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Demonstration of optimization techniques for groundwater plume 

remediation using iTOUGH2 

Stefan Finsterle*

Earth Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA 

Abstract 

We examined the potential use of standard optimization algorithms as implemented in the 

inverse modeling code iTOUGH2 (Finsterle, 1999abc) for the solution of aquifer reme-

diation problems. Costs for the removal of dissolved or free-phase contaminants depend 

on aquifer properties, the chosen remediation technology, and operational parameters 

(such as number of wells drilled and pumping rates). A cost function must be formulated 

that may include actual costs and hypothetical penalty costs for incomplete cleanup; the 

total cost function is therefore a measure of the overall effectiveness and efficiency of the 

proposed remediation scenario. The cost function is then minimized by automatically 

adjusting certain decision or operational parameters. We evaluate the impact of these 

operational parameters on remediation using a three-phase, three-component flow and 

transport simulator, which is linked to nonlinear optimization routines. We demonstrate 

that the methods developed for automatic model calibration are capable of minimizing 

arbitrary cost functions. An example of co-injection of air and steam makes evident the 

need for coupling optimization routines with an accurate state-of-the-art process simula-

tor. Simplified models are likely to miss significant system behaviors such as increased 

downward mobilization due to recondensation of contaminants during steam flooding, 

which can be partly suppressed by the co-injection of air. 
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1. Introduction 

The design of a cleanup operation for a contaminated aquifer involves environ-

mental, hydrological, technical, and economic issues (as well as legal and institutional 

aspects and demands from pressure groups) (U.S. Environmental Protection Agency, 

1997). The main task is to locate and characterize the contaminant plume and to select an 

effective and efficient remediation technology. The suitability of a proposed method 

depends on the location and geometry of the plume, the hydrogeologic characteristics of 

the aquifer, the chemical properties of the contaminant, and the overall remediation goal. 

Once a technology has been chosen, the operational scheme and its parameters (for 

example, the number of wells and their pumping schedule) can be optimized to reduce 

remediation costs. 

Optimization of groundwater remediation activities seeks to maximize contaminant 

removal while minimizing capital, operating, and maintenance costs. Furthermore, 

technical constraints and regulatory cleanup standards must be observed. Using this 

approach to design cleanup operations for the remediation of dissolved or free-phase 

contaminant plumes in the subsurface requires predictive modeling capabilities in combi-

nation with nonlinear optimization techniques. Operational parameters can be determined 

by iteratively minimizing an objective function that involves actual or hypothetical 

cleanup costs. The procedure is similar to that used for automatic calibration of a process 

model against field data (referred to as “inverse modeling”), where hydrogeologic 

parameters are determined by minimizing the differences between the observed and 

calculated system response. 
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Simulation and optimization techniques have been combined to solve single- and 

multi-objective subsurface remediation management problems (see Freeze and Gorelick 

(1999) for a review). Remediation strategies are usually optimized by minimizing a cost 

function, in which multiple objectives are expressed in actual or equivalent monetary 

units. In this approach, the cost function to be minimized contains appropriately weighted 

terms representing, for example, drilling costs as a function of the number of wells, 

treatment costs as a function of pumping rates, capital costs as a function of cleanup time, 

and penalty terms to enforce remediation standards. This combined cost function is then 

minimized using linear or nonlinear single-objective optimization methods (see Culver 

and Shoemaker (1992) for a review). An alternative to optimizing a composite criterion is 

to determine a set of “Pareto optimal” designs. A remediation strategy is considered 

Pareto optimal if it dominates all other designs, i.e., if no part of the solution can be 

improved without making another part worse than a competing design. Consideration of 

the Pareto optimal set (or Pareto frontier) provides a better understanding of the trade-

offs necessary to obtain greater relative efficiency on a given objective. An example of 

this approach is given in Erickson et al. (2002).  

The purpose of this study is to examine whether the combination of a nonisothermal 

multiphase flow and transport model and standard optimization techniques can be used to 

improve the design of a remediation system. The intent is to provide a proof of principle 

rather than to solve an actual remediation problem. Consequently, the study focuses on 

the numerical performance of the simulation and optimization tools.  

Computer programs have been developed at the Lawrence Berkeley National Labo-

ratory (LBNL) to solve forward and inverse problems in groundwater hydrology. We 
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make use of the iTOUGH2 code (Finsterle, 1999abc, see also http://www-

esd.lbl.gov/iTOUGH2). iTOUGH2 provides inverse modeling capabilities for the non-

isothermal, three-phase, three-component flow and transport simulator T2VOC (Falta et 

al., 1995), which is based on the general-purpose integral finite difference code TOUGH2 

(Pruess, 1991; Pruess et al., 1999). A review of iTOUGH2 applications can be found in 

Finsterle (2004). The FORTRAN source code of iTOUGH2 is distributed through the 

Energy Science and Technology Software Center (http://www.osti.gov/estsc/) and (for 

customers outside the U.S.) the Nuclear Energy Agency 

(http://www.nea.fr/html/dbprog/). Machine-dependent functions are provided for 

compilation and installation on various platforms (PC, Unix, Linux, supercomputers). 

Individual forward simulations can be executed in parallel on a heterogeneous cluster of 

workstations using Parallel Virtual Machine (PVM) (Geist et al., 1994; Finsterle, 1998). 

In principle, any forward model can be linked to a general, model-independent, 

nonlinear parameter estimation package such as PEST (Doherty, 1994; 

http://www.sspa.com/pest/) or UCODE (Poeter and Hill, 1998; 

http://water.usgs.gov/software/ucode.html), thus providing optimization capabilities with 

various degrees of flexibility and efficiency.  

A summary description of the T2VOC simulator is given in Section 2, followed by a 

brief discussion of the optimization algorithms implemented in iTOUGH2 (Section 3). 

