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ABSTRACT OF THE DISSERTATION

The Role of Feedback in Signaling Dynamics

by

Diane Marie Longo

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2009

Jeff Hasty, Chair

This dissertation analyzes the dynamics of the individual components in

two specific biological networks in order to understand how these components

interact to produce observed cellular behavior.

First, we use an integrated experimental-computational approach to

analyze the dynamical response of a synthetic positive feedback network in

individual mammalian cells. Using flow cytometry, we observe a switch-like

activation of the network with variable delay times in individual cells. In

agreement with a stochastic model of the network, we find that increasing

the strength of the positive feedback results in a decrease in the mean delay

xiv



time and a more coherent activation of individual cells. The results of this

work are important for gaining insight into biological processes such as cell

cycle regulation and apoptosis which rely on positive feedback to generate

switch-like responses and may also facilitate the development of engineered

mammalian control systems.

Second, we use computational modeling to study the dynamics of the

NF-kappaB signaling pathway that governs mportant cellular processes such

as inflammation and the immune response. Because the NF-kappaB pathway

contains over 100 reactions, the complexity of this signaling network is enor-

mous. Here, we utilize a modeling approach which replaces the complicated

cascades of individual biochemical reactions by few compound but delayed

reactions. We utilize both deterministic and stochastic formulations of our

model to interrogate the negative feedback loops that regulate the dynamic

activity of NF-kappaB. In agreement with our experiments, we find that the

response of the dual-feedback circuit is tuned to minimize oscillations. Further,

we reveal two important features of the dual-feedback-loop architecture that

may explain its evolutionary advantage over no or single-feedback systems:

first, it ensures a highly sensitive initial response while allowing for temporally

graded outputs; and second, it minimizes stochastic fluctuations and leads to

a robust response to incoming signals.

In conclusion, this dissertation investigates the behavior of both an ar-

tificial gene regulatory network and a naturally-occurring signaling network.

This work involves the utilization of both computational and experimental

techniques to gain insight into the dynamics of regulatory networks in mam-

malian systems.
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Chapter 1

Introduction

1.1 Systems biology approach

Systems biology research focuses on examining the interactions be-

tween components in a biological system and understanding how these interac-

tions give rise to the function and the dynamic behavior of that system (Kitano

2002). Following the maturation of high-throughput technologies that allow

for large-scale analyses of DNA, RNA, and protein molecules (Duggan et al.,

1999; Venter et al., 2001; Tannu and Hemby, 2006), systems-level approaches

emerged to gain insight into the structure and function of complex biological

networks. In the systems biology approach, both experimental and theoretical

techniques are integrated to develop quantitative models of biological systems.

The first step in constructing a model of a biological system involves

identifying the components in the biological system of interest (Figure 1.1A).

In this stage, a “parts list” for the system is generated by identifying essential

components such as proteins and gene regulatory elements that make up the

system.
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Figure 1.1: Modeling biological systems. (A) All of the components or nodes
(xi, i = 1...n) in the biological network are identified. (B) Interactions between
each of the components in the network are determined. (C) Mathematical
model is used to simulate the temporal evolution of the network.
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Next, all possible interactions between the components of the network

must be identified (Figure 1.1B). Techniques such as yeast-two hybrid assays

(Uetz 2002) and chromatin immunoprecipitation (Ren et al., 2000) can be

used to discover protein-protein interactions and protein-DNA interactions

respectively, and this interaction data can be used to predict the structure of

gene regulatory networks and signaling pathways.

After both the components and the interactions between components in

the biological system are identified, this information is used to develop a model

that can predict the dynamic behavior of the network under various conditions

or in response to perturbations (Figure 1.1C). Theoretical predictions must be

tested experimentally, and experimental results can either validate the model

prediction or discrepancies between model and experiment may indicate that

further model refinement is necessary. This iterative process can generate

novel insights into the structure-function relationships of biological networks.

In this work, we use the systems biology approach to interrogate the

dynamic behavior of two specific biological networks: a synthetic mammalian

positive feedback network and the NF-κB signaling module. We integrate

experimental and computational methods to advance our understanding of

how the components in these two networks interact to produce specific cellular

behaviors.

1.2 Synthetic gene networks

The developing discipline of synthetic biology attempts to recreate in

artificial systems the emergent properties found in natural biology (Hasty et

al., 2002; Benner and Sismour 2005). Because the genetic circuits found in cells
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are often highly integrated and quite complex, redesigning simpler synthetic

systems for study is a valuable approach not only at the genome level but also

at the gene network level. Recently, there has been significant activity directed

towards designing synthetic gene networks that mimic the functionality of nat-

ural systems. In addition to being easier to construct, the reduced complexity

and increased isolation of these networks makes them more amenable to both

tractable experimentation and mathematical modeling (Sprinzak and Elowitz,

2005; Ferber 2004). The process of constructing and testing artificial systems

resembling naturally occurring systems promises to advance our understand-

ing of how biological systems function by providing information about cellular

processes that cannot be obtained by studying intact native systems (Benner

and Sismour, 2005; Ferber 2004; Endy 2005).

Simple gene modules, such as autoregulatory feedback loops (Becskei

and Serrano, 2000; Becskei et al., 2001; Rosenfeld et al., 2002), toggle switches

(Gardner et al., 2000; Atkinson et al., 2003), and oscillators (Elowitz and

Leibler, 2000; Atkinson et al., 2003; Stricker et al., 2008), have been engineered

in model microorganisms such as E. coli and S. cerevisiae. The behavior of

these simple genetic circuits has been observed in vivo by using flow cytometry

or fluorescence microscopy to measure reporter protein levels in individual live

cells.

Synthetic gene networks have been constructed to demonstrate the abil-

ity of negative feedback to reduce cell-to-cell fluctuations in protein concentra-

tions, thus increasing the stability of the network (Becskei and Serrano, 2000).

Positive feedback loops amplify cellular fluctuations and allow for the genera-

tion of bistability (Savageau, 1974). Bistability, or the existence of two stable
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states, has been observed in a synthetic positive feedback system (Becskei et

al., 2001). Two distinct populations of cells were observed by fluorescence

microscopy: cells that expressed low levels of GFP and cells that expressed

high levels of GFP. Stochastic fluctuations in the network enabled spontaneous

transitions from one expression state to the other.

Simple, well-characterized gene modules can be linked to form more

complex networks. A recent study designed and constructed a repressor-only

system, an activator-only system, and a system that combines the activator

and repressor modules (Guido et al., 2006). A stochastic model accurately

predicted the behavior of the modular system. The study demonstrated that

the properties of individual regulatory modules can be used to predict the

behavior of more complex gene regulatory networks, setting the stage for the

systematic construction of synthetic gene networks of increasing complexity,

which mimic the behavior of naturally occurring systems.

The behavior of synthetic gene networks can often be characterized

by obtaining distributions of cellular reporter protein levels at various time

points. For instance, Gardner et al. (2000) used this approach to analyze a

synthetic genetic toggle switch. The bistability of the synthetic network was

demonstrated by showing that transient chemical or thermal induction could

switch E. coli cells from one stable state corresponding to high expression of

a GFP reporter to a second stable state corresponding to low GFP expression

levels. Flow cytometry was used to measure GFP expression levels from indi-

vidual cells and GFP distributions were obtained to show the existence of a

stable low GFP expressing state and a stable high GFP expressing state. A bi-

modal distribution appears as switching begins, and the return to a unimodal
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distribution occurs when switching is complete.

The development of inducible mammalian transgene control systems

has enabled the construction of synthetic gene circuits in mammalian systems

(Greber and Fussenegger, 2007). Recently, mammalian transgene control el-

ements have been utilized to engineer synthetic mammalian networks such

as toggle switches (Kramer et al., 2004), hysteretic switches (Kramer and

Fussenegger, 2005), and time-delay circuits (Weber et al., 2007).

In Chapter 2, we use synthetic biology techniques to construct a sim-

ple mammalian autoregulatory network. We use an integrated experimental-

computational approach to analyze the dynamic response of the synthetic net-

work in individual cells.

1.3 Stochastic gene expression

Cellular heterogeneity has been observed in a wide variety of cell types

ranging from simple bacterial cells (Ozbudak et al., 2002; Swain et al., 2002)

to more complex mammalian cells (Ramsey et al., 2006). Any population of

cells will exhibit some degree of variability, and genetic differences are one of

the main factors responsible for cellular heterogeneity. However, variation is

also present in genetically identical cell populations, even when the cells have

been exposed to the same environment and have the same history (Elowitz

et al., 2002; Rao et al., 2002; Blake et al., 2003; Raser and O’Shea, 2005).

Noise, or random fluctuations, in the process of gene expression is thought to

contribute to this phenotypic variation.

Single-cell measurements are necessary for investigating the stochastic

nature of gene expression because cell-to-cell variation can not be quantified
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using population level measurements. Noise in gene expression arises from not

only the inherent randomness of biochemical processes such as transcription

and translation, but also from the fluctuations in cellular components that

lead indirectly to variation in the expression of a particular gene (Swain et al.,

2002). The total noise in the level of expression of a given gene can be divided

into intrinsic and extrinsic components. Extrinsic noise arises from fluctuations

in cellular components such as regulatory proteins and polymerases and has

a global effect (Elowitz et al., 2002). Intrinsic noise arises from the stochastic

nature of the biochemical process of gene expression and causes identical copies

of a gene to express at different levels (Elowitz et al., 2002).

Single-cell studies have been key in gaining insight into the stochastic

nature of gene expression. Such studies often involve monitoring the level of a

protein expressed from an engineered gene circuit in individual live prokary-

otic or simple eukaryotic cells. For example, Ozbudak et al. used point mu-

tations to independently vary the transcriptional and translational rates of

a single-gene network in B. subtilis and found that fluctuations in the level

of a fluorescent reporter gene increased linearly with translational efficiency

(Ozbudak et al., 2002). The results were consistent with a stochastic model

that predicted that noise for a single gene is determined at the translational

level (Thattai and van Oudenaarden, 2001). Elowitz et al. developed a method

utilizing two different fluorescent proteins expressed from identical promoters

to study noise in gene expression in E. coli (Elowitz et al., 2002). This study

demonstrated that noise in gene expression results in fluctuations in protein

levels in a clonal population and both intrinsic and extrinsic noise contribute

to total noise in gene expression. Raser and O’Shea modified the dual-reporter
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method to measure gene expression in the yeast S. cerevisiae and found that

gene expression variability is dominated by extrinsic noise (Raser and O’Shea,

2004). More recently, Bar-Even et al. utilized 43 strains from the yeast GFP

clone collection to analyze cell-to-cell variation in gene expression in S. cere-

visiae (Bar-Even et al., 2006). The study measured protein noise and mean

protein abundance for each of the fusion proteins subjected to 11 different en-

vironmental conditions and discovered a strong correlation between cell-to-cell

variability and mean expression level. Theoretical analysis of these results sug-

gests that sources intrinsic to the biochemical process of gene expression make

a substantial contribution to gene expression noise (Bar-Even et al., 2006).

Another large-scale study of gene expression noise was recently performed by

utilizing high-throughput flow cytometry to measure protein abundances in

a collection of GFP-tagged yeast strains (Newman et al., 2006). This study

also observed a global relationship between noise and protein abundance sug-

gesting that intrinsic noise dominates gene expression noise (Newman et al.,

2006). The global trend observed between protein noise and mean abundance

does not extend to regions of high protein abundance (Bar-Even et al., 2006;

Newman et al., 2006) thus explaining the apparent discrepancy between the

recent large-scale results (Bar-Even et al., 2006; Newman et al., 2006) and the

results of Raser and O’Shea which utilizes a highly abundant reporter gene.

Recent single-cell experiments have provided further insight into cell-

to-cell variability by examining how noise in gene expression propagates from

one gene to the next (Pedraza and van Oudenaarden, 2005), measuring the

relative amplitude and time scales of intrinsic and extrinsic noise (Rosenfeld

et al., 2005), analyzing the relative contribution of global noise and pathway-



9

specific noise to variation in a cell-fate decision (Colman-Lerner et al., 2005),

investigating the relationship between gene circuit structure and noise fre-

quency range (Austin et al., 2006), examining the effects of cell-cycle position

on cell-to-cell variation (Colman-Lerner et al., 2005) and on nuclear protein

levels and localization (Sigal et al., 2006), and investigating the source of ex-

trinsic noise in eukaryotic gene expression (Volfson et al., 2005). (For a review

of the origins and consequences of noise in gene expression see McAdams and

Arkin, 1999; Kaern et al., 2005; Raser and O’Shea, 2005).

