as

an empirical Bayes prior. However, that a sampling or bootstrap approach might

provide an generic algorithm that can be generically applied for a fully automated

Empirical Bayesian estimator.

2.4 Prior Belief Specifications

Having characterized the posterior covariance matrix’s analytical properties

and derived finite-sample optimal priors, the discussion now turns to specifications

for prior beliefs based on economic research. These beliefs directly relate to factor

models inspired by the Bayesian asset pricing literature, highlighting the relation-

ship between the present model and these existing models with two classes of prior

beliefs: one that expresses a simple belief that covariances are driven by a k factor

structure and a Minnesota-style prior that progressively restricts parameter esti-

mates for non-benchmark factors. In addition to a restrictive model of beliefs that

non-benchmark factor loadings are zero, I consider an empirical Bayesian set of be-
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liefs that factor loadings are centered at the cross-sectional mean of OLS-estimated

factor loadings. These beliefs capture the empirical regularity of mean-reversion in

estimated factor loadings and also address parameter estimation error by shrinking

extreme realizations of estimated factor loadings.

2.4.1 No Extra-Benchmark Correlation Prior (BMK)

The introduction proposed a K < N factor model of covariance as the

motivating prior belief for the Bayesian Covariance Matrix estimator. In this

setting, consider a prior that is diffuse over the first K factor loadings but then

shrinks the remaining N −K factor loadings toward zero. As a further simplifying

assumption, assume the prior for each factor loading is independent of one another

and that the prior standard deviation is constant for each of the remaining N −K
factors.

βi, σ
2
ε,i ∼prior NG

0,


σ2
α 0 0

0 ∞IK 0

0 0 σ2
CIN−K

 , v0, s
2
0

 (2.21)

The approach to formulating this prior is inspired by Pastor (2000) and

Pastor and Stambaugh (2002), who model the prior belief in a benchmark as-

set pricing model with diffuse priors over the factor loadings and informatively

shrinks the security’s alpha toward zero. Assuming the expected return on the

N −K derived factors is zero, the present approach immediately nests the Pastor

& Stambaugh model as a special case where σ2
C,0 = 0.

Under this prior specification, there remains four free parameters to define

the prior beliefs. As in the Pastor & Stambaugh pricing model, σα characterizes

the degree to which the investor believes in the asset pricing model. Similarly, the

new parameter σC characterizes the degree to which the investor believes in the

hypothesis that there is no extra-benchmark correlation across assets. The larger

is the value of σC , the greater the posterior factor loadings for augmented factors

are allowed to deviate from zero. In the extreme case where σC → ∞, the extra-

benchmark factor loadings become freely variable and the posterior covariance

matrix converges to the unbiased sample covariance matrix. The prior beliefs for
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idiosyncratic variance can be set to be diffuse by setting v0 = 0, in which case any

finite value for s0 may be selected without affecting the posterior expectation.

2.4.2 Minnesota Priors (MN)

In the analysis of VAR’s, the number of lagged periods included in the

analysis presents a significant decision variable in estimating and forecasting in

time-series models. Typically, researchers approached the problem using a specifi-

cation test for the number of lags and dropping all additional lags. The approach

to selecting the number of lags closely parallels that used by most researchers

who have adopted principal components analysis as a method for dimensionality

reduction since Stock and Watson (1989), who select a number of components

and restrict the remaining factor loadings to be equal to zero. Connor and Kora-

jczyk (1993) and Bai and Ng (2002) present tests for the number of components

to include in the model, but still dogmatically restrict the variation due to other

factors.

Using a Bayesian formulation, Litterman (1986) proposed to address the lag

selection issue by introducing progessively more restrictive priors as the lag length

grows, dubbed the “Minnesota Prior.” In the Minnesota prior, the prior beliefs

for a parameter associated with the τth lag has expectation equal to zero with a

variance inversely proportional to τ . In this way, the Minnesota prior smooths the

effect of lag length determinantion as parameters corresponding to longer lags are

shrunk towards zero rather than dropped entirely.

A similar approach can be immediately adapted to the number of factors in

estimating covariance matrices. Instead of testing for the correct number of factors

to include and dropping all additional factors, this approach retains all factors

under a prior that the variance for the factor loading is inversely proportional to

the index of the factor estimated. Denoting by ΞN−K the diagonal matrix with
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entries
(
1, 1

2
, . . . , 1

N−K

)
:

βi, σ
2
ε,i ∼prior NG

0,


σ2
α 0 0

0 ∞IK 0

0 0 σ2
CΞN−K

 , v0, s
2
0

 (2.22)

2.4.3 Mean Reverting Factor Loading Prior (MR)

An alternative prior is motivated by the analysis of Blume (1975) who

established the tendency of factor loadings to regress toward the mean. Define

the cross-sectional average beta, β̄ = 1
N

∑N
i=1 β̂i and idiosyncratic variance s̄ =

1
N

∑N
i=1 ŝi, so that the investor’s prior beliefs shrink the factor loadings toward the

grand mean.

βi, σ
2
ε,i ∼prior NG

β̄,

σ2
α 0 0

0 ∞IK 0

0 0 σ2
CIN−K

 , v0, s̄
2
0

 (2.23)

This class of beliefs shrinks factor loadings toward the cross-sectional aver-

age factor loading in a manner similar to the asset pricing model proposed by Frost

and Savarino (1986). As with the MKT prior, the parameter σC represents the de-

gree to which the investor believes in mean-reverting factor loadings. For extremely

large values of σC , the posterior covariance matrix converges toward the unbiased

sample covariance matrix. As σC → 0, all factor loadings become identical and, in

turn, all covariances are shrunk toward a single constant. If v0 also becomes large,

so that all idiosyncratic variances are shrunk towards the same constant, then the

posterior covariance matrix converges to a two-parameter covariance matrix with

diagonal entries equal to the average variance and off-diagonal entries equal to the

average covariance for all assets.

Using the mean-reverting prior introduces an Empirical Bayesian procedure

that technically does not satisfy the assumptions of an independent prior and

likelihood in the statistical model. However, this prior can be formalized in a

learning model where the cross-section is informative about an individual asset’s
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factor loadings akin to that studied in Jones and Shanken (2005) or alternatively

in a model with time-varying parameters and mean-reversion in factor loadings.

In this sense, the pricing parameter σα measures the degree to which an investor

believes individual fund alphas can vary from the grand mean alpha, with large

values of σα allowing individual fund alphas to be effectively unrestricted.

2.5 Monte Carlo Tests & Finite Sample Proper-

ties

Having established its statistical properties, the analysis now turns to char-

acterizing the empirical properties of the posterior covariance matrix relative to

existing estimators with a simple Monte Carlo test. To maintain consistency with

the existing literature on shrinkage methods, first consider the performance of

covariance matrix estimators using the Frobenius Loss measure from equation

2.14, though I’ll also evaluate estimator performance using the Portfolio Variance

Squared Error Loss function proposed in 2.17.

2.5.1 Data Sample and Competing Estimators

In this test, I fit three covariance matrices for N = 14, N = 25, and

N = 48 assets, corresponding to the full-sample covariance matrix estimated from

14 country portfolios, 25 Value-Size sorted portfolios, and 48 industry portfolios,

respectively, where the return series are downloaded from Ken French’s website.

For each covariance matrix, I generate a time series of normally distributed random

variables where the length of the series (T ) ranges from 25 to 500.

I consider two non-Bayesian estimators as reference points: the unrestricted

sample covariance matrix and a single-factor model of covariance with the factor

derived via principal components. I also include the Ledoit & Wolf shrinkage es-

timator that shrinks the sample covariance matrix toward the the Single (equal

weighted) Factor covariance matrix. I implement the posterior covariance ma-

trix for single-factor prior presented in equation 2.21, the Minnesota prior from
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equation 2.22, and the mean-reverting prior specification from 2.23 with varying

degrees of certainty in the prior specification. In each of the posterior covariance

models, I use the normal-inverse gamma regression model with diffuse priors on

the idiosyncratic noise, so that the variance of the error term has prior degree of

freedoms v0 = 0 and scale parameter s2
0 = 0.01.

2.5.2 Overall Estimator Results

Table 2.1 presents the finite-sample mean square error for each of the es-

timator at several horizons, with numerical standard errors in parenthesis. Over-

all, the posterior covariance estimators perform quite well in this exercise, with

the mean-reverting prior specification dominating other estimators in the setting

where the number of observations is less than the number of securities.

The results in Table 2.1 also illustrate that the posterior covariance esti-

mator mean squared error goes to zero as the number of observations increases.

Consequently, as noted in Theorem 2.1, the estimation algorithm retains asymp-

totic consistency while attaining lower finite-sample mean squared error. This

feature is particularly useful when the number of assets in the model is relatively

small, as in Panel A of Table 2.1. The relative performance of the estimator is

somewhat sensitive to prior beliefs, notably when the prior beliefs are differently

centered, as in the case of the Mean-Reverting and Single Factor priors.

The performance of the posterior covariance matrix is less striking when

evaluated using the proposed Portfolio Variance Square Error measure in Table

2.2, in large part because this performance measure has so little variation across

estimators. Indeed, the sample covariance matrix seems to dominate the other es-

timation strategies, but in no cases are the differences in performance significantly

large.

2.5.3 Individual Estimator Robustness

A common concern with Bayesian estimation techniques is the degree to

which estimator results are sensitive to prior belief specifications. This subsection
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evaluates the effect of varying the degree of belief in each of the underlying factor

models using the same simulation test as in the previous subsection. This analysis

illustrates the effect of varying the degree of certainty relating to prior beliefs

on estimator performance. Due to the lack of broad variation in the PVSE loss

measure, I only report results for the MSE, Frobenius Norm, loss measure.

Table 2.3 illustrates the MSE under the Mean-Reverting prior with varying

degrees of prior certainty. As the prior standard deviation parameter becomes

low, the posterior covariance matrix estimator converges to the model where all

factor loadings and idiosyncratic variances are the same across assets. In this case,

the assets become exchangeable and the covariance matrix converges to a two

parameter model with constant covariances and constant variances. In contrast,

as the prior standard deviation becomes large, the posterior covariance matrix

converges to the sample covariance matrix.

The performance for the Single-Factor and Minnesota priors are very similar

to one another and so table 2.4 reports the loss statistics for the Single Factor

prior with varying degrees of variance in the prior beliefs. As the prior beliefs

become very restrictive, the posterior expected covariance matrix converges to the

single factor covariance matrix estimator. As they become diffuse, the estimator

converges to the sample covariance matrix. The best performance levels come with

priors that are relatively diffuse compared to the priors under the mean-reverting

specification.

Lastly, I turn to the optimal prior specification to evaluate the degree to

which the bandwidth parameter can affect performance in this model. Table 2.5 il-

lustrates that for most reasonable bandwidths (1% to 5%), the posterior expected

covariance matrix estimated using the optimal prior performs quite well. With

extremely small or large bandwidth parameters, however, the estimator’s perfor-

mance begins to deteriorate.
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2.6 Performance in Portfolio Selection Exercise

In addition to Monte Carlo exercises characterizing the statistical perfor-

mance of the posterior covariance matrix, a series of portfolio selection tests charac-

terize the performance of the posterior covariance matrix in an applied setting. To

avoid complications due to estimation of means, I focus on the problem of finding

global minimum variance portfolio (GMVP) with and without non-negativity con-

straints. The first test corresponds to a traditional backtest using return histories

for the three asset universes analyzed in the Monte Carlo simulation (analysis for

many other universes and backtest parameterizations are available upon request)

while a second test evaluates the robustness of these results using additional sim-

ulation evidence.