Two illustrative examples are presented in this report. The first example (Section 4) 

simulates the remediation of a large contaminant plume through an array of extraction 

wells. The pumping rate in each well is optimized to reduce cleanup costs. The second 

example (Section 5) examines the performance of thermally enhanced soil vapor extrac-
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tion, where the effectiveness of NAPL removal depends on steam temperature and the 

amount of co-injected air. Conclusions from this preliminary demonstration can be found 

in Section 6. 

 

2. Modeling Multiphase Contaminant Transport Using T2VOC 

The computer code used in this study is T2VOC (Falta et al., 1995) for modeling 

three-phase (gas, water, non-aqueous phase liquid (NAPL)), nonisothermal flow of water, 

air, and a water-soluble volatile organic compound (VOC) in three-dimensional hetero-

geneous porous media. T2VOC is an extension of the TOUGH2 general-purpose simula-

tion program (Pruess, 1991; Pruess et al., 1999), which uses the integral finite difference 

formulation for solving fully coupled mass and energy balance equations. 

Each of the three phases flows in response to pressure and gravitational forces 

according to the multiphase version of Darcy's law, which includes the effects of relative 

permeability and capillary pressure between the phases (Falta et al., 1995). Water 

properties in the liquid and vapor state are calculated using steam table equations given 

by the International Formulation Committee (IFC, 1967). Thermophysical properties of 

the NAPL phase (such as saturated vapor pressure and viscosity) are calculated as 

functions of temperature, while specific enthalpy and density are computed as functions 

of both temperature and pressure. Gas phase thermophysical properties (including 

molecular diffusivities) are considered to be functions of temperature, pressure, and gas 

phase composition. A general equation-of-state is provided to compute the necessary 

NAPL/VOC thermophysical and transport properties. Based on semi-empirical corre-

sponding-states methods, the chemical parameters are calculated as functions of critical 
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properties such as the critical temperature and critical pressure, which are readily avail-

able for many substances (Reid et al., 1987). This approach makes T2VOC applicable to 

a variety of contamination problems involving different NAPLs that are either denser or 

lighter than water and that have different vapor pressures and solubilities. 

For numerical solution, the balance equations are discretized in space based on an 

integral finite difference formulation (Narasimhan and Witherspoon, 1976). Time is 

discretized fully implicitly using first-order backward finite differences. Discretization 

results in a set of nonlinear, coupled algebraic equations, which are solved simultane-

ously by means of Newton-Raphson iterations. A conjugate gradient algorithm is used to 

solve the linear equations arising at each iteration step (Moridis and Pruess, 1995). For a 

detailed description of the physical processes, governing equations, and numerical 

schemes employed in T2VOC, see Falta et al. (1992, 1995) and Pruess et al. (1999). 

 

3. Optimization Algorithms Implemented in iTOUGH2 

As discussed in the introduction, iTOUGH2 combines the simulation capabilities of 

T2VOC with optimization techniques to perform model calibration (inverse modeling) 

and to support the design of remediation systems. In both applications, a performance 

measure is either minimized or maximized by adjusting certain input parameters or 

design variables. For example, model calibration consists of reducing the differences 

between the simulation results and measured data (such as water potentials or tempera-

tures) by adjusting the model input parameters (such as the absolute permeability or 

thermal conductivity of the porous medium). A cleanup operation can be improved by 

minimizing, for example, the remediation time, which can be achieved by increasing 
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pumping rates or steam temperature. Increasing pumping rates or steam temperature, 

however, leads to higher energy costs. Therefore, the objective function to be minimized 

should also reflect these costs in order to obtain an optimal remediation design. 

Solving an optimization problem thus requires two steps. First, a cost function has to 

be defined as a function of T2VOC output variables, which in turn depends on certain 

T2VOC input parameters. This function is usually highly nonlinear and can even be 

discontinuous. Moreover, it contains contributions from different sources, which have to 

be appropriately weighted against each other. Secondly, a minimization algorithm is 

needed, capable of updating T2VOC input parameters in order to reduce the value of the 

cost function. In the remainder of this section, we present the methods used to minimize 

the cost function. 

The cost function is denoted by Z and consists of a sum of cost contributions, Z = Σz. 

The vector p contains all operational parameters (i.e., T2VOC input parameters) that are 

automatically adjusted to minimize Z. The iterative minimization of Z involves comput-

ing a correction vector ∆pk such that the new parameter set pk+1 = pk + ∆pk leads to a 

reduction in the cost function, Zk+1 < Zk, at each iteration k. (An exception to this rule is 

implemented in the Simulated Annealing optimization method, which allows uphill steps 

with a generally low and decreasing probability as a means to escape from local minima.) 

A number of algorithms are available to solve nonlinear minimization problems (see, for 

example, Gill et al. (1981)). They differ in their strategy to calculate ∆pk. Some methods 

require the evaluation of partial derivatives of the cost function with respect to the 

parameters. Many of the methods are specialized to efficiently deal with nonlinear least-

squares problems, where the objective function is a sum of squared weighted residuals. 
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The cost functions considered here are likely to be nonquadratic, and different, less 

efficient methods may need to be applied. Table 1 summarizes the minimization algo-

rithms implemented in iTOUGH2 and provides the reference to the original publication. 

All methods are also described in Press et al. (1992) and Finsterle (1999a). 