In Chapter 2, we examine cell-to-cell variability in the timing of activa-

tion of a synthetic mammalian positive feedback network. In agreement with

a stochastic model of the network, we find that a more coherent activation of

individual cells is achieved with strong positive feedback.

In Chapter 3, we examine variability in the response of the NF-κB

signaling module. We demonstrate that dual feedback loops allow for a more

robust response than a single feedback loop system. In addition, we reveal

that variability in the NF-κB response is dominated by extrinsic noise for

large systems (> 10,000 NF-κB molecules), while intrinsic noise becomes more

significant for much smaller systems (< 1,000 NF-κB molecules).
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Chapter 2

Coherent activation of a
synthetic mammalian gene
network

2.1 Introduction

Positive feedback regulation plays an important role in many cellular

signaling systems. Biological processes such as cell cycle regulation (Yao et al.,

2008; Skotheim et al., 2008), apoptosis (Legewie et al., 2006), and vertebrate

oocyte maturation (Ferrell and Machleder, 1998) rely on positive feedback to

generate a bistable switch in which cells transition from one distinct phenotype

to another while residing in intermediate states only transiently. In these

systems, cell-to-cell variability within a population of cells can result in a non-

uniform response with individual cells switching between states at different

times following induction (Rehm et al., 2002; Lai et al., 2004). A quantitative

analysis of the dynamic behavior of positive feedback modules at the single-cell

level may provide insight into how information flows through such motifs and

can lead to a greater understanding of the switch-like responses that occur in

10
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many regulatory systems.

Characterizing the behavior of individual positive feedback modules in

naturally occurring signaling pathways is difficult because these positive feed-

back loops are often embedded in extremely complicated networks. In contrast,

simple engineered gene networks consisting of a single positive feedback loop

can be analyzed as isolated regulatory modules. Several simple synthetic gene

networks have been engineered and analyzed in model organisms such as E.

coli and S. cerevisiae (Elowitz et al., 2002; Raser and O’Shea, 2004; Volf-

son et al., 2005). The recent development of inducible mammalian transgene

control systems has allowed for the construction of synthetic gene circuits in

mammalian cells and organisms (Greber and Fussenegger, 2007). Mammalian

transgene control elements have been used to build synthetic mammalian

networks such as toggle switches (Kramer et al., 2004), hysteretic switches

(Kramer and Fussenegger, 2005), and time-delay circuits (Weber et al., 2007).

Most of these engineered mammalian networks have been characterized us-

ing steady-state population level measurements hindering an examination of

the dynamic network behavior in individual cells (Longo and Hasty, 2006).

Obtaining quantitative single-cell measurements using fluorescence-activated

cell sorting (FACS) is a valuable approach for analyzing gene expression levels

in individual cells. In a recent study, the hysteretic response of a synthetic

mammalian positive feedback network was monitored with single-cell FACS

measurements allowing a bimodal response profile to be observed (May et al.,

2008).

Some of the most widely used mammalian gene control systems are

those which are regulated with tetracycline or the tetracycline analogue doxy-
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cycline (Gossen and Bujard, 1992; Gossen et al., 1995; Rennel and Gerwins,

2002). Here, we construct a synthetic mammalian positive feedback gene reg-

ulatory network using tetracycline-responsive control elements, and we utilize

an integrated experimental-computational approach to analyze the dynamic

response of the network at the single-cell level. Using a stochastic model of the

network, we demonstrate that increasing the strength of the positive feedback

results in a shorter mean delay time prior to activation and less variability

in the activation time in individual cells. We confirm our theoretical predic-

tions with quantitative single-cell measurements from a clonal population of

mammalian cells harboring the synthetic circuit. Our findings may help us

to predict the dynamic behavior of more complex cellular networks and may

improve our ability to construct artificial gene networks that could be useful

for gene therapy.

2.2 Design and construction of a synthetic

mammalian positive feedback network

We have constructed a mammalian synthetic gene network that utilizes

tetracycline (tet) responsive control elements. The synthetic network (Figure

2.1) consists of two vectors: (i) an autoregulatory vector which contains the

coding sequence for a tet-responsive transactivator (rtTA) downstream of an

O7-CMVm tet-regulatable promoter and (ii) a reporter vector which contains

the gfp gene downstream of the O7-CMVm promoter. In the presence of doxy-

cycline (dox), rtTA binds to tet operator sites on each O7-CMVm promoter

thereby inducing its own expression and expression of the GFP (green fluo-

rescent protein) reporter. The binding affinity of rtTA to the tet operator
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sites is determined by the concentration of dox. Thus, the strength of the

positive feedback can be tuned by altering the concentration of dox. Stable

mammalian cells harboring the synthetic circuit were generated by transduc-

ing mouse embryonic fibroblasts (NIH 3T3 cells) with the two vectors. Clonal

populations were produced by single-cell sorting the transduced cells and ex-

panding individual cells into stable clonal cell lines. Cell lines were screened

for inducibility by using flow cytometry to measure GFP expression levels from

each clone after being cultivated in the absence and presence of dox (1 µg/ml

for 24 hours). GFP expression levels from a representative clone are shown in

Figure 2.2.

In all of the clones assayed, mean GFP expression increased with the

addition of dox. We selected one clone for further quantitative analysis. The

response of the clone to several dox concentrations was examined by culturing

cells in dox concentrations ranging from 0 to 1 µg/ml for 3 days and measuring

fluorescence levels using flow cytometry (Figure 2.3). Because mean fluores-

cence levels do not reach steady state values within 3 days of induction, the

dose-response curve in Figure 2.3 represents a transient response of the system.

Simulated steady-state GFP expression levels as a function of dox (Figure 2.4)

reveal that the system is bistable for a small range of dox concentrations.

2.3 Stochastic modeling of the mammalian

synthetic network

Cell-to-cell variability is present in any population of cells including

genetically identical cell populations that have been exposed to the same en-

vironment (Elowitz et al., 2002; Raser and O’Shea, 2005). Gene expression
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Figure 2.1: Circuit diagram of the positive feedback network. The O7-CMVm
inducible promoter consists of seven operator sites (O7) fused to a minimal
CMV promoter (CMVm). Vector 1 contains the rtTA gene downstream of
the inducible promoter. Vector 2 contains the gfp gene downstream of the
inducible promoter. In the presence of tetracycline, the rtTA dimers bind to
the tet operator sites on the regulatable promoters and induce expression of
rtTA and GFP.
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Figure 2.2: GFP levels in the absence and presence of dox. GFP expression
levels were measured for a mammalian cell line harboring the synthetic network
in the absence of dox (black) and in the presence of 1 µg/ml dox (green) for
24 hours.
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Figure 2.3: Normalized fluorescence as a function of dox. Experimental GFP
expression levels were determined by FACS after cells from a clonal population
were cultured in each dox concentration for 3 days. Error bars represent
standard deviation of triplicate samples. Theoretical mean expression levels
were determined from 20 runs of the simulation following induction at each dox
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normalized to conditions of no induction (0 µg/ml dox) and full induction (1
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Figure 2.4: Steady-state GFP expression levels versus dox. A deterministic
model (described in Materials and Methods) derived from the network reac-
tions listed in Table 2.2 was used to determine stable steady-state GFP levels.
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noise arising from the inherent randomness of biochemical processes such as

transcription and translation can lead to cell-to-cell variation in the expression

of a gene (Raj and van Oudenaarden, 2008). To facilitate our exploration of

the synthetic networks dynamic behavior at the single-cell level, we used the

Gillespie algorithm (Gillespie, 1977) to perform stochastic simulations of the

biochemical reactions involved in the positive feedback network. The model

reactions include transcription, translation, mRNA degradation, and protein

degradation of both the activator (rtTA) and the GFP reporter (Table 2.2).

rtTA dimerization and operator binding are reflected in the transcriptional

rates which are described by Hill-type functions. The association constant of

the activator, Ka, is determined by Ka = S/(Ks + S) where S is the dox con-

centration and Ks is the dox concentration that results in half-maximal Ka.

The binding affinity of rtTA to the tet operator sites, and thus the strength

of the positive feedback, is highest at high dox concentrations. Model pa-

rameter values were estimated using values in the literature where available,

and remaining parameter values were chosen such that the model generates a

dose-response curve that is in good agreement with experimentally observed

dose-response behavior (Figure 2.3, Table 2.3). All stochastic simulations were

equilibrated for a period of 50 hours to allow variability in expression levels to

stabilize prior to induction with dox. We used the coefficient of variation (CV,

standard deviation divided by the mean) to quantify variability in GFP levels

and found that the CV plateaus at approximately .35 (Figure 2.5). We verified

that the experimental level of cell-to-cell variability in the uninduced state is

similar to that seen in our model by analyzing GFP expression levels deter-

mined by flow cytometry for cells cultured in the absence of dox. We found
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that the experimentally determined CV has a value of .43 and thus agrees

well with the CV for the simulations. This level of cell-to-cell variability falls

within the range in CV (.1 to .6) that was recently reported for nearly 1000

protein levels in human cells (Cohen et al., 2008).

2.4 Coherent activation with strong positive

feedback

Using our stochastic model, we examined how the strength of the

positive feedback affects the response of the network in individual cells with

variable expression levels. Stochastic simulations were run to observe the dy-

namic behavior of the network following induction with .05, .1, and 1 µg/ml

dox. Because these dox concentrations are all above the bistable regime (Fig-

ure 2.4), all trajectories will eventually reach a steady state with high GFP

expression levels. At the lowest dox concentration, .05 µg/ml, the associa-

tion constant Ka is below half-maximal (Ka = .38) resulting in weak positive

feedback. At .1 µg/ml dox, Ka is near half-maximal (Ka = .56) resulting in

intermediate strength positive feedback, and at 1 µg/ml dox, the strength of

the positive feedback is near maximal with Ka = .93. Our simulated results

reveal that, at each of the three concentrations, there is a switch-like activation

of the network with individual trajectories flipping to the high GFP steady

state at different times following induction with dox (Figure 2.6). At the low-

est dox concentration (.05 µg/ml), there is a mean delay of approximately 50

hours before switching occurs (Figure 2.6A). This mean delay time decreases

as the positive feedback strength increases, with cells beginning to flip to the

high expressing state within 10 hours following induction at the highest dox
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Figure 2.5: 50 hour equilibration period. mRNA and protein levels were initial-
ized to their basal steady state values at t = 0 and the stochastic simulations
were run for 50 hours with no dox (S = 0). (A) GFP levels for 50 individual
runs of the stochastic simulation during the model equilibration period. (B)
The coefficient of variation (CV) for 50 simulations.
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concentration (Figure 2.6C). The simulations also reveal that the timing of

activation is extremely variable with low feedback strengths. In response to

induction with .05 µg/ml dox, some trajectories start to switch to the high

expression state as early as 50 hours following induction while a significant

fraction of the population is still expressing GFP at low basal levels at 200

hours following induction (Figure 2.6A). At .1 µg/ml, there is a smaller time

window during which activation occurs ranging from approximately 20 hours

to 100 hours following induction (Figure 2.6B). With strong positive feedback

(1 µg/ml dox), there is a more coherent activation, with all trajectories be-

ginning to switch to the high state within approximately 40 hours (Figure

2.6C).

To test our theoretical predictions, we employed flow cytometry to ex-

amine the temporal response of the network following induction with .05, .1,

and 1 µg/ml dox. We measured the GFP expression levels of cells that were

cultured in each dox concentration for 0, 10, 20, 30, 40, and 50 hours. Fol-

lowing induction, fluorescence histograms show bimodality (Figure 2.7) thus

confirming that there is a switch-like activation of the network. At each dox

concentration, the percentage of cells with high expression levels increased

over time. However, in agreement with our theoretical results, the dynam-

ics of activation differed significantly for the three dox concentrations. Our

measurements confirm our theoretical prediction that low feedback strengths

result in a longer mean delay time prior to activation. The fluorescence dis-

tribution does not start to appear bimodal until 40 hours following induction

at the lowest feedback strength (.05 µg/ml dox). In contrast, at 1 µg/ml dox,

activation is much more rapid with a bimodal distribution appearing within 10
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Figure 2.6: Simulating the dynamic behavior of the network. The plots show
ten typical runs of stochastic simulations in response to .05 µg/ml dox (A), .1
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hours following induction. Our experimental results also confirm that there is

indeed less variability in the timing of activation in individual cells with strong

positive feedback. This can be seen more clearly by examining the percentage

of activated cells at each time point (Figure 2.8). At 1 µg/ml dox, about 90

percent of the cells are activated within 30 hours. In contrast, at .05 and .1

µg/ml dox, there is a more gradual increase in the percentage of activated

cells at each time point. The percentage of high expressing cells over time as

determined by the model is also shown in Figure 2.8. We find that there is a

good agreement between our simulations and our experimental data.