2.6.1 Data Sample and Competing Estimators

I evaluate the performance of the Bayesian Factor Covariance estimator in

a minimum variance portfolio selection exercise with the same three samples used

to calibrate the Monte Carlo tests taken from Ken French’s website. On January

1 of each year, I use a rolling window of 10 years’ monthly returns to estimate

historical covariance matrices and calculate optimal portfolio holdings, rebalancing

monthly and reoptimizing annually. The large industry portfolio (corresponding to

N = 48) and the Country portfolio samples (with N = 14) cover only the periods

from 1979-2008 and 1975-2008, respectively. The N = 25 sample of value and size

sorted portfolios has a long history, beginning in 1936.

In this exercise, I include two benchmarks that do not require estimating a

covariance matrix. The first is the 1/N rule, corresponding to näıve diversification

rule of investing an equal proportion of the portfolio in each of the assets in the

investible universe. DeMiguel, Garlappi, and Uppal (2007) focused on this strategy

and showed it to perform quite well in a variety of empirical applications. The

second näıve diversification rule is the 1/V rule, where each asset’s weight in the

portfolio is proportional to the inverse of its variance, which can be thought of

arising from a restricted model of zero covariances. It is straightforward to show
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that, under a diffuse prior for factor loadings, extreme beliefs for the parameters v0

and s0 shrink the optimal minimum-variance portfolio weights between these two

rules. In addition to the benchmark allocations, the optimal portfolio weights are

estimated using the covariance matrix estimators discussed in the previous section.

2.6.2 Minimum-Variance Performance Backtest Results

Tables 2.6 and 2.7 report the performance statistics for unconstrained and

constrained minimum-variance portfolios, respectively, based on each of the above

estimation strategies. As in the Monte Carlo simulations, the results are strikingly

supportive for the Bayesian Factor Covariance estimators. In every sample, port-

folios computed using the posterior covariance matrix are among the strategies

providing the lowest volatility. The Ledoit & Wolf estimator also does extremely

well, illustrating the dominance of Bayesian methods in portfolio selection.

While there is some sensitivity to the prior specification, portfolios derived

using the posterior covariance matrix perform remarkably well both in terms of

volatility and realized out-of-sample Sharpe Ratios. Interestingly, the 1/N strategy

is clearly dominated by both the 1/V strategy and the Bayesian models in terms

of portfolio variance, but still maintains one of the highest Sharpe Ratios and

geometric average returns.

2.6.3 Simulated Portfolio Performance Test Results

In addition to the standard backtest analysis characterizing portfolio selec-

tion performance in historical samples, I implement the test procedure proposed by

Markowitz and Usmen (2003) and also employed by Liechty, Harvey, and Liechty

(2008) to evaluate the portfolio selection performance. The Markowitz & Usmen

test proceeds in a fashion similar to the Monte Carlo simulation above in that,

first, I select a sample of returns from which to compute a true covariance ma-

trix. I then generate a simulated sample of normally distributed returns where the

length of the series (T ) ranges from 25 to 500. From these samples, I estimate the

minimum variance portfolio weights using each of the candidate covariance matrix
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estimators and compute the true variance of that portfolio for each estimator. I

then generate a new sample and repeat the exercise until the numerical standard

error for the volatility of the GMVP generated by each estimation strategy below

one basis point (which takes less than 1,000 iterations).

Table 2.8 presents the average volatility attained by each of the estimators in

identifying the Global Minimum Variance Portfolio with no long/short constraints.

The Bayesian estimators perform quite well relative to both the näıve portfolio

strategies and the optimal weights estimated using non-Bayesian methods. The

settings where the Bayesian estimators underperform correspond to cases with a

large number of observations relative to the number of securities. These results are

still somewhat sensative to the prior belief specification and especially so in other

specifications where the prior beliefs are extremely tight. However, the portfolio

weights estimated using moderate prior beliefs perform well across most of the

specifications.

The performance of the covariance matrix estimators in the constrained

portfolio selection problem is presented in table 2.9. As in the backtest study, the

constraints reduce the influence of prior beliefs so that the realized GMVP volatility

from the posterior covariance matrices is always within 20 basis points of the

best alternative strategy even in very small samples. Interestingly, the constraints

substantially improve the performance of portfolios estimated using the sample

covariance matrix and the single factor covariance matrix estimators, particularly

when the sample size is relatively small. However, these constraints do little to

improve the performance of portfolios calculated using the Bayesian covariance

matrix estimators. Indeed, under most prior specifications and sample sizes, the

constrained portfolios have higher volatility than the unconstrained portfolios.

2.7 Conclusion and Potential Extensions

I present a formal foundation for applying Bayesian methods to estimating

covariance matrices, showing that my analysis theoretically nests a broad set of

popular Bayesian techniques for estimating means and covariances. The Monte
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Carlo and minimum variance portfolio tests are quite encouraging for the prospec-

tive application of the posterior covariance matrix estimator. Another potentially

valuable application would include adapting these methods to modeling the square

error of different forecast errors in the forecast combination literature.

One limitation of the current exercise is that it’s inherently static in its

consideration of the data generating process. However, much of the reasoning

behind mean-reverting factor loadings is based on a dynamic specification of the

return generating process with time-varying factor loadings. The current model

could readily be extended to a conditional setting where factor loadings follow

a mean-reverting AR(1) process, with the posterior estimates of the persistence

characterizing the degree of mean reversion. This model would also provide a

purely Bayesian framework to replace the empirical Bayesian framework used above

with likely similar results.

Another open question relates to the underlying mechanisms by which the

Bayesian Factor Covariance estimator addresses parameter and model uncertainty.

One appeal of the estimator is that it allows the data to dictate the structure of the

model. Introducing a cross-validation step in prior selection to specify the band-

width parameter could deliver a fully automated estimator with quite appealing

out of sample properties. This estimator would be very easy to implement and, as

such, likely be quite useful in a variety of economic settings.
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Tables and Figures

Figure 2.1: Posterior Factor Loading Consistency
As the number of observations becomes large, the weight assigned to prior factor

loadings goes to zero. In this way, the posterior expected covariance matrix
converges to the sample covariance matrix, which is consistent for the true

covariance matrix.
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Table 2.1: Monte Carlo Simulation Mean Squared Error
This table presents the Mean-Squared Error in estimating full-sample covariance

matrix from normally distributed simulation data of various horizons. These
results are based on 10,000 simulations. The Bayesian Factor Covariance Matrix
is estimated using Mean Reverting (MR) priors with unit prior standard error

parameter, Single Factor (SF) priors with standard error parameter 5, Minnesota
(MN) priors with standard error parameter 5, and the Optimal prior with

bandwidth parameter 0.5.

Single Market Bayesian Factor Covariance Matrices
T Sample Factor Shrinkage MR-1 SF-5 MN-5 Opt

Panel A: 14 Country Equity Portfolios
25 19.13 19.85 17.16 12.18 18.70 18.77 13.30
50 9.41 11.07 8.74 7.84 9.50 9.70 8.61
75 6.21 8.17 5.87 6.10 6.33 6.59 6.44

100 4.60 6.73 4.39 5.09 4.71 4.97 5.03
250 1.84 4.29 1.81 2.80 1.88 2.03 2.04
500 0.91 3.46 0.90 1.61 0.93 0.99 1.00

Panel B: 25 Size & Value Sorted Portfolios
25 160.02 162.91 159.18 155.63 160.03 160.58 156.34
50 79.68 83.29 79.44 80.72 79.80 80.23 80.45
75 52.56 56.43 52.45 54.53 52.65 52.96 54.78

100 39.41 43.37 39.34 41.63 39.48 39.70 42.32
250 15.67 19.83 15.66 17.37 15.69 15.77 18.49
500 7.65 11.85 7.65 8.56 7.66 7.69 9.66

Panel C: 48 Industry Portfolios
25 235.70 226.04 213.78 185.00 226.14 223.78 181.65
50 112.48 116.20 104.21 100.81 109.89 109.15 102.56
75 75.52 83.71 71.09 72.85 74.50 74.25 76.59

100 57.40 67.87 54.64 57.98 56.93 56.92 62.43
250 22.62 37.41 22.10 25.37 22.64 22.89 28.23
500 11.45 27.61 11.31 13.18 11.47 11.64 13.75



121

Table 2.2: Monte Carlo Simulation Portfolio Variance Squared Error
This table presents the Portfolio Variance Squared Error (defined in equation
2.17) in estimating full-sample covariance matrix from normally distributed

simulation data of various horizons. These results are based on 10,000
simulations. The Bayesian Factor Covariance Matrix is estimated using Mean
Reverting (MR) priors with unit prior standard error parameter, Single Factor

(SF) priors with standard error parameter 5, Minnesota (MN) priors with
standard error parameter 5, and the Optimal prior with bandwidth parameter

0.5.

Single Market Bayesian Factor Covariance Matrices
T Sample Factor Shrinkage MR-1 SF-5 MN-5 Opt

Panel A: 14 Country Equity Portfolios
25 13.74 14.77 13.99 14.43 13.95 14.08 14.66
50 6.80 7.71 6.97 7.48 6.87 6.97 7.76
75 4.48 5.33 4.58 5.05 4.51 4.58 5.34

100 3.27 4.12 3.34 3.79 3.29 3.34 4.08
250 1.32 2.19 1.34 1.63 1.33 1.35 1.78
500 0.65 1.51 0.66 0.81 0.65 0.66 0.80

Panel B: 25 Size & Value Sorted Portfolios
25 75.61 75.71 75.63 75.66 75.64 75.65 75.71
50 37.80 37.88 37.81 37.87 37.82 37.83 37.93
75 24.92 24.99 24.93 24.98 24.93 24.94 25.03

100 18.70 18.75 18.70 18.74 18.71 18.71 18.79
250 7.45 7.49 7.45 7.47 7.45 7.45 7.49
500 3.62 3.65 3.62 3.62 3.62 3.62 3.62

Panel C: 48 Industry Portfolios
25 23.94 24.03 23.92 23.92 23.95 23.96 23.92
50 10.97 11.01 10.97 10.98 10.97 10.97 11.00
75 7.48 7.50 7.47 7.48 7.47 7.47 7.50

100 5.79 5.82 5.78 5.80 5.79 5.79 5.82
250 2.22 2.28 2.22 2.24 2.22 2.22 2.28
500 1.15 1.22 1.15 1.16 1.15 1.15 1.19
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Table 2.3: Mean Reverting Prior Mean Squared Error Performance
This table presents the Mean-Squared Error in estimating full-sample covariance
matrix from normally distributed simulation data of various horizons based on
10,000 simulations using the Bayesian Factor Covariance Matrix with a Mean
Reverting prior and varying levels of prior certaintly. As the prior standard

deviation becomes large, the estimator converges to the sample estimator. As the
prior standard deviation becomes small, the estimator converges to a two

parameter covariance matrix with constant covariances and constant variances.