The Gauss-Newton algorithm approximates the curvature of the cost function by a 

positive-definite Hessian matrix and then performs a step to its minimum. This means 

that if the cost function is quadratic, the Gauss-Newton algorithm identifies the optimum 

in a single step. For nonlinear models or non-quadratic cost functions, the algorithm 

(even if applied iteratively) may diverge. This problem is partly addressed by the 

Levenberg-Marquardt modification of the Gauss-Newton algorithm. After local lineari-

zation of the cost function with respect to the operational parameters, the Levenberg-

Marquardt algorithm performs initially small, but robust steps along the steepest descent 

direction, and switches to more efficient quadratic Gauss-Newton steps as the minimum 

is approached. Both the Gauss-Newton and Levenberg-Marquardt algorithms require the 

calculation of first derivatives, which are evaluated numerically in iTOUGH2 using the 

perturbation method. This evaluation can be performed in parallel (Finsterle, 1998). 

The downhill simplex method requires only function evaluations (i.e., no derivatives) 

and is therefore a robust but relatively inefficient minimization method. Starting with a 

simplex consisting of n+1 points in the n-dimensional parameter space, a series of steps is 

taken, most of which consist of moving the point of the simplex with the highest cost 

function through the opposite face of the simplex to a lower point. Other search 

directions are generated by reflection, expansion, and contraction of the simplex from the 
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previous step. The simplex algorithm should be used in iTOUGH2 when minimizing 

discontinuous cost functions or if the numerical evaluation of the derivatives is unstable. 

A continuous version of the method of Simulated Annealing has been implemented 

in iTOUGH2. Simulated Annealing is a technique to find the (ideally global) minimum of 

the cost function in the presence of many local minima. Random steps in the parameter 

space are performed. A step is always accepted if the cost function is lowered, and it is 

sometimes accepted with a certain, decreasing probability, if an uphill step is taken. This 

scheme allows the algorithm to escape from local minima. Simulate Annealing requires 

many forward runs and is thus only applicable to small problems. 

The global minimum can always be identified by systematically evaluating the cost 

function in the entire parameter space. Moreover, contouring the cost function reveals the 

potential presence of local minima, non-uniqueness problems, the correlation structure, 

stability problems, and nonlinearity effects. Evaluating the cost function on a grid in the 

entire parameter space is prohibitively expensive for higher-dimensional parameter 

spaces. This option is used for illustrative purposes (see Figure 8 below). 

As they are able to track more general problems, the algorithms become less 

efficient, i.e., they require more solutions of the forward problem, which involves 

simulating the cleanup operation by solving the corresponding multiphase flow and 

transport equations. For a detailed description of the algorithms and their implementation, 

the reader is referred to Finsterle (1999a). 

Many of the forward runs conducted to evaluate the cost function are independent 

from each other and can thus be performed in parallel. With the exception of Simulated 

Annealing, all methods shown in Table 1 are implemented for parallel execution using 

 9



message passing based on the Parallel Virtual Machine concept (PVM; Geist et al., 

1994); for details, see Finsterle (1998). 

Optimization problems are susceptible to being ill-posed, which leads to nonunique 

or unstable solutions (Carrera and Neuman, 1986; Yeh, 1986; McLaughlin and Townley, 

1996). If multiple parameter sets yield nearly identical values of the performance 

measure at or near the minimum, the solution is nonunique. While nonuniqueness is a 

serious deficiency if estimating hydrogeologic parameters (inverse modeling), the fact 

that multiple solutions may exist is of little practical concern for cost-minimizing optimi-

zation problems such as the ones discussed here. A cost-effective remediation design is 

an acceptable solution even if additional, equally favorable configurations may exist. 

This must be distinguished from the potential presence of (multiple) local minima, repre-

senting sub-optimal solutions. Note that the presence or absence of local minima is a 

characteristic of the cost function and the choice of the parameters subjected to optimiza-

tion. However, the presence of local minima does not mean that the optimization problem 

is ill-posed. The user must simply select an appropriate minimization approach to detect, 

avoid, or escape local minima.  

As mentioned above, nonuniqueness is not considered problematic by itself. 

However, nonuniqueness is often accompanied by instability, where vastly different 

solutions are obtained as a result of small changes in the definition of the cost function. 

Such instabilities as well as the presence of local minima should be avoided by a careful 

formulation of the cost function and deliberate selection of the design variables to be 

optimized. 
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The most important element of the optimization approach—in addition to the defini-

tion of a meaningful cost function—is the numerical process model itself, because the 

optimal design is calculated based on a numerical prediction of the cleanup operation. 

This prediction is based on a model that is uncertain. Sources for errors include: (1) 

unknown or uncertain aquifer properties (e.g., spatial distribution of permeability and 

adsorption coefficients); (2) incomplete process description (e.g., neglect of multicompo-

nent diffusion in gas phase); (3) model simplifications (e.g., simulating three-dimensional 

flow using a two-dimensional model; specifying homogeneous model domains despite 

the presence of multi-scale spatial variability of formation properties); and (4) uncertainty 

in initial and boundary conditions (e.g., uncertain recharge rates; uncertain location and 

extent of contaminant plume). The solution to the optimization problem is likely to be 

(significantly) affected by a change in the underlying flow and transport model. 

Therefore, site characterization is a very important aspect of the overall optimization 

problem. Sufficient data must be collected to be able to determine key hydrogeologic 

properties. These are the properties that most strongly affect the predicted fate of the 

contaminants during the simulated cleanup operation. 

Site characterization through monitoring or active aquifer testing is in itself an opti-

mization problem, in which data of sufficient sensitivity and quality must be obtained to 

yield parameter estimates of acceptably low estimation uncertainty. In summary, test 

design, monitoring, inverse modeling, and remediation design are strongly related and 

pose an overall optimization problem. Specifically, a unified approach would need to 

include into the cost function the substantial costs for data collection, which will then 

need to be optimized to arrive at an acceptable model application reliability. An outline 
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of such an overall approach is given, for example, by Sun and Yeh (1990) and Wagner 

(1995). The incremental worth of data and the optimization of site characterization 

strategies is discussed in Freeze et al. (1992), James and Freeze (1993), and James and 

Gorelick (1994). The scope of this study is limited to the computational aspects of 

finding cost-effective design variables for a given cleanup operation and a given model. 