2.5 Naturally-occurring regulatory networks

with positive feedback

Our theoretical and experimental analysis of a simple mammalian pos-

itive feedback module has revealed that there is a variable delay time prior to

the switch-like activation of the network, with the longest delay times and

the least coherent activation occurring when the positive feedback strength is

low. Similar signaling response characteristics have been observed in several

naturally-occurring regulatory networks that contain positive feedback regula-

tion. In S. cerevisiae, positive feedback in the G1/S regulatory network allows

for a switch-like activation into cell cycle entry with a coordinated activation

of individual cells, while a more discordant response is observed when posi-

tive feedback is completely removed from the network (Skotheim et al., 2008).

Single-cell studies have shown that cell cycle entry in mammalian cells is also

governed by a network which generates an all-or-none response via positive

feedback regulation (Yao et al., 2008). However, quantifying the timing of
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cell cycle entry in single cells will be necessary to determine if there is also a

coherent activation into cell cycle entry in mammalian cells.

In the signaling pathway that governs apoptosis, positive feedback is

utilized to generate an all-or-none activation of the effector caspases which

provoke cell death (Legewie et al., 2006), and the timing of effector caspase

activation has been shown to vary considerably in individual mammalian cells

(Rehm et al., 2002; Albeck et al., 2008). Although the delay time is variable

and relatively long (several hours), once activated, effector caspases cleave

their substrates and provoke cell death within minutes (Goldstein et al., 2000;

Rehm et al., 2002). Thus, the response of effector caspases can be divided

into two temporal components: a long and variable delay followed by a short

and relatively robust period of activity. We next asked whether a complex

regulatory architecture was necessary for producing this type of response, or

if a simple positive feedback module could generate a similar response profile.

To address this question, we utilized our experimentally-validated sto-

chastic model to examine the mean and standard deviation in the first and

second portion of the response of our synthetic autoregulatory network. We

define the first portion of the response (τ1) as the time period required for GFP

expression levels to surpass basal expression levels (and thus exceed a lower

threshold value), and we define the second portion of the response (τ2) as the

time period required for GFP levels to increase from the lower threshold value

to the maximum expression level (and thus exceed an upper threshold value)

(Figure 2.9A). The mean and standard deviation for τ1 and τ2 were determined

from 50 simulations at several dox concentrations (Figure 2.9B). We find that

τ1 is highly dependent on the dox concentration (τ1 approaches infinity as the
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dox concentration approaches the bistable regime where some trajectories can

remain in the low state indefinitely (Figure 2.4)). In contrast, (τ2) is rather

insensitive to changes in dox. At dox concentrations below .1 µg/ml, τ1 has

a higher mean and standard deviation than τ2. Thus, in this regime, there is

a relatively long and variable delay period followed by a shorter, less variable

period of activation. Therefore, the simple synthetic positive feedback net-

work is in fact capable of generating a response profile that is similar to the

apoptotic response.

We next investigated how the timing of activation (τ1) is affected by

changes in the parameter values which determine the levels of the transactiva-

tor by performing a parameter sensitivity analysis. In our model, each of the

parameter values involved in rtTA synthesis and degradation were increased

and decreased by 5% (with a dox concentration of 1 µg/ml) and the change in

the mean value of τ1 was determined (Figure 2.10). We find that the timing

of activation is most sensitive to changes in the basal transcription rate of

rtTA (αA) and the fold-induction of transcription (f). With a 5% decrease in

αA, the mean time of activation is increased by over 12 hours (an increase of

over 16%). Variability in the timing of activation (determined by the standard

deviation in τ1) also depends strongly on the values of the transcriptional pa-

rameters αA and f (Figure 2.11). These results demonstrate that the timing of

activation depends not only on the strength of the feedback but also depends

strongly on the basal and induced transcription rates. In naturally-occurring

regulatory networks such as the network governing apoptosis, precise regula-

tion of these transcriptional rates may provide a mechanism for tuning the

timing of activation.
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2.6 Discussion

In this work we have utilized an integrated computational-experimental

approach to analyze the dynamic response of a synthetic mammalian positive

feedback network at the single-cell level. We have demonstrated that the

switching-time characteristics of the synthetic network are highly dependent

on the strength of the feedback with the shortest mean delay time and the

most coherent response being produced by strong positive feedback.

The signaling properties of the simple synthetic positive feedback net-

work are similar to signaling response characteristics that have been observed

in several naturally-occurring, complex regulatory networks that contain posi-

tive feedback regulation. Using our experimentally-validated stochastic model

we investigated whether or not our simple circuit could recapitulate the two

temporal phases involved in caspase activation, and we found that the simple

positive feedback module could in fact produce a similar temporal response

profile. Using a parameter sensitivity analysis, we found that the timing of

activation is highly sensitive to changes in the transcriptional rates of the

transactivator. In naturally-occurring regulatory networks, this dependence

on transcriptional levels may allow for precise regulation of the timing of ac-

tivation.

The approach used here to characterize the dynamic response of a

simple engineered mammalian regulatory network can be utilized to provide

greater insight into the signaling properties of the more complicated regula-

tory networks found in living cells and may also facilitate the development of

engineered mammalian control systems.
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2.7 Materials and Methods

2.7.1 Network construction

The GFP reporter vector, Hermes-HRSpuro-gfp (Rossi et al., 1998),

was a gift from Helen Blau, Blau Laboratory, Stanford University, Stanford,

CA. The autoregulatory vector was constructed from Hermes-HRSpuro-gfp by

replacing the coding sequence for GFP with the coding sequence for the tet-

responsive transactivator (rtTA). Oligonucleotide primers were used to PCR

amplify the rtTA gene from the RTAb(+) vector (Rossi et al., 1998) (a gift

from Helen Blau, Blau Laboratory, Stanford University, Stanford, CA) and

restriction endonucleases and T4 DNA ligase was used to insert the rtTA gene

downstream of the O7-CMVm promoter. Plasmids were propagated in E.

coli cells grown in LB and the antibiotic ampicillin. Cloning was confirmed by

restriction digests visualized by gel electrophoresis, and the constructed vector

was verified by utilizing the sequencing service provided by Eton Bioscience,

Inc. The autoregulatory vector and the reporter vector were purified using

Qiagens Plasmid Midi Kits.

2.7.2 Cell culture

NIH 3T3 cells were maintained in DMEM supplemented with 10%

bovine calf serum, penicillin (100 units/ml), streptomycin (100 µg/ml), and

L-glutamine (1%). Cells were grown in a 5% CO2, 37◦C incubator.

2.7.3 Retroviral transductions

Retroviral constructs were cotransfected with pCL.Eco into 293T cells,

and 42 hr posttransfection filtered supernatant was used to infect NIH 3T3
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cells. Low efficiency infections (infection rates less than 2%) were used to

ensure single copy integration per cell. To generate cells harboring both vec-

tors, cells were first infected with the autoregulatory vector and selected with

puromycin hydrochloride (Sigma). Selected cells were subsequently superin-

fected with the reporter vector and GFP-positive cells were sorted by FACS.

2.7.4 Flow cytometry

Cells were washed in phosphate-buffered saline (PBS) and resuspended

in PBS. Cells were sorted using a Becton-Dickinson FACSVantage SE flow

cytometry system. Cells were analyzed with a Becton-Dickinson FACSCalibur

flow cytometer with a 488-nm argon excitation laser and a 515-545-nm emission

filter (FL1) at a high flow rate. Forward scatter values and fluorescence values

were collected for at least 10,000 cells per sample. Data analysis was performed

using MATLAB (the MathWorks, Inc.). A forward-scatter and side-scatter

gate was used to minimize fluorescence variation due to cell size.

2.7.5 Modeling the synthetic network

Stochastic simulations of the reactions in Table 2.2 were performed by

implementing the Gillespie algorithm (Gillespie, 1977) in C++.

The deterministic model of the synthetic positive feedback network was

implemented in MATLAB (the MathWorks, Inc.). The deterministic model

consists of the following four ordinary differential equations describing the

levels of rtTA mRNA (mA), rtTA protein (A), GFP mRNA (mG), and GFP

protein (G):
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ṁA =
αA(1 + f(AKa)

n)

1 + (AKa)n
− ηAmA (2.1)

Ȧ = βAmA − δAA (2.2)

ṁG =
αG(1 + f(AKa)

n)

1 + (AKa)n
− ηGmG (2.3)

Ġ = βGmG − δGG (2.4)

where αA and αG represents the basal synthesis rates of A and G respectively,

βA and βG represent the protein production rates of A and G respectively,

f represents the fold-difference between basal and fully activated synthesis, n

represents the Hill coefficient for activator dimers binding to tet operator sites,

ηA and ηG represent the mRNA degradation rates of A and G respectively, δA

and δG represent the protein degradation rates of A and G respectively, and

Ka represents the association constant of the activator which is determined by

the doxycycline concentration (S) via Ka = S/(Ks + S). Note that the region

of bistability determined using the deterministic model is in good agreement

with the region of bistability determined using the stochastic model (Figure

2.12).
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Table 2.1: Positive feedback circuit model variables

Variable Description
mA rtTA mRNA levels
A rtTA protein levels
PA promoter driving rtTA expression
mG GFP mRNA levels
G GFP protein levels
PG promoter driving GFP expression

Table 2.2: Positive feedback circuit model reactions

Reaction Description Rate coefficient
mA → φ rtTA mRNA degradation ηA

mA → mA + A rtTA translation βA

A → φ rtTA protein degradation δA

PA → P + mA rtTA transcription
αA(1+f(AKa)n)

1+(AKa)n

mG → φ GFP mRNA degradation ηG

mG → mG + G GFP translation βG

G → φ GFP protein degradation δG

PA → P + mG GFP transcription
αG(1+f(AKa)n)

1+(AKa)n
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Table 2.3: Positive feedback circuit model parameter values

Parameter Parameter Description Value
ηA (Raj et al., 2006) rtTA mRNA degradation rate .18/hr
ηG (Raj et al., 2006) GFP mRNA degradation rate .18/hr
δA rtTA protein degradation rate .03/hr
δG (Corish and Tyler-Smith, 1999) GFP protein degradation rate .03/hr
αA rtTA basal transcription rate .1/hr
αG GFP basal transcription rate .1/hr
βA rtTA translation rate 3/hr
βG GFP translation rate 3/hr
n (Kramer and Fussenegger, 2005) Hill coefficient 2
f fold-induction of transcription 30
Ks Michaelis constant .08
S doxycycline concentration 0−1 µg/ml



Chapter 3

Dual delayed negative feedback
model of NF-κB signaling

3.1 Introduction

Many important signal transduction pathways contain a negative feed-

back motif consisting of an activator that activates its own repressor. Activated

repression is capable of generating oscillatory behavior (Tyson, et al., 2003)

and has been observed to do so in biological systems such as the Hes1 regu-

latory protein which controls neuronal differentiation (Shimojo et al., 2008),

the p53-Mdm2 system that mediates the DNA damage response (Lahav et al.,

2004), and the NF-κB signaling network that governs the immune response

and inflammation (Hoffmann et al., 2002; Nelson et al., 2004).

The role of activated repression is well understood in the context of

transient signaling as functioning to limit the duration of the induced activity.

Indeed, misregulation of the negative feedback mechanisms that control NF-

κB and p53 has been shown to generate prolonged inflammatory or genotoxic

stress responses, respectively, that lead to cell death or chronic disease (Vogel-

38
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stein et al., 2000; Tergaonkar, 2006). Further, negative feedback can sensitize

and speed-up responses to weak or transient input signals (Lahav et al., 2004)

when compared to constitutive attenuation mechanisms.

In contrast, the physiological role of oscillatory behavior induced by

persistent signaling has been characterized for a much smaller number of sys-

tems. Recent work has shown that, in the calcium stress pathway in yeast, the

frequency of nuclear localization of a stress-response transcription factor can

be modulated by the magnitude of the extracellular calcium concentration,

and this frequency modulation results in a coordinated expression of target

genes (Cai et al., 2008). In the NF-κB and p53 signaling systems, the function

of oscillations is still unknown. Oscillations in p53 activity were proposed to

represent a counting mechanism that quantizes the response, ensuring a ro-

bust but appropriate amount of activity for a specific degree of DNA damage

(Ma et al., 2005). An alternate view was proposed in which oscillations of the

p53-controlling ATM kinase activity allow for periodic sampling of the dam-

aged DNA to track its repair and, if necessary, drive further p53 signaling to

sustain the repair programs (Batchelor et al., 2008). Oscillations in NF-κB

activity were proposed to determine which genes would be transcriptionally

induced, thereby representing a temporal code that conveys information about

the stimulus to gene promoters (Nelson et al., 2004). However, it is not clear

whether or not the frequency encodes information in this systems as no differ-

ences in NF-κB target gene expression were observed between oscillating and

non-oscillating genetic variants (Barken et al., 2005).