Mean Reverting Prior with Standard Deviation Parameter:
T 0.01 0.1 0.5 1 2.5 5 10 Sample

Panel A: 14 Country Equity Portfolios
25 11.87 11.84 11.48 12.18 15.46 17.46 18.70 19.13
50 8.03 7.97 7.39 7.84 8.74 9.16 9.37 9.41
75 6.70 6.61 5.89 6.10 6.14 6.18 6.21 6.21

100 6.03 5.92 5.08 5.09 4.72 4.61 4.60 4.60
250 4.94 4.67 3.46 2.80 2.00 1.86 1.84 1.84
500 4.55 4.06 2.55 1.61 0.99 0.92 0.91 0.91

Panel B: 25 Size & Value Sorted Portfolios
25 240.99 233.82 170.48 155.63 158.31 159.07 159.62 160.02
50 179.93 166.49 89.62 80.72 79.95 79.54 79.61 79.68
75 159.05 139.86 60.21 54.53 52.97 52.53 52.54 52.56

100 148.88 124.50 45.76 41.63 39.77 39.40 39.40 39.41
250 130.26 82.07 19.66 17.37 15.81 15.68 15.67 15.67
500 123.32 52.60 10.65 8.56 7.70 7.65 7.65 7.65

Panel C: 48 Industry Portfolios
25 215.91 210.77 174.40 185.00 208.62 222.55 231.36 235.70
50 158.48 148.90 99.62 100.81 104.44 108.93 111.57 112.48
75 142.84 129.15 75.06 72.85 71.88 74.05 75.22 75.52

100 135.27 117.76 61.98 57.98 55.46 56.67 57.28 57.40
250 119.27 83.82 32.38 25.37 22.57 22.59 22.62 22.62
500 114.00 60.79 19.47 13.18 11.53 11.45 11.45 11.45



123

T
a
b

le
2
.4

:
S
in

gl
e

F
ac

to
r

P
ri

or
M

ea
n

S
q
u
ar

ed
E

rr
or

P
er

fo
rm

an
ce

T
h
is

ta
b
le

p
re

se
n
ts

th
e

M
ea

n
-S

q
u
ar

ed
E

rr
or

in
es

ti
m

at
in

g
fu

ll
-s

am
p
le

co
va

ri
an

ce
m

at
ri

x
fr

om
n
or

m
al

ly
d
is

tr
ib

u
te

d
si

m
u
la

ti
on

d
at

a
of

va
ri

ou
s

h
or

iz
on

s
b
as

ed
on

10
,0

00
si

m
u
la

ti
on

s
u
si

n
g

th
e

B
ay

es
ia

n
F

ac
to

r
C

ov
ar

ia
n
ce

M
at

ri
x

w
it

h
a

M
ea

n
R

ev
er

ti
n
g

p
ri

or
an

d
va

ry
in

g
le

ve
ls

of
p
ri

or
ce

rt
ai

n
tl

y.
A

s
th

e
p
ri

or
st

an
d
ar

d
d
ev

ia
ti

on
b

ec
om

es
la

rg
e,

th
e

es
ti

m
at

or
co

n
ve

rg
es

to
th

e
sa

m
p
le

es
ti

m
at

or
.

A
s

th
e

p
ri

or
st

an
d
ar

d
d
ev

ia
ti

on
b

ec
om

es
sm

al
l,

th
e

es
ti

m
at

or
co

n
ve

rg
es

to
a

tw
o

p
ar

am
et

er
co

va
ri

an
ce

m
at

ri
x

w
it

h
co

n
st

an
t

co
va

ri
an

ce
s

an
d

co
n
st

an
t

va
ri

an
ce

s.

S
in

gl
e

S
in

gl
e

F
ac

to
r

P
ri

or
w

it
h

S
ta

n
d
ar

d
D

ev
ia

ti
on

P
ar

am
et

er
:

T
F

ac
to

r
0.

01
0.

1
0.

5
1

2.
5

5
10

S
am

p
le

P
an

el
A

:
14

C
ou

n
tr

y
E

q
u
it

y
P

or
tf

ol
io

s
25

19
.8

5
19

.8
3

19
.7

9
19

.6
5

19
.1

0
18

.8
5

18
.7

0
19

.0
8

19
.1

3
50

11
.0

7
11

.0
6

11
.0

2
10

.7
7

10
.0

0
9.

76
9.

50
9.

47
9.

41
10

0
6.

73
6.

73
6.

64
6.

16
5.

23
5.

02
4.

71
4.

63
4.

60
25

0
4.

29
4.

29
3.

99
3.

07
2.

21
2.

06
1.

88
1.

85
1.

84
50

0
3.

46
3.

45
2.

78
1.

70
1.

08
1.

00
0.

93
0.

92
0.

91

P
an

el
B

:
25

S
iz

e
&

V
al

u
e

S
or

te
d

P
or

tf
ol

io
s

25
16

2.
91

16
2.

89
16

2.
86

16
2.

69
16

1.
79

16
1.

27
16

0.
03

15
9.

91
16

0.
02

50
83

.2
9

83
.2

9
83

.2
4

82
.8

8
81

.4
0

80
.8

0
79

.8
0

79
.6

9
79

.6
8

10
0

43
.3

7
43

.3
7

43
.2

4
42

.4
2

40
.5

0
40

.0
3

39
.4

8
39

.4
2

39
.4

1
25

0
19

.8
3

19
.8

3
19

.3
5

17
.6

1
16

.0
5

15
.8

6
15

.6
9

15
.6

7
15

.6
7

50
0

11
.8

5
11

.8
5

10
.6

9
8.

64
7.

78
7.

72
7.

66
7.

65
7.

65

P
an

el
C

:
48

In
d
u
st

ry
P

or
tf

ol
io

s
25

22
6.

04
22

5.
93

22
5.

55
22

3.
79

22
0.

07
22

0.
10

22
6.

14
23

2.
38

23
5.

70
50

11
6.

20
11

6.
17

11
5.

56
11

2.
48

10
7.

82
10

7.
57

10
9.

89
11

1.
84

11
2.

48
10

0
67

.8
7

67
.8

5
66

.5
4

61
.3

5
56

.6
2

56
.3

3
56

.9
3

57
.3

5
57

.4
0

25
0

37
.4

1
37

.3
9

33
.2

9
26

.0
4

22
.9

3
22

.7
3

22
.6

4
22

.6
3

22
.6

2
50

0
27

.6
1

27
.5

5
19

.7
2

13
.3

7
11

.6
9

11
.5

7
11

.4
7

11
.4

5
11

.4
5



124

T
a
b

le
2
.5

:
O

p
ti

m
al

P
ri

or
M

ea
n

S
q
u
ar

ed
E

rr
or

P
er

fo
rm

an
ce

T
h
is

ta
b
le

p
re

se
n
ts

th
e

M
ea

n
-S

q
u
ar

ed
E

rr
or

in
es

ti
m

at
in

g
fu

ll
-s

am
p
le

co
va

ri
an

ce
m

at
ri

x
fr

om
n
or

m
al

ly
d
is

tr
ib

u
te

d
si

m
u
la

ti
on

d
at

a
of

va
ri

ou
s

h
or

iz
on

s
b
as

ed
on

10
,0

00
si

m
u
la

ti
on

s.
T

h
e

op
ti

m
al

p
ri

or
co

va
ri

an
ce

m
at

ri
x

p
er

fo
rm

s
ra

th
er

w
el

l
fo

r
a

b
ro

ad
se

t
of

m
o
d
er

at
e

b
an

d
w

id
th

p
ar

am
et

er
s.

H
ow

ev
er

,
as

th
e

b
an

d
w

id
th

b
ec

om
es

ex
tr

em
el

y
sm

al
l

or
ex

tr
em

el
y

la
rg

e,
p

er
fo

rm
an

ce
b

eg
in

s
to

d
et

er
io

ra
te

.

O
p
ti

m
al

P
ri

or
w

it
h

B
an

d
w

id
th

P
ar

am
et

er
:

T
0.

00
5

0.
01

0.
01

5
0.

02
5

0.
05

0.
07

5
0.

1
0.

25
S
am

p
le

P
an

el
A

:
14

C
ou

n
tr

y
E

q
u
it

y
P

or
tf

ol
io

s
25

16
.3

9
15

.5
6

15
.3

5
14

.8
4

13
.3

0
12

.6
6

12
.4

8
12

.5
9

19
.1

3
50

8.
77

8.
45

8.
34

8.
55

8.
61

8.
22

7.
94

7.
90

9.
41

10
0

4.
35

4.
42

4.
39

4.
42

5.
03

5.
37

5.
41

5.
25

4.
60

25
0

3.
77

2.
02

1.
83

1.
87

2.
04

2.
34

2.
70

3.
59

1.
84

50
0

4.
66

3.
41

1.
93

1.
03

1.
00

1.
10

1.
23

2.
33

0.
91

P
an

el
B

:
25

S
iz

e
&

V
al

u
e

S
or

te
d

P
or

tf
ol

io
s

25
15

1.
75

15
3.

00
15

3.
53

15
4.

07
15

6.
34

16
0.

88
16

7.
11

20
2.

48
16

0.
02

50
76

.8
9

77
.8

3
78

.7
5

79
.5

9
80

.4
5

81
.7

0
83

.6
6

10
6.

74
79

.6
8

10
0

39
.5

6
39

.3
7

39
.8

6
41

.0
8

42
.3

2
42

.7
7

43
.2

3
49

.9
4

39
.4

1
25

0
17

.9
0

17
.4

9
17

.2
5

17
.2

0
18

.4
9

19
.5

2
20

.0
2

21
.2

2
15

.6
7

50
0

10
.5

1
10

.3
5

10
.1

1
9.

80
9.

66
10

.2
5

10
.9

9
12

.7
9

7.
65

P
an

el
C

:
48

In
d
u
st

ry
P

or
tf

ol
io

s
25

21
0.

16
20

7.
80

20
5.

66
19

7.
27

18
1.

65
18

0.
42

18
4.

98
20

6.
26

23
5.

70
50

10
1.

63
10

1.
11

10
2.

80
10

4.
67

10
2.

56
10

1.
31

10
3.

24
13

0.
32

11
2.

48
10

0
54

.2
6

53
.9

5
55

.0
3

58
.2

7
62

.4
3

63
.0

0
63

.2
3

77
.6

3
57

.4
0

25
0

22
.2

8
22

.0
8

22
.2

7
23

.5
2

28
.2

3
31

.9
4

34
.0

3
37

.6
3

22
.6

2
50

0
11

.6
0

11
.5

4
11

.5
0

11
.7

6
13

.7
5

16
.4

7
19

.1
0

26
.3

4
11

.4
5



125

T
a
b

le
2
.6

:
P

er
fo

rm
an

ce
in

P
or

tf
ol

io
B

ac
k
te

st
E

x
er

ci
se

T
h
is

ta
b
le

p
re

se
n
ts

th
e

ou
t

of
sa

m
p
le

p
or

tf
ol

io
p

er
fo

rm
an

ce
fo

r
an

n
u
al

ly
re

b
al

an
ce

d
p

or
tf

ol
io

s
w

h
os

e
w

ei
gh

ts
ar

e
ca

lc
u
la

te
d

to
m

in
im

iz
e

va
ri

an
ce

u
si

n
g

th
e

es
ti

m
at

ed
co

va
ri

an
ce

m
at

ri
x

fr
om

a
sa

m
p
le

of
12

0
la

gg
ed

re
tu

rn
s,

u
si

n
g

d
at

a
p
ro

v
id

ed
b
y

K
en

F
re

n
ch

.
T

h
e

B
ay

es
ia

n
F

ac
to

r
C

ov
ar

ia
n
ce

M
at

ri
x

is
es

ti
m

at
ed

u
si

n
g

M
ea

n
R

ev
er

ti
n
g

(M
R

)
p
ri

or
s

w
it

h
u
n
it

p
ri

or
st

an
d
ar

d
er

ro
r

p
ar

am
et

er
,

S
in

gl
e

F
ac

to
r

(S
F

)
p
ri

or
s

w
it

h
st

an
d
ar

d
er

ro
r

p
ar

am
et

er
5,

M
in

n
es

ot
a

(M
N

)
p
ri

or
s

w
it

h
st

an
d
ar

d
er

ro
r

p
ar

am
et

er
5,

an
d

th
e

O
p
ti

m
al

p
ri

or
w

it
h

b
an

d
w

id
th

p
ar

am
et

er
0.