The examples discussed in Section 4 below illustrate certain aspects of the simula-

tion-optimization capabilities of iTOUGH2. The first example mainly demonstrates the 

performance of the code’s different minimization algorithms for the solution of a 

standard remediation problem.  It also shows the flexibility in formulating the optimiza-

tion problem. For example, the (unknown) time for contaminant removal from an aquifer 

is part of the cost function, i.e., the simulation time is automatically adapted to the 

imposed remediation target, which in turn depends on the operational parameters to be 

optimized. The second example highlights the process simulation capabilities of the 

general-purpose reservoir simulator T2VOC, and how subtle physical processes can 

affect the optimal solution. Moreover, this case demonstrates that unconventional terms 

can be included in the cost function.  

In iTOUGH2, the user has complete control and flexibility in specifying cost 

functions of arbitrary complexity. An interface subroutine is provided in which the user 

can program the cost as a function of any T2VOC input parameter and output variable. 

Similarly, an interface is provided for the user to specify non-standard operational 

parameters. Given the flexibility provided by these interfaces, the iTOUGH2 code (which 

was designed for the solution of parameter estimation problems) can be used without 
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modification (except for the user-specified interface functions) for the solution of cost 

minimization problems. 
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4. Example No. 1: Remediation of Dissolved TCE Plume 

Consider a confined aquifer of 10 m uniform thickness. The aquifer is heterogeneous 

with a mean permeability of 10-11 m2, a standard deviation of one order of magnitude, a 

correlation length of 30 m along the main west-east (X) flow direction, and a correlation 

length of 10 m in the north-south (Y) direction based on a spherical semi-variogram. The 

log-permeability field shown in Figure 1 was generated using Sequential Indicator 

Simulations (Deutsch and Journel, 1992). The effective porosity is assumed to have a 

constant value of 0.4. A natural hydraulic gradient of 0.01 is imposed across the model 

domain of 200 m length; no-flow boundaries are prescribed along the northern and 

southern sides of the model. The model domain is discretized into 40 × 25 × 1 = 1,000 

gridblocks with dimensions 5 m × 5 m × 10 m. 

We simulated a potential contamination of the aquifer by releasing 100 kg of 

trichloroethylene (TCE) at X = 47.5 m and Y = 67.5 m (the spill location is indicated by a 

square in Figure 1). TCE has a water solubility of 1.51 × 10-4 [mole fraction]. 

Consequently, the spill is assumed to be completely dissolved as the contaminant plume 

spreads. Note that these initial conditions do not imply that TCE dissolves instan-

taneously.  However, an implicit assumption is made that TCE has spread uniformly over 

the size of a single gridblock during the early stages of the contamination. The initial 

distribution used in the model reflects the uncertainty in location and release history of 

the contaminant.  

Figure 2 shows the concentration of TCE dissolved in the aqueous phase four months 

after the spill. The bulk of the TCE mass follows a relatively narrow high-permeability 

channel, but significant amounts of TCE disperse in longitudinal and transverse 
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directions as a result of aquifer heterogeneity. The contaminant plume eventually 

bifurcates into multiple fingers. 

In a very simplified scenario, we assume that the contamination will be remediated 

by drilling six wells approximately aligned with the plume axis; the pattern is shown in 

Figure 2. This requires that some (albeit incomplete) information about the location of the 

contaminant plume is available either through sampling or preliminary modeling. We 

further assume that the costs for site remediation are directly proportional to the total 

amount of contaminated water being extracted from the subsurface. In other words, the 

cost function to be minimized is simply given by 

  (1) Z = qit
i=1

6

∑

where  is the constant pumping rate in Well , and  is the time required to extract a 

pre-defined amount of TCE, for example 95% of the total spill. In the simulation, the 

cleanup time is calculated by linear interpolation between the two calculation times that 

bracket the remediation goal of 95% TCE removal. The width of this time bracket 

depends on the time step size, which in T2VOC is variable and automatically adjusted 

based on the convergence behavior of the Newton-Raphson iteration. Optimization of this 

cost function requires the calculation of the cleanup time as a function of pumping rates, 

either as a simple evaluation or as part of the calculation of a sensitivity coefficient. 

Calculation of derivatives is performed numerically by perturbing the pumping rates by 

1% of their respective values. 

qi i t

It is obvious that this scenario requires significant refinement in order for it to be 

realistic. For example, the cost function could be expanded to include (1) drilling costs, 
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whereby a well should not be drilled if the pumping rate is less than a certain threshold 

value, (2) concentration-dependent treatment costs, and (3) capital costs as a function of 

overall remediation time. In a variation of the cleanup operation, one could consider 

time-dependent pumping rates, whereby pumping is reduced or wells are shut down as 

soon as the TCE concentration reaches a certain low value. Treated waste water could be 

reinjected to impose hydraulic controls on the contaminant plume. Furthermore, different 

criteria for stopping remediation could be applied. Instead of requesting that a certain 

(large) amount of TCE be removed (as in this study), one could require that the TCE 

concentration at a nearby drinking water well is not to exceed a certain level. Even more 

stringent would be the requirement to comply with drinking-water standards everywhere 

within the modeled domain. The optimal solution is likely to depend strongly on the 

chosen remediation target, the factors entering the cost function, and the details of the 

proposed cleanup operation (i.e., the design variables). If each well is pumping at a 

constant rate of 1 kg/s, an initial simulation shows that 95% of the spilled TCE would be 

recovered within  = 240 days. Based on Eq. (1), the “cost” for this initial scenario is 

calculated to be 124,800 units. 