Recent work has demonstrated that oscillations in NF-κB activity can

be generated by pulsatile stimulation with TNFα (Ashall et al., 2009). How-
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ever, an analysis of the repeated activation of NF-κB that is driven by an

oscillating signal provides little information about the role of oscillations that

naturally arise with persistent stimulation. Thus, the role(s) of oscillations in

NF-κB activity remains unclear and several questions are still unanswered: Do

these oscillations convey information encoded in the frequency to downstream

processes? Do they function to generate a periodically recurring phase of sen-

sitivity to stimuli or regulatory crosstalk representing a potential “counting”

mechanism? Do they “quantize” the output signal, thus specifying robust

units of activity? Or, are the oscillations caused by persistent signaling sim-

ply a non-functional by-product of the requirement for the negative feedback

architecture to enable sensitive, fast responses to transient stimuli?

Mathematical models comprised of a small number of equations have

led to a greater understanding of biological processes in terms of molecular

interactions, diffusion, dose responses, gradient sensing, the role stochasticity

in gene expression and in fate decisions (Lander et al., 2002; Kruse et al., 2004;

Arkin et al., 1998; Aurell et al., 2002). Although several models of networks

with autoregulation have been developed (Lipshtat et al., 2005; Ramsey et al.,

2006; Kim et al., 2007), most of these networks do not incorporate delays. In

signaling, however, such elegant models often do not faithfully reproduce the

dynamic behavior of the signaling system because actual biological networks

involve many molecular interactions that tend to slow overall signal process-

ing. Larger models comprised of many molecular species and parameters have

proven useful in exploring dynamic signaling behavior via computational sim-

ulations in conjunction with experimental studies, but they are analytically

intractable and therefore do not provide the degree of conceptual insights that
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small models do.

Here we pursue an alternative approach to modeling NF-κB signaling.

We construct a new model that replaces cascading reactions with a single but

delayed compound reaction that enables both recapitulation of experimen-

tally observed dynamics and the use of powerful analytical tools. With these

tools, we explore the physiological function of the dynamic behavior of NF-

κB produced by the activated repression mechanism mediated by its inducible

inhibitors, IκBα and IκBε. The mathematical analysis results in predictions

that are addressed experimentally and thus lead to fundamental insights about

the function and origins of this signaling system.

3.2 NF-κB model with a single delayed negative

feedback loop

The basic structure of the NF-κB signaling module is shown in Figure

3.1A. In resting cells, NF-κB is sequestered in the cytoplasm by IκB pro-

teins. Cellular stimulation leads to activation of the IκB kinase (IKK) which

phosphorylates IκB proteins thus targeting them for degradation. Upon degra-

dation of IκB proteins, NF-κB moves into the nucleus and activates hundreds

of target genes including the predominant IκB isoform, IκBα. Synthesized

IκBα enters the nucleus, binds to NF-κB, and the IκBα-NF-κB complex is ex-

ported back to the cytoplasm. Thus, the core feature of the NF-κB signaling

module is a negative feedback loop mediated by IκBα. This can be abstracted

to a simple motif in which x (NF-κB) activates y (IκBα), y represses x, and

repression of x by y is relieved by K (IKK) (Figure 3.1B).

Using this motif as a guide, we formulated our model of the IκBα-
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NF-κB signaling module. (B) Diagram of a system with a single delayed
negative feedback loop.
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(x) in response to persistent stimulation as a function of time produced using
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termined by EMSAs) in cells with only the IκBα-mediated negative feedback
loop intact (reproduced from Hoffmann et al., 2002, Figure 2A). The arrow
indicates specific nuclear NF-κB binding and the asterisk indicates nonspecific
DNA binding.
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mediated NF-κB response as a set of 9 reactions (Tables 3.1A, 3.2A). Specifi-

cally, the model assumes that the total number of the NF-κB molecules (X) is

conserved, however they can exist either in free/nuclear form (x) or sequestered

outside of nucleus within the IκBα-NF-κB complex ([xy]). The model contains

non-delayed reactions for the binding of free NF-κB to the unbound IκBα pro-

moter (d0y) to form the bound IκBα promoter (d1y), binding of IκBα protein

(y) to free NF-κB to form the IκBα-NF-κB complex, constitutive degrada-

tion of IκBα, and induced degradation of free and bound IκBα proteins by

the IκB kinase IKK (K) producing free NF-κB. In contrast, a compound de-

layed reaction describes the synthesis of IκBα protein. This reaction involves a

time delay τy, which represents the time needed for transcription, translation,

nuclear import and export, and protein-protein interactions.

Using experimentally validated assumptions (see Materials and Meth-

ods), we reduced the set of mass-action kinetics equations for the 9 reactions

to a single delay-differential equation:

Y ′
y ẏ = ayd0y(yτ ) + byd1y(yτ )− gyy −KryY (y) (3.1)

where Y (y) = y[1 + cyX/(1 + cyy)] is the total IκBα concentration (the sum

of free IκBα (y) and IκBα bound to NF-κB), d0y(y) = Fdy/[F +X/(1+ cyy)],

d1y(y) = Xdy/[F (1 + cyy) + X], are the probabilities for the IκBα promoter

to be free or bound to NF-κB, respectively, F = f1/f0, cy = ky/(k−y + Kry),

and the subscript τ denotes the variable taken at time t − τy. The rates of

individual reactions ky, k−y, f1, f0, cy, gy, ry, ay are defined in Table 3.2.

Mirroring the biological system, the IKK variable, K(t), is used as the

input signal. The first term in the r.h.s. of Eq. 3.1 represents constitutive
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synthesis from the unbound IκBα promoter, the second term represents in-

duced synthesis from the NF-κB-bound IκBα promoter, the third term repre-

sents constitutive degradation of IκBα protein, and the fourth term represents

IKK-induced degradation of IκBα. Nuclear NF-κB level x at any time can be

determined directly from IκBα levels via x = X/(1 + cyy). The time delay τy

is incorporated in the synthesis terms: we assume that the rate of production

of new proteins at time t depends on the state of the system at time t − τy.

Any of the time-dependent parameters entering production terms should also

be taken at time t − τy. Incorporating this time delay allows us to explore

the behavior of the negative feedback loop without simulating the full set of

reactions associated with it. We obtained values for the time delay and for the

other model parameters by calibrating the behavior of the model with experi-

mental results (Table 3.3). As a starting point, we used parameter values from

biochemical measurements (Kearns et al., 2006). However, some modifications

were necessary because these values represent the rates of single reaction steps

and the model contains compound reactions.

To validate the model, we compared it to experiments. In response

to a persistent IKK input signal (starting at time t = 0), our simulations of

the IκBα-mediated negative feedback system show pronounced oscillations in

nuclear NF-κB levels with an oscillation period of about 90 minutes (Figure

3.2A). Oscillations with a similar period were observed experimentally when

mutant cells containing only the IκBα feedback loop were persistently stimu-

lated with the inflammatory cytokine TNF (Figure 3.2B).
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3.3 Linear stability analysis of a single-feedback

loop system

The advantage of our modeling approach is that it allows for analytical

studies of the network dynamics. Here, we perform a linear stability analysis

of the delay-differential equation (Eq. 3.1) to identify the characteristic period

and decay rate of NF-κB oscillations produced when IKK signal is present

(K > 0). For sufficiently large K, induced synthesis and degradation are

much stronger than basal ones, so the latter can be neglected (ay = gy = 0).

Expressing y via Y and substituting it into d0y, d1y yields a closed equa-

tion for Y in the form

Ẏ = G(Yτ )−KryY (3.2)

where Yτ = Y (t− τy) and the function G(·) has the form

G(Y ) = dy

bycy(X − Y )− by + by

√
(cy(X − Y )− 1)2 + 4cyX

2cyF + cy(X − Y )− 1 +
√

(cy(X − Y )− 1)2 + 4cyX
(3.3)

The fixed point Ys (stationary solution) of this equation is given by the alge-

braic equation

G(Ys) = KryYs (3.4)

and the stability of this solution is determined by the linearized equation for

a small perturbation ξ near Ys,

ξ̇ = Bξτ −Kryξ (3.5)

where ξ = Y − Ys, B = dG(Ys)/dY is the Jacobian whose explicit expression

is given in the Materials and Methods, and the subscript τ again indicates the

delayed value of ξ taken at time t− τy.
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The eigenvalue λ can be found by substituting ξ = ξ0 exp(λt), yielding

the transcendental equation

λ = Be−λt −Kry (3.6)

which has a complex solution in terms of the Lambert function W (z) defined

via WeW = z,

λ = τ−1
y W (Bτye

Kryτy)−Kry (3.7)

The imaginary part of λ gives the oscillation frequency ω = 2πf , and

the (negative) real part of λ gives the decay rate δ of oscillations. Plotting

the period (T = 1/f) (Figure 3.3A) and decay (δ) (Figure 3.3B) of the oscil-

lations as a function of the delay reveals a strong dependence. In contrast,

the signaling perturbation K (the IKK kinase) that acts as the input for the

model determines the amplitude of the response but only negligibly affects the

period or the oscillation decay (Figure 3.3). Thus, we find that the period is

highly dependent on the delay but is rather insensitive to changes in the input

level. This is confirmed by direct simulations of the full nonlinear equation

(Eq. 3.1), where time series of x are plotted for several different values of τy

and K (Figure 3.4). Since variations of stimulus do not lead to significant

frequency modulation of NF-κB activity, oscillations of NF-κB are unlikely to

encode information about the stimulus. Therefore, we believe that the oscilla-

tions generated in the single feedback loop NF-κB module, are the unintended

byproduct of the regulatory activity of the negative feedback subsystem. We

will return to this issue below.
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3.4 Damping of oscillations in a dual delayed

feedback loop system

It is well known that the wild-type NF-κB system does not exhibit

significant oscillations in response to persistent stimuli. The main qualitative

difference between the one-loop system considered in the previous section, and

the wild-type NF-κB module is the presence of another IκB isoform, IκBε,

which also provides negative feedback regulation on NF-κB activity (Figure

3.5A, B), however with slower kinetics (Kearns et al., 2006). Experimental and

computational work has shown that IκBε-mediated feedback can cause damp-

ing of IκBα-mediated oscillations (Kearns et al., 2006) and (Figure 3.6A). More

recent computational work has predicted that IκBε-mediated feedback desyn-

chronizes oscillations but does not dampen oscillations in single cells (Ashall

et al., 2009). Thus, the mechanism by which IκBε-mediated feedback pro-

duces damped oscillations at the population level is not well established. Fur-

thermore, it is unknown whether the damping function of the IκBε-mediated

feedback loop has evolved to achieve a specific regulatory function or may sim-

ply be a secondary consequence of another function. We hypothesize that the

main role of the second feedback loop is to mitigate the undesirable oscilla-

tions produced by the first feedback loop. To test this hypothesis, we expanded

the model to include an additional 9 reactions involving IκBε (Tables 3.1B,

3.2B). Following the same reduction procedure (see Materials and Methods),

we derived a deterministic model consisting of two coupled delay-differential

equations for the concentrations of the two IκB isoforms, IκBα (y) and IκBε
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(z),

Ẏ = ayd0y(yτ , zτ ) + byd1y(yτ , zτ )− gyy −KryY (3.8)

Ż = m [azd0z(yτ , zτ ) + bzd1z(yτ , zτ )]− gzz −KryZ (3.9)

where Y = y[1 + cyX/(1 + cyy + czz)], Z = z[1 + czX/(1 + cyy + czz)], d0y,0z =

Fdy,z/(F +x), d1y,1z = xdy,z/[F +x], x = X/(1+cyy+czz), cy,z = ky,z/(k−y,−z+

Kry,z), and yτ = y(t − τy), zτ = z(t − τz). Parameter 0 < m < 1 here is

the scaling factor which characterizes the relative strength of the secondary

feedback loop.