5.
N

ot
ab

ly
,

th
e

B
ay

es
ia

n
es

ti
m

at
or

s
p

er
fo

rm
q
u
it

e
w

el
l

co
m

p
ar

ed
to

b
ot

h
n
äı
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Chapter 3

An Extended Theory of

Conformity

This paper analyzes conformist tendencies for a population in which in-

dividuals gain utility by mimicking the average behavior, characterizing norms

by the mean behavior. In so doing, the model extends Bernheim’s “A Theory

of Conformity” (1994) by introducing an endogenous mechanism for establishing

social norms. The most interesting result is that this extension does not alter

the properties of equilibria established in Bernheim’s initial development, that is,

social preferences generally give rise to more concentrated behavior and a con-

formist pool forms when social preferences are sufficiently prominent. Further the

extension introduces no new equilibria, since even though Bernheim’s development

included a multiplicity of locations for conformist outcomes, these outcomes are

identified exactly by the location of the social norm within the extended model. In

addition to illustrating the determinants of conformist behavior with an endoge-

nous reference point, these findings support applied work inferring social norms

from average behavior.

3.1 Introduction

Convergent and conformist behavior arises in a wide variety of economic

contexts. In financial markets, traders herding together often have profound effects
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that are associated with market booms (such as the dot-com era and the Dutch

tulip mania) and crashes (from the 1929 crash to the dot-com bust), or coordi-

nated currency attacks that force a government’s monetary policy into alignment

with market fundamentals. Beyond the context of financial markets, conformity

and convergent behavior is observed in a wide variety of everyday economic in-

teractions. From the establishment of social and cultural norms such as tipping

to the development of fashions and fads dictating consumer purchases, economic

behavior is replete with occasions where individual behavior is in perfect or near

perfect concert with the actions of other agents.

An extensive literature analyzing herd behavior has developed under the

rubric of coordination games, with the earliest work focusing on coordination in

general and considering how agents strategically coordinate. Commonly, discrete

coordination games have multiple equilibria that can be characterized as Pareto

optimal coordination, inefficient coordination, and failed coordination with random

matching.1 A continuous coordination game setting with these outcomes is related

to the study of network effects, the roots of which trace back to Rohlfs (1974). In

network effects games, an agents utility from a product is increasing in the user

base of that product, and often focuses on conditions that give rise to suboptimal

coordination on technological standards and the impact of network effects on effi-

ciency. The outcome of convergent behavior in models of coordination games and

network effects is not surprising as the strategic settings are constructed to model

coordinated outcomes. While these games properly represent the phenomenon of

coordination, they do not typically capture the true nature of conformity, which

corresponds to a spontaneous coordination across individuals despite heteroge-

neous preferences. Modeling this type of behavior requires constructing a setting

where coordination is not pre-ordained in order to identify conditions under which

coordination may arise naturally.

The game theory literature contains two prominent models for attaining

conformist behavioral outcomes in settings with diverse agents and preferences.

Among the most successful models in application is the model of information cas-

1See, for example, Fudenberg and Tirole (1991).
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cades developed by Banerjee (1992) and Bikhchandani, Hirschleifer, and Welch

(1992). In an information cascade, conformity takes the form of censored informa-

tion and herd actions driven by information aggregation. The model consists of a

fully observable sequential decision structure where information revealed through

the history of decisions eventually overwhelms any individual’s information. This

remarkably powerful model has been applied in numerous settings, notably the

modeling of investor behaviors that generate market booms and busts, sequential

voting modeling, and verified in laboratory settings.2 Similar types of cascade

models, for example applications of the Ising model of particle charge and rotation

from physics, have been used to model herd behavior and motivate fat tails or

return distributions observed in the empirical finance literature (see, for example,

Cont and Bouchaud (2000) and Chowdhury and Stauffer (1999)).

A completely continuous, preference based approach to conformity was ini-

tially developed in Bernheim (1994)’s “A Theory of Conformity”. In this model,

Bernheim introduces a signaling game where individuals have an intrinsic incentive

to reveal their type but also a socially motivated incentive to be perceived as a

particular, almost surely different, type. The reduced form of social preferences

adopted by Bernheim directly incorporates social preferences into an individual’s

utility function and accommodates a broad set of motivations, including settings

where conformity might arise from peer effects similar to those in Akerlof (1980),

or due to a post game event such as the according of status (for example, tipping

or fashion fads), or the likelihood of an investigation (as may be the case when

trading stocks based on insider information).3

2There is a tremendous literature citing the initial Bikhchandani, Hirschleifer, and Welch
(1992) and Banerjee (1992) papers. Each of the founding authors of this work have written
papers on the implications of cascades for financial markets, for example, see Bikhchandani and
Sharma (2001), Devenow and Welch (1996), Hirshleifer and Teoh (2001). The application of
information cascades to sequential voting is a fairly new area of research, including the work by
Ali and Kartik (2006), Battaglini (2005) and Dekel and Piccione (2000). For experimental work,
note Anderson and Holt (1997) and Hung and Dominitz (2004).

3Another model of social preferences, where every agent has utility that is monotonic in their
rank, is considered in a series of papers by Cole, Mailath, and Postlewaite (1992, 2001) and
advocated by Postlewaite (1998). While the current analysis could be adapted to accommodate
such preferences, these preferences do not satisfy the sensitivity required to establish Theorems 4
and 5, below, that further characterize the conformity equilibrium. In particular, their arguments
are not dense in the players’ action space.



134

As a motivating example for the current model, suppose an individual’s

type revealed to them insider information about a major corporation’s earnings. If

markets are assumed to be efficient, then the average investor would have no infor-

mation beyond what is incorporated in the corporation’s stock price and maintain

a neutral (market) investment position in the asset. In contrast, an individual

whose type reveals significant insider information could maximize their individ-

ual wealth by taking an extreme trading position to exploit that information (for

example using short sales or option purchases). In a post game stage, suppose

the Securities Exchange Commission chooses whether or not to investigate each

investor based exclusively on their publicly observed investment decision. Suppose

further that an investigation is more likely for individuals who take more extreme

trading positions. This threat of investigation gives the informed individual an in-

centive to appear as if they were any other investor, even at the cost of maximizing

individual wealth by fully exploiting their private information. If the cost of being

punished were considered high relative to the potential benefits from trading, the

investor may choose not to take advantage of the information at all and simply

herd with the market position.

This paper addresses the above insider trading example and similar settings

by extending the Bernheim approach to model games where the individual’s social

preferences are dictated by the normative behavior. The original development is

not trivially applicable to this setting, as the normative (market) behavior is not

exogenously defined but rather depends on the actions of all agents. From the

insider trading example, if every agent expects low earnings, that expectation will

already be incorporated into the price and the relative value of the individual’s

information (the “social preference intensity” defined later) will be lower. In par-

ticular, the normative behavior is defined here as the population expected action,

and can be further extended to include a variety of mechanisms that establish so-

cial norms in the form of an optimal type that players wish to be perceived as. The

particular case where social norms correspond to the expected action is motivated

by recent experimental studies, including Andreoni and Bernheim (2009)’s the-

oretical and experimental analysis on identifying normative behavior with social



135

preferences.

The analysis proceeds as follows, Section 3.2 formally defines the model by

laying out preferences, decisions, and beliefs for players in the game, with the equi-

librium concept characterized in Section 3.3. Section 3.4 establishes the necessary

and sufficient conditions for a fully separating equilibrium to exist and the equi-

libria with incomplete separation are treated in Section 3.5. Section 3.6 further

extends the analysis by considering several cases of non-trivial social preference in-

tensities and presents some comparative statics results in that setting. Section 3.7

comments on other, potentially interesting questions related to the current model

and Section 3.8 concludes.

3.2 The Model for Preferences and Actions

The setting for the current model is identical to that of Bernheim with

some minor changes to notation to adopt consistency with the broader signaling

literature. Here assume there is a large number, I, of individual agents, indexed

by i, who are each privately assigned a type ti ∈ [0, 2] ≡ T. Players do not directly

observe each other’s types, but each player chooses a public signal, ai ∈ [0, 2] ≡ A,

that other players observe and use to infer individual i’s true type. The true

types are assumed to be independently drawn from the set of types according to

a cumulative distribution function F (·), with corresponding probability density

function f (·), where the cumulative density assumed to be strictly increasing with

F (2) = 1.

The Bernheim model specifies preferences represented by a utility function

with two components, the first representing intrinsic utility and the second repre-

senting social utility. Intrinsic utility measures the extent to which an individual’s

action deviates from their actual type and is represented by the intrinsic utility

function g (a− t) , which is assumed to be twice continuously differentiable, strictly

concave, symmetric, and maximized at a = t.4 The interpretation of this specifi-

4As noted by Bernheim, the concavity and symmetry are assumed primarily for convenience
where as the differentiability requirements are imposed on the model to ensure that the conformity
result is not driven primarily by some structural discontinuity.
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cation is that the individual’s type represents their “Intrinsic Bliss Point” (IBP).

From the insider trading example above, the IBP corresponds to the optimal as-

set position for a player based on their information and absent any considerations

of potential prosecution. Similarly, the intrinsic utility represents the amount of

wealth the player believes they would attain for any given market position given

their information.

In addition to the intrinsic utility component of preferences, the Bernheim

model incorporates a social utility component with properties similar to intrin-

sic utility, with social utility maximized when an agent is perceived as the type

corresponding to a “Social Bliss Point” (SBP) that is represented by α. These

social preferences are characterized by a social utility function h (bi − α), with bi

representing an agent’s perceived type. Similar to the intrinsic utility function,

h (bi − α) is assumed twice continuously differentiable, strictly concave, symmet-

ric, and maximized at bi = α. Returning to the insider trading example, the social

bliss point could be construed as the neutral asset position, with the social util-

ity function tracking the likelihood that the player is not investigated based on

how their perceived type (informed, ideal asset position) deviates from the neutral

position.

The intrinsic and social utility components for a player of type t who chooses

action a and is perceived as type b when the social bliss point is α are combined

in a simple weighted average to form the player’s total utility: 5

u (a, t; b, α, λ) = g (a− t) + λh (b− α) (3.1)

Here and below, λ, the parameter that governs the degree to which an agent’s

utility is influenced by social considerations, is referred to as the social preference

intensity and figures prominently in forming necessary and sufficient conditions for

a conformist outcome from the model.

In Bernheim’s initial development, he exogenously defined the Social Bliss

5The notation f (x; y) represents the perspective of the bivariate function as a function of
x conditional on a set of exogenous parameters y. As some of the variables move into the
background, they may be dropped from the notation for convenience.
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Point to be equal to unity. The chief contribution of the current work is to take a

slightly different approach and, in place of exogenously defining the SBP, endoge-

nously determine the SBP as part of the equilibrium by defining it as a function

of players’ actions. In particular, the present analysis adopts the notion of the

SBP as corresponding to the expected action, i.e., α = Ef [a (t)].6 Here, the in-

terpretation is that individuals want to be perceived as the type who would take

the average action, a characterization that can again be motivated by the insider

trading example. By definition, the average action in the market is to hold each

asset in proportion to its market value, which is also the optimal action for an

uninformed investor (for example, from Sharpe (1964) and Lintner (1965)). As

such, any investor who deviates from that position is either investing irrationally,

or acting on some private information that is not publicly available. Hence, an

enforcement agency such as the S.E.C. could very reasonably interpret investment

positions deviant from the average action as indicative of an investor possessing

some non-public information.