t

Using iTOUGH2, the pumping rates in each of the 6 wells were automatically 

adjusted in an attempt to reduce the cost function. The results obtained with four different 

minimization algorithms are summarized in Table 2. All algorithms were able to reduce 

the cost function, albeit to various degrees and coming up with different optimal pumping 

schedules—the cost function obviously exhibits many local minima and the solution is 

nonunique, as expected. The Gauss-Newton algorithm was quickly trapped in a local 

minimum. Nevertheless, requiring only a few simulations, the cost function was consid-
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erably reduced, yielding a suboptimal solution with a relatively low total pumping rate 

and a correspondingly long cleanup time. The generality of the Levenberg-Marquardt 

algorithm (even though designed to minimize nonlinear least-squares functions) was able 

to further reduce costs to a value that is approximately half of that obtained with the 

original scenario. The Downhill Simplex algorithm performs well in this problem, 

arriving at even lower costs using a relatively small number of forward simulations. 

Finally, Simulated Annealing was able to come up with a pumping schedule that yields 

the smallest costs. However, a very large number of simulations was required to arrive at 

the solution. It is interesting to note that the cleanup time with the optimized pumping 

schedule is approximately the same as with the original design, with a 60% reduction in 

the total amount of water being pumped. 

The strategy and performance of the four minimization algorithms considered here is 

visualized in Figure 3. Each square represents one T2VOC simulation. Note that the 

Gauss-Newton and Levenberg-Marquardt methods require n  simulations at each iteration 

to numerically evaluate the sensitivity matrix, where n  is the number of adjustable 

parameters. The cost function may temporarily increase as unsuccessful uphill steps are 

proposed by the Levenberg-Marquardt algorithm. The Downhill Simplex algorithm 

shows cost increases prior to a contraction of the simplex. The random nature of 

Simulated Annealing leads to many runs with higher costs than previous simulations. 

These higher costs are sometimes accepted with a decreasing probability, allowing the 

algorithm to escape local minima. 

The computational efficiency of a minimization algorithm is determined by the 

number of forward simulations required; the overhead needed to calculate orientation and 
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step size to update the parameter vector is negligible. In this illustrative example, a single 

simulation of contaminant migration and removal takes on average approximately 9 CPU 

seconds (note that cleanup time and thus the CPU time depend on the parameter set being 

examined for each simulation). As indicated in Figure 3, the Gauss-Newton algorithm 

required about 2 minutes for the 15 simulations, whereas it took approximately 3 hours to 

arrive at the optimal solution proposed by Simulated Annealing. 

Figure 4 shows the amount of dissolved TCE removed from the aquifer as a function 

of pumped groundwater volume for the initial design and for the optimum design 

determined by Simulated Annealing. The total amount of TCE in the aquifer (which is a 

direct output from the T2VOC simulator) is plotted as a function of the pumped volume, 

which is the total pumping rate of all six wells multiplied by time. Curves are produced 

for the initial and optimized designs with pumping rates of 6 kg/s and 2.43 kg/s, 

respectively (see Table 2). Recall that optimization occurred by minimizing the total 

volume pumped at the time when 95 kg of TCE have been removed. The cost reduction is 

indicated by the horizontal arrow in Figure 4. Using the pumping rates proposed by the 

optimization model, more TCE is removed with each cubic meter of groundwater as 

compared to the initial design. Recall that the pumping schedule has been optimized for a 

target residual TCE mass of 5 kg. If optimized for a much smaller residual mass, the 

optimal pumping schedule would focus on the removal of a diffuse residual plume at late 

time rather than on the removal of bulk contaminants at early and intermediate times. 

This is reflected in the changing width of the gap between the two curves, indicating that 

a different optimal solution would be obtained if the remediation criterion were changed. 

Nevertheless, it appears that the automatically determined pumping schedule remains 
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superior to the initial design even if the threshold of acceptable residual TCE is reduced. 

Note that the solution is only optimal for the given conceptual model. Uncertainties in 

this model were discussed above; the solution to alternative models of similar occurrence 

probability would have to be evaluated to arrive at a robust optimal solution. 

Figure 5 shows the remediation process using the initial pumping schedule (left 

column) in comparison with the optimized design (right column). The uniform pumping 

rates of the initial design lead to an area of relative stagnation between Wells 1, 2, 4, and 

5. Moreover, pumping in Well 4 has the effect of pulling the plume into a previously 

uncontaminated region of the aquifer. The symmetry is broken in the optimized design, 

where the largest rates are assigned to the wells in the center of the plume, i.e., Wells 2 

and 5. Wells 1, 3, 4 and 6 could probably be shut down without significant loss in overall 

remediation effectiveness. This would save additional drilling costs, which were not 

considered in the cost function, making the design even more favorable.  

It should be noted that the optimized design targets the bulk of the TCE plume, i.e., it 

efficiently remediates the high-concentration area while neglecting the low-concentra-

tion, downstream tail of the plume. This is a consequence of the chosen remediation 

criterion, which only requires a reduction of the total amount of TCE in the aquifer. 

Additional terms would have to be added to the cost function in order to ensure that no 

contaminated water is able to escape downstream. Note that the total amount of 

contaminants escaping across the downstream model boundary is insignificant and does 

not affect the results. 

This first example illustrates that the optimization algorithms implemented in 

iTOUGH2 can be used to improve remediation designs by automatically minimizing a 
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cost function. While the cost function chosen here is extremely simple, its complexity can 

be increased arbitrarily. The properties of the cost function may determine the choice of 

the minimization algorithm. For example, if the cost function is discontinuous (e.g., by 

containing capital cost terms for a well that may or may not be drilled), the derivative-

based algorithms cannot be used; the Downhill Simplex algorithm was found to be a 

good compromise between efficiency and robustness for the minimization of most cost 

functions.  