In Eqs. 3.8 and 3.9, Y represents total IκBα (the sum of free IκBα (y)

and IκBα bound to NF-κB ([xy]), and Z represents total IκBε (the sum of

free IκBε (z) and IκBε bound to NF-κB ([xz])). The terms in the r.h.s. of Eqs.

3.8 and 3.9 again represent constitutive synthesis from the identical unbound

IκBα and IκBε promoters, induced synthesis from the NF-κB-bound promot-

ers, constitutive degradation of IκBα and IκBε proteins, and IKK-induced

degradation of IκBα and IκBε. Nuclear NF-κB levels are determined directly

by IκBα and IκBε levels. Parameter values for the IκBα-mediated reactions

were determined in the previous section. For the IκBε feedback reactions,

we use the same parameter values except for the constitutive synthesis and

the constitutive degradation rates, which were chosen based on experimental

measurements (Kearns et al., 2006) (Table 3.3).

To address our hypothesis that IκBε-mediated feedback specifically

evolved to dampen IκBα-mediated oscillations, we performed a parameter op-

timization procedure to determine the IκBε synthesis parameters that result

in maximum damping. To characterize the degree of damping, we chose the
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maximum peak-trough difference after 6 hrs as a metric for the persistence

of oscillations. According to the definition of this performance metric, “op-

timal damping” occurs when this metric is minimized. In our optimization

procedure, we varied two important parameters, the time delay of the second

feedback loop τz and the scaling factor m which simultaneously varies the rates

of constitutive and induced synthesis of IκBε. Choosing m = 0 is equivalent

to the complete removal of the IκBε-mediated negative feedback loop while

m = 1 represents the case in which the inducible synthesis rates for IκBε are

the same as for IκBα. The two-dimensional optimization search is shown in a

color map (Figure 3.6B) indicating that the performance metric is minimized

at m = 0.3, τz = 72. Time course simulations with the optimized parameter

set show a high degree of damping (Figure 3.6E) similar to what is observed

experimentally (Figure 3.6A).

To determine whether these optimized parameter values correspond to

observations, we measured relevant parameter values experimentally. The syn-

thesis delays for IκBα and IκBε were determined by measuring IκBα and IκBε

mRNA levels in a time course of TNF-treated murine embryonic fibroblasts

(MEFs) in multiple independent experiments (Figure 3.6E, 3.7A, B). The mea-

sured delay for IκBα was 25.8±5.4 min, and 59.4±12.8 min for IκBε, which

agrees well with the model prediction for optimal damping.

Since it is difficult to measure the promoter strength experimentally, we

employed an implicit way of comparing experiment with the model. To relate

the parameter value m to experimental measurements, we set m = 0.3 in the

model and calculated the ratio of peak values for IκBα and IκBε proteins

Rm, which we found to be equal to 3.9. Then we measured the ratios of
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Figure 3.6: Damped oscillations with dual negative feedback. (A) Experimen-
tal levels of nuclear NF-κB (determined by EMSAs) in wild-type cells con-
taining both IκBα- and IκBε-mediated negative feedback (reproduced from
Hoffmann et al., 2002, Figure 2E). The arrow indicates specific nuclear NF-
κB binding and the asterisk indicates nonspecific DNA binding. (B) Opti-
mization of the parameters of the second feedback loop m and τz towards
maximizing the oscillations damping. The global minimum occurs at τz = 72
min, m = .3. The black dot indicates the experimentally measured parameter
values (τz = 59 min, m = .2). The value of m corresponding to the exper-
imentally measured value of Re was determined with the model (see Figure
3.8). (C) Experimental measurements of IκBα and IκBε synthesis delays. (D)
Experimental values for peak IκBα and IκBε protein levels. (E) Simulated
time course of nuclear NF-κB levels (x) for the single feedback system and for
the optimized dual feedback system in response to persistent stimulation with
K = 2. Experimental work done by colleague Jeff Kearns.
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basal (unstimulated) to peak protein levels for IκBα and IκBε in experiment

via quantitative Western blots of whole cell lysates generated during a TNF

time course. These were compared to recombinant protein standards to derive

absolute molecule number per cell. Peak IκBα protein levels were measured

to be 379,800 molecules per cell, and IκBε 71,300 molecules per cell, with both

values being subject to an estimated 25% error (Figure 3.7C, D). These protein

levels correspond to the experimental peak values ratio Re = 5.3 which is close

to the model prediction Rm = 3.9.

We believe that it is unlikely that such a good correspondence between

model prediction for optimal damping and naturally occurring values of rel-

evant parameters can be a simple coincidence. In our opinion, these results

suggest that the NF-κB signaling module in mammalian cells may indeed have

evolved a second delayed negative feedback loop mediated by IκBε to dampen

the oscillatory propensity of the IκBα negative feedback loop.

3.5 Fine temporal control with a dual feedback

loop system

Given that the main function of the secondary negative feedback loop

in the NF-κB signaling module appears to be the dampening of oscillations

produced by the primary feedback loop, the question remains as to what func-

tion of the strong primary negative feedback loop led to its selection despite

these unwanted oscillations. Our hypothesis is that the primary negative feed-

back loop is needed to produce a strong rapid response to an external stimulus,

which would be turned off quickly and efficiently after the signal is terminated.

To evaluate this hypothesis, we first simulated persistent stimulation of a vari-
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response to 10ng/mL TNF chronic stimulation. (B) The RPA results were
quantitated to determine the intensity of each band in the gel (ImageQuant,
GE Healthcare). The highest intensity band in each set was set to 100% Ac-
tivation and the other bands were normalized accordingly. The delay time to
reach half maximal synthesis was calculated as the time at which the activation
curve crossed the 50% level. A set of N=10 replicate experiments were per-
formed to calculate the global average. (C) The protein abundances for IκBα
and IκBε at their respective activation peaks in wild-type immortalized MEF
cells chronically stimulated with 10ng/mL TNF were measured by Western
Blot analysis (IκBα at 1 h and IκBε at 6 h) . Fold induction vs. basal state
are shown below each gel and were calculated by quantitation of the band
intensities and normalization to the 0 h band. (D) Bar plot of the average
protein abundances from multiple Western Blot experiments for peak levels
of IκBα (N=7) and IκBα (N=5). The basal state abundances were measured
by comparison to a standard curve of recombinant IκBα or IκBε protein (JD
Kearns, S Basak, C Lynch, A Hoffmann in preparation). Peak abundances
were calculated by multiplying the quantitated fold induction (as in C) by
the basal abundance. Error bars on the peak bars represent one standard
deviation. Work done by colleague Jeff Kearns.
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ant of NF-κB system without feedback (we assume that IκBα is constitutively

produced, so d0y = 1, d1y = 0 in Eq. 3.1) and found that this system pro-

duces long term, non-oscillatory NF-κB activity (Figure 3.9 Top, blue line).

Motivated by the fact that within the physiological setting TNF is secreted

in bursts and therefore perceived by surrounding cells as transient or pulse

stimulation, we then performed pulse stimulations of 15, 30, and 45 min in

duration. In this system, the pulses resulted in a transient response that was

attenuated very slowly. Faster attenuation can be achieved by increasing the

constitutive synthesis rate, ay. Increasing ay by two orders of magnitude re-

sults in pulse NF-κB responses to transient stimuli, but the responsiveness (in

amplitude) is much reduced (Figure 3.11).

We then performed similar simulations in a single negative feedback

loop NF-κB system and found that this network topology allows for a rapid

shutdown of NF-κB activity for transient inputs (Figure 3.9 Middle). This

suggests that the NF-κB network may have evolved from a pathway without

feedback to a pathway with a single negative feedback loop to allow for a more

sensitive transient response. Although the negative feedback indeed allows for

greater sensitivity, a side effect of having negative feedback is that pronounced

oscillations arise when the input signal persists for a long time period (Figure

3.9 Middle). The addition of a second negative feedback loop with a different

time delay can help to dampen these oscillations, while preserving the respon-

siveness of the signaling module to transient stimuli (Figure 3.9 Bottom).

By plotting the duration of the response (above a given threshold) we

investigated what may be called “temporal dose response curves” of the single

and dual feedback systems (Figure 3.10). The dual feedback system has a
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Figure 3.9: Response of the NF-κB signaling module to transient stimulation
with magnitude K = 2. Time series of x for a system with all feedback
removed (top), a system with IκBα-mediated negative feedback (middle), and
a system with both IκBα- and IκBε-mediated negative feedback (bottom) in
response to 15 min (red), 30 min (orange), 45 min (green), and persistent
(blue) stimulation.
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response duration close to 60 min for short pulses (< 100 min), and a duration

proportional to the input duration for longer pulses. The single feedback

system has the same behavior as the dual feedback system for short inputs,

but for longer inputs the single feedback system produces a quantized response

with the same output duration for several different input durations. Our

analysis indicates that a dual feedback system is able to produce temporally

graded responses, whereas a single feedback system that oscillates does not.

Given that the duration of the second phase of the NF-κB response to TNF is

a critical determinant of gene expression programs (Hoffmann et al., 2002), we

suggest that the NF-κB system has evolved a dual feedback system that allows

for NF-κB activity whose duration is more closely related to the duration of

the cytokine stimulus.

This fine temporal control, achieved via dual negative feedback, may

be critical for the cell-to-cell interactions involved in the adaptive immune

response present in vertebrates, but may not be necessary for innate immune

responses. We hypothesize that, on an evolutionary timescale, the appearance

of dual negative feedback loops that regulate NF-κB activity coincides with

the transition from an innate to an adaptive immune system. To address this

hypothesis, we used BLASTP with an E-value cutoff of 1e-25 to search for

homologs of the mouse IκBα and IκBε protein sequences in other organisms

(see Materials and Methods). We found homologs for both IκBα and IκBε,

not only in other mammals (such as chimp, dog, platypus), but also in other

vertebrate classes including fish, amphibians, and birds (Figure 3.12, Materials

and Methods). Thus, dual negative feedback regulation of NF-κB activity

appears to be present in all organisms with adaptive immunity. In contrast,
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we did not find any invertebrate organisms with homologs for both IκBα and

IκBε (Figure 3.9, Materials and Methods). Therefore, invertebrates, which

lack adaptive immunity, also appear to lack the potential for dual negative

feedback regulation of NF-κB mediated by IκBα and IκBε suggesting that the

temporal control achieved with this regulatory architecture is not necessary

for innate immune responses.

3.6 Additional role of negative feedback:

Robustness to fluctuations

Thus far, we have examined the response of the network to transient

IKK signals in the absence of fluctuations. However, it is well known that

noise in gene expression can cause significant variability in cellular responses

(Thattai and van Oudenaarden, 2001; Swain et al., 2002; Elowitz et al., 2002;

Rosenfeld et al., 2005; Lipshtat et al., 2005; Volfson et al., 2006). Sometimes

this variability can be beneficial (Hasty et al., 2000), but in most cases, noise

has a detrimental effect on the robustness of cellular functions. Mechanisms

have presumably evolved to mitigate the unwanted effects of noise, especially in

signaling pathways. In this section we examine the variability in the response

of the NF-κB module that arises due to intrinsic and extrinsic noise, and we

demonstrate that the dual-feedback loop architecture allows for a more robust

response than the single feedback loop system. Further, we investigate how

the relative contribution of intrinsic and extrinsic fluctuations depends on the

size of the system.

The concentration of signaling molecules such as NF-κB can vary sig-

nificantly between cells (Dower and Qwarnstrom, 2003). This variability in
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protein levels represents a source of extrinsic noise. We examined the variabil-

ity in the response of the network to fluctuations in the total level of NF-κB

and fluctuations in the IKK input level by simulating the network behavior

with total NF-κB levels and IKK levels altered by up to ±50%. The coeffi-

cient of variation (CV) in peak nuclear NF-κB levels and the CV in late-phase

nuclear NF-κB levels is defined as CV = 2(xmax − xmin)/(xmax + xmin) where

xmax (xmin) are the maximum (minimum) values of NF-κB at the peak or

during the late-phase. We find that the CV in peak nuclear NF-κB increases

linearly with extrinsic variation in total NF-κB and with extrinsic variation

in IKK with identical CV values for both the single and dual feedback models

(Figure 3.13A,B). In contrast, the CV in late-phase (asymptotic) NF-κB levels

are significantly lower in the dual feedback system than in the single feedback

system. The CV in late-phase NF-κB for the dual feedback system increases

linearly from 0 to approximately 1 as the range of total NF-κB (Figure 3.13C)

and IKK (Figure 3.13D) is increased to ±50%, while the CV in late-phase

NF-κB for the single feedback system increases from approximately 1.6 to 1.9

(Figure 3.13C,D). Thus, in the presence of extrinsic variations in IKK and

total NF-κB, the dual feedback system allows for a late-phase response which

is more robust than the response produced by the single feedback system.