To close the model in the Bayesian construction, a player must form beliefs

relating to the uncertainty in the game. Here, beliefs about how a player’s type

will be perceived are represented by an inference function, φ (b, a;α, λ), which,

conditional on social bliss point α and social preference intensity λ assign prob-

ability φ (b, a;α, λ) to the player being perceived as type b when they take the

action a. The introduction of others’ actions into the social bliss point and, conse-

quently, into each agent’s utility function requires the agent to form beliefs about

the distribution of the social bliss point, here represented by the measure π (λ).

Given the specifications above, the individual agent’s total utility maxi-

mization problem becomes:

6The current result extends to any social bliss point that is a measurable function of players’
observed actions by application of a law of large numbers. For example, the social bliss point
may be considered the average action actually chosen by the population of players in the game.
For any finite number of players, this definition would require the distribution of beliefs π(λ)
to be non-degenerate. However, in the presence of a large number of players, the law of large
numbers simplifies the analysis to the present case. All the basic equilibrium results go through
directly, with the exception of the identification theorem (Theorem 3.3), which requires additional
restrictions on the sensitivity of the social bliss point function to be noted later.
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max
a∈A

E [u (a, t;α, λ)] (3.2)

= g (a− t) + λ

∫
α̂∈T

(∫
b∈T

h (b, a; α̂)φ (b, a; α̂, λ) db

)
dπ (α̂)

In the current setting where the social bliss point corresponds the popula-

tion expected value, the beliefs π (λ) corresponds to a degenerate point distribution

and the double integral is immediately reduced to a single expectation. Given this

simplification, the optimization problem becomes:

max
a∈A

E [u (a, t; α̂, λ)] = g (a− t) + λ

∫
b∈T

h (b, a; α̂)φ (b, a; α̂, λ) db (3.3)

where α̂ = Eπ(λ) [α]

3.2.1 Example: Quadratic Utility and the Spherical Case

To ground the model in a concrete functional representation, consider the

simple “spherical case” example used by Bernheim to illustrate the interaction of

intrinsic and social preferences as, at this stage of development, the models are

little different. For the illustration, let g (z) = −z2, and, h (b;α) = −(b− α)2,

then an agent’s indifference curves in the (a, b) plane are defined by the equation

C = −(a− t)2 − λ(b− α)2.

As in Bernheim’s example, when the social preference intensity is unity the

indifference curves appear as concentric circles centered on the point (t, α), as are

depicted in Figure 3.1. If the social preference intensity were to deviate from unity,

these curves would appear as ellipses. Extending beyond the spherical case, the

symmetry and satiation points from the current model of utility specification give

rise to Bernheim’s general characterization of indifference curves as:

1. horizontal at a = t and symmetric around the line a = t.

2. vertical at b = α and symmetric around the line b = α.
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Figure 3.1: Agent’s Indifference Curves

3.2.2 Non-triviality of Conformity

In Bernheim’s paper, he notes that “concern over popularity does not ex-

plain conformity by itself. . . behavior in such a world would be observationally

equivalent to that occurring in a society in which the distribution of IBPs [types]

was somewhat more concentrated and in which no one cared about popularity.”

This observation also applies to the current setting and can be easily verified by

considering the näıve inference example where:

φ (b, a) =

{
1 if b = a

0 otherwise
(3.4)

The first order condition for maximizing utility under this inference function
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is:

g′ (a∗ (t;α, λ)− t) + λh′ (a∗ (t;α, λ)− α) = 0 (3.5)

Following Bernheim’s lead, implicit differentiation directly implies that:

da∗ (t;α, λ)

dt
=

g′′ (a∗ (t;α, λ)− t)
g′′ (a∗ (t;α, λ)− t) + λh′′ (a∗ (t;α, λ)− α)

(3.6)

The assumed strict concavity of g and h ensures that the right hand side is strictly

positive. Hence, as shown by Bernheim, direct social preferences alone do not

establish conformity in the model and, further, the implied inferences are not self-

sustaining as the separation of their actions ought to enable them to accurately

identify each type.

3.3 Characterizing Equilibrium

Having defined preferences, beliefs, and a simple example, the next step in

the analysis is to adopt an equilibrium notion and characterize the set of equilibria.

Here, the natural equilibrium concept is interim Bayes Perfect Nash Equilibrium,

which requires:

1. An action function, a∗ (t;α, λ, φ) : T → A, such that for all a′ ∈ A and t ∈ T,

U (a∗ (t;α, λ, φ) , t;α, λ, φ) ≥ U (a′, t;α, λ, φ)

2. A conditional inference function, φ (b, a;α, λ) , that represents a probability

distribution over the agent’s inferred type, b, given their action a. The infer-

ence function is only restricted to be consistent with Bayes’ Rule along the

equilibrium path, though further refinements restricting off-path beliefs are

discussed below in the section on equilibria with incomplete separation.

3. A set of beliefs, denoted by π that represent a probability distribution for

the expected mean action, where π is asymptotically normal with mean
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Eπ [α (λ)] = α∗ (λ) =
∫
T

a∗ (t;α∗ (λ) , λ)f (t) dt and variance going to zero

as I gets large.

Under Bernheim’s analysis, with the exogenously fixed social bliss point,

only objects satisfying conditions (1) and (2) are required conditions for a Bayes

Perfect Nash Equilibrium. In adapting the theorems from that setting to the

current environment, it will often be convenient to refer to an admissible action

function and conditional inference function for a fixed social bliss point as an

exogenous social equilibrium.

Having specified the model and requirements for equilibrium, the equilib-

rium analysis initiates by reviewing Bernheim’s first main result, establishing mon-

tonicity of the optimal response function in an agent’s type:

Bernheim Theorem 3.B.1 Ceteris paribus, if t > t′, then the optimal response

function in any equilibrium must satisfy a∗ (t;α, λ, φ) ≥ a∗ (t′;α, λ, φ).

Proof. The proof here, which relies simply on equilibrium condition (1) coupled

with the strict concavity of g, is identical to Bernheim’s. The same device is used

to prove Lemma 3.A.1 in the appendix and is not repeated for brevity.

3.4 Fully Separating Equilibrium

The analysis of conformist outcomes from the model begins by identifying

the necessary and sufficient conditions for a conformist outcome to be in equilib-

rium. As will be discussed in greater detail in the next section, the conditions for a

conformist outcome are the inverse of the necessary and sufficient conditions for a

fully separating equilibrium. This section shows that incorporating an endogenous

social bliss point does not change these conditions from the original setting with

an exogenously defined SBP. As in Bernheim’s initial development, the fully sep-

arating exogenous equilibrium for some fixed α is fully identified by an inference

characterizing function φs (a) , such that,

φ (b, a) =

{
1 ifb = φs (a)

0 otherwise
(3.7)
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By direct differentiation, the slope of the indifference curve in the (a, b)

plane for an agent of type t is:

db

da
= − g′ (a− t)

λh′ (b− α)
(3.8)

Utility optimization requires that these indifference curves be tangent to

the inference characterizing function in equilibrium. I.e.,

φ′s (a;α) = − g′ (a− t)
λh′ (φs (a;α)− α)

(3.9)

Further, the requirement that the inference functions are correct allows the

removal of t from the equilibrium condition:

φ′s (a;α) = − g′ (a− φs (a;α))

λh′ (φs (a;α)− α)
(3.10)

With the exception of introducing α to the notation, equation 3.10 is iden-

tical to Bernheim’s equation (12) and, following his original analysis, defines a

first-order differential equation for φs. Similarly, the relevant initial conditions are

that the extreme types are identified exactly and, as such, have no social incentive

to deviate from actions revealing their true types, i.e.,

φs (0;α) = 0, and, φs (2;α) = 2 (3.11)

In this sense, for fixed α, the analysis is no different from the Bernheim

setting in that equation 3.10 with initial conditions 3.11 defining a set of two

first-order differential equations in the (a, b) plane, the first starting from (0, 0)

and moving northeast and the second starting from the point (2, 2) and moving

southwest, that must meet at a unique point. The results from Bernheim’s analysis

for any fixed SBP follow directly, with only minor adjustments to accommodate

the non-centrality of the SBP.

Following Bernheim, one more piece of technicalia must be developed to

define the equilibrium. For agents with this type t ≤ α, consider the range of

the inference characterizing function by defining A = φ−1
s ([0, α]) to represent the

set of all choices made by individuals with t ∈ [0, α]. By monotonicity, A is



143

an interval [0, a] over which the existence and uniqueness of φs is established by

standard arguments. Further, over A, φs (a) ≤ a, yielding the key implication

that a ≥ α. The analysis continues by considering the other portion of the type

space, i.e., the agents with types t ≥ α. Correspondingly, define the interval

[ā, 2] = X̄ = φ−1
s ([α, 2]) and parallel arguments yield the implication that ā ≤ α.

The apparatus in the previous paragraph provides a framework for estab-

lishing simple conditions for the inference characterizing function to be well defined.

More precisely, a fully separating equilibrium requires that a unique type be as-

signed to each action and, based on the previous paragraph, is equivalent to the

condition that:

a = ā = α (3.12)

The main result of this section is to establish that the model admits a fully

separating equilibrium if and only if the social preference intensity is lower than

some critical level. Having established the characterization of a fully separating

exogenous social equilibrium, the argument establishing necessary and sufficient

conditions for such an outcome begins by identifying a unique α∗ consistent with a

fully separating equilibrium (this result corresponds to Lemma 3.1, below). After

identifying a unique fully separating endogenous social equilibrium, the next step

of the argument is to establish that, for each fixed α, there is a critical level λ∗ (α)

such that, for any λ ≤ λ∗ (α), there exists a fully separating equilibrium and, for

any λ > λ∗ (α) there is no fully separating equilibrium (which is proved below in

theorem 3.B.2). The argument closes by showing that, even though these critical

levels are identified for each fixed α, they are constant in that parameter, so that

λ∗ (α) = λ∗ (α′) (this is established as Theorem 3.1).

Lemma 3.1 Given the optimal response function a∗ (t;α, λ) with a consistent in-

ference function φ (b, a;α, λ) for every α ∈ T, there exists a unique α∗ such that

α∗ = Ef [a∗ (t;α∗, λ, φ)].

Lemma 3.1 establishes that, over all the exogenous social equilibria, there

is a unique endogenous social equilibrium with a social bliss point satisfying equi-
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librium condition (3). Lemma 3.1 is a direct result of the contraction mapping

theorem, with the crux of the proof showing that the mapping γλ (α) : α 7→∫
T
a∗ (t;α, λ) f (t) dt is a contraction mapping for any λ. Intuitively, the argument

states that the degree to which the average player’s action changes in response to

a change in the SBP is strictly less than the change in the SBP. The argument

obtaining a less than or equal to relationship is derived through the additional

dependence of utility on the IBP, while the argument for a strictly less than rela-

tionship exploits the fixed end points of the differential equation defining φs. The

mathematical details are rather tedious and so are deferred to the appendix.