A key feature of this approach is that the costs are calculated based on a process 

model simulating flow and transport in the aquifer for each remediation scenario. One 

should realize, however, that the optimization relies on accurate characterization data. 

Since the permeability structure of the aquifer or the initial contaminant distribution is 

uncertain, the optimal pumping schedule will not be as successful when implemented in 

the field. 

5. Example No. 2: NAPL Removal by Combined Air-Steam Injection 

The widely used soil vapor extraction method (U.S. Environmental Protection 

Agency, 1991) for the removal of volatile NAPLs from the unsaturated zone is often 

inefficient and requires long remediation times. Steam injection is a means to increase 

NAPL volatilization, thus increasing the mobility of the contaminant by inducing a phase 

change (Looney and Falta, 2000). Even residual NAPL contamination in low-permeabil-

ity lenses can be mobilized and successfully transported to an extraction well. However, 

since the propagation of the thermal front is retarded compared to the steam front, the 

volatilized contaminant often recondenses as it encounters cooler regions. High NAPL 

saturations may build up at these condensation fronts, making the NAPL sufficiently 
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mobile for it to be transported downwards by gravity. This process reduces the efficiency 

of thermally enhanced soil vapor extraction systems and may even lead to an unwanted 

mobilization of contaminants towards the water table. 

Recondensation of volatilized NAPL can be partly suppressed by co-injection of a 

noncondensible gas such as air, increasing advective transport of volatile contaminants to 

the extraction well. A laboratory experiment has been performed in the VEGAS facility 

at the University of Stuttgart, Germany, to study thermally enhanced soil vapor extraction 

using steam/air mixtures (Betz, 1998; Betz et al., 1998). We use a configuration similar to 

that of the VEGAS experiment to perform our synthetic optimization study.  

The layout is shown in Figure 6. The model domain of dimensions 1.0 m × 0.1 m × 

0.75 m represents a vertical test cell filled with coarse sand with a lens of finer sand built 

into it (solid box). The domain is uniformly discretized into 1,200 grid blocks of dimen-

sions 0.025 m × 0.1 m × 0.025 m. A spatially correlated, anisotropic permeability field is 

generated to induce heterogeneity. A spherical semi-variogram was used with horizontal 

and vertical correlation lengths of 0.2 and 0.06 m, respectively, and a sill value of 0.5 log 

cycles. Initially, the sand is at residual water saturation. TCE at residual NAPL saturation 

is emplaced (dash-dotted box), partly penetrating the sand lens. Steam and air are injected 

at the left-hand side boundary between a depth of Z = -0.3 and -0.2 m, and a vertical 

extraction well is installed at X = 0.875 m to a depth of Z = -0.5 m. Input parameters are 

summarized in Table 3. 

Figure 7 shows the NAPL saturation after 12, 30 and 60 minutes of pure steam 

injection (left column) and combined injection of steam and air (right column). If only 

steam is used to thermally enhance volatilization and contaminant removal, recondensa-
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tion of TCE at the steam front leads to the appearance of a free NAPL phase near the 

bottom of the test cell. To avoid this potentially dangerous side-effect of steam flooding, 

a penalty term is added to the cost function. The appearance of TCE as a free NAPL 

phase near the bottom of the test cell will lead to an appropriately weighted increase in 

the cost function. Any parameter combination that leads to downward NAPL mobiliza-

tion is therefore rejected by the minimization algorithm.  

Figure 7 also shows that the co-injection of air enables increased removal of TCE 

from the low-permeable sand lens, whereas the scenario with steam injection simply 

volatilizes and recondenses TCE within the lens. 

The overall approach to such an optimization problem is demonstrated using the 

following, generic cost function: 

 Z = a ⋅ MTCE + b ⋅ MNAPL + Csteam + Cair  (2) 

The first term in (2) represents residual contamination, where MTCE  is the total mass 

of TCE (volatilized, dissolved, or in NAPL phase) left in the test cell after 1 hour of soil 

vapor extraction. The second term is a penalty term for NAPL that potentially reaches the 

water table as a result of mobilization and recondensation effects. The variable MNAPL  is 

the NAPL volume accumulated in the bottom 10 cm of the test cell. Csteam and Cair  are 

the costs to generate high-enthalpy steam and to inject air, respectively. Finally, the 

coefficients a and b are used to appropriately weigh the different contributions to the total 

cost function.  

The weighting coefficients a and b must (and can) be determined in any real appli-

cation by means of an economic model, where monetary values are assigned not only to 
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actual costs but also to potential benefits or damages. In case they remain uncertain, a 

sensitivity study can be performed to examine the robustness of the design to changes in 

the assumptions of the economic model. In the current demonstration, no effort has been 

made to find a realistic basis for the choice of these coefficients. The values used are: 

a = 10 cost units per kg of TCE left in the test cell, b = 500 cost units per liter of NAPL 

encountering the bottom of the test cell, Csteam = 0.0014 cost units for increasing specific 

steam enthalpy by 1 kJ, and Cair  = 200 cost units for increasing the air injection rate by 

1 g/s. 

The two design parameters adjusted are the enthalpy of the injected steam, esteam, and 

the air injection rate, qair. Note that specific steam enthalpies of 2677 and 2875 kJ/kg 

refer to injection of pure (dry) steam at 100 °C and 200 °C, respectively. Enthalpies 

between 419 and 2677 kJ/kg indicate that a certain fraction of the injected water is in 

liquid form (wet steam) at a temperature of 100 °C. The enthalpy is therefore a measure 

of the so-called steam quality. In these simulations, the steam injection rate is held 

constant at 0.8 g/s. 