Intrinsic noise arises from the stochastic nature of biochemical processes

such as transcription and translation (Elowitz et al., 2002). To examine the

response of the NF-κB signaling module in the presence of intrinsic genetic

noise, we used the Gillespie algorithm (Gillespie, 1977) modified according to

(Bratsun et al., 2005) to perform stochastic simulations of both regular and

delayed biochemical reactions included in our delayed feedback model. These
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latter reactions are initiated at times dictated by their respective rates, but

the numbers of molecules are only updated after the time delay since the

reaction initiation. In contrast to recent stochastic models of NF-κB signaling

which assume that the main source of stochasticity in gene expression is due to

infrequent binding and dissociation of NF-κB from regulatory sites (Lipniacki

et al, 2006; Ashall et al, 2009), our stochastic model utilizes much higher

binding and dissociation rates which is consistent with in vivo analysis of NF-

κB activation (Bosisio et al, 2006). In our stochastic model, discrete protein

synthesis events are the main source of stochasticity.

We ran stochastic simulations of both a single and dual feedback system

and and estimated the ensemble average 〈X〉 of the number of NF-κB mole-

cules X and the magnitude of fluctuations as characterized by the standard de-

viation ∆X = [〈X − 〈X〉〉2]1/2
and the coefficient of variation CV = ∆X/〈X〉.

To determine how the variability in the response varies with the magnitude of

the input and the size of the system, we determined the CV in peak nuclear

NF-κB levels and the CV in late-phase nuclear NF-κB levels for several values

of IKK (Figure 3.14A,C) and for systems with up to 100,000 NF-κB mole-

cules (Figure 3.14B,D). In Figure 3.14, we also plot CV values for extrinsic

variations (±20%) in total NF-κB at several values of IKK (Figure 3.14A,C)

and CV values for extrinsic variations in IKK (±20%) for several different sys-

tem sizes (Figure 3.14B,D). We find that, even with this relatively low level

(±20%) of extrinsic variability in IKK and NF-κB protein levels (Dower and

Qwarnstrom, 2003), variability in the response of the network is dominated by

extrinsic noise for large systems (> 10, 000 NF-κB molecules).

The CV in late-phase nuclear NF-κB levels is similar for extrinsic and
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intrinsic noise when the size of the system is reduced to 1000 NF-κB mole-

cules. Next, we investigated the behavior of the NF-κB signaling module in

this regime where intrinsic noise levels become significant by analyzing sto-

chastic simulations produced with a system with total NF-κB levels set to

1000 molecules. We ran stochastic simulations of all three systems studied de-

terministically above (Figure 3.9): no-feedback, single negative feedback, and

dual negative feedback (Figure 3.15). Note that ensemble-averaged runs agree

with the deterministic simulations very well (Figure 3.17).

In the case of no feedback (Figure 3.15A) there is a strong robust re-

sponse to the incoming persistent signal as characterized by the low values of

the coefficient of variation. However, as we have seen above in Figure 3.9, the

major flaw of this system is its slow response to the pulse-like signals. Next,

we simulated the 9 biochemical reactions included in the IκBα-mediated single

negative feedback loop (Figure 3.15B). In single runs the first peak in nuclear

NF-κB levels appears to be very robust, as illustrated by Figure 3.15B Top.

The CV is lowest (< 0.2) during the first peak in nuclear NF-κB indicating

that this portion of the response is very robust.

Next, we performed stochastic simulations of the 18 biochemical re-

actions included in the dual delayed feedback model (with both IκBα- and

IκBε-mediated feedback) (Figure 3.15C). In the dual feedback model, as in

the single IκBα-mediated feedback model, there is a very robust first peak.

However, unlike the single IκBα-mediated feedback model, in the dual feed-

back system the noise levels remain at a low level (< .5) following the first

peak in nuclear NF-κB (Figure 3.15C Bottom). Thus, the dual feedback archi-

tecture allows for lower noise levels also in the later portion of the response.
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by colleague Lev Tsimring.



71

A B

0
10000
20000
30000
40000
50000

x

0
10000
20000
30000
40000
50000

m
ea

n,
std

20 30 40 50
time (hrs)

0
0.1
0.2
0.3
0.4
0.5

CV

0

50000

1e+05

x

0

50000

1e+05

m
ea

n,
std

20 30 40 50
time (hrs)

0
0.1
0.2
0.3
0.4
0.5

CV

0

50000

1e+05

x

0

10000

20000

m
ea

n,
std

20 30 40 50
time (hrs)

0
0.5

1
1.5

2

CV

0
10000
20000
30000
40000
50000

x

0
10000
20000
30000
40000
50000

m
ea

n,
std

20 30 40 50
time (hrs)

0
0.1
0.2
0.3
0.4
0.5

CV

C D

Figure 3.16: Stochastic simulation results for the NF-κB network with 100,000
total NF-κB molecules. Stochastic simulation results for the NF-κB network
with no feedback loops (A), only IκBα-mediated negative feedback (B), the
NF-κB network with both IκBα- and IκBε-mediated negative feedback (C),
and an alternative auto-repressive network (D). The top panel in each group
shows four typical runs of stochastic simulations for each network, the middle
panel shows the mean and standard deviation for 200 runs of each network,
and the bottom panel shows the corresponding coefficient of variation. The
input signal, K(t), is switched from K = 0 to K = Kmax at t = 20 hrs. In
A-C, the magnitude of external signal Kmax = 2, in D, Kmax = 50. Work done
by colleague Lev Tsimring.



72

10 20 300
200
400
600
800

1000

x

10 20 30
time (hrs)

0
100
200
300
400
500

x

10 20 300
100
200
300
400
500

10 20 30
time (hrs)

0
100
200
300
400
500

A B

C D

Figure 3.17: Comparison of stochastic and deterministic simulations. No-
feedback model (A), single negative feedback model (B), dual feedback system
(C), and auto-repressor system (D). Lines - deterministic simulations, symbols
- stochastic simulations averaged over 200 runs. Work done by colleague Lev
Tsimring.



73

What is the underlying reason for the robustness of the initial response

from this circuit? To answer this question we need to realize that the main

source of intrinsic noise in the system is presumably in the transcription and

translation of IκB isoforms, since they are transcribed from single genes. In

contrast, the contribution of degradation and transport processes to fluctua-

tions is relatively small, because the copy numbers of the corresponding protein

molecules are large. In the NF-κB network, the peak in nuclear NF-κB levels

that occurs following stimulation is produced via the degradation of IκB pro-

teins that bind and sequester NF-κB in the cytoplasm. Thus, we hypothesize

that robustness of the initial response of the NF-κB circuit is explained by the

fact that it uses the sequestering mechanism and does not rely on the protein

production.

To test this hypothesis, we simulated the behavior of an alternative

network that relies on transcription of auto-repressor, rather than the degra-

dation of inhibitor proteins, for signaling (Figs. 3.15D, 3.18). This system can

be modeled with two variables: x, the number of repressor molecules, and d,

the binary state of the promoter (d = 0 corresponds to the unbound promoter

and d = 1 corresponds to bound promoter), and with four reactions (binding

and unbinding of the repressor to the promoter, degradation of the repressor,

and delayed synthesis of the repressor with rate K(t)(1− d) where K(t) is the

external signal (Tables 3.4, 3.5). The input signal activates the production

of the auto-repressor which after a certain time delay binds to the promoter

and terminates further synthesis. Deterministically, this circuit also provides a

desired response to a persistent stimulation with a large well-defined first peak.
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 τx
K x

Figure 3.18: Alternative auto-repressive network. The external signal K acti-
vates the synthesis of the auto-repressor x which then binds to the promoter
and inhibits further synthesis.
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However, stochastic simulations reveal significant differences in the noise per-

formance of this design as compared with the NF-κB circuit (note that the

agreement between deterministic and stochastic simulations is less accurate in

this case because of the strong promoter fluctuations, see Figure 3.17D). Ac-

tivation of the auto-repressor network is much less robust than the activation

of the NF-κB network (cf. Figure 3.15D and Figs. 3.15B, C). In fact, in the

auto-repressor network, the coefficient of variation is highest (>1) during the

initial peak (Figure 3.15D Bottom). These results confirm our conjecture that

the sequestering mechanism incorporated in the design of the NF-κB network

gives rise to a much more robust activation of NF-κB than alternative net-

works that rely on transcription for activation and signaling. This finding is in

accord with recent work (Doncic et al., 2006) where the sequestering of Cdc20

protein was also implicated in the noise resistance of the spindle assembly

checkpoint.

As mentioned previously, recent computational work has suggested that

persistent oscillations are present in wild-type cells with both IκBα- and IκBε-

mediated feedback but desynchronization due to stochastic variation produces

damped oscillations at the population level (Ashall et al., 2009). Our compu-

tational and experimental results demonstrate that, although stochastic oscil-

lations are still present in individual cells with both IκBα- and IκBε-mediated

feedback (Figure 3.15C), the oscillatory propensity is greatly reduced by the

second feedback loop in the wild-type NF-κB signaling module. Further, sto-

chastic simulations of the dual-feedback network reveal highly synchronized

damped oscillations (Figure 3.16C) with cellular variations in frequency due

to intrinsic noise becoming significant only when the system size is drastically
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reduced (Figure 3.15C).

3.7 Discussion

In this work we have developed a model of the NF-κB signaling path-

way that uses a small number of reactions (some of them compound) thus

making it amenable to mathematical analysis. Previously, a minimal model

of NF-κB signaling was developed in which a massive overshoot in IκBα re-

sulted in an effective slowing of signaling dynamics (Krishna et al., 2006), and

produced spiky oscillations that are not seen in physiological conditions. Our

model, which utilizes an explicit time delay, recapitulates experimentally ob-

served signaling behavior. We suggest that models with an explicit time delay

are useful for investigating the mechanistic basis of the dynamic behavior of

signaling pathways.

Using this model, we explored the potential role of NF-κB oscillations

which are observed in a variant of the NF-κB signaling module with the sec-

ondary negative feedback loop involving IκBε, disabled. In particular, we

addressed the question of whether the frequency of these oscillations contains

information, as in neurons which sometimes encode information in the fre-

quency of action potentials (Bean, 2007) and in the activation of the transcrip-

tion factor NF-AT which is responsive to the frequency of Ca2+ oscillations

(Dolmetsch et al., 1998). By analyzing the oscillatory response of a system

regulated solely by the IκBα-mediated negative feedback loop, we found that

both the frequency and the decay rate of the oscillations produced by this

system are highly dependent on the internal parameters of the circuit, but are

not sensitive to changes in the input signal levels. This result suggests that the
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oscillatory frequency does not encode information about the stimulus. Hence,

stimulus-specific gene expression is unlikely determined by stimulus-specific

frequencies of NF-κB oscillations. If there is a temporal code for stimulus-

specific gene expression it is unlikely to involve frequency modulation, but

may involve amplitude modulation over time.

When a second feedback regulator, IκBε, is added to the model, the

oscillations caused by turning on a persistent IKK stimulus are significantly

dampened, in agreement with our earlier findings (Kearns et al., 2006). By

performing an optimization procedure, we determined that the specific exper-

imentally observed parameter values for the synthesis delay and peak protein

abundance of both IκB isoforms correspond to maximal efficiency of damping.

These findings strongly suggest that the second feedback (IκBε) has specifi-

cally evolved to produce maximal damping of the oscillatory behavior of the

first feedback (IκBα).

Thus, from the evolutionary perspective we have a peculiar situation in

which a signaling module apparently first developed a negative feedback loop

that made it prone to oscillations, and then added a secondary loop which mit-

igated these oscillations. This brings the question, if oscillatory responses are

not beneficial to the cell, why has the primary negative feedback appeared in

the system in the first place? By comparing transient response of several vari-

ants of signaling modules (0-, 1- and 2-feedback loop designs) in the presence

of stochastic fluctuations we showed that the primary negative feedback loop

involving the release of sequestered NF-κB proteins created a strong, rapid,

and robust response to short pulses of IKK signal. However, for longer signals

a single-feedback-loop system exhibits a suboptimal “temporal dose response
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behavior” that leads to a quantized response to signals of different durations.

In contrast, the dual feedback network generates response durations that are

proportional to the stimulus input durations. Fine-tuning of the response du-

ration that is reflective of the precise stimulus duration may be critical for gene

expression programs that are activated by the second phase of NF-κB activity.