The second phase of the argument assumes the existence of an equilibrium

social bliss point and establishes necessary and sufficient conditions for a separating

equilibrium given that SBP. This claim is verified by first establishing that there

exists some level of social preference intensity (λ) where the inference characterizing

function satisfies the separating equilibrium conditions 3.10, 3.11, and 3.12. Next,

it is shown that there is some level of social preference intensity where the inference

characterizing function fails to satisfy these conditions. As in Bernheim’s analysis,

the general result is shown to be monotonic in λ for fixed social bliss points and

can be stated exactly as he does in his Theorem 2.

Bernheim Theorem 3.B.2 For each α, there exists λ∗ (α) > 0 such that a fully

separating equilibrium exists if and only if λ ≤ λ∗ (α).

The proof in the appendix follows Bernheim’s reasoning closely, though it

is somewhat more difficult to establish the monotonicity result he uses to complete

the proof. The results are finalized by dealing with the fact that the SBP is not

insensitive to the social preference intensity in Theorem 3.1 but still identifies

a unique critical value for the social preference intensity to obtain a conformist

outcome.

Theorem 3.1 There exists a unique λ∗ > 0 such that a fully separating equilib-

rium exists if and only if λ ≤ λ∗

This result is again illustrated using the spherical example developed in
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Bernheim. In the spherical example, equation 3.10 becomes:

φ′s (a;α) = −
(

1

λ

)[
a− φs (a;α)

α− φs (a;α)

]
(3.13)

To find a critical value that ensures the existence of a fully separating

equilibrium, analyze equation (6) as a linear dynamical system in (t, x):

[
dt/dτ
dx/dτ

]
=

[
x− t

λ (α− t)

]
=

[
−1 1

−λ 0

][
t− α
x− α

]
= A

[
t− α
x− α

]
(3.14)

In equation 3.14, τ is an indexing variable and the existence a fully separat-

ing equilibrium is equivalent to the matrix A having real eigenvalues, a condition

that is entirely independent of the social bliss point (note: this result is unique to

the spherical case). As the matrix A in this setting is identical to Bernheim’s, the

critical value λ∗ for satisfying existence of a fully separating equilibrium is easily

seen to be λ∗ = 1/4 for all social bliss points.

Figure 3.2, below, plots the two ODE’s starting from the extreme points

for the spherical case where λ ∈ {0, 1/10, 1/4, 1} when the social bliss point is 1.5.

It is interesting to note that, although perfect symmetry is lost, the inference

characterizing function in the northeast segment of the graph is a scaled version of

that in the southwest. The symmetry in this example arises from the homothetic

indifference curves.

3.5 Equilibria with Incomplete Separation

As is common in rich signaling games, in the current setting there is a great

multiplicity of equilibria with incomplete separation due to a lack of restrictions

on off equilibrium path beliefs in the Bayesian equilibrium. As a pre-emptive step

in addressing this multiplicity and ruling out equilibria characterized by implau-

sible beliefs, this section adopts the D1 criterion as an off equilibrium path belief

restriction. With this equilibrium refinement in hand, the analysis proceeds to

characterize the pooling equilibria as having exactly the same properties estab-
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Figure 3.2: Separating Inference Function in Spherical Case when α = 1.5

lished in Bernheim’s initial development. The first significant contribution in this

section in extending Bernheim’s initial development shows that generalizing the

model to incorporate an endogenous social bliss point does not introduce further

multiplicity in the set of equilibria. A further result is established showing that

the endogenous social bliss point and the multiplicity of equilibria in Bernheim’s

initial development are coupled one-for-one, so that each equilibrium is uniquely

identified by its social bliss point. As such, by identifying an exogenous social bliss

point (for example, one that maximizes a social welfare function), one is able to

identify a unique equilibrium with incomplete separation.

In order to reasonably constrain the set of equilibria, Bernheim adopts the

D1 criterion for restricting off-equilibrium path beliefs. An intuitive justification

for invoking this refinement is based on a forward induction argument, where the

D1 criteria is interpreted as an extension of the Intuitive Criteria from Cho and
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Kreps (1987) in a manner similar to that of Divinity Banks and Sobel (1987). A

theoretical justification is that the D1 criterion ensures the equilibrium is strategi-

cally stable, in the sense of Kohlberg and Mertens (1986). Further, the D1 criterion

ensures conformity does not arise primarily due to unreasonable off-path beliefs.

In particular, the refinement rejects pooling equilibria whenever a fully separating

equilibrium is attainable and has been shown to preclude interior pooling in cases

where indifference curves satisfy the single crossing property (which is not the case

here given the dual symmetries of the indifference curves), as established by Cho

and Sobel (1990).

3.5.1 The Bernheim Results

The analysis begins by introducing some notation to review the Bernheim

results. Define: T (a) = {t ∈ T |a∗ (t) = a}, and, tl (a) = inf T (a) , and, th (a) =

supT (a)

Note that the monotonicity established by Bernheim’s Theorem 3.B.1 im-

plies that T (a) is an interval and, since each individual type has measure zero,

can be written as a closed set including its endpoints: T (a) = [tl (a) , th (a)]. It

will also be helpful to recall the definition of an exogenous social equilibrium as

any action and inference function satisfying equilibrium conditions (1) and (2) for

some exogenously fixed α.

Bernheim’s theorems related to partial separation generalize directly to the

current context as none of the arguments in his proofs rely directly on the centrality

of the social bliss point.

Bernheim Theorem 3.B.3 For fixed α, if λ > λ∗, then for any exogenous social

equilibrium that satisfies the D1 criterion, there exists at most one ap ∈ A such

that tl (ap) < th (ap) , and it satisfies α ∈ T (ap).

Bernheim Theorem 3.B.4 For fixed α and any given ap ∈ A, there is at most

one central pooling exogenous social equilibrium (ap, tl, th) .

These two theorems characterize pooling equilibria as consisting of a single

pooling point and, for each pooling point, a fixed set of types participating in
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the pool. Outside of the pool, i.e., for agents with types t /∈ T (ap) behavior is

characterized by the same inference characterizing function discussed in the fully

separating equilibrium, that is to say, a∗ (t, α) = φ−1
s (t;α).

3.5.2 Implications of Endogenous Social Bliss Point

While the Bernheim results establish candidate exogenous social equilibria,

they do not address equilibrium condition (3) in the extended model. Here, condi-

tion (3) can be exploited to further restrict the set of equilibria and doing so yields

the first significant result of this section:

Theorem 3.2 If λ > λ∗, then conditional on the population average strategy, the

unique social equilibrium with incomplete separation satisfying the D1 criterion is

characterized by a single central pool at a∗p = α∗ + ε (α∗, λ), where:

ε (α∗, λ) = (3.15)∫ tl(ap)

0
(α∗ − φ−1

s (t;α∗, λ)) dF (t) +
∫ 2

th(ap)
(α∗ − φ−1

s (t;α∗, λ)) dF (t)

P (t ∈ [tl (ap) , th (ap)])


Theorem 3.2 identifies the pooling point as a function of the population

average action and an additive perturbation. This perturbation is shown in Theo-

rem 3.3 to be continuous in the pooling point, an implication that is extended by

the Intermediate Value Theorem argument to show that unique equilibrium can

be identified where ε (α∗, λ) = 0, which is perhaps the most surprising result in

the current work.

Theorem 3.3 If λ > λ∗, then there exists a unique social equilibrium with incom-

plete separation satisfying the D1 criterion where the single central pool is located

at the population average strategy, i.e., where ε (α∗, λ) = 0.

Note that much of the variability in the model arises from the broad set of

allowable distributions and this can muddle the result. Additional insight into the

restrictions imposed on pooling equilibria by the endogenized social bliss point is

provided by the next corollary, which directly implies a similar result would hold
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in the initial development if Bernheim were to assume the pooling action satisfies

some social welfare function.

Corollary 3.1 If the distribution over types is symmetric around 1, then the

unique social equilibrium consistent with pooling on the expected action is a∗p =

α∗ = 1.

3.6 The Social Preference Intensity

To this point, the social preference intensity parameter, λ, has been taken

as exogenously defined and constant across types. While there is no natural mecha-

nism for endogenizing this parameter, this section considers the equilibrium effects

of a generalized social preference intensity that can depend upon a player’s type.

To initiate the analysis, consider the general statement of the agent’s utility max-

imization problem as:

max
a∈A

E [u (a, t; α̂, λ (t))] = g (a− t) (3.16)

+ λ (t)

∫
b∈T

h (b, a; α̂)φ (b, a; α̂, λ (t)) db

where α = Ef [a∗ (t;α, λ (t))] and now λ : T → Λ ⊂ R+ is a function assigning a

social preference intensity to each individual’s type.

An exhaustive analysis of models of this type is beyond the scope of the

current work, so this section focuses on presenting comparative analysis of several

particular specifications for the social preference intensity function. For tractability

in the current analysis, it will be easiest to think of the SBP as a constant here,

with generalizations readily available by invoking the contraction property.

3.6.1 Continuous, Monotonic Social Preference Intensities

To further narrow the problem under consideration, the analysis begins by

considering the case where the social preference intensity function is twice continu-

ously differentiable, symmetric, and monotonically decreasing in |t− α| . Here, the
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continuity and symmetry properties are intended to mimic the other properties of

the utility function while the monotonicity assumption is intended to capture a

stylized fact that individuals far from the social norm are less affected by social

concerns.

The results in this case are no different from the above analysis. If the social

preference intensity exceeds a threshold level for some player types, then a single

pooling equilibrium will be established, with the pooling action identified uniquely

by the social bliss point. If the social preference intensity is bounded below this

threshold level, a fully separating equilibrium obtains.

3.6.2 Discontinuous Functions of Types

Perhaps a more interesting specification of the social preference intensity is

to consider a setting where the social preference intensities take the form of a step

function that is monotonically increasing in |t− α| . In this setting, agents who

are far from the social norm actually lend greater credence to social considerations

in their preferences than those who are near the norm. For simplicity, suppose

there are only two discretely different social preference intensities, λl for agents

with types in a neighborhood of the social bliss point denoted ∆ and λh for agents

with types far from the social bliss point.

Such a setting will, in general, directly yield one or two centralized con-

formist pools, regardless of whether the social preference intensities are lower than

the threshold value. The pooling result arises because the shift in social prefer-

ence intensities leads to a discontinuous jump in the ODE defined by equation (3).

This discontinuity takes the form of a kink in the inference characterizing function,

causing the function to turn sharply towards the social bliss point. Further, this

kink in inferences can be exploited by agents whose types are on the border of ∆

to mimic agents with lower social preference intensities. These pools of perceived

apathy will separately form on both sides of the social bliss point unless the social

preference intensity is so high, or the neighborhood ∆ is so small, that the pools

happen to spill into each other.

In contrast, suppose the social intensity function were a step function that
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is monotonically decreasing in |t− α| as in the previous section. In this case, the

kink in the inference characterizing function would actually shift the curve further

away from the 45o line, a kink that would not provide the opportunity for agents

to mimic another types action unless the social preference intensity exceeds some

threshold value.

3.7 Potential Extensions and Applications

Given the theoretical results above, there are a number of potential av-

enues for developing applications of these findings. Here, I briefly mention some

directions these developments might take.