We examined the cost function in the two-dimensional parameter space in the ranges 

0 < qair< 0.1 g/s  and 2200 < esteam < 2875 kJ/kg. Figure 8 shows contour plots of the cost 

function and its individual contributions. The simple linear cost model for the production 

of high-enthalpy steam and for injecting air is shown in Figure 8a. In reality, this cost 

function is likely to be nonlinear and may even be discontinuous (for example, if a 

second pump must be purchased to reach a higher injection rate). Figure 8b shows the 

term that penalizes downward migration of NAPL. The plot shows that injection of air at 

a rate higher than about 0.02 g/s successfully prevents any significant recondensation of 
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TCE at the steam front that bypasses the fine sand lens near the bottom of the test cell. 

Figure 8b also demonstrates that injecting even small amounts of air significantly reduces 

the costs related to the NAPL mobilization risk, outweighing the costs associated with air 

injection (see Figure 8a). Increasing steam enthalpy leads to higher NAPL volatilization 

and thus requires slightly higher air injection rates to avoid NAPL accumulation at the 

bottom. In other words, the enthalpy does not affect downward migration significantly, so 

poor steam quality would be sufficient to satisfy this partial performance criterion. 

However, high steam enthalpy improves overall remediation (see discussion of Figure 8c) 

and is thus desirable despite higher steam production costs (Figure 8a). Figure 8c shows 

that more TCE is removed from the test cell with increasing steam enthalpy and increas-

ing air injection rate. The relationship is almost linear. Finally, Figure 8d shows the total 

cost function (see Equation 2).  

The combination of all terms leads to a low-cost region in the parameter space near 

esteam = 2550 kJ/kg and qair = 0.035 g/s. This minimum is surrounded by regions where 

steam enthalpy is too low for efficient NAPL volatilization, air injection rate is too low to 

prevent unwanted recondensation, and enthalpy and injection rate are too high, producing 

generation costs that cannot be compensated by a corresponding increase in remediation 

efficiency. It is obvious that the location of this minimum depends on the form of the cost 

function and the weighting coefficients. 

The contour plot shown in Figure 8d (generated using the grid search option of 

iTOUGH2) provides complete information about the optimization problem at hand. 

However, grid search is usually prohibitive if more than two parameters are to be deter-

mined. We therefore examined the performance of the Levenberg-Marquardt algorithm, 
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which calculates the cost function (and its gradient) only at a few discrete points in the 

parameter space. Starting from three different points in the parameter space, the mini-

mum was identified within 8 iterations (requiring 27 simulations), i.e., substantially fewer 

than the 400 simulation runs performed with the grid search method. 

Co-injection of air and steam for the enhanced removal of NAPL highlights both the 

usefulness of simulation-optimization techniques as well as the related challenges.  As 

demonstrated in the example, subtle but complex physical effects (such as multiphase 

flow and transport associated with vaporization and recondensation) greatly impact the 

remediation success. Understanding and predicting the system behavior requires a 

sophisticated numerical simulator to increase the fundamental understanding of the 

effects governing co-injecting projects (for example, through laboratory experiments as 

described above) and to predict and optimize site-specific field applications. For the 

latter, a substantial characterization effort is required for these predictions to be reliable. 

Site-specific multiphase flow parameters, thermal properties, and information about 

multiscale heterogeneity need to be obtained. iTOUGH2 supports these multiphase 

parameter estimation problems (see Finsterle (2004) for an overview). Finally, a cost 

function needs to be developed that captures and quantifies the salient ecological and 

economic factors comprising the remediation goal. iTOUGH2 is a tool that addresses the 

first two issues (site characterization and predictive simulation), and it allows the user to 

examine and optimize arbitrary cost functions. Balancing the effort spent on each of these 

related areas (characterization and monitoring, hydrogeologic modeling, economic 

modeling, and optimization) remains the subject of an overall management and 

optimization problem.   
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6. Summary and Conclusions 

We examined the potential use of standard optimization algorithms for the solution 

of groundwater management problems. A cost function measures the effectiveness and 

efficiency of a proposed remediation scenario. The cost function is minimized by auto-

matically adjusting certain operational parameters (such as pumping rates). The impact of 

these operational parameters on remediation is evaluated using a sophisticated three-

phase, three-component flow and transport simulator (T2VOC). Changes in operational 

parameters are propagated through the process model, affecting the fate of contaminants 

and eventually the cost function. The minimum of the cost function is identified by 

iTOUGH2 using strategies that are characteristic of the chosen minimization algorithm. 

Two illustrative examples are provided. The purpose of the first example was to 

examine the relative performance of the minimization algorithms implemented in 

iTOUGH2 for a standard pump-and-treat cleanup operation. The total pumping cost to be 

minimized (see Equation (1)) was calculated as the product of the pumping rates and the 

required cleanup time to a certain standard (e.g., 95% contaminant removal). The 

decision variables are the pumping rates in six wells; they were constrained to 

nonpositive values (i.e., injection was not allowed as part of the solution).  The purpose 

of the second example was to demonstrate that subtle physical effects determine the 

optimal solution in a thermally enhanced soil vapor extraction scheme with the co-

injection of air. The cost function (see Equation (2)) included terms for incomplete 

remediation, a penalty term for NAPL mobilization, and costs for steam generation and 

air injection. The design variables are the steam enthalpy and air injection rate; they were 

contained to positive values. 
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We demonstrated that the minimization algorithms implemented in iTOUGH2 are 

able to determine optimal remediation parameters. The combination of simulation and 

optimization techniques provides the capability to simulate the complex processes 

governing the remediation of NAPL-contaminated aquifers, and the flexibility to specify 

and minimize arbitrarily complex cost functions. While the illustrative examples 

discussed here used oversimplified cost functions and process models, the experience 

with iTOUGH2 for the solution of complex parameter estimation problems (Finsterle, 

2004) provides confidence that the code is flexible enough and capable of optimizing 

realistic groundwater management problems. Note, however, that a reasonable solution to 

an optimization problem requires a good understanding of the underlying physics and the 

cost function, as well as a critical examination of the caveats of the problem formulation. 