In that sense, the regulatory mechanisms in the NF-κB system may be similar

to those proposed in the p53 regulatory system that allow for discrete pulses

of activities that regulate DNA repair and apoptosis (Ma et al., 2005).

3.8 Materials and Methods

3.8.1 Cell culture experiments

Immortalized murine embryonic fibroblasts (Hoffmann et al., 2002)

were chronically stimulated with 10ng/mL TNF (Roche) and IκBα and IκBε

mRNA and protein levels were monitored by RNase Protection Assay (RPA)

and Western Blot, respectively, as previously described (Kearns et al., 2006).

RPA results for each time course were quantitated using ImageQuant software

(GE Healthcare) and used to determine the time of half-maximal inducibil-

ity between basal and peak mRNA levels for IκBα and IκBε (Figure 3.7A,

B). Western Blot results were also quantitated with ImageQuant software and

used to determine the time point of peak expression. The basal abundances of

IκBα and IκBε protein were determined via comparison to a standard curve

of recombinant IκB protein (JD Kearns, S Basak, C Lynch, A Hoffmann in

preparation). The peak abundances of IκBα and IκBε were determined via

multiplication of the basal value by the fold inducibility at the peak time point

(Figure 3.7C, D). Experimental levels of nuclear NF-κB in cells with only the
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IκBα-mediated negative feedback loop intact and in wild-type cells containing

both IκBα- and IκBε-mediated negative feedback were determined by EMSAs

in Hoffmann et al., 2002.

3.8.2 Derivation of the deterministic model

Using mass action kinetics, the full set of reactions for the dual feedback

loop NF-κB system (Table 3.2, A and B) can be expressed by the following

ODEs:

ẋ = −f0d0yx+f1d1y−kyyx+k−y[xy]+Kry[xy]−f0d0zx+f1d1z−kzzx+k−z[xz]

+Krz[xz] (3.10)

˙[xy] = kyyx− k−y[xy]−Kry[xy] (3.11)

ẏ = ayd0y(t− τy) + byd1y(t− τy)− kyyx + k−y[xy]− gyy −Kryy (3.12)

˙d0y = −f0d0yx + f1d1y (3.13)

˙d1y = f0d0yx− f1d1y (3.14)

˙[xz] = kzzx− k−z[xz]−Krz[xz] (3.15)

ż = azd0z(t− τz) + bzd1z(t− τz)− kzzx + k−z[xz]− gzz −Krzz (3.16)

˙d0z = −f0d0zx + f1d1z (3.17)

˙d1z = f0d0zx− f1d1z (3.18)

The total number of κB binding sites on each promoter is conserved:

d0y + d1y = dy (3.19)

d0z + d1z = dz (3.20)
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We assume that the total amount of NF-κB in the cell X is conserved

X = x + d1y + d1z + [xy] + [xz] = const. (3.21)

Since the number of binding sites available for NF-κB protein is small,

we can neglect the amount of NF-κB bound to the IκBα and IκBε promoters,

so

X = x + [xy] + [xz] (3.22)

Solving Eq. 3.22 for x yields:

x = X − [xy] + [xz] (3.23)

DNA binding reactions are usually fast, so we can assume that they are at

quasi-equilibrium at all times,

f1d1y = f0d0yx (3.24)

f1d1z = f0d0zx (3.25)

Using Eqs. 3.19 and 3.20, substituting into Eqs. 3.24 and 3.25, and solving for

d0y, d1y, d0z, d1z yields:

d0y =
f1dy

f1 + f0x
(3.26)

d1y =
f0xdy

f1 + f0x
(3.27)

d0z =
f1dz

f1 + f0x
(3.28)

d1z =
f0xdz

f1 + f0x
(3.29)

We also assume quasi-equilibrium for IκB-NF-κB binding reactions,

kyyx = k−y[xy] + Kry[xy] (3.30)
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kzzx = k−z[xz] + Krz[xz] (3.31)

Substituting [xy] and [xz] from Eqs. 3.30 and 3.31 into Eq. 3.23 yields:

x = X − [kyyx/(k−y + Kry)]− [kzzx/(k−z + Krz)] (3.32)

Now we can solve Eq. 3.32 for x

x =
X

1 + kyy/(k−y + Kry) + kzz/(k−z + Krz)
(3.33)

and substitute it in Eqs. 3.12 and 3.16. These equations contain both fast

and slow terms. However, it is easy to see that rate equations for variables

Y = y + [xy] and Z = z + [xz] contain only slow terms:

Ẏ = ayd0y(t− τy) + byd1y(t− τy)− gyy −KryY (3.34)

Ż = azd0z(t− τz) + bzd1z(t− τz)− gzz −KrzZ (3.35)

Y and Z can in turn be expressed via y and z by:

Y = y[1 + cyX/(1 + cyy + czz)] (3.36)

Z = z[1 + czX/(1 + cyy + czz)] (3.37)

where cy = ky/(k−y +Kry) and cz = kz/(k−z +Krz). Eqs. 3.34–3.35 combined

with definitions Eqs. 3.26–3.29, 3.33, 3.36, and 3.37 represent a closed system

of two delay-differential equations (Eqs. 3.8 and 3.9) for the dual-feedback

NF-κB module. Setting Z = z = 0 in these equations leaves us with a single

delay-differential equation for the single feedback loop system Eq. 3.1.
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3.8.3 Details of the linear stability analysis

The linearized equation for the single delayed negative feedback system

has the form

ξ̇ = Bξτ −Kryξ (3.38)

where ξ = Y − Ys, Ys is the stationary level of Y , subscript τ again indicates

the delayed value of ξ taken at time t−τ , and B = dG(Ys)/dY is the Jacobian.

The latter has the explicit form

B =
2dybyc

2
yF [cy(X − Ys)− 1 + S]

[2cyF + cy(X − Ys)− 1 + S]2 S
(3.39)

where S =
[
(cy(X − Ys)− 1)2 + 4cyX

]1/2
. This Jacobian depends on the sta-

tionary level of the IκBα expression Ys. Unfortunately, Eq. 3.4 does not

permit finding Ys in explicit form. However, this calculation can be signifi-

cantly simplified if the total number of NF-κB proteins is large, so cyX � 1,

then y can be neglected as compared with total Y . Then x = X − Y , and

d1y = dy(X − Y )/(F + X − Y ), and the equation for Y simplifies:

Ẏ =
bydy(X − Yτ )

F + X − Yτ

−KryY (3.40)

Now the stationary level of Y can be found explicitly

Ys =
bydy + Kry(F + X)−

√
(bydy + Kry(F + X))2 − 4KrybydyX

2Kry

(3.41)

Under the same conditions, the expression for the Jacobian B can also be
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simplified,

B =
bydyF

(F + X − Ys)2
(3.42)

3.8.4 Details of the BLASTP search for IκBα and IκBε

homologs

We performed two BLASTP searches (using default parameters) to

search for IκBα and IκBε homologs. For the first search, the mouse IκBα

protein sequence (gi28386026) was used as the query. The mouse IκBε protein

sequence (gi2739158) was used as the query for the second search. We used an

E-value of 1e-25 as a cutoff for both searches. Homologs for IκBα were found

in the organisms listed in Table 3.6, and homologs for IκBε were found in the

organisms listed in Table 3.7.

Note that we did not find unique homologs for both IκBα and IκBε

in all vertebrates. Only a single IκB homolog was found in the following

vertebrates: Meriones unguiculatus, Macaca fascicularis, Gorilla gorilla, Pan

paniscus, Gyps fulvus, Pongo pygmaeus, Oncorhynchus mykiss, Siniperca chu-

atsi, Ovis aries, Paralichthys olivaceus, Saguinus labiatus, Ateles geoffroyi,

Lagothrix lagotricha, and Lemur catta. We expect that this is due to the fact

that complete genomes are not currently available for these organisms. Table

3.8 lists the genome status (as of 1/6/09) of all organisms for which IκBα or

IκBε homologs were found (http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi).
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Table 3.1: NF-κB model variables

A
Variable Description
x nuclear NF-κB (nM)
y free IκBα (nM)
[xy] NF-κB-bound IκBα (nM)
K IκB kinase (IKK)
d0y unbound IκBα promoter*
d1y NF-κB-bound IκBα promoter*

B
Variable Description
z free IκBε (nM)
[xz] NF-κB-bound IκBε (nM)
d0z unbound IκBε promoter*
d1z NF-κB-bound IκBε promoter*

*these are average numbers of corresponding promoters
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Table 3.2: NF-κB model reactions

A
Reaction Rate Description
d0y + x ↔ d1y f0, f1 NF-κB binds (and unbinds) IκBα promoter
d0y → d0y + y ay constitutive synthesis of IκBα (delayed reaction)
d1y → d1y + y by induced synthesis of IκBα (delayed reaction)
x + y ↔ [xy] ky, k−y IκBα association (and dissociation) with NF-κB
y → φ gy constitutive degradation of IκBα

K + y → K ry IKK-mediated degradation of IκBα

K + [xy] → K + x ry IKK-mediated degradation of NF-κB-bound IκBα

B
Reaction Rate Description
d0z + x ↔ d1z f0, f1 NF-κB binds (and unbinds) IκBε promoter
d0z → d0z + z az constitutive synthesis of IκBε (delayed reaction)
d1z → d1z + z bz induced synthesis of IκBε (delayed reaction)
x + z ↔ [xz] kz, k−z IκBε association (and dissociation) with NF-κB
z → φ gz constitutive degradation of IκBε

K + z → K rz IKK-mediated degradation of IκBε

K + [xz] → K + x rz IKK-mediated degradation of NF-κB-bound IκBε
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Table 3.3: NF-κB model parameter values

Parameter Description Model Value** Ref. Value
ay IκBα constitutive synthesis* 0.00185 nM/min 0.0185 nM/min1

by IκBα inducible synthesis* 5.0 nM/min 138.6 nM/min1

dy IκBα promoter: number κB sites 1.0
f0 NF-κB binding IκB promoter 10.0 /(nMmin)
f1 NF-κB unbinding IκB promoter 200.0/min
τy Delay in IκBα synthesis 25.0 min 25.8 min2

ky IκBα binding with NF-κB 0.1 /(nMmin) 0.03 /(nMmin)1

k−y IκBα dissociates from NF-κB 0.0006/min 0.00006/min1

X Total NF-κB 100 nM 100 nM3

gy Constitutive IκBα degradation 0.012/min 0.12/min1

ry Degradation of IκBα by IKK 0.01/min 0.018/min1

az IκBε constitutive synthesis* 0.00046 nM/min 0.0046 nM/min1

bz IκBε inducible synthesis* 5.0 nM/min 18.0 nM/min1

dz IκBε promoter: number κB sites 1.0
τz Delay in IκBε synthesis 72.0 min 59.4 min2

kz IκBε binding with NF-κB 0.1 /(nMmin) 0.03 /(nMmin)1

k−z IκBε dissociates from NF-κB 0.0006/min 0.00006/min1

gz Constitutive IκBε degradation 0.018/min 0.18/min1

rz Degradation of IκBε by IKK 0.01/min 0.018/min1

*per 1 κB site
**1 nM = 1000 molecules for a cell volume that is on the order of 1 pico liter
1 Kearns et al., 2006
2 this work
3 Hoffmann et al., 2002
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Table 3.4: Auto-repressor network reactions

Reaction Rate Description
d0 + x ↔ d1 ky, k−y binding and unbinding of repressor to the promoter
x → φ gy degradation of the repressor
d0 → d0 + x ay(1 + K) synthesis of the repressor (delayed reaction)

Table 3.5: Auto-repressor network parameter values

Parameter Description Parameter Value
ay repressor synthesis rate 1.0 nM/min
gy repressor degradation rate .012/min
ky binding of repressor to promoter .1 nM/min
k−y unbinding of repressor from promoter .06/min
τz delay in synthesis of repressor 25.0 min
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Table 3.6: Organisms with homologs for IκBα

Organism NCBI gi number E-value
Mus musculus 28386026 0
Rattus norvegicus 160333919 0
Meriones unguiculatus 108860577 2.00E-176
Sus scrofa 52346212 5.00E-169
Canis lupus familiaris 73963074 6.00E-169
Bos taurus 114052817 1.00E-168
Macaca mulatta 109083336 3.00E-167
Macaca fascicularis 90080313 3.00E-167
Homo sapiens 10092619 6.00E-167
Monodelphis domestica 126283568 1.00E-147
Ornithorhynchus anatinus 149548454 5.00E-138
Gorilla gorilla 120974064 1.00E-126
Equus caballus 194207294 4.00E-126
Pan paniscus 121483818 1.00E-125
Gyps fulvus 159895428 2.00E-120
Pongo pygmaeus 124054120 3.00E-118
Pan troglodytes 124111100 2.00E-117
Gallus gallus 126723285 1.00E-116
Xenopus tropicalis 52345606 2.00E-95
Xenopus laevis 148230967 3.00E-94
Oncorhynchus mykiss 185134623 2.00E-80
Salmo salar 209737318 6.00E-80
Siniperca chuatsi 133872756 7.00E-73
Danio rerio 37725732 2.00E-72
Ovis aries 165940914 1.00E-69
Paralichthys olivaceus 133779815 3.00E-65
Macaca nemestrina 124013515 1.00E-63
Tetraodon nigroviridis 47209080 2.00E-63
Saguinus labiatus 121221930 5.00E-61
Ateles geoffroyi 122053822 1.00E-57
Lemur catta 122938174 8.00E-45
Apis mellifera 110756132 9.00E-35
Carcinoscorpius rotundicauda 71738527 9.00E-33
Biomphalaria glabrata 119393872 9.00E-32
Crassostrea gigas 80971720 3.00E-30
Nasonia vitripennis 156543541 5.00E-30
Lutzomyia longipalpis 149728129 1.00E-29
Pinctada fucata 194718237 2.00E-29
Drosophila yakuba 195475366 4.00E-29
Aedes aegypti 157108525 5.00E-29
Pediculus humanus corporis 212512255 6.00E-29



90

Table 3.6 cont.