3.7.1 Uncertain Bliss Points

Given an exogenously specified social preference intensity, a plausible dy-

namic for endogenizing social preference intensities could be defined by general-

izing the intrinsic bliss point so that the individual’s type and their IBP satisfies

the monotone likelihood ratio property. For example, instead of a player’s intrinsic

bliss point being identically equal to their type, their bliss point might be randomly

distributed but centered at their type with fixed variance σ. Here, that variance

represents the degree to which an individual is certain of their own intrinsic bliss

point.7

An interesting result obtains in comparative statics when the variance of

the intrinsic bliss point is allowed to vary. In particular, as the variance increases,

Jensen’s inequality demands that intrinsic utility drop simply due to greater vari-

ability in outcomes. However, this drop in intrinsic utility has an effect equivalent

to that of an increase in the social preference intensity, yielding the result that,

as uncertainty over individual preferences increases, the individual will be more

affected by fads and fashions. The interaction is fairly complicated, but it could

provide a nice mechanism for motivating comparative statics analysis relating to

7Many thanks to Jacob LaRiviere for recommending this approach to motivating the current
analysis.
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the behavior of insiders relative to uninformed agents.

3.7.2 Alternate Social Statistics as Modal Behavior

While the development of this piece centers on the social bliss point as the

expected action, it may be interesting to look at other social statistics such as the

median (particularly relevant to political contexts) or mode. The current results

can be immediately extended whenever an argument can be made that the believed

distribution of the social bliss point becomes degenerate with a large number of

players. This condition is not innocuous in application to social bliss points iden-

tified as sample social statistics, as it effectively precludes ex post equilibria in

settings with a finite number of players.

While Bernheim’s model can be easily extended to allow for multi-modal

pooling behavior by introducing several local maxima to the social utility function,

such an extension in the setting with an endogenized social bliss point is not

particularly obvious. One approach might be to consider a local interaction type

of setting, where a player only really cares about those players with types perceived

to be near their own. In this model, the social bliss point would become a function

of the individual’s type. While separation results are likely similar to the above,

pooling behavior in such a model would be chaotic, with many pools forming at

arbitrary locations that depend on the locations and sizes of other pools.

3.7.3 Signaling Social Preference Intensities

Another interesting extension would be to incorporate an individual’s so-

cial preference parameter into the player’s type and be imperfectly observed by

those around you. For example, the player’s social preference intensity could be

distributed as a martingale with various measurability restrictions. In such a set-

ting, a player’s private information consists of both their intrinsic bliss point and

their social preference intensity. Despite two dimensions of private information,

each player-type will choose a single action to maximize their utility. A signifi-

cant challenge lies in consistently inferring their two-dimensional type from their
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single action, which would create a very interesting interaction requiring further

equilibrium refinements.

3.7.4 Applications

As for applications, a significant motivation in developing the endogenized

social bliss point was to render the model more accessible to application and the

marginal contribution facilitating equilibrium identification allows for an estimable

model.

One potential application to industrial organization lies in modeling signals

related to product characteristics. Suppose a firm observes the quality of their

product perfectly and sends a signal to the public about their product’s quality. It’s

costly to mis-represent their product quality, in the form of returned product and

customer complaints. However, the firm’s sales benefit from making their product

appear closer to the average product on the market. An empirical application

might look at different industries with varying levels of interactions in the market

to see if coordination is more likely to arise in settings where there is a low cost of

mis-representing product quality or a high cost for a non-standard product.

Another interesting application would be to adapt the current model to a

signaling problem faced by forecasters. In this game, the forecasters announce

public forecasts to signal their private information to a population of customers.

The forecasters gain utility from announcing a forecast consistent with their private

information (represented by their IBP) but the customers, who lack any private

information relating to the true state of the world, award private contracts based

on the forecaster’s distance from an aggregated forecast (the SBP). The social

preference intensity would be determined by the value of the available private

contracts and the degree of uncertainty regarding the true state of the world. Given

the relationship between the social preference intensity and the degree to which

forecasters would tilt their announced forecasts toward the mean, these features

could organize a number of results observed in analyzing the term structure of the

cross-sectional variation in forecasts.
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3.8 Conclusion

The model developed above provides a reasonable context for exploring con-

formist behavior in a variety of settings where individuals possess varied tastes but

also consider social consequences when acting with incomplete information. The

current model is particularly adapted to characterizing social considerations can

that guide an individual’s behavior to move towards the cultural mean action but

can be applied in any setting where the individual’s social considerations are cen-

tered at a location identified by other agent’s actions. Further, the model illustrates

that, in a setting where social considerations dominate, individuals will suppress

their individual preferences and behave in a completely conformist manner.

Given the earlier results from Bernheim (1994), the conformist outcome is

non-surprising as the basic results from his exercise are expected to obtain. How-

ever, it is surprising that, despite introducing a generalization to the original model,

no new multiplicity is introduced to the set of equilibria and the necessary and suf-

ficient conditions for a conformist outcome are unchanged. Further, the connection

between the multiplicity of equilibria from the initial Bernheim development and

the indeterminant endognenous social bliss point is entirely unexpected. Through

this mechanism, the current setting allows for a sharper characterization of how

conformity is expressed and finds a unique equilibrium where conformity is actually

consistent with the social norm. While non-norm based pooling equilibria survive

the extension, the set of equilibria is no larger than in Bernheim’s original model

and additional insight is gained into what allows these apparently inconsistent

equilibria to exist.
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Appendix: Proofs

Proof of Lemma 3.1

Given the optimal response function a∗ (t;α, λ) with a consistent inference function

φ (b, a;α, λ) for every α ∈ T, there exists a unique Social Bliss Point, α∗, such that

α∗ = Ef [a∗ (t;α∗, λ, φ)].

Proof. As mentioned in the main section, the crux of the argument is show-

ing that γλ (α) : α 7→
∫
a∗ (t;α, λ) f (t) dt is a contraction mapping. Intuitively,

the argument is that the degree to which a player’s strategy is expected to change

in response to a change in the expected mean action of the other players is strictly

less than the shift in the mean action. Mathematically, it requires verifying that

for all α′ and α′′ in T :

∣∣∣∣∫ a∗ (t;α′, λ) f (t) dt−
∫
a∗ (t;α′′, λ) f (t) dt

∣∣∣∣ < |α′ − α′′| (3.A.1)

Lemma 3.A.1 For all t ∈ T and all α′ ≤ α′′, a∗ (t;α′, λ) ≤ a∗ (t;α′′, λ).

Proof. The argument here is similar to the Bernheim proof of his Theorem

1, but works primarily on the social utility function h rather than the intrinsic

utility function g. Let r be the intrinsic utility associated with choosing a =

a∗ (t;α) and let r′ be the level of intrinsic utility associated with a′ = a∗ (t;α′).

Assume a′ > a in an equilibrium, which requires:

r + h (a− α) ≥ r′ + h (a′ − α), and, r′ + h (a′ − α′) ≥ r + h (a− α′)
Adding these two inequalities gives:

h (a′ − α′)− h (a− α′) ≥ h (a′ − α)− h (a− α) (3.A.2)

Now using the Bernheim trick of applying the Fundamental Theorem of

Calculus twice and using the strict concavity of h:
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[h (a′ − α′)− h (a− α′)]− [h (a′ − α)− h (a− α)]

=
∫ a′
a
h′ (w − α′)− h′ (w − α) dw =

∫ a′
a

∫ α′
α
h′′ (w − v) dwdv < 0

(3.A.3)

However, this last inequality contradicts 3.A.2 and Lemma 3.A.1 is proved.

Lemma 3.A.3 For any t ∈ T and α′ ≤ α′′, let a′ = a∗ (t;α′, λ) and a′′ =

a∗ (t;α′′, λ), then a′′ − a′ ≤ α′′ − α′.

Proof. This lemma holds simply by evaluating the “income” and “substi-

tution” effects associated with the shift in the social bliss point. First, suppose by

contradiction that a′′ − a′ > α′′ − α′. From an agent’s perspective in (a, b) space,

the shift in SBP effectively corresponds to a translation of their utility functions

and can be analyzed equivalently to a shift in the budget set (here the infer-

ence characterizing function). Here, then, reacting exclusively to the shift in the

SBP corresponds to the income effect and can be compensated entirely by exactly

translating the inference characterizing function by the same magnitude as the

indifference curves. However, such a translation gives rise to substitution effects,

and agents will substitute intrinsic utility for social utility. Hence, the only way an

agent can overcompensate for a shift in the SBP is if the substitution effect were

somehow negative, contradicting the concavity assumptions of both the intrinsic

and social utility functions.

Lemma 3.A.3 There is some ε > 0 so that:∣∣∣∣∫ a∗ (t;α′, λ) f (t) dt−
∫
a∗ (t;α′′, λ) f (t) dt

∣∣∣∣ < |α′ − α′′| − ε (3.A.4)

Proof. The proof here revolves around the fixed end points, and proceeds

by computing the integrals on the left hand side over the range [0, δ) and (2 −
δ, 2]. Because φs (0) andφs (2) = 1, the integral will be strictly less than the value

required to make ε = 0:

|α′ − α′′|P (t ∈ [0, δ) ∪ (2− δ, 2]) (3.A.5)
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The result then follows by Jensen’s Inequality.

Proof of Bernheim Theorem 3.B.2

For each α, there exists λ∗ (α) > 0 such that a fully separating equilibrium exists

if and only if λ ≤ λ∗ (α).

Proof. These arguments follow Bernheim’s proof almost exactly. The

only adaptation to the current setting, while admittedly non-trivial, is to re-center

each of the steps at α in place of 1 and adding a few minimum and maximum

operations. These devices are here developed explicitly primarily for illustrative

purposes and this detail is not included in the below proofs of other theorems from

the Bernheim’s original work. For the purposes of these devices, assume α > 1

since the case of α = 1 is established by Bernheim and the case α < 1 will follow

by symmetry.

Step 1: For λ sufficiently large, no fully separating equilibrium exists.

To verify this, choose λ > max
{
g(0)−g(α)
h(α)−h(0)

, g(2)−g(α)
h(α)−h(2)

}
. If a∗ (α;α, λ) ≤ α,

type 0 agents would have an incentive to imitate type α agents. However, if

a∗ (α;α, λ) > α, then type 2 agents would have an incentive to imitate type α

agents. Since pooling would arise for one of these extreme types, no separating

equilibrium exists.

Step 2: If λ > 0 is sufficiently small, a fully separating equilibrium does exist, i.e.,

for small λ, ā = a = α.

Step 2a: There exists a small enough λ so that players with types below the SBP

play fully separating strategies.

Choose some θ > α and define the line segment B (a) = (α− θ) + θ
α
a over

the interval
[

(θ−α)
θ
α, α

]
so that B

(
(θ−α)
θ
α
)

= 0 and B (α) = α. Now, there is
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some K > 0 such that, for a ∈ [(θ − α) a/θ, α), G (a) ≡ −g′(a−B(a))
h′(B(a))

> K.8 Since

a > B (a) and B (a) < α, G (a) is strictly positive for a < α,. The claim can

only be false, then, if there is some sequence 〈ak〉∞k=0 such that limk→∞G (ak) = 0.

Without loss of generality, suppose the sequence converges to a single limit point

â. Suppose â < α, then since G is continuous, G (â) = 0 contradicts the strict

positivity of G (a) for a ∈ [(θ − α)α/θ, α). Now suppose â = α, then the limit

of G (ak) can be computed using L’Hospital’s rule: lim
a→α

G (a) = − (1−θ)g′′(0)
θh′′(α)

> 0,

this contradicts the hypothesis that the limit of 〈G (ak)〉∞k=0 equals 0. These two

contradictions establish the claim.

Step 2b: There exists a small enough λ so that players with types above the SBP

play fully separating strategies.