Finally, computational limitations must be considered.  

The robustness of the optimal solution remains to be investigated. Specifically, the 

amount of characterization data required to perform reliable predictions must be deter-

mined. Uncertainties in hydrologic parameters as well as incomplete knowledge about the 

source and distribution of the contaminants may strongly affect the predicted perform-

ance of a proposed cleanup operation and thus affects the accuracy of the calculated cost 

function. Note, however, that these difficulties are common to all methods that try to 

optimize aquifer remediation. Stochastic methods may be a means to quantify the 

remaining uncertainties and to assess the related risks. 
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Table 1. Minimization algorithms implemented in iTOUGH2 

Minimization algorithm 

Reference 

Description Advantages and 

disadvantages 

Gauss-Newtona 

(Gauss, 1821) 

 

∆p = − JTWJ( )−1
JT Wz Efficient for linear least-

squares problems only; 

requires derivatives. 

Levenberg-Marquardta 

(Marquardt, 1963) 

∆p = − JTWJ + λI( )−1
JTWz  Efficient for nonlinear least-

squares problem; requires 

derivatives. 

Downhill Simplex 

(Nelder and Mead, 1965) 

Approaches minimum 

through sequence of 

reflections, expansions, and 

contractions of an n+1 

simplex. 

No assumptions made about 

form of cost function; 

relatively inefficient. 

Simulated Annealing 

(Metropolis et al., 1953) 

Take random steps of 

decreasing average size; 

accept uphill steps with 

certain, decreasing 

probability. 

No assumptions made about 

cost function; may escape 

local minima; inefficient. 

Grid Search Evaluate cost function in 

entire parameter space. 

Complete information about 

cost function; very 

inefficient. 

a J Jacobian matrix; W: Weighting matrix; I: Identity matrix; z: Residual/cost vector 
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Table 2. Optimized pumping schedules, cleanup times, and costs for Example 1 

    Pumping rate [kg/s] 

MAa # of 
runs 

Time 
[day] 

Cost 
function 

(in 
thousands)

Well
1 

Well
2 

Well
3 

Well
4 

Well
5 

Well
6 

Total 

-  1  240  125 1.00 1.00 1.00 1.00 1.00 1.00 6.00 

GN  15  340  79 - 1.25 0.63 0.13 1.11 0.89 4.01 

LM  133  250  61 0.49 1.52 - 0.14 0.64 - 2.79 

DS  89  190  59 0.21 1.95 0.27 - 1.13 - 3.56 

SA  1224  250  53 0.15 1.20 - - 0.91 0.17 2.43 

a  Minimization algorithm:  
 GN = Gauss-Newton; LM = Levenberg-Marquardt; DS = Downhill Simplex;  
 SA = Simulated Annealing 
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Table 3. Input parameters for simulation of thermally enhanced soil vapor extraction 

experiment 

Parameter Coarse sand Fine sand 

Mean log-permeability [m2] -9.0 -11.0 

Porosity 0.42 0.42 

Rock grain density [kg/m3] 2650 2650 

Rock grain specific heat [J/(kg °C)] 840 840 

Heat conductivity [W/(m °C)] wet 

 dry 
1.60 

0.35 

1.60 

0.35 

Relative permeability: Stone (1970); Capillary pressure function: Parker et al. (1987) 

Residual water saturation 0.1 0.1 

Residual NAPL saturation 0.1 0.1 

Residual gas saturation 0.01 0.01 

n-parameter 4.0 4.0 

αgas-NAPL [m-1] 15.0 5.0 

αNAPL-water [m-1] 150.0 50.0 

Initial conditions 

Initial gas pressure [kPa] 101.3 101.3 

Initial water saturation 0.1 0.1 

Initial NAPL saturation in dash-dotted box 0.1 0.1 
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Figure 1. Log-permeability field of a synthetic, two-dimensional, confined aquifer. The 

square indicates the location where 100 kg of TCE are spilled. The locations 

of six remediation wells are also indicated. 
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Figure 2. Distribution of dissolved TCE four months after the spill. 
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Figure 3. Reduction of cost function for four different minimization algorithms. Each 

square represents one T2VOC simulation. 
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Figure 4. Mass of dissolved TCE left in the aquifer as a function of pumped volume for 

the initial and optimized designs. The pumping schedule was optimized to 

minimize the total pumped volume when 5 kg of TCE are left in the aquifer. 
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 Initial Design Optimized Design 

 

Figure 5. Distribution of dissolved TCE after 10, 30, 100, and 240 days of continuous 

pumping with the initial pumping schedule (left column) and the optimized 

pumping schedule (right column). The pumping rate in kg/s is indicated at 

each well. 
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Figure 6. Layout of test cell experiment for studying thermally enhanced soil vapor 

extraction. 
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Steam Injection  Steam/Air Injection 

 

Figure 7. Distribution of free-phase TCE after 12, 30, and 60 minutes after injection of 

pure steam (left column) and a mixture of steam and air mixture (right 

column). 
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(a)     (b) 

     

(c)     (d) 

Figure 8. Contour plots of cost terms as a function of steam enthalpy and air injection 

rate. The optimal design parameters minimize the total costs. The minimum 

was identified by the Levenberg-Marquardt algorithm within a few iterations, 

regardless of the starting point (indicated by numerals). 
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