Organism NCBI gi number E-value
Drosophila willistoni 195433326 7.00E-29
Euprymna scolopes 63034007 7.00E-29
Drosophila erecta 194857830 1.00E-28
Drosophila grimshawi 195034537 1.00E-28
Drosophila melanogaster 17136840 1.00E-28
Drosophila virilis 195386110 1.00E-28
Drosophila mojavensis 195114618 3.00E-28
Drosophila ananassae 194759838 4.00E-28
Drosophila persimilis 195160098 4.00E-28
Drosophila pseudoobscura pseudoobscura 198475712 4.00E-28
Nematostella vectensis 156079906 9.00E-28
Strongylocentrotus purpuratus 72004276 2.00E-27
Ciona intestinalis 118343834 2.00E-27
Tribolium castaneum 91093127 8.00E-27
Anopheles gambiae str. PEST 118789617 3.00E-26
Drosophila simulans 195579553 9.00E-26
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Table 3.7: Organisms with homologs for IκBε

Organism NCBI gi number E-value
Mus musculus 2739158 0
Rattus norvegicus 40018590 0
Sus scrofa 194039395 2.00E-162
Bos taurus 195539539 4.00E-161
Pan troglodytes 114607603 7.00E-154
Homo sapiens 20530139 1.00E-153
Macaca mulatta 109071331 3.00E-150
Monodelphis domestica 126310114 3.00E-129
Canis familiaris 73973023 1.00E-89
Xenopus tropicalis 187608250 4.00E-81
Xenopus laevis 147907302 5.00E-74
Danio rerio 121583661 6.00E-62
Salmo salar 213514346 3.00E-61
Tetraodon nigroviridis 47224342 4.00E-53
Gallus gallus 118088055 2.00E-38
Ornithorhynchus anatinus 149542664 8.00E-36
Nematostella vectensis 156079906* 1.00E-33
Carcinoscorpius rotundicauda 71738527* 3.00E-33
Strongylocentrotus purpuratus 72004276* 5.00E-33
Biomphalaria glabrata 119393872* 6.00E-32
Euprymna scolopes 63034007* 1.00E-31
Pinctada fucata 194718237* 1.00E-31
Siniperca chuatsi 133872756* 1.00E-30
Oncorhynchus mykiss 185134623* 1.00E-30
Aedes aegypti 157108525* 2.00E-30
Equus caballus 194205729 1.00E-29
Macaca fascicularis 90080313* 4.00E-29
Crassostrea gigas 80971720* 8.00E-29
Gyps fulvus 159895428* 2.00E-28
Ciona intestinalis 118343834* 4.00E-28
Apis mellifera 110756132* 1.00E-27
Drosophila melanogaster 17136840* 4.00E-27
Drosophila erecta 194857830* 4.00E-27
Meriones unguiculatus 108860577* 5.00E-27
Drosophila yakuba 195475366* 7.00E-27
Paralichthys olivaceus 133779815* 9.00E-27
Drosophila ananassae 194759838* 1.00E-26
Nasonia vitripennis 156543541* 8.00E-26
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Table 3.7 cont.

Organism NCBI gi number E-value
Drosophila persimilis 195160098* 1.00E-25
Drosophila pseudoobscura pseudoobscura 198475712* 1.00E-25
Drosophila mojavensis 195114618* 1.00E-25
Gorilla gorilla 120974064* 2.00E-25
Pan paniscus 121483818* 5.00E-25

*These sequences are the same sequences that were found with the IκBα search.
Therefore, these organisms do not have unique homologs for IκBα and IκBε.
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Table 3.8: Genome status of organisms in Tables 3.6 and 3.7

Organism Common name Genome status
Aedes aegypti mosquito Assembly
Anopheles gambiae str. PEST mosquito Assembly
Apis mellifera honey bee Assembly
Ateles geoffroyi spider monkey Not found
Biomphalaria glabrata snail In Progress
Bos taurus cow Assembly
Canis lupus familiaris dog Assembly
Carcinoscorpius rotundicauda horseshoe crab Not found
Ciona intestinalis sea squirt Assembly
Crassostrea gigas pacific oyster Not found
Danio rerio zebrafish In Progress
Drosophila ananassae fly Assembly
Drosophila erecta fly Assembly
Drosophila grimshawi fly Assembly
Drosophila melanogaster fruit fly Complete
Drosophila mojavensis fly Assembly
Drosophila persimilis fly Assembly
D. pseudoobscura pseudoobscura fly Assembly
Drosophila simulans fly Assembly
Drosophila virilis fly Assembly
Drosophila willistoni fly Assembly
Drosophila yakuba fly Assembly
Equus caballus horse Assembly
Euprymna scolopes squid Not found
Gallus gallus chicken Assembly
Gorilla gorilla gorilla Assembly
Gyps fulvus vulture Not found
Homo sapiens human Complete
Lagothrix lagotricha woolly monkey Not found
Lemur catta lemur In Progress
Lutzomyia longipalpis sandfly Not found
Macaca fascicularis macaque In Progress
Macaca mulatta monkey Assembly
Macaca nemestrina macaque Not found
Meriones unguiculatus gerbil Not found
Monodelphis domestica opossum Assembly
Mus musculus mouse Complete
Nasonia vitripennis wasp Assembly
Nematostella vectensis sea anemone Assembly
Oncorhynchus mykiss rainbow trout Not found
Ornithorhynchus anatinus platypus In Progress
Ovis aries sheep Not found
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Table 3.8 cont.

Organism Common name Genome status
Pan paniscus bonobo Not found
Pan troglodytes chimp Assembly
Paralichthys olivaceus flounder Not found
Pediculus humanus corporis human body louse Assembly
Pinctada fucata oyster Not found
Pongo pygmaeus orangutan Not found
Rattus norvegicus rat Assembly
Saguinus labiatus tamarin monkey Not found
Salmo salar salmon Not found
Siniperca chuatsi mandarin fish Not found
Strongylocentrotus purpuratus sea urchin Assembly
Sus scrofa pig In Progress
Tetraodon nigroviridis pufferfish Assembly
Tribolium castaneum beetle Assembly
Xenopus laevis frog Not found
Xenopus tropicalis frog In Progress
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Concluding remarks

Biological systems often consist of many components with numerous

interactions between these components resulting in extremely complex net-

work architectures. The recent emergence of the field of systems biology has

provided novel theoretical and experimental tools for characterizing biological

networks by identifying network components and interactions and determining

the dynamic behavior and functions that arise from these interactions (Kitano

2002; Barabasi and Oltvai, 2004; Albert 2007).

In Chapter 2, we utilized a systems biology approach to analyze the

dynamic response of a synthetic mammalian positive feedback network. In

both our experiments and our stochastic simulations, we observed a switch-

like activation of the network with variable delay times in individual cells. We

found that a shorter mean delay time and a more coherent activation could be

achieved by increasing the strength of the positive feedback. Similar signal-

ing properties have been observed in naturally-occurring regulatory networks

such as the network governing apoptosis in mammalian cells and in the cell

95
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cycle regulatory network in S. cerevisiae. By utilizing our stochastic model,

we demonstrated that the timing of activation is also quite sensitive to changes

in the transcription rate of the activator. Thus, precise regulation of activator

mRNA synthesis rates may serve as a mechanism for tuning the timing of ac-

tivation in naturally-occurring biological networks. By constructing and char-

acterizing a synthetic mammalian positive feedback network we have gained

insight into the dynamic behavior of more complex naturally-occurring systems

that contain positive feedback loops. Future work in the field of mammalian

synthetic biology is expected to advance our understanding of the operating

principles of complex biological systems and lead to further progress in areas

such as drug discovery, tissue engineering, and biopharmaceutical manufactur-

ing (Weber and Fussenegger, 2009).

In Chapter 3, we explored the dynamic activity of the transcription

factor NF-κB that is produced by dual negative feedback loops. By utilizing

our model of the NF-κB signaling pathway, we found that the frequency and

decay rate of oscillations produced by the IκBα-mediated negative feedback

loop are not sensitive to changes in the input signal levels suggesting that the

oscillatory frequency does not encode information about the stimulus. We

performed a parameter optimization procedure of the dual feedback network

to determine the IκBε synthesis parameter values that result in maximum

damping and found a good correspondence between the model prediction for

optimal damping and experimental measurements of relevant parameter val-

ues indicating that the second IκBε-mediated feedback loop may have specifi-

cally evolved to minimize the oscillatory behavior of the first IκBα-mediated

feedback loop. Further, we demonstrated that the dual feedback architecture
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allows for a highly sensitive response to transient stimuli and a temporally

graded response to longer inputs. Finally, we analyzed the variability in the

response of the NF-κB module that arises due to intrinsic and extrinsic noise,

and we found that the dual-feedback loop architecture allows for a more robust

response than the single feedback loop system. By utilizing a systems biology

approach that combines quantitative experimentation with theoretical model-

ing, we have gained novel insight into the function and origin of the NF-κB

signaling system.

The development of systems-level approaches for quantitatively ana-

lyzing the dynamics of biological networks was spurred by the availability of

the first draft sequences of the human genome in 2001 (International Human

Genome Sequencing Consortium, 2001; Venter et al., 2001) and the comple-

tion of the Human Genome Project in 2003 (International Human Genome

Sequencing Consortium, 2004). The introduction of novel technologies that

enable genome-scale analyses has led to a transformation in biological re-

search with studies examining the function of a single molecule in isolation

being replaced by studies which examine the interactions of tens to thousands

of molecules thus probing the behavior and function of whole networks.

While the original Human Genome Project cost billions of dollars and

took several years to complete, it is estimated that advances in DNA sequenc-

ing technologies will allow for the sequencing of an entire human genome in sev-

eral hours with a cost of $100 as soon as 2012 (http://www.BioNanomatrix.com;

http://www.completegenomics.com). Currently, researchers involved in the

1000 Genomes Project are using novel sequencing technology to sequence the

genomes of 1000 individuals which will allow single nucleotide polymorphisms
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(SNPs) that occur at a frequency as low as 1% to be found (Kaiser 2008).

Genome-wide association studies which examine statistical associations be-

tween SNPs and the occurrence of disease will lead to further discoveries about

the biological pathways which underlie disease (Koenig 2009).

Rapid progress in DNA sequencing and DNA synthesis technologies

(Gibson et al., 2008) has been accompanied by the development of novel ex-

perimental methods for characterizing signaling activity in individual cells.

Recent studies have demonstrated that precise temporal stimuli with diverse

patterns can be generated using microfluidic devices allowing for the observa-

tion of cellular responses to time-varying signals (Bennett et al., 2008; Hersen

et al., 2008). Furthermore, the development of high content, high throughput

assays has enabled quantitative measurements of multiple signaling species in

single cells in response to various stimuli (Irish et al., 2006; Krutzik et al.,

2008; Cheong et al., 2009). The production of profuse amounts of different

types of data from diverse systems will necessitate advances in computational

methods that allow for the integration of multiple data sets into models of

biological networks. Through the iterative refinement of network models, we

will deepen our understanding of cellular signaling in both healthy and dis-

eased states thus leading to the development of more effective diagnostic and

therapeutic approaches.
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