The argument that a = α follows by a similar device but is more confus-

ing because it all operates in reverse. Choose some θ > max
{

2− α, α2

2−α

}
and

define the line segment B (a) = α − θ(2−α)
α

+ θ(2−α)
α2 a over the interval

[
α, (θ+α)

θ
α
]

so that B
(

(θ+α)
θ
α
)

= 2 and B (α) = α. Now, there is some K > 0 such that,

for a ∈ (α, (θ + α)α/θ], G (a) ≡ −g′(a−B(a))
h′(B(a))

< K, or equivalently, that there ex-

ists a k > 0 so that H (a) ≡ − h′(B(a))
g′(a−B(a))

> k. Since a < B (a) and B (a) > α

for a > α,H (a) is strictly positive. The claim can only be false, then, if there

is some sequence 〈ak〉∞k=0 such that limk→∞H (ak) = 0. Without loss of gener-

ality, suppose the sequence converges to a single limit point â. Suppose â > α,

then since H is continuous, H (â) = 0 contradicts the strict positivity of H (a)

for a ∈ (α, (θ + α)α/θ]. Now suppose â = α, then, as above, the limit of H (ak)

can be computed using L’Hospital’s rule: lim
a→α

H (a) = − θ(2−α)(α)
(α2−θ(2−α))g′′(0)

> 0, this

contradicts the hypothesis that the limit of 〈G (ak)〉∞k=0 equals 0. These two con-

tradictions establish the claim.

Step 2c: The hypothesis that there is a non-zero λ so that ā = α = a is established

by choosing λ so that λmax
{
θ
α
, α2

θ(2−α)

}
< min {K, k} and showing that:

8It may be worth noting here that the initial proof published by Bernheim in the JPE was
victim of a typographical error in his equation (B5) that render his equations (B6) and (B7) to
be incorrectly signed. His equation (B5) should have been defined as here, which provides the
shortest route to a corrected proof.
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(i) φs (a) > B (a) for all a ∈
[

(θ−α)α
θ

, α
)

, and,

(ii) φs (a) < B (a) for all a ∈
(
α, (θ+α)α

θ

]
.

To prove (i), note that since (θ−α)α
θ

> 0, φs

(
(θ−α)α

θ

)
> B

(
(θ−α)α

θ

)
= 0.

Now, suppose there exists some a′ ∈
(

(θ−α)α
θ

, α
)

such that φs (a′) < B (a′), then

there exists some a′′ ∈
(

(θ−α)α
θ

, a′
)

such that φs (a′′) = B (a′′) and φs
′ (a′′) ≤

B′ (a′′). However, this contradicts the result from step 2a that:

φs
′ (a) = G(a)/λ > K/ (αλ) > θ = B′ (a)

Hence, φs (a) must remain above B (a) when a < α, implying that α ≤ ā ≤ α.

Claim (ii) is proven by first observing that since (θ+α)α
θ

< 2, φs

(
(θ+α)α

θ

)
<

B
(

(θ+α)α
θ

)
= 2. Now, suppose there exists some a′ ∈

(
α, (θ+α)α

θ

)
such that

φs (a′) > B (a′), then there exists some a′′ ∈ (α, a′) such that φs (a′′) = B (a′′) and

φs
′ (a′′) ≤ B′ (a′′). However, this derivative property contradicts the result from

step 2b that:

φs
′ (a) < λ/ (k) <

θ (2− α)

α2
= B′ (a)

Hence, φs (a) must remain below B (a) when a > α, implying that α ≤ a ≤ α.

This argument completes the proof of Step 2.

Step 3: The present goal is to prove a monotonicity result to the effect that, if

λ′ ≤ λ′′ and there is a fully separating equilibrium for λ = λ′′, then there exists a

fully separating equilibrium for λ = λ′.

The argument proceeds by establishing two claims.

Claim 1: If λ′ ≤ λ′′, then
∫ 2

0
(φs (a;α, λ′)− a)2da ≤

∫ 2

0
(φs (a;α, λ′′)− a)2da.

Claim 2: If λ′ ≤ λ′′, and φs (α∗ (λ′′)) = α∗ (λ′′), then φs (α∗ (λ′)) = α∗ (λ′)

Claim 1 is a direct consequence of the first order condition 3.10. As λ

becomes small, the derivative of the inference characterizing function φs increases

over its entire domain. Since the inference characterizing function is bounded to
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be less than or equal to the identity function, the distance between φs and the

identity function decreases globally.

Claim 2 also provides the key to establishing Theorem 3.1, below. It also

holds as a consequence of first order equilibrium condition 3.10 and the contraction

property established by Lemma 3.1. The first order equilibrium condition ensures

the ODE will attain a sufficiently high slope to reach the SBP (since h′ (0) = 0),

and the contraction property ensures the existence of a unique target SBP to which

the ODE converges.

Proof of Theorem 3.1

There exists a unique λ∗ > 0 such that a fully separating equilibrium exists if and

only if λ ≤ λ∗.

Proof.

The result here is fairly direct from the previous theorem and Lemma 3.1

and the result could be considered more of a corollary. As shown in Theorem 3.B.2,

there exists a λ∗ (α) > 0 for any α such that a separating equilibrium exists if and

only if λ ≤ λ∗ (α). Connecting this theorem with Lemma 1, that under a complete

specification there is exactly one equilibrium social bliss point, α∗, an immediate

result is that if λ∗ = λ∗ (α∗), a fully separating equilibrium obtains if and only if

λ ≤ λ∗.

Proof of Theorems 3.B.3 and 3.B.4

Theorem 3.B.3: For fixed α, if λ > λ∗, then for any exogenous social equilibrium

that satisfies the D1 criterion, there exists at most one ap ∈ A such that tl (ap) <

th (ap) , and it satisfies α ∈ T (ap).

Theorem 3.B.4: For fixed α and any given ap ∈ A, there is at most one central

pooling exogenous social equilibrium (ap, tl, th) .
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Proof. Since these theorems are stated for fixed α, the proofs from Bern-

heim are directly applicable. An extraordinary amount of tedium would be needed

to identify and remedy all issues like those addressed in Theorem 3.B.2, but

nowhere in his analysis is the centrality of the SBP required.

Proof of Theorem 3.2

If λ > λ∗, then conditional on the population average strategy, the unique

social equilibrium with incomplete separation satisfying the D1 criterion is char-

acterized by a single central pool at a∗p = α∗ + ε (α∗, λ), where:

ε (α∗, λ) =∫ tl(ap)

0
(α∗ − φ−1

s (t;α∗, λ)) dπ (t) +
∫ 2

th(ap)
(α∗ − φ−1

s (t;α∗, λ)) dπ (t)

P (t ∈ [tl (ap) , th (ap)])


Proof. The result follows immediately by applying equilibrium condition

(C) to the intersection of the sets of equilibria established in Bernheim’s Theorems

(3) & (4). Writing condition (C) in integral form yields:

α∗ =Eπ [a∗ (t;α∗, λ)] =

∫
T

a∗ (t;α∗, λ) dπ (t)

=

∫ tl

0

a∗ (t;α∗, λ) dπ (t) +

∫ th

tl

a∗ (t;α∗, λ) dπ (t) +

∫ 2

th

a∗ (t;α∗, λ) dπ (t)

=

∫ tl

0

φ−1
s (t;α∗, λ) dπ (t) +

∫ 2

th

φ−1
s (t;α∗, λ) dπ (t) +

∫ th

tl

apdπ (t)

This computation yields:

ap

∫ th

tl

dπ (t) = α∗ −
∫ tl

0

φ−1
s (t;α∗, λ) dπ (t)−

∫ 2

th

φ−1
s (t;α∗, λ) dπ (t)
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, or,

ap =

(
1

P (t ∈ [tl, th])

)(
α∗ −

∫ tl

0

φ−1
s (t;α∗, λ) dπ (t)−

∫ 2

th

φ−1
s (t;α∗, λ) dπ (t)

)
=

∫ th
tl
α∗dπ (t) +

∫ tl
0

(α∗ − φ−1
s (t;α∗, λ)) dπ (t) +

∫ 2

th
(α∗ − φ−1

s (t;α∗, λ)) dπ (t)

P (t ∈ [tl, th])

=α∗ +

∫ tl
0

(α∗ − φ−1
s (t;α∗, λ)) dπ (t) +

∫ 2

th
(α∗ − φ−1

s (t;α∗, λ)) dπ (t)

P (t ∈ [tl, th])

Proof of Theorem 3.3

If λ > λ∗, then there exists a unique social equilibrium with incomplete separation

satisfying the D1 criterion where the single central pool is located at the population

average strategy, i.e., where ap = α∗, or equivalently, ε (α∗, λ) = 0.

Proof. Theorem 3.3 follows by establishing continuity and monotonicity in

α∗ of the equation identifying ε (α∗, λ) and applying the Intermediate Value The-

orem to identify a unique point where that equation is zero. Once this continuity

is established, all that remains is to show there exists a pooling equilibrium where

the pool lies below the SBP and another where the pool lies above the SBP.

ε (α∗, λ) =∫ tl(ap)

0
(α∗ − φ−1

s (t;α∗, λ)) dπ (t) +
∫ 2

th(ap)
(α∗ − φ−1

s (t;α∗, λ)) dπ (t)

P (t ∈ [tl (ap) , th (ap)])
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ξ (ap) ≡α∗ − ap

=

∫ tl

0

φ−1
s (t;α∗, λ) dπ (t) +

∫ 2

th

φ−1
s (t;α∗, λ) dπ (t)

+

∫ th

tl

apdπ (t)−
∫ 2

0

apdπ (t)

=

∫ tl

0

φ−1
s (t;α∗, λ) dπ (t) +

∫ 2

th

φ−1
s (t;α∗, λ) dπ (t)

−
∫ tl

0

apdπ (t)−
∫ 2

th

apdπ (t)

=

∫ tl

0

φ−1
s (t;α∗, λ)− apdπ (t) +

∫ 2

th

φ−1
s (t;α∗, λ)− apdπ (t)

Clearly ξ (ap) < 0 when ap < α∗ and ξ (ap) > 0 when ap > α∗. Continuity, then,

would require that ξ (α∗) = 0.

Proof of Corollary 3.1

If the distribution over types is symmetric around 1, then there is a unique social

equilibrium with pooling on a∗p = α∗ = 1.

Proof. This result is proven by leveraging the symmetry of the φs inference

characterizing function to show that ε (α∗, λ) = 0 when a∗p = α∗ = 1.

ε (α∗, λ)

=

∫ tl(ap)

0
(α∗ − φ−1

s (t;α∗, λ)) dπ (t) +
∫ 2

th(ap)
(α∗ − φ−1

s (t;α∗, λ)) dπ (t)

P (t ∈ [tl (ap) , th (ap)])

=

∫ tl(1)

0
(1− φ−1

s (t; 1, λ)) dπ (t) +
∫ 2

2−tl(1)
(1− φ−1

s (t; 1, λ)) dπ (t)

P (T (1))

=

∫ tl(1)

0
(1− φ−1

s (t; 1, λ)) dπ (t)−
∫ 2−tl(1)

2
(1− φ−1

s (t; 1, λ)) dπ (t)

P (T (1))

=

∫ tl(1)

0
(1− φ−1

s (t; 1, λ)) dπ (t)−
∫ tl(1)

0
(1− φ−1

s (t; 1, λ)) dπ (t)

P (T (1))

=
0

P (T (1))
= 0
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